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Benjamin Ward

Forecasting Short Term Trends in Prices of U.S. Stock Market

Advisor: Abhay Gaur

Abstract

This thesis explores a cubic model to forecast short term trends in stock prices.
Specifically, this model recognizes the limited applicability of instantaneous rate
of change indications from the current stock price of an individual corporation.
Discussed first is the nature of share price as a data vector and derivations of linear
and non-linear mathematical operators. A proposed methodology demonstrates
market entry and exit techniques that comprise a trading system and prediction
range is evaluated with emphasis on error analysis.
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Chapter 1

Introduction

The U.S. stock market is a complex system. Within it, a population of global
participants essentially plays a game. The playing field is the landscape of the
world economies and every participating entity shares a common objective. Al-
though participants may use different means, in the end, everyone is attempting
to achieve financial success.

The growth of the Internet is the major cause of recently altered dynamics
of the stock market. For individuals, barriers to market participation have never
been fewer. A personal computer enables any participant to actively manage
and monitor their portfolios, and in some circumstances, eliminate the services
of a stock broker. The one factor every participant is most concerned with is
the overall performance of a stock’s respective share price. Measuring the share
price performance of an individual stock can be shown by a relative comparison
of today’s share price with a past share price. A share price is assumed to be
governed by supply and demand theory and determined through a bid/ask pric-
ing mechanism. Because supply and demand continuously change, share prices
fluctuate continuously.

Generally accepted as a fact in financial market science is the notion that
throughout the life of an average stock, its share price performance will finish
positive. Of course there are exceptions, but some market participants base their
decision making process upon this idea while ignoring the inherent fluctuations
in share price. Market participants who behave accordingly are more commonly
referred to as stock market investors who employ a buy and hold strategy. Other
participants share the belief of the investors that most stocks finish with positive
share price performance, however, they attempt to maximize their success by
timing the fluctuations of share price. Participants of this type are referred to
as stock market traders who employ various mathematical models to capture the
deterministic nature found within complexity. The renowned phrase ”buy low,
sell high” suitably characterizes the behavior of traders.

Many traders base their decision making process on a system of rules. Al-
though a trader will readily adapt to new market information, most often they do
not deviate from their system of trading rules. The collective use of all techniques
available to a trader comprise part of a trading system to help determine the best
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time to enter and best time to exit the market. As news and new data arrive
continuously, trading systems are updated to increase odds of success.

During the late 19th century Charles Dow proclaimed prices move in distin-
guishable trend patterns, but later works suggested the advanced mathematics of
Brownian motion governed price behavior. Among some of the current mathe-
matical models used as tools in trading systems are applied probability models
such as Markov chains, in particular, Martingale measures. Among the more per-
vasive tools used in trading systems is the Black-Scholes model which assumes
stock returns are distributed lognormally. All of these mathematical models and
others have proven to be useful given certain circumstances. The purpose of this
research is to determine the extent of applicability for a trading system based on
a piecewise third degree polynomial,

f(t) = at3 + bt2 + ct + d for t ∈ <

where a, b, c, and d are real constant coefficients and t represents time. Modeling
market price data with a cubic function assumes price is time-dependent and
fluctuates in a wave-like motion, much like the traversal of a sine wave curve
which can be approximated by a cubic polynomial only for small values of t.

1.1 Present Status of the Proposed Problem

Analyzing the past movement of share prices and the volume of trading to forecast
future price movement is important and referred to as technical analysis. The
significance of the past is contradictory to the efficient market hypothesis. Efficient
market theorists believe that share prices move randomly and instantly in response
to new information, rendering useless all past information, such as past trading
volume, price to earnings ratios, and earnings reports. Instead, a fundamental
approach in which a critical analysis of a company, its industry, and current
economic conditions, should mostly dictate investing and trading decisions.

