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ABSTRACT 

 

IN SILICO-GUIDED DESIGN OF NOVEL-SCAFFOLD THERAPEUTICS TARGETING THE  

 

DOPAMINE D3 RECEPTOR  

 

 

 

By 

Debesai Hailemicael 

December 2014 

 

Thesis supervised by Dr. Christopher K. Surratt 

Computational methods in drug discovery reduce research time and costs, and only now 

can be applied to certain psychiatric conditions due to recent breakthroughs in determining the 

3D structures of relevant drug receptors in the brain.  A new computational technique, de novo 

fragment-based drug design (DFDD), was evaluated employing a dopamine D3 receptor (D3R) 

crystal structure.  Three DFDD approaches – scaffold replacement, ligand building, and 

MedChem Transformations – were assessed in replacing structural portions of eticlopride, a 

D2/D3R-specific antagonist, to generate compounds of novel drug scaffold.  Pharmacological 

characterization of the compounds determined their binding affinities at target brain receptor.  

Analogs of scaffold replacement-generated compounds displayed moderate D3R affinity, 

suggesting that this DFDD method could be an important drug design tool.  The findings support 

the addition of in silico approaches to conventional drug discovery, toward creation of new 
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therapeutics for depression, anxiety, schizophrenia, addiction and other disorders of the central 

nervous system. 
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CHAPTER ONE  

1 INTRODUCTION 

1.1 Study overview 

 

Depression is a mental disorder characterized by the loss of pleasure, low self-esteem, 

hopelessness, low energy, and poor concentration, affecting millions around the world. It is a 

common disabling disorder that considerably downgrades the quality of life, inflicting huge 

economic costs to individuals and society. Depression pathophysiology is not yet fully 

understood (Connolly and Thase, 2011).  Many classes of antidepressants have been developed 

since the serendipitous discovery of the first generation of antidepressants: tricyclic 

antidepressants (TCAs) and monoamine oxidase inhibitors (MAOIs) (Howland, 2010).  

However, even the current antidepressants continue to carry severe drawbacks: delayed onset of 

action, intolerable adverse effects, and low efficacy (Bosker et al., 2004; Han et al., 2014; 

Kessler, 2012; Rosenzweig-Lipson et al., 2007;  Manosso et al., 2013).  Even the popular 

selective serotonin reuptake inhibitors (SSRIs) have many intolerable adverse effects.  SSRIs 

adverse effects are due to ubiquitous synaptic increases in serotonin, leading to indiscriminate 

activation of serotonin receptors, of which there are 14.  Most of these adverse effects can be 

attributed to the 5-HT2A/2C and 5-HT3 serotonin receptor subtypes.  Therefore, drugs that inhibit 

the serotonin transporter (SERT) and additionally block the 5-HT2C and 5-HT3 receptors could 

eliminate most of the adverse effects while retaining antidepressant efficacy (Artigas, 2013). 

Developing successful new antidepressants using traditional high-throughput screening 

(HTS) and knowledge-based structure-activity relationship (SAR) approaches are, however, 

expensive.  It is reported that the addition of computational methods could reduce drug discovery 

costs of $0.8 to $1.2 billion by 50% (Geldenhuys et al., 2006).  HTS is laborious, time-
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consuming, expensive and broad-targeted while computational methods are fast, cheap, and with 

less human workload (Acharya et al., 2011).  Computational drug design approaches are 

commonly divided into three categories based on the use and availability of a 3D structure of a 

target molecule: structure-based, ligand-based, and hybrid (structure/ligand) based drug design 

(Acharya et al., 2011; Palmeira et al., 2012; Pratuangdejkul et al., 2008; Wilson and Lill, 2011).  

Computational approaches employ different methods according to the stage of drug design and 

the challenges faced to identify or optimize lead compounds.  The most widely used approaches 

are de novo fragment based drug design (DFDD) and virtual screening (VS) of chemical 

libraries.  DFDD is more advantageous over VS because it creates a novel ligand with guided 

physicochemical, pharmacokinetic, and pharmacodynamics properties (Hartenfeller and 

Schneider,  2011; Loving et al., 2010; Pirard, 2011).  Such methods will be used to generate new 

antidepressant candidates with guided properties. 

As proof-of-concept regarding the newer DFDD methods, this study took advantage of a 

recently published crystal structure of the dopamine D3 receptor complexed with the D2/D3 

antagonist eticlopride.  This crystal structure allowed development of a computational model that 

was employed with three DFDD methods, scaffold replacement, MedChem transformation, and 

ligand building, toward generating novel-scaffold D3 receptor ligands.  After fine-tuning these 

DFDD methods with the well-characterized D3 system, the methods will next be applied to 

serotonin transporter and receptor proteins implicated in depression, for development of novel 

antidepressant lead compounds.  
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1.2 Statement of the problem 

 

The currently used antidepressants have major limitations: delayed onset of action, severe 

adverse effects, and incomplete remission of symptoms (Penn and Tracy, 2012; Trivedi et al., 

2006; Uher et al., 2011).  Only 50% of patients show resolution of symptoms and 30% of 

population fail to respond to current antidepressants (Al-Harbi, 2012; Berton and Nestler, 2006; 

Judd, 2001; Kulkarni and Dhir 2009; Pacher et al., 2001).   Such major drawbacks limit the 

popularity of the current antidepressants and promote the search for new avenues of treatment.  

However, the high cost of successful development of novel antidepressants is prohibitive 

(Khanna, 2012; Janero, 2012; Paul et al., 2010). Fortunately, costs could be considerably reduced 

if a crystal structure-based homology model of a drug target protein is available that can virtually 

simulate a native protein environment. Such models allow virtual screening or ligand building of 

novel scaffolds that can serve as lead compounds (Kar and Roy, 2013; Singh and Singh, 2010). 

DFDD methodology is an example of such in silico drug design approaches that can create novel 

structures from a known active ligand (Hartenfeller and Schneider, 2011; Mauser and Guba, 

2008; Schneider and Fechner, 2005).  The objective of this study is to refine and evaluate DFDD 

methods (scaffold replacement, MedChem transformations, and ligand building) via generating 

novel D3R ligands.  

The hypothesis of this study is that new de novo fragment-based in silico guided drug 

design methodologies can be used to create unique scaffold D3R ligands, thereby providing tools 

for rational design of antidepressant drugs.  The recently crystalized high resolution D3R 

receptor is used as a proof of concept to refine and evaluate the novel methods.  Refinement and 

evaluation is performed by generating new structures of ligands using eticlopride that was 

cocrystalized with D3R.  Specific aim 1 of this study was to prepare, refine and use a D3R model 
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to generate eticlopride and novel-scaffold ligands via scaffold replacement, MedChem 

transformation, and ligand building of eticlopride.  Specific aim 2 was to pharmacologically 

characterize the ligands generated via scaffold replacement, MedChem transformation, and 

ligand building at D3R stably expressing HEK293 cells.  
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Fig 1.1: Scheme showing the general picture of the current study.   
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The overall goal of this study is to identify in silico guided drug design methodology that 

can rapidly and cheaply generate novel ligands to be used as lead compounds. This was 

performed by evaluating Molecular Operating Environment (MOE) – DFDD methods in 

generating novel D3R ligands.  The study covered four experiments: (a) Scaffold replacement of 

eticlopride within the D3R binding pocket   (b) MedChem transformation of eticlopride within 

the D3R binding pocket.  (c) Ligand building of eticlopride within the D3R binding pocket 

(Figure 1.1).  (d) Pharmacological characterization of hit compounds or commercially available 

analogs using HEK293 cells stably expressing the D3R.  

1) Scaffold replacement of eticlopride at D3R. Structurally, eticlopride can be divided into three 

moieties: aryl, methyl amide linker, and an ethyl pyrrolidine that has an ionizable tertiary amine 

(Figure 1.2).  These discrete portions of the drug can be systematically replaced using a pool of 

over one million fragments.  With each replacement a hit compound was generated and ranked 

based on its virtual affinity (London dG score), visual inspection, and structural novelty 
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Fig 1.2: The three structural parts of eticlopride used for scaffold replacement: aryl 

(green), methyl amide (orange), the aryl (yellow), and ethyl pyrrolidine (cyan) are shown. 

 

2) MedChem transformation of eticlopride at D3R.  With this method, the same three segments 

of eticlopride were replaced using medicinal chemistry rules of transformations in six different 

ways:  

3) Ligand building of eticlopride at D3R.  Eticlopride was divided into two aryl and methyl 

amide ethyl pyrrolidine segments (Figure 1.3).  With either portion as a starting fragment, the 

ligand building method searches the fragment pool to reconstruct the molecule from within its 

D3R pocket.  
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Fig 1.3: The two parts of eticlopride that were deleted. They were deleted and 

attempted generating them from the undeleted part subsequently. The two parts are 

shown: the Aryl group (green), and methyl amide ethyl pyrrolidine (cyan).  

 

4) Pharmacological characterization of hit compounds and their analogs.  To test the validity of 

each ligand discovery method, hit compounds or their analogs may be selected, purchased and 

tested for in vitro binding affinity at the D3R.  First, each compound is screened via one-point 

membrane binding assay using stably expressing D3R HEK 293 cell membranes, to evaluate the 

ability of the hit to inhibit binding of a radiolabeled D3R ligand.  Hits that show at 10 

micromolar final concentration a significant inhibition of radioligand binding are then more fully 

characterized via the membrane binding assay to generate Ki values.  

The overall rational of this study is that once DFDD methods: scaffold replacement, 

MedChem transformation, and ligand building are known to be promising methods in generating 
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novel D3R ligands, such methods can be applied to monoamine transporters (MATs) and 5-HT 

2A/2C and 5-HT3 receptors to generate potential lead antidepressants that can possibly overcome 

the current antidepressants severe drawbacks. 
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1.3 Literature Review 

1.3.1   Currently used antidepressant drugs 

The first antidepressants, the tricyclic antidepressant (TCA) imipramine and the 

monoamine oxidase inhibitor (MAOI) and antibiotic iproniazid, were serendipitously discovered 

over 50 years ago, opening avenues for intensive research in the treatment and etiology of 

depression (Baldessarini,  1989; Feighner, 1999; Lopez et al., 2009).  In the 1960s, identification 

of their mechanisms of action lead to the postulation of the monoamine hypothesis of depression 

(Slattery et al., 2004).  TCA and MAOI antidepressants exert their effects by increasing synaptic 

levels of one or more monoamine neurotransmitters.  Many antidepressants from the two drug 

classes were introduced to the market.   The second landmark discovery that reformed the 

treatment of depression was the introduction of fluoxetine in the 1980s, the first marketed 

selective serotonin reuptake inhibitor (Lopez et al., 2009; Wong et al.,  2005).   In the last 

decade, the development and advent of antidepressants significantly increased with drugs that 

produce their pharmacological effect at monoaminergic systems and beyond (Feighner,  1999; 

Gumnick and Nemeroff,  2000). 

The first line of antidepressants, TCAs and MAOIs, possesses numerous adverse effects 

and toxic reactions in overdose or in combination with other drugs due to their additionally 

targeting cholinergic, histaminergic and adrenergic receptors (Gartlehner et al., 2011; Lakatos 

and Rihmer, 2005; Penn and Tracy, 2012).  Development of antidepressants without such 

adverse effects is possible by designing new ligands that selectively bind to MATs.  Consistent 

with this, the second generation of antidepressants was developed to avoid the adverse effects, 

increase rate of onset and enhance efficacy, although limited success has been achieved.   Even 

though the naming of the generation depends on the timing of the antidepressant reaching the 
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market and not structural characteristics, newer generations are reported to be more selective for 

one or more monoamine transporters (Nishida et al., 2009; Pinder, 1997; Westenberg, 1999).  

Current antidepressants show full resolution of symptoms for less than 50% of patients, and still 

suffer from delayed onset of action and many adverse effects.  Consequently, new avenues of 

non-monoamine targeted antidepressant development are under intense research.  Such targets 

include non-monoamine proteins, neuropeptides, and hormone receptors (Bosker et al., 2004; 

Bourin et al., 2002; Chaki et al., 2006).  Potential fast-acting antidepressants have been 

suggested from preclinical and preliminary clinical trials.  These are the NMDA antagonist 

ketamine, the muscarinic acetylcholine receptor antagonist scopolamine, and the 5-HT2c 

receptor antagonist SB242084 (Drevets and Furey, 2010; Furey and Drevets, 2006; Lapidus et 

al., 2014; Murrough et al., 2013; Opal et al., 2013).  The identification of fast-acting potential 

antidepressants is an important advance in the drug development field.  Logically, even though 

depression treatment alternatives and safety have increased significantly since the serendipitous 

discovery of the first generation antidepressants, the current collection of antidepressants still 

bears limitations of efficacy and tolerability.   Such drawbacks demand immediate attention for 

development of new antidepressants that overcome these alarming problems. 

1.3.2   Computational methods of antidepressant drug discovery  

The drug discovery and development path of a novel drug is an uncertain, slow, 

laborious, expensive, and interdisciplinary process that takes an average of 14 years and a cost of 

0.8 to 1.0 billion dollars from concept to clinic (Adams and Brantner, 2006; Dickson and 

Gagnon, 2004; Ou-Yang et al., 2012; Schacter et al., 1992).  Recent advances in HTS and 

combinatorial chemistry have reduced the labor and time by synthesizing and screening large 

libraries of compounds (Lahana, 1999; Liu et al., 2004; Maehr, 1997; Mayr and Bojanic, 2009) .  
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Even though the tools for drug discovery such as HTS have improved and the investment for 

new drug discovery has significantly increased, the success rate has been very low (Ramesha, 

2000; Shekhar, 2008).  Drug discovery efforts are exploring new avenues to reduce time and 

costs while increasing success rates, and one such avenue is computer aided drug discovery 

(CADD).  This method combines computer software, algorithms and the 3D structure of a target 

in the drug design process.  Because of the large quantities of compounds available and the 

requirement to examine these huge libraries as well as related drug design information in a short 

period of time, CADD is an appropriate tool to analyze, store, and manage these digital 

repositories (Song et al., 2009).  CADD advancement in the last decade has accelerated lead 

compound identification and optimization, and is changing the pharmaceutical research approach 

in drug discovery.  It is also reported to reduce drug design costs by 50% (Rester 2008; Taft et 

al., 2008; Talele et al., 2010).  

