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Primary fatty acid amides in mammalian tissues: Isolation and analysis by 

HPTLC and SPE in conjunction with GC/MS 
 

Abstract of a Dissertation at Duquesne University 

Dissertation supervised by Professor Mitchell E. Johnson 
 

Primary fatty acid amides (PFAM’s) are a novel class of bio-active lipids present in 

mammals in trace level.  Selective isolation of PFAM’s from lipid extracts is crucial for 

obtaining them in pure and concentrated form for interference-free instrumental 

detection and analysis.  Synthesis of these commercially unavailable lipids is also 

important for method development and quantitative analysis by instrumental means.  In 

this study a wide variety of long chain saturated and unsaturated primary fatty acid 

amides were synthesized and characterized.  This list includes the positional and 

geometrical isomers of naturally abundant PFAM’s.  Two isotopically enriched PFAM’s 

were also synthesized which are important for establishing the fragmentation patterns of 

the amides by mass-spectral analysis as well as for use as internal standards in 

quantitative analysis.  The separation of saturated and some unsaturated amides was 

obtained using a non polar HP-5MS column.  A more polar column, BPX70, was 

employed for the separation of the geometric and positional isomers of the unsaturated 

amides. 

Two methods for the isolation of PFAM’s from lipid extracts were developed 

and validated.  First method is a high performance thin layer chromatography (HPTLC), 
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which was found to be efficient in quick profiling of different lipid classes present in a 

total lipid extract.  Any lipid class of choice can also be further analyzed by scraping it 

off the HPTLC plates.  The second method is a solid-phase extraction (SPE) for 

selectively extracting the amides in a single fraction by a specific elution solvent from a 

normal phase column.  This fraction can be dried and brought to the desired 

concentration for further instrumental analysis.  Lowest mass of amides to be loaded and 

recovered by SPE was also optimized.  Both HPTLC and SPE amide isolation methods 

were validated using the total lipids extracted from N18TG2 mouse neuroblastoma cell 

line.  The detection limits of the amides by gas chromatography/mass spectrometry 

(GC/MS) were found to be in the order of 5-30 pg.  PFAM’s isolated from rabbit brain 

and heart tissues by these methods were identified as palmitamide, stearamide and 

oleamide.  Trace amounts of linoleamide and eicosenoamide were also observed in brain 

tissues.  
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Chapter 1 

Review of lipids and fatty acid amide analysis 

 

1.1 Introduction 
 
Lipid analysis is one of the most investigated topics by bio-analytical/bio-chemists due 

to the diverse structures, nature and the activity of lipids in biological systems.  One of 

the lipid classes, fatty acid amides, is long known for their hormone-like activities.  

They attracted recent attention when anandamide was identified as an endogenous 

cannabinoid or endocannabinoid.  Anandamide is a twenty carbon fatty acid 

ethanolamine with four point of unsaturation (cis,cis,cis,cis-5,8,11,14 eicosatetraenoyl 

ethanolamine).  It was first identified to be produced in brain and to bind to the 

cannabinoid receptor (CB1).  It was also found to mimic all the activities of delta-9-

tetrahydrocannabinol (∆9 THC) [1].  It is necessary to point out here that ∆9 THC is the 

compound that is responsible for all the pharmacological activity of marijuana and is an 

exogenous cannabinoid [2, 3].  Cannabinoids are involved in so called retrograde or 

backward signaling that can change the regular neurotransmission.  It has also been 

found that three specific neurotransmitters glutamate, dopamine and acetylcholine that 

play key roles in neuronal activities, initiate the synthesis and release of 

endocannabinoids [see Ref. 4 for review].  Therefore this fatty acid amide class (N-acyl-

ethanolamides) faced intensive study over the last decade.   

The other groups of fatty acid amide, the primary fatty acid amides, have not 

been found to show any affinity for CB1 receptor but are catabolically related to the 



 2

cannabinoid receptor class fatty acid amides.  One such primary amide, oleamide, was 

extracted from the cerebrospinal fluid of sleep-deprived cats and hence was thought to 

be involved in neurobehavioral activities in brain.  Oleamide and other primary amides 

have therefore been also studied along with the endocannabinoids.  These extensive 

studies include their synthesis, biochemical studies, isolation from tissues and cells etc. 

and moreover, their characterization by instrumental means.   

The instruments that are most often used in lipid analyses includes nuclear 

magnetic resonance (NMR), high performance liquid chromatography (HPLC), liquid 

chromatography coupled with tandem mass spectrometry (LC/MS/MS), gas 

chromatography/mass spectrometry (GC/MS), matrix-assisted laser desorption 

ionization/time-of-flight (MALDI/TOF).  High performance thin layer 

chromatography/thin layer chromatography (HPTLC/TLC) and solid phase extraction 

(SPE) are often used for sample preparation.  In this chapter the analyses of fatty acid 

amides by instrumental means, including the techniques used in sample preparation will 

be reviewed.  The main target of this chapter is to recognize the work that has been 

done and to approach what could further be done in order to isolate and analyze the 

fatty acid amides free of interaction from other lipid classes.  Some basic information 

about lipids and lipid analyses will also be provided as introduction. 

1.2 Lipid definition 
 
The term lipid refers to the substances that are soluble in organic solvents and are 

insoluble in water.  This is rather a book definition that avoids the fact that many non-

lipid substances are also soluble in organic solvents and some lipids show more affinity 
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for water than organic solvents.  Lipids can be defined as the molecules that are 

synthesized by biological systems and can be extracted from the biological samples by 

dissolution into organic solvents.  The word ‘fat or oil’ previously used for lipids 

mainly refers to one class of lipid (triacylglycerol), which is the major stored form of 

energy in animals and plant seeds [5, 6].  Classification of lipids is described in detail in 

the section below. 

1.3 Lipid classification 
 
These important biochemical molecules range from low molecular weight fatty acids to 

high molecular weight complex phospho- and glyco-lipids.  The two main branches of 

lipid are storage lipids (which do not contain any polar head groups) and membrane 

lipids (which contain polar head groups attached to the lipid backbone).  Storage lipids 

are mainly relatively non-polar triacylglycerols containing glycerol backbones esterified 

with saturated or unsaturated fatty acids.  Waxes are another kind of storage lipids, 

which are mainly the esters of long chain fatty acid with long chain alcohols.  They also 

have water repellent properties and firm consistency.  Membrane lipids are called 

structural lipids because they form the structure of the cell membrane.  Membrane lipids 

can be phospholipids, glycolipids or sterols.  Based on the backbone, phospholipids are 

classified as glycerophospholipids (containing glycerol backbone) or sphingolipids 

(containing sphingosine backbone).  All the phospholipids have a polar head group 

attached to the glycerol or the sphingosine backbones through a phosphodiester linkage, 

whereas all the glycolipids have a simple sugar or complex oligosaccharide attached to 

the sphingoshine backbone.  Some membrane lipids have fatty acids attached through 



 4

either ether or vinyl ether bonds at the other end of the glycero or phosphoglycero 

backbone.  These are called ether lipids or plasmalogens.  Sterols, another class of 

membrane lipids, contain a steroid nucleus of four fused rings.  There are other lipids 

that are present in much smaller amount and are synthesized as necessary.  These are 

the metabolites and the messenger lipids such as eicosanoids, steroids, free fatty acids 

and the fatty acid amides.  Some of the phospholipids and plasmalogens also serve as 

metabolites and second messengers.  These types of lipids play crucial roles in 

numerous biological activities.  Fatty acids and sterols serve as the precursors for these 

biologically important classes of lipids [7, 8]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 1.1: Relational diagram of lipid classes. 
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Scheme 1.1 gives basic idea about the lipid classes possible even though there 

are many in between classes discussion of which is beyond the limit of this review. 

1.4 Basic structure and biological importance of each lipid class 

1.4.1 Storage lipids  

1.4.1.1 Triacylglycerols 
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3
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 R1, R2 and R3 represent saturated or unsaturated fatty acids 

 

In vertebrates, energy consumption occurs continuously.  Triacylglycerols 

(TAG) serve as the stored form of energy in specialized cells called adipocytes.  These 

lipids serve this purpose best because they occupy less volume per calorie of stored 

chemical energy than carbohydrate and protein.  Adipocytes contain a large amount of 

triacylglycerols (more than 80% of the mass) that almost fills the cell.  12-14% of 

normal body weight in male and more than 25% of that in female is adipose tissue or 

fat.  In most eukaryotic cells, TAGs float as oily droplets in the aqueous cytosol, serving 

as metabolic fuel.  TAGs are also stored as oils in the seeds of many plants, proving 

energy as needed.  When fuel is required at a particular body site, the enzyme TAG 

lipase expressed in adipocytes and seeds catalyzes the hydrolysis of TAG, releasing free 

fatty acids and sending them to that site to be used as fuel through β-oxidation.  

Therefore, these fat cells maintain a stable supply of energy by synthesizing TAG from 



 6

carbohydrates to be stored and again hydrolyzing them to be used as fuels as necessary 

[8, 9].  Mono or diacylglycerols (MAG or DAG) are formed when any two or any one 

of the OH groups on the glycerol backbone respectively remains un-esterified.  MAG 

and DAG have profound biological activities as metabolites and messengers. 

1.4.1.2 Waxes 
 

                                
OC R 2

O

R 1  

   

      Fatty acid      long chain alcohol 

 

Biological waxes are the esters of long-chain fatty acid with long chain alcohols.  

The chain length varies from 14 to 36 carbons.  These waxes are secreted by different 

insects, birds and animals and have significant importance for them as well as to 

humans.  The water-repellent property of waxes helps not only to keep the body 

waterproof but also to keep water from evaporating.  It also protects the body against 

outside attack.  Due to its firm consistence property it is extracted from animal and 

plants, and used in manufacturing industries for various purposes such as in the 

manufacture of lotions, ointments and polishes [8]. 

1.4.2 Membrane lipids 

1.4.2.1 Phospholipids and glycolipids 
 
Glycerophospholipids are similar in structure as the TAGs except for an H or a polar 

head group is attached to the sn-3 position of the glycerol backbone via a 
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phosphodiester linkage.  In sphingolipids, fatty acids are joined by amide linkages 

rather than ester linkages to the sphingoshine backbone.  Phosphosphingolipids have a 

phosphate group attached between the sphingosine backbone and the polar head group.   
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                  Sphingolipids 

  X = H or a polar head group 

 

Glycolipids are sphingolipids that lack the phosphate group but have a simple 

sugar or a complex oligosaccharide attached as the head group.  Membrane lipids 

constitute the 5-10% of the dry mass of most cells and play important roles in the cell 

structure.  They form an impermeable barrier that surrounds cells and cellular 

compartments.  They are mainly amphipathic with a hydrophobic backbone and a 

hydrophilic polar head group.  Sphingolipids play a significant role in cell biology and 
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cellular functions ranging from intercellular signaling as a second messenger in cellular 

apoptosis to membrane structural functions [6]. 

1.4.2.2 Plasmalogens 
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Plasmalogens are another kind of phospholipids that are also called vinyl-ether lipids 

and can be non-polar or polar in nature.  Non-polar plasmalogens are glycerol esters of two 

fatty acids with a vinyl ether group in position 1; whereas polar plasmalogens are phospholipids 

consisting of polar head group (X) in position 3, fatty acid ester in position 2 and vinyl ether 

bond in position1.  Usually the highest proportion of the plasmalogen form is in the 

phosphatidylethanolamine class with little or no other phospholipids.  In phosphatidylcholine, a 

larger proportion is in the alkyl ether form rather than vinyl ether form, except in heart lipids, 

where it is reversed.  Based on the distribution and properties of plasmalogens in various cell 

types and changes that occur in plasmalogen metabolism in certain mutant cells, it is suspected 

that plasmalogens may have a number of other functions in addition to being structural 

components of cell membranes.  They may serve as a store of poly-unsaturated fatty acids 

(PUFA) that can be released by specific stimulant molecules, may act as intracellular signaling 
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compounds, may have a role as antioxidants, and are implicated in aging and various 

degenerative diseases [10].   

1.4.2.3 Sterols 

OH
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CH3
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CH3

CH3

 

    Cholesterol 

 

Sterols are another class of membrane lipids that constitute the cell membrane.  

They also serve as precursors for various biologically active hormones and other 

signaling molecules.  The characteristic sterol structure consists of one five carbon and 

three six carbon fused rings.  

1.4.3 Metabolites and messenger lipids 

1.4.3.1 Eicosanoids 
 
Eicosanoids are derivatives of fatty acid and they act on cells near the point of 

synthesis.  They are all derived from 5,8,11,14-eicosatetraenoic acid (20:45,8,11,14) and 

therefore are called eicosanoids.  The eicosanoids are known to be involved in a variety 

of activities in cells.  Some of the examples are stimulation of muscle contraction, 
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regulation of blood flow and wake-sleep cycle, induction of inflammation and pain 

(prostaglandins), formation of blood clots as well as the reduction of blood flow at the 

site of clot (thromboxanes), induction of muscle contractions in lungs causing asthmatic 

attack (leukotrienes) [8]. 

1.4.3.2 Steroids 
 
Steroids are derivatives of sterols and they travel through blood stream from the point of 

synthesis to act on different target tissues.  They have very high affinity for their 

receptors and therefore are potent signaling hormones.  They can act against 

eicosanoids by sending the signal for the reduction of their synthesis thereby acting as 

anti inflammatory and anti-asthmatic medicine.  

1.4.3.3 Free fatty acids 
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Fatty acids are the structural components of almost all the lipids and serve as 

body energy through β-oxidation.  They also act as second messengers.  

1.4.3.4 Fatty acid amides 
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Fatty acid amides belong to an important bio-regulatory group of lipids that act 

as messenger lipids.  N-acylethanolamines and primary fatty acid amides are the two 

most well recognized classes of this group.  They are mainly the derivatives of long 

chain saturated and unsaturated fatty acids.  Primary fatty acid amides (PFAM’s) can be 

formed via amidation of the corresponding acid in vitro and from N-acylglycine in vivo 

[11].  N-acylethanolamines can be synthesized by the hydrolysis of N-acyl 

phosphatidylethanolamine (N-acyl PE) in vivo [12]. 

1.4.3.5 N-acylglycines 
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           N-acylglycine 

N-acylglycines (NAG) are metabolite lipids that are recently shown to be 

substrates for PAM (peptidylglycine α-amidating monooxygenase) in PFAM 

biosynthesis [11, also see Scheme 1.2].  Short chain N-acyglycines are produced by the 

action of acyl-CoA:glycine N-acyltranferase (ACGNAT; found in liver and kidney) on 

acyl-CoA thioesters and glycines.  Because acyl-CoA thioesters with acyl chains 

containing more that 10 carbon atoms has very low V/K values, it is very unlikely that 

long chain NAG synthesis is catalyzed by ACGNAT.  But the identification of long 

chain NAGs in mammals and insects indicate the presence of an enzyme that catalyzes 

their synthesis.  Very recently Merkler et al. [13] have found that N18TG2 cells grown in 

14C oleic acid under the conditions known to stimulate PAM expression increases 
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oleamide production and in presence of a PAM inhibitor produces 14C N-oleoylglycine 

(14C NOG).  Their findings therefore strongly support NAG as a substrate for PAM in 

primary fatty acid amide biosynthesis in vivo. 

1.5 Biological significance of fatty acid amides (ethanolamines and primary 

amides) 
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The biological significance of fatty acid amides have been reviewed in detail in 

references 4 and 14.  Kuehl et al. [15] has first shown that N-palmitoylethanolamine 

extracted from soybean, peanut oil and egg yolk is a naturally occurring anti-

inflammatory agent.  Palmitoylethanolamine was also shown by Ganley et al. [16, 17] 

to have anti- inflammatory and anti- anaphylactic properties and was discovered by 

Bachur et al. [18] as endogenous products of brain, liver and skeletal muscles of fasted 
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rats and guinea pigs, brain containing the highest amount (they also found the presence 

of stearoylethanolamine 3-10% of the total palmitoylethanolamine).  In 1992, Raphael 

Mechoulam and his coworkers [1] discovered another endogenous fatty acid amide N-

arachidonyl ethanolmaine (anandamide) in porcine brain.  It was found to bind 

cannabinoid receptor (CB1), and mimic all the activities of ∆9 THC.  As described 

earlier, ∆9 THC was previously found to bind to rat CB1 receptor [2].  

Receptors are small proteins found in almost all cell membranes, including 

neurons.  Specific molecules bind to specific receptors resulting in the changes in cells.  

Cannabinoid receptors are the specific brain membrane receptors that are coupled to the 

G-proteins.  The compounds that have the affinity for these receptors are called 

cannabinoids or cannabinoid receptor-active.  Those cannabinoids which are 

synthesized endogenously are termed endogenous cannabinoids or endocannabinoids.  

The two types of cannabinoid receptors discovered are CB1 found in brain and spinal 

cord and CB2 found in peripheral tissue.  CB1 is one of the most abundant G-protein 

coupled receptors in brain.  It is found in high densities in cerebral cortex, 

hippocampus, hypothalamus, cerebellum, basal ganglia, brainstem, spinal cord, and 

amygdala [19-21].  It was found by Mackie, Freund, and coworkers [22, 23] that 

cannabinoid receptors occurred only in very specific position of certain neurons that 

release the inhibitory neurotransmitter GABA (gamma-aminobutyric acid).  The reason 

it was densely packed on the GABA releasing neurons is that the CB1 receptors can be 

activated by retrograde (backward) signaling and therefore can reduce or terminate the 

release of GABA, changing the regular neurotransmission.  Even though most of the 

physiological roles of the cannabinoid (CB1) receptors and hence those of the 
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cannabinoids are still not known, their presence in the parts of the brain that are 

responsible for psychoactive power (cerebral cortex), memory impairment 

(hippocampus), pain reduction and vomiting reflex (brain stem and spinal cord), 

appetite (hypothalamus), emotional responses (amygdale), etc. associate them with 

those kinds of activities.  CB2 is known to be involved in the immune system.  Besides 

anandamide, four other ethanolamines  γ-linolenoylethanolamine, docosatetraenoyl-

ethanolamine, docosahexaenoylethanolamine and eicosatrienoylethanolamine were also 

found to be endocannabinoids [24-27].  2-arachidonylglycerol (2-AG) has been recently 

discovered as an endocannabinoid, which binds to both CB1 and CB2 [28, 29].  It was 

found that three specific neurotransmitters glutamate, dopamine and acetylcholine can 

induce the synthesis and release of endocannabinoids in specific regions of brain [4].  

Because the activation of the CB1 receptors virtually inhibits the secretion of these 

neurotransmitters neuronal functions can very well be regulated by fatty acid 

ethanolamines [30]. 

Between the late 1950’s and early 1970’s palmitoylethanolamine was identified 

as an inhibitory agent of inflammation, traumatic shock, and toxic effects of anti-cancer 

drugs and ethanol [14, 31-39].  Long chain N-acylethanolamines were found to affect 

heart and liver mitochondrial functional parameters.  In heart mitochondria they can 

inhibit the release of Ca+2, which are usually accumulated by the action of some Ca+2 

releasing agents.  This accumulation of Ca+2 inside the mitochondria occurs via 

induction of increased permeability of the inner mitochondrial membrane by these 

releasing agents [40].  After anandamide was identified as a brain natural product that 

mimics the activities of marijuana, a number of other activities of this fatty acid amide 
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were discovered.  Stein et al. [41] found that anandamide injection causes rapid increase 

of bradycardia by its direct action on the blood vessels and subsequent lowering of 

blood pressure by its inhibition of the secretion of noradrenaline by nerves in the hearts 

and blood vessels [42-43].  Very recently this so called antinociceptive and possible 

neuroprotective agent has also been found to have affinity for other targets especially 

for vanilloid (TRPV1) receptors [reviewed in Ref. 44].  The author pointed that the 

efficacy of anandamide as a TRPV1 agonist is influenced by several factors such as 

receptor reserve, phosphorylation, metabolism and uptake, CB1 receptor activation, 

voltage, temperature, pH and bovine serum albumin.  The endocannabinoid system may 

play a role in the modulation of TRPV1 receptor activation, which might have potential 

implications in the treatment of inflammatory, respiratory and cardiovascular disorders.  

Therefore, the diverse effect of anandamide in bio-regulation is still not completely 

understood. 

Biosynthesis of ethanolamines was investigated long before their affinity for CB 

receptor was discovered.  Their biosynthesis is catalyzed by an enzyme transacylase 

that synthesizes N-acylphosphatidylethanolamine (NAPE) from phosphatidylethanol-

amines (PE) [45] and by the action of a second phospholipase D type enzyme 

(phosphodiesterase) that hydrolyzes NAPE to N-acylethnolamine (NAE) [12].  The 

liver, brain, and kidney mitochondria, microsomes and cytosols were found to be the 

main points of their synthesis even though the synthesis of anandamide is most active in 

brain cytosol.  The enzyme transacylase was first identified by the abnormal 

accumulation of NAPE and hence NAE in damaged dog-heart mitochondria [46-50] 

and phosphodiesterase was first characterized in rat heart membrane and was later 
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found to be present in almost all rat tissues examined with higher amounts present in 

young rat brains [reviewed in ref 51].  Schmid and co-workers [50, 52] while studying 

these endogenous cannabinoids first discovered that these compounds are hydrolyzed 

into free fatty acids and ethanolamines by a specific enzyme.  The enzyme that 

hydrolyzes anandamide to arachidonic acid was named anandamide amidohydrolase 

and was characterized by a number of scientists.  This membrane bound enzyme, now 

called fatty acid amido hydrolase (FAAH), was also found to catalyze the hydrolysis of 

a series of N-acylethanolamines with similar catalytic activities [53-56]. 

While the functions and metabolic pathways of NAEs are well established [51, 

57-60] very little is known about the biosynthesis and biodegradation pathways of 

PFAM’s.  They were first identified in human luteal phase plasma [61] and came to 

major attention when oleamide was isolated from the cerebrospinal fluid of sleep-

deprived cats.  In 1995 Cravatt et al. [62] separated oleamide from the cerebrospinal 

fluid of sleep deprived cats and characterized it as a sleep-inducing lipid.  Even though 

no evidence has been found so far that oleamide is also an endocannabinoid, it was 

found to be catabolically related to the endocannabinoids [reviewed in Ref. 51].  

Oleamide is also known to modulate serotonin neurotransmissions [63], increase 

affinity of GABA for its receptors [64] and inhibit lymphocyte proliferation [65], to 

prevent gap junction communication in osteoblastic and glial cells [66-68], to increase 

food intake in rats upon injection [69], to inhibit synovial fluid phospholipase A2, [70], 

to possess seizure limiting properties in mice [71, 72], as well as to modulate memory 

in rat [73].  Of the other amides, erucamide may simulate angiogenesis [74] and 

regulate fluid imbalance [75]; arachidonamide inhibits human synovial phospholipase 
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A2 [70] and inhibits leukotriene biosynthesis [76]; linoleamide increases Ca2+ flux [77] 

and inhibits erg current in pituitary cells [78].  Even though the actions of most of the 

other amides are yet not known, it is almost certain that fatty acid amides have 

interesting biological activity in mammals.  
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Scheme1.2: Biosynthetic pathway of PFAM’s proposed by Merkler et al. [11]. 



 18

In search for answers to the biosynthesis and degradation pathways of PFAM’s, 

a number of pathways have been proposed.  The most recognized pathway involves the 

production of N-acylglycines (NAG) from acyl-CoA and glycine by the enzyme called 

acyl-CoA: glycine N-acyltransferase followed by the PAM (peptidylglycine α-

amidating monooxygenase) catalyzed reduction of NAG to primary fatty acid amides 

[11, also see Scheme1.2].  The amides are then hydrolyzed by the action of FAAH (able 

to hydrolyze anandamide and a wide variety of fatty acid amides) [reviewed in Ref. 79], 

which is probably why the concentration of amides found in mammals is very low [80-

82].  PAM has also been known to catalyze the oxidation of many neural and endocrine 

peptide hormones to amides [83, 84].  One model cell line that is used to study oleamide 

biosynthesis is N18TG2 mouse neuroblastoma cell because of its ability to express PAM.  

These cells not only express PAM but also show dramatic increase in PAM expression 

upon cellular differentiation [85].  However, questions were raised about the above 

pathway when 14C oleamide was found to be produced by N18TG2 cells grown in 14C 

oleic acid [86].  The authors pointed that because the levels of oleamide were not 

significantly influenced by stimulation with ionomycin, but were slightly increased by 

incubation with FAAH inhibitor, N18TG2 cell membranes may contain an enzymatic 

activity catalyzing the synthesis of oleamide from oleic acid and ammonia.  They 

argued that these data suggest that a reverse FAAH-like enzyme may be responsible for 

the formation of oleamide in cell-free preparations but not in whole cells.  Very recently 

Merkler et al. [13] have found that N18TG2 cells grown in 14C oleic acid under the 

conditions known to stimulate PAM expression increases oleamide production and 

under the conditions known to inhibit PAM activity produces 14C N-oleoylglycine (14C 
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NOG).  Their findings that oleamide can also be generated from the cells grown in 

NOG strongly support NOG as an intermediate and PAM as a catalyst in oleamide 

biosynthesis in vivo. 

 N-acylethanolamine (NAE) and its biosynthetic precursor N-acyl 

phosphatidylethanolamine (NAPE) can be found in almost all vertebrate tissues, cells, 

body fluids, invertebrates, and plants [87-91].  It has been found that both NAE and 

NAPE can accumulate in injured areas [92-97], which suggests that cellular levels of 

both NAE and NAPE are tightly regulated under physiological conditions.  They tend to 

accumulate highly in response to stress, cellular and tissue degeneration and membrane 

degradation.  The types of NAEs that are observed in these cases are mainly the 

saturated and monounsaturated NAE, suggesting these amides have profound action in 

preventing tissue damage and stabilizing membranes [51].  The inhibitory activity of 

NOE in lipid peroxidation in rat heart mitochondria [98, 99] and the inhibitory activity 

of NPE (N-palmitoylethanolamine) in the glutamate induced excitotoxic death of the 

cerebellar granule neurons suggest that these cannabinoid receptor inactive amides may 

prevent or delay the breakdown of the cannabinoids by competing for their degradation 

by the hydrolyzing enzyme FAAH [100, 101].  It was also claimed that the NAEs may 

also inhibit or compete for the anandamide transporter by increasing the availability of 

the endocannabinoid for interaction with the CB1 receptors [102].  These theories might 

also be true for the primary fatty acid amides.  Because oleamide was detected in 

N18TG2 mouse neuroblastoma cells about 80 times higher than the reported anandamide 

level in the same cells [86], it is possible that oleamide may be a biological enhancer of 

anandamide activity.  Leggett et al. [103] have very recently presented data indicating 
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oleamide as an agonist for CB1 receptor in vitro but in vivo data reported so far is 

conflicting with this finding [104] and therefore is inconclusive. 

 The synthesis of both of these cannabinoid receptor active and inactive 

bioregulators in vitro, the research on their biochemical and pharmacological properties, 

and their quantification in numerous biological samples has led us to the understanding 

of their various activities so far.  In this paper our main goal is to review the analysis of 

fatty acid amides by instrumental means with special attention paid to the sample 

preparation.  

1.6 Instrumental analysis 
 
The techniques used over the years for lipid analysis are mainly gas chromatography 

(GC), liquid chromatography (LC) and capillary electrophoresis (CE) coupled with 

various types of detectors.  Ultraviolet-visible absorption (UV-vis), fluorescence (F), 

diode-array UV-vis, flame ionization (FID), laser induced fluorescence (LIF) detection, 

and electron ionization (EI) or chemical ionization (CI) by a mass spectrometer (MS) 

are the common detection techniques of which the latter is the most widely used for 

many years.  Due to the nonvolatile nature of lipids derivatization is usually required in 

order to make them volatile and thermally stable to be analyzed by gas chromatography.  

The other advantages of derivatization are better resolution, improved detector response 

and peak shape.  This situation led researchers to find numerous techniques for lipid 

derivatizations, most of which works fine, but the formation of artifacts makes the 

techniques complicated for identifying the target itself.  Derivatization in LC is also 

often required in order to improve (i) detectability, (ii) resolution and selectivity of 
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analytes, (iii) analyte identity in a complex matrix, (iv) chromatographic behavior as 

well as (v) stability of analytes under study.  One example is that fluorescence tagging 

is required for improving the detectability of the PFAM’s by LC/UV.  Even though 

unlike GC the majority of the compounds can be analyzed by LC without prior 

derivatization, one advantage of GC over LC is its higher peak capacity due to the 

availability of the longer column length.  In recent years the newly developed ionization 

techniques such as electrospray ionization (ESI) and matrix-assisted laser desorption 

ionization (MALDI) have been the choice of lipid chemists due to their ability to form 

directly gas phase molecular ions for simple as well as complex lipids.  CE is another 

technique that has not been widely applied to the lipid analyses but provides great hope 

for amide analysis.  

1.6.1 Liquid chromatography-mass spectrometry (LC/ESI/APCI/MALDI-MS) 
 
High performance liquid chromatography (HPLC) is a separation technique that has 

advantages over gas chromatography due to its ability to analyze nonvolatile and 

thermally fragile molecules.  LC can be applied for the separation of a wide range of 

chemically and biologically significant molecules such as small metabolites to large 

proteins.  The basic HPLC system consists of mobile phase reservoirs, a pump for 

solvent delivery, an injector, a column and detectors of choice.  

The most used HPLC separation techniques are normal-phase (NP) and 

reversed-phase (RP) HPLC.  The adsorption in NP occurs by the interaction of polar 

functional groups of the solute with discrete sites on the stationary phases.  Depending 

on the strength of these polar interactions, NP chromatography selectively separates 
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solutes with different number of electronegative atoms or with different functional 

group.  This type of chromatography is therefore suited for class separation.  Of the two 

types of LC stationary phases, silica is used more due to its high sample capacity and 

less catalytic activity than alumina.  Because bare silica can strongly retain some of the 

very polar compounds, bonded silica stationary phases (diol, cyanopropyl or amino 

propyl bonded) are used in their separation.  Using these less polar phases it is easier to 

clean the column and the presence of water in mobile phases creates less of a problem 

in the retention time reproducibility.  The drawback of NP chromatography is that 

separation selectivity cannot be achieved by varying the particle size or shape.  