Successful market participants use a combination of fundamental and technical
analysis to locate a stock (fundamental) and time a trading decision (technical).
Due to the growth of online trading, more market participants are trading and
not investing. Thus, market volatility and the importance of short term trading
has increased. Utilizing a piecewise cubic function as part of a technical analy-
sis has been tested and researched by Gaur[8], Rehoblz[13], and Mak[11]. Mak
simulated market price data as theoretical waveforms and tested the validity of a
cubic function to predict trend reversals. Gaur and Rebohlz have applied catas-
trophe theory to the financial markets by attempting to comprehensively describe
a dynamic system that exhibits discontinuous behavior under continuous stimuli.
Rebohlz’s model is an extension of Gaur’s work and has been used to predict
companies filing for Chapter 11 and the financial health of a company.
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Chapter 2

Operators and Indicators

If a share price was observed at equal moments in trading time as time progresses,
each observation, ρt, would comprise an indexed sequence of numbers,

~ρ = {ρ−(N−1), ρ−(N−2), ρ−(N−3), . . . , ρ−2, ρ−1, ρ0},
where N is the number of observations in ~ρ. When the present time is defined to
be t = 0, ρ0 is the last observed price since for t > 0, ρt represents future data
that does not exist. Because each ρt is observed at equal moments in trading
time, ~ρ is a sequence of share prices observed during the same time within each
passing trading day, week, or month. As with many other empirical time series,
~ρ will never appear to have a fixed mean. However, ~ρ will exhibit homogeneity
in the sense that one part of the time series looks much like any other part. This
chapter illustrates the derivation and examples of four mathematical operators
that map ~ρ as input data into a vector of output data by means of a finite set of
operations.

2.1 Exponential Moving Averages

A common technique used to identify trends in ~ρ is the use of moving averages
which show the average value of a share price over a period of time. The expo-
nential moving average (EMA) at time t, δt, of input ~x, can be defined as

δt =
∞∑

k=0

α(1− α)kxt−k for α ∈ [0, 1].

α is referred to as the filtering weight and can be calculated as α = 2
L+1

. L is
a positive integer and often referred to as the length of the EMA. A recursive
definition for the EMA is

δt = αxt + (1− α)δt−1, for α ∈ [0, 1].

Figure 2.1 shows a time series plot over the course of two years of ~δ when ~x = ~ρ
for three different values of α. Figure 2.1 illustrates the fact that as α → 0, the
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Figure 2.1: Three exponential moving averages of ~ρ
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smoother ~δ becomes, and increasingly more information is filtered out of ~ρ. Also
evident from Figure 2.1 is the fact that ~δ and ~x will always behave similarly even
though ~δ lags behind ~x in time. Thus, a smaller α will provide a smoother ~δ but
with greater time lag.

Time lag is significant since it ultimately affects a trading decision. To reduce
time lag, the filtering weight of ~δ can be automatically adjusted depending on
recent volatility of ~x. Automatically adjusting the filtering weight requires the
recursive definition to be written as

δt = ακtxt + (1− ακt)δt−1, for ακt ∈ [0, 1]

where κt is a ratio of volatility measures for ~x at time t. The preferred method
used throughout this research calculates κt as a ratio of Vt to Vt−b where b is a
positive integer. Vt is defined as

Vt =
max(xt−(n−1), xt−(n−2), . . . , xt−1, xt)−min(xt−(n−1), xt−(n−2), . . . , xt−1, xt)

n−1∑
j=0

|xt−j − xt−(j+1)|

where n is the number of periods over which volatility is being measured. EMA’s
of this form are referred to as adaptive exponential moving averages. When ~x = ~ρ,
κt > 1 implies that price volatility is greater at time t than it was b periods ago
and κ < 1 implies that price volatility is less at time t than it was b periods
ago. Figure 2.2 illustrates how an adaptive EMA behaves differently than a non-
adaptive EMA of equal length in times of high and low price volatility.

One method that uses EMA’s as trending indicators is referred to as the fast-
slow crossover method as illustrated in Figure 2.3. The fast-slow crossover method
employs two non-adaptive EMA’s of different lengths. The EMA with the greater
length (the smaller filtering weight) is referred to as the slower EMA and the
EMA with the shorter length is the faster EMA.