CADD has considerable advantages over the traditional HTS drug discovery approach of 

robotic assays of a collection of drug-like compounds for biological activity.  These advantages 

are i) less prior drug design knowledge is needed ii) higher hit rates, iii) lower costs and 

workload without affecting lead discovery success, and iv) less preparation, development, and 

validation are required (Sliwoski et al., 2014; Warren et al., 2006).  CADD is most successful 

when a 3D structure of the target protein is available either a crystal structure or homology 

model.  CADD has helped in the drug discovery of compounds that have made their way to the 

market for the treatment of many diseases.  Examples include the 1998 fibrinogen antagonist 

tirofiban (Hartman et al., 1992; Kobayashi and Naito, 2000), the 1995 carbonic anhydrase 

inhibitor dorzolamide (Kobayashi and Naito, 2000; Vijayakrishnan, 2009), and the 1981 

antihypertensive captopril (Talele et al, 2010). 
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CADD can be broadly classified into ligand-based, structure-based, or hybrid 

(structure/ligand)-based categories.  When the 3D structure of a target protein is available and 

employed, the method is known as structure-based drug design.  The basic concept in this 

approach is that a compound that favorably interacts with and fits into the protein’s ligand 

binding pocket is considered to have biological activity in that protein (Sliwoski et al., 2014). In 

contrast, the ligand-based method uses “model” ligand information alone to predict the activity 

of candidate ligands; activity is predicted based on the similarity to established active ligands, 

without the knowledge of the target protein structure.  A pharmacophore feature is created from 

the “model” ligands that have the same biological activity, selecting common spatial orientation 

features that are necessary for biological activity (Aparoy et al., 2012; Jain, 2004; Lundstrom, 

2009; Martin et al., 1993; Martin, 1992).  The hybrid (structure/ligand)-based approach employs 

the ligand-based method in the context of a target protein (Immadisetty et al., 2013). 

The two most important methods in computational drug design are DFDD, and virtual 

screening (VS).  

1.3.2.1 De novo fragment drug design 

 

 DFDD is a computational approach that generates novel chemical structures by 

replacing, building, and/or mutating a known active ligand as well as assembling fragments to 

guide the generation of drug-like compounds with defined physical, chemical and biological 

activities.  Since its introduction in 1991, DFDD is getting greater attention as alternative to HTS 

from the pharmaceutical industry and academia (Erlanson, 2012; Krueger et al., 2009; Mauser 

and Guba, 2008).  HTS searches for a lead compound out of the available 10
60-100 

drug-like and 

chemically feasible compounds to find the favorable lead compound.  The comprehensive search 

of such “chemical space” is time-consuming, expensive and laborious.  However, this challenge 
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can be overcome by using DFDD, systematically building or creating novel virtual structures 

thought to have biological activity at a specific target protein (Lipinski and Hopkins, 2004; 

Schneider, 2002).  Even though DFDD started as a structure-based approach, it was strengthened 

with the ligand-based approach and is now most effective when the hybrid (structure/ligand)-

based approach is employed.  Unlike VS, DFDD does not search to fish out biologically active 

compounds from a database of compounds, but “creates” new chemical scaffolds.  As with 

CADD, DFDD, if used within a protein structure, invents new hypothetical virtual structures that 

fit the receptor binding pocket within a specified space (Hartenfeller et al., 2012).  Such methods 

were developed to solve the problem of generating novel structures and lead optimization by 

employing medicinal chemistry rules and algorithms (descriptor filters) that could guide the 

design of chemicals that are accessible and display the desired pharmacokinetic and 

pharmacodynamics properties (Kutchukian and Shakhnovich, 2010). 

Recently, DFDD approaches were able to develop hit compounds that were synthetically 

accessible and with modest potency.  An example is the design of human polo-like kinase 1 

(PIK1) inhibitors using “design of genuine structures” (DOGS) software (Schneider et al., 2011; 

Spankuch et al., 2013).   Despite the considerable success of DFDD, it has significant challenges 

to overcome: generating chemical structures that are invalid or non-drug like, and poor synthetic 

plausibility (Honma, 2003; Liu et al., 2007).  This challenge is the reason why very few de novo 

synthesis packages have been exposed to extensive practical evaluation (Mauser and Guba, 

2008; Hartenfeller et al., 2012).  To partially overcome DFDD drawbacks, medicinal chemistry 

knowledge about the returned hits (chemical space) should be incorporated as algorithms 

whenever possible.  This current study has applied DFDD to generate novel D3R ligands using 

MOE software packages (scaffold replacement and MedChem transformations).  
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1.3.2.2 Scaffold replacement (“Scaffold hopping”) 

 

 Scaffold replacement is a method that is employed to design novel chemical structures 

via replacing a part (scaffold) of a biologically active ligand while keeping the remaining 

chemical structure.   The notion of “scaffold replacement” was first introduced and coined in 

1999 by Schneider and colleagues to generate molecular structures with similar functions but 

with very different chemical backbones (Schneider et al., 1999).  Scaffold replacement was 

developed to discover novel chemical structures starting from a well-known compound by 

changing the central structure of the compound (Cramer et al., 2004).  And it was also developed 

to modify the physiochemical and pharmacokinetic properties of lead compounds that are 

identified by HTS or VS (Sun et al., 2012).  To perform a scaffold replacement, a known 

bioactive ligand and a known target are essential; however, for a new target, HTS and possibly 

VS are the only promising approaches to generate target specific active lead compounds.  

Therefore, it is unwise, ineffective and costly to use HTS for screening huge databases using a 

known ligand-protein complex structure (Hopkins and Groom, 2002; Pang 2007; Russ and 

Lampel, 2005; Sun et al.,2012).   Scaffold replacement is not limited to structure-based drug 

discovery but can also be used in ligand-based drug design.  The technique has been effectively 

applied in many drug discovery projects; at least 200 PubMed citations are associated with 

scaffold replacement (Lloyd, 2013).  

 Several methods of scaffold replacement have been proposed and employed in novel 

drug design, one of which is the MOE scaffold replacement package, an extension of CAVEAT 

scaffold hopping software (Lauri and Bartlett, 1994).  This program replaces a scaffold by 

selecting the bonds that link the scaffold (linkers) and the remaining part of the known ligand (R-

groups).  Such selection is defined by exit vectors that separate the selected scaffold and the 
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retained R-group.  The selected scaffold is then replaced by fragments that satisfy the bond 

length and angle, hybridization, and chemical nature of the R-groups to form a covalent bond 

between the new fragment and the retained R-groups (Figure 1.4). Scaffold replacement is 

performed using fragment databases that are formed by decomposition of synthesizable 

compounds into synthesizable fragments that can retrosynthesize compounds that could be 

accessible.  

Scaffold replacement in MOE was first performed by the developers of MOE software, 

Chemical Computing Group (CCG) (Deschenes et al, 2007; Grimshaw, 2010).  Grimshaw 

evaluated whether MOE scaffold replacement could predict the structure of a clinical candidate 

(BRIB-976) from its initial hit ligand (1-(3-(tert-butyl)-1-methyl-1H-pyrazol-5-yl)-3-(4-

chlorophenyl) urea).  The scaffold replacement was performed by deleting the chlorophenyl 

group of the initial hit and generating new structures by growing the retained part.  The study 

was successful in showing that scaffold replacement of the initial hit could generate similar 

structures to that of the clinical candidate.  Nevertheless, three pharmacophore features were 

used to guide the resulting hits.  The generated potential hits were structurally similar to BIRB-

976 but their in vitro binding affinities were not determined and compared with the parent 

compound and BIRB-976.  
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Fig 1.4:  The molecular workflow of scaffold replacement: Example of eticlopride amide 

linker scaffold replacement. Eticlopride has two R-groups and an amide linker (scaffold) to be 

replaced, and two exit vectors (green arrows).   The (Linker, linker2) feature is employed to 

preserve the aryl R-group and the (Linker, Linker3) feature is used to retain the pyrrolidine 

ring R-group. Linker is a vector site that connects the scaffold and R-groups.  A four-point 

query is created to replace the scaffold. Searching the database of fragments generates a new 

compound. 

 

1.3.2.3 MedChem transformation  

 

 MedChem transformation is an approach used to generate novel chemical structures 

using virtual “medicinal chemistry rules” on a known biologically active compound. In a 

nutshell, it can be defined as the mutation of a portion of a biologically active compound to 

generate new structures or improve physicochemical, pharmacokinetic, potency and anti-
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toxicological properties.  Lead optimization demands medicinal chemistry knowledge, and at 

times, searching of large databases.  Once a lead compound is identified, chemists propose 

promising structures using SAR, generate libraries of small molecules, or hybridize the lead 

compound via its coupling to structures that are known to have desired properties and activities.  

Such methods are expensive, time-consuming and dependent on the experience of the chemist.  

To overcome these challenges, automated virtual medicinal chemistry transformation rules can 

be used. The transformation rules used are medicinal chemistry drug design common rules 

collected from many years of experience in drug discovery programs (Segall et al., 2009; Stewart 

et al., 2006; Therrien et al., 2012). Transformations could include functional group changes, 

bioisostere replacement, ring closing or opening, and partial structure replacement to generate 

novel structures.  Transformations could run in multiple iterations to generate large and 

completely dissimilar structures to the parent compound; the MOE MedChem transformations 

program allows a maximum of 50 iterations.  The smaller the number of transformation 

iterations, the smaller the structural change of the parent compound.  For successful use in drug 

discovery projects, MedChem transformation should generate diverse, novel, accessible, and 

stable structures (Khedkar, 2010; Segall et al., 2011).  The main limitation of this method as with 

any other DFDD is that generated compounds may not be synthesizable, drug-like, or stable.  

MedChem transformations could be performed as a bioisosteric replacement that maintain 

certain properties, or a ring replacement that modifies the properties of the parent compound. 

With MOE MedChem transformation any part of a parent compound could be replaced and 

transformed by either growing a small fragment or mutating a known bioactive compound. 
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1.3.3   The eticlopride-dopamine D3 receptor structure complex 

Dopamine, an endogenous catecholamine, has extensive effects in neurons as a 

neurotransmitter and in non-neuronal tissues as an autocrine or paracrine agent.  In the CNS, 

dopamine binds to its receptors to regulate locomotion, learning, working memory, cognition, 

and emotions (Chien et al., 2010; Drozak and Bryla, 2005).  The D3R has been linked to 

schizophrenia, Parkinson’s disease and addiction (Newman, et al., 2012; Hackling and Stark, 

2002). There are five dopamine receptor subtypes, all G protein-coupled receptors (GPCRs) and 

named D1 through D5.  From a sequence homology and G protein coupling, the five subtypes 

can be classified as “D1-like” (D1R and D5R), which couple to stimulatory G proteins, or “D2-

like” (D2R, D3R and D4R), which couple to inhibitory G proteins (Sokoloff et al., 1990). 

The dopamine D3 receptor was of interest in the present studies because of its recent 

cocrystallization with the D2R/D3R-specific antagonist, eticlopride (Feng et al., 2012; Hackling 

and Stark, 2002).  The determination of the eticlopride-D3R structure was essential not only for 

combating disorders where D3R is implicated, but to evaluate and refine computational methods 

before applying them to target proteins.  Given the good (3.2 Å) resolution of the D3R structure 

and its being a GPCR, a receptor class serving as the target for more than 30% of FDA-approved 

drugs (Overington et al., 2006). The eticlopride-D3R complex is an ideal tool for evaluation, 

refinement and validation of computational methods.  

Like essentially all GPCRs, the D3R has seven transmembrane helices (TM1- TM7), 

three intracellular loops (IL1 - IL3) and three extracellular loops (EL1 - EL3). The crystal 

structure of the D3R indicated that eticlopride binds within the orthosteric-binding site (OBS), 

encircled by the upper halves of TMs 3, 5, 6 and 7.  Dopamine is also reported to bind in the 

OBS, and this pocket is responsible for the efficacy and potency of D3R ligands.  A secondary 
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binding pocket (SBP) is also found, enclosed by TMs 1, 2, 3, 7 and ELs 1 and 2 (Figure 2.5). 

The SBP is thought to be important for differentiating D2R and D3R ligands (Newman et al., 

2012).  

The presence of eticlopride helped with the stabilization of D3R receptor crystal structure 

by providing high thermostability.  This substituted benzamide was originally developed as a 

potential antipsychotic drug and contributed to a better understanding of CNS dopamine receptor 

functions.  Eticlopride is currently being used only for research purposes because it causes severe 

adverse effects (Martelle and Nader 2008; Giuliani and Ferrari 1997).  Eticlopride has three- to 

six-fold greater affinity for D2R over D3R, with Ki values of 0.23 ± 0.05 nM and 0.78 ± 0.36 

nM at MN9D cells, respectively (Tang et al., 1994).  The eticlopride-D3R complex was used in 

this study to refine and evaluate the DFDD methods before applying them to depression-related 

brain targets 
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Fig 1.5: D3R structure and binding pockets.  The seven transmembrane helices (green 

cylinders annotated TM 1 - 7) are shown, as are the extracellular (EL1, orange; EL2, blue; 

EL3, red) and intracellular (IL1, yellow; IL2, gray) loops.  Eticlopride (yellow, ball-and-

stick) is bound in the OBS (red circle) and forms an ionic interaction with the TM3 Asp-

110 side chain.  The SPB is also delineated (yellow circle) by TMs 1, 2, 3 and 7. 
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To summarize, currently used antidepressant drugs are largely effective in alleviating 

depression symptoms but have number of drawbacks; improved antidepressants are needed.  