Selectivity in this case depends primarily on varying the mobile phases.  Reversed-

phase chromatography utilizes non polar stationary phase with polar mobile phases, 

which is reverse of the case of NP chromatography.  In RP, retention of solutes occurs 

through nonspecific hydrophobic interactions with the stationary phases.  Therefore the 

most polar solutes in this case have the least retention time.  The advantage of RP over 

NP is that the individual compounds in a class can be separated in this chromatography.  

The stationary phase in RP can be bonded silica or different polymeric phases, although 

bonded silica being the most widely used.  Variation in retention and selectivity can be 

achieved somewhat by using different RP columns, but varying the mobile phase 

composition provides the greatest selection in separation as in the case of NP [105].  

The types of detectors used in conjunction with LC are refractive index, UV-vis, 

fluorescence, diode-array UV-vis and mass spectrometer (MS).  All of them provide 

spectral data in the form of signal as a function of time whereas the latter provides 

signal as a function of mass to charge ratio (m/z) as well.  The most used LC/MS 
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ionization involves the ionization of the analyte molecules at atmospheric pressure and 

the common sources of ionization are electrospray ionization (ESI), atmospheric 

pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI).  

In ESI the analyte in appropriate solution is sprayed into a chamber in the presence of a 

strong electrostatic force and heated dry N2 gas at atmospheric pressure and therefore 

dissociated into gas phase ions.  These gas phase ions are attracted through a dielectric 

capillary entrance and enter into the mass analyzer.  In APCI, the sample in appropriate 

solvent is sprayed through a heated vaporizer at atmospheric pressure resulting in the 

formation of gas-phase solvent molecules, which in tern are then ionized by electrons 

discharged from a corona needle.  The charges on the solvent molecules are then 

transferred to the analyte molecules through chemical reactions and the analyte ions 

thus enter into the mass analyzer through the dielectric capillary entrance.  In the 

relatively new technique APPI, the sample in appropriate solution is converted into gas 

phase molecules, which are then ionized by photons of narrow range ionization energies 

generated from a discharge lamp.  The advantage of APPI is that the carefully chosen 

ranges of photon energies allow the formation of as many analyte ions as possible 

minimizing the ionization of the solvent molecules.  The ions formed then enter in the 

mass analyzer the same way as ESI and APCI [106].  The other most popular ionization 

technique that creates direct gas phase molecular ions is the matrix-assisted laser 

desorption ionization (MALDI).  MALDI was first introduced by Tanaka et al. [107] 

for which, he was awarded the 2002 Nobel Prize in chemistry.  In MALDI, the analyte 

is co-crystallized with a matrix (usually 1:1000 molar ratio of analyte to matrix), which 

absorbs in the laser region (337 nm for a N2 laser, for example).  The matrix is ionized 
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upon bombardment of the mixture with short duration pulses of UV light from a 

nitrogen laser.  The analyte is ionized by energy transfer from the matrix to the analyte 

rather than by direct laser ionization.  The ions produced then are guided to the mass 

analyzer by applying a high potential electric field.  

The most common types of mass analyzers used are ion trap, quadrupole, time-

of-flight (TOF) and fourier transform-ion/cyclotron-resonance (FT/ICR or FT/MS).  In 

ion trap mass analyzer the ions entering into the ion trap chamber are trapped by 

electromagnetic fields and selectively ejected by another field.  Ion trap has an 

advantage of performing multiple stages of mass spectrometry without additional mass 

analyzers.  The simplest and the least expensive mass analyzer is the quadrupole mass 

analyzer, which consists of four parallel rods arranged in squares.  When the analytes 

enter the quadrupole, the electromagnetic fields generated by applying voltages to these 

rods detects which mass-to-charge ions can pass through the filter at a given time.  TOF 

mass analyzer consists of a flight tube through which the entering ions are allowed to 

accelerate by the application of a uniform electromagnetic force.  Because the lighter 

ions travel faster, the mass-to-charge ratios of the ions are determined by the time 

required by the ions to reach the top of the flight tube and reflect back to the detector.  

The most expensive mass analyzer, FT/MS, operates in ion trapping mechanism where 

the ions entering the analyzer are trapped in circular orbits by powerful electrical and 

magnetic fields.  The ions excited by a radio-frequency (RF) electrical field generate a 

time dependent current, which is converted to orbital frequencies corresponding to the 

mass-to-charge ratios of the ions by fourier transform.  Even though the relatively soft 

ionization techniques discussed above are able to form gas phase molecular ions and are 
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more suitable for nonvolatile lipid analysis then the previously used techniques such as 

EI or CI, they are only capable of generating few fragment ions which are not enough to 

achieve structural information.  The most powerful analytical tool developed in recent 

years is the collision-induced decomposition (CID) of the molecular ions, which can 

provide molecular weight information as well as create more fragmentation, allowing 

the elucidation of structural details [106].  

Liquid chromatography has been widely used over the years for the analysis of 

lipids due to its ability to handle nonvolatile substances, which is a crucial factor in lipid 

chemistry.  The native structures of complex phospholipids can be precisely obtained 

using MALDI and ESI which was impossible with electron impact MS.  On-line HPLC 

and tandem MS with its capability to separate and identify complex lipids occurring as a 

mixture in natural products and biological samples is a significant analytical tool for 

lipidomics.  A number of authors have reviewed lipid analysis over the years.  These 

reviews include but are not limited to those by Kim et al. [108], Careri et al. [109], 

Murphy et al. [110], Volin et al. [111], Byrdwell [112, 113], Schiller et al. [114], and 

Griffiths [115].  Our discussion will be in the light of these reviews as well as recent 

papers, with special attention paid to the fatty acid amides. 

1.6.1.1 Liquid chromatography (LC) of lipids 
 
In lipid analysis high-performance liquid chromatography (HPLC) has become a great 

importance not only for separation of individual lipid classes but also for the sample 

preparation.  Usually after the Folch-pi type of lipid extraction from any tissue/cells, 

HPLC is employed for further extraction into individual lipid classes.  Separation of 
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each lipid within the classes can also be achieved before mass-spectral analysis.  Both 

the normal phase (NP) and reverse phase (RP) HPLC can be used for the separation of 

lipids.  Phospholipids, for example, are the mostly studied lipid classes by LC.  In 

normal phase HPLC (silica) phospholipids are separated by the polarity of head group, 

i.e., the neutral phospholipid classes elute first and phosphocholine-phospholipids elutes 

later.  Therefore NP is mostly for the separation of lipids by individual classes.  

Whereas RP can be used to separate individual components within classes provided that 

the separation of each class was achieved by NP prior to RP.  The reason behind that is, 

in RP, elution is largely depended on the fatty acyl chain rather than on the polar head 

group resulting in the co-elution of molecules within different classes.  For simplicity 

NP is employed for their separation by classes followed by MS for further identification 

of each species.  One disadvantage of using silica-based column though is the issue with 

the reproducibility of the retention time if water is present in the solvent system, which 

can change the affinity of phospholipids for silica.  The typical NP mobile phases are 

hexane/alcohol mixtures whereas typical RP mobile phases are acetonitrile/alcohol 

mixtures modified depending on the lipids to be separated [reviewed in Ref 116].  For 

the separation of fatty acids RP is most widely used.  Because of the absorptivity of the 

carboxyl group at low UV region, fluorescent tagging is often required to form 

derivatives, which fluoresces in the UV region for peak monitoring.  Another example 

is the analysis of eicosanoid which requires concentration in order to increase sensitivity 

for RPLC analysis.  A limitation in their MS analysis is that some isomers produce 

identical spectra, therefore it is necessary to chromatographically separate all the 
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isomers before hand.  Separation of PFB esters of eicosaniods on a NP column is also 

useful before MS study [for review see Ref. 117]. 

1.6.1.2 ESI/APCI/MS 

1.6.1.2.1 ESI/APCI/MS of storage lipids  
 
The identification as well as the determination of the acyl position is a crucial factor for 

the analysis of the lipids.  Even though triacylglycerols (TAG) are the most volatile of 

the complex lipids, derivatization is required for their analysis by GC/MS.  Separation 

and identification is somewhat limited due to the present of numerous different TAG 

species containing different fatty acyl chain along the sn-1, 2 and 3 position of the 

glycerol backbone.  The advantage of ESI or APCI to form direct gas phase ions has 

made the analysis of intact TAG species easier.  ESI yields [M+Na]+, [M+NH4]+, 

[M+K]+ ions for the monoacylglycerols (MAG) diacylglycerols (DAG) or the 

triacylglycerols [118, 119].  The alkali adduct ion formation is usually facilitated by the 

addition of those corresponding ions to the electrospray buffers.  One problem in these 

cases appears to be the relation of the absolute abundance of these ions to the total 

number of double bonds in the acyl chains of these lipid species.  The lipid containing 

saturated acyl chain results in poor yields of the adduct ion, whereas the one containing 

unsaturated acyl chain result in higher yields.  Further CID of these adduct ions provide 

information about the location of the acyl group as well as the location of the double 

bonds.  For example, Cheng et al. [120] revealed the complete structure of the TAG by 

the high energy CID studies of the NH4 and the Na adduct ions.  APCI of TAG also 

results in the formation of [M+H]+ ions but poor yield of these ions of the TAG species 



 28

with saturated acyl chain remains to be the problem [119].  Silver ion HPLC along with 

APCI detection was reported for the separation and detection of numerous TAG species 

in a number of different oil samples [121]. 

1.6.1.2.2 ESI/APCI/MS for phospholipids  
 
Analysis of glycerophospholipids is somewhat more challenging if the identification of 

the position of the two acyl chains is required.  Even though field desorption-MS was 

first used [122] to analyze glycerophospholipids, fast atomic bombardment (FAB)-MS 

was most widely used due to the useful information that could be found from the FAB 

generated molecular ions [123-131].  The disadvantage of the FAB was the 

considerable variation in the ion yields for the different classes of the phospholipids, 

which seemed to be taken care of by the use of ESI-MS [132-135].  In these studies 

[M+H]+ and [M+ alkali metal]+ ions were reported to be the abundant ions.  These 

parent ions were further fragmented by collision induced decomposition (CID) yielding 

significant information about the polar head group as well as the diglyceride ions 

resulting from the neutral loss of the head groups. [M-H]- ions were also yielded by 

glycerophospholipids and were successfully used in the analysis of these species in 

biological samples [136-137].  Analysis of glycerophospholipids as their [M + acetate]+ 

ions is also possible by using acetate buffers for ESI.  Additional ion found to be 

abundant was [M-15]-, which resulted from the CID of the [M + acetate]+ ions during 

tandem quadrupole MS [138].  The formation of carboxylate ions from 

glycerophospholipids by CID in the negative ion ESI mode offers identification of the 

acyl chains esterified in the sn-1and sn-2 position even though the sn-1 carboxylate ions 
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predominate [139].  Collisional activation of the negative molecular ions [M-H]- can 

also yield ions corresponding to the loss of polar head groups [140]. 

The sphingolipids also have a polar head group, except ceramides, which lack 

the polar head group.  This group also forms abundant [M+H]+ ions using both ESI and 

APCI [141, 142].  The CID of this molecular ion yields ions corresponding to the loss 

of water as well to the cleavage of the amide link.  Negative ions are also generated 

during ESI yielding [M+Cl]- ions which upon CID form Cl- ion at m/z 35 [143].  

Sphingomyelin also derive [M+H]+ ions as well as [M-15]- ions specific to 

phosphocholine lipids.  CID of the molecular ions but not the [M-15]- ions yield the 

abundant ion for phosphocholine head group at m/z 184 [131].  Formation of [M+Li]+ 

ion in ESI-tandem mass spectrometer was described by Hsu et al.. [144] where CID was 

found to yield [M+Li-183]+ and [M+Li-183-18]+ ions corresponding to the loss of 

phosphocholine headgroup and water respectively.  Fatty acyl chains and the base could 

be identified from the less abundant ions, but this analysis is not very promising.  As 

said before, membrane lipids are the most complex lipids and a challenge for the 

analytical techniques available due to presence of acyl chains as well as varied polar 

head groups to the glycerol or to the sphingosine backbone.  APCI seemed to be more 

successful in the acyl chain analysis in sphingomyelin than ESI due to the yield of 

several product ions such as the one [M-N(CH3)3-H2O+H]+ due to the abundant loss of 

N(CH3)3 and water as well as the loss of ceramide-specific ions [145, also see Figure 

1.1].  APCI and ESI were both used to analyze sphingolipids in brain and human 

plasma [146, 147].  Rather complex glycosphingolipids containing a carbohydrate 

linked to the ceramide base instead of a polar head group are more difficult to analyze.  
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Successful use of ESI, MALDI and FAB were reported for the analysis of these lipids 

[148-163]. 

 

     

 

FIGURE 1-1: Positive ions from sphingomyelin (d18:1/18:0) obtained by A) ESI and 

B) APCI.  Reproduced from Ref.110. 

 

1.6.1.2.3 ESI/APCI/MS of metabolites and messenger lipids 
 
Free acids are the mostly studied lipid class by the highest number of various 

instrumental techniques.  Negative ion ESI of saturated fatty acids yield [M-H-H2O]- 
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ions whereas unsaturated fatty acid shows additional ions derived from the bond 

cleavage at the α- and γ-position of the unsaturation [164].  APCI/MS of fatty acids 

mostly produces M+ peak but in case of the hydroxy fatty acids, [M-H2O+H]+ was 

observed as a base peak.  The other peaks observed were the protonated molecular ion 

peaks, which were prominent if the hydroxy group were located near the carboxylate 

end [112].  Eicosanoids produce abundant carboxylate anion under ESI.  Due to the 

complexity of the eicosanoids, CID is generally used to reveal further fragmentation 

information.  The detection limit of various eicosanoids using unique CID product ions 

could be as little 1.6 ng/mL.  ESI of steroids yield [M+H]+ ions as well as additional 

ions corresponding to the loss of one and two water molecules.  APCI on the other hand 

yields only [M+H]+ or [M+H]- ions.  Femtomole level detection was achieved in the 

analysis of several steroids even though the low yield of the ions is a serious drawback 

in their analysis.  The analysis of steroid conjugates is more successful as the yields of 

the product ions are higher and further fragment ions from CID can be monitored 

selectively for quantitation in femtomole level [for review see Ref. 110]. 

1.6.1.3 MALDI/MS 
 
Even though MALDI is used mainly for the analysis of water-soluble compounds and 

proteins, the interest in lipid analysis by MALDI is currently increasing.  MALDI has 

been used successfully for the analysis of lipids in various samples including vegetable 

oils [165, 166, 167-170], crude tissue extracts [171-185], extracts of body fluids and 

cells [186-196] and it has been well established that quantification with reproducible 

results can be obtained by MALDI/TOF given adequate sample preparation and 
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homogeneity of the analyte and matrix.  The use of a specific matrix to absorb the laser 

energy as well as to keep the analyte from cluster formation makes lipid analysis 

feasible.  The use of 2,5-dihydroxybenzoic acid (DHB) is suitable in the lipid analysis 

because it does not tend to form cluster.  Also very low yield of matrix ions are 

generated which is a plus point for analysis of complex compounds.  Sinapinic acid, a 

common matrix used in MALDI should be avoided in lipid analysis because it tends to 

undergo polymerization, resulting in the saturation of detector [197, 198].  Because 

lipid and the matrix are both organic compounds, it is very easy to make a homogenous 

mixture of analyte and the matrix. In MALDI, a solid sample rather then an analyte in 

solution is required, which calls for minimal sample preparation.  Another main 

advantage in MALDI is that singly charged ions predominate, therefore less 

complication is expected.  Even though multiply charged molecules are also generated, 

they show a higher tendency toward neutralization, leaving the stable singly charged 

ions easily detectable [199].  The extraction of lipid prior to analysis gives better results 

than applying the sample without extraction.  DHB as a matrix requires quick drying of 

the sample on the MALDI plate after mixing with the matrix in order to obtain small 

and homogeneous analyte/matrix co-crystals.  The ions that are observed in the lipid 

analysis are mainly [M+Na]+, [M+K]+ and [M+H]+.  The first two cations [Na+ and K+] 

are typically found in the lipid extracts and [M+H]+ arises from the addition of TFA 

[~0.1%] to the matrix.  The adduct pattern is strongly influenced by applied laser 

intensity as well as the ion composition of the applied solvent.  
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1.6.1.3.1 MALDI of storage lipids 
 
Analysis of diacylglycerols by MALDI-MS was reported using 2,5-dihydroxy benzoic 

acid (DHB) as a matrix [162] where [M+Na]+ ions appeared to result in better yields.  

MALDI was able to identify TAG as [M+Na]+ ions in olive and cod liver oil without 

prior separation using R-cyno-4-hydroxy-cinnamic acid as a matrix [165, 200].  The 

analysis of vegetable oil samples were possible by MALDI-TOF [166] due to the 

simplicity of the adduct formation (mostly Na+ adduct were visible).  In MALDI, DAG 

and TAG show very little fragmentation of the stable [M+Na]+ ion adduct.  For DAG, 

formation of carbenium ions has been observed due to the loss of NaOH [201].  For 

TAG, loss of the Na salt of a fatty acid residue results in fragment patterns which might 

be also the case in DAG but is less pronounced due to the interference with the peaks 

from matrix.  The fatty acid composition also has an effect on the fragmentation 

behavior.  For TAG and DAG, the formation of Na+ adduct is more prominent than the 

H+ adduct, which is due to the different tendencies of the Na+ ion and H+ ions to bind to 

the glycerol backbone than to the polar head groups. 

1.6.1.3.2 MALDI of membrane lipids 
 
Cholesterol esters behave the same way as TAG and DAG, giving the [M+Na]+ adduct 

whereas cholesterol gives an [M+H-H2O]+ ion due to the loss of water and its high 

affinity for H+ ion.  For phospholipids the intensity of [M+H]+ adduct is typically 

stronger than the alkali adduct in MALDI spectra.  Because the adduct pattern strongly 

depends on the solvent composition and the applied laser intensity, enhanced signal for 

alkali adduct can be generated by increasing laser intensity.  Sphingolipids can be 
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analyzed as intact molecules and can yield several peaks due to the heterogeneity in the 

sphingosine or the acyl chain.  One of the most prominent peaks is that derived from the 

sphingosine residue at m/z 264.0.  Analysis of complex glycerophospholipids in human 

neutrophils by MALDI/TOF with DHB containing 1% TFA as a matrix resulted in the 

formation of [M+H]+ and [M + alkali]+ ions [197].  MALDI was also used along with 

FT/ICR [202] for the analysis of these lipids using DHB as a matrix and both [M+H]+ 

and [M-H]- ions as well as [M+ Na]+ ions were observed as abundant ions.  CID of the 

negative molecular ions yielded abundant carboxylate ions of which sn-2 carboxylate 

found to be predominant.  Using MALDI it is possible to profile a mixture of 

sphingolipids and glycolipids by their Na+ adducts [203].  In order to avoid 

complication, sample preparation with TLC prior to MALDI is recommended [204].  

1.6.1.3.3 MALDI of metabolites and messenger lipids 
 
Free fatty acids can be analyzed by MALDI with low detection limit due to their low 

molecular weight.  Saturated free fatty acids were found to form Na+ adduct of the 

sodium salt of the free fatty acid but the presence of unsaturated ones shifted the 

molecular weight by +14 for all the fatty acids in a mixture [114].  Use of MALDI has 

not been quite occurred yet in the analysis of eicosanoids or steroids, but can be of great 

importance.  Providing the development of appropriate matrices, application of MALDI 

with tandem MS can provide more advanced identification of complex eicosanoids.  

1.6.2 Gas Chromatography/mass-spectrometry (GC/MS) 
 
Gas chromatography (GC) is a unique and versatile technique used with many types of 

samples with little or no sample modification.  It was developed for the analysis of 
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volatile compounds and from there it has been expanded for the chemical separation 

and analyses of gaseous samples, liquid solutions and volatile solids.  Typical GC 

system consists of an oven (which controls the temperature of the column), an injection 

port and a detector connected to the column.  The columns employed usually vary in 

phase polarity depending on the nature of the compounds to be analyzed.  If there is no 

interaction between the column phase and the analyte no retention occurs, therefore the 

non polar compounds are analyzed by non polar columns (95-100% dimethyl 

polysiloxane phase) and polar compounds by polar columns (14-100% polar group 

substituted dimethyl polysiloxane phase).  Column length (l), internal diameter (r) and 

film thickness (df) are the factors that are usually taken into consideration while 

choosing a capillary column.  The regular values for these parameters are r: 0.1 mm to 

0.5 mm; l: 30-100 m; and df: 0.10 µm to 5.0 µm.  It is ideal that the column be as short 

as possible to keep the analysis time and cost low.  The chromatographic resolution and 

the analysis time depend on the value of r.  Usually at constant df , the lower the r the 

higher the resolution and better the separation between critical pairs.  If MS is used as a 

detector, 0.32 is the maximum value of r used.  The combination of the values of r and 

df should be so chosen that the value of the column phase ratio is higher for better 

separation.   

A number of different types of detectors are used in conjunction with GC of 

which the most frequently reported ones for lipid analysis are the flame ionization 

detector (FID) and the electron impact or chemical ionization mass spectrometry 

(EI/CI/MS).  With FID the analytes are burned in a hydrogen flame and thus are 

ionized.  The negative potential of the jet results in the neutralization of the positive 
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ions and the electrons are captured by an electrode to produce a signal current.  In FID 

only substances with at least one C-C or C-H bond are detected and as a universal 

technique FID is not well suited for the trace analysis in complex matrices.  FID is also 

not suitable for the analysis of the highly chlorinated or brominated substances [205].  

In the MS mode, two different ionizations electron impact ionization (EI) or chemical 

ionization (CI) can be used.  EI is the most frequently used ionization process in all 

GC/MS systems.  EI involves the interaction between an energy-rich electron beam 

with the outer electron of the analyte molecule giving rise to the formation of the 

molecular ion [M+•].  The excitation in the rotational and vibrational level of the M+• ion 

by excess kinetic energy impacted by the electron beam produces further fragmentation.  

Because the typical ionization potential used in most EI processes is 70 eV, which is 

almost 5 times higher than the potential required to ionize the organic molecules, 

sometimes in EI daughter or granddaughter ions are observed instead of the M+• ions.  

Therefore in EI, determination of molecular weight is sometimes troublesome and the 

application of CI is necessary.  In CI, a reagent gas is used for the ionization of the 

analyte molecules instead of a beam of electrons.  The two step reaction involves the 

formation of a reagent gas cluster through electron bombardment followed by the 

reaction between the cluster and the analyte molecule in order to form protonated 

molecular ion.  CI can be used in either positive or negative mode depending on the 

need of a particular analysis and because it uses considerably less ionization potential, 

little or no fragmentation of the molecular ion occurs, providing important information 

about the molecule itself.  The data can be monitored by selecting either the total ion 

mode (TIM) or the selected ion mode [SIM] in most GC/MS systems.  
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The main disadvantage of gas chromatography in lipid analysis is its 

incapability of direct analysis of the larger nonvolatile lipid molecules.  Even though 

recently commercialized modified columns are suitable for free fatty acid and amides 

analysis, most of the lipids needed to be derivatized to a suitable volatile molecule prior 

to injection.  Another disadvantage of GC/MS is the lower sensitivity for trace analysis 

and the analysis of compounds in complex matrices.  Conjunction of GC/MS with TLC 

and SPE is more preferable for the purification and preconcentration of the analytes of 

interest. 

1.6.2.1 GC/MS of storage lipids  
 
Triacylglycerols (TAG) are probably the mostly studies lipids by GC/MS.  In studies, 

that require the quantification of total fat content in food, transesterifiction under 

acidic/basic condition is usually done and the fatty acids are analyzed as their methyl 

ester (FAME).  Almost all FAME can be separated on a relatively polar column giving 

the analyst an idea of available types.  EI spectra of TAG usually produces [M-RnCO2]+, 

[RnCO+128]+, [RnCO+74]+ and [RnCO]+ ions, providing information about carbon 

chain and the number of double bonds.  But the studies that require identifying the 

location of the acyl chain in glycerol backbone as well as the position of the double 

bonds in acyl chain are quite challenging.  ESI/APCI are mostly employed for such 

tasks.  Separation and detection of MAG is much simpler and can be conveniently 

carried out by GC/MS due to the presence of only one acyl chain.  Analysis and 

quantification of DAG is also a sensitive technique by GC coupled with negative ion 

CI.  They can be separated and detected as their pentafluorobenzyl (PFB) ester, even 
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though the derivatization technique results in the migration of the acyl groups into 

stable 1, 3 positions.  The detection limit was found to be 30 fmol of an endogenous 

DAG species extracted from human basophils [115, 206-210].   

1.6.2.2 GC/MS of membrane lipids 
 
Whereas LC/ESI/MS is the most widely used technique for the analysis phospholipids 

and sphingolipids, use of GC/MS has also been employed for a long period of time for 

their analysis.  Numerous amount of work have been reported in this regard which 

requires suitable derivatization techniques but none are adequate for the complete 

structural details.  For example, hydrolysis of ceramide followed by GC/MS analysis 

provides no more information than the identity of the fatty acyl chain and the bases.  

Ceramides can also be analyzed in intact form as their trimethylsilyl (TMS) or 

methylated derivatives.  The analysis of the methylated glycosphingolipids from human 

and mouse body organs shows that ceramides separate according to the chain length of 

the fatty acids but co-elution of some ceramides under each GC peak was observed.  

Separation in subclasses by TLC or SPE before GC/MS is usually helpful in this type of 

situation [163, 211-219]. 

1.6.2.3 GC/MS of metabolites and messenger lipids 
 
Gas chromatographic separation and EI/CI detection can be carried out for the 

identification of the fatty acids after derivatizing them into a suitable volatile ester, 

typically the methyl ester [220-223, also see Figure 1-2].  Due to the presence of 

numerous different species in biological samples this type of analysis is difficult in 

clarifying the individual origin of the too many fragment ions formed.  Optimized 
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analysis conditions such as sample clean up and select ion monitoring usually improve 

this situation [224-225].   

 

 

 

FIGURE 1-2: Separation of C4 to C24 fatty acid methyl esters on restek Rt-2560 

column.  Reproduced from Restek website (www.restekcorp.com ). 

 

One example is the analysis of the arachidonyl containing phospholipids in 

human histiocytic lymphoma U937 cell line by negative ion CI/MS as their PFB ester 

[131].  The predominant carboxylate anions were monitored for the assay of the 

arachidonic acids in this case.  Methylation conditions were optimized by Park et al. 
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[226] for the quantitative analysis of the isomers of conjugated linoleic acids (CLA) in 

various lipid samples.  They found that methylations only under different conditions are 

suitable for different types of CLA and GC was not suitable for the analysis of samples 

containing low amounts of CLA.  Quantitation of eicosanoids by GC/MS requires 

different derivatization and purification procedures for different eicosaniods, which is 

complicated and time consuming [227-236].  Use of suitable derivatization agent and 

careful sample preparation can solve these problems.  For example, the analysis of 

eicosaniods after solid phase extraction (SPE) and derivatization with tert-butyl 

dimethylsilyl ether (t-BDMS) was reported by Tsukamoto et al. [237].  Use of one 

internal standard per eicosanoid and SIM provided the assay of six different eicosanoids 

from cultured cells.  Their method was found to be linear from 10 pg to 100 ng.  

1.6.3 CE-LIF/CE-MS  
 
Capillary electrophoresis (CE) is a novel analytical tool which can provide selectivity 

and higher chromatographic resolution for a wide variety of samples.  The high voltage 

separation and the narrow capillary zone offer fast and efficient separation.  It also has 

an advantage of low sample and solvent consumption over other analytical techniques.  

Capillary electrophoresis, (CE), was introduced by Jorgenson and Lukacs [238-242] in 

the early 1980's.  CE coupled with various detectors offers the automated analytical 

equipment, fast analysis times and on-line detection of the separated peaks.  The 

possible CE modes are capillary zone electrophoresis, micellar electrokinetic capillary 

chromatography, capillary gel electrophoresis, capillary isoelectric focusing, and 

capillary isotachophoresis with various detection systems such as UV-Vis, fluorescence, 
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Raman, and laser induced fluorescence (LIF) [243].  The separation based on size and 

charge differences between analytes is termed capillary zone electrophoresis (CZE) or 

free solution CE (FSCE); separation of neutral compounds using surfactant micelles is 

refereed as micellar electrokinetic capillary chromatography (MECC); sieving of 

solutes through a gel network is termed as capillary gel electrophoresis (GCE); and 

separation of zwitterionic solutes within a pH gradient is called capillary isoelectric 

focusing (CIEF).  Capillary electrochromatography (CEC) is an associated 

electrokinetic separation technique which involves applying voltages across capillaries 

filled with silica gel stationary phases.  Separation selectivity in CEC is a combination 

of both electrophoretic and chromatographic processes.  FSCE and MECC are the most 

frequently used separation techniques in pharmaceutical analysis.  GCE and CIEF are of 

importance for the separation of biomolecules such as DNA and proteins, respectively, 

and are becoming of increasing importance as development of biotechnology derived 

drugs is becoming more frequent.  So far most of the work done by CE/LIF / CE/MS 

focused on the analysis of mainly peptides and proteins.  A very few papers on lipid 

analysis by CE have been published most of which focused on the separation of the 

fatty acids [151, 244-261]. 

