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ABSTRACT 
Abstract 

 
NEW CONCEPTUAL UNDERSTANDING OF LEWIS ACIDITY, 

 
COORDINATE COVALENT BONDING, AND CATALYSIS 

 
 
 
 
 
 
 

By 
 

Joshua A. Plumley 
 

August 2009 
 
 
 

Dissertation Supervised by Jeffrey D. Evanseck 
 
 The focus of this dissertation is to correct misconceptions about Lewis acidity, 

uncover the physical nature of the coordinate covalent bond, and discusses how Lewis 

acid catalysts influence the rate enhancement of the Diels-Alder reaction. Large-scale 

quantum computations have been employed to explore many of Lewis’ original ideas 

concerning valency and acid/base behavior. An efficient and practical level of theory able 

to model Lewis acid adducts accurately was determined by systematic comparison of 

computed coordinate covalent bond lengths and binding enthalpies of ammonia borane 

and methyl substituted ammonia trimethylboranes with high-resolution gas-phase 

experimental work. Of all the levels of theory explored, M06-2X/6-311++G(3df,2p) 

provided molecular accuracy consistent with more resource intensive 

QCISD(T)/6-311++G(3df,2p) computations.  
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Coordinate covalent bond strength has traditionally been used to judge the 

strength of Lewis acidity; however, inconsistencies between predictions from theory and 

computation, and observations from experiment have arisen, which has resulted in 

consternation within the scientific community. Consequently, the electronic origin of 

Lewis acidity was investigated. It has been determined that the coordinate covalent bond 

dissociation energy is an inadequate index of intrinsic Lewis acid strength, because the 

strength of the bond is governed not only by the strength of the acid, but also by unique 

orbital interactions dependent upon the substituents of the acid and base. Boron Lewis 

acidity is found to depend upon both substituent electronegativity and atomic size. 

Originally deduced from Pauling’s electronegativities, boron’s substituents determine 

acidity by influencing the population of its valence by withdrawing electron density. 

However, size effects manifest differently than previously considered, where greater 

σ-bond orbital overlap, rather than π-bond orbital overlap, between boron and larger 

substituents increase the electron density available to boron, thereby decreasing Lewis 

acidity. The computed electronegativity and size effects of substituents establish unique 

periodic trends that provide a novel and clearer understanding of boron Lewis acidity, 

consistent with first principle predictions.  

Lastly, it is discovered that the energetics associated with the transition structure 

converge much slower than what was observed for coordinate covalent bonded ground 

states.  Consequently, it is harder to model activation barriers, as compared to binding 

energies, to within experimental accuracy, because larger basis sets must be employed. 

Hyperconjugation within dienophile ground states, initiated by geminal Lewis acid 

interactions, is found to govern the strength of the coordinate covalent bond between the 
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Lewis acid and the dienophile. A novel interpretation is presented where the strength of 

the coordinate covalent bond within the Lewis acid activated dienophile is governed by 

donor-acceptor orbital interactions between the π-density present on the carbonyl group 

to the σ* orbitals on the Lewis acid, rather than the main donor-acceptor motif between 

the oxygen lone pair and the empty 2p orbital on the Lewis acid. Moreover, the same 

hyperconjugation within the dienophile controls the rate enhancement of the Lewis acid 

catalyzed Diels-Alder reaction, by modulating the energy of the dienophile’s lowest 

unoccupied molecular orbital. A new understanding of Lewis acidity and coordinate 

covalent bonding has been achieved to better describe and predict the structure and 

electronic mechanism of organic reactions.  
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Chapter 1  
 
 
Introduction 
 
 
1.1 The Chemical Bond 

The chemical bond is one of the most fundamental assemblies within the 

framework of chemistry and biochemistry. Most chemical reactions involve the 

formation or cleavage of bonds; thus, it is of vital importance to understand the physical 

nature of the chemical bond.  The foundation of chemical bonding was laid with the 

“electronic structure revolution,” initiated by Gilbert Lewis.1-5 Nearly a century later, his 

concepts pertaining to the “electron pair bond” and the “rule of eight,” later coined by 

Irving Langmuir as the “octet rule”,3, 6 are still discussed and taught in almost all general 

chemistry text books and courses as an introduction to the marvelous and complex world 

of the chemical bond. 

Of the various types of bonding described by Pauling,7 Lewis reported that the 

covalent chemical bond between two atoms is a direct result of sharing pairs of 

electrons, completing the valence shells of the bonded atoms.4 However, Lewis was not 

able to explain the counterintuitive attraction between the electrons, because particles of 

the same charge should repel each other. However, Lewis was so confident in the 

formation of the covalent bond through electron-pair sharing that he declared Coulomb’s 

Law invalid for extremely short distances.  It was not until Pauli’s exclusion principle 
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was formulated that the electron pair was justified. Regardless of the origin, Lewis 

coined the phrase “rule of two” or the “duet rule” to refer to localized electron pairs. As 

a manifestation of the “duet rule,” Lewis represented the electron pair with an ingenious 

double dot symbol, which resembles a colon, to designate a shared bond or nonbonding 

pair of electrons. As a result, molecules such as the hydrogen dimer and water can be 

easily constructed as “Lewis dot structures” (Figure 1.1). 

 

 

 

Lewis also proposed that atoms following the first period possess electrons in successive 

shells containing up to eight electrons. He introduced the cubical atom in which eight 

electrons were systematically arranged on the corners of a cube.4 Consequently, the 

“rule of eight” or “octet rule” was born.  Lewis was aware of exceptions to the “octet 

rule” and thus regarded the “duet rule” to be a more fundamental chemical observation 

rather than the “octet rule.” For example, BF3 and PCl6 violate the “octet rule,” 

possessing valencies of six and twelve respectively, as shown by Figure 1.2. 

Figure 1.1. Lewis dot and line structure representations of the hydrogen dimer and water. 
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In spite of Lewis’ caution regarding the limitations of the octet rule, Langmuir 

stressed the “octet rule” over the “duet rule”. As a consequence of his persuasive 

lectures and vigorous promotion of the octet rule, it became recognized as a fundamental 

law rather than a hypothesis based on experimental data.3, 6, 8 Consequently, when 

violations of the “octet rule” were discovered, attempts to explain the deviation were 

reported.7 However, once the “octet rule” was accepted as merely an empirical 

observation rather than a law of nature, attempts to retain the validity of the octet rule 

were no longer needed. The octet rule strictly applies to atoms of the second period (e.g. 

carbon, nitrogen, oxygen and fluorine). Atoms from other periods may obey the “octet 

rule,” but not all molecules necessarily do so.  

BF3 is a common Lewis acid and a known violator of the octet rule; however, in 

an attempt to adhere to the well promoted “octet rule”, justifications were made to show 

that BF3 does in fact obey the octet rule.7 For example, Pauling reported that double 

bonds between boron and fluorine significantly influence the bonding scheme within 

BF3, as illustrated by three degenerate resonance structures (Figure 1.3). The three 

Figure 1.2. Lewis dot structures of BF3 and PCl3, clearly illustrating the violation of the octet rule, 
where boron possesses six valence electrons and phosphorous possesses twelve valence 
electrons. The three lone pairs on each halogen have been omitted for clarity. 
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resonance structures illustrate that boron does in fact possess eight electrons in its 

valence and thus adheres to the octet rule.  

 

 

 

Pauling justified the BF3 bonding scheme by bringing attention to the fact that 

boron has a formally empty 2p orbital, which may be filled with fluorine’s lone pairs. 

Furthermore, the 0.07 Å shorter B–F bond length within BF3 as compared to within BF4
- 

suggests partial double bond character.7 However, the shorter B–F bond length within 

BF3 can just as easily be justified by the fact that three atoms can more closely pack 

around a central atom as compared to four.9  

Lewis’ theory dictates that electrons exist as localized pairs within a molecule, 

fixed between a set of nuclei or as lone pairs. However, this is not true since the 

positions of the electrons are not known precisely, according to Heisenberg’s uncertainty 

principle. A primary example of a molecule that is not accurately represented by one 

Lewis dot structure with fixed electrons is that of benzene. Pauling rectified the dilemma 

Figure 1.3. Resonance structures of BF3, justifying that BF3 does in fact obey the octet rule, 
since boron possesses eight electrons in its valence shells.  
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by showing that delocalized structures such as benzene can be represented as a linear 

combination of resonance structures, yielding a resonance hybrid. However, as the 

number of delocalized electrons within a structure increases, the resonance hybrid 

description becomes less accurate, and a molecular orbital description is necessary.10  

Although pairs of electrons are known to delocalize, Lewis’ theory is an 

excellent first-order approximation for understanding the bonding within a molecule. 

Furthermore, the approximate localization of electron pairs between atoms also initiated 

an understanding of molecular geometry. For example, if electrons in an octet are 

arranged on the corners of a tetrahedron, molecules such as CH4 were justified to 

possess a tetrahedral structure. The arrangement of electron pairs also justified the 

trigonal pyramidal and bent molecular geometries for NH3 and OH2 molecules, 

respectively. Extensions of Lewis’ theory by Sidwick and Powell11 suggested that 

molecular geometry is a consequence of the total number of electron pairs in the valence 

shells of the central atom, where electron pairs would arrange themselves around the 

central atom in order to minimize electron pair repulsions. Lewis, Sidwick, and Powell’s 

pioneering advancements finally led to the construction of Valence Shell Electron Pair 

Repulsion Theory (VSEPR).9  

The foundation of the chemical bond, laid by Lewis1, 2, 4, 5 and other pioneers 

such as Pauling,9 Langmuir,3, 6, 8 J. E. Lennard-Jones,12 Linnett,13  Mulliken, Heitler, and 

London,14  to mention a few, can hardly be summarized in a single chapter. However, 

one point remains clear; The nature of the chemical bond is far from lucid, as made 

evident by the publication of an entire issue of the Journal of Computational Chemistry 

dedicated to chemical bonding, where new and exciting bonding schemes are currently 
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being explored and  reported.15 For example, Frenking and coworkers reported that 

nonpolar bonds between main-group elements, which are prototype covalent bonds, 

have large attractive contributions from electrostatic interactions, which can be stronger 

than the orbital overlap, which was previously thought to be the primary interaction.16  

Furthermore, unusual bond orders between transition metal structures have been 

reported, ranging from quadruple to sextuple bonds.17, 18 Regardless of the new bonding 

schemes, the “electron pair” remains the primary unit of chemical bonding, introduced 

nearly a century ago by Lewis.  

 

1.1.1 The Covalent Versus Coordinate Covalent Bond 

Pauling classified all chemical bonds as being either covalent, electrostatic, or 

metallic, indicating that the covalent bond is among the most common and prevalent 

bonding schemes within the realm of chemical bonding.7 In addition to the three main 

bonding motifs, he noted the existence of a subsection within the covalent classification, 

now recognized as the coordinate covalent bond, also referred to as the dative bond, 

coordination bond, or coordinate link.19-22  Pauling was intrigued by the coordinate 

covalent bond, which he considered to be a type of double bond consisting of one single 

covalent bond and one ionic bond of unit strength, as demonstrated by trimethylamine 

oxide within Figure 1.4.7  
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Although the coordinate covalent bond is not considered a double bond as 

Pauling originally proposed, it has been reported to possess both ionic and covalent 

character.23-25 The coordinate covalent bond demonstrates an atypical bonding scheme, 

where covalent and ionic potential energy surfaces become close in energy, where the 

wavefunction is described by Equation 1.1.  

  1.1  

The importance of each bonding term depends upon the ability of the atomic partners to 

share electrons, as well as D to donate electrons and A to accept them.  

 The archetypical prototypes of the coordinate covalent bond and the covalent 

bond are ammonia borane (H3BNH3) and ethane (H3CCH3), respectively, as shown by 

Figure 1.5. Previously, it was thought that when a coordinate covalent bond forms, the 

participating electron pair originates solely from one fragment.19 For example, the 

electron pair forming the coordinate covalent bond within ammonia borane is donated 

Figure 1.4. The coordinate covalent bond between the donor, oxygen, and the acceptor, 
nitrogen, within trimethylamine oxide. Illustration of one covalent bond plus one ionic bond to 
represent the coordinate covalent bond. 
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from ammonia to the electron-pair acceptor, borane. However, the distinction between 

the covalent and coordinate covalent bond becomes unclear when ethane is formed by 

the coordination between a carbanion and a carbocation. Haaland proposed a more lucid 

distinction between the coordinate covalent and covalent bond by not considering where 

the electrons originate, as previously done, but by considering the minimum-energy 

rupture of the bond and then examining the resulting fragments.19 If the minimum-

energy rupture of the bond yields two neutral radicals, then the bond is classified as 

covalent; however, if the rupture of the bond proceeds by a heterolytic mechanism, then 

the bond is said to be coordinate covalent (Figure 1.5). 
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Ammonia borane and ethane are isoelectronic; however, a comparison between 

their physical characteristics allows the differences between coordinate covalent and 

covalent bonds to be recognized. For example, the gas-phase dipole moment of ethane is 

0 D, whereas the dipole moment of ammonia borane is 5.13 D, for which the negative 

pole lies on the acceptor.26 The difference between the dipole moments demonstrates the 

donor-acceptor character of the coordinate covalent bond in contrast to that of the 

Figure 1.5. Coordinate covalent and covalent bond ruptures within ammonia borane and ethane, 
respectively. Ethane proceeds via a homolytic minimum energy rupture, yielding two neutral 
radicals; thus, classified as covalent. Ammonia borane proceeds via a heterolytic minimum 
energy rupture, yielding two neutral diamagnetic species, and is therefore classified as 
coordinate covalent.  
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covalent bond. However, it is interesting to note that the dipole moment is predicted to 

be 7.98 D, if the point charge of an electron (1.602 × 10-19 C) and the experimental B–N 

bond length of 1.658 ± 0.002 Å26 are used within the formula d = Qr, where d is the 

dipole moment, Q is the equal point charge on each atom, and r is the distance between 

the two atoms. The difference between the experimental and predicted dipole moments 

suggests that the nitrogen does not donate a full pair of electrons as the formal charges 

on nitrogen and boron within ammonia borane imply. In addition to the dipole moment 

differences, melting point differences exist as well, where ammonia borane experiences 

a higher melting point (112 - 114 °C)27 as compared to ethane (-182.8°C).28 The higher 

melting point observed within ammonia borane arises because the dipole moments allow 

intermolecular attractions to occur between the adducts, whereas these attractions do not 

exist within ethane. A difference in bond strength is also observed between the 

isoelectronic species, where the observed C–C covalent bond dissociation enthalpy for 

ethane is ΔH298 = 90.2 kcal/mol,29 about three times stronger than the best estimate of 

ΔH298 = 27.5 kcal/mol24 for the B–N coordinate covalent bond. The difference in bond 

strengths is reflected by the bond lengths, where the C–C covalent bond is 1.530 ± 0.002 

Å30 and the B–N coordinate covalent bond is 0.125 Å longer. Similar trends are 

observed when the physical and chemical characteristics of coordinate covalent and 

covalent bonds are compared within isoelectronic species, such as (CH3)3Si–Si(CH3)3 

and (CH3)3Al–P(CH3)3, where the Si–Si covalent bond (2.340 ± 0.009 Å)31 is shorter  

than the Al–P coordinate covalent bond (2.53 ± 0.04 Å).32 In addition, the bond 

dissociation enthalpy of the Si–Si covalent bond (ΔH298 = 79.3 kcal/mol)33 is stronger 

than the Al–P coordinate covalent bond (ΔH298 = 21.0 kcal/mol)34 by a factor of four. In 
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summary, the coordinate covalent bond possesses a longer bond length, a stronger dipole 

moment, and is about one-third weaker when compared to its isoelectronic covalent 

counterpart. 