The crossover technique implies a share price is trending up after its faster
EMA becomes greater than its slower EMA. Thus, it is a considerable time to
enter the market. Conversely, a considerable exit point occurs after the faster
EMA becomes less than its slower EMA. The crossover points exhibited in Figure
2.3 are marked within several boxes. However, many false trend indications could
be generated.
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Figure 2.2: non-adaptive EMA versus adaptive EMA
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Figure 2.3: Fast-slow method

11



2.2 Velocity and Acceleration Indicators

Applying a piecewise cubic function to a time series like ~ρ or an EMA of ~ρ,
employs four adjacent data observations. If ~x is the data on which the piecewise
cubic function is being fit, then

xt = at3 + bt2 + ct + d for t ∈ <.

Evaluating xt at t = 0, −1, −2, and − 3 yields

x0 = d,

x−1 = −a + b− c + d,

x−2 = −8a + 4b− 2c + d, and

x−3 = −27a + 9b− 3c + d.

Since x0, x−1, x−2 and x−3 are four known observations, the four unknown co-
efficients a, b, c and d can be found and calculated as linear combinations of
x0, x−1, x−2 and x−3:

a = 1
6
x0 − 1

2
x−1 + 1

2
x−2 − 1

6
x−3

b = x0 − 5
2
x−1 + 2x−2 − 1

2
x−3

c = 11
6
x0 − 3x−1 + 3

2
x−2 − 1

3
x−3

d = x0.

The cubic function can now be used to calculate a rate of change of ~x with respect
to time by evaluating the first derivative of xt,

d
dt

xt = 3at2 + 2bt + c,

at different values of t, and in particular, at the present time, t = 0.

dxt

dt
|t=0 = c = 11

6
x0 − 3x−1 + 3

2
x−2 − 1

3
x−3

or

dxt

dt
|t=0 = ν0

where νt is defined by the convolution sum

νt =
11

6
xt − 3xt−1 +

3

2
xt−2 − 1

3
xt−3.

νt is interpreted as a nominal measure for the current velocity of ~x at time t based
on the last four observations in ~x. If ~x = ~ρ, then for νt > 0, the trend in prices at
time t is generally an upward trend. For a νt < 0, the trend in prices at time t is
generally a downward trend.

When νt = 0 the current trend in the input data experiences some kind of trend
reversal. In order to differentiate what type of trend reversal may be occurring, a
second indicator is employed. Evaluating the second derivative of xt,
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d2

dt2
xt = 6at + 2b

at t = 0 calculates the current rate of change of current velocity with respect to
time, or the current acceleration indication, ω0.

d2xt

dt2
|t=0 = ω0 = 2b = 2x0 − 5x−1 + 4x−2 − x−3

where ωt is defined by the convolution sum

ωt = 2xt − 5xt−1 + 4xt−2 − xt−3.

As in calculus, the second derivative represents the concavity of a curve. Thus,
ωt > 0 imply the input data at time t is concave up and ωt < 0 imply the input
data at time t is concave down. Various interpretations of ωt can be made in con-
junction with vt. Mak proposes that when vt = 0 and ωt remains approximately
unchanged from ωt−1, then the input data at time t is experiencing a major trend
reversal. Otherwise, if ωt does not remain approximately unchanged from ωt−1,
then the trend in the input data at time t will remain the same.

The top graph in Figure 2.4 displays ~ρ and its non-adaptive EMA of length
200, ~δ. The middle plot displays ~ν, the output of the velocity indicator operated
on ~δ. After May 20, νt < 0, thus implying the trend in prices at time t is a
downward trend according to a relatively slow EMA. The change in velocity from
positive to negative can be further analyzed by comparing ~ω, the corresponding
acceleration vector generated by applying the acceleration indicator to ~δ. For sev-
eral days prior to the date of investigation, ωt mostly remains negative suggesting
price velocity will remain negative after having approached and crossed zero from
the positive side. Two significant variables considered in the interpretation of
charts like Figure 2.4 are the length of the EMA employed to first filter ~ρ and the
time unit of the share price data (i.e. seconds, minutes, hours, days, weeks, or
years). Both will be further discussed in Chapter 3.
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Figure 2.4: Current velocity and acceleration output
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Because velocity and acceleration indicators generate oscillatory output, one
or more EMA’s will be used to reduce noise in the output. Consider an EMA of
~ρ with filtering weight α,

δt =
N−1∑

k=0

α(1− α)kρt−k.