1.6.4 Fatty acid amide analysis 

1.6.4.1 Sample preparation 

1.6.4.1.1 Lipid extraction 
 
Lipid extraction is the first step of lipid analysis and is the most important task.  Folch-

Pi and Bligh/Dyer [262-263] extractions are the two types of techniques that are widely 



 42

being used and modified.  Usually a 20 fold volume of chloroform:methanol (2:1, v/v) 

is added to the tissue/cell for homogenization.  The volume of a tissue sample is 

computed on the assumption that the specific gravity of tissue is the same as that of 

water.  After homogenization the sample is filtered and 20% water (or aqueous salt 

solution) is added to the total volume of filtrate.  The mixture separates into two phases: 

the lower phase (chloroform:methanol:water; 86:14:1, v/v/v) containing lipids and the 

upper phase (chloroform:methanol:water, 3:48:47, v/v/v) containing non lipid 

contaminants.  The upper phase is then discarded and lower phase is dried under N2 to 

be dissolved in a suitable solvent [262].  Modifications of this method are allowed 

providing the required ratio of tissue/cell to solvent is maintained.  Modification also 

depends on the types of lipid classes to be extracted.  For example, centrifugation can 

be used instead of filtration, but 20% methanol needs to be added to the homogenate in 

order to lower its specific gravity.  Therefore, after centrifugation, twice the amount of 

chloroform must be added to the supernatant in order to have a 2:1 chloroform to 

methanol ratio.  Also the Folch solvent can be replaced by suitable solvents such as 

isopropanol instead of methanol or dichloromethane instead of chloroform, etc.  One 

disadvantage of the Folch process is that the gangliosides remain entirely soluble in the 

upper aqueous phase.  If gangliosides are to be extracted, dialysis of the upper phase to 

remove ions and other low molecular weight compounds followed by lyophilisation is 

done.  Fatty acid amides being only moderately polar can be extracted readily with the 

total lipid using the conventional Folch-Pi extraction.  
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1.6.4.1.2. Sample clean-up/ derivatization 
 
Before analyzing the sample by the choice of instrument, it is common practice use 

TLC or SPE to separate target analyte or analytes.  The pure and concentrated analyte is 

then injected into the GC/MS or LC/MS system in order to increase the sensitivity and 

detactibility (see Section 1.7, Chapter 2 and Chapter 3 for more detail on sample clean-

up by TLC and SPE).  As discussed above, if the analyte is non volatile, or has 

absorptivity only in the low UV region, derivatization is often required.  Fatty acid 

amides are one such lipid class that possess both the characteristics and hence need to 

be derivatized for instrumental analysis.  Even though amides can be successfully 

analyzed in GC polysiloxane columns without derivatization, severe tailing due to the 

NH2 group hinders trace analysis of amides.  This is especially true when analyzing 

amides from biological samples, which contain numerous other species.  Sample clean 

up is therefore an important part of amide analysis.  HPLC analysis of amides is also 

troublesome due to the abosoptivity of amide group in low UV region (`210 nm).  

Fluorescent tagging is required for the formation of fluorophore which fluoresces in the 

UV region allowing peak monitoring (see Chapter 6 for more information on 

derivatization for GC analysis). 

1.6.4.2 Chromatography methods 
 
Gas chromatography (GC) is the most widely applied technique in the separation of 

fatty acid amides.  As mentioned in the earlier section, volatile derivative formation 

is usually required for GC analyses.  Even though the analysis of underivatized fatty 

acid amides can be performed in polysiloxane columns, quantitation at trace level is 
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troublesome due to the severe tailing from the NH2 group [264].  N-acyl 

ehanolamines were detected in both derivatized (O-acetyl or TMS) and underivatized 

forms using SE-30 GC and DV-5 columns [1, 18].  Separation of a mixture of low 

molecular weight fatty acids, PFAM’s and NAEs using a chromosorb-101 column 

was also achieved [265].  Separation of C12-C22 NAEs as their O-acetyl analogs 

showed that the unsaturated ones eluted right before their saturated analog on OV-

1/OP-15 columns [266].  Schmid and co-workers [267, 268-270] reported the 

analyses of N-acyl PE (precursors of NAEs) and NAEs as their tert-

butyldimethylchlorosilyl (t-BDMS) derivatives by a HP-5MS column.  The use of a 

similar column (BP5) for the separation of NAE and their precursors without prior 

derivatization was also achieved [271].  Primary fatty acid amides were analyzed 

without derivatization [272-274] using 3% Dexil 300/CP-Sil 5 CB/BP1 columns but 

only oleamide, stearamide and erucamide were separated.  In 1985 Arafat et al. 

reported [61] the extraction of five long chain saturated and unsaturated PFAM’s 

from human luteal phase plasma and their analysis as trimethylsilyl (TMS) 

derivatives by an HP-5MS column.  Separation of TMS derivatives of C2-C20 fatty 

acid amides (both saturated and unsaturated) was also shown on a Supelco 

Simplicity-5TM column by Gee et al. [275].  They found that the peak intensity was 

largely dependent on the silylating agent used.  Use of BSTFA (bis-

trimethylsilyltrifluoroacetmide) and MSTFA (N-methyl-N-trimethylsilyltrifluoro-

acetmide) provided the most complete reactions and the derivatized amides with 

these two reagents produced largest peak areas.  They also studied the derivatization 

of amides by TMSCl (chlorotrimethylsilane) which is usually used as a catalytic 
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element for selectively derivatizing lipids.  No derivatization occurred when TMSCl 

was used alone.  Presence of TMSCl was found to prevent the reaction between 

MSTFA and amides.  The extent of the reaction of amides with BSTFA was found to 

be reduced in presence of TMSCl.  BSTFA was chosen over MSTFA as a 

derivatizing agent because of the greatest signal-to-noise and signal-to-background 

ratios in the former case.  Toluene was used as a solvent because (i) amides as well 

as the silylated amides are soluble in toluene, (ii) reaction in toluene and ethyl 

acetate produced maximal peak areas for the silylated amides, and (iii) reaction in 

toluene gave rise to higher signal-to-noise and signal-to-background ratios than in 

ethyl acetate.  They also optimized the temperature and time for the derivatization of 

oleamide in BSTFA-toluene.  HP-5MS was used to study the both derivatized and 

underivatized oleamide which showed that N-trimethylsilyl oleamide and N-t-

butyldimethylsilyl oleamide had better detection limit then the oleamide itself [264].  

Even though the detection limit improves upon derivatization, one should not 

discount the possibility of artifact formation.  Vosmann et al. [276] reported that the 

derivatization of lipid mixture containing primary fatty acid amides and NAEs with 

trimethylsulfonium hydroxide [TMSH] led to the formation of N- and /or O-

methylated derivatives which can result in faulty conclusion.  It is therefore 

necessary to use the judgement where derivatization is actually required.  Detection 

limits need to be determined for derivatized and underivatized amides.  If the 

amounts of amides in a sample fall above the quantitation limit for underivatized 

amides, derivatization should be avoided.  If it is absolutely necessary to use 
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derivatization, the optimum conditions must be used so that as low as possible 

derivatization agent can be used under mildest conditions. 

Liquid chromatography (LC) is the other technique used in fatty acid amide 

analyses even though it has not been as widely employed as GC.  LC is usually used 

for oxidized, highly branched or relatively polar samples (e.g., phospholipids).  One 

advantage of LC over GC is that the derivatization is not required.  But the 

absorptivity of the -CONH2 group in low UV region (~210 nm) gives rise to poor 

sensitivity [277].  In order to increase sensitivity, fluorescence tagging is often 

required with compounds that fluoresce in the UV region.  Carpenter et al. [277] 

studied the separation of a series of N-acylglycines (NAG) and PFAM’s (C2-C12) 

using a Phenomenex Luna C8 column.  The mobile phases for NAG were 50 mM 

sodium phosphate (pH 6.0): acetonitrile as gradient and those for PFAM’s was 

water: acetonitrile as gradient followed by isocratic elution.  The separation of long 

chain PFAM’s (C12-22) were achieved using a Waters C18 column and water: 

methanol as gradient.  They (Carpenter et al.) mentioned that a longer run time (over 

25 min) for the separation of saturated and unsaturated amides was required.  C18 

Reversed-phase HPLC was also used to assay PAM activity for the conversion of N-

acylglycine to the primary fatty acid amides by Carpenter et al.  They achieved the 

separation of N-oleoylglycine, oleamide and oleic acid on a Phenomenex Luna C18 

column using acetonitrile : methanol as a gradient.  Carpenter and co-workers has 

also optimized the conditions for APCI using a C18 column for PFAM’s.  In order to 

analyze unsaturated and longer chain PFAM's, (C ≥ 22) using this technique (for 

both reversed and normal phase columns), the gradient of mobile phase needs to be 
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optimized.  HPLC separation of PFAM’s was also carried out on a Nuclesil-100 

column by Jasperse [278] and separation of caprylamide, capramide, lauramide, 

myristamide, palmitamide, oleamide, stearamide and arachidamide was reported.  

Reverse phase HPLC using a Nova-pak-C18 column was able to resolve 5 separate 

NAEs based on the chain length and the degree of unsaturation.  The co-eluting 

NAEs were furthered resolved using a free fatty acid HP column from Waters [266]. 

The separation of anandamide, N-palmitoylethanolamine, and N-oleoylethanolamine 

in biological samples was also achieved on a C18 Hypersil column [279].  Koga et 

al. [280] used TSKgel C18 80TM / TSKgel silica-60 columns for the determination 

of N-acylethanolamides.  Using their method, separation and quantification of 

anandamide and other NAEs in rat brain and peripheral tissues was possible.  

Normal phase HPLC using evaporating light scattering detection for the screening of 

the lipid classes found in food packaging materials established the separation of 12 

different lipid classes including erucamide on a LiChrospher Diol column [281].  

From the literature review it is clear that the resolution largely depends on the nature 

and the gradient of the mobile phase used.  It is therefore might be possible to 

separate wide range of co-eluting fatty acid amides with careful selection of mobile 

phases and their gradient. 

The analysis of fatty acid amides by capillary electrophoresis (CE) can be of 

great importance because the high sensitivity and best resolution is required for these 

compounds.  Separated of free fatty acids by non-aqueous CE with near infrared 

fluorescence detection was reported [247, 248].  Feng et al. [282] were the first to 

investigate the separation of amidated amino acid by MECC/LIF after selective 
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fluorescence derivatization.  The same group has also shown [283] that CE/LIF can 

be a very sensitive and efficient method for analyzing the PFAM's.  The amides can 

be converted to corresponding amines through Hofmann rearrangement [284, 285], 

and the amines are then derivatized with an amine-reactive probe.  Fluorescein 

isothiocyanate (FITC) and fluorescein succinimidyl ester (FSE) were used as the 

reactive probe but were not found to be useful in methanolic CE due to the lack of 

charge in methanol.  Even though the use of CE/MS for determination of peptides 

and proteins is common, its application towards lipids analysis has not been reported 

to date but can be of significant importance. 

1.6.4.3 Detection method 
 
Mass spectrometry is the main detection technique usually employed in fatty acid 

amide analysis with GC and LC.  The common ionization techniques used for 

GC/MS analysis of amides are electron ionization (EI) and chemical ionization (CI).  

Devane et al. [1] had characterized anandamide by GC/MS as both underivatized and 

TMS- derivatized conditions.  Direct exposure CI (isobutene-DCI) gave rise to the 

protonated molecular [M+H]+ ions (m/z = 348) which under CID produced 

significant fragments at m/z 287, 62 and 44 due to the formation of [M+H-

C2H7NO]+, most abundant protonated ethanolamine ions  [HOCH2CH2NH3
+] and 

due to the formation of dehydrated protonated ethanolamine ([HOCH2CH2NH3-

H2O]+) respectively.  The TMS derivative of anandamide gave rise to M+ ion at m/z 

419 and [M-CH3]+ adduct ion at m/z 404.  Upon CID of m/z 404, two major 

fragments were observed due to the formation of Me2Si+OCH2CH2NH2 (m/z 118) 
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and Me2Si+OCH2CH2NHCOCH=CH2 (m/z 172) respectively.  The EI mass spectral 

patterns of O-acetyl-NAEs showed [266] the formation of M+ ions as well as the 

common ions formed due to McLafferty rearrangement (m/z 85 and m/z 145) and 

due to gamma cleavage (m/z 98 and 158).  Schmid et al. [267] reported detection 

limits for tert-butyldimethylchlorosilyl (t-BDMS) derivatives for NAEs.  Limits for 

saturated NAEs were found to be 0.1 ng and those for unsaturated NAEs were found 

to be 1 ng (anandamide) under single ion monitoring mode (SIM, m/z = M-57].  

Primary fatty acid amides were also analyzed by GC/FID and GC/MS as slip agents 

in plastics [272-274].  Detection limits of palmitamide, stearamide, oleamide and 

erucamide from various polymeric matrices using GC-FID and/or GC/MS were 

found to be less than 50 ppb [273].  Trimethylsilyl (TMS) derivatives of long chain 

saturated and unsaturated amides by EI/MS showed characteristic molecular [M]+ 

ions; [M-15] + ions due to the loss of -CH3 at the aliphatic end and formation of a 

ketene; [M-71] + ions due to the loss of -C5H11 also at the aliphatic end and m/z 59 

and m/z 72 ions due to McLafferty rearrangement [61].  Similar patterns were also 

observed for erucamide and oleamide isolated from blood plasma and bacterial cells 

respectively [75, 286].  The underivatized amides on the other hand showed 

characteristics M+ ions; [M-17]+ ions due to the loss of NH3 and formation of a 

ketene; [M-43]+ ions due to the loss of -C3H4 at the aliphatic end; m/z 59 and m/z 72 

ions due to McLafferty rearrangement; fragment ion due to the allylic cleavage 

between C7-C8, followed by rearrangement and the fragment ions due to the C6-C7 

and C5-C6 cleavage of the ketene [86].  BSTFA derivatized fatty acid amide analysis 

using an ion trap analyzer was carried out by Gee et al. [275].  The amides 
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separation was achieved for ethanamide to eicosanamide in the total ion mode and 

for the positional isomers of C18 unsaturated amides in the single ion mode.  The 

detection limit was found to be in the order of 1 pmol and quantitation limit was 

between 1 to 10 pmol.  The fragmentation pattern in this case was different from that 

observed by Arafat et al., which was attributed to the use of a different mass analyzer 

(Arafat et al. used a quadrupole mass analyzer).  The mass spec patterns observed in 

the case of Gee et al. included the [M-71]+ ions due to the loss of a pentyl group 

(unsaturated amides having double bond position closer to the cleavage site C13-C14 

did not show this peak) as well as the m/z 59 and m/z 72 ions formed by McLafferty 

rearrangement.  No M+ or [M-15]+ peaks were observed.  These patterns were further 

confirmed using the fragmentation patterns of isotopically labeled amides [287].  

Quadrupole mass analyzer was also used for the determination of underivatized, 

TMS, nitrile, and N-t-BDMS derivatized oleamide [264].  Mass spectral patterns of 

derivatized and underivatized oleamide are shown in Figure 1-3.  

The common ionization techniques used for LC/MS in fatty acid amide 

analysis are electrospray ionization (ESI) and atmospheric pressure chemical 

ionization (APCI).  The major ions observed in negative ion ESI/MS for NAPE 

(precursors of NAEs) was deprotonated [M-H]- ions which upon CID gave further 

fragmentation and information for identifying the N-acyl group attached to the 

NAPE. The detection limit was found to be 0.1 ng (100 fmol) per injection [288, 

289].  The major ions observed in positive ion ESI/MS of NAEs [279] are [M+H]+ 

and [M+Na]+.  Koga et al. [280] have used APCI for the determination of NAEs.  

The NAEs were detected as [M+H]+ ions and detection limit was found to be about 
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200 pmol per injection for all the NAEs.  The drift voltage was found to have an 

inverse effect on the intensity of the [M+H]+ ion and a directly propotional effect on 

the [M+H-H2O]+ ion.  For all the NAEs the maximum intensity of the [M+H]+ ions 

were found to be maximum at a drift voltage of 20 V with a nebulizer temperature of 

200 ºC.   

 

 

FIGURE 1-3: EI/MS of A) underivatized, B) nitrile derivatized, C) TMS derivatized, 

and D) N-t-BDMS derivatized oleamide. Lower levels of M+ and [M-17]+ ions (m/z 

281 and m/z 264 respectively) are observed in A and the improvement of M+ ions is 

observed in B upon nitrile derivatization. Predominant fragment peaks are found at 

lower m/z where the peak interference from biological sample might be substantial 

but converting oleamide to TMS or N-t-BDMS ester yields high sensitivities for the 

m/z 338, which can be used for reliable quantitation. Reproduced from Ref. 264. 

 



 52

Cravatt et al. [290] in 1996 published the structural determination of 

oleamide by mass spectrometry after it was discovered to appear and disappear upon 

sleep deprivation and resting respectively in cat cerebrospinal fluid.  High resolution 

FAB/MS provided [M+Na]+ ion at m/z 304.2614 for oleamide and tandem ESI/MS 

produced [M+H]+ parent ions (m/z 282) as well as further fragmentation providing 

detailed structural information.  ESI/MS of oleamide from rat cerebrospinal fluid 

yielded the [M+H]+ ion which upon CID gave rise to further fragmentation but was 

found to be too complicated to predict due to the presence of numerous signals even 

in the blank [264]. 

Together all these outcome points toward the fact that quite a large number of 

instrumentation techniques are available for the analysis of fatty acid amides but have 

their own drawbacks.  Sensitivity is a critical issue because sample matrices of interest 

are mostly biological tissues or cultured cells.  Sample preparation for amides prior to 

the analysis is essential for increased detector lifetime, lower detection limit/higher 

sensitivity, which usually results in quantitative data with good percent recovery for 

these types of samples. 

1.7 Sample clean-up in lipid analysis 
 
Thin layer chromatography (TLC)/High performance thin layer chromatography 

(HPTLC) and solid-phase extraction (SPE) are the two main sample preparation 

techniques frequently used by analytical chemists.  Use of TLC and SPE in lipid 

separation has also been explored. TLC/HPTLC can be used for easy profiling of the 

lipid classes and the separated samples can be scraped off the plates and analyzed by the 
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instrument of choice without any interference from the other classes.  A number of 

authors [177, 291-304] have reported such analyses with successful TLC separation of 

various lipid classes followed by instrumental analyses.  Similar sample preparation 

which is very recently being explored is SPE and the separations of different lipid 

classes from various types of samples by different SPE columns have been performed 

and the advantages and disadvantages have been reviewed [305-318].  The most 

popular SPE columns for the extraction of various lipid classes are the silica and the 

aminopropyl bonded phase.  Due to the highly polar nature of the silica it can adsorb 

polar lipids and different classes can then be eluted by mobile phase with increasing 

polarity.  The aminopropyl column is more popular then silica because it is a little bit 

less polar, which is advantageous for the complete recovery of the polar lipids.  Another 

advantage of the aminopropyl column is that it can also be used as an ion exchange 

column.  Details of TLC/HPTLC and SPE studies will be discussed in the introduction 

sections of the chapters three and four respectively. 

1.8 Conclusions 
 
The object of this chapter is to introduce the instrumental analysis done in lipid 

chemistry in brief with especial attention in fatty acid amide class analysis and to 

provide an idea of the objective of this thesis.  We are interested particularly in primary 

fatty acid amides (PFAM’s) because this fatty acid amide subclass has not been 

explored as extensively as the N-acyl ethanolamides (NAEs).  The idea that they 

possess significant bio-regulatory activities and hormonal behavior as the NAEs besides 

being catabolically related to them is still to be explored.  Careful study is needed to 
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identify their specific action, which requires sole isolation, identification and 

quantitation of these species from biological samples.  The presence of a huge number 

of different lipids in the sample matrix makes it difficult to analyze any particular class 

without interaction from other classes.  A method for the isolation of amides before 

instrumental analysis is therefore very crucial.  As pointed out in the earlier sections 

that a set of standards as well as the use of deuterated amides as internal standard is 

required for the quantitative analysis of the amides.  Before instrumental analysis, 

amides need to be extracted from the total lipid fractions so that other lipid classes do 

not interfere with the particular amide analysis conditions.  In Chapter 2 of this thesis, 

we will present the synthesis and purification of the long chain PFAM’s including the 

geometric and positional isomers.  Synthesis of deuterated standards will also be 

discussed.  This chapter will also focus on the separation of the amides by a HP-5MS 

column and its incapability of separating cis/trans and positional isomers.  The 

synthesized standards will then be used for the method development of the amide 

isolation from total lipid extract and amide analysis.  Chapter 3 will focus on the total 

lipid profiling of the N18TG2 mouse neuroblastoma cells by HPTLC followed by the 

isolation and analysis of cell amides.  Chapter 4 will be mainly on the solid-phase 

extraction of amides from standard lipid mixture followed by method validation with 

N18TG2 cell lipids.  Application of both methods for the analysis of PFAM’s in 

mammalian tissues will be discussed in Chapter 5.  Chapter 6 will focus on the 

separation of the co-eluting amides using argentation HPTLC as well as GC using a 

BPX-70 column.   
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Chapter 2 

Small-scale synthesis and characterization of naturally abundant and 

isotopically enriched primary fatty acid amides 

 

2.1 Abstract 
 
A simple procedure for the synthesis of commercially unavailable primary fatty acid 

amides (PFAM’s) and isotopically labeled PFAM’s in small scale has been successfully 

established.  Synthesized amides can be used as standards and the isotopically enriched 

amides can be used as internal standards for their analysis, especially for the analysis of 

biologically active amides, in cell and tissue samples by instrumental means.  The 

amides were synthesized from corresponding acids, thionyl chloride and anhydrous 

ammonia.  Deuterated or 13C labeled acids were employed in the synthesis of deuterated 

or 13C labeled amides respectively.  All the precursors used in the synthesis are 

available commercially.  The two step synthesis requires 1 h reflux for the 1st step and 

~30 min at around 100 ºC for the 2nd step.  The product was highly pure yielding 67-

98% depending on the nature of the amide.  No other impurities besides a small amount 

of corresponding acids in some cases were observed.  Purity of the products and their 

structures were confirmed by gas chromatography/mass spectrometric (GC/MS) 

analysis.  1H NMR was used for the characterization of the geometric isomers (cis/trans) 

of the unsaturated amides.  The products were found to be very stable over a period of 

three years inside desiccators at room temperature.  
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2.2 Introduction 
 
It was not until Cravatt et al. [1] published report on the biological activity of primary 

fatty acid amides (PFAM’s) that they caught attention as mammalian hormones.  

PFAM’s were mainly used as slip additives in plastic industries before then.  Slip 

additives, added during the formulation of plastics, provide useful surface properties to 

the plastic by gradually blooming to the surface.  These properties include lubrication, 

prevention of films from sticking together to molds and to each other and reduction of 

static charge [2].  The primary amides that are used in various types of plastic as slip 

additives are mainly oleamide, erucamide, palmitamide and stearamide [2-4].   

In 1989 Arafat et al. [5] had reported the identification of 5 saturated and 

unsaturated long chain primary fatty acid amides (palmitamide, palmitoleamide, 

oleamide, elaidamide and linoleamide) in human luteal phase plasma, but their function 

was not attributed.  They also reported a synthetic procedure for the amides.  It was 

shown by Wakamatsu et al. [6] in 1990 that erucamide in bovine mesentery is an 

angiogenic factor.  Its angiogenic activity was also shown in regenerating skeletal 

muscle but erucamide significantly did not show any proliferative activity in 

endothelium, muscle and connective tissue [6, 7]. 

In 1995 isolation of oleamide from the cerebrospinal fluid of sleep-deprived cat 

and induction of physiological sleep in rats upon injection of synthetic oleamide turned 

attention to the fact that primary fatty acid amides might be an unrecognized class of 

important bioregulators [1].  Since then primary fatty acid amides, especially oleamide 

was widely studied and various activities of oleamide as well as other amides have been 
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identified [6-21].  Bisogno et al. [22] have reported the production of oleamide by 

N18TG2 mouse neuroblastoma cells and pointed out that oleamide might be synthesized 

in vivo from oleic acid.  This is contradictory to the fact that oleamide is produced in 

vivo by the catalytic activity of PAM on N-oleoylglycine [23].   

Recently Merkler et al. [24] have found that N18TG2 cells grown in 14C oleic 

acid under the conditions known to stimulate PAM expression show increased oleamide 

production and under the conditions known to inhibit PAM activity produces 14C N-

oleoylglycine (14C NOG).  Their findings that oleamide can also be generated from the 

cells grown in NOG, strongly support NOG as an intermediate and PAM as a catalyst in 

oleamide biosynthesis in vivo. In order to carry out such studies, quantitation is a crucial 

factor for complete understanding of these bio-regulators.  Unfortunately, primary fatty 

acid amides are not found commercially and they must be synthesized to be used as 

standards for any quantitation study.  The more stable isotopically labeled amides are 

also required in order to be used as internal standards in such types of studies [5]. 

Synthesis of primary amides can be done conventionally by the reaction of 

ammonia with the corresponding acids, anhydrides, esters or acyl halides [25].  The 

direct reaction of carboxylic acid with ammonia requires harsh conditions which may be 

suitable for the synthesis of short chain amides with no double bonds but may result in 

the formation of undesired byproducts in the case of amides with reactive double bonds.  

Reaction of acid anhydrides with ammonia can also lead to the formation of undesired 

imides as byproducts [26].  A number of researchers [27-30] reported the coupling 

reaction between acids and amines for the formation of amides under mild conditions, 

but no long chain unsaturated or unsaturated primary fatty acid amides were included in 
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these studies.  Lipase-catalyzed synthesis of butyramide and oleamide under mild 

conditions was studied by Litjens et al. [31].  This method is mild and selective but 

takes about 17 days for the formation of amides.  Ammonolysis of triacyl glycerol was 

also studied by Zoete et al. [32] but 72 h was required to yield oleamide by this method. 

Very recently, the use of microwaves has become a popular synthesis device for 

synthetic chemists due to the rapidness of the process.  Amide syntheses under different 

conditions were also studied by several researchers [33-37].  Unfortunately no results 

for PFAM’s were reported.  In 1989 Arafat et al. [5] reported the synthesis of long 

chain primary fatty acid amides by the ammonolysis of corresponding fatty acid 

chloride.  They used ammonium hydroxide as a source of ammonia, which introduces 

water into the system and hence keeps the window open for incomplete conversion and 

byproduct formation.  Anhydrous ammonia in this case can be a good candidate and in 

fact Philbrook [38] reported the formation of lower aliphatic amides using a similar 

procedure.  In this chapter we have described the synthesis of a wide range of long 

chain saturated and unsaturated primary fatty acid amides with high purity and higher 

yield.  This range also includes geometric and positional isomers of PFAM’s as well as 

two isotopically enriched PFAM’s. After synthesis and purification, amides were 

characterized by GC/MS and 1H NMR. 
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2.3 Experimental 

2.3.1 Reagents 
 
Dodecanoic (lauric), tetradecanoic (myristic), hexadecanoic (palmitic), octadecanoic 

(stearic), and docosanoic (behenic) acids were purchased from Acros organics (Morris 

Plains, NJ); tridecanoic (tridecylic), heptadecanoic (margaric), eicosanoic (arachidic), 

hexadecanoic-1 13C (palmitic-1 13C) acids and thionyl chloride were purchased from 

Aldrich Chemical Co. (Milwaukee, WI); cis-9-tetradecenoic (myristoleic), cis-9-

hexadecenoic (palmitoleic), trans,trans-9,12-octadecadienoic (linoleladic), trans-11-

octadecenoic (vaccenic), cis-6-octadecenoic (petroselenic) and trans-9-octadecenoic 

(elaidic) acids were purchased from ICN Biomedicals Inc. (Aurora, OH); trans-6-

octadecenoic (petroselaidic), cis-13-octadecenoic, cis-10-nonadecenoic, cis-5-

eicosenoic, cis-11-eicosenoic, cis-13-eicosenoic, trans-11-eicosenoic, cis-11-14-

eicosadienoic, cis,cis-9,12-octadecadienoic (linoleic), cis,cis,cis-9,12,15 

octadecatrienoic (α-linolenic), and cis,cis,cis-6,9,12 octadecatrienoic (γ-linolenic) acids 

were purchased from Sigma Chemical Co. (St. Louis, MO); Heptadecanoic-D33-acid 

was from CDN Isotopes (Quebec, Canada).  Laboratory grade toluene, heptanes, 

isopropanol, and ethyl acetate were obtained from Fisher Scientific (Fair Lawn, NJ).  

Anhydrous NH3 was supplied by Air Products & Chemicals Inc. (Allentown, PA).  

2.3.2 Instrumentation 
 
An Agilent Technologies Network GC/MS system (6890 GC with 5973 mass selective 

detector and 7683 series injector) was used for the analysis of synthesized amides.  The 

column used was an HP-5MS (0.25 mm internal diameter, 0.25 µm film thickness, 30 m 
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long, Agilent Technologies Inc., Palo Alto, CA) able to analyze fatty acids and amides 

without prior derivatization.  The GC/MS method used for analysis was as follows: 

starting temperature was 55 ºC, ramped to 150 ºC at 40 ºC per min, held at 150 ºC for 

3.62 min, ramped to 300 ºC at 10 ºC per min and finally held at 300 ºC for 2 min.  

Electron impact ionization (EI) at 70 eV was used and mass range was kept from 40 to 

400 m/z for total ion monitoring (TIM) mode.  The fragment ions used for the single ion 

monitoring (SIM) mode were m/z 59, m/z 72, m/z 62, and m/z 76.  The temperatures of 

the injection port and the transfer line were 250 ºC and 280 ºC respectively.  Injection 

volume was 1 µL splitless [39].  A Varian 500 NMR spectrometer was used to record 

the 1H NMR at 500 MHz of the cis and trans isomers.  

2.3.3 Synthesis procedure 
 
Synthesis of primary fatty acid amides included two steps.  The 1st step was the 

preparation of the acid chlorides from the corresponding acids and the 2nd step was the 

formation of amides from the acid chlorides.  The 1st step was optimized from Arafat et 

al. [5] and the 2nd step was adopted with some modification from Philbrook [38], which 

was originally for the synthesis of lower aliphatic amides.  
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FIGURE 2-1(a): Set-up for PFAM synthesis 1st step. 
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FIGURE 2-1(b): Set-up for PFAM synthesis 2nd step. 
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achieve an inert environment while the acid was allowed to dissolve in hot toluene.  

Thionyl chloride was added to the dissolved acid through a glass syringe needle and the 

mixture was allowed to reflux for an hour.  When the reaction mixture was semi-cold it 

was transferred to a closed, N2 flushed round bottom flask to be used in the 2nd step.  