However, CNS drug development costs are beyond the reach of pharmaceutical companies and 

academic labs.  Methods that reduce the cost of CNS drug discovery are essential to attain this 

goal.  Computational methods have been reported to identify and optimize lead compounds 

cheaper and faster.  Novel DFDD-based computational methods have been designed to identify 

and develop lead compounds using virtual medicinal chemistry rules that save time, cost and 

personnel resources.  Scaffold replacement, MedChem transformations, and ligand building are 

such methods, and were employed in the present study.  Before applying these DFDD methods 

to target proteins such as the SERT, NET, 5-HT2CR, 5-HT2CR and 5-HT3R in generating superior 

antidepressant lead compounds; methodology proof-of-concept was investigated using a well-

characterized system, the D3 dopamine receptor.  Using a recently crystallized eticlopride-D3R 

complex as template, structural fragments of the drug eticlopride were replaced or manipulated 

while within the antagonist binding pocket of the D3R crystal structure model, using the scaffold 

replacement, MedChem transformations, and ligand building methods.   
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CHAPTER TWO 

2. MATERIALS AND METHODS 

2.1 Materials and Equipment 

2.1.1   Facilities 

Laboratories - Mellon Hall of Science, Room 408, 414, 416, 456, 457 and 459 

2.1.2   Cell lines 

Human embryonic kidney 293 cells stably expressing wild type human D3R  

Dr. Robert Luedtke, University of North Texas Health Sciences Center, Fort Worth, 

Texas  

2.1.3   Chemicals and Drugs 

Acetic acid, glacial 
Fisher Scientific, Pittsburgh, PA 

 
Ampicillin, sodium salt 
Acros, Carlstad, NJ 
 
Compressed carbon dioxide 
Air Products, Pittsburgh, PA 

Calcium chloride 
Sigma-Aldrich Co., St. Louis, MO 
 
Dimethylsulfoxide (DMSO) 
Sigma Chemical Co., St. Louis, MO 
 
D-(+)-Glucose 
Sigma-Aldrich Co., St. Louis, MO 
 
Dulbecco’s Modified Eagle Medium (DMEM) 

Thermo Scientific, Logan, UT 

Dulbecco’s Phosphate Buffered Saline (DPBS), Ca/Mg-free 

Cambrex Bioscience Inc., Walkersville, MD 

EDTA 
Sigma-Aldrich Co., St. Louis, MO 

 
Ethanol, 200 proof 
Pharmaco Products Inc., Brookfield, CT 
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Ethanol, HPLC grade 
Acros, Carlstad, NJ 
 
Eticlopride HCl  
Sigma-Aldrich, Inc., Allentown, PA 
 
Fetal bovine serum 

Thermo Scientific, Logan, UT 

HBSS/modified 
Hyclone, Logan, UT 
 
[
3
H]-Spiperone 

Perkin Elmer, Foster City, CA 
 
G-418 sulfate 
Clontech Laboratories Inc., Mountain View, CA 
 
Isopropanol (DNase, RNase and protease free) 
Fisher Scientific, Pittsburgh, PA 
 
L-Glutamine 
Invitrogen, Carlsbad, CA 

Penicillin-Streptomycin 
Gibco-BRL, Grand Island, NY 
 
Trypsin-EDTA, 10X 
Gibco-BRL, Grand Island, NY 

 
Penicillin-Streptomycin 
Toronto Research Chemicals Inc., North York, ON Canada 
 
Potassium chloride 
Sigma-Aldrich Co., St. Louis, MO 
 
Potassium phosphate, monobasic 
Sigma Chemical Co., St. Louis, MO 

 
Sodium Chloride 
Sigma-Aldrich Co., St. Louis, MO 
 
Sodium Hydroxide 
Fisher Scientific, Pittsburgh, PA 
 
Sodium Hydroxide, 2N solution 
Fisher Scientific, Pittsburgh, PA 
 
Sodium Hydroxide, 12N solution 
Fisher Scientific, Pittsburgh, PA 

 
Tris-EDTA buffer (DNase, RNase and protease free) 
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Acros, Carlstad, NJ 
 

Tris-HCl salt 
Sigma Chemical Co., St. Louis, MO 
 
Triton X-100 
Acros, Carlstadt, NJ 
 

2.1.4   Materials 

Cell culture flasks, 75cm
2
 

Corning Inc., Teterboro, NY 

 

Cell culture grade water 

Hyclone, Logan, UT 

 

Cell culture plates (10, 25cm) 

Fisher Scientific, Pittsburgh, PA 

 

Centrifuge tube, 15ml 

Corning Inc., Horseheads, NY 

 

Centrifuge vials, 1.5ml 

Corning Inc., Horseheads, NY 

 

Culture tubes, disposable 

Fisher Scientific, Pittsburgh, PA 

 

Eppendorf microcentrifuge tubes, 1.5 ml 

Fisher Scientific, Pittsburgh, PA 

 

Falcon tubes, 14ml 

Fisher Scientific, Pittsburgh, PA 

 

Falcon tubes, 50ml 

Fisher Scientific, Pittsburgh, PA 

 

Filter unit, sterile 

Millipore, Billerica, MA 

 

Parafilm 

Fisher Scientific, Pittsburgh, PA 

 

Pasteur pipettes, disposable 

Fisher Scientific, Pittsburgh, PA 
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Pipette tips, disposable Redi-Tips TM (1, 10, 200, 1000 µl) 

Fisher Scientific, Pittsburgh, PA 

 

Polypropylene tubes 

Fisher Scientific, Pittsburgh, PA 

 

Respirator 

Fisher Scientific, Pittsburgh, PA 

 

Scintillation vials 

Fisher Scientific, Pittsburgh, PA 

 

Serological pipettes, sterile disposable (5, 10, 25 ml) 

Fisher Scientific, Pittsburgh, PA 

 

Syringes, sterile (10 ml) 

Fisher Scientific, Pittsburgh, PA 

 

Tissue culture plates, sterile (6 well, 24 well) 

Fisher Scientific, Pittsburgh, PA 

Sarstedt Inc., Newton, NC 

 

Whatman GF/B filter 

Schleicher and Schuell, Keene, NH 

2.1.5   Equipment 

Analytical balance 

Mettler Inc., Toledo, OH 

 

Bottletop dispenser 

Brinkmann Instruments Inc., Horseheads, NY 

  

Cell culture incubator 

Forma Scientific, Worcester, MA 

 

Centrifuge Model 228 

Fisher Scientific, Pittsburgh, PA 

 

Centrifuge Model 5415 C 

Eppendorf Scientific Inc., Hauppauge, NY 
 

 

Confocal laser microscope, Leica TCS-SP2 

Leica Microsystems Inc., Exton, PA 
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Dispensing Eppendorf pipetter (50 ml) 

Brinkmann Instruments Inc., Hauppauge, NY 

 

Isotemp incubator 

Fisher Scientific, Pittsburgh, PA 

 

Lab freezers and refrigerators 

Forma Scientific, Worcester, MA 

 

Liquid Scintillation Analyzer 

Packard Instruments Co., Meriden, CT 

 

Millipore Milli-Q and Elix 

Millipore Corporation, Billerica, MA 

 

Mixer (Style: 37600) 

Thermolyne Corporation, Duqubue, IA 

 

NapFLOW Laminar airflow unit 

Fisher Scientific, Pittsburgh, PA 

 

ORBIT Shaker 

Lab-line Instruments Inc., Melrose Park, IL 

 

 

pH meter AB15 

Fisher Scientific, Pittsburgh, PA 

 

Pipet-aid 

Drummond Scientific Co., Broomall, PA 

 

Pipetman (P-2, P-10, P-20, P-100, P-200, P-1000) 

Mettler Toledo Company, Woburn, MA 

 

Universal Vacuum System UVS 400 

Savant Instruments Inc., Holbrook, NY 

 

UV-Visible spectrophotometer, DU 530 

Beckman Instruments Inc., Fullerton, CA 

 

Vacuum pressure pump  

Barnant Co., Lake Barrington, IL 

 

Vertex-2 Genie 

Scientific Industries Inc., Bohemia,  NY 
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Water bath, 180 series 

Precision Scientific, Winchester, VA 

 

Water bath, Iso TEMP 205 

Fisher Scientific, Pittsburgh, PA 

 

Weighing scale 

Denver Instruments Co., Denver, CO 

2.1.6 Computer software 

Adobe Acrobat Reader 7.0 

Adobe Systems Inc., San Jose, CA 

 

Adobe Acrobat Writer 

Adobe Systems Inc., San Jose, CA 

 

ChemBioDraw 13.0 

CambridgeSoft Corporation, Cambridge, MA 

 

GraphPad Prism 6.0 

GraphPad Software, San Diego, CA 

 

Microsoft Office Word & Excel Mac 2011 

Microsoft Corporation, Seattle, WA 

 

Molecular Operating Environment 2010.06 /2013.08  

Chemical Computing Group, Montreal, Canada 

 

PyMOL 

The PyMOL Molecular Graphics System, Version 1.5.0.4 Schrödinger, LLC.  

University of California, Los Angeles  
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2.2    Methodology and procedure 

2.2.1    Computational methods 

2.2.1.1 Scaffold replacement.   

This technique is employed to develop novel structures via replacing the central portion 

(“scaffold”) of a known ligand while keeping its remaining parts (R-groups).  The scaffold is 

replaced in hopes of generating ligands with more selective biological activity and fewer 

adverse/side effects (Sourial, 2007) (Figure 2.1).  Scaffold replacement in MOE occurs within 

the receptor binding pocket and is based on the CAVEAT software (Lauri and Bartlett, 1994), 

which requires at least two bonds connecting the scaffold to the R-groups of a known ligand.   

 

Figure 2.1 Scaffold replacement of the amide linker of eticlopride. Eticlopride, a 

D3R-selective antagonist, has two R-groups (yellow and cyan) to be retained and an 

amide linker (green cloud) to be replaced. MOE searches a virtual fragment database 

to generate new potential ligands. 
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The method uses fragments to replace the identified scaffold, and when the bond length, 

angle, geometry and hybridization of the retained R-groups and the fragments to replace the 

scaffold match, a new structure is formed.  Moreover, MOE scaffold replacement allows the user 

to create pharmacophore features based on an approach called Recore (Maass et al., 2007).  

Pharmacophore features can be created to specify key portions of the ligand that must be 

retained, as well as to guide specific interactions between the generated structures and the 

receptor.  Generated structures that clash with the walls of the receptor pocket are eliminated; a 

volume inclusion or exclusion component may be used to specify the space accessible to the 

generated structures.  To generate drug-like structures, MOE scaffold replacement allows use of 

QuaSAR descriptor filters, pharmacophore features and Model files.  The detailed and technical 

aspects of scaffold replacement are reported elsewhere (Grimshaw, 2010; Sourial, 2007). The 

general procedure of scaffold replacement is depicted below (Figure 2.2). 
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Fig 2. 2: Schematic representation of scaffold replacement and selection of hit compounds. 

 

In the present study, the D3R bound to the high affinity D2/D3 antagonist eticlopride was 

employed as a computational template.  The model was built based on the recent 3.15 Å-

resolution D3R-eticlopride cocrystal (Chien et al., 2010) (Figure 3).  The eticlopride 

conformation within the receptor pocket was used as a starting point, and scaffold replacement 

was carried out using MOE (MOE 2013.08).  The D3R computational model was used to 

evaluate and refine DFDD methodologies: scaffold replacement, MedChem transformations, and 

ligand building.  This proof of concept exercise was undertaken first with a structurally well-

defined drug-receptor template to understand, evaluate, and refine the novel methods before 

applying them to proteins of interest that are implicated in depression. 
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a.  

 

 

b. 

 

Fig 2.3: D3R receptor and its antagonist-binding pocket occupied by eticlopride.  Panel 

a represents eticlopride in the D3R binding pocket.  Eticlopride (aryl group in yellow, amide 

linker in orange, and ethyl pyrrolidine group in pink) is shown within the antagonist-binding 

pocket (cloud) of the D3R. Hydrophilic (green), charge-neutral (yellow) and hydrophobic 

(white) regions of the pocket are indicated, as are receptor side chains (annotated orange 

sticks) in the vicinity of the pocket. The seven D3R transmembrane α-helices (gold coils), 

helix-breaking turns (blue) and intervening loops (gray) are indicated. Panel b represents 

zoom view of the binding pocket region.  

 

A pharmacophore feature (“Don2|Cat&Don”, of 1.5Å) was used to preserve the 

biologically important receptor interaction with the tertiary amine of the ethylpyrrolidine ring of 

eticlopride.  “Don 2” denotes a projected location of potential H-bond acceptors, “Don” denotes 

an H-bond donor heavy atom, and “Cat” denotes a cationic heavy atom like nitrogen (Figure 2. 
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4).  This pharmacophore feature depicts the tertiary amine that forms a salt bridge with the 

amine-recognizing aspartic acid 110 in TM3. Macromolecular X-ray crystal structures may have 

defects due to poor resolution that includes missing and misplaced residues, loops that are 

altogether absent, and flexible regions that have positional misplacement.  Such defects should 

be corrected before performing any computational analysis.  Due to relatively modest resolution 

that resulted in some defects, the D3R crystal structure was corrected. Missing and misplaced 

residues and loops were corrected using the protein preparation mode protocol available in MOE.  

Ligx mode was also used to add hydrogen atoms, set protonation states, energy-minimize the 

complex, and immobilize atoms 4 angstroms away from the ligand-binding site. 

The scaffold of eticlopride was identified based on structure-activity relationships of 

eticlopride analogs and active site analysis of the D3R pocket with ligand interaction and 

electrostatic maps.  The SAR of eticlopride suggests that heteroaromatic substitution of the 

extended aryl amide increases affinity, while the amide linker is important for synthesis 

(Heidbreder and Newman, 2010).  The tertiary amine in ethyl pyrrolidine is reported to be highly 

crucial for the high affinity and pKa of eticlopride (Chien et al., 2010).  Active site analysis 

showed which residues of the pocket interact with eticlopride’s features and revealed the sites of 

hydrophobic, hydrogen donor and hydrogen acceptor residues.  Scaffold replacement was 

performed using the “select scaffold” mode in MOE.  The aryl and ethylpyrrolidine moieties 

were replaced using a database of 800,000 fragments.  First, the ethyl pyrrolidine portion was 

replaced without altering the remainder of the molecule.  The “hit” compounds returned from the 

search were ranked based on London dG score and visual inspection.  The top hits were further 

modified by replacing the previously retained ethyl pyrrolidine moiety, resulting in new potential 

scaffolds. 
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Fig 2.4: Scaffold replacement of eticlopride within the D3R antagonist pocket.  A 

pharmacophore feature, Don2|Cat&Don of 1.5 Å radius (blue sphere), was created to 

preserve the biologically important interaction (cyan) with the tertiary amine in the 

ethylpyrrolidine ring (purple) of eticlopride.  The green clouds around the ethyl 

pyrrolidine group show the scaffold to be replaced and vectors that specify the scaffold.  

Key receptor residues are indicated (orange sticks). 

 

In a second trial, the order of replacing the parts of eticlopride was reversed, starting with 

the aryl portion and followed by replacement of the ethyl pyrrolidine ring.  In order to generate 

drug-like substances capable of crossing the BBB through lipophilicity, compounds were filtered 

by molecular weight, surface area, chiral centers, hydrogen bond acceptors and donors, number 

of rotatable bonds, number of double bonds, and synthesis plausibility.  Specifically, the 

following descriptor filters were used: Weight < 500, Slog [2.14-5.62], TPSA [40,140], rsynth 

[0.5-1], a_don [0, 5], mutagenic [0,0] b_rotN [2,8], b_double [0,2], chiral [0,1], a_acc [0,10]  
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(Ertl et al., 2000; Kaziu et al., 2005; Oprea, 2000; Wildman et al., 2001). Generated drug-like 

compounds were minimized using Merck Molecular Force Field 94X (MMFF94X) (Halgren, 

1996; Halgren, 1998) and ranked using London dG score.  Excluded volumes were automatically 

generated to prevent candidate fragments from clashing with the receptor and the R-groups, and 

those that clashed were eliminated.   