Suppose a velocity indicator was applied to ~δ,

νt =
11

6
δt − 3δt−1 +

3

2
δt−2 − 1

3
δt−3.

Factoring the summation yields,

νt =
N−1∑

k=0

α(1− α)k(
11

6
ρt−k − 3ρt−1−k +

3

2
ρt−2−k − 1

3
ρt−3−k)

which equals an EMA of weight α applied to data that has been operated on by the
velocity indicator. Therefore, the non-adaptive EMA, velocity, and acceleration
operators are linear operators. For example, suppose ~ρ was first filtered by a
non-adaptive EMA with α = α1 to generate ~δ. Then apply the velocity indicator
to ~δ to generate ~ν. Finally, filter ~ν with an EMA with α = α2. Identical output
can be computed by simply reversing the order of use of α1 and α2.

2.3 Vertex Indicator

The non-linear indicator utilized in the trading system is the vertex indicator. A
cubic curve of the form

xt = at3 + bt2 + ct + d

that is fit to a sequence of four share price observations or a sequence of four
smoothed share price observations usually yields two points at which velocity
equals zero. The two turning points, or vertices, can be found by equating the
first derivative of the cubic function to zero,

d

dt
xt = 3at2 + 2bt + c = 0,

and solving for the unknown using the quadratic equation,

t =
−b±√b2 − 3ac

3a
.

Because t = 0 represents present time, positive values of t represent future turning
points and are of more interest to a trader than negative values. If b2 − 3ac < 0,
then no vertices exist. Thus, the vertex indicator determines at what time a trend
could have reversed or at what time in the future a trend could reverse. Each plot
in Figure 2.5 geometrically illustrates the three indicators. Each plot in Figure 2.5
contains a cubic curve and its velocity and acceleration indications represented
as a parabola and straight line respectively. The y-intercepts of the parabola and
line, and the x-intercepts, if any at all, of the parabola are the current velocity,
acceleration, and vertex indications respectively.
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Figure 2.5: Vertex Indicator
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Chapter 3

Methodology and Results

This chapter explains how to further interpret indications from charts such as
Figure 2.4 in order to forecast short-term trends in share prices. A system of
rules which serves to determine the best times to enter and exit the market is also
established. It must be noted that the indicators described in chapter two are
intended to be used in conjuction with sound fundamental analysis and money
management.

Below are definitions of terms that are used in the following sections.

Slow EMA - for EMA’s of a daily share price vector, a slow EMA length ranges
from 50 to 200. For EMA’s of a weekly share price vector, a slow EMA length
ranges from 10 to 40. Slow EMA’s provide a long-term perspective on trending
in share price.

Fast EMA - for EMA’s of a daily share price vector, a fast EMA length ranges
from 5 to 49. For EMA’s of a weekly share price vector, a fast EMA length ranges
from 1 to 10. Fast EMA’s provide a short-term perspective on trending in share
price.

Slow Velocity(Acceleration) - a vector of current velocity(acceleration) generated
by applying the velocity(acceleration) indicator to a slow EMA. Also referred to
as long-term velocity(acceleration), or LTV(LTA).

Fast Velocity(Acceleration) - a vector of current velocity(acceleration) generated
by applying the velocity(acceleration) indicator to a fast EMA. Also referred to
as short-term velocity(acceleration), or STV(STA).

Average Velocity(Acceleration) - a fast EMA of slow or fast velocity(acceleration).
Applying an EMA to velocity and acceleration output is used to reduce noise in
STV and LTV.

17



3.1 Entering the Market

The axiom that most stock market participants base their trading decisions upon
is the common oberservation that a company’s share price will have experienced
positive performance at the end of its time as a publically traded company. The
positive performance axiom can be translated in terms of current velocity as de-
scribed in chapter two. If ~ν was a full life sequence of a share price’s current
velocity, then the mean of ~ν would almost always be positive. The positive per-
formance axiom and the notion that fundamentally healthy companies most often
should exhibit sustained positive slow velocity are two assumptions made when
deciding when to enter the market.