In order to carry out the 2nd step [Figure 2-1(b)] 5 to 10 mL of toluene was 

placed through a glass syringe needle in the same three-neck round bottom flask with 

condenser attached to it.  The flask was then placed in a boiling water bath allowing 

toluene to be warmed.  At this point anhydrous ammonia was continuously bubbled into 

the hot toluene through one side neck and the acid chloride was added drop wise 

through the other side neck using a glass syringe needle.  After the addition of acid 

chloride was complete, NH3 was allowed to bubble through the reaction mixture for 20 

additional minutes in order to ensure the complete conversion to acid chloride to the 

corresponding amide. N2 was kept on during the entire synthesis time.  

2.3.4 Purification procedure 

2.3.4.1 Saturated primary amides 
 
The reaction mixture was then cooled on an ice bath, filtered and washed three times 

with hot DDI water under vacuum to remove excess thionyl chloride and NH4Cl.  The 

sample was then dried inside a desiccator under vacuum.  The sample was then run by 

GC/MS in order to check the purity of the product.  In case any other peaks besides the 

amide peak were observed, the product was purified by column chromatography 

(procedure described at the end of this section).  
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2.3.4.2 Unsaturated primary amides 
 
In case of the synthesis of unsaturated fatty acid amides, small amount of acid precursor 

was available (10-50 mg).  Therefore the amount of amide formed stayed dissolved in 

toluene after synthesis.  In this case, the reaction product was filtered while hot and the 

residue was washed with hot toluene once.  The filtrate containing the amide was dried 

using a rotary evaporator and kept inside a desiccator under vacuum for further drying.  

The purity of the product was checked by GC/MS and similarly if any other peaks 

besides amide peak were observed, the product was purified by column 

chromatography.  

 

  

 

    

 

 

FIGURE 2-2: Separation of oleamide and oleic acid by TLC. 
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2.3.4.3 Column chromatography method 
 
Only a small amount of acid was observed with amides in some of the final products.  

Therefore, a thin layer chromatographic (TLC) method (Figure 2-2) was developed for 

the separation of acids from amides and this method was adapted for the purification of 

amides by column chromatography.  The products found to contain some acids were 

dissolved in isopropanol and loaded onto a silica column (pre-soaked in 80:20; 

heptanes: isopropanol).  Product was eluted with heptanes: isopropanol: ethyl acetate 

(80:16:4) and fractions were collected in 10 mL test tubes.  Each fraction was identified 

by comparing the spot on a TLC plate to that of a standard amide and acid.  Fatty acid 

fractions were discarded and the amide fractions were pulled together, dried under 

rotary evaporator, and stored inside desiccators under vacuum for further drying.  

2.4 Results and Discussion 

2.4.1 Optimization of synthesis conditions 
 
A total of seven stearamide syntheses were carried out following the procedure 

described in the above section in order to achieve an optimized conversion of acid to 

corresponding acid chloride.  Optimization parameters are listed in Table 2-I.  The 

effect of reflux time, amount of toluene and the amount of thionyl chloride required for 

maximum yield were studied.  It is shown in Table 2-I that percent yield increases from 

50% to 85% with the increases of reflux time from 30 min to 60 min and decreases to 

52% upon 90 min reflux.  The percent yield increases from 85% to 94% by increasing 

the amount of SOCl2 from 128 µL (number of moles of SOCl2 required to react with the 

number of moles of stearic acid in 0.5 g of acid) to 140 µL (10% excess SOCl2) and 
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remained similar by further increasing the amount to 160 µL (20% excess SOCl2).  

Decreasing the amount of toluene showed tremendous decrease in yield whereas 

increase in toluene amount did not have much effect on the percent yield indicating 

proper dissolution of the acid in toluene is a key to better yield.  The optimum 

conditions were therefore 10 mL of toluene, 1 h. reflux and 10% SOCl2 above the 

stoichiometric amount.  These conditions were followed for the syntheses of all of the 

other amides.  Table 2-II shows the percent yield for 25 amides.  Unsaturated amides 

were found to have lower yields than saturated and isotopically labeled amides, which 

were expected due to the higher reactivity of unsaturated acids.  The amides synthesized 

by this method were found to be stable over a three year period of time. 

 

TABLE 2-I: Optimization conditions for the 1st step in the synthesis of stearamide 

(C18:0). 

Optimization 

steps 

Amount of 

stearic acid  

(g) 

Amount of 

toluene 

(mL) 

Amount of 

SOCl2 

(µL) 

Reflux 

time 

(min) 

Yield 

(%) 

#1 0.5 10 128 30 50 

#2 0.5 10 128 60 85 

#3 0.5 10 128 90 52 

#4 0.5 10 140 60 94 

#5 0.5 10 160 60 91 

#6 0.5 5 140 60 64 

#7 0.5 15 140 60 91 
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2.4.2 Characterization of the synthesized amides 

2.4.2.1 Gas chromatography and mass spectrometry (GC/MS) 
 
Upon drying after synthesis, the amides were dissolved in isopropanol and were run by 

GC/MS.  GC of 16 different amides is shown in Figure 2-3.  It can be noticed from the 

Figure 2-3 that the detection limit for the unsaturated amides is very high compared to 

the saturated ones and the retention time of the amides increase with the increasing 

number of carbon in the chain as expected.  Unsaturated amides with the same number 

of carbons elutes in the same region for example all the unsaturated 18 carbon amides 

elute around 16.65 to 16.75 min under the GC/MS method and column conditions 

described in the previous section.  An M+· ion gas chromatogram of ten 18-carbon 

(C18) amides is shown in Figure 2-4 where X and Y axes have been shifted for each 

peak in order to show these co-eluting amides.  A more polar column such as BPX70 

(70% cyanopropyl) can be employed for the separation of these amides.  One 

disadvantage though is that the derivatization of these amides to their trimethylsilyl 

(TMS) ester is required for analysis by this column. Results from this study will be 

discussed in Chapter 6. 
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TABLE 2-II: Percent product yield for the synthesized amides. 

Fatty acid amide % yield Scientific symbol * 

Lauramide 98 C12:0 
Tridecanoamide 68 C13:0 
Myristamide 85 C14:0 
Myristoleamide 81 C14:19 
Palmitamide 97 C16:0 
Palmitoleamide 89 C16:19 
Palmit-1-13C-amide 95 C16 (13C-1):0** 
Heptadecanoamide 75 C17:0 
Heptadecano-D33-amide 93 C17D33:0 ** 
Stearamide 94 C18:0 
Oleamide Commercially available C18:19 
Elaidamide 98 C18:1trans 9 
Petroselenamide 80 C18:16 
Petroselaidamide 90 C18:1trans 6 
vaccenamide 92 C18:1trans 11 
Cis-13-octadecenoamide 90 C18:113 
linoleamide 77 C18:29,12 
linolelademide 84 C18:1trans 9,12 
α-linolenamide 98 C18:39,12,15 

γ-linolenamide 96 C18:36,9,12 

Cis-10-nonadecenoamide 89 C19:110 
Eicosanoamide 72 C20:0 
Cis-5-eicosenoamide 67 C20:15 
Cis-11-eicosenoamide 65 C20:111 
Trans-11-eicosenoamide 78 C20:1trans 11 
Cis-13-eicosenoamide 90 C20:213 
Cis-11,14-eicosadienoamide 75 C20:211,14 
Docosanoamide 88 C22:0 
Erucamide Commercially available C22:113 
* Scientific symbols represent the number of carbon atoms in the chain, position and 
geometrical configuration of the double bond.  
** Shows the carbons or hydrogens in red that are isotopically labeled. 
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FIGURE 2-3: Elution profile for C12-C22 amides on a HP-5MS column. The relative 

intensities at m/z 59, 72, 62 and 76 are plotted against retention time. 
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and C5-C6 cleavage of the ketene, for example at m/z 97 and m/z 83 respectively for 

both oleamide and stearamide [22, 39].  The poly unsaturated fatty acids showed 

additional fragment ions from cleavages between C5-C6 and C9-10 (i.e., m/z 55); from 

cleavages between C7-C8 and C12-13 (i.e., m/z 67); from cleavages between C5-C6 

and C12-13 (i.e., m/z 95).  The ions specific for linoleamide (C18:2 9,12) and 

linolenamide (C18:3 9,12,15) arises from cleavages between C9-C10 and C15-16 and 

from cleavages between C9-C10 and C16-17 (m/z 81 and m/z 95 respectively for 

linoleamide and m/z 79 and m/z 93 respectively for linolenamide).  These 

fragmentation patterns show that the double bonds are preserved in the fatty acid 

amides after their synthesis from corresponding fatty acids.  The MS patterns for the 

isotopically labeled amides were the same as the naturally abundant amides.  The peaks 

at m/z 60 and m/z 73 in case of 13C-1-palmitamide [Figure 2-6(a)] and the peaks at m/z 

62 and m/z 76 in case of heptadecano-D33-amide [Figure 2-6(b)] were also due to 

McLafferty rearrangement.  The shift of m/z 59 to m/z 60 for the first one and m/z 62 

for the latter are due to one 13C and two deuterium atoms, respectively.  The shifts of 

m/z 72 to m/z 73 and m/z 62 respectively can also be explained similarly (Figure 2-6).  

Their molecular ion peaks resided at m/z 256 and m/z 302, respectively. 
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Scheme 2.1(C) 
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Scheme 2.1(D) 
 
 
 
 
 
 
 
 
 
 
 
 
 
Scheme 2.1: Mass-spectral (quadrupole) fragmentations for A) oleamide (saturated amides shows 

similar patterns), B) linoleamide (C18:2 9, 12) and C) linolenamide (C18:2 9, 12, 15). D) McLafferty 

rearrangement ions common to all amides. 
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FIGURE 2-4: M+ ion gas chromatogram of ten 18-carbon (C18) amides. X and Y axes 

have been shifted for each peak in order to show the co-eluting amides. 
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FIGURE 2-5: Mass spectrum patterns of four 18-carbon amides (a) stearamide; C18:0 

(b) oleamide; C18:1 (cis-9), (c) linoleamide; C18:2 (cis,cis-9,12) and (d) linolenamide; 

C18:3 (cis, cis, cis-9,12,15). 
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FIGURE 2-6: Mass Spectrometric pattern of (a) 13C-1-palmitamide and (b) C17D33-

amide. 
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2.4.2.2 Nuclear magnetic resonance 
 
1H NMR was used to characterize the cis and trans isomers of some of the amides.  

Figure 2-7 shows the NMR spectra of eight C18 amides (including commercially 

available cis-9-octadecenamide, C18:19) using benzene d6 as a solvent (7.15 ppm).  

Peaks for the synthesized amides were compared with the predicted values and also the 

literature values for C18 amides [40, 1].  In all the spectra, peaks due to methyl group 

(multiplet, 0.78 to 0.95 ppm), broad peaks due to long alkyl methylene protons 

(multiplet, 1.12 to 1.42 ppm), peaks due to CH2-CH2-CO-NH2 (multiplet, 1.42-1.56 

ppm), allylic protons (multiplet, 1.58-1.71 ppm), and CH2-CO-NH2 (multiplet, 1.86-

2.10) and peaks due to alkene protons (multiplet, 5.30-5.50 ppm) were observed.  The 

cis isomers showed a slight downfield shift for all the peaks compared to those for the 

trans isomers [Figure 2-7 (a-h)].  As the position of the double bond moves further 

away from the carbonyl group, slight upfield shift of the peak of the alkene protons was 

observed [Figures 2-7(a), 2-7(c) and 2-7(f)]. 

 

00.511.522.533.544.555.566.577.58

 

Fig. 2-7 (a) C18:16 

ppm (δ) 



 96

00.511.522.533.544.555.566.577.58

 

 

 

 

00.511.522.533.544.555.566.577.58

 

 

 

 

ppm (δ) 

Fig. 2-7 (b) C18:1 trans6 

ppm (δ) 

Fig. 2-7 (c) C18:1 9 



 97

00.511.522.533.544.555.566.577.58

                                                   

 

 

 

00.511.522.533.544.555.566.577.58

 

     

    

 

Fig. 2-7 (d) C18:1 trans9 

ppm (δ) 

ppm (δ) 

Fig. 2-7 (e) C18:1 trans11 



 98

 

00.511.522.533.544.555.566.577.58

 

 

 

00.511.522.533.544.555.566.577.58

 

 

 

 

 

ppm (δ) 

Fig. 2-7 (f) C18:113 

ppm (δ) 

Fig. 2-7 (g) C18:2 9, 12 



 99

 

 

00.511.522.533.544.555.566.577.58

 

FIGURE 2-7: NMR spectra of C18 unsaturated primary fatty acid amides. Please refer 

to Table 2-II for symbol description. 

 

2.5 Conclusions 
 
In conclusion, we have developed an efficient method for the synthesis of primary fatty 

acid amides by modifying the simple amide synthesis.  Naturally and isotopically 

abundant PFAM’s were synthesized with comparative efficiency.  Unsaturated amides 

as well as their positional and geometric isomers were also synthesized with similar 

efficiency.  Amides synthesized by our method were found to be stable over a long 

period of time when stored in desiccators at room temperature under N2.  Stearamide 

was found to be stable over a three year period of time.  The trans isomers and the 

isotopically enriched amides were more stable than the rest.  They also showed higher 
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percent yields.  Even though some of the unsaturated amides were not separated by HP-

5MS column, possible use of BPX70 column for their separation will be discussed in 

Chapter 6.  The synthesized amides were successfully employed in the study of total 

lipid profiling by HPTLC [41], amide extraction by SPE [42] and also in the separation 

study of the PFAM’s by HPTLC [43], HPLC [44, 45] and GC/MC [manuscript under 

preparation].  
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Chapter 3 

Total lipid profiling of N18TG2 mouse neuroblastoma cells by HPTLC 

and quantification of primary fatty acid amides (PFAM’s) by GC/MS 

 

3.1 Abstract 
 
A method for total lipid profiling by HPTLC from a standard lipid mixture was 

developed.  Bioactive primary fatty acid amides (PFAM’s), their biosynthetic 

precursors N-acylglycines, as well as the cannabinoid receptor class N-

acylethanolamine were included in this profiling as lipid classes.  The method was 

validated using the extracted lipids from amide spiked N18TG2 mouse neuroblastoma 

cells, which have been shown to have catalytic activities necessary to produce PFAM’s.  

Extracted lipids were then quantified by comparing with the calibration curve of 

standard lipids using Kodak scientific imaging system (SIS).  Isolated PFAM spots 

were scraped out of the HPTLC plates for quantification by GC/MS and percent 

recoveries from GC/MS analysis were found comparable to the results obtained by SIS.  

HPTLC is a simple sample clean-up step, which can be useful for analyzing PFAM’s 

also in conjunction with LC/MS, and/or CE. 
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3.2 Introduction 
 
The analysis of primary fatty acid amides (PFAM’s) is rather troublesome due to their 

low abundance in biological samples and higher detection limits for instrumental 

analysis.  The low volatility of these compounds generally requires the formation of 

thermally stable derivatives for gas chromatographic/mass spectrometric (GC/MS) 

analysis [1-10].  The absorption of the -CONH2 group at low UV region (~210 nm) 

gives rise to poor sensitivity for liquid chromatographic (HPLC) determination [11] 

even though a number of researchers have reported successful analysis of PFAM’s by 

HPLC [6, 12-17].  Liquid chromatography with tandem mass spectrometry 

(LC/MS/MS) [18, 19] as well as capillary electrophoresis with laser induced 

fluorescence (CE/LIF) [20, 21] can be good choices for PFAM analysis but sample 

clean-up is a crucial factor for any instrumental analysis [22] to increase the detector 

lifetime as well as the sensitivity.  Since PFAM’s are usually extracted from cells or 

tissues along with the other lipids present in the total lipid extract, their complete 

isolation from the lipid extract can provide interference free instrumental analysis.  The 

use of clean samples will generally result in higher sensitivity and lower detection limit. 

Thin layer chromatography (TLC) is the oldest technique used for sample clean 

up due to its low cost, ease of handling, ability to run multiple samples in parallel and 

moderate separation times.  The separation of almost any compound from its impurities 

can be achieved by modifying the developing solvent.  Solid-phase extraction (SPE) is 

another sample clean-up technique most recently being used.  An advantage of TLC 

over column chromatography and SPE is that it can provide a quick profiling of all the 
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compounds present in a sample matrix, giving the analyst an idea of the interfering 

compounds along with the target analyte.  Possible visualization of the TLC plates 

under UV light makes any method development rather quick and complication free.  

High performance thin layer chromatography (HPTLC) plates use particle sizes less 

than ~15 µm, which gives rise to less spot spread and higher resolution in separation 

than that regular TLC can offer.  HPTLC requires improved analytical techniques for 

spotting the plates for quantification purposes.  Samples can be spotted at any desirable 

amount at constant pressure with minimal spread.  The two possible types of TLC 

development methods are horizontal and vertical development.  After sample 

application TLC plates are placed in a vertical chamber containing developing solvent 

at the bottom for vertical development.  Horizontal development chambers are flat with 

spaces to fit TLC plates of specific dimensions and have solvent chambers on both 

sides.  This set-up allows TLC development either from one side, which ends at the 

other side or from both sides, which ends in the middle of the plate.  In the latter case, 

sample can be applied on both sides of the plate increasing overall sample throughput.  

One disadvantage of horizontal development is that if the surface is not completely 

horizontal, uniform separation throughout the plate can not be achieved.  The separation 

on TLC plate occurs by adsorption mechanism.  The samples applied on the plates are 

adsorbed on the surface of the silica gel.  Because silica gel is very polar, polar 

compounds are bound more strongly than the non-polar compounds.  As the plates are 

developed by any solvent or mixture of solvents (which are less polar than silica), the 

most non-polar compounds travel furthest from the point of sample application.  TLC 

plates can be visualized under visible or UV light after development depending on the 
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absorptivity of the compounds to be analyzed.  Colored compounds can be seen with 

the unaided eye because they absorb light in the visible region but the colorless 

compounds require the help of UV light for visualization.  Some specific compounds 

such as lipids absorb light in the very low UV region, which are difficult to visualize 

even in the UV region.  Spraying the TLC plates with certain chemicals in order to form 

fluorophore (which fluoresces in the UV region) is useful in such cases for visualization 

[23, 24]. 

The use of TLC in the separation of various lipids from crude lipid extract has 

now become common practice in lipid analysis (please see Ref. 25 for review).  Many 

of these studies are carried out to quantify lipid class spots on the TLC plate itself by 

spectrodensitometry [26-35], whereas the remainder were to scrape individual spots and 

analyze them by the instrument of choice [36-46].  Quantification of various lipid 

classes on TLC plate largely depends on the visualization technique used.  Charring the 

plates with aqueous ammonium bisulfate, aqueous sulfuric acid, iodine vapors or 

sulfuric acid-dichromate reagent are the conventional visualization techniques used.   

Some researchers reported better sensitivity with cupric acetate charring [29] 

whereas others [30] reported even better sensitivity when cupric sulfate was used.  

Cupric acetate was found to react only with the unsaturated species whereas cupric 

sulfate was found to react with both saturated and unsaturated species [47].  Rhodamine 

6G dye, 2, 7-dichlorofluorescein [24, 40] and a lipophilic dye, primuline, were also used 

by some researchers [41, 48].  The advantage of using such dyes is that they are non-

destructive and can be removed from the lipids after scraping the spots for further 

analysis.  It is clear from literature review as well as from personal experience that 
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optimum and constant spraying, dipping, or charring is required for reproducible results 

by spectrodensitometry.  For instrumental analysis it is ideal not to spray the plates 

being scraped.  Position of the target spot on an untreated plate can be measured by 

comparing the spots on a treated plate under the same conditions.  This practice reduces 

the sample loss by the sample recovery from the spraying reagent, resulting in the 

higher percent recovery.  The addition of an internal standard (IS) to the sample after 

scraping is also crucial for quantitative analyses.  

Analysis of PFAM’s by TLC was reported by a number of researchers.  Jasperse 

et al. [13] could separate the PFAM’s from the fatty nitriles on a TLC plate but the 

separation by chain length was achieved only by HPLC.  They reported TLC as a quick 

scanning technique to assess the method development.  Bilyk et al. [49] studied the 

separation of free fatty acids, fatty acid amides and fatty acylglycerol on a TLC plate.  

They described TLC as a rapid means of identifying the components of fatty mixtures 

with highly reproducible separation even though no data on quantification was 

available.  Kaneshiro et al. [50] have used TLC for the detection of amides while 

studying their bioconversion from oleic acid by Bacillus megaterium.  They used iodine 

vapor for the visualization of unsaturated and sulfuric acid charring at 140 ºC for the 

visualization of saturated amides.  Separation of amides was achieved by further 

analysis with HPLC and GC.  TLC was also used for the identification of oleamide 

produced by Streptomyces sp. KK90378, a soil microorganism [51].  After purification 

by TLC and column chromatography, the structure of oleamide was confirmed using 

GC/MS and NMR.   
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In this chapter, we report the inclusion of primary fatty acid amides, N-

acylethanolamines and N-acylglycines as lipid classes in total lipid profiling by high 

performance thin layer chromatography (HPTLC).  The method was validated using the 

lipids extracted from N18TG2 cell, a model line, that was found to (i) express 

peptidylglycine α-amidating monooxygenase (PAM), (ii) show increased PAM 

expression upon differentiation, and (iii) produce both oleamide and anandamide.  It is 

necessary to add here that the biosynthesis of PFAM’s from N-acylglycines is catalyzed 

by PAM in vivo (please see Section 1.5 of Chapter 1 for more information).  The total 

lipid extract from amide spiked N18TG2 cells was loaded on the HPTLC plates and the 

lipid classes were profiled [52-53].  Isolated PFAM’s spots were scraped off the plates 

and analyzed by GC/MS free of interference from other lipid classes [54].  Because this 

method was validated for isolating and analyzing the amides from amide-spiked N18TG2 

cells, it is likely that PFAM’s as well as NAE and NOG can be isolated and analyzed 

quantitatively also from any cultured cell type.  

3.3 Experimental 

3.3.1 Reagents 
 
Oleamide (OM), oleic acid (OA), tristearin (TS), tricaproin (TC), monooleoyl glycerol 

(MOG), monopalmitoyl glycerol (MPG), monocaproyl glycerol (MCG), dipalmitin 

(DP), phosphatidylcholine (PC), N-oleoylglycine (NOG), N-oleyolethanolamine (NOE), 

sphingomyelin (Sph), gangliosides (G) and squalene (Sq) were purchased from Sigma 

(St. Louis, MO). Cholesterol (Ch) was purchased from EM Science (Darmstadt, 

Germany) and cholesteryl palmitate (ChP) from Janssen Chemical (Geel, Belgium).  
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The solvents used for making solutions and mobile phases were purchased as follows: 

ACS reagent grade chloroform and methanol from EM Science and EMD (Darmstadt, 

Germany) respectively; ACS reagent grade hexanes and glacial acetic acid from Fisher 

Scientific (Fair Lawn, NJ); acetone and diethyl ether from Acros Organics (Geel, 

Belgium) and Aldrich Chemical Co. (Milwaukee, WI) respectively.  Stearamide and 

palmitamide were synthesized from the corresponding acids according to the published 

protocol [55] modified in our laboratory. 

3.3.2 Cells 
 
N18TG2 cells treated under different conditions were provided by our collaborators Dr. 

David Merkler and Dr. Kathy Merkler of University of South Florida.  The descriptions 

are as follows: N18TG2 is a mouse neuroblastoma cell line that was obtained from 

DSMZ (Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH; 

Braunschweig, Germany).  The N18TG2 cells were grown in Dulbecco's Modified 

Eagle's Medium (DMEM, Mediatech Cellgro, Herndon, VA) supplemented with 1% 

penicillin-streptomycin (Sigma Chemical Co., St. Louis, MO), 10% fetal bovine serum 

(FBS, Atlanta Biological, Atlanta, GA), and 100 mM 6-thioguanine (Sigma) at 37 °C 

and 5% CO2 atmosphere.  Several conditions were set up: 1) No Tx: no treatment with 

differentiation agents, 2) Differentiated (Diff.) Control: Cultures were grown to 60% 

confluency and then differentiated for two days in low serum (0.5% FBS) DMEM 

containing 200 ng/mL nerve growth factor (NGF, Boehringer Mannheim, 

Indianapolis,IN), and 1 mM dibutyryl cAMP (Sigma), 3)  Undiff. + oleic acid: 

undifferentiated cells that were at 60% confluency were treated with DMEM + 200 µM 
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oleic acid for 2 days and 4) Diff. + oleic/ palmitic / stearic acid: cells at 60% confluency 

were treated with low serum DMEM + differentiation agents + 200 µM of a particular 

acid for 2 days.  The cells were detached from the tissue culture flask using a cell 

scraper.  The cells were then centrifuged (250 x g) and washed 3 times with Dulbecco's 

Phosphate Buffered Saline (DPBS).  The pellets were flash frozen in a dry ice/methanol 

bath and stored at -80º C. 

3.3.3 HPTLC plates 
 
High performance thin layer chromatography plates (HPTLC) were purchased from 

Analtech (Newark, DE).  These plates were of 10 x 10 cm and with organic binder and 

no fluorescence indicator incorporated.  Primuline dye, (CI 49000; direct yellow 59) 

used for spraying the HPTLC plates, was obtained from Aldrich.  

3.3.4 Systems and instruments 
 
Camag Nanomat and capillary dispenser system, purchased from Camag (Muttenz, 

Switzerland), was used for easy application of samples on HPTLC plates in the form of 

spots with minimal spread, precisely positioned and without damage to the layer.  1 µL 

sample was applied at a time with disposable capillary pipettes.  Preval power unit 

(Precision Valve Corporation, Yonkers, NY) for spraying primuline dye on the HPTLC 

plates was purchased from a local hardware store.  Fluorescent images were obtained 

using Kodak digital science 440 image station (IS440cF, Perkin Elmer, Boston, MA) 

and the image analysis was carried out by Kodak 1D scientific image analysis software 

(Scientific imaging system; SIS, New Haven, CT).  An Agilent Technologies Network 

GC/MS system (6890 GC with 5973 mass selective detector and 7683 series injector) 
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was used for GC/MS analysis.  The column used was an HP-5MS (0.25 mm internal 

diameter, 0.25 µm film thickness, 30 meter long, Agilent Technologies Inc., Palo Alto, 

CA) able to analyze fatty acids and amides without prior derivatization.  The GC/MS 

method used for analysis is as follows: Starting temperature was 55 ºC, ramped to 150 

ºC at 40 ºC per min, held at 150 ºC for 3.62 min, ramped to 300 ºC at 10 ºC per min and 

finally held at 300 ºC for 2 min.  Electron impact ionization (EI) at 70 eV was used and 

mass range was kept from 40 to 400 m/z for total ion monitoring (TIM) mode.  The 

fragment ions used for the single ion monitoring (SIM) mode were m/z 59, m/z 72, m/z 

62, and m/z 76.  The temperatures of the injection port and the transfer line were 250 ºC 

and 280 ºC respectively.  Injection volume was 1 µL splitless. 

3.3.5 Method development 
 
12 lipid markers and their mixtures were used for HPTLC method development.  These 

lipids include OM, OA, Ch, ChP, TS, MOG, DP, NOG, NOE, PC, Sph and G.  HPTLC 

mobile phases were made the day before analysis.  Solvents were mixed in correct 

proportions, sonicated for an hour and kept on the bench top with caps on.  2 µL of each 

standard were applied on HPTLC plates 1 cm from the bottom using the Camag 

capillary holder.  Warm air from a hair dryer was applied continuously for 5 min before 

sample application in order to activate the silica gel and for 1 more minute after the 

application in order to dry the spots.  For plate development, twin trough chambers for 

10 x 10 cm plates from Camag were used.  HPTLC separation method was modified 

from the method used by White, et al. [41] in order to separate PFAM’s as a lipid class.  

Firstly, the 10 x 10 cm plates were developed up to 5.5 cm from the bottom in 
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chloroform: methanol: acetic acid (95:5:1, v/v/v), dried for 5 min with warm air from a 

hair dryer.  Secondly, the dried plates were developed in hexanes: diethyl ether: acetone 

(60:40:5, v/v/v) up to 8 cm, re-dried.  Thirdly and finally, the plates were developed in 

hexanes: diethyl ether (97:3, v/v) to 9.5 cm.  These plates were then dried for 5 min and 

sprayed with a 0.05 % primuline solution (in 80:20, v/v acetone: water) and re-dried.  

The dry plates were scanned by Kodak digital Science 440 image station.  

3.3.6 Method validation 
 
The developed method was validated using the lipids extracted from N18TG2 cells.  Six 

different N18TG2 cells were used in this study.  Cell 1, differentiated (diff.) cells grown 

in oleic acid; cell 2, diff. control; cell 3, diff. cells grown in stearic acid; cell 4, diff. 

cells grown in palmitic acid; cell 5, undifferentiated (undiff.) cells grown in oleic acid, 

and cell 6, No treatment (No Tx) N18TG2 cells.  The cells were stored at -80 ºC upon 

arrival in the laboratory.  They were taken out just before the extraction and kept on dry 

ice until suspending in methanol.  Cells 1 and 5 were spiked with oleamide; cells 3 and 

4 were spiked with stearamide and palmitamide, respectively, before lipid extraction in 

order to be able to see the amides on the HPTLC plates and to analyze percent recovery.  

Spiking was done by suspending the cells with 1 mL amide solutions in methanol 

(0.947 µmol/mL oleamide, 0.941 µmol/mL stearamide and 1.044 µmol/mL of 

palmitamide).  Lipid extractions from all the cells were carried out according to White 

et al. [41] and Folch-Pi et al. [56] with a little modification.  The methanol suspension 

was sonicated for 15 min at room temperature and centrifuged at 4500 rpm for 10 min.  