From the two rounds of scaffold replacement, the resulting compounds were analyzed for 

their binding mode in the D3R binding pocket.  Based on the binding mode, the London dG 

score, and further visual inspection, the top 60 hit compounds were selected and searched using 

SciFinder Scholar (SciFinder, Chemical Abstracts Service, Columbus, OH) for their commercial 

availability.  None of the 60 hits were commercially available; however, closely related 

commercially available analogs were purchased.  

2.2.1.1.1 Identifying the scaffold of eticlopride  

 Before starting the scaffold replacement, the scaffold and the R-groups must be 

identified.  To identify these features, structure activity relationships and the binding mode of the 

known ligand should be analyzed and determined.  To determine the binding mode and 

interaction of the known ligand with the receptor, active site analysis tools such as ligand 

interaction diagram, contact statics and electronic maps can be used. 

2.2.1.1.1.1 SAR of eticlopride 

 

1) An extended aryl amide is necessary for a relatively modest increase in affinity. 

2) Addition of heteroatoms to the extended aryl amide increases affinity. 

3) The amide linker is important for synthesis but not for D3R affinity or selectivity. 

4) The linker between the aryl amide and the amino terminus must be of a 4-carbon atom 

length for optimal D3R affinity and selectivity over the dopamine D2 receptor D2R 
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(Boeckler and Gmeiner, 2006; Chien et al., 2010; Feng et al., 2012; Shi and Javitch, 

2002; Strader et al., 1991). 

2.2.1.1.1.2 Active site analysis 

 

Active site analysis is a process of assessing the characteristics of a ligand within a 

receptor-binding pocket.  It defines and analyzes the interaction, electron distribution, and 

binding mode of the ligand.  Generally, it helps to comprehend how the features of a ligand 

contribute to its binding strength.           

Electrostatic Map  

 

Fig 2. 5: Electrostatic map of eticlopride in D3R binding pocket.  The wire mesh 

indicates favorable interactions between the ligand (pink) and the antagonist pocket 

(yellow). Isocontours of interaction energy may be hydrophobic (white), acceptor (red) or 

donor (blue). The electrostatic field was calculated using MOE’s “surfaces and maps” 

mode. The surface of the receptor was calculated at a distance of 4.5 Å from the ligand.  
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Electrostatics, one of the active site analysis tools, help to understand the pocket electric 

field.  This is the distribution of the electrons across the pocket, in the form of charged groups, 

donors, acceptors and hydrophobic groups.  Understanding such a distribution can help to 

identify important features of a ligand to be retained and those that are to be replaced.  The 

electrostatics tool also affects the chemical nature of the returned compounds by creating a 

pharmacophore feature that directs the scaffold replacement process to generate a donor, 

acceptor or hydrophobic feature at a particular space of the active binding site (Figure 2. 5).  

2.2.1.2 Visual inspection 

Visual inspection is a process of subjectively selecting hit compounds after performing a 

computational process that created or filtered compounds.  As a final and critical process, visual 

inspection is done manually to select hit compounds with desired structures, interactions and 

binding poses within a receptor binding pocket.  Visual inspection requires medicinal chemistry 

knowledge that includes the structural nature of compounds known to bind to a particular 

protein, synthesis plausibility, drug-likeness of created structures, and the nature of ligand-

receptor interactions.  Visual inspection employs ligand interaction diagrams, active site analysis 

tools, and orientation of the ligand in comparison to known ligands.  It is based on the following 

measures: the number and type of interactions between the ligand and pocket residues (ionic or 

electrostatic interactions, ion-dipole and dipole-dipole interactions, hydrogen bonds, charge –

transfer complexes (π-π stacking), hydrophobic interactions and van der Waals forces, in order of 

strength), the binding pose (orientation and conformation of the ligand), structural novelty of the 

ligand that is created or filtered, and steric clashes, if any (Immadisetty et al., 2013).  One may 

ask why manual inspection is employed in a computational process.  The reason is that the 

currently used scoring functions often cannot accurately predict the in vitro binding affinity of 
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compounds.  A combination of scoring function values and visual inspection can be used to 

select virtual hit compounds that are subsequently confirmed as ligands.  Visual inspection 

includes inspecting ligand interactions with the binding pocket residues using “active site view”, 

and visualizing pocket residue exposure to a ligand using a ligand interaction diagram (Figure 

2.6).  

a.  

      

b. 

 

Figure 2.6: Ligand interaction diagram and binding mode of eticlopride within its D3R 

binding pocket. (a) The 17 residues shown are in the vicinity of the D3R antagonist pocket.  

Green arrows show intermolecular interactions. (b) Eticlopride-D3R binding pose.  TM 3 

side chains (cyan) interacting with eticlopride include Asp110 (ionic), Val111 (arene-H and 

ionic-dipole interactions). Comparison of the panels involves a 180-degree rotation of the 

ligand.  
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 Eticlopride is shown to have two major intermolecular interactions: an ionic interaction 

between the ligand tertiary amine and Asp110, and an arene-H interaction between the ligand 

aryl group and Val111 (Figure 2.6).  The strength of binding of a ligand can be estimated in part 

by counting the number and type of interactions, the number of residues present in binding 

pocket at close contact with the ligand, and halo sizes (representing degree of interaction)(Clark 

and Labute, 2007).  For example, eticlopride has one ionic interaction, one hydrophobic 

interaction, three “large halo” residues and five small halo residues.  

2.2.1.3 Scoring functions  

 

Scoring functions are integral parts of structure-based drug design and are used to predict 

the in vitro (experimental) binding affinity of compounds that are generated using computational 

methods (Huang et al., 2010).  The currently used scoring functions have challenges in that they 

fail to accurately predict the in vitro affinity but can provide important information in ligand 

ranking in virtual screening and fragment building methods (Immadisetty et al., 2013; Li, et al., 

2014; Perola et al., 2004; Warren et al., 2006).  There are many different scoring functions that 

are developed for specific computational programs.  Different scoring functions use different 

algorithms and set of proteins to calibrate the precise prediction of experimental affinity.  

However, the success of computational methods has been undermined due to lack of an energy 

scoring function that precisely and quickly characterizes the interaction between protein and 

ligand (Huang et al., 2010).   

   Scoring functions are essential for ranking hit compounds in fragment building and 

virtual screening methods because these methods dock the generated structures or database to be 

filtered in the binding pockets of proteins.  Hence, a scoring function can provide information 

regarding the binding mode and site of the ligand binding, binding affinity of the ligand and 
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protein, and hit compounds that are potential lead compounds for drug discovery (Joseph-

McCarthy et al., 2007; Rajamani and Good,  2007; Seifert et al., 2007; Shoichet et al., 2002).  An 

accurate scoring function should be able to rank known ligands according to their experimental 

binding affinities.  Therefore, in the present study, a procedure was set to evaluate the accuracy 

of the scoring functions that are used for DFDD.  Because MOE was used for performing DFDD, 

the scoring functions that are available in the software were evaluated.  These included ASE, 

Affinity dG, Alpha HB, London dG, and GBVI/WSA dG scoring.  London dG score, however, 

was used to rank the resulting hit compounds in our experiments because it was previously used 

to predict BIRGB 796, a P
38

 kinase inhibitor, from its initial hit compound using scaffold 

replacement with MOE (Grimshaw, 2010).  MOE scaffold replacement nearly predicted the lead 

optimization of BIRGB 796 from its initial hit compound.  

   Sets of three different groups of D3R ligands were used to evaluate the five scoring 

functions used in MOE to examine if there is a linear relationship between the experimental 

affinity and virtual affinity.  The first group of compounds was comprised of 11 D3R ligands 

(Table 2.1) that were filtered via virtual screening of a 3.1 million molecules database at the 

D3R crystal structure and homology model, and in vitro affinity of the filtered compounds were 

determined (Carlsson et al., 2011).  The second group of test set compounds was made of nine 

D3R ligands (Table 2.2) that were used in predicting the effectiveness and calibration of D3R 

homology model, and identification of binding sites. The in vitro affinity of the nine ligands was 

determined. (Bocker et al., 2007).  The third test set group was comprised of seven known D3R 

antagonists (Table 2.3) that have high affinity; these compounds were previously used to 

determine the effect of D3 antagonist on the thermostability of a purified D3R wild type receptor 

(Chien et al., 2010).  The structure of the compounds were drawn in 3D in MOE and were 
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docked in the D3R binding pocket using Triangle Matcher placement method and force field 

refinement.  The docking poses were scored using the different scoring functions.  The docking 

was performed three times and the average values were used to evaluate the relationship between 

experimental affinities and virtual affinities.  The three trials were used to generate R
2
 values 

using linear regression with Graph Pad prism (GraphPad Prism version 6.00 for Mac OS X).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

  42 

Table 2.1: Eleven compounds for scoring function evaluation (Carlsson et al. 2011) 

 

No. Compound Ki (uM) Compound No. in  

the original paper 

1 

 

0.080 56 

2 

 

0.100 61 

3 

 

0.20 4 

4 

 

0.30 28 

5 

 

0.50 7 

6 

 

1.300 6 
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7 

 

1.600 3 

8 

 

1.800 5 

9 

 

2.200 29 

10 

 

3.00 32 

11 

 

3.100 2 
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Table 2. 2: Nine compounds for scoring function evaluation (Bocker et al. 2007) 

 

 

No.  Compound  KI (nM) Cmp No. in  

the original paper  

1 

 

0.91 BP 879 

2 

 

65 18 

3 

 

190 14 

4 

 

214 5 

5 

 

984 7 

6 

 

1000 20 
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7 

 

1368 3 

8 

 

4526 8 

9 

 

5000 13 
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Table 2. 3: Seven known D3R compounds for scoring function evaluation 

 

No. Compound  Ki (nM) Original Compound’s Name  

1 

 

0.16 Eticlopride 

2 

 

0.52 Nafadotride 

3 

 

3.50 Raclopride 

4 

 

3.80 Amisulpride 

5 

 

9.80 Haloperidol  
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6 

 

25.0 (-) Sulpride 

7 

 

100.0 Tiapride 

 

2.2.1.4 MedChem transformations  

 

MedChem transformation is a method employed to search new hit compound by using a 

set of transformation rules to existing known ligands. Classic MedChem transformation can be 

used to exchange functional groups, atoms, or change all or part of an individual rings at the 

same time preserving the remaining part of the ligand. Transformations can be performed 

iteratively to give a new structure after collective changes. This repeated transformation 

enhances the diversity and novelty of the generated structures.  When the ligand to be 

transformed is within a receptor, forcefield refinement can be utilized to dock the resulting 

structures with different docking poses that can be scored with scoring functions. MedChem 

transformation is based on Stewart’s work with Drug Guru software (Stewart et al., 2006) that 

uses a set of transformations to encrypt medicinal chemistry knowledge from a historical 

experience of drug discovery programs. The results of such transformations of a known 

compound are analogs of plausible synthesis.  There are two types of MedChem transformations: 
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bioisosteric transformation, which retains properties of the parent compound (Figure 2.8) and 

ring substitution or cyclization that generate structures with different properties (Figure 2.9).  

The same receptor after protein preparation, the same method to identify the scaffold, and the 

same pharmacophore features, descriptor filters, and scoring functions used for scaffold 

replacement were also used for MedChem transformation.  However, MedChem transformation 

provides flexibility in that any parts of a known ligand can be selected and transformed. This can 

allow performing many different sets of transformations or replacements of eticlopride.  Six 

experiments of replacement of eticlopride were performed (Figure 2.7): 

1.  Replace ethyl pyrrolidine while retaining aryl amide and then the retained aryl amide 

2. Replace amide ethyl pyrrolidine while retaining the aryl and then replace the retained aryl 

3. Replace aryl while retaining the amide ethyl pyrrolidine and then replace the retained 

amide ethyl pyrrolidine. 

4. Replace aryl amide while retaining ethyl pyrrolidine and replace the retained ethyl 

pyrrolidine. 

5.  Replace both aryl and ethyl pyrrolidine while retaining the linker (methyl amide)  

6. Replace the whole eticlopride structure.  
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Figure 2.7: MedChem transformations of eticlopride parts. The six numbers show 

the different experiments of eticlopride transformations.  In each experiment, in the 

first round, the pink colored parts of eticlopride were transformed while the black 

colored were retained. The retained (black) were then replaced in the second 

transformation.  However, in experiments five and six, eticlopride parts (pink) were 

replaced at once.  

 

A total of 451,549 new structures were generated from the different sets of eticlopride 

MedChem transformation, and 187 structures were selected based on London dG score and 

visual inspection.  The commercial availability of the selected compounds was searched in 

SciFinder Scholar for purchase and then for experimental affinity determination. However, none 

of these compounds were commercially available.  After critical analysis of synthetic plausibility 
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of the selected compounds, six compounds were selected for synthesis in industry or academic 

lab. 

 

Figure 2.8:  Bioisosteric MedChem transformations.  The individual atoms of 

the aryl part of eticlopride (green) were selected for transformation. A new 

structure was formed after the methyl group was transformed into an amine 

functional group. Finally, a new structure with a different aryl part was generated. 
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Figure 2.9: Ring substitution or cyclization MedChem transformations. MedChem 

transformation starting from aryl part of eticlopride generated an aminopyridine after 

transformation and cyclization of atoms. The colors show individual atoms 

transformations that started from the hydrogen (red) in the aryl starting structure.  

 

2.2.1.5 Ligand building  

 

The ligand building method uses the molecule builder module in MOE(MOE 2013.08).  

The builder can be used to construct or edit ligands as 3D structures by changing elemental 

properties, bond types and ionization states.  The stereochemistry, ionization and tautomerization 

of ligands within a receptor crystal structure or homology model can be altered.  For creating 

ligands, the terminal hydrogen atom from where functional groups are added is used; however, 

more than one terminal atom can be used to generate structures.  The “molecule builder” mode 

has a fragment database containing commonly used functional groups and atoms, and considers 

general medicinal chemistry properties when creating compounds. 

   Before employing ligand-building method to generate useful drug-like compounds, it was 

necessary to evaluate the efficiency of the method.  The prepared D3R receptor was used as 

described above for scaffold replacement and MedChem transformations.  Ligand building was 

used to predict the parts of eticlopride by deleting them one at a time.  First the ethyl pyrrolidine 
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part of eticlopride was deleted, and regenerated by constructing it from the retained aryl group at 

the selected hydrogen atom (Figure 2.10).  In the same manner, the aryl part was predicted by its 

deletion and construction from the retained ethyl pyrrolidine group.   Ligand building was able to 

predict both parts except the tertiary amine at the ethyl pyrrolidine part and the 2-methoxy at the 

aryl part. 