Ammonia borane serves as a common prototype of the coordinate covalent bond, 

which exists within many molecules that have profound consequences in many realms of 

chemistry and biochemistry, such as the fields of storage and release of hydrogen as a 

fuel,35-37 growth of uniform coatings on individual filaments for fiber-reinforced ceramic 

matrix composites,38-41 and as new oncological,42-44 cardiovascular, and 

anti-inflammatory drugs.44-48 Consequently, it is of interest to understand the electronics 

within the coordinate covalent bond and its consequence upon chemical phenomena.  

 

1.2 Acid and Base Theory  

In 1887 Svante A. Arrhenius defined acids and bases as chemical species that 

dissociate in water to yield hydronium and hydroxide ions, respectively.49   Although the 

Arrhenius definition was an important contribution to acid-base chemistry, it fails to 

explain why some molecules such as NH3 neutralize acids, even though no hydroxide 

group is present. Arrhenius’s definition of the base was modified by Brønsted50 and 

Lowry51, 52 in 1923, where a base was defined as any chemical species that binds with a 

proton. Brønsted and Lowry’s definition consists of an equilibrium reaction, where a 

proton is exchanged from an acid, HA to a base B, yielding a conjugate base, A-, and 

conjugate acid, HB+, as shown by Equation 1.2.    
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  1.2  

The strength of a Brønsted-Lowry acid is gauged by the degree of hydrogen dissociation 

in water. For example, a strong acid, such as H2SO4, will dissociate to a greater degree 

than a weak acid, such as ammonia, favoring the right side of the equilibrium expressed 

in Equation 1.2. A quantitative measure regarding the strength of acids and bases is 

defined by determining the concentration of H3O+ or -OH in an aqueous solution, where 

a larger amount of H3O+ suggests a stronger acid, and thus a weaker base, as the water 

ion-constant mandates.  

  1.3  

Since the concentration of H3O+ may be utilized to gauge the strength of an acid, it is 

only natural to use the equilibrium constant, specifically the acid-dissociation constant to 

gauge Brønsted-Lowry acidity (Equation 1.4). Consequently, a larger Ka designates a 

stronger acid, as shown by Equation 1.4.  

 
 1.4  

For the sake of convenience, strengths of acids are indicated on a logarithmic scale, in 

which the –log of Ka yields the pKa. Similarly, the strength of a base is related to the 

concentration of –OH and thus the base-dissociation constant, , as shown by Equation 

1.5. 
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  1.5  

Multiplying Ka and Kb yields Equation 1.3 and thus pKa + pKb = 14. The relationship 

between pKa and pKb indicates that a strong acid must possess a weak conjugate base 

and a weak acid must possess a strong conjugate base. Consequently, the conjugate base 

of a strong acid must be stable in its anionic form; otherwise, the acid would not easily 

dissociate.  

 The stability of a conjugate base may be used as an indicator to gauge the 

relative strength of acids. Stable anions tend to be weaker bases and as a result, their 

conjugate acids are stronger. Factors that impact the stability of the anion and thus the 

strength of an acid are atomic size, electronegativity, and resonance.53, 54 The negative 

charge present on the ion is more stable if it is dispersed over a larger volume, which 

means atomic size influences the strength of an acid. For example, F- is smaller than Br-, 

making F- less stable than Br- and HF a weaker acid than HBr, as reflected by their pKas 

of 3.2 and -9.0 in water, respectively.54 A more electronegative atom is able to bear a 

negative charge more easily than a less electronegative atom, yielding a more stable 

anion and thus a stronger acid. For example, nitrogen is less electronegative than 

fluorine, thus NH2
- is less stable than F-, and so NH3 is a weaker acid than HF with pKas 

of 36 and 3.2, respectively.53 Considering Brønsted-Lowry acids, a binary acid increases 

in strength across a period, because the conjugate base is stabilized by increasing 

electronegativity without significant size changes. However, within a periodic group, 

electronegativity effects become negligible compared to size changes and 
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Brønsted-Lowry acids strengthen with increasing size. Lastly, resonance can stabilize 

the negative charge by delocalizing it over two or more atoms. For example, acetic acid 

(pKa = 4.7) is weaker than methanesulfonic acid (pKa = -1.2) primarily because 

methanesulfonic acid possesses three important resonance structures that delocalize the 

negative charge, whereas acetic acid only has two, as shown by Figure 1.6.  

 

 

 

Brønsted-Lowry acid-base theory depends on the transfer of a proton from an 

acid to a base. This is limiting since it is a one element theory, where only species 

containing hydrogen atoms may be acids. Gilbert Lewis recognized that 

Brønsted-Lowry bases use a pair of nonbonding electrons to bind to a proton.2, 55  

Figure 1.6. Resonance structures corresponding to the acetate ion (top) and methanesulfonate 
ion (bottom), illustrating the delocalization of the negative charge which ultimately governs the 
strength of the corresponding conjugate acid. Acetic acid is weaker than methanesulfonic acid, 
since the negative charge is delocalized across only two structures as compared to three.  
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Furthermore, he noticed that the transfer of a proton is not necessary to satisfy the 

nucleophilcity of the base. In fact, Lewis defined an acid as any species that accepts an 

electron pair, whereas a base is a chemical species that donates an electron pair. As a 

result, a new bond is formed between the acid and base, specifically, a coordinate 

covalent bond. Lewis was clear that valence is a crucial element in defining acidity.55, 56  

For example, the Lewis acidity of boronic acids is due to their tendency to complete 

their octet, or the stable group of four electron-pairs; however, it is a concept that cannot 

be measured directly. Lewis suggested that the coordinate covalent bond dissociation 

energy may be used as a preliminary index of acidity; yet, he cautioned that several 

factors could influence the degree of dissociation.2 Due to its importance, there have 

been several indirect methods to gauge relative Lewis acidity. 

An overview of different procedures that measure relative Lewis acid and base 

strengths has been given by Anslyn and Dougherty.54 Examples include Pearson’s hard 

soft acid base (HSAB) principle,57-60  Gutmann’s donor (DN) and acceptor numbers 

(AN),61-63 Drago, Marks, and Wayland’s E & C and D & O equations,64-66 and Christe 

and coworker’s fluoride affinities.67 Pearson used acid-base displacement equilibrium 

constants and aqueous stability constants to deduce that hard (nonpolarizable) acids 

prefer to bind to hard bases, and that soft (polarizable) acids prefer to bind to soft bases. 

This classification of hard and soft acids and bases has been exploited to predict the 

outcome of many acid-base reactions.57 Gutmann introduced the concept of acceptor 

numbers (AN) and donor numbers (DN), which scale linearly with the negative heat of 

reaction of adduct formation. Consequently, AN allows predictions of acidity to be made 

against measured heats of formation from acid-base reactions. Drago and Wayland 
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developed a double-scale enthalpy equation, the E & C equation, to predict acid-base 

reaction enthalpies dependent upon terms that represent the electrostatic and covalent 

nature of the acid-base interaction. This equation allows for a quantative prediction of 

the reaction enthalpy between any acid and base for which the parameters are known. 

However, the equation fails when predicting the stability of adducts formed between 

highly ionic acids and bases. Subsequently, Drago and Marks derived an improved 

equation more suitable for ionic adducts, referred to as the D & O equations. Christe and 

coworkers determined the reaction enthalpy between a variety of Lewis acids and the 

fluoride ion, where a larger value indicates a stronger affinity between the Lewis acid 

and ion. 

Regardless of the scale utilized to predict the relative strengths of Lewis acids, it 

is assumed that a stronger coordinate covalent bond is due to the increased Lewis 

acidity, when the Lewis base is held constant. However, problems arise from such an 

assumption, because the strength of the coordinate covalent bond is influenced by other 

forces such as orbital and steric interactions between the substituents present on the 

Lewis acid and base.68-70 Chapter 4 addresses the deficiencies of utilizing the indirect 

method of considering the stability of a Lewis acid adduct to gauge the strength of a 

Lewis acid, as well as presents a novel approach to gauge the strength of a Lewis acid. 

We use the term “intrinsic Lewis acidity” to measure relative Lewis acidity in the 

manner originally intended by Lewis, which is by the valence deficiency of the acid of 

interest, yielding its desire to accept an electron pair.55, 56 
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1.3 The Diels-Alder Reaction 

Otto Diels and Kurt Alder discovered the Diels-Alder reaction in 1928,71 for 

which they received the Nobel prize in 1950. The Diels-Alder reaction is among the 

most common transformations to construct a six member ring in a regio- and 

stereoselective manner,72, 73  where a conjugated diene and dienophile  react to yield a 

cycloadduct, as shown by Figure 1.7. However, the Diels-Alder reaction is not limited to 

carbon-carbon bond formation, where newly formed sigma bonds within the 

cycloadduct can occur between heteroatoms or between heteroatoms and carbon atoms, 

as well.74, 75  

 

 

 

A variety of experimental conditions and factors have been shown to influence the rate 

enhancement and selectivity of the Diels-Alder reaction, such as pressure,76-79 aqueous 

solutions,76, 80-82 stable cation radicals,76 ultrasonic radiation,79 Brønsted-Lowry acids,76, 

83-85 ionic liquids,78, 86-89 and Lewis acids.76, 77, 80, 90-92 Although a large amount of data 

exists, illustrating the practicality and validity of using Lewis acids to catalyze 

Figure 1.7. Simple Diels-Alder reaction between ethene (dienophile) and 1,3-butadiene (diene) 
to form the final cycloadduct, cyclohexane. The dashed lines correspond to the new bond 
formation. 



 

18 
 

Diels-Alder reactions to enhance rate and synthesize specific asymmetric products, the 

origin of Lewis acidity and its connection with rate enhancement remains unclear. One 

primary objective of the research discussed in this dissertation is to understand Lewis 

acidity and its influence upon the rate of reaction. Specifically, the goal is to acquire a 

quantitative understanding on the orbital interactions that regulate the frontier molecular 

orbital (FMO) interactions, as introduced by Fukui’s FMO theory.93-95  

 

1.3.1 Frontier Molecular Orbitals and Their Influence upon Reactivity and Selectivity. 

According to FMO theory the rate and selectivity of a reaction are governed by 

the in-phase orbital interaction of the highest occupied molecular orbital (HOMO) of 

one reactant and the lowest unoccupied molecular orbital (LUMO) of the remaining 

reactant.95-98 The interaction between the HOMO and the LUMO can occur in two 

distinct ways. First, the HOMO of the dienophile can interact with the LUMO of the 

diene to form the cycloadduct, also known as the inverse electron demand Diels-Alder 

reaction. Second, the HOMO of the diene can interact with the LUMO of the dienophile, 

also referred to as the normal electron demand Diels-Alder reaction.  The normal and 

inverse electron demand mechanisms are shown by Figure 1.8. 
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The reactivity of the Diels-Alder reaction depends upon the energy difference 

between these four orbitals. For example, if the energy difference between the HOMO 

of the diene and the LUMO of the dienophile is less than the energy difference between 

of the LUMO of the diene and the HOMO of the dienophile, then the Diels-Alder 

reaction will proceed via a normal electron demand mechanism. The rate of the reaction 

is governed by the magnitude of the energy difference between the FMOs, where a 

smaller energy difference will yield a stabilized transition state (lower energy) and 

produce an increase in the rate of reaction. An electron donating substituent will increase 

the energy of a HOMO or LUMO, while an electron withdrawing substituent will 

decrease their energies. Consequently, if a Lewis acid is coordinated to a dienophile that 

is participating in a normal electron demand Diels-Alder reaction, the LUMO will 

decrease in energy, allowing a more favorable orbital interaction with the HOMO of the 

diene, and ultimately increase the rate of reaction. One of the first reports of a Lewis 

Figure 1.8. In-phase orbital overlap between the HOMO and LUMO of the diene and dienophile 
for the inverse and normal electron demand. The normal electron demand proceeds via the 
interaction between the LUMO of the dienophile and the HOMO of the diene, whereas the  
inverse electron demand proceeds via the interaction between the LUMO of the diene and the 
HOMO of the dienophile. 



 

20 
 

acid catalyzed Diels-Alder reaction was by Yates and Eaton, where a rate increase of ca. 

105 was observed for the Diels-Alder reaction between anthracene and maleic anhydride 

when the AlCl3 Lewis acid was utilized.99 Similarly, Inukai and Kojima subsequently 

reported the successful rate enhancement of the Diels-Alder reaction between 

1,3-butadiene and methyl acrylate in the presence of AlCl3.100  

In addition to rate enhancement, FMO theory also explains the increased 

regioselectivity of Lewis acid catalyzed Diels-Alder reactions.72, 98 For example, the 

para:meta ratio of the product for the Diels-Alder reaction between methyl butadiene 

and methyl acrylate is 69.5:30.5, whereas the AlCl3 catalysis of the same reaction 

increases the para:meta ratio to 95:5.101 FMO theory attributes the observed para:meta 

increase to a more favorable orbital overlap during the para reaction pathway between 

the HOMO and LUMO of the diene and dienophile, respectively,  as illustrated by 

Figure 1.9. For this example, the para cycloadduct is favored, because the corresponding 

reaction pathway allows more orbital overlap between the FMOs than the meta pathway. 