The supernatant was separated from the pellet, dried under a stream of N2 in a warm 
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water bath at 35-40 ºC.  The pellet was re-extracted with 1 mL of 1: 1: 0.1; (v/v/v) 

chloroform: methanol: water, sonicated for 10 min, vortexed for 2 min and centrifuged 

for 10 min as above.  Supernatant from this step was added to the dried supernatant 

from the previous step and re-dried the same way.  The total extract was then 

partitioned into lipid and non-lipid portions by adding 1.2 mL of chloroform: methanol 

(2:1, v/v) and 200 µL of 0.5 M KCl/ 0.08 M H3PO4.  This partitioned extract was 

sonicated for 2 min, vortexed for 2 min and centrifuged for 10 min at 4500 rpm.  The 

lower lipid phase was dried under a stream of N2 in a warm water bath at 35-40 ºC.  The 

dried lipid extract was dissolved in 100 µL of 0.5 mg/mL squalene solution in 

chloroform: methanol (2:1, v/v).  2 µL of these final lipid solutions (six solutions for six 

different cells) were applied on HPTLC plates so that the amount of each amide applied 

on the HPTLC plates is 5.33 µg from the spiked cells.  

3.3.6.1 Quantification of lipid classes by KODAK SIS 
 
Because nine different lipid classes were visibly separated in the total lipid extract, 

calibration curves of nine lipid markers were prepared.  All the standard solutions were 

made with a 0.5 mg/mL squalene (an internal standard) solution in chloroform: 

methanol (2:1, v/v).  Squalene was chosen as an internal standard based on 3 factors: (i) 

its good resolution from all the lipid classes (it is a non-polar hydrocarbon), (ii) the 

quantity of squalene applied on the HPTLC plates falls within the range of the amount 

of lipids applied, and (iii) it can be visualized using primuline dye along with other lipid 

classes.  The sample spots were quantified by comparing their pixel intensities relative 
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to the internal standard to those of the corresponding standard curves (n = 7 to 10).  

Kodak 1D scientific imaging software (SIS) was used for this analysis.  

3.3.6.2 Quantification of PFAM’s by GC/MS 
 
For GC/MS analysis of PFAM’s, the spots containing amides were scraped off the 

HPTLC plates.  These plates were not sprayed with primuline and the positions of 

PFAM’s were determined by comparing with plates that were sprayed with primuline.  

The amides were then treated as follows: (i) amide adsorbed silica-gel was suspended in 

2-propanol containing the internal standard (0.8 ng/µL heptadecano-d33-amide) and 

sonicated for 5 min to dissolve the amide, (ii) the suspension was then centrifuged and 

the supernatant was collected, (iii) any silica particle left in the supernatant was 

removed by filtering through 0.2 µm nylon membrane filter (Whatman), and finally (v) 

the sample was injected into GC.  Quantification of cell amides was done by comparing 

their peak areas relative to the internal standard to those of the corresponding standard 

curves.  

3.4 Results and Discussions 
 
In order to develop a method for total lipid profiling including PFAM’s as a lipid class, 

the method described by White et al. [41] was modified.  Their method was a multi-step 

one dimensional TLC development using 4 different solvent systems.  In order to follow 

how each lipid moves after development by each solvent system, six different plates (A-

F) were developed.  Besides the four solvent systems used by White et al., 100 % 

CHCl3 was included in this method as the first solvent.   
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FIGURE 3-1: Step 1 for the method development of the total lipid profiling.  The spots 

on the plates from left to right are OM, OA, Ch, TS, TC, MOG, mixture of lipids and 

DP except on plate E where the spots are OM, OA, Ch, MPG, mixture and DP.  For 

conditions for each plate, see text. 
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Therefore the solvent systems used were (i) 100% CHCl3, (ii) CHCl3: MeOH : 

HOAC (90:10:1; v/v/v), (iii) hexanes : diethyl ether : acetic acid (60:40:5; v/v/v), (iv) 

hexanes : diethyl ether (97:3; v/v) and (v) 100 % hexanes.  The lipids spotted on the 

plates to start out are OM, OA, Ch, TS, TC, MOG, DP and a mixture of the standard 

lipids.  Plate A was developed in solvent (i) to 2.5 cm; plate B in solvent (i) to 2.5 cm 

and in solvent (ii) to 4 cm; plate C in solvent (i) to 2.5 cm, in solvent (ii) to 4 cm and in 

solvent (iii) to 8 cm; plate D in solvent (i) to 2.5 cm, in solvent (ii) to 4 cm, in solvent 

(iii) to 8 cm and in (iv) to 9.5 cm; plate E in solvent (i) to 2.5 cm, in solvent (ii) to 4 cm, 

in solvent (iii) to 8 cm, in solvent (iv) to 9.5 cm and in solvent (v) to the top.  Plate F 

was developed as was plate E except solvent (i) was skipped (see Figure 3-1 for A 

through F TLC images).   

It was apparent that the lipids were not moving from the loading position very 

much with the first solvent.  The second solvent was found to be the key solvent that 

moved the relatively polar lipids, whereas the third solvents carried the relatively non-

polar lipids further.  The fourth solvent did not seem to have too much effect except for 

giving better resolution between the lipids.  The main point of the use of the fifth 

solvent was to wash off any non-polar impurities from the plate.  The plate F seemed to 

have better separation then E, therefore the first solvent was skipped for the rest of the 

study.  Figure 3-2 shows the next step taken in the method development.  Since the 2nd 

solvent moves the relatively polar lipids from the position of load, the distance traveled 

by this solvent was changed (plate C) to observe if any further separation between 

PFAM and MAG can be achieved.  Plate A and B were developed the same way as 
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plate F and E respectively from Figure 3-1.  Plate C was developed as plate F in Figure 

3-1 except the distance traveled by the second solvent was 5 cm instead of 4 cm.   

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 3-2: Step 2 for the method development of the total lipid profiling.  The spots 

on the plates from left to right are OM, mixture of lipids and MOG except on plate C 

where the spots are OA, OM, mixture, MPG and DP.   

 

As shown in Figure 3-2, a better separation between PFAM and MAG was 

achieved by the travel of the second solvent to 5 cm.  The third step of the study was to 

see if a different combination of the second solvent provides better resolution between 

OM and MAG.  Figure 3-3 shows that the development of the TLC plate by the second 

solvent system in a ratio 95:5:1 instead of 90:10:1 indeed gave better separation 
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between the polar lipids.  Introduction of 3 different MAG (monoacyl glycerol) shows 

that MOG moves a little further than MPG and MCG.  The next step therefore was to 

vary the composition of the second solvent system and the distance traveled by it. 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 3-3: Step 3 for the method development of the total lipid profiling.  The 

developing solvent for this plate was CHCl3 : MeOH : HOAc (95:5:1 ; v/v/v) to 5 cm. 

The spots on the plate from left to right are mixture of lipids, MPG, MCG, Ch, MOG 

and mixture of lipids. 
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FIGURE 3-4: HPTLC method development step 4. Effect of the composition of the 

CHCl3: MeOH : HOAc on the total lipid profiling. See text for conditions. 

 

Figure 3-4 shows six different plates A through F with composition of solvent 

(ii) varying from 94:6:1, 95:5:1, 96:4:1, 97:3:1, 98:2:1 to 98:2:2 respectively.  The 

distance traveled by the solvent was 5 cm.  All other conditions of the development 

were as same as those for plate C of Figure 3-2.  Since Figure 3-4 shows that 95:5:1 was 

giving comparatively better resolution than the other composition, the distance traveled 

by this solvent was varied.  Five different distances were tried with all other conditions 

the same as the plates in Figure 3-4.   
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FIGURE 3-5: HPTLC method development step 5. Effect of the distance traveled by 

CHCl3: MeOH : HOAc (95:5:1; v/v/v) on the total lipid profiling. Distances for plates 

A-E were 4 cm , 5 cm, 6 cm, 7 cm and 8 cm respectively. 

 

The plates in Figure 3-5 clearly show that 5 cm was the best distance to be used 

for optimum lipid class separation.  The lipids included in the distance study were OM, 

MOG, DP and Ch movement of which were mostly affected by any change in distance 

traveled by solvent (ii).  Therefore the optimum method was taken as follows: 
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development in CHCl3 :MeOH : HOAc (95:5:1; v/v/v) to 5 cm, in hexane : diethyl 

ether: acetic acid (60:40:5 ; v/v/v) to 8 cm followed by in hexane : diethyl ether (97:3; 

v/v) to 9.5 cm.  

 

 

 

 

 

 

 

FIGURE 3-6: PFAM’s as a lipid class as determined by HPTLC (optimized profiling). 
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FIGURE 3-7: Total lipid profiling of N18TG2 cell lipids. 

  

In this study 12 lipid markers including PFAM’s were successfully included and 

separated on a TLC/HPTLC plate (Figure 3-7).  The lipid classes profiled were phospho 

and glycolipids (polar lipids; PL), monoacyl glycerol (MAG), primary fatty acid amides 

(PFAM’s), cholesterol (Ch), diacyl glycerol (1,2 and 1,3 DAG), fatty acids (FA), triacyl 

glycerol (TAG) and cholesteryl ester (CE).  N-acylglycine and N-acylethanolamine 

(NAG and NAE) were also separated from other lipid classes.  Because PL do not 

migrate from the point of application, the subclasses within this lipid class would have 
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to be developed separately [41].  Even though, NAE and NAG are not quite separated 

from each other but separation can be easily improved upon further TLC modification.  

The spot for NAG and NAE can also be scraped off and separated by LC and/or GC. 
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FIGURE 3-8: Elution profile of C12-C22 saturated amides. Relative intensities of m/z 

are plotted against the retention time. m/z 59 (blue) and m/z 72 (red) are specific to the 

naturally abundant amides whereas m/z 62 (indigo) and m/z 76 (orange) are specific to 

the isotopically enriched C17D33 amide used as internal standard (IS). 

 

Our method was equally successful when applied to the separation of lipids 

extracted from various N18TG2 cells.  The resolved lipid classes in these cells shown in 

Figure 3-8 were MAG, PFAM’s, Ch, DAG, FA, TAG and CE.  No NAG or NAE were 

identified in the cells, which may be due to the high detection limits of these lipids.  

Detection limits for the lipid classes are shown in Table 3-I for both KODAK SIS and 
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GC/MS.  The elution profile for saturated C12 to C22 amides on a HP-5MS column is 

shown in Figure 3-8.  For GC/MS, detection limits for palmitamide, stearamide and  

 

TABLE 3-I: Detection limits (DL) of the lipids for Kodak SIS and GC/MS. 

Lipid classes DL 

 SIS (µg) GC/MS (pg) 

PGL 0.08 ---- 

NAG 0.1 ---- 

NAE 0.1 ---- 

MAG 0.36 ---- 

PFAM’s 0.56 C16 25 

  C18 10 

  C189 5 

Ch 0.05 ---- 

DAG 0.05 ---- 

FFA 0.14 ---- 

TAG 0.09 ---- 

CE 0.02 ---- 

 

 

oleamide were found to be 25 pg, 10 pg and 5 pg, respectively.  The higher detection 

limit of the amides compared to the other lipid classes on the HPTLC plates is why the 

spiking was needed in order to be able to see them on the HPTLC plates.  In this study 

HPTLC was proven be an quick and easy method for profiling and quantifying lipids 

including PFAM’s within a specific cell type (see Table 3-II for quantification results) 
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and the quantification of PFAM’s were comparable to that obtained by GC/MS (see 

Figures 3-9 and 3-10 for standard curves). 

GC/MS analysis of the amides scraped off the HPTLC plates is shown in Figure 

3-11 which suggests that PFAM’s can be isolated and analyzed free of interaction from 

other lipid classes of any cell or tissue type.  Percent recoveries of amides (Table 3-III) 

obtained by both SIS and GC/MS were found to be comparable within 95 % confidence 

level except in case of palmitamide.  The reason might be attributed to personal or 

instrumental error for that particular case.  Low recovery of stearamide and palmitamide 

compared to oleamide may be due to the sample loss during the extraction of cells 3 and 

4 or due to the sample loss during the isolation of amides from silica particles.   

 

TABLE 3-II: Quantification of lipid classes by KODAK fluorescence imaging system.  

See Section 3.3.6 for the description of the cells 1-6 used in this study. 

 Average mass per cell (ng) 

Cell # MAG PFAM’s 1,2 

DAG 

Ch 1,3 

DAG 

FFA TAG CE PL 

1 3.2 

± 0.31 

9.8 

± 0.69 

0.13 

± 0.02 

0.26 

± 0.07 

0.25 

± 0.13 

0.46 

± 0.15 

0.67 

± 0.13 

0.17 

± 0.04 

2 

± 0.69 

2 2.8 

± 0.19 ---- 

0.14 

± 0.02 

0.21 

± 0.06 

0.23 

± 0.08 

0.23 

± 0.05 

0.16 

± 0.02 

0.04 

± 0.02 

0.93 

± 0.32 

3 0.45 

± 0.06 

0.53 

± 0.21 

0.03 

± 0.004 

0.03 

± 0.01 

0.04 

± 0.01 

0.06 

± 0.01 

0.08 

± 0.01 

0.03 

± 0.01 

0.27 

± 0.10 

4 12.4 

± 1.8 

10 

± 3.5 

0.76 

± 0.17 

0.96 

± 0.21 

0.76 

± 0.34 

2.2 

± 0.35 

1.5 

± 0.29 

0.32 

± 0.23 ---- 

5 0.29 

± 0.07 

0.83 

± 0.19 

0.02 

± 0.002 

0.02 

± 0.01 

0.01 

± 0.004 

0.03 

± 0.01 

0.06 

± 0.01 

0.01 

± 0.002 

0.19 

± 0.03 

6 0.92 

± 0.16 ----- 

0.05 

± 0.01 

0.06 

± 0.03 

0.08 

± 0.04 

0.1 

± 0.02 

0.07 

± 0.01 

0.02 

± 0.01 

0.48 

± 0.12 
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FIGURE 3-9: Standard curves for the quantification of lipid classes on HPTLC. 

Uncertainties are at 95 % confidence level with n = 6. 

 

Both Table 3-II and 3-III show that no amides were detected in cell 2, 

differentiated N18TG2 cells and in cell 6, no treatment N18TG2 cells.  These cells were 

not spiked with amides and extracted in the same fashion as the ones spiked with 

amides.  The reason that the amides could not be detected by either HPTLC or GC/MS 

without a spike was the low cell mass available for this study.  Because oleamide is 

known to be produced in this cell, it might be possible to detect other PFAM’s as well, 

provided a larger sample mass is available.  
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FIGURE 3-10: Standard curves for the quantification PFAM’s by GC/MS.  

Uncertainties are at 95 % confidence level with n = 6. 

 

TABLE 3-III: Percent recoveries of PFAM’s from amide spiked N18TG2 cells. 

% Recoveries Cell # Amide spiked 

SIS GC/MS 

1 Oleamide 105 ± 8 98 ± 4 

2 none ---- ---- 

3 Stearamide 28 ± 12 38 ±1 

4 Palmitamide 19 ± 4 36 ± 2 

5 Oleamide 80 ± 19 112 ±14 

6 none ---- ---- 

Uncertainties are at 95% confidence limit with n = 6 (SIS) and 9 (GC/MS). 
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FIGURE 3-11: (a) GC of cell 1 oleamide (C18:19), cell 3 stearamide (C18:0) and cell 4 

palmitamide (C16:0). Relative intensities of m/z 59, m/z 72, m/z 62 and m/z 76 are 

plotted against the retention time. (b) Mass spectra of oleamide, stearamide and 

palmitamide recovered from amide-spiked cells. Relative intensities are plotted against 

m/z values. 
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3.5 Conclusions 
 
We present a method of isolation of the primary fatty acid amide class, which has 

recently been recognized for its hormone like activities.  After the sample preparation, 

instrumental analysis of these biologically active hormones can be done free of 

interaction of other lipids.  The method was validated by extracting amides from lipid 

extracts of N18TG2 cell line, a model for oleamide biosynthesis in vivo.  Application of 

the validated method to the lipids extracted from rabbit brain, heart and brain acetone 

power will be discussed in Chapter 5.  Quantification of amides from the biological 

sample and their percent recovery will be reported.  A solid phase extraction method 

was also developed, which will be detailed in the next chapter.  Comparison of the 

results from HPTLC/GC/MS and SPE/GC/MS of amide isolation can provide strong 

milestones for these methods.  
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Chapter 4 

Solid-phase extraction (SPE) of primary fatty acid amides 
 

4.1 Abstract 
 
Primary fatty acid amides (PFAM’s) were isolated from a standard lipid mixture by 

solid-phase extraction (SPE) and the lowest mass of amide to be loaded and recovered 

was detected.  The method was validated using the lipids extracted from N18TG2 mouse 

neuroblastoma cells.  N18TG2 is a model cell line shown to express PAM 

(peptidylglycine α-amidating monooxygenase), which is the enzyme for the final step in 

PFAM biosynthesis.  The cells were spiked with seven different amides before lipid 

extraction.  The isolated PFAM’s were quantified by GC/MS and percent recoveries 

were calculated.  The detection limit in the single ion monitoring mode (SIM) were 

found to be 30 pg for amides containing 12 to 14 carbons and 10 pg for amides 

containing 16 to 22 carbons with the exception of oleamide (C18:19).  Oleamide was 

found to have a detection limit of 5 pg.  Use of SPE for isolating amides from total lipid 

extract before analyzing them by GC/MS provides clean detection and interference free 

analysis.  SPE sample preparation can thus be useful for analyzing PFAM’s also in 

conjunction with liquid chromatography/mass spectrometry (LC/MS), and/or capillary 

electrophoresis (CE). 
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4.2 Introduction 
 
Solid-phase extraction (SPE) implies the adsorption of a target analyte from a mixture 

onto a suitable solid phase followed by its elution with a chosen solvent.  The objective 

of SPE is to isolate the target analyte in pure concentrated form from a rather complex 

matrix.  The solid phases are so chosen that either the analyte can be selectively 

adsorbed on the column while the unwanted compounds can be washed off or the 

impurities are retained while the target analyte is selectively eluted with a mobile 

solvent of appropriate polarity.  The advantages of the SPE over LC includes (i) lower 

hazardous solvent handing and consumption, therefore least health and safety risk; (ii) 

capability of handling microgram level samples; (iii) shorter sample preparation time; 

(iv) increased analyte recovery, as well as (v) less handling and cleaning of glassware.  

The variety of solid phases available include silica gel and bonded aminopropyl 

(normal phase), octadecylsilyl (reversed phase) or the ion exchange media (bonded 

acidic or basic moieties).  The one particular characteristic of silica gel used for SPE is 

that they have rather larger particle sizes and irregular shapes compared to the 

traditional HPLC phases, allowing rapid flow of solvent through the sorbent bed.  SPE 

particle sizes generally range form 40-100 µm with 60 Å -70 Å pore diameter.  Various 

bonding techniques and reagents are used by various manufacturers in order to produce 

monomeric or polymeric bonded phases on the silica surface.  Monomeric phase 

consists of a single bonded silane layer whereas the polymeric phase consists of 

multiple layers of bonding reagents polymerized on the silica surface.  Depending on 

the nature of the bonding reagent, the SPE phases can be termed as normal (polar) or 
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reversed (non-polar) phases.  The unbonded silica is the most polar phase whereas the 

octadecylsilyl (ODS) bonded silica by far is the least polar phase.  Silica is used for 

extracting relatively polar compounds followed by their selective elution with mobile 

phases of increasing polarities, and ODS is mainly used for the extraction of non-polar 

compounds followed by their elution with mobile phases of decreasing polarities.  The 

disadvantage of using silica or ODS is that very polar or very non-polar compounds 

respectively can be completely retained by them and therefore become difficult to 

recover.  Application of the moderately polar phases such as aminopropyl bonded 

phases can be used to avoid such difficulties.  Ion exchange phases are also used to 

selectively extract and elute compounds with cationic or anionic properties.  It is a 

common practice to condition the columns with solvent of similar polarity as the 

loading solvent before loading the sample, which helps to organize the organic moieties 

of the bonded silica surface in a regular array, making it more accessible to the analytes 

[1, 2].  

Lipid extraction by SPE has become popular due to the several facts.  Firstly, the 

low concentrations of many of the lipids available in samples can be concentrated by 

SPE; secondly, any particular class can be selectively extracted and eluted in pure state; 

and lastly, sensitivity and the limit of detection of the isolated lipid class is improved for 

instrumental analysis due to the removal of interferents.  Normal phase silica columns 

are the most common types of phases used for lipid extraction even though ODS was 

one of the first phase to be used for selective isolation of gangliosides from tissue 

extracts [3].  The reason behind the use of ODS in this case was mainly due to the 

partition of gangliosides into the Folch upper phase after the Folch extraction of lipids 
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[4] from tissues.  The Folch upper phase is basically polar and passes through the ODS 

leaving the gangliosides behind, which could thus be selectively eluted by chloroform : 

MeOH (2:1, v/v).  Many other applications for the isolation of various lipid classes as 

well as purification of total lipid extracts by ODS columns have been described in the 

literature [5-27].   

The use of normal phase SPE is pervasive for the isolation of lipid classes [28-

41] due to its polar nature, which offers selective extraction of different lipid classes 

from various sample sources to be available for further instrumental studies.  One 

example to be mentioned is the separation of N-acylethanolamines (NAE: anandamide, 

an endocannabinoid, belongs to this group) and monoacyl glycerol (MAG: 2-

arachidonyl glycerol, a second endocannabinoid, belongs to this group) from 

mammalian tissue lipid extracts by silica columns [42].  One problem associated with 

using silica columns is that they tend to show different efficiency from manufacturer to 

manufacturer or from batch to batch mostly due to variable water retention.  This 

problem can be overcome by drying the phases before use or by using solvents with 

controlled humidity [43, 44].  The other problem with the silica columns is that the 

polar lipids (PL) tend to be retained in this rather polar phase.   

The use of aminopropyl bonded columns instead of silica columns is favored in 

lipid analysis because these are comparatively less polar than silica and therefore are 

less affected by moisture on their capacity for lipid adsorption [45].  Kaluzny et al [46] 

were among the first to use the aminopropyl bonded columns for the separation of seven 

different lipid classes by piggybacking multiple columns, but unfortunately their 

method was not found to be reproducible by other laboratories [for review see Ref 1] 
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including this laboratory.  Various modifications of this method have been reported 

which were better at isolating any particular lipid class [47] or simple lipids [48].  Other 

uses of aminopropyl bonded phase for the isolation of lipids include but are not limited 

to the separation of acidic and neutral lipids (NL) from Escherichia coli and human 

spermatozoa lipid extracts [49], separation of NL and polar lipids (PL) from mixed 

microbial cultures [50], rapid separation of lipid classes in different micro organisms 

[51], purification of fatty acid ethyl esters from a lipid mixture [52], separation of PL 

and various NLs from plasma lipid extract [53], separation of plant membrane lipids 

[54], separation of lipid classes from edible oil and mice tissue samples before their 

analysis for fatty acid content [55], isolation of chlorinated fatty acids from cell culture 

medium and fish lipids [56] as well as isolation of serum lipids [57].   

Numerous literature reviews are available discussing the principles of SPE, the 

types of phases available for a particular application, and the application of SPE in lipid 

analysis [2, 58-61].  The reproducibility of a given SPE method largely depends on the 

SPE phase, sorbent conditioning, amount of sample loaded, amount of each mobile 

phase used for elution as well as the flow rate of the mobile phase.  Therefore, it is 

necessary to describe a developed SPE method in detail when publishing in order for 

others to be able to reproduce the method.  It is also not recommended that a vacuum 

manifold be used for carrying out SPE with non polar solvents.  Organic solvents tend 

to evaporate rapidly under vacuum, which causes partial drying of the stationary phase.  

For such cases, normal flow by gravity is preferred, but, if required, positive pressure by 

a syringe can be applied [62].  
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In the earlier chapters, the biological significance of the primary fatty acid 

amides (PFAM’s) was discussed and the potential problems associated with their 

analysis were also addressed.  It is necessary to point out again that sample clean up 

such as by HPTLC described in Chapter 3 or by SPE mentioned above before their 

analysis can provide concentration, higher sensitivity as well as the lower limit of 

detection.  It is important to address that these types of sample preparations not only 

improve the analysis but also increase the detector lifetime and save money on 

consumables such as injection liners and septa.  In this chapter, a method for the 

isolation of PFAM’s by SPE has been demonstrated [63] and the validation of this 

method by lipid extracts from N18TG2 cells has been described in detail for ease of 

reproducibility.  The application of this method to the lipids extracted from mammalian 

tissues will be reported in Chapter 5. 

4.3 Experimental 

4.3.1 Reagents 
 
Oleamide (OM), oleic acid (OA), tristearin (TS), monooleoyl glycerol (MOG), 

dipalmitin (DP), phosphatidylcholine (PC), N-oleoylglycine (NOG), N-

oleyolethanolamine (NOE), sphingomyelin (Sph) and bovine brain gangliosides (G) 

were purchased from Sigma (St. Louis, MO).  Cholesterol (Ch) was purchased from EM 

Science (Darmstadt, Germany) and cholesterol palmitate (ChP) from Janssen Chemical 

(B-2440 Geel, Belgium).  The solvents were purchased as follows: ACS reagent grade 

hexanes, methanol and glacial acetic acid from Fisher Scientific (Fair Lawn, NJ); 

acetone from Acros Organics (manufactured in Geel, Belgium); chloroform and diethyl 
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ether from Aldrich Chemical Co. (Milwaukee, WI).  Primary fatty acid amides (except 

oleamide) were synthesized from the corresponding acids in our laboratory modifying a 

published protocol [64, also see Chapter 2].  All the free fatty acids were purchased 

from Sigma unless otherwise mentioned.  The undifferentiated N18TG2 cells grown in 

oleic acid were used, because only this cell type was available in considerable amount 

to carry out this study.  These cells were donated by David and Kathy Merkler of 

University of South Florida.  The cell description is as follows: N18TG2 is a 

neuroblastoma cell line that was obtained from DSMZ (Deutsche Sammlung von 

Mikroorganismen und Zellkulturen GmbH; Braunschweig, Germany).  The N18TG2 

cells were grown in Dulbecco's Modified Eagle's Medium (DMEM, Mediatech Cellgro, 

Herndon,VA) supplemented with 1% penicillin-streptomycin (Sigma Chemical Co., St. 

Louis, MO), 10% fetalbovine serum (FBS, Atlanta Biological, Atlanta, GA), and 100 

mM 6-thioguanine (Sigma) at 37 °C and 5% CO2 atmosphere.  Undifferentiated cells 

that were at 60% confluency were treated with DMEM + 200 µM oleic acid for 2 days 

and the cells were detached from the tissue culture flask using a cell scraper.  The cells 

were then centrifuged (250 x g) and washed 3 times with Dulbecco's Phosphate 

Buffered Saline (DPBS).  The pellets were flash frozen in a dry ice/methanol bath and 

stored at -80 ºC. 

4.3.2 SPE phases 
 
Discovery DSC-Si and Discovery DSC-NH2 SPE phases were purchased from Supelco 

(Bellefonte, PA).  Irregularly shaped and acid washed base silica possessed following 

properties: 50 µm particle size, 70 Å pore diameter, 480 m2/g specific surface area and 
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0.9 cm3/g pore volume.  DSC-Si is the unbonded silica phase, which is basically used as 

a normal phase adsorbent whereas DSC-NH2 is the aminopropyl bonded silica which 

can be used as either normal phase or the ion-exchange adsorbent.  Polypropylene SPE 

tubes (empty) of 3 mL volumes with polyethylene frits were also purchased from 

Supelco.  500 mg of the phases were packed into the tubes between two frits with hand 

pressure in order to carry out SPE. 

4.3.3 HPTLC plates 
 
High performance thin layer chromatography plates (HPTLC) from Analtech (Newark, 

DE) were used for viewing the lipid contents in different SPE fractions.  These plates 

were of 10 x 10 cm, with organic binder and no fluorescence indicator incorporated.  

Primuline dye (CI 49000; direct yellow 59) used for spraying the HPTLC plates was 

obtained from Aldrich Chemical Co. (Milwaukee, WI).  

4.3.4 Instrumentation 
 
A Kodak digital Science 440 image station equipped with scientific imaging software 

(SIS) was used for scanning the HPTLC plates.  An Agilent Technologies Network 

GC/MS system (6890 GC with 5973 mass selective detector and 7683 series injector) 

was used for GC/MS analysis.  The column used was an HP-5MS (0.25 mm internal 

diameter, 0.25 µm film thickness, 30 m long, Agilent Technologies Inc., Palo Alto, CA) 

able to analyze fatty acids and amides without prior derivatization.  The GC/MS method 

used for analysis is as follows: Starting temperature was 55 ºC, ramped to 150 ºC at 40 

ºC per min, held at 150 ºC for 3.62 min, ramped to 275 ºC at 10 ºC per min and finally 

held at 275 ºC for 2 min.  Electron impact ionization (EI) at 70 eV was used.  The 
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temperatures of the injection port and the transfer line were 250 ºC and 280 ºC, 

respectively. Mass range was kept from 40 to 400 m/z for total ion monitoring (TIM) 

and selected masses were 59, 72, 62 and 76 for single ion monitoring (SIM).  Injection 

volume was 1 µL splitless. 

4.3.5 Method development 
 
12 lipid markers and their mixtures were used for the SPE method development.  These 

lipids include OM, OA, Ch, ChP, TS, MOG, DP, NOG, NOE, PC, Sph and G.  SPE 

elution solutions were made by mixing them in correct proportions followed by 

sonication for an hour.  To start out the method, 100 µL of each lipid (1 mg/mL) were 

mixed together, dried under N2 and re-dissolved in 500 µL hexane.  100 µL of this 

mixture was loaded into the DSC-Si column so that the total oleamide load onto the 

SPE tube is 20 µg (total lipid load was 240 µg).  The column was completely solvated 

in hexane before the sample load.  After the lipids were adsorbed by the silica phase, 4 

mL hexane was used for washing the sample, which was considered as fraction one 

from DSC-Si column.  The lipids were then eluted with 1 mL of each 99:1 hexane: 

acetic acid, 90:10 hexane: ethyl acetate, 80:20 hexane: ethyl acetate, 70:30 hexane: 

ethyl acetate, 1.5 mL of 2:1 chloroform: 2-propanol, and finally with 2 mL of methanol.  