 

Figure 2.10: Prediction of eticlopride parts using ligand-building mode. 

Eticlopride parts were deleted and predicted using the remaining parts. Ligand 

building predicted parts of eticlopride except the tertiary amine and 2-methoxy 

groups. The selected hydrogens represent points of ligand construction. 
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2.2.2 Pharmacological 

2.2.2.1 Cell culture  

 

Human embryonic kidney (HEK-293) cell lines stably expressing D3R were used 

(courtesy Dr. Robert Luedtke from the UNTHSC). The cells were grown in complete DMEM 

media (high glucose, Na-pyruvate, L-glutamine) that is supplemented with 10% fetal bovine 

serum (FBS), 1% Pen/Strep (100 units of penicillin, 100 ug of streptomycin per ml of medial 

final volume), and 400 μg/ml of G-418.  Cells were grown as monolayers in 75 cm
2
 flasks at 

37˚С and 5% CO2 and subcultured twice a week (every 3 days).  For subculturing, the exhausted 

media in the flask was aspirated and the confluent adherent cells were washed with 10 ml of 

Hanks buffered salt solution (HBSS).  To detach the cells from the flask, 2 ml of trypsin-EDTA 

was added and swirled to cover the cell monolayers. When the cells were detached from the 

flask, 10 ml of complete DMEM media was added to inactivate the trypsin-EDTA.  Eight ml of 

the cell suspension was discarded, and then 18 ml of complete fresh DMEM media was added.  

The flask was tightly capped and then gently swirled to evenly suspend the cells.  After 

loosening the cap, the flask was placed in the incubator and the cells were allowed to grow until 

the next subculturing.  

2.2.2.2 D3R HEK293 membrane preparation 

 

Stably D3R expressing HEK293 cells grown at 37°C in a 5% CO2 incubator on 150 x 20 

mm plates were used to prepare membranes.  Cells were washed twice with 12 ml of cold 

phosphate–buffered saline (DPBS) after reaching 85% confluence (3-4 days growth). After 

adding another 12 ml of DPBS, cells were scraped, harvested, and transferred to 15 ml cold 

centrifuge tube. The supernatant was discarded after cells were centrifuged at low speed (700 x 

g), and the cell pellet was resuspended in 500 μL of cold buffer (50 mM Tris, 1 mM EDTA, pH 
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7.5).  After cells were centrifuged for 30 min at 100000 x g at 4°C and the supernatant was 

discarded, the pellet formed was frozen at -20°C for later membrane binding assays. 

2.2.2.3 Preliminary in vitro screening of “hit” compounds 

 

SciFinder-identified analogs of scaffold replacement generated hit compounds were 

obtained and dissolved in 100% DMSO to make a stock concentration of 10 mM. A 10 μM final 

concentration preliminary one-point competitive binding assay was performed. Competitive 

binding assays were conducted employing membranes of D3R stably expressing HEK293 cells 

with [
3
H]-spiperone as a tracer radioligand.  One hundred μL of  [

3
H]-spiperone and 10 µl of 10 

mM nonradioactive hit compound or eticlopride were added to 240-μL membrane preparation 

(about 30-40 μg protein) in 12x75 mm borosilicate glass tubes.  After gentle shaking for 15 min, 

binding was terminated. Screening results were analyzed with one-way ANOVA, nonparametric 

(P< 0.05). 

2.2.2.4 D3R membrane binding assay 

 

Cell pellets were first dissolved in 6 ml of D3R binding buffer (1M Tris base, 0.5 M KCl, 

0.5 M CaCl2, 0.5 M MgCl2, pH 7.4).  To determine competitive binding constants, the membrane 

preparation aliquots of 30 – 40 µg total protein were combined with 0.1 nM final concentration 

of [
3
H]-spiperone and a range of final concentrations (1 fM – 10 μM) of either nonradioactive hit 

compound or eticlopride and incubated with gentle shaking at 25°C for 1 h in 12x75 mm 

borosilicate glass tubes.  Binding was terminated using a Brandel Model 24 harvester via rapid 

filtration through Whatman GF/B filters (Schleicher and Schuell, Keene, NH) presoaked in 0.5% 

polyethylenimine (v/v).  Filters were washed rapidly twice with 3 – 4 ml of wash buffer (0.1 M 

of Tris buffer, pH 7.4) and filter discs from each well of the harvester were transferred using 

tweezers to scintillation vials.  After adding 5 mL scintillation fluid to the vials, the radioactivity 
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trapped in the filter was quantified using a liquid scintillation analyzer (TRI-CARB 2100TR). 

Three independent competitive binding assays were performed (with points in duplicate), and 

data were analyzed (GraphPad Prism version 6.00 for Mac OS X).  IC50 values were determined 

and converted to Ki values using the Cheng-Prusoff equation (Ki = IC50/(1+[
3
H]-spiperone]/(Kd 

[
3
H]-spiperone). 
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CHAPTER THREE 

3 RESULTS AND DICUSSION 

3.1 Results 

3.1.1 Computational studies 

3.1.1.1 Scaffold replacement of eticlopride at the dopamine D3 receptor 

 

As proof of concept, the current study was undertaken to evaluate scaffold replacement 

for the design of chemically novel ligands for GPCRs using MOE software.  We used the 

recently co-crystallized D3R – eticlopride complex to build D3R antagonists of novel scaffold 

(Chien et al., 2010).  Two experiments were performed to replace portions of eticlopride.  In the 

first experiment, the ethylpyrrolidine portion of eticlopride was replaced while retaining the aryl 

part, resulting in 29,405 initial hits. These hits share benzene or other ring structures that form 

hydrophobic interactions with residues of the receptor pocket.  A tertiary amine important for 

salt bridge formation between eticlopride and Asp 110 in TM 3 was an essential feature of the 

returned hits. Based on visual inspection, structural novelty, and London dG score, 24 of the 

initial hits were chosen for further modification.  Next, the retained aryl portion of the 24 hit 

compounds was replaced, resulting in 17,744 returned hits, many of which possessed undesirable 

double bonds or chiral centers that reduced synthetic plausibility.  More robust descriptor filters 

(described in Methods) were introduced, requiring synthetic scores in the range of 0.8 to 1 and 

chiral center scores in the range 0 to 1.  To avoid terminal double bonds, this “range” was 

initially set from 0 to 0.  Few hits were returned, however, so compounds were allowed to have 

at most one double bond.  This filtering search resulted in 10,206 returned hits.  The amide linker 

portion of eticlopride was also replaced; however, many of the resulting hits were excluded due 
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to poor London dG scores, poor synthetic plausibility, or unfavorable interactions in the D3 

receptor pocket. 

   In the second experiment, the order of replacing the parts of eticlopride was reversed, 

starting with the aryl and followed by replacement of the ethyl pyrrolidine ring portion. The 

replacement of the aryl portion resulted in 30,091 hits.  Based on visual inspection, structural 

novelty and London dG score, 11 top ranked hits were selected from the aryl replacement.  The 

ethyl pyrrolidine portion of these 11 hits was subsequently replaced resulting in 22,140 hit 

compounds.  Descriptor filters were introduced at the start of Experiment 2 to eliminate 

compounds with undesirable double bonds, chiral centers and poor synthetic scores.  Reversing 

the order of replacing parts of eticlopride generated more hits (Table 3.1).  This could be due to 

better overlay of the bonds between the part of eticlopride that are conserved (R-groups) and the 

fragments that replace the scaffold.  Despite the use of stringent descriptors for synthetic 

plausibility, most of the returned hits shared complex structures with many aromatic rings, 

making their synthesis difficult. This could be due to the fragment database used or inefficient 

synthesis descriptor filters to predict synthetic plausibility.  

   The final returned hits from both trials (22,140 + 10,206 = 32,346) were further analyzed 

based on visual inspection, structural novelty and London dG score, and 60 hits were selected.  

These top 60 compounds had a better fit within the D3 receptor-binding pocket and involve more 

interactions than the parent compound.  Eticlopride has a -13.45 kcal/mol London dG score and 

all the top 60 compounds have scores ranging from -13.99 kcal/mol to -18.114 kcal/mol. 

Therefore, the 60 hit compounds have better London dG scores than eticlopride.  Compounds 

with lower London dG scores (better virtual affinity) are predicted to better interact and fit in the 

binding pocket. Compound 22 (Figure 3.1), one of the top hits with -16.13 kcal/mol London dG 
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score, has shown more hydrogen bond interactions and a better fit within the pocket than the lead 

compound eticlopride. Specifically, the nitrile group of Compound 22 formed hydrogen bonds 

with Ser182, Ile183 and His349, and the sulfur carbon double bond terminus formed weak 

hydrogen bonds with Ala167 and Thr 369.   

   In order to test the affinity of these top 60 hit compounds in vitro, their commercial 

availability was determined using SciFinder Scholar.  While none of these exact compounds was 

commercially available, 39 similar structures were identified (Table 3.2). These 39 compounds 

were redocked into the D3 receptor pocket, and six compounds were selected and purchased 

from the database of the 39 analogs based on visual inspection, structural novelty, and London 

dG score for initial hD3R –HEK293 pharmacological evaluation (Figure 3.2).  
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Table 3.1: Eticlopride scaffold replacement 

 

 

 

 

 

 

Experiment 

No. 

First Part 

Replaced 

Returned 

hits 

Selected 

hits 

Second 

Part 

Replaced 

Returned 

Hits 
Refined 

1. 

Ethyl 

Pyrrolidine 

29,405 24 Aryl 17,744 10,206 

2. Aryl 30,091 11 

Ethyl 

Pyrrolidine 

22,140 22,140 

Total 

Returned 

hits 

- - - - 39,884 32,346 
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Fig 3.1:  The superposition of Compound 22, one of the 60 original 

compounds, with eticlopride in the D3R antagonistic binding pocket. The 

pink (eticlopride) and cyan (Compound 22) structure were superposed on the 

D3R binding pocket. The Compound 22-nitrile group interacted with pocket 

residues Ser 182, Ile 183, Val, and Val 350 (white sticks, annotated). The 

sulfur atoms of Compound 22 is shown interacting with Cys 114 and Tyr 

373. Compound 22 fit better in the binding pocket than eticlopride. 
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Table 3. 2:  Thirty-nine analogs and their original precursors  
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3 
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19 -16.41 69 

4 
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22 -16.12 62 

5 
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27 -15.75 62 

7 

 

-11.83 

 

29 -15.60 64 
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Figure 3.2: The six analogs purchased for pharmacological assay.  The analogs were given 

numbers according to their rank in the analog database.  Analogs were coded DH1 to DH6 for 

convenience. The analogs were scored and ranked using London dG score.  Percent similarity 

to one of the 60 hit compounds (in parentheses) is given.  For example, analog 10 is coded 

“DH2”, has a London dG score of -11.81, and is 67% similar to hit compound 31.  
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3.1.1.2 Evaluation of scoring functions  

 

   Scoring functions are essential in computational experiments, especially when docking of 

a ligand in a protein’s binding pocket is involved.  They enable computational chemists to rate 

and rank hit compounds generated after a computational process.  Many scoring functions have 

been used for different software programs according to the preference of developers.  MOE 

software employs five scoring functions that differ in the algorithm used to predict the 

interaction of the ligand and protein as a change of free energy of binding.  Scoring functions 

have different success rates depending on the ligand-protein complexes used; therefore, it is 

important to use different sets of protein-ligand complexes to evaluate their in vitro affinity 

prediction power. However, in this study in order to choose and apply the best out of five MOE 

scoring functions at D3R, we have used one set of protein-ligand (D3R-ligand) complex to 

evaluate the scoring function used in MOE software.   

   Three sets of D3R ligands from different published sources were imported into MOE 

2013.08 and docked into the D3R binding pocket using three trials (Tables 3.3 – 3.5). The first 

set was comprised of 11 D3R ligands with range of nanomolar to micromolar affinities, the 

second set was made up of nine different D3R ligands with a range of nanomolar to micromolar 

affinities, and the third set was comprised of seven known high range of nanomolar affinity D3R 

ligands.  To assess scoring function predictive power for actual ligand affinities, Graph Pad 

Prism 6.0 was employed to assess the linear relationship between the average virtual affinity 

values and the experimental in vitro affinities of the test set ligands.  The R
2
 values for each 

scoring function and test set ligand ranged from 0.00029 (no linearity) in the evaluation of Alpha 

HB score to 0.46 in ASE score evaluation.  Generally, the prediction was better for the seven 

known ligands that have high affinities, as R
2
 values were the highest among the three test sets.  
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This suggested that compounds with higher affinities are good test sets, and scoring functions 

with rigorous criteria can only partially provide important ranking information.  London dG 

scoring was used to rate the DFDD generated hit compounds; however, ASE scoring may be the 

better predictor (Table 3.6).  