During the para reaction pathway, the larger lobes on the LUMO and HOMO of the 

dienophile and diene, respectively, overlap, whereas the LUMO-HOMO orbital overlap 

is not as great for the meta pathway. In general, the reaction pathway that allows the 

most orbital overlap will be followed, and thus the corresponding regioisomer will be 

formed. Similar accounts of observed increases in the para:meta ratio upon Lewis acid 

catlaysis of the Diels-Alder reaction have been reported.101, 102 
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FMO theory accounts for the observed endo stereoselectivity of the Diels-Alder 

reaction,73 where the endo product is commonly attributed to stabilizing secondary 

orbital interactions (SOIs) that occur within the transition structure that are unobtainable 

during the exo reaction pathway.103-108 Three types of SOIs have been reported and are 

shown by Figure 1.10, specifically, the [4+3] interaction proposed by Singleton (S43),107 

the SAH interaction introduced by Houk, Salem, and Alston,104-106 and finally, the WH 

interaction established by Woodward and Hoffmann.103 The secondary orbital 

interactions do not initiate any bond formations, but rather the interactions provide a 

Figure 1.9. Diels-Alder reaction between the LUMO of the dienophile and  the HOMO of the 
diene, illustrating that the para cycloadduct is favored over the meta cycloadduct because a 
more favorable orbital overlap is experienced during the para reaction pathway.   
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stability within the endo transition structure that cannot be achieved by the exo transition 

structure, making the endo product more preferred. However, the influence of SOIs 

upon stereoselectivity remains debated.109, 110  

 

 

 

This dissertation focuses on uncovering the hyperconjugation effects within the 

Lewis acid and between the Lewis acid and the dienophile that regulate the rate 

enhancement of the Diels-Alder reaction. A novel geminal interaction that is intimately 

connected to the rate enhancement of the Diels-Alder reaction has been discovered. The 

Lewis acid geminal interaction initiates and governs π-conjugation within the 

dienophile, lowers the LUMO energy, and ultimately increases the rate of reaction. 

Figure 1.10. Secondary Orbital Interactions (SOIs) introduced by Salem, Houk, and Alston 
(SAH), Singleton (S43), and Woodward and Hoffman (WH), have been utilized to account for the 
preference of the endo product versus the exo product, regarding the Diels-Alder reaction. The 
stabilizing secondary orbital interactions are shown by the double headed arrow between the 
corresponding orbitals. Endo is favored over exo because the latter lacks the stabilizing SOIs.  
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These results provide further quantitative insight into how Lewis acids impact chemical 

reactivity.  

 

1.4 Objective of Thesis 

Due to the fundamental interest and importance of coordinate covalent bonding, 

Lewis acidity, and their influence upon chemical reactivity, this dissertation presents a 

critical account of Lewis acidity and differences with Brønsted-Lowry periodic trends, 

fundamental ideas in coordinate covalent bond strength, and ultimately the Lewis acid 

rate enhanced Diels-Alder reaction.  

 First, the goal is to establish an efficient level of theory that is able to model the 

energetics of the coordinate covalent bond accurately. The binding enthalpy associated 

with ammonia borane, a well-known prototype of the coordinate covalent bond, has 

been reported to vary between -14.3 to -37.5 kcal/mol, depending on the level of theory 

employed. The large discrepancies indicate that the coordinate covalent bond is sensitive 

to the level of theory utilized. In order to determine an adequate level of theory for 

modeling the electronics of the coordinate covalent bond, high-level quantum chemical 

calculations are used to compute energy and bond length convergence as a function of 

quantum chemical method and basis set. Central to this work is that commonly 

employed levels of theory are found to be insufficient to characterize the coordinate 

covalent bond. It is discovered that the charge separation at the equilibrium bond length 

must be modeled correctly in order for a level of theory to characterize accurately the 

coordinate covalent bond. The charge separation results from a mismatch in donor and 
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acceptor strength, which endows the termini with a buildup of electron density. We have 

coined this mismatch of strength “charge-transfer frustration.” This is critical to 

understanding the electronics within the coordinate covalent bond. 

 Second, the origin of Lewis acidity has been investigated. Currently, coordinate 

covalent bond strength is used to assess the strength of Lewis acidity. Inconsistencies 

between theory, computation, and experiment have arisen, which in turn have spawned a 

conundrum of interpretations and explanations regarding the origin of Lewis acidity. 

Currently, it is not possible to predict Lewis acidity accurately, because the chemical 

and physical origin of acidity is not well understood. A framework that unifies theory, 

computation, and experiment has been provided which yields periodic trends of 

substituted Lewis acids based upon first-principles, such as substituent size and 

electronegativity. Significant differences are observed between the discovered periodic 

trends of Lewis acidity and those accepted and currently taught for Brønsted-Lowry 

acidity. 

 Third, the origin of rate enhancement of the Lewis acid catalyzed Diels-Alder 

reaction is investigated. Utilizing chiral Lewis acids continues to be an exciting and 

actively studied area. Lewis acids are known to influence a wide variety of highly 

enantioselective organic reactions, whereas the Diels-Alder, aldol, ene, hydrocyanation, 

allylation, ethylation and alkylation reactions have been attributed to stabilized ground 

state adduct conformations. As an extension, stabilized ground states have been 

investigated to predict the rate of reaction. Specifically, the binding strength of twelve 

substituted BF2X Lewis acids coordinated with 2-propenal have been studied by 

quantum chemistry and linked back to the rate enhancement of the Diels-Alder reaction. 



 

25 
 

Although it is known that strength of the Lewis acid influences the strength of the 

coordinate covalent bond within the ground state and ultimately affects the rate of 

reaction, a quantitative description is lacking. For the first time, a quantitative 

description is presented. Specifically, a direct connection between rate enhancement and 

coordinate covalent bond strength is achieved through a synergistic transfer of electron 

density initiated by a novel geminal interaction within the Lewis acid. Understanding 

how substituents influence the rate of organic reactions should give experimentalists the 

opportunity to utilize boron Lewis acids to control reaction rates, and allow chemical 

insight into the origin of how Lewis acids regulate reaction rates. 

This dissertation lays a foundation for understanding Lewis acidity, chemical 

bonding, and chemical reactivity, as well as determining the appropriate toolset 

necessary to model these chemical phenomena. The implementation of these tools have 

led to a clear and concise explanation of the electronic origins of Lewis acidity and a 

quantitative rationalization of the rate enhancement of the boron Lewis acid catalyzed 

Diels-Alder reaction. The data presented should launch unique opportunities in any 

scientific discipline that exploits coordinate covalent bonds and Lewis acid catalysts, 

such as the use of ammonia borane as a source of hydrogen fuel, the synthesis of new 

materials and ceramic matrix composites, the discovery of novel pharmaceutical drugs 

that treat oncological, cardiovascular, and anti-inflammatory disorders, and the dual 

Lewis acid/base catalysis of reactions.  
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Chapter 2  
 
 
Electronic Structure Modeling 
 
 
2.1 Quantum Mechanical Calculations 

Quantum mechanics (QM) is the mathematical description of a set of principles 

that explain the electronic behavior of atoms and molecules. Of the vast electronic 

structure programs available, the chemical phenomena described within this Ph.D. 

dissertation have been investigated with Gaussian 03,111 NWChem 5.1,112 and NBO.113 

The theoretical underpinnings of QM have the ability to predict all observables 

associated with molecular systems. However, in practice, only hydrogenic systems or 

systems that possess one electron can be solved exactly.114, 115 Although exact analytical 

solutions do not exist for two-electron systems, the Schrödinger equation has been 

solved numerically for the helium atom and isoelectronic ions with forty digits of 

accuracy.116, 117 For those systems containing more than one electron, approximations 

must be utilized. The problem resides in the electron-electron repulsion term within the 

Hamiltonian. Consequently, many approximations have been developed to treat the 

electron-electron repulsion. It is at the discretion of the computational chemist to decide 

which approximation to employ, understanding that a balance of accuracy and efficiency 

is usually the goal. Since the birth of QM, the number of approximations has increased 

dramatically. Consequently, computational chemistry has become an art as much as a 
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science. The remainder of this chapter discusses the methodology and foundation of 

computational chemistry, starting with the non-relativistic time-independent Schrödinger 

equation. 

 

2.2 Schrödinger’s equation 

It is natural to begin a discussion of QM by beginning with Schrödinger’s time-

independent equation (Equation 2.1).115 

  2.1  

The , , and , refer to the Hamiltonian, wavefunction, and total 

energy of the molecular system, respectively, where nuclear coordinates are denoted by 

 and electronic coordinates are denoted by .  Psi,  refers to the wavefunction 

and characterizes the behavior of the molecular system, while the Hamiltonian operates 

on  yielding the total energy, .    

In general, the Hamiltonian for N electrons and M nuclei in atomic units is 

represented by Equation 2.2. 

 
 2.2  
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 2.3  

The first and second term in Equation 2.2 represents the kinetic energy of the electrons 

and nuclei of the system, respectively. The third term is the columbic attraction between 

electrons and nuclei. The fourth and fifth terms represent the electron-electron and 

nuclei-nuclei repulsions, respectively.   

It is possible to simplify Schrödinger’s time-independent equation by employing 

the Born-Oppenheimer approximation.118 The Born-Oppenheiner approximation takes 

advantage of the fact that the proton is about 1836 times heavier than an electron. The 

large difference in mass between the proton and electron suggests that the nuclear 

velocities are much smaller than the electron velocities and thus the electrons adjust 

instantaneously to changes in nuclear geometry. Consequently, it is assumed that the 

coupling between the motion of the electrons and the motion of the nuclei is zero and the 

nuclei are stationary from the electronic perspective.  

As a result of employing the Born-Oppenheiner approximation, the total 

wavefunction, , becomes a product of two wavefunctions, one of which 

corresponds to the nuclei, , while the other corresponds to the electrons, 

 (Equation 2.4). In addition, the second term of the Hamiltonian 

(Equation 2.2) is eliminated, yielding . Consequently, the Schrödinger 
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time-independent equation is simplified and is represented by Equation 2.5. The 

electronic wavefunction is independent of nuclei momenta and depends only upon their 

position. The total energy of the system is simply the sum of the electronic and nuclear 

energies.   

 ,  2.4  

  2.5  

Considering the hydrogen atom, where only a single electron and proton exists, 

the Hamiltonian takes the form of Equation 2.6, since the second, fourth, and fifth terms 

in the Hamiltonian are eliminated. Consequently, Schrödinger’s time-independent 

equation can be solved exactly for those systems similar to the hydrogen atom, where 

only one electron is present. 

 
 2.6  

However, considering systems with two or more interacting electrons, Schrödinger’s 

time-independent equation cannot be solved exactly. This is because the 

electron-electron repulsions couple the electrons. In order to solve Schrödinger’s 

equation, further approximations must be considered, as explained throughout this 

chapter. However, appropriate approximations coupled with high performance 

computers provide high accuracy results in excellent agreement with experiment. For 

example, as of March 3, 2009, Kraken, the fastest academic supercomputer, features 
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66,048 computational cores and more than 100 terabytes of memory, pushing the limits 

of computational science by computing 607 teraflops. Kraken is a Cray XT5 system, 

located at the National Institute for Computational Sciences, managed by the University 

of Tennessee, and funded by the National Science Foundation.   

 It may seem disconcerting to continue with QM, since Schrödinger’s equation 

cannot be solved exactly for polyatomic systems with more than one electron. However, 

powerful tools are available to computational chemists in order to investigate chemical 

phenomena. The remainder of this chapter explains the tools available.  

 

2.3 The Variational Theorem 

Ab initio indicates that the computation considers first principles and utilizes no 

empirical or experimental data. The ab initio chemical methods employ mathematical 

approximations to simplify the quantum mechanical calculation, such as simpler 

functional forms or approximate solutions to complicated differential equations. Before 

the relevant ab initio chemical methods are explained, the variational theorem is 

discussed, which provides a foundation for assessing the accuracy of a trial 

wavefunction.  

The variational theorem119 is a useful tool that allows the quality of the 

wavefunction to be assessed. The theorem states that the eigenvalue or energy ( ) 

yielded from solving Schrödinger’s time-independent equation, employing a trial 
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wavefunction, is always greater than that yielded ( ) from the true wavefunction 

(Equation 2.7).  

 
 2.7  

Equation 2.7 states that the expectation value or average energy, , of the system is 

achieved by performing the integral over all space, , and will always be greater than 

the true energy of the ground state wavefunction, . For most polyatomic systems, the 

true wavefunction is not known. Consequently, a trial wavefunction is assumed. Since 

the energy calculated from the trial wavefunction is always greater than that yielded 

from the true wavefunction, the lowest energy corresponds to the more accurate 

wavefunction and is therefore a better representation of the true wavefunction. Thus, the 

variational theorem allows the accuracy of the trial wavefunction to be assessed. 

 

2.4 Hartree-Fock 

The Hartree-Fock approximation is an important contribution to quantum 

mechanics, because it allows Schrödinger’s time-independent equation to be solved for a 

many-electron system. The Hartree-Fock (HF) equations have been derived and 

explained in detail elsewhere.115, 120, 121 Briefly, The HF scheme partitions the 

many-electron wavefunction in terms of one electron wavefunctions (or orbitals) in the 

form of a Slater determinant. Expressing the wavefunction in terms of a Slater 
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determinant satisfies the criteria that the electronic wavefunction must be antisymmetric, 

where the sign of the wavefunction must invert upon exchange of any two electrons. 

Equation 2.8 displays the wavefunction for a N-electron wavefunction as a Slater 

determinant of orbitals, where  refers to electron number “1” in the second spin 

orbital, which is the product of the spatial function and spin function, and  ensures the 

wavefunction is normalized. Another important property of the Slater determinant is that 

when any row or column is equal to zero, then the determinant is equal to zero. 

   

 2.8  

A severe consequence of expressing the wavefunction as a Slater determinant is 

that the movement of electrons is considered uncorrelated.  Consequently, each electron 

does not experience repulsion with each individual electron within the system, but rather 

experiences repulsion with an average field generated by the remaining electrons. Thus, 

the HF approximation neglects electron correlation, and is the major source of error 

within the HF scheme.  Regardless of the neglect of electron correlation, one advantage 

of the HF approximation is that it simplifies the many-electron Schrödinger equation 

into multiple simpler one-electron equations, such as Equation 2.9, each yielding a 

single-electron wavefunction, referred to as an orbital, , and an orbital energy, . The 

orbital describes the behavior of an electron in the net field generated by all the other 

electrons.  
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  2.9  

 The effective one-electron Hamiltonian, , (Equation 2.10) otherwise known as 

the Fock operator, accounts for three contributions to the total energy of the electron. 

Specifically, the core ( ), Coulomb ( ), and exchange ( ) energies are determined 

by performing their corresponding operators, as shown by Equations 2.11 through 2.13.   