Fraction six was found to contain the amide, monoacyl glycerol, N-acylglycine and the 

N-acylethanolamine.  This fraction was therefore dried under N2, re-dissolved in 200 µL 

of hexane and loaded onto DSC-NH2 column.  The sample was allowed to be adsorbed 

into the phase and was washed with 2 mL of hexane, which was called fraction one 

from DSC-NH2 column.  The lipids were then eluted by 2 mL of chloroform, 2 mL of 
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2% chloroform in 2-propanol, 1 mL of 2% chloroform in 2-propanol, 2 mL of 3% 

chloroform in 2-propanol and finally with 2 mL of methanol.  Fraction three from DSC-

NH2 column was found to contain only amides, which was then dried under N2 and re-

dissolved in 0.25 ng/µL internal standard solution in 2-propanol before injecting into 

GC/MS.  The internal standard used was deuterated heptadecanoamide (C16D33-CO-

NH2). 

4.3.6 Optimization of amide load 
 
In-order to find out the lowest amount of amide to be loaded and isolated by this 

method, 9 different oleamide loads were examined.  These included 20 µg, 10 µg, 5 µg, 

2 µg, 1 µg, 0.5 µg, 0.2 µg, 0.1 µg and 0.02 µg loads.  0.5 µg was found to be the lowest 

mass loaded and isolated by this method therefore this amount was used for further 

analysis.  

4.3.7 HPTLC method for viewing the lipid contents in each SPE fractions 
 
The fractions from both the columns were applied onto the 10 x 10 cm plates and the 

plates were developed up to 5.5 cm from the bottom in chloroform: methanol: acetic 

acid (95:5:1, v/v/v), dried for 5 min with warm air from a hair dryer. The dried plates 

were re-developed in hexane: diethyl ether: acetone (60:40:5, v/v/v) up to 8 cm and re-

dried.  The plates were finally developed in hexane: diethyl ether (97:3, v/v) to 9.5 cm.  

These plates were then dried for 5 min and sprayed with a 0.05% primuline solution (in 

80:20, v/v acetone: water) and re-dried.  The dry plates were scanned by Kodak image 

station.  
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4.3.8 Method validation 

4.3.8.1 Lipid extraction 
 
The cells were stored at -80 ºC upon arrival in the laboratory.  They were taken out just 

before the extraction and kept on dry ice until suspending into 4 mL of methanol.  0.1 

µg/µL solution of seven amides was made by dissolving 0.001 g of each amide in 10 

mL methanol.  These amides include lauramide, C12:0; tridecanamide, C13:0; 

myristamide, C14:0; palmitamide, C16:0; oleamide, C18:19; stearamide, C18:0 and 

eicosanamide, C20:0.  5 µL of this solution was spiked into the methanolic cell 

suspension so that the amount of each amide spiked into the cell extract was 0.5 µg.  

Lipid extraction from all the cells were carried out according to White et al. [65] and 

Folch-Pi et al. [4] with a little modification.  The methanol suspension was sonicated 

for 15 min at room temperature and centrifuged at 4500 rpm for 10 min.  The 

supernatant was separated from the pellet, dried under a stream of N2 in a warm water 

bath at around 35-40 ºC.  The pellet was re-extracted with 4 mL of 1: 1: 0.1; (v/v/v) 

chloroform: methanol: water, sonicated for 10 min, vortexed for 2 min and centrifuged 

for 10 min as above.  Supernatant from this step was added to the dried supernatant 

from the previous step and re-dried the same way.  The total extract was then 

partitioned into lipid and non-lipid portions by adding 4.8 mL of chloroform: methanol 

(2:1, v/v) and 800 µL of 0.5 M KCl/ 0.08 M H3PO4.  This partitioned extract was 

sonicated for 2 min, vortexed for 2 min and centrifuged for 10 min at 4500 rpm.  The 

lower lipid phase was dried under a stream of N2 in a warm water bath at around 35-40 

ºC.  The dried lipid extract was dissolved in 100 µL hexane and loaded into the DSC-Si 

so that the amount of each amide loaded is 0.5 µg from the spiked cells.  Six different 
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extractions were carried out the same way as described above except no amides were 

spiked in three extractions (blank).  

4.3.8.2 GC/MS analysis of fraction 3 from DSC-NH2  
 
Fraction three containing amides was dried under N2 and re-dissolved in 300 µL of 0.25 

ng/µL heptadecano-D33-amide solution in 2-propanol.  1 µL of this sample was 

injected into GC.  Quantification of cell amides was done by comparing their peak areas 

relative to the internal standard to those of the corresponding standard curves.  

4.4 Results and Discussion 
 
In order to develop a method for the isolation of primary fatty acid amides from lipid 

mixture, the SPE method reported by Kaluzny et al. [46] for lipid separation was 

followed to begin with.  The method was modified in our own way to isolate amides, 

which will be discussed in details in this section and has been shown in Figure 4-1 

through Figure 4-8. 

In an effort to isolate neutral lipids (NL) form polar lipids (PL), the lipids loaded 

into a DSC-NH2 column were eluted with CHCl3:2-propanol (2:1), 2% acetic acid in 

diethyl ether and finally with methanol.  TLC of the collected fractions (Figure 4-1) 

shows that all the neutral lipids in 1st fraction, free fatty acid (FFA) and polar lipids in 

3rd fraction with no lipids eluting in 2nd fraction.  This result is slightly different from 

what Kaluzny et al. had observed (they found FFA in fraction 2), which is acceptable 

provided the phase and the solvents were purchased from different vendors.  Re-load of 

the neutral fraction into a separate NH2 column and their elution with 15% ethyl acetate 
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in hexane elutes CE and TAG and 2:1 CHCl3: MeOH elutes the rest of the neutral lipids 

(Figure 4-2). 

 

 

 

 

 

 

 

FIGURE 4-1: SPE method development step 1 using a DSC-NH2 column. Fraction 1: 

elution by 1 mL of 2:1 CHCl3: 2-propanol; Fraction 2: elution by 1 mL of 2% acetic 

acid in diethyl ether; Fraction 3: elution by 1 mL of MeOH.   
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In order to separate amides from the rest of the neutral lipids five separate 

elution skims were tried with 12% 2-propanol in CHCl3, 3% 2-propanol in CHCl3, 0.5% 

2-propanol in CHCl3, 0.2% 2-propanol in CHCl3 and 0.1% 2-propanol in CHCl3 (Figure 

4-3) followed by a MeOH wash after each skim.  The results show that the first skim 

eluted all the lipids, second, third, and fourth skims all eluted amides partially.  The 

fifth skim did not elute any amides. 

 

 

  

     

 

FIGURE 4-2: SPE method development step 2 using a DSC-NH2 column. Fraction 

1: elution by 1 mL of 15% ethyl acetate in hexane; Fraction 2: elution by 1 mL of 

2:1 CHCl3: MeOH; Fraction 3: elution by 1 mL of MeOH. 
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This situation led us to try a different type of phase with which we can separate 

just the PFAMs, MAG, NOE and NOG out in one fraction and load them into NH2 

column to isolate amides.  The use of three different phases to elute NL, PL and FFA is 

shown in Figure 4-4 which indicates that DSC-Si could be the type of phase we are 

looking for because it is missing some of the non-polar lipids, which are lost in the 

CHCl3 wash before elution.  Using a DSC-Si column, it was possible to elute all TAG 

and CE, most FFA and DAG and some Ch by 1 mL of 60:40:5 hexane: diethyl ether: 

acetone.  1 mL of 95: 5:1 CHCl3: MeOH: acetic acid (HOAc) eluted the rest of the FFA, 

Ch and some DAG.  2:1 CHCl3: MeOH (1 mL) was found to elute all the amide, MAG, 

NOE and NOG with a small amount of DAG and Ch.  Finally 2 mL MeOH eluted the 

polar lipids (PL) (see Figure 4-5).  
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FIGURE 4-3: SPE method development step 3 using DSC-NH2 columns. A) Fraction 1: 

elution by 1 mL of 12% 2-Propanol in CHCl3. B) Fraction 1: elution by 1 mL of 3% 2-

Propanol in CHCl3; Fraction 2: elution by 1 mL of MeOH.  C) Fraction 1: elution by 1 

mL of 0.5% 2-Propanol in CHCl3; Fraction 2: elution by 1 mL of MeOH. D) Fraction 1: 

elution by 1 mL of 0.1% 2-Propanol in CHCl3; Fraction 2: elution by 1 mL of MeOH. 

E) Fraction 1: elution by 1 mL of 0.2% 2-Propanol in CHCl3; Fraction 2: elution by 1 

mL 2% HOAc in diethyl ether; Fraction 3: elution by 1 mL of MeOH. 
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   A  B  C 

FIGURE 4-4: SPE method development step 4. A) Using DSC-Diol column, B) Using 

DSC-CN column and C) Using DSC-Si column. Fraction 1: elution by 1 mL of 2:1 

CHCl3: 2-propanol; Fraction 2: elution by 1 mL of 2% acetic acid in diethyl ether and 

Fraction 3: elution by 1 mL of MeOH.  
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hexane: ethyl acetate, 2:1 CHCl3: MeOH and finally, with 1 mL of MeOH.  Figure 4-6 

showed that hexane wash did not elute any lipids as expected neither did the second 

elution.  The third fraction contained the TAG and CE lipids whereas the next two 

fractions contained FFA, DAG and Ch.   

 

 

 

  

     

 

 

 

 

 

 

 

 

 

  

FIGURE 4-5: SPE method development step 5 using DSC-Si column. Fraction 1: 

MeOH wash of the DSC-Si phase before sample load; Fraction 2: hexane wash after 

sample load; Fraction 3: elution by 1 mL of 60:40:5 hexane: diethyl ether: acetone; 

Fraction 4: elution by 1 mL of 95:5:1 CHCl3: MeOH: HOAc; Fraction 5: elution by 1 

mL of 2:1 CHCl3: MeOH; Fraction 6: elution by 1 mL of MeOH.  
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FIGURE 4-6: SPE method development step 6 using DSC-Si column. Fraction 1: 1 mL 

hexane wash after sample load; Fraction 2: elution by 1 mL of 99:1 hexane: HOAc; 

Fraction 3: elution by 1 mL of 90:10 hexane: ethyl acetate; Fraction 4: elution by 1 mL 

of 80:20 hexane: ethyl acetate; Fraction 5: elution by 1 mL of 70:30 hexane: ethyl 

acetate; Fraction 6: elution by 1 mL of 2:1 CHCl3: MeOH; Fraction 7: elution by 1 mL 

of MeOH. 
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FIGURE 4-7: SPE method development step 7 using DSC-NH2 columns. A) Fraction 1: 

1 mL CHCl3 wash after sample load; Fraction 2: elution by first 1 mL of 2% 2-propanol 

in CHCl3; Fraction 3: elution by second 1 mL 2% 2-propanol in CHCl3; Fraction 4: 

elution by third 1 mL 2% 2-propanol in CHCl3; Fraction 5: elution by first 1 mL of 3% 

2-propanol in CHCl3; Fraction 6: elution by second 1 mL 3% 2-propanol in CHCl3; 

Fraction 7: elution by third 1 mL 3% 2-propanol in CHCl3. B) Fraction 1: 1 mL CHCl3 

wash after sample load; Fraction 2: elution by first 1 mL of 3% 2-propanol in CHCl3; 

Fraction 3: elution by second 1 mL 3% 2-propanol in CHCl3; Fraction 4: elution by first 

1 mL 4% 2-propanol in CHCl3; Fraction 5: elution by  second 1 mL of 4% 2-propanol 

in CHCl3. 
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FIGURE 4-8: Optimized SPE method for the isolation of amides by A) DSC-Si and B) 

DSC-NH2 columns. A) Fraction 1: 4 mL hexane wash after sample load; Fraction 2: 

elution by 1 mL of 99:1 hexane: HOAc; Fraction 3: elution by 1 mL of 90:10 hexane: 

ethyl acetate; Fraction 4: elution by 1 mL of 80:20 hexane: ethyl acetate; Fraction 5: 

elution by 1 mL of 70:30 hexane: ethyl acetate; Fraction 6: elution by 1.5 mL of 2:1 

CHCl3: 2-propanol; Fraction 7: elution by 2 mL of MeOH. B) Fraction 1: 2 mL hexane 

wash after sample load; Fraction 2: elution by 2 mL CHCl3; Fraction 3: elution by 2 mL 

of 2% 2-propanol in CHCl3; Fraction 4: elution by 1 mL 2% 2-propanol in CHCl3; 

Fraction 5: elution by 1 mL 3% 2-propanol in CHCl3; Fraction 6: elution by 2 mL of 

MeOH. 
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The sixth fraction contained the desired lipids amide, MAG, NAE and NOG.  

Because DSC-NH2 column was already tried for the separation of amide in a different 

fraction, fraction 6 was dried under N2, re-dissolved in hexane and loaded into DSC-

NH2 column to carry out further study.  This column was therefore eluted with different 

proportions of 2-propanol in CHCl3.  Figure 4-7 shows that the solution that isolated 

amides from MAG, NOE and NOG was 2 mL of 2% 2-propanol. 

Depending on the other tests performed, the final SPE method for the isolation 

of primary fatty acid amides (Figure 4-8) was taken as the method described in the 

experimental section.  This method was optimized for the lowest mass of amides that 

could be loaded and isolated successfully from a lipid mixture.  The amide loads tried 

were 20 µg, 10 µg, 5 µg, 2 µg, 1 µg, 0.5 µg, 0.2 µg, 0.1 µg and 0.02 µg while keeping 

the mass of other lipids constant.  Figure 4-9 shows the percent recovery of some of the 

amide loads, which indicates that the lowest possible mass to be loaded and isolated by 

this method (500 mg packing in a 3 mL tube) is 0.5 µg.  The low percent recovery 

below this mass was due to the scattering of amides in different fractions, which could 

be improved using a smaller sorbent mass.  This 0.5 µg amount was therefore used for 

the method validation using N18TG2 cell lipids. The isolated amides from the total lipid 

extract were separated and detected by GC/MS, providing a nice and clean detection 

(Figure 4-10 and Figure 4-11).  The large peak that comes around 19 min in Figure 4-11 

is due to erucamide (C22:113) which was eluted from the polypropelene SPE tubes used 

for the solid phase packing.   
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FIGURE 4-9: Percent recoveries of the decreasing mass of amides by SPE. 

Uncertainities are at 95% confidence limit (n = 9). 

 

 

As mentioned in Chapter 2 that erucamide, oleamide (C18:19), palmitamide 

(C16:0) and stearamide (C18:0) are used as slip additives in plastics.  Therefore, in this 

study, a parallel blank was run for each sample.  Trace amounts of eicosanoamide 

(C20:0), stearamide and oleamide were also detected in blank.  The quantitation of the 

amides was carried out by subtracting blank data from sample data.  The percent 

recoveries of the seven different amides are displayed as bar graph in Figure 4-12.  The 

results indicate that the shorter chain amides are more difficult to recover and/or 

quantify in trace level.  The reason might be the low extractability of the relatively polar 

short chain amides by the aminopropyl phase.  The detection limits for the amides show 

(Table 4-I) that the shorter chain amides have higher detection limit than that of the 
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longer chain ones.  The instrument response (Figure 4-13) was found linear over a range 

of around 48 fmol (~5 pg) to 6000 fmol (2500 pg) of amides. 

 

 

 

          

 

 

 

 

 

 

 

 

 

 

FIGURE 4-10: SPE fractions of the lipids extracted from amide spiked N18TG2 cells 

A) DSC-Si column and B) DSC-NH2 column. 
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FIGURE 4-11: Separation of PFAM’s isolated from amide spiked N18TG2 cells. The 

relative intensities at m/z 59, 72, 62 and 76 are plotted against retention time. 

 

 

TABLE 4-I: Detection limits (DL) of different amides in single ion monitoring mode 

(SIM). 

Amides DL, pg 

C12:0 30 

C13:0 30 

C14:0 30 

C16:0 10 

C17:0 10 

C18:19 5 

C18:0 10 

C20:0 10 

C22:0 10 

 

Retention time, min 

C17D33:0 (IS) 

   C16:0 

    C18:0 

 C20:0 

 C14:0 
   C13:0 

 C12:0 

C22:113 

   C18:19 

   
   

R
el

at
iv

e 
in

te
ns

ity
 



 162

0

20

40

60

80

100

120

140

C12 C13 C14 C16

C18:1
(9) C18

C20

Amide chain length

Pe
rc

en
t r

ec
ov

er
y

  
FIGURE 4-12: Percent recoveries of PFAM’s from amide spiked N18TG2 cells. 

Uncertainities are at 95% confidence level (n=9). 
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FIGURE 4-13: Mass spectrometer response in terms of the concentration of oleamide 

(48 femto mol/µL to 6000 femto mol/µL). Uncertainties are at 95% confidence level 

(n=3). 

 

4.5 Conclusions 
 
This chapter included the discussion of the isolation of the primary fatty acid amides by 

solid-phase extraction and their quantification by GC/MS.  As mentioned earlier, SPE is 

a simple sample clean up/preparation procedure useful in analyzing compounds, which 

are not abundant, have higher detection limits and/or are difficult to be quantified in 

presence of other interfering compounds.  The method was validated using the lipids 

extracted from N18TG2 cells and percent recoveries of seven different amides were 

successfully calculated.  Application of this method for the isolation of amides from 
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mammalian tissues will be discussed in the following chapter with emphasis on 

quantification.  Comparison of the results obtained from this method to that of the 

HPTLC/GC/MS method can provide strong milestones for these methods. 
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Chapter 5 

Distribution of primary fatty acid amides in mammalian tissues 

 

5.1 Abstract 
 
Primary fatty acid amides (PFAM’s) were isolated and quantified from the lipid extracts 

of frozen and powdered rabbit tissues.  These biologically active hormones are found in 

mammals in a very low concentration and their detection limits are relatively higher.  

High performance thin layer chromatography (HPTLC) and solid-phase extraction 

(SPE) were used for their isolation prior to the analysis by GC/MS.  HPTLC or SPE 

provided the complete separation of amides from total lipid extract and allowed their 

concentration for interference free and quantitative detection.  These types of sample 

preparation techniques can also be useful for analyzing PFAM’s in conjunction with 

liquid chromatography/mass spectrometry (LC/MS), matrix-assisted laser desorption 

ionization (MALDI)/MS, and/or capillary electrophoresis (CE).  
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5.2 Introduction 
 
Fatty acid amides comprise one of the important classes of bioactive lipids found in 

mammals.  N-acylethanolamines (NAE) and primary fatty acid amides (PFAM’s) are 

two important families of this class [1].  Members of both of these families consisting of 

long chain saturated and unsaturated fatty acids are considered as bioregulators due to 

their hormone like activities [2].  They became recognized as a signaling class of lipid, 

when anandamide (N-arachidonylethanolamine) was identified in 1992 as a natural 

product that binds to the cannabinoid receptors in the brain [3].  It was found to mimic 

all the activities of delta-9-tetrahydrocannabinol (∆-9-THC) and was thought to be a 

potent neuromodulator besides its other hormonal activities.  Within three years 

researchers discovered that oleamide, a primary fatty acid amide, is synthesized in the 

cerebrospinal fluid of sleep deprived cats [4].  Since then the PFAM’s were studied 

widely in various biochemical and pathological ways.  They were first identified in 

human luteal phase plasma [5] even though neither their function nor their bio-synthetic 

pathway was recognized at them time.   

Various reported hormonal-activities of oleamide and the controversy about its 

biosynthetic pathways were discussed in Section 1.5 of Chapter 1.  Quantification of 

PFAM’s by instrumental analysis is problematic due to their presence in biological 

samples in low concentration as well as due to the interference from other lipids present 

in lipid extracts of the sample of interest.  The peak suppression during trace analysis of 

PFAM’s due to the tailing of -NH2 group gives rise to higher detection limits, which 

seems to be more prominent in the presence of other non-volatile lipids.  Because of this 
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reason, PFAM’s are usually derivatized to stable, amide deactivated compounds for 

higher sensitivity before GC/MS analysis.  These problems can be solved by isolating 

the PFAM’s from interfering lipids followed by diluting the isolate to a preferred 

concentration.  Therefore it is possible to analyze the PFAM’s quantitatively from 

biological samples of interest by the instrument of choice without any interaction from 

other lipid classes.  

Sample preparation by HPTLC and SPE for the study of lipids was discussed in 

Chapters 3 and 4.  Analysis of brain and plasma lipids after clean up by HPTLC or SPE 

are the long known techniques used by numerous researchers.  Mascala et al. [6] have 

separated neutral and acidic lipids from rat and human brain using a DEAE-Sephadex 

column and then further separated into individual lipid classes by applying them into 

separate HPTLC plates.  They used two solvent systems for the development of the 

plates.  The quantification of the lipid classes was obtained using a scanning 

densitometer equipped with a Shimadzu CR1A data processor.  They reported that the 

use of an internal standard minimized the variation from plate to plate.  The use of 

cupric acetate for charring was found to be more sensitive than the conventional sulfuric 

acid-dichromate reagent.  Entezami et al. [7] on the other hand reported similar analysis 

of brain lipids by single solvent system HPTLC and found that cupric sulfate charring 

was more sensitive than cupric acetate charring.   

Separation of cholesterol, N-acyl glycerol and N-butyl palmitamide was 

achieved by Bilyk et al. [8] on a TLC plate with 2 solvent systems and aqueous sulfuric 

acid charring.  They described TLC as a rapid means of identifying the components of 

fatty mixtures with highly reproducible separation but neither any quantification data 
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were published, nor the percent recovery results were mentioned.  Alvarez et al. [9] 

reported the quantitation of amniotic fluid lipids by HPTLC and reflectance 

spectrodensitometry with percent recoveries ranging from 82-95%.  The detector 

response was found to be linear over a range of 20 ng/mL (detection limit) to 2 µg/mL.  

TLC was also employed for the separation of the polar lipids from rabbit tissues by 

Baldoni et al. [10], but the method was used for only qualitative study.  Dreyfus et al. 

[11] reported the quantitative analysis of lipid classes extracted from pig and rat tissues 

by HPTLC and found the percent recoveries around 90-97% for different lipid classes.  

It is clear from literature review that HPTLC/TLC is an ideal technique for quick 

profiling of lipid classes present in a sample of interest.  With proper developing 

solvent, it is possible to isolate the target lipid class in higher recoveries from other 

classes.  The isolated lipid can be brought to any desired concentration for further 

instrumental analysis.  

SPE is the most recently used technique for the isolation of a specific lipid class 

from the crude lipid extract.  Two different SPE phases usually employed by 

researchers, namely, un-bonded silica phases and aminopropyl bonded silica.  So far the 

latter phase has become more popular in lipid analysis due to its comparatively lower 

polarity than silica and hence less capability of retaining polar lipids. Kaluzny et al. [12] 

had first reported the use of such column for the separation of seven lipid classes from 

bovine adipose tissue extract with percent recoveries ranging from around 96-101%.  

They reported that about 10 mg of lipid can be loaded on a 500 mg column.  According 

to literature both types of columns were successfully used in lipid analysis by numerous 

authors [13-17].   
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A very few studies were actually done for the isolation of PFAM’s from crude 

lipid extract by HPTLC or SPE.  In 1994, before oleamide was identified as a sleep 

inducing agent, Kaneshiro et al. [18] reported the isolation of PFAM’s from Bacillus 

Megaterium cell extracts using silica column chromatography (similar to SPE) followed 

by HPLC and GC analysis for their separation and identification.  TLC was used as a 

primary means of identification of the presence of amides in those cells by comparing 

with the standard amides.  Cravat et al. [4] in 1995 isolated a compound from the 

cerebrospinal fluid (CSF) of sleep-deprived cat and identified it as cis-9-

octadecenoamide (oleamide), which fueled the later PFAM studies.  Bisogno et al. [19, 

20] had reported the existence of both oleamide and anandamide in N18TG2 mouce 

neuroblastoma cells, human breast cancer cells and rat adrenal pheochromocytoma 

cells.  They employed a series of sample preparation steps such as TLC, SPE and 

column chromatography for quantitative determination of these amides. Hanuš et al. 

[21] had also determined the presence of oleamide in rat plasma and CSF quantitatively 

by GC/MS.  They reported the difficulties of analyzing oleamide by electrospray MS 

without prior chromatography due to the presence many compounds in body fluids.  In 

their case oleamide was analyzed by GC/MS after derivatization in order to increase the 

peak sensitivity and therefore to lower the detection limit.  Oleamide was also identified 

to be produced in a soil microorganism by Ho Jeong et al. [22].  They successfully used 

preparative TLC before GC/MS in order to obtain oleamide in pure form allowing 

contaminant free analysis.  These types of studies indicate that it is crucial to isolate the 

target lipid class from other lipid classes present in the complex lipid matrix for 

interference free analysis [23].  
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Together all these data suggest that sample preparation before instrumental 

separation and detection is the key to obtain better and reliable quantitation.  It is 

necessary to point out again that sample clean up such as by HPTLC and/or by SPE 

mentioned above before their analysis can provide concentration, higher sensitivity as 

well as the lower limit of detection.  This type of interference free analysis results not 

only in lower peak suppression lowering the detection limit for PFAM’s but also 

provides longer detector lifetime and save money on consumables such as injection 

liners and septa.  The addition of internal standards (IS) to the sample before and after 

isolation is also crucial for quantitative instrumental analysis.  In this study, we report 

the isolation of PFAM’s from rabbit tissues using both HPTLC and SPE followed by 

quantitative analysis by GC/MS [24].  Rabbit brain and whole heart tissues are known 

to express PAM, the enzyme for the last step of PFAM biosynthesis (see Chapter 1 for 

more information).  Because heart atrium but not ventricle expresses PAM, atrium 

removed heart were used in this study as control.  The rabbit tissues were chosen for the 

application of HPTLC and SPE sample preparation methods because of their low cost 

and commercial availability at the time of this study.   

5.3 Experimental 

5.3.1 Reagents 
 
ACS reagent grade hexanes, ethyl acetate, methanol, 2-propanol and glacial acetic acid 

were purchased from Fisher Scientific (Fair Lawn, NJ); acetone, palmitic acid and 

stearic acid were purchased from Acros Organics (Morris plains, NJ); chloroform and 
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diethyl ether, heptadecanoic acid and eicosanoic acid were obtained from Aldrich 

Chemical Co. (Milwaukee, WI); heptadecaoic-D33-acid was purchased from CDN 

Isotopes (Quebec, Canada).  Palmitamide, stearamide, heptadecanoamide, deuterated 

heptadecanoamide and eicosanoamide were synthesized from the corresponding acids 

in our laboratory modifying a published protocol [25, also see Chapter 2].  Oleamide 

(OM) and erucamide were purchased from Sigma (St. Louis, MO).  

5.3.2 Tissues 
 
Rabbit whole heart (atrium removed), rabbit whole brain (stripped) and rabbit brain 

acetone powder were purchased from Pel-Freez Biologicals (Rogers, AR).  

5.3.3 HPTLC plates 
 
High performance thin layer chromatography plates (HPTLC) from Analtech (Newark, 

DE) were used for viewing the lipid contents in different SPE fractions.  These plates 

were of 10 x 10 cm, with organic binder and no fluorescence indicator incorporated.  

Primuline dye (CI 49000; direct yellow 59) used for spraying the HPTLC plates was 

obtained from Aldrich Chemical Co. (Milwaukee, WI).  

5.3.4 SPE phases 
 
Discovery DSC-Si and Discovery DSC-NH2 SPE phases were purchased from Supelco 

(Bellefonte, PA).  Irregularly shaped and acid washed base silica possessed following 

properties: 50 µm particle size, 70 Å pore diameter, 480 m2/g specific surface area and 

0.9 cm3/g pore volume.  DSC-Si is the base silica phase which is basically used as a 

normal phase adsorbent whereas DSC-NH2 is the aminopropyl bonded silica which can 
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be used as either normal phase or the ion-exchange adsorbent.  SPE tubes (empty) of 3 

mL volumes with polyethylene frits were also purchased from Supelco.  500 mg of the 

phases were packed into the tubes between two frits applying hand pressure in order to 

carry out SPE. 

5.3.5 Instruments 
 
A Kodak digital Science 440 image station equipped with scientific imaging software 

(SIS) was used for scanning the HPTLC plates.  An Agilent Technologies Network 

GC/MS system (6890 GC with 5973 mass selective detector and 7683 series injector) 

was used for GC/MS analysis.  The column used was an HP-5MS (0.25 mm internal 

diameter, 0.25 µm film thickness, 30 m long, Agilent Technologies Inc., Palo Alto, CA) 

able to analyze fatty acid amides without prior derivatization.  The GC/MS method used 

for analysis is as follows: Starting temperature was 55 ºC, ramped to 150 ºC at 40 ºC per 

min, held at 150 ºC for 3.62 min, ramped to 275 ºC at 10 ºC per min and finally held at 

275 ºC for 2 min.  Electron impact ionization (EI) at 70 eV was used and the 

temperatures of the injection port and the transfer line were 250 ºC and 280 ºC, 

respectively.  Mass range was kept from 40 to 400 m/z for total ion monitoring (TIM) 

and selected masses were 59, 72, 62 and 76 for single ion monitoring (SIM).  Injection 

volume was 1 µL splitless. 

5.3.6 Lipid extraction from rabbit brain and heart tissues 
 
The samples were stored at -80 ºC upon arrival.  Right before lipid extraction, samples 

were taken out of the freezer and placed at dry ice temperature.  They were then cut into 

pieces and weighed before extracting lipids.  The lipids were extracted from the tissues 
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(26, 27) as follows: The weighed tissues/acetone powder were suspended into 20 times 

of its volume of chloroform: methanol (2:1; v/v) and completely homogenized using a 

glass-to-glass homogenizer (Kontes Glass Co., Vineland, NJ).  The tissue homogenate 

was then sonicated for 10 min at 1500 g.  Before sonication the specific gravity of the 

homogenate was lowered using 0.2 times of its volume (20%) of methanol.  The 

supernatant was separated from the pellets and chloroform was added to the supernatant 

in order to adjust the proportion of chloroform: methanol to 2:1 (for example if the total 

volume of the homogenate was 20 mL, 4 mL methanol was added before sonication and 

8 mL of chloroform was added to the supernatant after sonication).  To the total amount 

of supernatant, 0.2 times of its volume of aqueous 0.88% KCl was added (for example 

if the total volume of the supernatant was 20 mL, 4 mL of aqueous 0.88% KCl was 

added).  The sample was then vortexed for 2 min and allowed to sit for separation into 

two phases.  The upper phase mostly contains proteins and non-lipid contaminants and 

the lower phase contains the lipid extract.  The upper phase was discarded and the lower 

lipid phase was completely dried under a stream of N2.  The dried lipid extract was 

dissolved in 4 mL hexane to be loaded onto either HPTLC plates or into the SPE 

columns.  Three separate extractions and three blanks were carried out for this study.  