   Superposed GBVI/WSA and Affinity dG score linear regressions lines indicated similar 

values (Figure 3.3).  Such superimposed lines could be due to the similarity of algorithm used to 

generate the virtual affinity; basically, ASE score uses the summation of pairs of atoms of the 

ligand and the pairs of atoms of the receptor that come in contact at specific distance that favors 

interaction.  Affinity dG score measures the enthalpic impact to the free energy of binding of 

most interactions that includes hydrogen bonding, ionic interaction, metal ligation, hydrophobic 

interaction, interaction between a hydrophobic and polar groups, and an interaction between any 

two atoms.  These criteria that are used to measure ASE and Affinity dG scores have a good 

degree of similarity in measuring the free energy of ligand-receptor interactions. 
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Table 3. 3: MOE scoring function evaluation of 11 compounds 

 

 

 

 

 

 

  

Ki(nM) London dG Score ASE Score Alpha HB Score GBVI/WSA Score Affinity dG Score 

80 -13.87 -13.87 -13.87 -21.80 -21.6 -21.92 -94.80 -94.97 -94.80 -6.400 -6.50 -6.73 -7.63 -7.6 -7.6 

100 -14.58 -14.35 -14.24 -20.30 -20.6 -20.60 -83.40 -91.54 -82.98 -6.340 -6.12 -6.70 -6.90 -6.9 -6.9 

200 -12.24 -12.16 -12.25 -23.30 -23.2 -22.80 -93.70 -96.10 -97.40 -7.140 -7.11 -6.80 -7.80 -7.8 -7.8 

300 -14.12 -13.54 -13.54 -25.50 -23.8 -24.70 -106.32 -104.98 -102.50 -7.300 -7.12 -7.30 -7.40 -7.4 -7.4 

500 -13.69 -13.70 -13.70 -25.05 -24.4 -24.20 -102.80 -101.70 -97.70 -7.100 -6.80 -7.13 -8.50 -8.5 -8.5 

1300 -15.22 -15.22 -15.22 -25.90 -25.1 -25.60 -127.10 -117.20 -113.10 -8.012 -7.97 -6.90 -8.70 -8.7 -8.7 

1600 -13.00 -13.73 -13.73 -20.10 -21.8 -20.70 -101.43 -93.70 -100.42 -6.700 -6.50 -6.30 -7.80 -7.8 -7.8 

1800 -14.43 -12.65 -12.65 -26.00 -27.3 -27.70 -106.34 -104.30 -103.21 -7.230 -7.23 -7.23 -7.60 -7.7 -7.7 

2200 -13.45 -13.45 -13.45 -19.60 -20.1 -21.20 -83.80 -84.40 -95.65 -6.300 -6.90 -6.30 -6.80 -6.8 -6.8 

3000 -16.27 -16.27 -16.46 -28.30 -28.2 -28.50 -99.10 -113.30 -98.98 -7.300 -7.24 -7.30 -7.70 -7.6 -7.6 

3100 -12.92 -12.91 -12.92 -27.11 -26.4 -25.10 -106.42 -106.40 102.70 -7.200 -7.20 -7.20 8.20 -8.2 -8.2 
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     Table 3.4: MOE scoring function evaluation of 9 compounds 

 

 

 

 

Ki(nM) London dG Score ASE Score Alpha HB Score GBVI/WSA Score Affinity dG Score 

0.91 -13.9 -13.4 -13.4 -31.9 -29.8 -30.1 -107.4 -97.2 -97.2 -7.1 -7.1 -7.2 -8.7 -8.7 -8.4 

65 -18.8 -15.6 -15.1 -32.9 -30.4 -32.8 -111.7 -107.5 107.5 -8.1 -8.1 -7.3 -11.2 -11.1 -11.9 

190 -12.3 -12.3 -12.3 -28.7 -28.3 -28.7 -117.5 -115.2 -115.1 -6.0 -5.9 -5.8 -9.2 -9.0 -9.2 

214 -13.5 -13.5 -13.3 -31.6 -30.1 -30.1 -106.3 -100.4 -100.5 -7.6 -7.9 -7.8 -9.7 -10.1 -9.8 

984 -13.6 -13.6 -13.6 -27.3 -28.9 -27.8 -103.4 -87.5 -87.5 -7.1 -7.1 -6.9 -7.2 -7.8 -7.2 

1000 -14.1 -14.0 -14.0 -28.5 -29.3 -27.9 -90.1 -98.1 -98.1 -7.1 -7.4 -7.3 -9.7 -9.3 -9.7 

1368 -13.9 -13.9 -13.6 -28.6 -28.4 -29.1 -98.9 -98.1 -98.9 -7.1 -7.2 -7.2 -9.0 -9.0 -9.0 

4526 -13.7 -10.9 -10.9 -30.8 -31.5 -30.1 -112.5 -112.5 -112.5 -6.9 -6.9 -6.3 -11.2 -11.1 -11.1 

5000 -12.8 -12.8 -12.8 -28.8 -28.8 -28.8 -103.8 -105.4 -105.5 -6.1 -6.1 -6.2 -8.4 -8.0 -8.5 
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Table 3.5: Scoring function evaluation using 7 known D3R ligand 

 

 

 

 

 

Ki (nM) London dG Score ASE Score Alpha HB Score GBVI/WSA Score Affinity dG 

Score 

0.16 -13.70 -13.72 -14.36 -27.30 -27.30 -27.30 -98.3 -98.3 -98.3 -8.10 -8.10 -8.03 -7.30 -7.30 -7.3 

0.52 -14.09 -14.09 -14.02 -32.80 -32.80 -32.80 -118.2 -118.2 -118.2 -7.30 -7.30 -7.30 -8.12 -8.20 -8.2 

3.5 -12.16 -12.16 -12.16 -22.70 -22.70 -22.70 -100.8 -100.8 -100.8 -7.45 -7.45 -7.30 -7.30 -7.30 -7.3 

3.8 
-14.36 -14.36 -14.36 -27.60 -27.60 -27.50 -126.4 -126.4 -126.4 -7.50 -7.10 -7.80 -7.30 -7.30 -7.3 

9.8 -12.29 -12.28 -12.29 -26.97 -26.97 -26.97 -104.4 -104.3 -104.3 -7.12 -7.10 -7.12 -8.70 -8.70 -8.7 

25 
-13.16 -13.16 -13.16 -24.80 -24.80 -24.80 -111.1 -111.1 -111.1 -7.30 -7.20 -7.28 -5.90 -5.90 -5.9 

100 

-12.82 -12.82 -11.78 -25.14 -15.14 -25.14 -104.9 -104.9 -104.9 -7.40 -7.30 -7.40 -5.80 -5.80 -5.8 
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Figure 3.3:  Linear regression of VS experimental affinities of three test sets.  The 

five scoring functions, London dG score (green), ASE score (red), Alpha HB score 

(pink), GBVI/WSA score (blue) and Affinity dG score (orange) are shown as linear 

colored lines. Panel a is a linear regression graph of virtual and experimental affinities 

of test set one (11 compounds), panel b represents test set two (9 compounds) and panel 

c test set three (7 compounds).  Evaluation shows that there is no linear relationship 

between the virtual and experimental affinities (highest R
2  

values of 0.45 or less).  

GBVI/WSA (blue line) and Affinity dG score (orange line) superposed showing similar 

virtual affinity values. The R
2 
values are shown in tables under each graph test set. Data 

were derived via docking the test set compounds in the D3R binding pocket and linear 

regression of the experimental and virtual affinity values of each test set was graphed. 

Data represents an average of three independent experiments.  
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Table 3.6: Evaluation of scoring functions in terms of R
2  

  

 

Test set 

London 

dG Score 

(R
2
) 

ASE 

Score (R
2
) 

Alpha HB 

Score (R
2
) 

GBVI/WSA 

Score (R
2
) 

Affinity dG 

Score (R
2
) 

First (11 

ligands) 

0.03498 0.2412 0.02861 0.1663 0.08350 

Second (9 

ligands) 

0.1132 0.1916 0.06122 0.1002 0.00111 

Third (7 known 

ligands) 

0.3591 0.455 0.0002899 0.4118 0.3107 

 

3.1.1.3 MedChem transformations  

 

The D3R receptor that was previously prepared and used for scaffold replacement was 

also employed for MedChem transformations.  Bioisosteric and ring substitution/cyclization 

options were used to generate hit compounds from the transformation of eticlopride.  MedChem 

transformations could be performed on multiple parts or even the entire structure of a known 

compound.  This flexibility enables sequential transformation of all parts of eticlopride.  Six 

experiments (six transformation options) were conducted.  Because MedChem transformation 

allows up to 50 iterations in one transformation batch, a huge number of hit compounds may be 

generated.  Transformation iteration number ranges from five to 50, depending on the number of 

hits returned and if their chemical nature supports further transformation.  London dG score, 

structural novelty, and visual inspection were used to select hit compounds.  One complete 

transformation of eticlopride was typically comprised of two events: transforming one part of the 

molecule while retaining the remainder, then transforming the remainder using hits from the first 

transformation.  There were exceptions to this process in that experiments five and six were 
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transformed at once.  In Experiment 5 almost all parts of eticlopride were transformed except the 

linker (methyl amide); in six, the entire molecule was transformed (Table 3.7).  

 In Experiment 1, the ethyl pyrrolidine part of eticlopride transformation yielded 53 hits.  Based 

on the selection criteria described above, two hits were selected and their aryl amide part was 

further transformed, generating 50,193 hits.  Nine hits were selected for final commercial 

availability search.  In Experiment 2, amide ethyl pyrrolidine transformation produced 17,904 

hits, two of which were selected for aryl transformation to generate 44,567 hits, and 47 of these 

selected for commercial availability search.  In Experiment 3, aryl transformation yielded 12,564 

hits, three of which were selected for subsequent amide ethyl pyrrolidine transformation.  This 

produced 207,380 hits, 57 of which were searched for commercial availability. In Experiment 4, 

aryl amide transformation yielded 15,756 hits; however, none of these hits were selected for 

further transformation because visual inspection revealed that they lacked promising drug-like 

features.  In Experiment 5, the aryl and ethyl pyrrolidine portions were transformed at the same 

time resulting in 48,716 hits, and 23 hits were selected for commercial availability.  In 

Experiment 6, 84,937 hits were generated, and 51 hits were selected for commercial availability.  

In total, 187 hit compounds were selected for pharmacological characterization; surprisingly, 

none of these hits were commercially available.  Most drug-like hits with synthetic plausibility 

were identified based on medicinal chemistry knowledge, and six top-ranked compounds were 

selected for synthesis (Figure 3.4). 
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Figure 3. 4: Six MedChem transformation-generated compounds that have synthetic 

plausibility.  

 

 

 

 

 

 

 

 

 

 

 

 



   

86 

 

 

Table 3. 7: MedChem transformation of eticlopride 

 

 

 

 

Exp. 

No. 

Part 

transformed 

Part 

Retained 

Hits of the 

transformed 

part 

Retained part 

transformed 

hits 

Hits 

Selected 

Commercial 

availability 

1 

Ethyl 

pyrrolidine 

Aryl amide 53 50,140 9 0 

2 

Amide ethyl 

pyrrolidine 

Aryl 17,904 26,663 47 0 

3 Aryl 

Amide 

ethyl 

pyrrolidine 

12,564 194,816 57 0 

4 Aryl Amide 

Ethyl 

Pyrrolidine 

15,756 0 0 0 

5 

Aryl and 

ethyl 

pyrrolidine 

Linker 

(methyl 

amide) 

48,716 Untransformed 23 0 

6 

Whole 

eticlopride 

- 84, 937 0 51 0 

Total - - 179,930 271,619 187 0 
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3.1.2 Pharmacology  

D3R stably transfected HEK293 cells were used to prepare membranes.  HEK293 cells 

are a popular choice because of their fast and easy reproduction and maintenance, amenability to 

transfection with high efficacy and protein production, and small cell size (Thomas and Smart, 

2005).  It was reported that stably expressing D2R in the human neuronal cell line SH-SY5Y 

produced stronger functional signals than when D3R was expressed at HEK293 cells (Alberts et 

al., 2000).  However, because this study involved binding assays, choice of cell line is expected 

to have limited effects. 

Before pharmacological characterization of the purchased compounds, it was necessary 

to determine the concentration of membrane preparation to be used for membrane binding 

assays.  Serial dilution of a membrane pellet (30 - 40 μg) was prepared using a D3R membrane-

binding buffer (1 M Tris base, 0.5 M KCl, 0.5 M CaCl2, and 0.5 M MgCl2 pH 7.4).  Extensive 

radioligand displacement by the high affinity D2/3R antagonist eticlopride was observed when 

the membrane pellet of 30 - 40 μg was dissolved in 6.5 ml of the D3R membrane-binding buffer.  

It was also necessary to optimize the D3R membrane-binding assay, adapted from the Luedke 

laboratory and improved for the present work.  Nonradioactive eticlopride was used in a 

competitive membrane-binding assay with the D3R antagonist radioligand [
3
H]-spiperone.  A Ki 

value of 0.5 nM was obtained (Figure 3.5a), comparable to the previously reported 0.16 nM 

affinity (Chien et al. 2010).  This confirmed the functionality of the membrane-binding assay.  

   The six purchased hit compounds were initially tested in a one-point membrane binding 

assay at 10 μΜ concentration using membranes prepared from hD3R-HEK293 cells, measuring 

percentage displacement of [
3
H]-spiperone.  Compound DH3 showed statistically significant 

inhibition (55%) of radioligand binding (Figure 3.5b).  Compared to the positive control, 
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eticlopride, the radioligand inhibition shown by DH3 was low.  A multipoint competitive 

membrane-binding assay indicated a DH3 binding Ki value of 1.97 ± 0.36 μΜ (Figure 3.6a).  

Because DH3 and DH5 were similar in their linker and pyrrolidone groups, the binding affinity 

of DH5 was determined, at 10.16 ± 3.00 μΜ (Figure 3.6b).  Both hit compounds showed modest 

affinities towards D3R, and low affinities compared with eticlopride.  DH3 and DH5 were 

generated from Experiment 1 of scaffold replacement of eticlopride, in which first the ethyl 

pyrrolidine and then the aryl group was replaced, resulting in hit compounds that were not 

commercially available.  The search for commercially available analogs generated DH3 and 

DH5 that are 65-70% similar to their original precursors, and both have structural similarity only 

differing at their aryl region (Figure 3.7). 
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Figure 3.5: Eticlopride competitive membrane binding assay and initial one-point 

membrane binding assay of the six initial hit compounds (DH1-DH6). Panel a 

represents affinity of eticlopride at HEK293 cells stably expressing hD3R. Ki value was 

derived from experiments incubating D3R stably transfected cell membranes with 

eticlopride in the presence of [
3
H] spiperone (0.5nM) at room temperature in D3R 

binding buffer.   Panel b represents an initial 10M membrane binding assay of DH1, 

DH2, DH3, DH4, DH5 and DH6. One-point binding affinities were assessed via [
3
H] 

spiperone (0.5nM) displacement when DH1 –DH6 were incubated at hD3R-HEK293 

cell membranes.  The data represents mean  SEM of at least 3 separate experiments. 
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Figure 3.6: Affinity of DH3 and DH5 at hD3R stably expressing HEK293 cell 

membranes.   Panel a represents affinity of DH3 and panel b represents affinity of DH5. Ki 

values were determined via incubating membranes from hD3R-HEK293 cell with DH3 and 

DH5 in the presence of [
3
H] spiperone (0.5nM) at room temperature in D3R binding buffer. 

Values represent the mean  SEM from three independent experiments, each conducted in 

duplicate determinations. 
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Figure 3.7: Development of DH3 and DH5. Panel a is showing scaffold replacement of 

eticlopride that lead to generation of DH3. Eticlopride pyrrolidine part (pink) was replaced 

resulting in Compound 252 (number in the returned database in the replacement of ethyl 

pyrrolidine). The aryl and the linker part of Compound 252 were replaced further generating 

Compound 25 (ranked 12 in the 60 selected compounds). Commercial unavailability of 

Compound 25 lead to selection of a 69% structural similar analog, DH3 (Analog 35).  (R.) 