Fundamentally healthy share prices often exhibit patterns of movement that
can be objectively analyzed with indicators. The top chart in Figure 3.1 shows the
weekly closing share price and its two EMA’s of Valmont Industries Inc. (VMI)
from late May, 2005 to early May, 2006. During this time period, VMI enjoyed
a share price performance of more than 100%, mostly due to high fundamental
ratings.

Short and long-term velocity are first calculated using the two EMA’s. To
reduce noise in STV and LTV, average STV and average LTV are calculated with
an EMA of length 2. The values of the two EMA’s and the velocity calculations
are shown in their respective columns in Figure 3.2. Determining potential points
of entry is done using various shift operators. Rows of the column labeled s.o.#1
in Figure 3.2 display a 1 when both LTV> 0 and STV< 0. Rows of the column
labeled s.o.#2 display a 1 when both average STV< 0 and LTV> 0. When both
shift operators identify the same time, a potential entry point is declared. Twelve
potential entry points are displayed in the shaded rows of Figure 3.2 and in Figure
3.1.

Further analysis of potential entry points is done by observing the weekly
current accelertion computed with an adaptive EMA. The potential point of entry
examined in this section is the closing share price of $33.39 of the week of 27-Dec-
05. The adaptive EMA length is 10 and the n and b parameters as described in
Section 2.1 are 6 and 3 respectively.

Because current acceleration oscillates, it is assumed that the longer current
acceleration remains positive or negative, the more likely it is that the close of the
next week will yield a current acceleration indication of the opposite sign. The
length of time current acceleration remains positivie or negative can be analyzed
by evaluating average values of current acceleration over the past two months.
Below are the weekly averages of current acceleration for VMI at the close of the
week of 27-Dec-2005.
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Figure 3.1: VMI
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2 week average = −0.96
3 week average = −0.92
4 week average = −0.60
5 week average = −0.16
6 week average = −0.02
7 week average = −0.26
8 week average = −0.01

A geometric approach to analyzing the length of time current acceleration
remains positive or negative is illustrated in Figure 3.3. Figure 3.3 shows the
current acceleration of VMI from the close of the week of 7-Nov-05 to the close of
the week of 27-Dec-05, a timeframe of two months. If the line segments joining
consecutive indications in Figure 3.3 comprised a parameterized curve s(t) for
t ∈ [−7, 0], then clearly

∫ 0

−7
s(t) dt < 0.

In addition to the seven weekly averages of negative values, this observation in-
creases the likliehood that the close of the next week will yield a positive current
acceleration indication and thus a positive change in share price. Thus, a trader
can decide to enter the market at this point in time or wait for a more suitable
time within the next week.

A timeframe of daily share price is used to determine if an optimal day to buy
appears within the next trading week. By using similiar shift operators as before,
times of negative STV and postive LTV can be located. The top chart in Figure
3.4 displays the daily close of VMI share price and its two EMA’s from 27-Dec-05
to 13-Jan-06. Shown in the bottom chart of 3.4 are the corresponding velocity
indications. The length of the EMA used to generate the average STV is 5. The
first shift operator indicates when both LTV>0 and STV<0. The second shift
operator indicates when both LTV>0 and average STV<0. As before, when both
shift operators coincide, an entry point is declared.

The column labeled Vertex in Figure 3.4 shows the vertex of smaller magnitude
that is computed by applying the vertex indicator to the EMA of length 15. The
vertex for the close of 4-Jan-2006 and the preceding five all have a magnitude
of 1.1 or less. This observation indicates share price is not trending by a short-
term perspective, or trading flat, which is favorable since it is hoped to enter the
market before a trend develops. Within a month from 4-Jan-2005, VMI increases
approximately 17%.
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Figure 3.2: VMI shift operator
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Figure 3.3: VMI weekly accleration generated from adaptive EMA (L=10, n=6,
b=3)
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Figure 3.4: VMI daily shift operator
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3.2 Exiting the Market

Exiting the market is emphasized less than entry since fundamentally healthy
share prices should increase rather than decrease over the long-term. However,
in technical analysis, a situation can occur in which the share price has risen to
such a degree that an oscillating indicator has reached an upper bound. This is
generally interpreted as an indication that share price is becoming overvalued and
may experience a decline.