An internal standard, heptadecanoamide (C17), was spiked into the tissue suspension as 

well as into the blanks before homogenization in order to calculate percent recovery.  

The glass-to-glass homogenizer was silanized using 10% TMS in toluene before use in 

order to minimize the amide adsorption on the silica surface.  
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5.3.7 Quantitation of amides from rabbit brain and heart tissues by HPTLC 

5.3.7.1 Isolation of amides from TLC plates 
 
30 µL of extracted lipids were applied onto HPTLC plates and the plates were 

developed as follows: firstly up to 5.5 cm from the bottom in chloroform: methanol: 

acetic acid (95:5:1, v/v/v), dried for 5 min with warm air from a hair dryer; secondly, 

the dried plates were developed in hexane: diethyl ether: acetone (60:40:5, v/v/v) up to 

8 cm, re-dried and finally, the plates were developed in hexane: diethyl ether (97:3, v/v) 

to 9.5 cm.  Two separate plates were developed at the same time, one of which was 

sprayed with primuline for visualization.  Amide spots adsorbed in silica were scraped 

off the plate not sprayed with primuline by comparing to the spot position on the 

sprayed one.  

5.3.7.2 Analysis of scraped amides by GC/MS 
 
The scraped silica containing amides was suspended in isopropanol containing the 

deuterated internal standard, sonicated for 10 min for the transfer of amide to 

isopropanol from silica.  The samples were filtered through 0.2 µm filter paper and 1 µL 

of the sample was injected into GC/MS.  

5.3.8 Quantitation of amides in rabbit brain and heart tissues by SPE 

5.3.8.1 Isolation of amides from lipid extract 
 
SPE elution solutions were made by mixing them in correct proportions followed by 

sonication for an hour.  The DSC-Si column was completely solvated in hexane before 

the sample load.  After the lipids were loaded, 4 mL hexane was used for washing the 

sample, which was considered as fraction one from DSC-Si column.  The loads for 
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brain, heart, and brain acetone powder were 50  µL, 100 µL and 200 µL, respectively.  

The lipids were then eluted with 1 mL of each 99:1 hexane: acetic acid, 90:10 hexane: 

ethyl acetate, 80:20 hexane: ethyl acetate, and 70:30 hexane: ethyl acetate, 1.5 mL of 

2:1 chloroform: methanol, and finally with 2 mL of methanol.  Fraction six was found 

to contain the amides, monoacyl glycines, N-acylglycines and the N-acylethanolamines.  

This fraction was therefore dried under N2, re-dissolved in 200 µL of hexane and loaded 

onto DSC-NH2 column.  The sample was adsorbed onto the phase and then washed with 

2 mL of hexane, which was called fraction one from DSC-NH2 column.  The lipids 

were then eluted by 2 mL of chloroform, 2 mL of 2% chloroform in 2-propanol, 1 mL 

of 2% chloroform in 2-propanol, 2 mL of 3% chloroform in 2-propanol and finally with 

2 mL of methanol.  Fraction three from DSC-NH2 column was found to contain only 

amides. 

5.3.8.2 GC/MS analysis of fraction 3 from DSC-NH2  
 
Fraction three containing amides was dried under N2 and re-dissolved in 300 µL of 0.25 

ng/µL heptadecano-d33-amide solution in 2-propanol.  1 µL of this sample was injected 

into GC.  Quantification of amides was done by comparing their peak areas relative to 

the internal standard to those of the corresponding standard curves. 

5.3.9 HPTLC method for viewing the lipid contents in each SPE fraction 
 
The fractions from both the columns were applied onto the 10 x 10 cm plates and the 

plates were developed up to 5.5 cm from the bottom in chloroform: methanol: acetic 

acid (95:5:1, v/v/v), dried for 5 min with warm air from a hair dryer.  The dried plates 

were re-developed in hexane: diethyl ether: acetone (60:40:5, v/v/v) up to 8 cm and re-
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dried.  The plates were finally developed in hexane: diethyl ether (97:3, v/v) to 9.5 cm.  

These plates were then dried for 5 min and sprayed with a 0.05 % primuline solution (in 

80:20, v/v acetone: water) and re-dried.  The dry plates were then scanned by Kodak 

scientific imaging system. 

5.4 Results and Discussion 
 
The total lipid profiling of the rabbit tissues shows the separation of 9 different lipid 

classes with higher amount of phospholipids and cholesterol present in brain tissues 

whereas higher amount of triacyl glycerol and fatty acids present in heart tissues (Figure 

5-1 and Figure 5-2).  N-acylglycine (NAG) and N-acylethanolamine (NAE), monoacyl 

glycerol (MAG), primary fatty acid amides (PFAM’s), diacyl glycerol (DAG), free fatty 

acids (FA), triacyl glycerol and cholesteryl esters (CE) were the other classes 

recognized by comparing to the standard lipids.  PFAM’s were detectable on a TLC 

plate (Figure 5-1) upon overloading the plate whereas optimum loading provided nice 

separation between the classes (Figure 5-2) with PFAM’s beyond the detection limit by 

TLC.   

After scraping off amide spots and analysis by GC/MS, three different amides 

were identified, which as shown in Figure 5-3 and Figure 5-4 includes palmitamide, 

stearamide, and oleamide.  The amides were identified by comparing their retention 

times and mass spectral patterns with those of the standard amides.  The other amides 

observed in these figures are heptadecanoamide and deuterated heptadecanoamide used 

as internal standards added to the samples before and after extraction, respectively.  The 
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presence of erucamide was also observed due to their elution from polypropylene vials, 

which was confirmed by running blanks under the same conditions as the samples.   

 

 

 

 

 

FIGURE 5-1: Total lipid profiling of rabbit tissues (overloading the HPTLC plate). 
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FIGURE 5-2: Total lipid profiling of rabbit tissues (two sets of optimized lipid load on 

the HPTLC plate). 

 

The HPTLC of the SPE fractions of the rabbit brain and heart tissues are shown 

in Figure 5-5 and Figure 5-6.  The analysis of fraction three from the DSC-NH2 column 

by GC/MS (Figure 5-7 and Figure 5-8) confirmed the presence of palmitamide, 

stearamide and oleamide.  Again heptadecanoamide (C17) and deuterated 

heptadecanoamide (C17D33) were used as internal standards added to the samples 

before and after extraction, respectively.  The presence of erucamide as well as 

eicosanoamide was also observed, which largely eluted from SPE polypropylene vials.  
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For most of the cases of GC/MS analysis reported here, the GC method was edited so 

that the runs end before the erucamide elution in order to increase the sensitivity of the 

other peaks.  
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FIGURE 5-3: GC of rabbit brain amides isolated by HPTLC. The relative intensities at 

m/z 59, 72, 62 and 76 (see Chapter 2 for fragmentation patterns) are plotted against 

retention time. 

 

The ions monitored under SIM were m/z 59 and m/z 72 for the naturally 

abundant amides as well as m/z 62 and m/z 76 for the isotopically enriched amides 

(Figures 5-3, 5-4, 5-7, 5-8, 5-9 and 5-10).  These ions correspond to the fragmentations 

due to McLafferty rearrangement (see Chapter 2 for description).  It is noticeable that 

C17D33:0 

Retention time, min 

R
el

at
iv

e 
in

te
ns

ity
 

C18:0 

    C18:19 

C22:113 

    C16:0 

C17:0 

 C20:0 



 184

the relative intensities of the amides isolated by SPE (Figures 5-7 and 5-8) are higher 

than that isolated by HPTLC (Figures 5-3 and 5-4).  The reason is the larger sample 

capacity of SPE.  The optimized amount of the lipid extract that could be loaded on the 

HPTLC plate was only around 1-30 µL (total mass unknown for the rabbit tissue lipid 

load).   
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FIGURE 5-4: GC of rabbit heart amides isolated by HPTLC. The relative intensities at 

m/z 59, 72, 62 and 76 (see Chapter 2 for fragmentation patterns) are plotted against 

retention time. 
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heart, and brain acetone powder were 50  µL, 100 µL and 200 µL, respectively, onto 

SPE columns.  In order to optimize the amount of load, different loads of the same 

sample were carried out by SPE and the fraction were visualized by HPTLC until 

optimal resolution was obtained.  The reason only 50 µL load was sufficient for brain 

compared to 200 µL for brain acetone powder is that (i) amount of brain tissue used was 

higher than brain acetone powder in our case and (ii) brain contained much higher lipid 

amount than brain acetone powder (see Table 5-I and 5-II).  The later could be due to 

the lipid loss that might occur during drying the tissues under acetone [28].   

Table 5-I and 5-II shows the quantification of amides by both HPTLC/GC/MS 

and SPE/GC/MS.  The percent recoveries of the internal standard (C17) spiked before 

the lipid extraction was found to be comparable at 95% confidence limit (n=9) for SPE, 

although this was not the case for HPTLC analysis.  Not only the percent recovery of 

the spiked standard was uncomparable at 95% confidence limit but also the amount of 

amides found in tissue sample was randomly different from that obtained by SPE.  

Lower recovery by HPTLC was observed in most cases compared to that by SPE except 

in some case where larger values were obtained.  The larger values could be resulted 

from possible contamination from TLC developing solvents (or due to peroxide 

formation) whereas lower values could be the result of sample loss during separation of 

amides from silica after scraping the spots.  Therefore, it is clear from the results that 

HPTLC is valuable for quick profiling of the total lipids and SPE is more reliable for 

quantification.  Even though it was assumed that no PFAM’s would be found from 

atrium-removed heart, palmitamide, stearamide and oleamide were detected in heart as 

in brain.  This suggests that PFAM’s are probably carried into the ventricle by blood.



 186

TABLE 5-I: Quantitation of PFAM’s in rabbit tissues by HPTLC/GC/MS. 

Amount of amides, µg/g of rabbit tissue Percent recovery 

of spiked standard 

 C16 C18 C18:19  C17 

Brain 7.2 ± 0.8 3.5 ± 0.2 28 ± 2 85 ± 3 

Heart 1.6 ± 0.2 2.0 ± 0.1 4.5 ± 0.4 82 ± 4 

Brain-acetone powder 3.6 ± 0.5 1.8 ± 0.1 5.8 ± 0.1 91 ± 3 

Blank ---- 0.005 ± 0.001 0.0136 ± 0.0001 98 ± 6 

Uncertainties are at 95% CL with n = 9. 

 

 

TABLE 5-II: Quantitation of PFAM’s in rabbit tissues by SPE/GC/MS. 

Amount of amides, µg/g of rabbit tissue Percent recovery 

of spiked standard 

 C16 C18 C18:19  C17 

Brain 3.2 ± 0.2 4.4 ± 0.2 23 ± 1 104 ± 9 

Heart 1.9 ± 0.1 1.4 ± 0.1 7.5 ± 0.5 92 ± 5 

Brain-acetone powder 2.7 ± 0.4 1.7 ± 0.1 15.7 ± 0.8 95 ± 9 

Blank ---- 0.007 ± 0.001 0.031 ± 0.002 102 ± 7 

Uncertainties are at 95% CL with n = 9. 

 

 



 187

 

 

           

 

 

 

 

 

 

 

 

 

 

FIGURE 5-5: SPE fraction from rabbit brain lipid load onto A) DSC-Si and B) DSC-

NH2 columns. Note: SPE method for the isolation of amides by A) DSC-Si and B) 

DSC-NH2 columns. A) Fraction 1: 4 mL hexane wash after sample load; Fraction 2: 

elution by 1 mL of 99:1 hexane: HOAc; Fraction 3: elution by 1 mL of 90:10 hexane: 

ethyl acetate; Fraction 4: elution by 1 mL of 80:20 hexane: ethyl acetate; Fraction 5: 

elution by 1 mL of 70:30 hexane: ethyl acetate; Fraction 6: elution by 1.5 mL of 2:1 

CHCl3: 2-propanol; Fraction 7: elution by 2 mL of MeOH. B) Fraction 1: 2 mL hexane 

wash after sample load; Fraction 2: elution by 2 mL CHCl3; Fraction 3: elution by 2 mL 

of 2% 2-propanol in CHCl3; Fraction 4: elution by 1 mL 2% 2-propanol in CHCl3; 

Fraction 5: elution by 1 mL 3% 2-propanol in CHCl3; Fraction 6: elution by 2 mL of 

MeOH. 
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FIGURE 5-6: SPE fraction from rabbit heart lipid load onto A) DSC-Si and B) DSC-

NH2 columns. (Please see the NOTE under Figure 5-5 for clarification). 

 

CE 

TAG 

FFA 

1, 3 DAG 

1, 2 DAG 
PFAM’s
MAG 

PL 

NAE & NAG 

   
   

Fr
ac

tio
n 

1 

   
   

St
an

da
rd

 li
pi

d 
m

ix
tu

re
 

   
  F

ra
ct

io
n 

2 

   
   

Fr
ac

tio
n 

3 

Ch 

   
  F

ra
ct

io
n 

5 

   
  F

ra
ct

io
n 

4 

   
  F

ra
ct

io
n 

6 

   
   

St
an

da
rd

 li
pi

d 
m

ix
tu

re
 

   
  F

ra
ct

io
n 

7 

   
   

St
an

da
rd

 li
pi

d 
m

ix
tu

re
 

   
   

St
an

da
rd

 li
pi

d 
m

ix
tu

re
 

   
   

Fr
ac

tio
n 

1 

   
   

Fr
ac

tio
n 

2 

   
   

 F
ra

ct
io

n 
3 

   
   

Fr
ac

tio
n 

4 

   
   

Fr
ac

tio
n 

5 

B 

   
   

 F
ra

ct
io

n 
6 

   
   

   
  S

ta
nd

ar
d 

ol
ea

m
id

e 

   
   

   
  S

ta
nd

ar
d 

ol
ea

m
id

e 

A B 



 189

0

200

400

600

800

1000

1200

1400

1600

10 11 12 13 14 15 16 17 18 19

 

  

FIGURE 5-7: GC of rabbit brain amides isolated by SPE. The relative intensities at m/z 

59, 72, 62 and 76 (see Chapter 2 for fragmentation patterns) are plotted against retention 

time. 

 

The amount of palmitamide and oleamide isolated from human luteal phase 

plasma [5] were in the order of 3.9 µg/mL and 31.7 µg/mL, respectively, and the 

amount of oleamide extracted from N18TG2 cells [20] was 0.0155 µg (55.0 ± 9.5 pmol; 

mean ± SD, n=2)/107 cells.  Hanuš et al. [21] reported the amount of oleamide analyzed 

as TMS ester to be 9.9 ± 1.0 ng/mL in rat plasma and 44 ± 3.0 ng/mL in rat CSF.  They 

[21] concluded that the higher microgram amount of PFAM’s extracted from human 

plasma was probably due to the contamination coming from the use of plastic 
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containers.  It is to be mentioned that the PFAM’s are used as slip additives in plastics 

in order to improve their surface properties [29-32].   
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FIGURE 5-8: GC of rabbit heart amides isolated by SPE. The relative intensities at m/z 

59, 72, 62 and 76 (see Chapter 2 for fragmentation patterns) are plotted against retention 

time. 
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in brain by SPE in this study is in accordance with the amounts of those reported by 

Arafat et al. [5].  The comparison was done by assuming that the specific gravity of 

tissue is the same as the specific gravity of water, therefore the weight of 1 mL of tissue 

can be taken as 1 g.  Even though polypropelyne vials and tubes were used for lipid 

extraction and SPE purposes in this study, a parallel blank as described above was run 
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in this case and was subtracted from the sample in order to compensate for any 

contamination (Figure 5-9). The standard curves for PFAM’s were found to be linear in 

the range of 5 pg/µL to 2.5 ng/ µL at 95% confidence limit (Figure 5-10). 
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FIGURE 5-9: GC of blank of the lipid extraction process. The relative intensities at m/z 

59, 72, 62 and 76 (see Chapter 2 for fragmentation patterns) are plotted against retention 

time. 
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FIGURE 5-10: Standard curves for PFAM’s. Uncertainties are at 95% confidence limit 

(n=3). 

 

One other point to address from the results that the oleamide peak observed in 

GC could also be the result of the co-elution of different C18 unsaturated amides, which 

were not separated on a HP-5MS column (Figure 5-11). The fact that, Arafat et al. [5] 

also found palmitoleamide (C16:19; 4.4 µg/mL), elaidamide (C18:1trans9; 3.7 µg/mL) 

and linoleamide (C18:29, 12; 2.2 µg/mL) besides palmitamide and oleamide in human 

plasma, even strengthen this point.  In our case, this assumption is still to be proven 

using a relatively polar column capable of separating unsaturated fatty acids and 

amides, which will be discussed in Chapter 6. 
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FIGURE 5-11: Elution profile for standard C12-C22 amides on a HP-5MS column. The 

relative intensities at m/z 59, 72, 62 and 76 (see Chapter 2 for fragmentation patterns) 

are plotted against retention time. 

 

5.5 Conclusions 
 
The application of the HPTLC and SPE sample preparation methods for the isolation of 

the primary fatty acid amides from tissue lipid extracts prior to their analysis by GC/MS 

has been established.  These sample preparation techniques have been proven to be 

useful for obtaining clean amide samples free from interfering components.  The clean 

detection techniques gave rise to higher sensitivity and lower detection limits for the 

amides.  Concentration of the samples was also achieved providing the quantitation of 
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these trace lipid amides in mammalian tissues.  The HPTLC method has been proven to 

be efficient for quick profiling of the total lipid extract whereas the SPE method was 

found to be efficient in reliable quantification at 95% confidence limit.  The amount of 

palmitamide and oleamide was found in the same order of the amount of those observed 

by Arafat in human plasma. Nearly 100 % recovery of the spiked internal standard by 

SPE makes the method reliable for quantitative recovery of the amides from any cell or 

tissue type.  Next chapter will emphasis on the use of a very polar BPX70 column for 

the separation of any unsaturated amides if co-eluting with the oleamide peak. 
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Chapter 6 

Separation of unsaturated fatty acid amides by argentation-HPTLC 

and BPX70 column 

 

6.1 Abstract 
 
Unsaturated primary fatty acid amides were separated by silver-ion high performance 

thin layer chromatography (argentation-HPTLC) as well as by a BPX70 GC column.  

The separated amides were all eighteen carbon analogs of cis-9-octadecenoamide 

(oleamide).  The separation was achieved in terms of number of double bonds by 

argentation-HPTLC whereas clear resolutions between geometric and positional 

isomers were obtained using the BPX70 column.  Synthesized standard PFAM’s were 

used for this separation analysis and PFAM’s isolated from rabbit brain and heart 

tissues by solid phase extraction (SPE) were used for the application.  The goal of this 

method was to separate and identify individual peaks if co-eluting with the oleamide 

peak.  Separation of unsaturated amides with same number of carbon cannot be 

achieved by a less polar column such as HP-5MS.  Separation of rabbit brain and heart 

amides shows that oleamide is the only major C18 unsaturated amides isolated from 

heart tissues.  Trace amounts of linoleamide (C18:29,12) and eicosenoamide (C20:113) 

were also identified in brain besides oleamide.  
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6.2 Introduction 
 
Primary fatty acid amides (PFAM’s) are one of the most recently emerging classes of 

bio-active compounds.  Long chain amides (C12-C22), isolated from biological samples 

and assigned different hormonal activity so far, are oleamide (cis-9-octadecenoamide), 

erucamide (cis-13-docosenoamide), anandamide (cis,cis,cis,cis-5,8,11,14 

eicosatetraenoamide), and linoleamide (cis,cis-9,12 octadecadienoamide) [1-17].  

Numerous different PFAM’s can be synthesized from commercially available free fatty 

acids (FFA) in vitro and no assumption can be made yet how many different PFAM’s 

are synthesized in vivo.  For a list of fatty acids refer to Table 6-1 [18].  The next step of 

the isolation of PFAM’s from tissues and samples is their identification followed by 

quantification.  In order to identify each and every single amide present in a sample, 

they need to be completely separated from each other.  Normal phase liquid 

chromatography (TLC/HPLC) and gas chromatography are the most widely used 

separation techniques for fatty acids, their derivatives and PFAM’s separations [19-48].  

Separation of the cis and trans isomers of FFA as their methyl esters has been achieved 

using mainly argentation HPTLC/HPLC and highly polar GC columns.  Solid-phase 

extraction (SPE) and supercritical fluid chromatography in Ag-ion mode can also be 

used [49, 50].  Numerous publications and application notes from various laboratories 

as well as from different manufacturers are available, which discuss theories and 

techniques behind these separations [19-48]. 
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TABLE 6-1: Systematic names and selected properties of some of the more important 

fatty acids of five or more carbon atoms [18]. 

 

 

Mr: molecular weight,      tm: melting point in °C, 

S: aqueous solubility at 20 °C in units of grams of solute per solute per 100 g of water. 



 200

Silver ion chromatography depends on the formation of weak, reversible, 

charge-transfer complexes of Ag+ with unsaturated organic molecules.  The mechanism 

for this type of reaction involves 1) the formation of a sigma bond between the occupied 

bonding π2p electrons of the double bond and free 5s and 5p orbitals of Ag+ as well as 2) 

the formation of a weaker π accepter backbone between the antibonding π*2p electrons 

of the double bond and the occupied 4d orbitals of the Ag+ [51].  The FFA derivatives 

such as unsaturated FAMEs can be separated on Ag impregnated silica phase based on 

the number of double bonds present, geometric configuration of the double bonds 

(cis/trans) as well as the position of the double bond.  Stronger retention is obtained for 

the higher degree of unsaturation and for the larger the separation between the double 

bond (i.e., polyunsaturated fatty acids will retain stronger than diunsaturated ones and 

methylene interrupted unsaturated fatty acids will retain stronger than conjugated ones).  

As the double bond position moves away from the carbonyl group of the fatty acids, 

longer retention is observed.  The trans isomers are found to retain less strongly than 

the cis isomers [for review see Ref. 52].  

Successful separation by silver ion chromatography such as Ag-HPTLC depends 

on the optimum impregnation of stationary phase with silver.  A “dynamic 

impregnation” technique proposed by Aitzetmueller et al. is generally used which 

includes the development of the TLC plates in 10-20% AgNO3 in acetonitrile [23].  In 

this process, as the development progresses, Ag gradually travels upwards on the plates 

with a decreasing concentration.  Better separation is usually achieved with such a 

gradient in silver content on the stationary phase.  Even though the earlier works show 

that 10 to 30% AgNO3 solution are necessary for better resolution [53, 54], recent work 
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indicates that retention and resolution are not affected at all by impregnating plates with 

more than 5% AgNO3 solution [55, 57].  Moreover, excellent separation was achieved 

by developing the plates in 0.5% methanolic AgNO3 [52, 58, 59].  The solvents used for 

the separation of lipids by Ag-TLC are mainly non polar solvents such as benzene, 

toluene, chloroform, dichloromethane, diethyl ether, etc.  Mixtures of different solvents 

are also employed depending on the unsaturation of the lipids to be separated.  Usually 

a larger excess of aliphatic hydrocarbons are employed with varying amounts of polar 

solvents in the mixture [for a review see Ref. 23].  Because the separation profile of 

FFA/FAME is similar to that of PFAM’s as in other chromatographic techniques, Ag-

HPTLC could be successfully employed in their separation.  A given recipe for FAME 

might not work for PFAM’s in which case method development will be necessary.  

Separation and detection of fatty acids by gas chromatography is a long known 

and probably the most used technique.  The analysis of fatty acids in different lipids 

(such as in triacylglycerols) is done by transesterification of the fatty acids into their 

methyl esters followed by GC/MS analysis.  Earlier work mostly shows the separation 

in terms of chain length or at best in terms of unsaturation, whereas the recent analyses 

are concentrated on separation in terms of configuration and position of the unsaturation 

[35-48].  The later was possible due to the development of polar columns that are 

capable of separating the positional and geometric isomers of FAMEs.  These columns 

are routinely used in various laboratories for FFA analysis in food, vegetable and fish 

oil, dairy products, plastics, paints and varnishes, geochemical supplies, biological 

samples and many others.  As mentioned above, PFAM’s tend to show similar 

chromatographic behavior as FFA/FAME.  The separation of derivatized PFAM’s in 
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terms of the number of carbon has been achieved using non polar columns [35-37].  In 

some cases, separation by the number and position of unsaturation was achieved (38, 

39) but separation in terms of geometrical and most positional isomers have yet to be 

accomplished.  Use of a polar column for the separation of PFAM’s was also described 

but only a few unsaturated ones were separated, which probably due to the poor column 

performance [43].  In recent years the development of polar columns has reached 

tremendous goals of achieving more stable and lower bleed profile.  Temperatures as 

high as 260 °C can be employed, even with the most polar phases (such as cyanopropyl 

incorporated dimethyl polysiloxane) without breakage of the phase.  The bonded phase 

feature (cross linking) allows such a column to be rinsed to remove contaminants.  

Employing such a column could result the desired PFAM separation with higher 

sensitivity and lower detection limit, provided PFAM’s are proper derivatized prior to 

the analysis [see Section 6.4.2 for more discussion on polar columns and derivatization 

techniques].  

In this study, we have employed argentation HPTLC (Ag-HPTLC] [60] and a 

polar column (BPX70; 70% cyanopropyl dimethyl polysilphenylenesiloxane) to explore 

the separation of unsaturated PFAM’s.  The BPX70 column was also used in the 

separation of amides isolated from rabbit brain and heart tissues.  Different pros and 

cons of the techniques used have been mentioned and areas for further development are 

discussed in the following sections.  
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6.3 Experimental 

6.3.1 Reagents 
 
PFAM’s were synthesized from the corresponding acids (see Chapter 2) unless 

otherwise mentioned.  The PFAM’s used in this study were octadecanoamide 

(stearamide; C18:0), cis-9-odecenoamide (oleamide; C18:19), trans-9-octadecenoamide 

(elaidamide; C18:1trans9), cis,cis-9,12-octadecadienoamide (linoleamide; C18:29,12), 

trans,trans-9,12-octadecadienoamide (linoleladamide; C18:1trans9,12), cis,cis,cis-9,12,15- 

octadecatrienoamide (α-linolenamide; C18:39,12,15), cis,cis,cis-6,9,12-octadecatrieno-

amide (γ-linolenamide; C18:36,9,12), trans-11-octadecenoamide (vaccenamide; 

C18:1trans11), cis-6-octadecenoamide (petroselenamide; 18:16), trans-6-octadecenoamide 

(petroselaidamide; C18:1trans6), cis-13-octadecenoamide (C18:113), cis-5-eicosenoamide 

(C20:15), cis-11-eicosenoamide (C20:111), trans-11-eicosenoamide (C20:1trans11), and 

cis-13-eicosenoamide (C20:113).  The corresponding acids were purchased from Sigma 

Chemical Co. (St. Louis, MO).  Oleamide is commercially available and was purchased 

also from Sigma.  All chemicals and solvents used were of ACS reagent grade.  

Chloroform and methanol were obtained from EM Science and EMD (Darmstadt, 

Germany) respectively; acetonitrile, ethyl acetate, hexanes, isopropanol, glacial acetic 

acid and sodium thiosulfate were all purchased from Fisher Scientific (Fair Lawn, NJ); 

acetone was from Acros Organics (Geel, Belgium); diethyl ether and silver nitrate were 

from Aldrich Chemical Co. (Milwaukee, WI). 
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6.3.2 Tissues 
 
Rabbit whole heart (atrium removed), rabbit whole brain (stripped), and rabbit brain 

acetone powder were purchased from Pel-Freez Biologicals (Rogers, AR).  

6.3.3 HPTLC plates 
 
High performance thin layer chromatography plates (HPTLC) from Analtech (Newark, 

DE) were of 10 x 10 cm, with organic binder and no fluorescence indicator 

incorporated.  Primuline dye (CI 49000; direct yellow 59) used for spraying the HPTLC 

plates was obtained from Aldrich Chemical Co. (Milwaukee, WI).  PrevalTM power unit 

(Precision Valve Corporation, Yonkers, NY) for spraying primuline dye on the HPTLC 

plates was purchased from a local hardware store.   

6.3.4 SPE phases 
 
Discovery DSC-Si and Discovery DSC-NH2 SPE phases were purchased from Supelco 

(Bellefonte, PA).  Irregularly shaped and acid washed base silica possessed following 

properties: 50 µm particle size, 70 Å pore diameter, 480 m2/g specific surface area and 

0.9 cm3/g pore volume.  DSC-Si is the base silica phase which is basically used as a 

normal phase adsorbent whereas DSC-NH2 is the aminopropyl bonded silica which can 

be used as either normal phase or the ion-exchange adsorbent.  SPE tubes (empty) of 3 

mL volumes with polyethylene frits were also purchased from Supelco.  500 mg of the 

phases were packed into the tubes between two frits applying hand pressure in order to 

carry out SPE. 
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6.3.5 Instrumentation 
 
Camag Nanomat and capillary dispenser system, purchased from Camag (Muttenz, 

Switzerland), was used for easy application of samples on Ag incorporated HPTLC 

plates.  1 µL sample was applied at a time with disposable capillary pipettes.  

Fluorescent images were obtained using Kodak digital science 440 image station 

(IS440cF, Perkin Elmer, Boston, MA).  An Agilent Technologies Network GC/MS 

system (6890 GC with 5973 mass selective detector and 7683 series injector) was used 

for the analysis of derivatized amides.  The column used was a polar BPX70 column 

(0.25 mm internal diameter, 0.25 µm film thickness, 60 m long, SGE incorporate, 

USA).  The composition of the column is 70% cyanopropyl polysilphenylenesiloxane.  