Represents replacement; compound’s number represents ranking of returned hits within the 

database resulting from scaffold replacement of a part of eticlopride. Panel b is showing scaffold 

replacement of eticlopride that lead to generation of DH5. Eticlopride ethyl pyrrolidine part 

(pink) was replaced resulting in Compound 138. The aryl part of Compound 138 was further 

replaced generating Compound 39. Commercial unavailability of Compound 39 led to selection 

of 65% similar analog, DH5 (Analog 28). 
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Eticlopride has a tertiary amine in its ethyl pyrrolidine group that is ionized at 

physiological pH, forming an ionic interaction with Asp110 that is important for the drug’s 

affinity.  A pharmacophore feature was created to retain this tertiary amine in the resulting hit 

compounds; however, DH3 and DH5 lack this feature, as they are analogs of the original hit 

compounds.  Rather, these analogs have an amide feature in their pyrrolidone group (Figure 

3.8a).  Analogs were sought that have a tertiary amine in this site to determine if a tertiary amine 

in the pyrrolidone portion of DH3 is critical for high D3R affinity.  Four analogs, coded DH3A1, 

DH3A2, DH3A3 and DH3A4, were identified from SciFinder Scholar (Figure 3.8b), and were 

purchased.  These DH3 analogs have a tricyclic hydrophobic group and a linker of four to five 

atoms that link the tricyclic rings to a six membered ring group, with the exception of DH3A4 

that has a methyl amide linker connected to the amine group.  DH3A1, DH3A2, and DH3A4 

have an amide group in their linker comprising four atoms including the amide, while DH3A3 

has a secondary amine group in its linker of five atoms including the secondary amine (Figure 

3.8b).  In their six membered rings, the analogs differ in that DH3A1 has a cyclohexane group, 

DH3A2 has a benzene ring, and DH3A3 has a morpholine group and a tertiary amine that can be 

ionized at physiological pH.  
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a 

 

 

b 

 

Figure 3.8: Structural similarities and differences between eticlopride, DH3 and its analogs, 

and DH5. (a) Eticlopride, DH3, and DH5 structural differences are shown at the eticlopride 

tertiary amine. (b) Structural differences of DH3 derivatives are shown at the six membered ring 

and the linker.  

 

The one-point binding assay revealed that DH3A1, DH3A3, and DH3A4 showed 

statistically significant inhibition of the radioligand compared to the positive control, eticlopride 

(Figure 3.9a).  The concentration-response full curve assay showed that only DH3A3 has 

modest affinity (1.56 ± 0.53 μΜ) (Figure 3.9b).  This was apparently a sensitivity issue, as the 

low passage cell lines (Passage 17-19) used to prepare membranes may have had low expression 

of the D3R protein.  DH3A3 was expected to have higher affinity at D3R due its ionizable 

tertiary amine in its morpholine ring that could potentially interact with Asp110 to form an ionic 

interaction; nevertheless, its affinity was modest.   

  



   

96 

 

 

 

 

 



   

97 

 

 

Figure 3.9: Initial one-point membrane binding assay of four DH3 derivatives 

(DH3A1-DH3A4) and DH3A3 competitive membrane binding assay.  Panel a represents one-

point membrane binding affinities at 10M assed via [
3
H] spiperone (0.5nM) displacement when 

DH3A1 –DH3A3 were incubated at hD3R-HEK293 cell membranes at room temperature. Panel 

b represents affinity of DH3A3 at HEK293 cells stably expressing hD3R.  DH3A3 Ki value was 

derived from experiments incubating D3R stably transfected cell membranes with DH3A3 in the 

presence of [
3
H] spiperone (0.5nM) at room temperature in D3R binding buffer. Data values 

represent the mean  SEM from three independent experiments, each conducted in duplicate 

determinations. 

 

London dG score, structural novelty, and visual inspection were used to select top hits 

from the 39 analogs for pharmacological characterization, giving more emphasis to the structural 

features that are predicted to bind well in the D3R binding pocket and on the docking and 

binding interaction of the hits within the pocket.  However, the fragment building method 

generated too many hit compounds for all to be visually inspected.  Thus, scoring functions 

ranked the top 1000 to 2000 hits in every DFDD process for prioritizing visual inspection.  The 

in vitro affinity prediction power of London dG score was also assessed by using the scoring 

value of eticlopride (-13.45 kcal/mol) as a standard to select hits with high and low scoring 

values from the 39 analogs (Figure 3.10).  Analogs 29 (-14.472) and 33 (-13.253) had scores 

comparable to eticlopride; Analogs 16 (-7.73) and 19 (-7.2042) with poor scores were also 

selected for control purposes.  Analogs 29 and 33 were purchased for pharmacological 

characterization; however, analogs 16 and 19 were prohibitively expensive.  Although the initial 
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binding screen indicated significant D3R affinity, full characterization of Analog 29 revealed a 

modest binding affinity (3.47± 2.4 μΜ) (Figure 3.11b). 

 

Figure 3.10: Scaffold replacement hit analogs of high and low London dG score. 

The numbers in parentheses represent the rank of the hits within the database of the 60 

selected hits.  
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Figure 3.11: Initial one-point membrane binding assay of Analogs 29 and 33; Analog 

29 competitive membrane binding assay.  (a) One-point binding affinities at 10M 

assessed via [
3
H] spiperone (0.5nM) displacement when Analog 29 or 33 was incubated at 

hD3R-HEK293 cell membranes at room temperature.  (b) Affinity of Analog 29 at 

HEK293 cells stably expressing hD3R.  The Analog 29 Ki value was derived from 

experiments incubating D3R stably transfected cell membranes with Analog 29 in the 

presence of [
3
H] spiperone (0.5nM) at room temperature in D3R binding buffer.  Data 

values represent the mean  SEM from three independent experiments, each conducted in 

duplicate determinations. 
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The passage number for a cell line is important to membrane binding assays because it 

may affect the degree of cell surface expression of the target protein encoded by the transfection.  

In the one-point membrane-binding assay of DH3 derivatives (Figure 3.9a) and Analogs 29 and 

33 (Figure 3.11a), it was observed that the sensitivity of the assay was very low.  This 

insensitivity was confirmed by full curve competitive membrane binding assay of individual 

compounds, as only DH3A3 and Analog 29 showed detectable binding affinity.  The result may 

have been due to the cell passage used (Passage 17-19); optimal results are typically achieved 

when the passage lines are between 20 and 30.  In order to test this notion, cell passage lines 

between 20 and 30 were used in the one-point membrane-binding assay for all purchased hit 

compounds (Figure 3.12).  Consistent results were shown with the previous full curve 

competitive membrane-binding assays of DH3A3 and Analog 29, and with the previous one-

point membrane binding assays of the first six hit compounds (DH1-DH6) (Figure 3.5).  As 

shown in Figure 3.12, only DH3, DH3A3, Analog 29, and DH3A1 showed significant 

radioligand inhibition compared to eticlopride, consistent with their full curve competitive 

membrane binding assays.  Interestingly, DH3A1 showed significant radioligand inhibition at 

one-point membrane binding but did not show appreciable binding affinity when its radioligand 

inhibition ability was tested at different concentrations in competitive membrane binding assays.  

This could be due to solubility problems.  
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Figure 3.12: One-point D3R membrane binding affinities of all purchased hit compounds. 

Ten M final concentration of each hit compound was assessed for ability to displace [
3
H] 

spiperone (0.5nM) at hD3R-HEK293 cell membranes in D3R binding buffer solution at room 

temperature.  Data values represent the mean  SEM from three independent experiments, each 

conducted in duplicate determinations.  
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The D3R hit compounds purchased were derivatives of the 60 top selected hits that were 

generated from scaffold replacement of eticlopride, a D2/D3 receptor-selective antagonist.  

Though efficacy assays would be needed to determine the status of the hit compounds as agonist, 

antagonist or partial agonist, it was logical to compare hit compound binding affinities with the 

natural D3R agonist, dopamine.  Compounds with either no (DH6), modest (Analog 29) or high 

(eticlopride) D3R affinity were chosen for direct comparison.  In order to prevent its oxidization, 

dopamine was dissolved in 50 mM (1% w/v) ascorbic acid in D3R binding buffer solution.   The 

one-point (10 M) binding assay suggested that dopamine significantly inhibited radioligand 

binding; DH6 and Analog 29 showed radioligand inhibition consistent with previous results 

(Figure 3.13a).  Surprisingly, 1% ascorbic acid in D3R binding buffer solution was found to 

significantly inhibit radioligand binding comparable to the positive control eticlopride.  

Moreover, when dopamine was dissolved in the 1% ascorbic acid buffer solution, a slight 

synergistic effect was shown compared to dopamine dissolved in normal D3R binding buffer. 

Consequently, it was logical to test ascorbic acid’s effect on each compound (DH6, Analog 29 

and eticlopride).  It was found out that all hit compounds that were tested by dissolving in 1% 

ascorbic acid D3R binding buffer solution showed similar radioligand inhibition effects (Figure 

3.13b). It would appear that ascorbic acid could displace the radioligand at the D3R or denature 

the 3D structure of the receptor protein.  Dopamine binding affinity was also determined to 

compare it with the affinity of hit compounds that were tested and was found to be 25.88 ± 0.12 

nM (Figure 3.14) comparable to the literature value of 25 ± 2 nM (Robinson et al., 1994). 
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Figure 3.13: One-point D3R membrane binding affinities of dopamine, DH6, Analog 

29 and eticlopride.   (a) One point D3R membrane binding affinities of dopamine with 

and without 1% ascorbic acid (A.A.) binding buffer, DH6, Analog 29 and eticlopride.  (b) 

One point D3R membrane affinities of dopamine, DH6, Analog 29 and eticlopride with or 

without 1% AA D3R binding buffer.  Inhibitor concentrations were 10M; affinity was 

assessed by measuring [
3
H] spiperone (0.5nM) displacement at hD3R-HEK293 

membranes.  Data values represent the mean  SEM from three independent experiments, 

each conducted in duplicate determinations. 

 



   

104 

 

 

 

Figure 3.14:  Competitive membrane binding assay of dopamine. Ki value was 

derived from experiments incubating D3R stably transfected cell membranes with 

dopamine in the presence of [
3
H] spiperone (0.5nM) at room temperature in D3R 

binding buffer.  Data values represent the mean  SEM from three independent 

experiments, each conducted in duplicate determinations. 
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Table 3.8: Scaffold replacement hit compounds and their D3R binding affinities 

 

 

No. Compound D3R binding affinity (nM) 

1 Eticlopride 0.49 ± 0.11 

2 DH3 1970 ± 360 

3 DH3A3 1560  ± 530 

4 DH5 10,160 ± 3000 

5 Analog 29 3470 ± 2400 

6 Dopamine  25.88 ± 0.12 

 

3.1.2.1 Structural novelty of the pharmacologically characterized compounds 

 

Hit compound analogs that were purchased and pharmacologically characterized were 

assessed for similarity to eticlopride, the parent compound, using the Tanimoto coefficient (Tc).  

This coefficient is based on 2D molecular fingerprints that compare structural similarities 

between two compounds, and it is the method of choice for in silico-guided, fingerprint-related 

similarity calculations (Willett, 2006).  Tc measures structural similarity between two samples as 

defined by the number of common features divided by the total available features.  In order to 

determine the novelty of the pharmacologically characterized analogs, a MOE database was 

created that included eticlopride, the parent compound, and all purchased analogs.  The database 

was converted to SDF file format from MDB and was used to calculate similarities between the 

analogs and eticlopride using OpenBabel software (O'Boyle et al., 2011).  Including eticlopride, 

13 molecules were analyzed for their similarity percentage; almost all were structurally 

dissimilar to the parent compound.  The highest level of uniqueness is observed when Tc is less 

than 0.35 (Carlsson et al., 2011).  Only Analogs 29 and 33 have Tc values above this threshold; 
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however, they are dissimilar to eticlopride because they have Tc values of less than or equal to 

0.4.  The compounds least similar to eticlopride were DH3 (0.14) and DH3A4 (0.17), while the 

compounds most similar to eticlopride in the database were Analog 33 (0.4) and Analog 29 

(0.39) (Table 3. 9). Hit compound analogs that were pharmacologically characterized had low 

affinities compared to the parent compound, eticlopride.  This could be due to limitations in 

DFDD ability to generate high affinity ligands, and the analogs being derivatives of the 

originally selected hit compounds.  DFDD methods are reported to generate low micromolar 

affinity hit compounds (Hajduk and Greer, 2007; Hoffer et al., 2011; Schneider and Fechner 

2005).   
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Table 3. 9: Structural novelty of pharmacologically characterized compound 

Purchased 

analogs 

Structure of purchased 

analogs 

London 

dG Score 

Experimental 

affinity (Ki nM) 

Analog 

similarity to 

eticlopride 

(T.C.) 

Eticlopride 

 

-13.45 0.49 ± 0.112nM 1.00 

DH1 

(Analog 12) 

 

-10.0848 N/A 0.192308 

DH2 

(Analog 10) 

 

-11.8131 N/A 

0.294872 

 

DH3 

(Analog 35) 
 

-10.3205 1970 ± 360 nM 

0.142857 

 

DH4 

(Analog 23) 

 

-10.0034 N/A 0.348571 

DH5 

(Analog 28) 

 

-10.5444 

10,160nM ± 

3000nM 

0.336957 
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N/A = analog does not have D3R affinity.  

 

DH6 

(Analog 26) 

 

-10.2952 N/A 0.307143 

DH3A1 

 

-12.1818 N/A 

0.181208 

 

DH3A2 

 

-11.1381 N/A 

0.225166 

 

DH3A3 

 

-15.0789 1560 ± 530 nM 0.248276 

DH3A4 

 

-11.2277 N/A 0.170213 

Analog 29 

 

-14.4721 3470 ± 2400nM 0.391304 

Analog 33 

 

-13.2530 N/A 0.402299 
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3.2 Discussion 

 

As expected, scaffold replacement SR generated a huge number of hit compounds 

(“hits”) even when somewhat strict descriptor filters were used to ensure drug-like compounds.  

Scaffold replacement of certain eticlopride portions, however, returned few hits, especially when 

stricter descriptor filters were used.  This is due to the chemical nature of the R-groups used to 

generate new structures.  For a new structure to be created, the bond length, hybridization, 

orientation and bond angle of the fragment and the R-group should match. In such situations, the 

descriptor filters were slightly relaxed to generate enough hits.  

Surprisingly, the 60 hits selected for pharmacological characterization were not 

commercially available in vendor databases.  This could be due to the relatively complex hit 

structures attributed to the fragment database used, and synthesis plausibility scores that had 

weak predicting power.  The commercial unavailability also reflects the structural novelty of the 

hits.  Clearly, there is room for improvement regarding the available MOE fragment database 

and the predicting power of the synthetic plausibility score.  