Comparing current velocity indications that are generated with an adaptive
and a non-adaptive EMA of equal length can help determine when share price is
overvalued. The top chart in Figure 3.5 shows the daily closing price of Chesa-
peake Utilities Corp. (CPK) from 8-August-2005 to 21-October-2006. The pa-
rameters for the adaptive EMA are n = 28 and b = 12 and the lengths of both
EMA’s are 25. Share price trends upward from 1-September-2005 to 7-October-
2005 and then three large consecutive decreases occur. The bottom chart in Figure
3.5 shows average STV that is generated by an EMA of length 5. As share price
is trending upward from 1-September-2005 to 7-October-2005, both accounts of
average STV are not trending upward. In fact, the average STV according to
the adaptive EMA has been trending downward and approaching zero since 1-
September-2005. In technical analysis, observations of this type are referred to as
divergences, which often indicate the end of trending in share price.

The table in Figure 3.5 displays the STV, STA, and vertex calculations gener-
ated from the two EMA’s. All STV and STA indications at the close of 6-October-
2005 are negative. Furthermore, both vertex indications are negative and nearly
zero which indicates the trend has reversed according to the adaptive and non-
adaptive EMA’s. Thus, a considerable time to exit the market is at the close of
6-October-2005.
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Figure 3.5: exit for CPK
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3.3 Forecasting and Error Analysis

Forecasting prices with a cubic polynomial of the form

xt = at3 + bt2 + ct + d

requires the polynomial to be expressed as a Maclaurin series of the third degree,

xt = x0 + [
d

dt
xt|t=0]t + [

d2

dt2
xt|t=0]

t2

2!
+ [

d3

dt3
xt|t=0]

t3

3!
.

The first three terms of the Maclaurin series comprise a parabolic approximation
in which both velocity and acceleration are accounted for, which simplifies to
d + ct + bt2. The last term of the series is regarded as the error term which
simplifies to at3. From Section 2.2, a is defined as a linear combination of the four
most recent data observations,

a =
1

6
x0 − 1

2
x−1 +

1

2
x−2 − 1

6
x−3.

If x0, x−1, and x−2 were expressed as xt−1 + et where ei ∼ N(µi, σi) then a can
be expressed as a function of the distance between consecutive data points,

a = 1
6
(x−3 + e1 + e2 + e3)− 1

2
(x−3 + e1 + e2) + 1

2
(x−3 + e1)− 1

6
x−3

= 1
6
e1 − 1

3
e2 + 1

6
e3.

Although et need not be normally distributed, clearly the magnitude of a is di-
rectly influenced by the magnitude of change between each xt. If ~x represented
an EMA of share price data, then the magnitude of change between each xt is
directly related to the α parameter of the EMA used because as α → 0, the dis-
tance between adjacent smoothed data observations approaches zero. Therefore,
the last term of the Maclaurin series can be expressed as an error function

E(t, α) = a(α)t3, 0 < α < 1

where a is the coefficient of the cubic term of the polynomial and a function of α.
Therefore, as α → 0, |E(t, α)| → 0.
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Conclusion

A trading system based on a piecewise cubic polynomial is restricted by its lim-
ited ability to extensively forecast share price levels. However with the various
indications(moving averages, velocity, acceleration, vertex), the present condition
of a share price and its degree of trending can be assessed. Any attempt to time
share price movement can be highly subjective, therefore the objective is only to
determine a likely outcome.

Testing the entry and exit techniques with sector analysis and in markets that
are more volatile than the U.S. stock market would help to further evaluate the
extent of applicability for this trading system. For example, in futures markets,
commodity price data can be modeled with a piecewise cubic function. However,
entry and exit strategies would be equally emphasized since a commodity price is
not expected to experience long term positive performance as a share price is. In
other words, a great decrease in commodity price is of more concern than a great
decrease in share price.
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