 
 2.10  

 
 2.11  

 
 2.12  

 
 2.13  

The core energy represents the kinetic energy of the electron i and the coulomb 

attraction between electron i and nucleus A, which make favorable contributions to the 

electronic energy, as reflected by the negative signs within Equation 2.11. The coulomb 

interaction refers to the unfavorable repulsions between electron i and the average field 

generated by the remaining electrons. The exchange energy has no classical counterpart 
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and arises because of the antisymmetric nature of the wavefunction. This is a 

manifestation of the Pauli Exclusion Principle, which states that no two electrons can 

possess the same quantum numbers. Therefore, electrons with the same spin cannot 

possess the same spatial coordinates and tend to be farther apart.  

  To solve the Hartree-Fock equations, it is important to remember that each 

electron is assumed to move in an average field comprised of the nuclei and electrons. 

This is a consequence of expressing the multi-electron wavefunction in terms of one 

electron wavefunctions. Consequently, the solution of the one electron eigenvalue 

equation (Equation 2.9) will affect the solutions to the remaining one electron 

eigenvalue equations. The method of solving such a set of equations is called the 

self-consistent field method. First, a trial set of solutions, , to the HF equations are 

obtained and are then used to calculate the Coulomb and exchange operators. The one 

electron eigenvalue equations are then solved, giving a new set of orbitals and 

corresponding energies, which are subsequently used in the second iteration of the HF 

equations. In other words, a new set of Coulomb and exchange operators are determined 

and a new set of orbitals and orbital energies are determined. The process continues until 

differences between subsequent solutions are below a certain threshold. The 

convergence of such a solution means self-consistency is achieved.  

 Although the HF method was a major breakthrough in solving quantum 

mechanical calculations, it does have several major drawbacks. The most significatnt 

drawback is that HF neglects the effects of electron correlation. In other words, the 

electron-electron repulsions are not considered explicitly, but rather, each electron is 

merely moving in an average potential generated by the remaining electrons. 
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Consequently, the position of an electron is completely independent of the positions of 

the remaining electrons and the tendency of electrons to avoid each other is less than HF 

suggests. The lack of electron correlation is primarily responsible for the poor 

performance of HF. However, HF is useful for first-level predictions of chemical 

systems, such as geometric parameters.122  Furthermore, it serves as the theoretical 

foundation for most other chemical methods, such as Møller-Plesset and Configuration 

Interaction. The next few subsections describe chemical methods that are based on the 

HF scheme but are improved upon by correcting the neglect of electron correlation.  

  

2.5 Møller-Plesset Perturbation Theory 

 Møller-Plesset (MP) perturbation theory123, 124  starts with the HF result and adds 

a small perturbation that accounts for electron correlation. Consequently, MP is 

commonly referred to as a post-self consistent field method (post-SCF). MP perturbation 

theory has been explained in detail elsewhere.115, 120 Briefly, Møller and Plesset account 

for the electron correlation by expressing the true Hamiltonian, , as a sum of a zeroth 

order Hamiltonian, , and a small perturbation, commonly denoted , which is not to 

be confused with the potential.    

  2.14  

The  is a parameter that can vary from 0 to 1. When  = 0 the Hamiltonian is equal to 

the zeroth-order Hamiltonian, but when  = 1, the Hamiltonian is equal to its exact form.  
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As a result of implementing , the corresponding wavefunction, , and energy, , is 

expressed as a power series of .  

  
 2.15  

 
 2.16  

The number n, within the superscripted parentheses, refers to the order of correction. For 

example,  refers to the first order correction to the energy. The perturbed 

wavefunction and energy are then substituted into Schrödinger’s equation and solved. 

To solve such an equation, the MP formalism defines the unperturbed Hamiltonian, , 

as the sum of the one-electron Fock operators, which yields the zeroth-order energy, 

, a value that is simply the sum of the orbital energies, . In order to achieve higher 

order corrections to the energy, the perturbation must be considered. As Equation 2.14 

states, the perturbation is the difference between the true and zeroth-order Hamiltonians. 

Solving the Schrödinger equation to determine the contribution of each ordered energy 

term reveals that the sum of the zeroth and first-order energies is simply the HF result 

for the closed shell system. Therefore, in order to obtain any corrections to the HF 

energy, second-order perturbations (MP2) must be considered. Higher order 

perturbations of the form MPN (N = 3, 4, 5 … etc.) exist as well, where the summations 

expressed by Equations 2.15 and 2.16 are truncated at some order N; however, 
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employing higher order perturbations increases the time of the computation on the order 

of O,
N+3

 where O is the number of basis functions and  N is the order of truncation.121, 125  

 The advantage of MP2 is that it typically accounts for about 80 to 90% of the 

electron correlation neglected by HF.121 However, a disadvantage is that MP 

perturbation theory is not variational. This means that the energies computed with MP 

theory may be lower or higher than the exact energy. Although MP2 does have its 

deficiencies, it is a vast improvement upon HF theory, as it is able to predict structures 

and energetics more accurately.122 For example, HF/6-311++G(3df,3pd) predicts 

hydrogen fluoride binding energy to be 97.9 kcal/mol, which differs from the 

experimental value of  141.2 kcal/mol by 43.3 kcal/mol.122  In contrast, MP2 predicts the 

binding energy to be 144.9 kcal/mol, in much better agreement with the experimental 

observation.122 Furthermore, MP2 is size consistent, which is not the case for some other 

post-SCF methods, such as Configuration Interaction. The concept of size consistency is 

expanded upon in Chapter 2.6.  

 

2.6 Configuration Interaction  

 Another post-SCF method that accounts for electron correlation is the 

Configuration Interaction (CI) method.126-129 The theoretical foundation of CI assumes 

that the true wavefunction is a linear combination of excited Slater determinants. In fact, 

the CI wavefunction starts with a single Slater determinant, as used in HF theory, and 

subsequently adds singly, doubly, triply, etc., excited determinants relative to the HF 

configuration. The CI wavefunction, , can therefore be written as, 
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 2.17  

Subscripts S, D, T, etc., indicate determinants that are singly, doubly, triply, etc. For 

example, singly substituted determinants replace a single occupied orbital with a virtual 

spin orbital, whereas doubly substituted determinants replace two occupied orbitals with 

two virtual spin orbitals. This is equivalent to exciting an electron from a filled to a 

vacant orbital. The energy of the system is minimized by determining the coefficients, 

, utilizing the variational theorem.  As one can guess, the CI approach becomes quite 

complex and resource intensive as more excited determinants are considered. Depending 

on the basis set (Chapter 2.8), the number of Slater determinants can increase rapidly 

(Equation 2.18). The number of ways to permute N electrons and K orbitals is reflected 

by the binomial coefficient, 

  
 2.18  

It is not difficult to conceive that the implementation of CI is generally limited to 

molecular systems containing a small number of atoms. Nevertheless, CI is a powerful 

breakthrough in quantum mechanics, because if all possible permutations (full CI) are 

considered in the presence of a complete basis set, then the exact quantum mechanical 

result is achieved, at least when relativistic effects are not considered. If full CI is 

employed in the presence of a complete basis set, it is referred to as complete CI.  
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 It is impractical to consider all possible permutations for anything but the 

smallest of systems, such as H2O121 and the proton transfer process 

.130 Consequently, limitations are imposed on the number of excited state 

configurations allowed, truncating Equation 2.17 to consider specific excited 

determinants. For example, a CI calculation that considers only single substitutions is 

termed CIS. However, truncating the expansion to maintain only singly substituted 

determinants does not improve the HF energy, as CIS is equal to HF for the ground state 

energy. This is a manifestation of Brillouin’s theorem.121 Further excitations beyond 

singly substituted determinants are necessary to improve upon the HF result. For 

example, CID considers only double substitutions and CISD considers both single and 

double substitutions. Triple and quadruple excitations exist as well. Even with the 

number of excite determinants limited, the number of permutations can be too large for 

practical computations.  

 An advantage of CI is that it is variational in nature, which means that the energy 

obtained from employing CI is always greater than the true energy of the system. 

However, it is not size consistent. The only version of CI that is size consistent is 

complete CI. Size consistency guarantees that the energy of N noninteracting molecules 

is equal to N times the energy of the isolated molecule. Size consistency becomes 

important when computing dissociation energies. A quadratic correction, introduced by 

Pople, allows CI to account for size consistency. 131, 132   The quadratic correction to the 

configuration interaction (QCI) ensures size consistency by accounting for excited state 

configurations that are quadratic in nature.131, 132  In addition, Pople elaborated upon 

QCISD by evaluating the triples contribution by perturbation theory.132 Note that the 
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letter in parentheses refers to the perturbational treatment. Inclusion of the triples 

correction at the QCISD(T) level yields substantial improvements to the calculated total 

energies over QCISD when compared to the complete CI energies.132 QCISD has been 

shown to be very similar to coupled cluster singles and doubles (CCSD), where some of 

the terms from the CCSD formalism are omitted.132, 133  The omitted terms are 

computationally inexpensive and it is normally considered unnecessary to utilize the 

QCISD formalism over the CCSD implementation.121 Furthermore, CCSD is size 

consistent without any corrections, in contrast to CI, where the quadratic correction is 

necessary. However, in practice QCISD and CCSD along with QCISD(T) and CCSD(T) 

yield similar results,134 but severe exceptions do exist such as that reported for the Cu–C 

dissociation energy within CuCH3, where a 42 kcal/mol difference was observed.135 

 CI and QCI are chemical methods that account for electron correlation and 

provide substantial improvements over MP2 and HF, but not without a drastic increase 

in computational resources.  For example, QCISD(T) and QCISD scale O7 and O6, 

respectively, where O indicated the number of basis functions (Chapter 2.8).121, 125 

Consequently, CI and QCI are limited by the number of atoms they can model within the 

electronic structure calculation, depending on the completeness of the basis set, and are 

thus impractical for larger systems. At this point, it seems that accounting for electron 

correlation may only be viable for small molecules. However, density functional theory, 

discussed in Chapter 2.7, allows computational chemists to account for electron 

correlation with little increase in computational resources (O3),125 as compared to 

post-SCF methods.  
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2.7 Density Functional Theory 

Density functional theory (DFT)121, 125, 136, 137  is a popular choice for modeling 

medium to larger sized systems due to its efficiency and accuracy, in contrast to more 

resource intensive post-SCF methods, such as QCISD(T). DFT accounts for electron 

correlation; however, it lacks the description of dispersive forces, which are important 

for binding affinities dominated by van der Waals interactions.138-140 Dispersion 

interactions originate from instantaneous dipoles that arise from fluctuations in electron 

density. Instantaneous dipoles can induce a dipole in a neighboring atom, which gives an 

attractive inductive effect. DFT methods that account for dispersion and van der Waals 

interactions are currently being developed.136, 141-146 

The previous chemical methods discussed, such as HF, MP2, and QCISD(T) 

utilize a wavefunction to determine observables. DFT provides an alternative by 

assuming that the energy of a system can be determined from the electron density rather 

than the wavefunction. The direct mathematical relationship between electron density 

and the ground state energy of the system was proposed by Hohenberg and Kohn;147 

however, the initial proposal only provided a mathematical link. No method of 

describing how to achieve the energy was explained until Kohn and Sham provided a 

simple solution.148 The theorems proposed by Hohenberg, Kohn, and Sham are 

discussed in Chapter 2.7.1.  

 



 

42 
 

2.7.1 Hohenberg-Kohn and Kohn-Sham 

A rigorous mathematical framework relating electron density to ground state 

energy was proposed by Hohenberg and Kohn.147 Hohenberg and Kohn’s theorem has 

been discussed in detail elsewhere.115, 120 Briefly, assume the electrons within a given 

system are moving within a field potential, , of positively charged nuclei. If the 

potential is unique, then the Hamiltonian and corresponding energy of the system is 

unique as well. Assume that two separate potentials,  and , with corresponding 

Hamiltonians,  and , exact energies, and , and wavefunctions, and 

, yield the same electron density, . According to the variational theorem: 

   

 

 2.19  

Interchanging A with B yields: 

   2.20  

Finally, adding Equations 2.19 and 2.20 yields Equation 2.21, which is obviously false.  

   2.21  
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This proof concludes that two different potentials cannot result in one distinct electron 

density. Consequently, a unique electron density supports the existence of a unique 

wavefunction and thus a unique energy as well as other observables. It must be 

remembered that the proof only shows a relationship between the electron density and 

the energy of the system. A methodology to compute the energy of a system utilizing its 

electron density was not introduced until the Kohn-Sham formalism was developed in 

1965.149  

 Kohn and Sham proposed a method for determining the density and thus the 

energy of a system.149  Employing ideas from HF theory, they proposed that the true 

density of a system containing interacting electrons is identical to the density of a system 

consisting of noninteracting electrons. Consequently, Schrödinger’s equation may be 

separated and the self consistent manipulations employed throughout HF theory may be 

applied within DFT as well. Similar equations to 2.9 are constructed and solved 

(Equation 2.22 and 2.23); however, electron correlation is introduced in the exchange-

correlation term, . 

   2.22  

 2.23  

The first term in Equation 2.23 represents the kinetic energy of the noninteracting 

electrons, the second term represents the attraction between electrons and nuclei, the 
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third term corresponds to the Coulombic repulsions between the charge distribution at  

and . The last term, the exchange-correlation term, corrects the kinetic energy for the 

interacting nature of electrons, and all non-classical interactions that arise due to the 

electron-electron exchange energy. If the exact exchange-correlation functional was 

known, the exact energy could be computed. Consequently, within the realm of one 

electron Kohn-Sham equations, DFT approximates  to determine the 

exchange-correlation energy, .  may be further dissected into  and 

, with corresponding exchange,  and correlation energies, , 

respectively. There is no systematic way of improving the approximation of  as 

done for wavefunction-based methods, such as considering higher order perturbations 

(MPn) or excited state configurations (CI).  However, a variety of approximations to 

 exists as discussed in Chapters 2.7.2 through 2.7.6 . 

 

2.7.2 Exchange-Correlation Functional 

Kohn-Sham density functional theory (DFT)149 has become a well-established 

tool in the computational chemistry community. It is known that DFT accuracy is 

dependent upon the approximation of  within the Kohn-Sham formalism.125, 149 

Current DFT implementations, such as the local spin density approximation 

(LSDA),149-151  generalized gradient approximation (GGA),152-157 meta-GGA 

(M-GGA),158, 159 hybrid-GGA (H-GGA),152, 156, 158, 160, 161 and hybrid meta-GGA 

(HM-GGA),141, 162, 163 treat  differently. LSDA assumes that the  at any 

point in space depends only on the spin density at that specific spatial region. GGA 
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improves upon LSDA by considering the gradient of the density along with the spin 

density. Further improvements of GGA include the spin-dependent electronic kinetic 

energy density (M-GGA) and a certain percentage of Hartree-Fock exchange (H-GGA). 