The GC/MS method used for analysis was as follows: starting temperature was 60 ºC, 

ramped to 170 ºC at 50 ºC per min with 5 min hold time, ramped to 200 ºC at 4 ºC per 

min with 5 min hold time and finally ramped to 225 ºC at 50 ºC per min with 4.5 min 

hold time.  The total run time was 24.70 min [61].  Electron impact ionization (EI) at 70 

eV was used and mass range was kept from 40 to 400 m/z.  The m/z values 67, 81, 122, 

124, 136 and 138 were used for single ion monitoring (SIM).  The temperatures of the 

injection port and the transfer line were 250 ºC and 280 ºC respectively.  Injection 

volume was 1 µL splitless  

6.3.6 Separation of PFAM’s by Ag-HPTLC 

6.3.6.1 Preparation of HPTLC plates 
 
HPTLC plates were allowed to develop in either a 10% AgNO3 solution in acetonitrile 

or a 0.5% AgNO3 solution in methanol to the top in a vertical development chamber.  
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The silver actually travels up to the half of the plate with its concentration gradually 

decreasing.  The Ag impregnated plates were dried at 100 ºC for 5 min.  

6.3.6.2 HPTLC method for plate development  
 
Solvents were mixed in correct proportions, sonicated for an hour and kept on the bench 

top with caps on.  5 µL of each PFAM standard (1 µg/µL) were applied on HPTLC 

plates 1 cm from the bottom using the Camag capillary holder.  Warm air from a hair 

dryer was continuously applied during sample application in order to dry the spots.  For 

plate development, horizontal chambers for 10 x 10 cm plates from Camag were used.  

HPTLC separation method is as follows: the 10 x 10 cm plates were developed twice up 

to 10 cm in hexane: diethyl ether: acetone (40:35:15, v/v/v).  The plates were developed 

in the same direction as Ag was developed and were dried in between runs. 

6.3.6.3 HPTLC plate visualization 
 
The developed plates were then dried at 100 ºC for 5 min.  Ag was removed by dipping 

the plates into a saturated solution of sodium thiosulfate followed by dipping into 

double distilled water.  The plates were dried at 100 ºC for 5 min and sprayed with a 

0.05 % primuline solution (in 80:20, v/v acetone: water) and re-dried.  The dry plates 

were scanned by Kodak digital Science 440 image station for visualization.  

6.3.7 Separation of PFAM’s by BPX70 column 

6.3.7.1 Derivatization of amides 
 
50 µL of each PFAM standards (1 µg/µL) were placed in separate vials and completely 

dried under N2.  The dried amides were then placed inside a glove bag and 50 µL N, N-
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bis-trimethylsilyltrifluoroacetamide (N, N-BSTFA) was added to each amide.  The 

reaction mixture was then heated at 95 ºC for 15 min and allowed to cool.  After the 

products were cold, 300 µL acetonitrile was added to each vial and 1 µL of each of 

these solutions were injected into GC/MS. 

6.3.7.2 Identification of amides 
 
Individual amides were run by GC/MS in order to identify their retention time and mass 

spectral patterns.  Once this goal was established, a mixture of derivatized amides was 

injected into the GC/MS and the elution profile was observed.  Different amides, in a 

mixture, were therefore identified by comparing their retention times and MS patterns 

with those of the corresponding individual amide.  

6.3.8 Separation of rabbit brain and heart PFAM’s by BPX70 column 

6.3.8.1 Extraction of lipids from rabbit brain and heart 
 
The samples were stored at -80 ºC upon arrival.  Right before lipid extraction, samples 

were taken out of the freezer and placed at dry ice temperature.  They were then cut into 

pieces and weighed before extracting lipids.  The lipids were extracted from the tissues 

(62, 63) as follows: The weighed tissues/acetone powder were suspended into 20 times 

of its volume of chloroform: methanol (2:1; v/v) and completely homogenized using a 

glass-to-glass homogenizer (Kontes Glass Co., Vineland, NJ).  The tissue homogenate 

was then sonicated for 10 min at 1500 g.  Before sonication the specific gravity of the 

homogenate was lowered using 0.2 times of its volume (20%) of methanol.  The 

supernatant was separated from the pellets and chloroform was added to the supernatant 

in order to adjust the proportion of chloroform: methanol to 2:1 (for example if the total 
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volume of the homogenate was 20 mL, 4 mL methanol was added before sonication and 

8 mL of chloroform was added to the supernatant after sonication).  To the total amount 

of supernatant, 0.2 times of its volume of aqueous 0.88% KCl was added (for example 

if the total volume of the supernatant was 20 mL, 4 mL of aqueous 0.88% KCl was 

added).  The sample was then vortexed for 2 min and allowed to sit for separation into 

two phases.  The upper phase mostly contains proteins and non-lipid contaminants and 

the lower phase contains the lipid extract.  The upper phase was therefore discarded and 

the lower lipid phase was completely dried under a stream of N2.  The dried lipid extract 

was dissolved in 4 mL hexane to be loaded onto SPE columns.  Blanks (no tissues) 

were prepared following the same procedure as samples.  The glass-to-glass 

homogenizer was silanized using 10% TMS in toluene before use in order to minimize 

the amide adsorption on the silica surface.  

6.3.8.2 Extraction of amides from total lipid extract by SPE 
 
SPE elution solutions were made by mixing them in correct proportions followed by 

sonication for an hour.  The DSC-Si column was completely solvated in hexane before 

the sample load.  After the lipids were loaded, 4 mL hexane was used for washing the 

sample, which was considered as fraction one from DSC-Si column.  The loads for 

heart, and brain acetone powder were 100 µL of the lipid extract in each case.  The 

lipids were then eluted with 1 mL of each 99:1 hexane: acetic acid, 90:10 hexane: ethyl 

acetate, 80:20 hexane: ethyl acetate, and 70:30 hexane: ethyl acetate, 1.5 mL of 2:1 

chloroform: 2-propanol, and finally with 2 mL of methanol.  Fraction six containing the 

amides, monoacyl glycines, N-acylglycines and the N-acylethanolamines was dried 
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under N2, re-dissolved in 200 µL of hexane and loaded onto DSC-NH2 column.  The 

sample was adsorbed onto the phase and then washed with 2 mL of hexane, which was 

called fraction one from DSC-NH2 column.  The lipids were then eluted by 2 mL of 

chloroform, 2 mL of 2% chloroform in 2-propanol, 1 mL of 2% chloroform in 2-

propanol, 2 mL of 3% chloroform in 2-propanol and finally with 2 mL of methanol.  

Fraction three from DSC-NH2 column containing amides was dried under N2 and 

derivatized with BSTFA as described above before injecting 1 µL sample into GC/MS. 

6.4 Results and Discussion 

6.4.1 Separation of PFAM’s by argentation-HPTLC 
 
In order to develop a method for the separation of primary fatty acid amides by Ag-

HPTLC, free fatty acid (FFA) were tried to begin with.  The reason behind this is that 

fatty acid methyl esters are the mostly studied lipid class by Ag-HPTLC (see Section 

6.2).  The goal was to optimize a method for the separation of FFA and include amides 

into the method.  To start out the method, HPTLC plates were developed in 10% 

solution of AgNO3 in acetonitrile.  Four C18 acids were loaded onto the plates and were 

developed in various solvents (such as hexane, diethyl ether, methanol, tetrahydrofuran 

etc) in order to follow how the acids move.  These acids were stearic acid (no double 

bond), oleic acid (one double bond), linoleic acid (two double bonds) and linolenic acid 

(three double bonds).  Unfortunately, FFAs were not found to be separated by a single 

solvent system.  It was clear from the literature review that the fatty acid methyl esters 

are well separated by developing with a mixture of solvents containing a large portion 

of nonpolar one.  Different solvent systems were therefore tried which included 
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hexane:diethyl ether (97:3), hexane:diethyl ether:acetone (60:40:5) and hexane:diethyl 

ether:acetone (40:30:15).  FFAs were found to be separated by developing the plates in 

the latter solvent up to 10 cm of the plates (Figure 6-1). 

 

 
  

 
 

 
 
 
FIGURE 6-1: HPTLC Plate developed A) in hexane: ether: acetone (60:40:5 v/v/v) up 

to 10 cm, B) twice in hexane: ether: acetone (60:40:5 v/v/v) to the top and C) in hexane: 

ether:  acetone (40:35:15 v/v/v) up to 10 cm.   

 

Acid Rf Value 

a: Stearic (18:0) 0.21 

b: Oleic (18:19) 0.14 

c: Linoleic (18:29,12) Undetectable 

d: Linolenic (18:39,12,15) Undetectable 

Acid Rf Value 

a: Stearic (18:0) 0.31 

b: Oleic (18:19) 0.15 

c: Linoleic (18:29,12) ~Origin 

d: Linolenic (18:39,12,15) ~Origin 

Acid Rf Value 

a: Stearic (18:0) 0.55 

b: Oleic (18:19) 0.41 

c: Linoleic (18:29,12) 0.32 

d: Linolenic (18:39,12,15) 0.14 
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It is clear from the picture that they are separated based on their number of 

double bonds, with the most unsaturated one being strongly retained by Ag.  These 

plates were visualized under UV light (254 nm) by spraying primuline after reducing 

the Ag on the plates (see Section 6.3.6.3). 

Similar solvent systems were therefore tried for the separation of ten different 

C18 PFAM’s.  Figure 6-2(A) shows that a slight separation of amides occurs using the 

same solvent system and under the same conditions as those used for the separation of 

acids.  An improved separation was observed by developing the plates in same solvent 

system twice upto 7 cm [Figure 6-2 (B)].  The amides with higher number of 

unsaturation were more strongly retained by Ag.  For example, linolenamide 

(C18:39,12,15) with 3 sites of unsaturation did not move from the origin at all.  Due to the 

comparatively higher polarity of the amides than acids, the resolution between the 

amides was not satisfactory.  Even though a slight separation between cis and trans 

isomers (cis being strongly retained) was observed when separately run, a mixture was 

not separated.  A slight increase in retention strength was also observed for the amides 

with double bonds closer to the amide functional group (i.e., C18:16 was strongly 

retained than C18:19, which was again strongly retained than C18:113).  These plates 

were also Ag impregnated by dipping them into 10% AgNO3 solution in acetonitrile.  

One problem that was encountered during the above procedure was the presence of 

higher percentage of Ag on the plate.  Even though the Ag was being reduced, the 

dipping procedure in some cases tended to wash the acids off too.  Also the reduced 

portion of the Ag quenched the primuline fluorescence making the visualization 

difficult.  It was therefore necessary to use a lower percent of AgNO3 solution for the 
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plate impregnation.  Literature review indicates that AgNO3 contents higher than 5% in 

the layer have no effect on retention or resolution, more over 0.5% methanolic AgNO3 

solution was found to show excellent resolution for fatty acid methyl esters and triacyl 

glycerols [see Section 6.2]. 

HPTLC plates were therefore developed in 0.5% methanolic AgNO3 solution.  

After 10 different C18 amides were loaded onto the HPTLC plates, the plates were 

developed in the same solvent as before [see Figure 6-3(a)].  Developing the plates 

twice in hexane:ether:acetone (40:35;15; v/v/v) did not improve the resolution except 

moving them collectively away from the origin [Figure 6-3(B)].  The washing steps 

were found to be easier in this case with no problem in getting rid off Ag.  The 

detection of the amides improved to a much higher degree due to the presence of lower 

amount of Ag.  One problem observed with this lower percentage of Ag was though the 

lesser degree of resolution between the amides than that observed with higher silver 

content [see Figures 6-2(A) and 6-3(A)].  Therefore it will be necessary to optimize the 

silver content on the plate for the optimum resolution as well as for optimum detection 

of the primary fatty acid amides.   
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FIGURE 6-2: Separation of C18 unsaturated primary fatty acid amides by Argentation-

HPTLC. The plates were impregnated by dipping them in 10% AgNO3 in acetonitrile. 

Plate development A) in hexane: ether: acetone (40:35:15; v/v/v) up to 10 cm, B) twice 

in hexane: ether: acetone (40:35:15; v/v/v) to 7 cm, and C) in chloroform: methanol: 

acetic acid (95:5:1; v/v/v) to 5 cm, in hexane: ether: acetone (60:40:05; v/v/v) to 7 cm 

and finally in hexane: ether (97:3; v/v) up to 10 cm.  
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FIGURE 6-3: Separation of C18 unsaturated primary fatty acid amides by Argentation-

HPTLC. The plates were impregnated by dipping them in 0.5% AgNO3 in methanol. 

Plate development A) in hexane: ether: acetone (40:35:15; v/v/v) up to 10 cm, B) twice 

in hexane: ether: acetone (40:35:15; v/v/v) up to 10 cm. 
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6.4.2 Separation of PFAM’s by BPX70 column 

6.4.2.1 Some insight into polar columns 
 
It was discussed in previous chapters that unsaturated PFAM’s with the same number of 

carbons can not be separated by a non polar column like HP-5MS (see Figure 6-4).  

This was not unexpected because the amides are relatively polar and there is a tight 

margin between their polarities.  Because BPX70 is a highly polar column, it can be 

utilized for their separation.  There are a number of columns available from different 

manufacturers which have similar polarities as BPX70, but none of them have ever been 

used in conjunction with a mass spectrometer.  The reason behind this is their high 

bleed profile, which can saturate the detector.  These are mainly the highly polar 

columns with low temperature limit and mostly being used with FID.  There are 

numerous literature/application notes available about these columns being successfully 

used in the separation of long chain geometric and positional isomers of fatty acid 

methyl esters (FAME) in very short time.  But it is important to point out that most of 

these separations were carried out with H2 as carrier gas and FID as a detector.  Both of 

these conditions are not used in majority of the separation laboratories.  A very few 

cases of He use as a carrier gas were mentioned where the separations were rather 

sloppy and required longer time. BPX70 is the only polar column which has been found 

to be used with a MS [61] for the separation of FAME.  This column was therefore used 

in this study for the separation of derivatized PFAM’s.  One crucial requirement for the 

analysis of PFAM’s by the polar column is that they must be derivatized prior to the 

analysis in order to lower the retention time as well as to increase sensitivity.  It is 

necessary to add here that analysis of non-volatile compounds by GC/MS requires prior 
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derivatization, but FFA and PFAM’s can be analyzed by some non-polar columns (such 

as HP-5MS) with high sensitivity without derivatization.  Derivatization is often 

required in trace analysis in order to increase the sensitivity.  At low concentration, 

underivatized acids and amides tend to show lower sensitivity due to the tailing by their 

polar functional groups even on a non-polar column (HP-5MS is only 5% polar).  This 

tailing problem is severe with polar columns and results in very poor sensitivity even 

when analyzing them at higher concentration.  The underivatized compounds can be 

detected at higher concentration but the resolution between peaks is unacceptable.  

Therefore in order to analyze the primary fatty acid amides by polar columns, the NH2 

group needs to be deactivated through derivatization  

6.4.2.2 Derivatization of PFAM’s by BSTFA and analysis by GC/MS 
 
A number of different techniques are available in the literature for the derivatization of 

the amides (39, 64).  The most commonly used one is the derivatization by N, N-

BSTFA.  The protocol was optimized in this laboratory and can be successfully used for 

the derivatization of fatty acids and amides.  In this study the PFAM’s were derivatized 

with N, N-BSTFA at 95 ºC for 5 min and cooled at room temperature before acetonitrile 

was added.  The derivatized amides were then run by GC/MS and individual mass 

spectral patterns were observed.  

Derivatizing with BSTFA involves the replacement of one hydrogen from the 

amide by trimethylsilyl group forming trimethylsilyl-amide (TMS-derivative).  While 

analyzing the mass spectra of the amides derivatized according to the protocol described 

above, it was observed that instead of TMS derivatives, nitrile derivatives were formed.  
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The reason might be the use of acetonitrile as a solvent which quickly converted TMS 

derivatives to nitrile derivatives in gas phase on-column.  Figure 6-5 shows the mass 

fragmentation patterns of nine C18 amides.   
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FIGURE 6-4: Elution profile for C12-C22 amides on a HP-5MS column. The relative 

intensities at m/z 59, 72, 62 and 76 are plotted against retention time. Refer to Chapter 2 

for the description of the fragment ions. 

 

 

 

  C12 

    Retention time, min 

R
el

at
iv

e 
in

te
ns

ity
 

    C17D33  
 C149 

    C13 

  C14 

     C16 

  C17 

     C18 

  C1910 

Co-elution of   
C20 unsaturated 

amides 

  C20 

  C2213 

 C22 

Co-elution of   
C18 unsaturated 

amides 

Co-elution of   C14 
unsaturated and 13C 

labeled amides 



 218

 

0
5000

10000
15000
20000
25000
30000
35000
40000
45000
50000

50 64 78 92 10
6

12
0

13
4

14
8

16
2

17
6

19
0

20
4

21
8

23
2

24
6

26
0

27
4

 

 

 

 

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

50 62 74 86 98 11
0

12
2

13
4

14
6

15
8

17
0

18
2

19
4

20
6

21
8

23
0

24
2

25
4

26
6

27
8

 

 

 

 

M+ ion 
265 

  70 

[M-C3H7]+  
222

[M-CH3]+  
250 

  82 

 97

 57 

124

138

110

m/z

R
el

at
iv

e 
in

te
ns

ity
 

Fig 6-5(a) 

M+ ion 
263 

69 [M-C3H7] + 
220

[M-CH3]+  
248 

83 

97

122

136

m/z

R
el

at
iv

e 
in

te
ns

ity
 

 55 

Fig 6-5(b) 



 219

 

0

5000

10000

15000

20000

25000

50 62 74 86 98 11
0

12
2

13
4

14
6

15
8

17
0

18
2

19
4

20
6

21
8

23
0

24
2

25
4

26
6

27
8

 

 

 

 

0

5000

10000

15000

20000

25000

30000

50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

26
0

27
0

28
0

 

 

 

 

 

M+ ion 
263 

   69 
[M-C3H7]  

220
  [M-CH3]+  

   248 

83 

 97 

   55 

 122

136

m/z

Fig 6-5(d) 

M+ ion 
263 

69 

[M-C3H7] + 
220 [M-CH3]+  

248 

83 

97

122

136

m/z

R
el

at
iv

e 
in

te
ns

ity
 

 55 

R
el

at
iv

e 
in

te
ns

ity
 

Fig 6-5(c) 



 220

 

 

0

5000

10000

15000

20000

25000

30000

35000

40000

50 61 72 83 94 10
5

11
6

12
7

13
8

14
9

16
0

17
1

18
2

19
3

20
4

21
5

22
6

23
7

24
8

25
9

27
0

 

 

 

 

 

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50 61 72 83 94 10
5

11
6

12
7

13
8

14
9

16
0

17
1

18
2

19
3

20
4

21
5

22
6

23
7

24
8

25
9

27
0

 

 

 

 

M+ ion 
263 

   69 

[M-C3H7]  
220   [M-CH3]+  

   248 
  83 

 97

   55 

 122

 136

m/z

Fig 6-5(e) 
R

el
at

iv
e 

in
te

ns
ity

 

M+ ion 
263 

  69 

[M-C3H7]  
220

  [M-CH3]+  
   248 83 

 97

   55 

 122 136

m/z

Fig 6-5(f) 

R
el

at
iv

e 
in

te
ns

ity
 



 221

 

0

5000

10000

15000

20000

25000

30000

35000

50 61 72 83 94 10
5

11
6

12
7

13
8

14
9

16
0

17
1

18
2

19
3

20
4

21
5

22
6

23
7

24
8

25
9

27
0

 

 

 

 

0

50000

100000

150000

200000

250000

300000

350000

400000

50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

26
0

27
0

28
0

 

 

 

 

M+ ion 
261 

67 

[M-C3H7]+ 
218

[M-CH3]+  
246 

 81 

  120 

  134

   95

m/z

Fig 6-5(h)

   
   

R
el

at
iv

e 
in

te
ns

ity
 

M+ ion 
263 

  69 

[M-C3H7]  
220

  [M-CH3]+  
   248 

83 

 97

   55 

 122

136

m/z

Fig 6-5(g) 
R

el
at

iv
e 

in
te

ns
ity

 



 222

 

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

100000

50 62 74 86 98 11
0

12
2

13
4

14
6

15
8

17
0

18
2

19
4

20
6

21
8

23
0

24
2

25
4

26
6

27
8

 

 

FIGURE 6-5: Mass spectrum patterns of nitrile derivatives of C18 amides (a) stearamide; 

C18:0, (b) petroselenamide; C18:16, (c) petroselaidamide; C18:1trans6 , (d) oleamide; C18:19 , 

(e) elaidamide; C18:1trans9, (f) Vaccenamide; C18:1 trans11, (g) cis-13 octadecenamide; 

C18:113, (h) linoleamide; C18:19,12, and (i) linoleladamide; C18:1trans9,12 . See scheme 6.1 for 

illustration of the patterns. 

 

The structures for the common key fragment ions formed have been drawn for 

illustration in Scheme 6-1.  All the amides (both saturated and unsaturated) showed 

similar fragmentation patterns which included the molecular ion peaks ([M]+·); the 

peaks due to the loss of -CH3, ([M-15]+); the peaks due to the loss of -CH2-CH2-CH3, 

[M-43]+ ion; and the peaks due to the consecutive loss of methylene groups (14 u).  

Stearamide which is a saturated amide showed peaks at m/z 124 and m/z 138 

[Figure 6-5(a)] due to the formation of (C8H14N)+ and (C9H16N)+ ions from C8-C9 and 

C9-C10 cleavages respectively.  Stearamide also showed peaks at m/z 57 (base peak), 

m/z 70, and m/z 82 due the formation of (C4H9)+ (C5H10)+ and (C5H8N)+ ions 
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respectively [see Scheme 6-1(A)].  All the mono unsaturated amides showed 

characteristic peaks at m/z 122 and m/z 136 due to the (C8H12N)+ and (C9H14N)+ 

fragment ions.  The other intense fragmentation patterns observed at m/z 55, m/z 69, 

m/z 83 and m/z 97 were due to the cleavage of the nitrile [see Scheme 6-1(B)].  For 

petroselenamide (C18:16) and petroselaidamide (C18:1trans 6) with a double bond at sixth 

carbon, the base peak was observed at m/z 122.  The intensities of the peaks at m/z 55, 

m/z 69, m/z 83 and m/z 97 were much lower than those observed for other 

monounsaturated amides [see Figure 6-5(b)-(c)].  This is most probably due to the 

position of the double bond, which was included in the most frequently formed peak at 

m/z 122 [see Scheme 6-1(C)].  The diunsaturated PFAM’s did not show any fragment 

ions at m/z 69, m/z 83 and m/z 97, instead intense peaks at m/z 55, m/z 67, m/z 81, m/z 

95 were observed [see Figure 6-5 (h)-(i)] due to the presence of an additional double 

bond.  The other characteristic peaks resided at m/z 120 and m/z 134 due to the 

formation of (C8H10N)+ and (C9H12N)+ ions, respectively [see Scheme 6-1(D)]. These 

fragmentation pattern shows that the double bonds are preserved in the fatty acid 

amides after their synthesis from corresponding fatty acids.  
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Scheme 6-1(A) 
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Scheme 6-1(C) 
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Scheme 6-1(D) 
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Scheme 6-1 Mass-spectral (quadrupole) fragmentations for A) stearamide; C18:0, B) oleamide 

C18:19 (all the unsaturated amides shows similar patterns), C) petroselaidamide C18:1trans6, and 

D) linoleamide; C18:2 9,12. 
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6.4.2.3 Separation of derivatized standard PFAM’s  
 
Once the identity and the retention time of the each derivatized amides was confirmed, 

a mixture of amides was run by GC/MS.  Before the analysis, argon (a non- retained 

gas) was injected into the column and the average linear velocity was calculated to be 

27 cm/sec for He carrier gas.  Because the amides had high capacity factor, k´, at 27 

cm/sec gas velocity, optimization needed to be done.  In order to optimize the 

separation and lower the elution time, separation was carried out at 30 cm/sec, 35 

cm/sec, and 40 cm/sec, average He gas linear velocities.  At the latter velocity, elution 

profile was found to be shorter, which is better for the higher carbon amides.  It was 

found that the amides from C20 to C22 elute near the maximum temperature limit of the 

column.  They are therefore difficult to recognize and often co-elute with column bleed 

peaks.  But the resolution between the C18 amides at this velocity was not satisfactory.  

A slightly better separation was observed using the velocity at 35 cm/sec than that using 

the velocity at 40 cm/sec, whereas 30 cm/sec provided the best resolution and elution 

profile among the four velocities tried.   

Separation of nine C18 amides is shown in Figure 6-6 indicating excellent 

resolution between positional and geometric isomers, which was not achieved on a HP-

5MS column.  The trans isomers eluted at least a min before the cis isomers.  The 

amides with double bond closer to the carbonyl carbon eluted earlier than those 

containing double bonds further away from the carbonyl carbon.  Even though most of 

the monounsaturated amides showed nice separation from the unsaturated ones, C18:113 

was found to co-elute with C18:29,12 most probably due to the close position of their 

double bonds.  Because the fragments for C18:113 (m/z 122 and m/z 136) are different 
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from those for C18:29,12 (m/z 67, m/z 87, m/z 120, m/z 134), it will be possible to 

separate them by monitoring those ions only (see Figure 6-6). 
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FIGURE 6-6: Separation of derivatized unsaturated C18 amides on a BPX70 column. 

The relative intensities of m/z 67, m/z 81, m/z 122, m/z 124, m/z 136, and m/z 138 are 

plotted against retention time (see Figure 6.5 for fragmentation patterns). Average linear 

velocity of He was 30 cm/sec. Co-elution of C18:113 and C18:2 trans 9, 12 occurs in this 

separation but still can be separately identified due to the m/z 122, and m/z 134 specific 

for C18:113 which are not formed by C18:2 trans 9, 12 (m/z 67 and m/z 81 are specific for 

linoleladmide).  

 

The separation between four C20 amides was also achieved.  Table 6-II shows 

their retention times in two different linear velocities.  The retention times indicate that 

the elution profile for C20 amides follows similar trend as C18 amides in terms of 

geometric and positional isomers.  The trans amides elute before the cis amides and as 
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the position of the double bond moves further away from the carbonyl carbon, the 

retention time increases.  The problem with these higher molecular weight amides is 

that they elute near the maximum temperature of the column and are often accompanied 

column bleed peaks.  They were not included in this study because base line resolution 

was not achieved for them.  It is important to add that this separation indicates not only 

the position of the double bonds but also the stereochemistry of the bonds was 

preserved after the synthesis of the amides from their corresponding acids. 

 
TABLE 6-II: Retention time of four C20 unsaturated amides at different average linear 

velocity of He carrier gas. 

 
Retention time, min at different 

He gas average linear velocity 

Amides 

30 cm/sec 40 cm/sec 

C20:15 22.97 20.84 

C20:1trans 11 23.37 22.12 

C20:111 23.81 22.47 

C20:113 23.92 22.59 

 

6.4.2.4 Separation of PFAM’s from rabbit brain and heart 
 
The analysis of the derivatized amides isolated from rabbit brain and heart shows that 

oleamide is the only major unsaturated fatty acid amide present in those tissues (see 

Figure 6-7).  Trace amounts of linolemide and cis-13- eicosenoamide were also 

observed besides oleamide, stearamide and palmitamide in brain tissues [Figure 6-7(a)].  

Heart tissues contained only stearamide and palmitamide besides oleamide [Figure 6-

7(b)].   
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FIGURE 6-7: Separation of derivatized unsaturated C18 amides from a) rabbit brain 

acetone powder and b) rabbit heart on a BPX70 column. The relative intensities of m/z 

67, m/z 81, m/z 122, m/z 124, m/z 136, and 138 are plotted against retention time. (see 

Figure 6.5 for fragmentation patterns). Average linear velocity of He was 30 cm/sec for 
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(a) and 40 cm/sec for (b).  Peaks in figure (a) therefore eluted around 1.5 min later than 

those in (b). 

 

Beacuse fatty acid amides are used as slip additives in plastics and can 

contaminate the sample upon the use of such containers, a method blank was run and 

subtracted from each sample spectrum.  This method therefore could be an excellent 

way of identifying the types of amides present in different parts of mammalian tissues.  

It was basically a qualitative study to identify the unsaturated amides that are co-eluting 

with the oleamide peak.  The quantitation is the next step that needs to be done.  Also 

the tissues that were used in this study are available in larger quantities in which case 

detection is not an issue, but mapping the amides in different parts of tissue will be 

critical.  For example, concentration of amides in different brain parts such as in 

hypothalamus, neocortex, basal ganglia, hippocampus, amygdale, cerebellum, brain 

stem and spinal cord could be in the order of picograms.  Sensitivity will definitely be 

an issue for amide identification and quantitation in these types of samples using a polar 

column.  One solution might be to find a better derivatizing agent for producing more 

stable derivatized amides for better sensitivity as well as lower detection limit.  

6.5 Conclusions 
 
In conclusion, we have developed an efficient method for the separation of primary 

fatty acid amides by BPX70 column.  Unsaturated C18 amides were separated with 

excellent resolution in terms of the number, position and stereochemistry of the double 

bonds.  In this study, the C20-C22 unsaturated amides were not employed due to the 

incapability of the high bleed, polar BPX70 column to provide baseline resolution for 
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these amides.  An argentation-HPTLC method was also studied for the separation of 

C18 unsaturated amides.  A nice resolution between the saturated and the unsaturated 

amides were observed in this case.  A satisfactory resolution between the geometric and 

the positional isomers could not be achieved.  As discussed in the results and discussion 

section, optimization of the amount of silver might help improve these types of 

separation.  Even though the amides isolated from rabbit tissues were successfully 

separated by the BPX70 column, quantification still needs to be carried out for these 

tissues as well as other tissues known to express PAM.  As discussed in earlier chapters, 

PAM is the catalyst for the final step of oleamide biosynthesis.  Tissues known not to 

express PAM (such as kidney) will also be analyzed and will be a good control for 

future studies.  
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