The aim of this study was to evaluate and refine DFDD methodologies (scaffold 

replacement, MedChem transformation, and ligand building) via generating novel structures that 

may have D3R binding activity.   For such evaluation, either commercially available hits should 

be generated or analogs of such hits should be identified.  Because the 60 selected top hits were 

not commercially available, 39 commercially available analogs were identified from the 

SciFinder Scholar database.  Three of these analogs (DH3, DH5, and analog 29) and one analog 

of DH3 (DH3A3) were found to have modest D3R binding affinity, supporting the hypothesis 

that DFDD can be used to generate D3R ligands.  Most lead compounds generated via DFDD 

have micromolar affinities for the target receptor (Hajduk and Greer, 2007; Hoffer et al., 2011; 
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Schneider and Fechner 2005 ).  Consistent with this observation, the pharmacologically 

characterized hits have low range micromolar binding affinities (Table 3.8).   

Any part of a known bioactive ligand can be replaced using MOE scaffold replacement 

when the scaffold is not essential for biological activity and has two exit vectors defined (Figure 

1.4).  The core portion of a known active ligand can also be used to achieve scaffold hopping 

(SH) using other computational programs (Langdon, 2010).  There are many programs and 

approaches that can perform SH; however, the “scaffold” definition and the SH approach vary 

among programs (Krueger et al., 2009; Mauser and Guba, 2008; Tsunoyama et al., 2008; Zhao, 

2007).  Each has advantages, disadvantages and limitations depending on the codes, algorithms, 

scoring functions, and fragment databases used.  

In the present work, scaffold replacement was performed using MOE software 

(Grimshaw, 2010; Sourial, 2007); other programs refer to the scaffold replacement approach as 

SH (Brown and Jacoby, 2006; Fontaine et al., 2009; Quintus et al., 2009; Vaino, 2013).  

Scaffolds have been replaced by SH to improve bioavailability via increased lipophilicity 

(Beaulieu et al., 2006), enhance solubility by introducing polar groups (Bovens et al., 2009), 

increase binding affinity by increasing rigidity of compounds (Koltun et al., 2009), and avoid 

formation of toxic metabolites (Roy, 1997).  Such projects were medicinal chemist controlled 

and relied mainly on medicinal chemistry knowledge; these ligand based drug discovery 

approaches resulted in few hit compounds.  Selected hits were then synthesized and 

pharmacologically characterized.  The disadvantages of such projects were that they did not 

explore a larger chemical space within protein binding pockets with the possibility of generating 

novel structures, and were expensive and time-consuming.  However, in MOE scaffold 

replacement, scaffolds were replaced using wider “chemical space” of an 800,000-fragment 
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database generated from 4.3 million molecules in vendor databases.  The molecules were first 

subjected to “washing” and filtering to render a pool of drug-like compounds.  The washed 

compounds were then exposed to retrosynthetic methods that break bonds using RECAP rules 

(Lewell et al., 1998) and Schuffenhauer decomposition (Schuffenhauer et al., 2007).  Such 

methods may not generate exclusively synthesizable structures even if further scored for 

synthetic plausibility, as such scores can be of questionable accuracy (Grimshaw, 2010).  

Avoiding huge numbers of hits that are either not synthesizable or less druggable are the major 

challenges of DFDD. 

In the present study, selection of hits for further computational processes or for 

pharmacological characterization was based on three important factors: scoring function values 

(London dG score), novelty of generated structures, and visual inspection. Commercial 

availability and cost of the hit compound were also considered. Scoring functions are important 

in rating and ranking of hits in computational experiments even though their success rate is 

limited (Li et al., 2013; Moal et al., 2013).  To improve the current functions, algorithms that can 

precisely predict ligand protein interactions should be developed (Halperin et al., 2002; Warren 

et al., 2006). In order to choose the best of the five MOE scoring functions, each was assessed 

using a D3R-eticlopride complex data test set.  Results showed that these functions failed to 

predict the experimental affinity of known ligands; however, as in many previously performed 

evaluation experiments (Cheng et al. 2009;  Kontoyianni et al., 2004; Li et al., 2014; Warren et 

al. 2006; Wang et al., 2003), many protein–ligand complex data test sets should be included for 

more precise consensus assessments.  In this study, London dG score was used for rating and 

ranking of hits because of its previous use in a similar scaffold replacement evaluation 

experiment using a different protein-ligand complex (Grimshaw, 2010).  In this evaluation of 
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scoring function, ASE score ranked higher than London dG score, but neither reached the 

threshold R
2
 value that depicts a linear relationship between two variables (R

2
 =0.81).  While the 

currently used scoring functions lack in vitro affinity prediction power, they are essential to 

alleviating the manual assessment of each hit, and providing easy, rapid hit rankings.  

Structural similarity affects pharmacological activity (yera et al., 2011), and the field of 

chemical informatics operates under the notion that similar chemical structures show similar 

pharmacological activity (Nettles et al., 2006).  Structurally similar drugs may also have similar 

adverse effects (Vilar et al., 2012; Vilar et al., 2012).  Many antipsychotics and antidepressants 

have severe adverse effects that challenge their usability and competency (Ferguson, 2001; 

Goldstein and Goodnick, 1998; Muench and Hamer, 2010). In such scenarios, lead compounds 

that are structurally dissimilar to known therapeutics could reduce the likelihood of adverse 

effects (Nolan et al., 2011). The D3R hits generated via scaffold replacement of eticlopride were 

found to be structurally dissimilar to the parent compound. The degree of similarity was 

quantified by calculation of Tanimoto coefficients(Tversky, 1977).  The structural novelty of the 

D3R hits was an important successful outcome of DFDD.  

Because of the limited precision of the currently used scoring functions and problems 

with accurate determination of free energy of ligand binding, manual assessment of hits 

generated from computational experiments was essential.  This type of in silico assessment of 

individual hit compounds within the receptor binding pocket is called visual inspection, which 

increases the success rate of in silico experiments when performed by medicinal and 

computational chemistry experts (Cosconati et al., 2010).  In visual inspection, the virtual 

interaction of a hit compound with key residues of the receptor binding pocket is analyzed, as is 

the chemical nature of the hit compound (Immadisetty et al., 2013).  However, a crystal 
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structure-based pose of the virtual interaction between the receptor binding pocket and a ligand 

reveals only one scenario; due to the overall dynamics of the protein-ligand interaction, hundreds 

of conformations, orientations, and positions of the ligand within the pocket are generated.  Such 

shortcomings hinder the accuracy of visual inspection.  Even though automated scoring functions 

alone may not reveal the actual interaction of a ligand and protein, success rates increase with the 

addition of visual inspection.  The drawback of using either criterion alone or combination of 

both is that selection could be biased in a way that eliminates promising hits.  Employing the 

dynamics of a protein-ligand complex using powerful computer processors could enhance the 

efficiency of visual inspection, even if it is demanding.  

In order to understand, refine and evaluate novel drug design computational 

methodologies before applying them to target proteins that are implicated in disease, a proof of 

concept is essential to avoid wastage of time and resources.  In this study, the D3R was used as a 

tool for evaluating DFDD; antagonists identified and developed in this manner should be useful 

agents against pathologies involving the D3R.  Antagonists of this receptor can be used in the 

treatment of substance abuse (Heidbreder et al. 2005; Newman et al., 2012; Newman et al., 

2005), in schizophrenia (Crider and Scheideler, 2001; Gurevich et al., 1997; Jardemark et al., 

2002; Semba, 2004), in alcohol consumption ( Harrison and  Nobrega, 2005; Jeanblanc et al., 

2006; Leggio et al., 2014; Thanos et al., 2005), and in appetite disorders (obesity) (Dodds et al., 

2012; Mogg et al., 2012).   D3R partial agonists can be used for effective treatment of 

schizophrenia.  In schizophrenia, dopamine release is excessive in the subcortical regions of the 

brain but low in the cortical regions.  This phenomena demands ligands that stabilize the 

concentration of dopamine throughout these regions; partial agonists are “stabilizers” that behave 

as antagonists at subcortical regions and agonists at the cortical regions creating uniform 
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dopamine concentrations (Bolonna and Kerwin, 2005; Crismon et al., 2003; Cousins and Young, 

2005). The pharmacologically characterized analogs of hit compounds generated in this study 

could have potential D3R partial agonistic effects, but this was not assessed.  According to the 

evaluation in the current study, DFDD in MOE may be a powerful tool for drug design after 

further refinement and improvement.  

Ligand building is a method that was added to MOE software for lead optimization and 

building of new structures either from a free space in a binding pocket or from a smaller 

structure.  It employs medicinal chemistry rules for generating novel structures, especially when 

a protein is used.  The prediction of one half of the eticlopride molecule, by its deletion and 

reconstruction by growing from the remaining half, was only partially successful.  The 

computational ligand building method did not rebuild exactly the starting structure of eticlopride, 

regardless of which molecule half (aryl or ethyl pyrrolidine) was used to seed growth.  

Specifically, the tertiary amine from the ethyl pyrrolidine moiety and the 2-methoxy group from 

the aryl moiety could not be generated (Figure 2.10).  The failure to generate these regions of 

eticlopride could be due to the limited number of building fragments that were available in the 

MOE database at that time.  The availability of fewer fragments and the software following strict 

medicinal chemistry rules to build structures within a protein-binding pocket yielded very few 

structures.  In the course of evaluating the ligand building method, much was learned toward 

understanding and applying DFDD approaches; nevertheless, for the reasons provided above the 

ligand-building method was not used to generate new structures from eticlopride or other parent 

compounds.  

Previously, MedChem transformation has been described and evaluated for generating 

drug-like compounds (Ekins et al., 2010; Kirchmair et al., 2008; Segall et al., 2011; Stewart et 
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al.,  2006). Segall and colleagues identified 206 MedChem transformation rules relevant to drug 

design.  Most of the compounds generated via such rules were drug-like molecules that were 

familiar to skilled medicinal chemists (Segall et al., 2011). Applying this method to the present 

work yielded a huge pool of hits that were commercially unavailable, indicating structural 

novelty but also undesirable synthetic plausibility.  After selection of top hits based on structure 

novelty, scoring function and visual inspection, the compounds were analyzed by experienced 

medicinal chemists. Based on synthetic plausibility and drug-likeness, many of the hits were 

eliminated, and few passed the filtering process for synthesis.  

The flood of information related to drug-like properties, synthesis, and physical and 

chemical properties, combined with shortcomings in the in silico descriptor filters, scoring 

functions, and medicinal chemistry rules to predict drug feasibility and characteristics, renders 

the computational methods described here suboptimal.  Therefore, further fine-tuning of DFDD 

is necessary for making such methods more effective and an integral part of drug design projects.  

In conclusion, although computational techniques are yet to be full-fledged, they are 

assuming a pivotal role in the drug discovery process and have shown some success in the 

identification of new lead compounds for drug design.  DFDD methods are faster, cheaper, and 

generate higher hit rates than their virtual screening and traditional high throughput screening 

counterparts; however, it could be time-consuming also if such methods are not well understood, 

performed and managed.  DFDD can generate novel structures that are dissimilar to the parent 

compound, providing a new avenue for lead optimization and reduction of adverse effects related 

to known ligands.  Virtual screening filters compounds that already synthesized and collected in 

a library, potentially reducing innovation.  Proof of concept is essential to evaluate novel in silico 

methods before being employed to target proteins.  Such evaluation is essential especially when 
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the 3D structure of the target receptor has yet to be resolved at the lab bench.  Virtual methods 

for such cases could save time and resources in drug discovery.  DFDD may not provide the 

expected and desired outcome, but could still give very important results toward reaching lead 

compounds that could be optimized.  The challenging part of such methods is that it is difficult to 

determine at which intermediate step one has achieved “success” or “failure”.  Moreover, even 

though lead compounds may be identified, the unverified native-binding mode of the lead 

compound within the protein pocket could be challenging to rapid, successful lead optimization. 

In this study, DFDD was successful in generating hit compounds with modest binding affinity 

that could be used as lead compounds.  This success arguably provides confidence in applying 

DFDD to other target proteins. 
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CHAPTER FOUR  

 

4 SUMMARY 

The results achieved in this study are significant to the ongoing efforts in the 

development of novel antidepressants with fast onset of action, improved efficacy and reduced 

adverse effects.  The evaluation of DFDD (MOE scaffold replacement, MedChem 

transformation and ligand building) as tools for drug design was successful, especially scaffold 

replacement.  Scaffold replacement of eticlopride generated novel structures that have low 

micromolar D3R affinities.  Hit compounds generated by the above methods were not 

commercially available, but the scaffold replacement method generated analogs of hit 

compounds that could be purchased and pharmacologically characterized for their binding 

affinity at D3R.  Six analogs of 60 selected hit compounds were pharmacologically tested, and 

only the compound coded “DH3” was found to have low micromolar affinity (1970 ± 360 nM).  

To improve the affinity of DH3, four analogs of DH3 were purchased.  Only “DH3A3” was 

found to have low micromolar affinity (1560 ± 530nM); there was no significant affinity 

improvement over that of DH3.  In the process of evaluating the ability of scoring function to 

predict experimental affinity, Analog 29 was found to also have micromolar affinity (3470 ± 

2400nM).  From evaluating the MOE London dG score alone, it is apparent that further 

evaluation processes are needed, and currently available scoring functions are in need of 

improvement.  Although pharmacological characterization of MedChem transformation 

generated hit compound analogs were not performed, the method generated a huge pool of hit 

compounds, confirming its ability to generate novel structures.  Novelty of generated structures 

was part of the evaluation process of the computational methods, and all of the 

pharmacologically characterized analogs were structurally novel to the parent compound, 
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eticlopride.  This specific quality suggests that novel structures could be generated from 

established antidepressant drugs in a way that might isolate and remove any undesirable 

properties.  The discovered compounds with modest D3R affinity reported within may also be 

valuable lead compounds for combating diseases in which D3R is implicated.  

The present study suggests the successful use of combined approaches that include 

computational chemistry (DFDD), medicinal chemistry (visual inspection), and pharmacology 

(membrane binding assay) to evaluate de novo fragment-based drug design methods of scaffold 

replacement, MedChem transformation and ligand building.  The identification of the DH3, 

DH5, DH3A3 and Analog 29 compounds confirms the ability of scaffold replacement to 

generate novel structures that may be useful as lead compounds for combating many 

neurological and psychiatric diseases such as depression, addiction, Parkinson’s disease, and 

schizophrenia.  
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