Finally, the HM-GGA incorporates both approximations from M-GGA and H-GGA.  

All DFT calculations performed throughout this dissertation employ either 

B3LYP,156, 164 MPW1K,161 MPW1B95,162 MPWB1K,162 M05-2X,141 M05,141, 165 

M06-2X163 or M06.163 Consequently, each is discussed in the following subsections. 

 

2.7.3 B3LYP 

B3LYP employs the H-GGA, where the exchange-correlation energy is defined 

as 

   2.24  

The coefficients a, b, and c are empirically derived164 from a least squares fit to 56 

atomization energies, 42 ionization potentials, 8 proton affinities, and 10 first row total 

atomic energies determined by experiment.166 The values of the optimized coefficients 

are a = 0.20, b = 0.72, and c = 0.81.164 The first term of Equation 2.24 is the exchange 

energy determined by the local spin density approximation proposed by Slater.149-151  

The second term represents the exact Hartree-Fock exchange energy. The third term is 

the gradient corrected exchange energy proposed by Becke.164 The fourth term 

corresponds to the correlation energy (which includes the gradient term) determined by 
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Lee, Yang, and Parr.156 Finally, the last term represents the standard correlation energy 

predicted by the VWN3 functional developed by Vosko, Wilk and Nusair.167  

B3LYP is one of the most popular density functionals available today, where, as 

of March 2009, a SciFinder Scholar 2009 “Research Topic” search for B3LYP yields 

32,880 references, whereas searches for other functionals such as MPW1K, B3P86, and 

BLYP yield 240, 558, and 1697 references, respectively. B3LYP’s popularity originates 

from its ability to correct the inherent deficiencies within previous functionals. 

Consequently, B3LYP predicts chemical phenomena in better agreement with 

experiment such as molecular structure, atomization energies, ionization potentials, 

proton affinities, and total energies.115, 125, 164 However, B3LYP does suffer from its own 

deficiencies.  For example, B3LYP underestimates barrier heights,168 noncovalent 

interactions,169, 170 and bond energies and lengths involving transition metals.171, 172 

Furthermore, one of the principal ideas of this dissertation is that the commonly 

employed B3LYP method is unable to model accurately the electronic nature of 

coordinate covalent B–N bonds.24, 173  

 

2.7.4 MPW1K 

Truhlar and coworkers developed the modified Perdew-Wang 1 parameter 

functional for kinetics (MPW1K)161 with the goal of devising a method that would yield 

increased accuracy for transition state energies. MPW1K employs the H-GGA, similar 

to B3LYP; however, MPW1K is a one parameter functional and B3LYP is a three 

parameter functional. Truhlar’s MPW1K functional starts with a version of the 
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Perdew-Wang exchange functional,174, 175 modified by Adamo and Barone176 and the 

Perdew-Wang correlation functional.177 The amount of HF exchange energy (the single 

parameter) was then optimized to fit the experimental data of 20 forward barrier heights, 

20 reverse barrier heights, and 20 energies of reaction,161  otherwise referred to as a 

training data set. The exchange-correlation energy determined by MPW1K is displayed 

in Equation 2.25, where the amount of HF exchange, X, was optimized to be X = 42.8.  

  
 2.25  

The first and second terms within the parentheses of Equation 2.25 represent the 

exchange energy, as determined by the local spin density approximation and the 

modified version of the Perdew-Wang gradient corrected exchange energy developed by 

Adamo and Barone. The third term is the exact Hartree-Fock exchange energy. Finally, 

the fourth and last term account for the correlation energy represented by the local spin 

density approximation and the Perdew-Wang gradient corrected correlation energy, 

respectively. 

MPW1K reproduces experimental activation barriers accurately;161, 178 however, 

one of the conclusions drawn from this dissertation is that MPW1K is unable to model 

the electronic nature of coordinate covalent B–N bonds accurately.24, 173 
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2.7.5 MPW1B95 and MPWB1K 

MPW1B95162 and MPWB1K162 are based on a version of the Perdew-Wang 

exchange functional,174, 175 modified by Adamo and Barone176 with  Becke’s meta 

correlation functional.158 As discussed previously, meta implies that the 

exchange-correlation energy depends on the kinetic energy density as well as the 

density and gradient of the density. MPW1B95 and MPWB1K are similar to the 

MPW1K functional, except that the  term within Equation 2.25 is replaced by 

Becke’s meta correlation functional. Furthermore, X was optimized to fit an atomization 

energy database,179 yielding X  = 31 for the MPW1B95 functional, whereas the 

MPWB1K functional possesses X = 44, optimized to fit a database consisting of kinetic 

data.160 

MPWB1K was constructed for general applications in thermochemistry and thus 

was suggested by Truhlar for thermochemical kinetics and noncovalent interactions but 

not for activation barriers.162, 180 Similarly, MPW1B95 was constructed for kinetics and 

was recommended by Truhlar for covalent and noncovalent chemistry, performing well 

for hydrogen bonding and weak interactions.162, 180  However, a principal conclusion 

from this dissertation is that neither MPW1B95 nor MPWB1K are able to model the 

short- and medium-range noncovalent interactions accurately within sterically 

congested coordinate covalent B–N bonded systems.173 
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2.7.6 M05-2X, M05, M06-2X and M06 

Truhlar’s new generation of density functional methods, primarily M05-2X,141 

M05,141, 165 M06-2X163 and M06.163 (M-functionals) employ a HM-GGA. The 

M-functionals incorporate a balance of kinetic energy density within the exchange and 

correlation functionals, differing from MPWB1K and MPW1B95, where kinetic energy 

density is incorporated within the correlation functional only.  The training data sets 

used to parameterize M05 and M05-2X include the training data sets utilized for 

MPWB1K and MPW1B95, and have been expanded to include several other training 

data sets possessing binding energies, total atomic energies, ionization potentials, 

electron affinities, and bond dissociation energies.  M05 and M05-2X differ in that 

M05-2X excludes metals from the training data set. In addition, the parameterization of 

M05-2X (X = 56) yields two times (2X) the amount of Hartree–Fock exchange, 

compared to M05 (X = 28).  The M06 and M06-2X functionals are a linear combination 

of the M05 and VSXC functionals developed by Van Voohris and Scuseria.159, 181, 182 

Training data sets were expanded upon compared to the M05 suite as well as the data 

sets used for accuracy assessment. M06-2X (X = 54) and M06 (X = 27) are similar to 

M05-2X and M05, respectively since those with the “-2X” extension possess double the 

exchange than their respective “non-2X” functional. Furthermore, methods with the 

“-2X” extension omit training data sets consisting of transition metals.  

Before the existence of the M-functionals, MPWB1K and MPW1B95 were 

among the best for analyzing noncovalent interactions dominated by medium-range 

exchange-correlation energy.162, 180 Before the existence of the M06 suite of functionals, 

M05-2X and M05 were initially recommended when a combination of non-metallic 
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thermochemistry, kinetics, and noncovalent interactions were investigated,141, 165 while 

M05 was suggested for exploring organometallic and inorganometallic 

thermochemistry.141, 165 Subsequently, M06-2X and M06 have been recommended for a 

wide range of chemical phenomena.163 A recent review by Truhlar assessed the accuracy 

of many functionals against 496 data values within 32 databases including 

thermochemistry, barrier heights, noncovalent interactions, electronic spectroscopy, and 

structural data.136 It was suggested that, M06-2X, M05-2X, and M06 be employed for 

systems where main-group thermochemistry, kinetics, and noncovalent interactions are 

important.136 M06 was recommended specifically for transition metal thermochemistry 

involving both reactive organic and transition metal bonds.136 The claim that M06-2X, 

M05-2X, and M06 are able to model noncovalent interactions is in agreement with this 

dissertation. Specifically, M06-2X, M06 and M05-2X are able to reproduce the 

experimental trend associated with the binding enthalpies of four methylated ammonia 

trimethylboranes, (CH3)3B−N(CH3)n H3-n (n = 0 to 3), where noncovalent interactions 

exist between the sterically congested methyl groups.173 This is expanded upon in 

Chapter 3.  

Recently Truhlar and coworkers have developed two new density functional 

methods, M08-HX and M08-SO, providing slightly better results than that achieved by 

employing M06-2X, but significantly better than M05-2X and B3LYP.183 Briefly, the 

M08-HX functional form has been improved, compared to that for M06-2X, where the 

uniform electron gas limit is enforced. The M08-SO functional enforces a different 

constraint, where the gradient expansion is correct to the second order within the 
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exchange and correlation functionals. M08-HX and M08-SO have been recommended 

for investigating main-group thermochemistry, kinetics, and noncovalent interactions.183  

 

2.8 Basis Sets  

A variety of chemical methods have been discussed in terms of approximating 

Schrödinger’s equation. However, solutions cannot be obtained without a description of 

how the wavefunction is constructed. This leads to a discussion on basis sets. Basis sets 

have been reviewed in the past.120-122, 184, 185 Briefly, a basis set is a set of functions or 

basis functions that mathematically describe the atomic orbitals, the molecular orbitals, 

and finally the entire wavefunction. Initially, it may seem appropriate to construct a 

basis set from Slater type orbitals (STOs), since such functions behave correctly.120, 186  

For example, STOs possess the appropriate functional form regarding the radial 

wavefunction, where the wavefunction is non-zero at the nucleus and exponentially 

decays upon moving further away from the nucleus. However, the necessary 

two-electron integrals are cumbersome, to evaluate when the atomic orbitals are present 

on different atomic centers.120 

 Boys proposed an alternative to using STOs by approximating the STO as a 

linear combination of simpler Gaussian type orbital functions (GTOs).128, 129 This is 

accomplished by using a least squares fitting approach by optimizing the coefficients 

and exponents to maximize the integral overlap between the STO and corresponding 

linear combination of GTOs. A general GTO takes the form  
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 2.26  

where  is the exponent that controls the radial spread of the Gaussian function and  i, j, 

and k are integers that reflect the angular momentum quantum numbers. For example, 

when the sum of the indices are zero, an s-type GTO is yielded. Similarly, when the sum 

of the indices is one, a p-type GTO is yielded. There exist three possible combinations 

of i+j+ k to equal a sum of one. As a result, the px, py, and pz orbitals are formed. In the 

same manner, higher angular momentum orbitals are constructed. Although the term 

GTO is commonly used, it is probably incorrect to refer to GTOs as “orbitals,” since 

they are not orbitals per se; they are merely simpler functions, more correctly referred to 

as Gaussian primitives. In other words, each atomic orbital is expressed as a linear 

combination of Gaussian primitives. 

The primary difference between STOs and GTOs is the radial decay, where an 

STO decays as , and a GTO decays as . Although employing a linear 

combination of Gaussian functions to represent an STO allows efficient computation of 

integrals, deficiencies are present. Figure 2.1 illustrates the deficiencies by comparing a 

1s STO to several GTO linear truncated to one, two, three, four  and five GTOs, referred 

to as STO-1G, STO-2G, STO-3G, STO-4G, and STO-5G, respectively.187 No matter 

how many GTOs are used to approximate the STO, the linear combination never 

accurately models the cusp at the origin. Furthermore, GTOs decay more rapidly than 

STOs. Consequently, Gaussian functions underestimate the long-range overlap between 

atoms and the electron density present near the nucleus.  
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The STO-nG series (n = 1, 2, 3, 4 and 5 etc.) are known as minimal basis sets, 

where each basis function is represented by n Gaussian primitives. This is referred to as 

a single-zeta basis set, because each atomic orbital (core and valence) are represented by 

one basis function.  However, this imposes severe limitations to the movement of 

electrons in response to a molecular environment. Increasing the number of basis 

functions per atom increases the size of the basis set, imposing fewer constraints on the 

electrons and more accurately describes molecular orbitals.122, 185 A double-zeta basis set 

imposes fewer constraints compared to a single-zeta basis set by representing each 

atomic orbital with two basis functions. Similarly, a triple-zeta basis set extends the 

atomic orbital representation to three basis functions.  

Figure 2.1. A comparison between a 1s Slater type orbital (STO) and five linear combinations of 
Gaussian primitives truncated at specific orders (STO-1G, STO-2G, STO-3G, STO-4G, 
STO-5G) that approximate the STO by a least square fitting approach.187 
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One can imagine increasing the basis set size by systematically increasing the 

number of basis functions per atomic orbital. As a result, the calculation demands more 

computational resources. However, from a chemical standpoint, chemical bonding is 

primarily a consequence of interacting valence orbitals. Therefore, there is more to be 

gained by increasing the flexibility of the valence orbitals compared to the core orbitals. 

This introduced the idea of split-valence basis sets, where each core orbital is 

represented by a single basis function, and each valence orbital is represented by 

multiple basis functions. Common split-valence basis sets developed by Pople are 

denoted 6-31G or 6-311G.187-193  The number before the hyphen refers to the number of 

Gaussian primitives used to represent each core atomic orbital. The number of digits 

after the hyphen refers to the number of basis functions utilized to represent each 

valence atomic orbital, while the number itself represents how many primitives are used 

to describe each basis function. For example, the 6-31G basis set utilizes two basis 

functions for each valence atomic orbital, and is therefore a double-zeta basis set. 

Similarly, the 6-311G basis set is of triple-zeta character. The “3” implies that three 

primitives are used to describe the first basis function of the valence atomic orbitals, 

while the first “1” implies one primitive is used for the description of the second basis 

function, and the last “1” indicates one primitive is used for the description of the third 

basis function.  

Basis set size can be increased by introducing polarization functions beyond 

what is required for the ground state description of each atom. For example, 6-31G(d,p) 

is a double-zeta basis set with additional d polarization functions on non-hydrogen or 

heavy atoms, and p functions on hydrogen atoms. Note that angular momenta preceding 
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the comma within the parentheses refer to additional polarization functions on heavy 

atoms, while angular momenta after the comma refer to increasing polarization on 

hydrogen atoms. Yet another way to increase basis set size is to add diffuse functions, 

which are larger orbitals that are added to the atomic orbital description. Diffuse 

functions are necessary to model negatively charge anions accurately, because electron 

density is farther away from the nucleus.184 Diffuseness is denoted by a “++” or “+” 

within the basis set. For example, the 6-31++G(d) basis set includes diffuse s and p 

functions on both heavy atoms and hydrogen atoms, whereas the 6-31+G(d) basis set 

includes diffuse s and p functions on only the heavy atoms. A common basis set referred 

to within dissertation is the 6-311++G(3df,2p) basis set. This is a Pople-style triple-zeta 

basis set that includes three sets of d polarization functions (not 3d orbitals) and one set 

of f functions on the heavy atoms. In addition, two sets of p functions are present on the 

hydrogen atoms, and both heavy and hydrogen atoms include diffuse functions. 

Functions of the same angular momentum vary in their coefficients and exponents.187-193   

Independent of Pople, Dunning and coworkers developed the correlation 

consistent basis sets, which include polarization and diffuse functions by employing a 

more systematic approach.194-196 The benefit of Dunning’s strategy is that the correlation 

consistent basis sets are designed to converge to the complete basis set limit utilizing 

extrapolation methods.197-200 The complete basis set imposes no restriction to the number 

of functions, thus an infinite set of functions are utilized. Examples of correlation 

consistent basis sets include cc-pVnZ and aug-cc-pVnZ, where n = D, T, Q and 5 and 

“aug” signifies the addition of diffuse functions. Higher orders of n do exist but are 

extremely resource intensive for large chemical systems and therefore have not been 
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considered here.  The value of n designates how many polarization functions are 

included. For example, the cc-pVDZ includes a set of s and p polarization functions to 

the existing s function of a hydrogen atom, totaling two sets of s and one set of p. 

Increasing D to T adds another set of s, p, and d to the functions included when n = D, 

totaling three sets of s, two sets of p, and one set of d. As a final illustration, increasing 

T to Q adds an additional set of s, p, d, and f functions, totaling four sets of s, three sets 

of p, two sets of d, and one set of f.  

Regarding the implementation of basis sets, it is important to note that electronic 

structure programs may utilize different coordinate systems to cover the same spatial 

volume. For example, the indices i, j, and k within Equation 2.26 yield six d functions 

when Cartesian coordinates are utilized. However, they may be transformed to five 

spherical d-functions and one s-function. Similarly, the ten Cartesian f-functions may be 

transformed into seven spherical f-functions and three p functions. The resource savings 

from employing spherical rather than Cartesian coordinates can be quite substantial if 

many d, f, and higher angular momentum functions are considered within a calculation. 

Consequently, many programs take advantage of the resource savings by using spherical 

functions. It is known that the default for Gaussian03 and NWChem 5.1 is to utilize 

spherical and Cartesian angular momentum basis functions for triple-zeta basis sets, 

respectively. In order to make a direct comparison between different programs while 

using the same triple-zeta basis set, the SPHERICAL keyword has been implemented 

within NWChem to utilize five d- and seven f-functions, consistent with Gaussian03.   

As a final note, the level of theory used to approximate Schrödinger’s equation is 

always comprised of a chemical method and a basis set, which is usually denoted as 
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“chemical method/basis set”. For example, a common level of theory employed 

throughout this dissertation is M06-2X/6-311++G(3df,2p).  M06-2X/6-311++G(3df,2p) 

indicates that the M06-2X method was utilized in conjunction with the 

6-311++G(3df,2p) basis set. Another common notation is “method/basis 

set//method//basis set”. The “//” indicates that two computations are involved. First, a 

geometry optimization is performed using the level of theory following “//”, then a 

single point energy evaluation is employed using the level of theory preceding “//”. The 

single point energy evaluation yields the energy of the system without varying the 

coordinates of the atoms, as is done for a geometry optimization. The geometry 

optimization is often performed at a lower level of theory, while the single point energy 

evaluation is conducted at a higher level of theory. This approach is more efficient and 

practical when compared to employing a full geometry optimization at a higher level of 

theory.115  

 

2.9 Basis Set Superposition Error 

A basis set is a mathematical approximation of the wavefunction.  A complete 

basis set is rarely used, since the resources necessary are demanding. Consequently, a 

linear combination of Gaussian functions is utilized, truncated at a specific order, as 

discussed previously. The truncated basis set inevitably introduces error into the 

computation, since it restricts electron movement. However, another error introduced by 

incomplete basis sets is basis set superposition error (BSSE).201 Consider computing the 

binding energy, , between two molecules, A and B. The simplest strategy is to 
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compute the energy of the complex, – , monomer A, , and monomer B, 

, and take the difference, as shown by Equation 2.27. 

   2.27  

However, basis functions from A can compensate for the basis set incompleteness on 

monomer B, and vice versa.  The swapping of orbital space is the origin of the name 

“superposition” error. BSSE results in an artificial lowering of the energy of – . 

Consequently, the predicted binding energy will invariably be an overestimate of the 

true value. As the complete basis set limit is approached, the deficiencies in the basis set 

are reduced, and the BSSE is eliminated. However, larger basis sets become 

cumbersome for systems containing many atoms. Thus, approximations of assessing 

BSSE have been considered. 

A common approach is the counterpoise method (CP) developed by Boys and 

Bernardi.202, 203 It is helpful to remember that the inaccuracy only lies within the energy 

of the complex. The calculated energies of the monomers are correct, at least within the 

accuracy of the method and basis set. To correct the energy of the complex, four 

additional computations are necessary, according to the CP method. First, the energy of 

A, , is computed in the presence of the basis functions that represent A and B, but 

without the nuclei of B present. Second, the energy of B, , is computed in the 

presence of the basis functions that represent A and B, but without the nuclei of A 

present. Basis functions consisting of fixed coordinates in space with no corresponding 

nuclei are often referred to as ghost orbitals. Third, the energy of A, , is computed 
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in the presence of the basis functions that represent A only. Lastly, the energy of B, 

, is computed in the presence of the basis functions that represent B only. It must 

be remembered that since the error lies within the complex, the energies of the 

fragments are determined with respect to their geometries within the complex, not the 

isolated monomers. The amount of BSSE, , is then computed according to 

Equation 2.28 

   2.28  

In essence, the first quantity refers to the BSSE introduced by A “stealing” basis 

functions from B, and the second quantity refers to the BSSE introduced by B “stealing” 

basis functions from A. The BSSE corrected binding energy, determined by the CP 

method, is represented by Equation 2.29. 

   2.29  

When computing accurate binding energetics, it has been reported that BSSE should be 

corrected by utilizing the counterpoise method.184, 201, 204-208 A review of BSSE and a 

variety of methods that attempt to eliminate BSSE is given by Kestner and 

Combariza.201  
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2.10  Natural Bond Orbital Analysis 

The Hamiltonian operator is associated with the total energy of a quantum 

mechanical system. However, other chemical properties are of interest, such as atomic 

charge and bond order. Population analysis is a method of partitioning the wavefunction 

or electron density into charges on each atomic nuclei. It must be noted that atomic 

charges cannot be observed experimentally, since charge does not correspond to a 

unique physical property.121, 209 Thus, there is no quantum mechanical operator that is 

associated with atomic charge. Each partitioning scheme is completely arbitrary. 

Consequently, many methods have been devised, such as Mulliken’s210 and Löwdin’s211 

population analysis, atoms in molecules,212 and natural population analysis, NPA.213 In 

general, the electron density and nuclear charges are condensed to a partial charge and 

assigned to each corresponding nucleus. This is an effective approach for predicting 

sites susceptible to nucleophilic or electrophilic attack, and the prediction of other 

molecular properties dependent upon charge. Since each approach is arbitrary, the 

choice to select an analysis must be based on chemical intuition. Suggestions on which 

algorithm to use have been made.214 Atomic charges derived from NPA have been 

successful as effective measures of substituent induced pKa shifts within a variety of 

anilines and phenols, able to model the pKa shifts better than other charge partitioning 

schemes.215 Similarly, predicted NPA atomic charges were able to replicate electron 

density donating and withdrawing trends within substituted actinide complexes better 

than other methods of analysis.216 Lastly, it was reported that the electronegativity 

equalization method should be based on atomic charges derived from the NPA scheme, 

rather than those derived from other methods.209 Consequently, NPA has been used for 
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the derivation of atomic charges in this dissertation work, as implemented through the 

natural bond orbital (NBO) program.113  

 NBO analysis of Weinhold and coworkers is an electron population analysis 

algorithm that provides an intuitive framework for investigating chemical phenomena in 

terms of familiar concepts such as Gilbert Lewis’ dot structures. The transformation 

from basis set to NBOs has been discussed in detail elsewhere.217-221 However a brief 

description outlining the process is warranted. NBO transforms the non-orthogonal 

atomic orbitals from the HF wavefunction into orthonormal natural atomic orbitals 

(NAO),213 natural hybrid orbitals (NHO),222 and natural bond orbitals (NBO).220 This 

allows electron density to be treated in a more intuitive manner, i.e. localized onto 

bonds, atoms, and lone pairs, leading to the best possible description of the molecule as 

a localized Lewis structure. Figure 2.3 illustrates the transformation performed on the 

basis set for methane.  
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The NBO transformation provides filled orbitals that are more concentrated or 

localized in terms of occupancies. Subsequently, hyperconjugation between filled and 

empty orbitals may be determined. An interesting example of hyperconjugation involves 

an explanation of the internal rotation barrier of ethane. It has been reported that a 

vicinal stereoelectronic effect between a filled C–H sigma bond and an unfilled C–H 

sigma antibond, denoted σ(C–H) → σ*(C–H), is responsible for the staggered ethane 

conformer possessing a lower energy than that of the eclipsed form;223, 224 however, this 

is still highly debated.225-229  

NBO computes bond descriptors such as bond order, percent bond covalency and 

iconicity by employing natural resonance theory (NRT).217-219, 221 NRT determines 

localized resonance structures and their corresponding weighting factors, which express 

Figure 2.2. Transformation from natural atomic orbitals (NAOs) to natural hybrid orbitals (NHOs) 
to natural bond orbitals (NBOs) for methane 
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the contribution of each structure to the resonance hybrid. Subsequently, properties of a 

given delocalized system may be attained in resonance-averaged form.  For example, 

consider the ten BF3 resonance structures found by a default NBO analysis, 

corresponding B–F1 bond orders, and percent contribution of each resonance structure to 

the overall resonance hybrid, shown in Table 2.1. The bond order for the B–F1 bond may 

be determined by Equation 2.30, where  represents the quantity of interest (in this case 

the bond order) corresponding to each individual resonance structure, , and its percent 

contribution, , to the averaged resonance form, .  

  
 2.30  

Consequently, Equation 2.30 becomes Equation 2.31, and the bond order of B–F1 equals 

1.0, as expected. 

  

 
2.31  
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Resonance Structure Bond Order 
Percent 

Contribution 

I 

 

1.0 81.1 

II 

 

2.0 4.3 

III 

 

1.0 4.3 

IV 

 

1.0 4.3 

V 

 

1.0 1.0 

VI 

 

0.0 1.0 

VII 

 

0.0 1.0 

VIII 

 

1.0 1.0 

IX 

 

2.0 1.0 

X 

 

2.0 1.0 

Table 2.1. Resonance Structures, B–F1 Bond Orders, and Percent 
Contribution of Each Resonance Structure to the Averaged-Resonance 
Form. 
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2.11 Potential Energy Surfaces 

As expected, the energy of a molecular system changes as the coordinates of the 

nuclei are modified. The way in which the energy varies as a function of nuclear 

coordinates is reflected by a potential energy surface (PES). A common goal among 

chemists is to locate different points along the PES to investigate reaction pathways. 

Specifically, energy minima connected by maxima on the PES are of interest because 

relative energy differences between the appropriate points, otherwise known as saddle 

points, allow the prediction of activation barriers and heats of reaction.  

In order to locate saddle points along the PES, it is common to employ geometry 

optimizations where derivatives of the energy with respect to the atomic coordinates are 

used to determine critical information about the PES. It is helpful to consider a Taylor 

series expansion of the energy function, , about the point , shown in Equation 

2.32. 120-122   

  
 2.32  

In order to locate stationary points, geometry optimizations proceed by first computing 

the energy of an initial structure, the first derivative of the energy (gradient), and then 

making a decision as to how far and in what direction the atoms should move in order to 

reduce the forces between all the atoms. The gradient is defined as the negative forces 

between each atom as well as the magnitude of the slope. Consequently, the gradient 

indicates the direction along the PES in which the energy decreases most rapidly from 



 

66 
 

the current point or increases if a transition structure is of interest. When the gradient is 

zero or extremely close to zero, the forces demonstrated between each atom are also 

close to zero. When the forces and the calculated displacements between all atoms are 

below a certain threshold, the structure is considered optimized.  

If the gradient is zero and the potential is assumed to be zero at , truncation of 

the Taylor series expansion, retaining the second order term, yields the form of the 

harmonic oscillator, which in turn results in an expression consisting of the force 

constant (Equation 2.33).  

  
 2.33  

For a system containing multiple atoms, k is replaced by a matrix containing all the 

second derivatives of the energy with respect to the coordinates and is referred to as a 

Hessian. Some optimization algorithms utilize second derivatives to assess the curvature 

of the function, providing additional information as to how the next step is taken along 

the PES in search for the stationary point.  

 As mentioned previously, certain points along the PES are of interest to 

chemists, specifically transition structures, groundstates, and stable intermediates. Up till 

now, there has been no discussion as to how to distinguish between the varieties of 

structures. Ultimately, the question becomes, “Does does the structure correspond to an 

energy minima or maxima?” To determine the answer to this question, the eigenvalues 

of the Hessian are analyzed. If zero negative eigenvalues are present, the corresponding 
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structure is an energy minima. If one negative eigenvalue is present, the corresponding 

structure is a first order saddle point, otherwise known as a transition structure. As found 

within the literature, it is common to find negative force constants referred to as 

imaginary frequencies. This is easy to understand after referring to the mathematical 

relationship between force constants, ,  and frequencies of vibration, , (Equation 

2.34), as the square root of a negative force constant divided by the reduced mass, , 

yields an imaginary result.  

 
 2.34  

It is critical to always confirm the identity of a saddle point as either an energy minima 

or maxima.230 

 

2.12 Thermodynamics 

 Thermodynamic quantities are derived from basic statistical mechanics.121, 231, 232 

Although electronic structure calculations are usually performed on one molecule, it is 

important to make direct comparisons with thermodynamic and kinetic data determined 

by experiment. The question arises of how quantities computed for microscopic systems 

can be extended and compared to experimental data determined for macroscopic 

systems. The answer is statistical mechanics, specifically, the application of the partition 

function and the Boltzmann distribution. The partition function is analogous with the 
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wavefunction from quantum mechanics. As properties can be determined by applying 

the correct operator on the wavefunction for microscopic systems, the partition function 

allows the calculation of macroscopic functions. The Boltzmann distribution recognizes 

that although all molecules exist in their energetic ground state at 0 K, there is a 

distribution of molecules at finite temperatures that occupy higher energy states with a 

certain probability.  The probability is proportional to the exponential of the negative 

ratio between the energy state, , and the Boltzmann factor, k, multiplied by the 

temperature, T (Equation 2.35). Thus, the probability of finding a molecule with a 

certain energy, , is expressed by Equation 2.36.  

  2.35  

 
 2.36  

Experimental thermodynamic and kinetic data acquired at a finite temperature include 

contributions from molecules with higher energy states (electronic, translational, 

rotational, and vibrational). However, the computational result will include only the 

lowest energy quantum state. In order for proper comparison with experiment, the 

contributions from higher energy quantum states must be accounted for.  

 The higher energy quantum states are considered by employing two important 

approximations. First, it is assumed that the system of interest contains non-interacting 

particles (i.e. the ideal gas approximation). Second, it is assumed that the electronic, 
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translational, rotational, and vibrational contributions to the total energy are not coupled. 

Therefore, the total energy may be expressed as a sum of the individual components 

(Equation 2.37), and the total partition function may be expressed as a product of the 

electronic, translational, rotational, and vibrational partition functions (Equation 2.38). 

  2.37  

  2.38  

The derivation and application of each partition function has been reported.121, 231, 232 In 

short, each individual partition function is solved by considering a generic equation 

(Equation 2.39), where  is the energy corresponding to each quantum degree of 

freedom, as determined by the Schrödinger equation, and r is the quantum number of 

interest. Each partition function includes the summation of all possible energy levels 

corresponding to each quantum degree of freedom.  Thus, higher energy states are 

accounted for in the total partition function. 

 
 2.39  

Once each partition function has been solved, the total partition function can be found, 

and common thermodynamic functions can be determined according to Equations 2.40 

to 2.44.  
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 The thermodynamic functions investigated throughout this dissertation are 

internal energy (E), enthalpy (H), Helmholtz free energy (A), entropy (S), and Gibbs free 

energy (G), which are represented by Equations 2.40, 2.41, 2.42, 2.43, and 2.44, 

respectively.114, 121, 232, 233 

  2.40  

  2.41  

  2.42  

  2.43  

  2.44  

 Electronic structure programs employ frequency analyses to provide the absolute 

thermodynamic property, which is merely the sum of the electronic energy and the 

thermal correction of interest. For example, the enthalpy of a system is expressed as  

  2.45  
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However, the absolute thermodynamic quantity is rarely of interest. The change or 

difference in the thermochemical property is of importance. Consequently, a difference 

in the same thermodynamic quantity is taken to yield values associated with chemical 

phenomena, such as bond dissociation enthalpies at finite temperatures, , or Gibbs 

free activation energies, . These two quantities will be referred to often 

throughout this dissertation.  

 In practice, computed thermal corrections often possess a known amount of 

systematic error due to the approximation employed by the chemical method and/or 

basis set.234-236 Consequently, scaling factors have been developed to realign 

thermodynamic quantities with corresponding experimental phenomena. If high level 

computed thermodynamic quantities are desired, it is often advantageous to optimize the 

structure at a high level of theory to acquire the electronic energy, and subsequently 

perform a frequency analysis with a low level of theory on an optimized structure 

determined with the same low level of theory. The absolute thermodynamic quantity can 

then be scaled and added to the electronic energy determined with the high level of 

theory. Equation 2.46 illustrates the absolute enthalpy predicted by a scaling approach. 

  2.46  

Equation 2.46 is the same as 2.45 except for the fact that the thermal correction is 

scaled. The electronic energy is computed by a high level of theory, 

QCISD(T)/6-311++G(3df,2p), where the enthalpy correction is computed with a low 

level of theory, B3LYP/6-31G(d). It is important to note that the scaling factor is 
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dependent on the level of theory. Radom and coworkers recommended a scaling factor 

of 0.9989 with the use with B3LYP/6-31G(d).235 It is also important to note that scaling 

factors for thermodynamic quantities are temperature dependent. Consequently, Radom 

and coworkers derived scaling factors for enthalpy corrections at temperatures of 

298.15, 450 and 600 K, so that scaling factors may be interpolated within the 298.15 to 

600 K range.235  For example, an appropriate scaling factor for a B3LYP/6-31G(d) 

thermal correction at T = 373 K is 0.9941, as determined by the interpolation performed 

in Figure 2.3.  
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Figure 2.3. Line of best fit regarding the enthalpy scaling factors derived by Radom and 
coworkers.235 Scaling factors are 0.9989, 0.9886, and 0.9816 for T = 298.15, 450, and 600 K, 
respectively. Using the equation that describes the line of best fit, a scaling factor of 0.9941 is 
calculated for T = 373 K.  
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Chapter 3  
 
 
Covalent and Ionic Nature of the Coordinate Covalent 
Bond and Account of Accurate Binding Enthalpies 
 
 

 

The inherent difficulty in modeling the energetic character of the B–N coordinate 

covalent bond has been investigated utilizing density functional theory (DFT) and ab 

initio methods. The underlying influence of basis set size and functions, thermal 

corrections, and basis set superposition error (BSSE) on the predicted binding enthalpy 

of ammonia borane (H3B–NH3) and four methyl substituted ammonia trimethylboranes 

[(CH3)3B–N(CH3)nH3-n; n = 0-3] has been evaluated and compared with experiment. HF, 

B3LYP, MPW1K, MPW1B95, MPWB1K, M05, M05-2X, M06, M06-2X, MP2, 

QCISD, and QCISD(T) have been utilized with a wide range of Pople-style and 

correlation consistent basis sets. Overall, DFT and HF result in less BSSE and converge 

to binding enthalpies with fewer basis functions than post-SCF techniques. However, of 

the DFT methods explored, only M06, M05-2X, and M06-2X model experimental 

binding enthalpies and trends accurately, producing MADs of 3.9, 1.6, and 0.3 kcal/mol, 

respectively.  Despite slow basis set convergence, MP2, QCISD, and QCISD(T) 

Reproduced in part with permission from Plumley, J. A.; Evanseck, J. D., J. Phys. Chem. 
A 2007, 111, (51), 13472. Copyright 2007 American Chemical Society and  
Plumley, J. A.; Evanseck, J. D., J. Chem. Theory Comput. 2008, 4, (8), 1249. Copyright 
2008 American Chemical Society.  
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employed with the 6-311++G(3df,2p) basis set reproduce the experimental binding 

enthalpy trend and result in lower MADs of 1.9, 2.3, and 0.4 kcal/mol, respectively, 

when corrected for BSSE and a residual convergence error of ca. 1.3-1.6 kcal/mol. 

Accuracy of the predicted binding enthalpy is linked to correct determination of the 

bond’s coordinate covalent character given by charge-transfer frustration, 

. Frustration gauges the incompleteness of charge-transfer between the 

donor and acceptor. The binding enthalpy across ammonia borane and methylated 

complexes is correlated to its coordinate covalent character (R2 = 0.91), where more 

coordinate covalent bond character (less charge-transfer frustration) results in a weaker 

binding enthalpy. However, a balance of electronic and steric factors must be considered 

to explain trends in experimentally reported binding enthalpies. Coordinate covalent 

bond descriptors, such as bond ionicity and covalency are important in the accurate 

determination of the coordinate covalent bond. The B–N coordinate covalent bond in 

ammonia borane is characterized as being 65% ionic, moderately strong (-27.5 ± 0.5 

kcal/mol), and structurally flexible on the donor side to relieve steric congestion.  

 

3.1 Introduction 

The coordinate covalent bond, also known as the semipolar double bond,19-21 or 

coordinate link,22 has been less defined and studied as compared to either covalent or 

ionic bonds.7, 10, 237 Depending upon the field of study, molecular systems with 

coordinate covalent bonds are typically referred to as coordination compounds,238 Lewis 

acid-base adducts,69 or electron donor-acceptor complexes.57, 239, 240 Despite the 
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nomenclature, these molecular systems employ an atypical bonding scheme, where 

covalent and ionic potential energy surfaces become close in energy.25 The 

wavefunction for coordinate covalent bonding is described as 

  3.1  

The importance of each bonding term depends upon the ability of the atomic partners to 

share electrons, as well as D to donate electrons and A to accept them. It has been 

reported previously that the B–N bond strength includes contributions from both 

covalent and ionic terms, making trends in bond energies difficult to predict a priori.241 

Thus, a difficult situation results for the computational treatment of the structure, 

energetics, and dynamics of the coordinate covalent bond, since the employed chemical 

theory must simultaneously treat the partial covalent and ionic contributions accurately 

without compensation of errors. 

To date, the binding energetics for ammonia borane, H3B–NH3, a well-known 

prototype of the coordinate covalent bond,19 have not been directly measured by 

experiment. As a result of the computational challenge in modeling both the covalent 

and ionic character of the coordinate covalent bond, the predicted binding energetics 

vary widely.19, 204, 242-248 Table 3.1 is a noncomprehensive summary of the predicted 

binding energetics reported using different levels of theory with and without basis set 

superposition error (BSSE) and thermal corrections. 
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Method BEa BSSEc 

Gurvich’s estimation249 ∆H298 = -37.5 ± 4.3 - 

B3LYP/6-31G(d)246 ∆Eelec = -32.8 no 

BAC-MP4250 ∆H298 = -31.3 no 

Haaland’s estimation19 ∆H298 = -31.1 ± 1.0 - 

CCSD(T)/aug-cc-pVTZ246 ∆Eelec = -31.1 no 

MP2/TZ2P241 ∆H298 = -30.7 no 

MP2/6-31G(d,p)243 ∆H298 = -30.0 no 

MP2/aug-cc-pVDZ204 ∆Eelec = -29.3b yes 

CCSD(T)/aug-cc-pVDZ204 ∆Eelec = -28.5b yes 

BLYP/6-31G(d)247  ∆E0 = -28.5 no 

MP2/TZ2P247 ∆E0 = -28.3 no 

MPW1K/6-311++G(d,p)245 ∆E0 = -28.1 no 

MP2/6-311++G(d,p)245 ∆E0 = -26.5 no 

CCSD(T)/cc-pVTZ247 ∆E0 = -26.5 no 

B3LYP/6-31G(d)246 ∆E0 = -26.3 no 

G2(MP2)251 ∆E0 = -26.0 no 

Piela’s estimation204 ∆H298 = -25.7 ± 2.0b yes 

CCSD(T)/6-311++G(d,p)244  ∆E0 = -25.5 no 

CCSD(T)/aug-cc-pVTZ246 ∆E0 = -24.6 no 

CCSD(T)/aug-cc-pVDZ204 ∆H298 = -24.5b yes 

MP2/6-31G(d,p)243 ∆H298 = -24.1 yes 

B3LYP/6-311++G(d,p)245 ∆E0 = -23.5 no 

MP2/aug-cc-pVDZ204 ∆E0 = -23.5a yes 

CCSD(T)/aug-cc-pVDZ204 ∆E0 = -22.7b yes 

HF/aug-cc-pVDZ204 ∆Eelec = -20.1b yes 

HF/aug-cc-pVDZ204 ∆E0 = -14.3b yes 

a   All values are in kcal/mol.  
b  The aug-cc-pVDZ basis set has been supplemented with diffuse f functions on the boron and nitrogen 

atoms, and one diffuse d function on each hydrogen atom.     
c Designates whether basis set superposition error was corrected. 

 

To the best of our knowledge, there exist two estimates of the H3B–NH3 binding 

enthalpy derived indirectly from experimental data. The earliest H3B–NH3 binding 

Table 3.1. H3B–NH3 Binding Enthalpies, ΔH, Electronic Binding Energies, ΔEelec, and Zero-Point 
Corrected Binding Energies, ΔE0, Determined by Different Approaches.   
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enthalpy was provided by Haaland, extrapolated from the experimental binding 

enthalpies of seven methylated boranes.19 The estimation was reproduced (Figure 3.1) 

by using a quadratic fit of the plotted binding enthalpies for (CH3)3B–N(CH3)nH3-n, n = 

0-3, versus the number of methyl substituents on nitrogen, n, as done by Brown and 

co-workers.252 Subsequently, a second quadratic equation was fitted to the binding 

enthalpies for H3B-N(CH3)nH3-n versus the same x-axis. The binding enthalpy of 

H3B-NH3 was taken as the value that allowed the coefficient of the quadratic term within 

the two equations to be equivalent. Haaland’s resulting binding enthalpy of ammonia 

borane is ∆H298  -31.1 ± 1.0 kcal/mol.19 Haaland’s estimation is expected to incorporate 

some error because the binding enthalpies for the H3B-N(CH3)nH3-n (omitting n = 0) 

series were derived from standard enthalpies of reactions.19 However, subsequent 

refinement of the H3B-N(CH3)3 binding enthalpy by experiment revealed that the 

derived value was underestimated by 3.5 kcal/mol.29 Thus, binding enthalpies for the 

H3B-N(CH3)nH3-n series (omitting n = 0) yield a linear relationship with increasing n 

rather than a quadratic relationship, as assumed by Haaland to estimate the binding 

enthalpy of ammonia borane.   
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Second, Gurvich et al. used four experimental studies to estimate the heat of formation 

(∆   = -27.5 ± 3.6 kcal/mol) for H3B–NH3,249 which yields a B–N binding energy of 

-37.5 ± 4.3 kcal/mol when the ∆   for borane (∆   = 21.0 ± 2.4 kcal/mol),249 and 

ammonia (∆   = -11.0 ± 0.1 kcal/mol)253 are considered. It has been noted that 

Gurvich’s estimated heats of formation were based upon experimental data not firmly 

established, and that the large uncertainty could yield an inaccurate B–N binding 

enthalpy.250 
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Figure 3.1. Haaland’s estimation. The estimation was reproduced by using a quadratic fit of the 
plotted binding enthalpies for (CH3)3B–N(CH3)nH3-n, n = 0-3 (red line), versus the number of 
methyl substituents on nitrogen. Subsequently, a second quadratic equation was fit to the plotted 
binding enthalpies for H3B–N(CH3)nH3-n (black line) versus the same x-axis. The binding 
enthalpy of H3B-NH3 was then taken as the value that allowed the coefficient of the quadratic 
term within the two equations to be equivalent. Haaland’s resulting binding enthalpy value is 
∆H298 = -31.1 ± 1.0 kcal/mol. 
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Computational predictions of the H3B–NH3 binding enthalpy are significantly 

weaker than the Haaland and Gurvich estimations. Predicted binding energies (∆E0, 

corrected for ZPE at 0 K) are -24.6 kcal/mol from CCSD(T)/aug-cc-pVTZ,246 -26.5 

kcal/mol from MP2/6-311++G(d,p),245 and -22.7 from CCSD(T)/aug-cc-pVDZ.204 Piela 

and coworker’s enthalpic estimation was determined by computing the binding enthalpy 

using MP2/aug-cc-pVDZ supplemented with a 3s3p2d1f set of functions centered in the 

middle of the B–N dative bond. The resulting binding enthalpy at 298 K was -26.5 

kcal/mol. The MP2 binding enthalpy was corrected by adding the correlation 

contribution of 0.8 kcal/mol, which is the difference between CCSD(T) and MP2 

binding energies with the aug-cc-pVDZ basis set. The final estimated binding enthalpy 

reported at 298 K was -25.7 ± 2.0 kcal/mol.204 

 The B–N coordinate covalent bond has been investigated computationally in 

substituted systems as well.36, 242-248, 251, 254 In particular, an investigation critiquing the 

ability of density functional theory (DFT) to model B–N coordinate covalent bonds 

accurately has been reported.245 Systematic addition of methyl groups to the donor and 

acceptor atoms of ammonia borane revealed increasing error in B3LYP predicted 

binding energetics, whereas MP2 provided energetic trends consistent with 

experiment.245 Other borate systems containing B–N coordinate covalent bonds also 

have been analyzed in which B3LYP was unable to model the coordinate covalent bond 

accurately.244 Further analysis showed that CCSD(T) predicted and ZPE corrected 

binding energies244 compare well with MP2 predicted binding energies.245 

The wide range of predicted binding energetics for H3B–NH3 from -14.3 to -37.5 

kcal/mol (Table 3.1) and the divergence of predicted binding energetics of substituted 
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ammonia borane systems are symptomatic of the inherent difficulty in modeling the 

coordinate covalent bond. The obvious variables contributing to the reported variability 

include the chemical method and basis set employed, whether BSSE corrections were 

implemented, and if the appropriate thermal corrections were applied to the electronic 

energy. Many of the reported studies recognize the need for one computational factor 

over another; however, in many of the reports, the energies were not corrected for 

BSSE, even though it is generally recognized that it ranges between 1 to 3 kcal/mol for 

DFT methods245 and 3 to 10 kcal/mol for post-SCF methods when small basis set are 

utilized.204, 243, 244, 255 BSSE corrections are important, since smaller basis sets are 

commonly used to predict the binding energetics of B–N coordinate covalent bonds. 

 Due to the need for accurate computational modeling and characterization of the 

coordinate covalent bond, a systematic computational approach has been implemented 

to investigate ammonia borane and methyl substituted ammonia trimethylboranes 

[(CH3)3B-N(CH3)nH3-n; n = 0-3]. The (CH3)3B–N(CH3)nH3-n complexes have been 

chosen for analysis rather than H3B–N(CH3)nH3-n systems, since more prominent effects 

on binding enthalpies have been observed.19 Furthermore, the binding enthalpies of the 

H3B–N(CH3)nH3-n adducts have not been directly determined by experiment, but rather 

derived from standard heats of reaction,19 with the exception of H3B–N(CH3)3.29 The 

influence of electron correlation, basis set size, and BSSE has been explored by 

performing electronic structure calculations with a variety of basis sets, quantum 

chemical methods, and corrections in order to identify appropriate levels of theory that 

model the coordinate covalent bond accurately. The relationship between the accurate 

prediction of charge-transfer frustration, ionicity and covalency, and the structural and 
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energetic characterization of the coordinate covalent bond has been evaluated to provide 

a more comprehensive understanding of the coordinate covalent bond. Besides interest 

in the fundamental chemical physics of coordinate covalent bonds,19, 240 this approach 

may be used as a predictive strategy for the structural and energetic properties of 

coordinate covalent bonds that have important consequences in the fields of storage and 

release of hydrogen as a fuel,35-37 growth of uniform coatings on individual filaments for 

fiber-reinforced ceramic matrix composites,38-41 and as new oncological,42-44 

cardiovascular, and anti-inflammatory drugs.44-48 

 

3.2 Computational Approach 

 All electronic structure calculations have been explained in Chapter 2 and were 

carried out with Gaussian03111 and NWChem 5.1112 using the computational resources at 

the Center for Computational Sciences at Duquesne University.256 Specifically, 

NWChem 5.1 was utilized for all M06-2X and M06 calculations while Gaussian03 was 

utilized for all HF, B3LYP, MPW1K, MPW1B95, MPWB1K, M05-2X, M05, MP2, 

QCISD, and QCISD(T) computations. It is important to note that due to computer 

resource limitations, full QCISD(T) optimizations were not possible, unless otherwise 

noted. However, single point (SP) energy calculations have been employed utilizing 

QCISD(T)//QCISD, where the basis set is the same for both the SP and geometry 

optimization. 

Basis set superposition error corrected and uncorrected binding energetics for 

H3B–NH3 were predicted by HF, B3LYP, MPW1K, MP2, QCISD, and QCISD(T)  in 
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combination with 48 Pople basis sets, ranging from 6-31G(d) to 6-311++G(3d2f,3p2d) 

and from Dunning’s cc-pVDZ to aug-cc-pV5Z correlation consistent basis sets. Due to 

resource limitations, FOPTs could not be performed with QCISD or QCISD(T) with the 

aug-cc-pV5Z basis set. Consequently, single point energy calculations were performed 

with QCISD(T)/aug-cc-pV5Z and QCISD/aug-cc-pV5Z on MP2/6-311++G(3df,2p) 

optimized H3B–NH3 geometries. The basis sets employed are shown in Table 3.2.  

 

Pople Basis Sets 

(X,Y) 
6-31G 
(X,Y) 

6-31+G 
(X,Y) 

6-31++G 
(X,Y) 

6-311G 
(X,Y) 

6-311+G 
(X,Y) 

6-311++G 
(X,Y) 

(d) 42 50 56 54 62 68 
(d,p) 60 68 74 72 80 86 
(2d,p) 72 80 86 82 90 96 
(2d,2p) 90 98 104 100 108 114 
(3df,2p) 116 124 130 124 132 138 
(3df,pd) 134 142 148 136 144 150 
(3df,3pd) 170 178 184 172 180 186 
(3d2f,3p2d) 220 228 234 216 224 230 
       
Correlation Consistent Basis Sets 

X cc-pVXZ aug-cc-pVXZ 
D 58 100 
T 144 230 
Q 290 436 
5 512 734 

 

At the time of this investigation, the MPW1B95, MPWB1K, M05-2X, M05, 

M06-2X, and M06 density functionals were unavailable. Consequently, the systematic 

analysis of basis set size and BSSE was not performed with MPW1B95, MPWB1K, 

Table 3.2. The Number of Basis Functions for Each Basis Set Pertaining to H3B–NH3. 
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M05-2X, M05, M06-2X, or M06. However, as will be discussed, binding energies 

converge at the 6-311++G(3df,2p) basis set when employed with HF and the B3LYP 

and MPW1K density functionals. Thus, MPW1B95, MPWB1K, M05-2X, M05, 

M06-2X, and M06 BSSE corrected binding energies are predicted with the 6-

311++G(3df,2p) basis set. 

All energy minima have been confirmed by the absence of imaginary frequencies 

by vibrational frequency calculations utilizing B3LYP/6-31G(d). Enthalpy corrections 

were predicted utilizing B3LYP/6-31G(d) and scaled by 0.9989 in order to compute 

binding enthalpies at 298 K for the H3B–NH3 adduct. Enthalpy corrections have been 

scaled by 0.9941 to compute binding enthalpies for the remaining four adducts, for 

which the experimental binding enthalpies have been determined at 373 K. Scaling 

factors are known to be temperature dependent and are discussed in Chapter 2.12. 

All NBO computations have been performed with HF, B3LYP, MPW1K, 

MPW1B95, MPWB1K, M05, M05-2X, and MP2 utilizing the 6-311++G(3df,2p) basis 

set on the corresponding optimized H3B–NH3 and methyl substituted ammonia 

trimethylborane structures to determine bond orders, bond covalencies, and bond 

ionicities corresponding to the B–N coordinate covalent bond. All NBO computations 

have been performed utilizing the NBO 5.G220,113 program embedded within 

Gaussian03. 
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3.3 Convergence Rate and Value of the H3B–NH3 Coordinate Covalent 

Bond Length 

 A systematic evaluation of H3B–NH3 bond length across different chemical 

methods and basis sets has been carried out. The rate of bond length convergence as a 

function of the number of basis functions and the converged value have been compared 

to the reported experimental B–N bond length of 1.658 ± 0.002 Å, determined by 

microwave spectra of nine isotopic species of ammonia borane between 308 and 318 

K.26 A prior microwave spectra analysis of two isotopic species determined that the B–N 

bond length was 1.66 ± 0.03 Å,257 where assumptions made resulted in a larger standard 

deviation than the more recent analysis. The latest account performed a full isotopic 

substitution of ammonia borane, allowing the assumed parameters in the first account to 

be determined directly; therefore, a more accurate B–N bond length was able to be 

determined. All computations in this study have been compared to the more recent 

account, where the B–N bond length was reported as 1.658 ± 0.002 Å. 

The correlation consistent basis sets, ranging from cc-pVDZ to aug-cc-pV5Z, 

have been used for the geometry optimization of H3B–NH3, due to the systematic 

inclusion of electron correlation and possible extrapolation to the complete basis set 

limit. Convergence was estimated when the change in bond length between consecutive 

basis sets was less than 1 × 10-3 Å and for all subsequent pair-wise comparisons. For 

each chemical method utilized, smooth convergence is observed with and without 

augmentation, as shown by Figure 3.2. 
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A number of important issues arise when considering how the bond length 

depends upon the number and type of basis functions utilized by a basis set. First, the 

inclusion of diffuse functions lengthens post-SCF bond lengths for smaller basis sets.  

Second, bond lengths modeled from correlation consistent basis sets with augmentation 

converge between aug-cc-pVQZ (436 basis functions) and aug-cc-pV5Z (734 basis 

functions) for each post-SCF method, where the bond lengths modeled with the 

cc-pVXZ basis sets (no augmentation) converge by 290 basis functions. Third, DFT and 

HF need less than half the basis functions to achieve convergence as compared to 

post-SCF methods. Fourth, considering converged values, HF overestimates the 

 

Figure 3.2. Convergence behavior of the H3B–NH3 coordinate covalent bond length (Å) vs. the 
number of basis functions employed with aug-cc-pVXZ (solid line) and cc-pVXZ (dashed line), 
where X is D, T, Q, or 5. The correspondence between the number of basis functions and the 
basis set is given in Table 3.2. The light blue area represents the range of uncertainty for the 
experimental gas phase result of 1.658 ± 0.002 Å.26 

1.625

1.635

1.645

1.655

1.665

1.675

1.685

50 150 250 350 450 550 650 750

B
on

d 
Le

ng
th

   
   

   
   

   

Basis Functions

HF (aug)

HF

MPW1K (aug)

MPW1K

B3LYP (aug)

B3LYP

MP2 (aug)

MP2

QCISD (aug)

QCISD



 

86 
 

experimental bond length by 0.014 Å, whereas B3LYP, QCISD, MP2 and MPW1K 

underestimate experiment by 0.001, 0.009, 0.012, and 0.026 Å, respectively. Thus, all 

methods using correlation consistent basis sets converge within 1% of the reported 

experimental value, except MPW1K. The B–N bond length predicted by B3LYP is the 

only method that converges within the uncertainty of 0.002 Å using the correlation 

consistent basis sets. Converged bond lengths predicted by HF, QCISD, MP2, and 

MPW1K differ from the experimental bond length by 0.013, 0.006, 0.011 and 0.026 Å, 

respectively. Importantly, post-SCF methods converge to shorter B–N bond lengths than 

predicted by experiment. This behavior is anticipated since the predicted geometries are 

computed at 0 K, whereas the experimental values were determined between 308 and 

318 K. Figure 3.3 displays the convergence behavior of the B–N coordinate covalent 

bond lengths as a function of basis functions implemented by the Pople style 6-

311++G(X,Y) basis sets for each chemical method. Predicted lengths by post-SCF 

methods converge to a B–N bond length near 150 basis functions [6-311++G(3df,pd)], 

whereas bond lengths predicted by DFT and HF converge earlier at 96 basis functions 

[6-311++G(2d,p)]. All converged bond lengths range between 1.632 and 1.672 Å, which 

is in moderate agreement with experiment.26 The same order in increasing bond length 

with Pople basis sets is observed as with the correlation consistent basis sets (HF > 

B3LYP > QCISD > MP2 > MPW1K). Only bond lengths predicted by B3LYP converge 

within the accuracy of 0.002 Å, similarly to that observed with the correlation consistent 

basis sets. HF, MP2, and QCISD converge within 0.011 Å of the upper bound error 

(1.658 + 0.002 Å ), 0.009 Å of the lower bound error (1.658 - 0.002 Å), and 0.004 Å of 

the lower bound, respectively. All B–N bond lengths predicted by the 6-311++G(X,Y) 
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basis sets converged to the bond lengths predicted by the correlation consistent basis sets 

within 0.2%. 

 

 

The rate of convergence for the 6-31G(X,Y), 6-31+(X,Y), 6-31++(X,Y), 

6-311G(X,Y), and 6-311++(X,Y) basis sets is shown by Figure 3.4 and was analyzed in 

the same manner as the 6-311++G(X,Y), cc-pVXZ, and aug-cc-pVXZ basis sets. The 

predicted bond lengths (converged and not converged) by all chemical methods and 

basis sets utilized in this study range between 1.631 and 1.689 Å, (Table 3.3)  again in 

moderate agreement with experiment.26 There are a few notable points. For example, 

 

Figure 3.3. Convergence behavior of the H3B–NH3 coordinate covalent bond length (Å) vs. the 
number of basis functions employed with 6-311++G(X,Y). The correspondence between the 
number of basis functions and the basis set is given in Table 3.2. The light blue area represents 
the range of uncertainty for the experimental gas phase result of 1.658 ± 0.002 Å.26 
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double-zeta split-valence quality basis sets [i.e., 6-31G(X,Y), 6-31+G(X,Y), and 

6-31++G(X,Y)] do not necessarily produce a converged B–N bond length. In fact, the 

predicted change in bond length by DFT methods and HF never converged. Post-SCF 

methods also had trouble yielding a converged B–N bond length for the 

double-zeta basis sets, but converged when employing 3df and 3dp polarization 

functions on the heavy and hydrogen atoms, respectively. 
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Figure 3.4. Convergence behavior of the H3B–NH3 coordinate covalent bond length (Å) vs. the 
number of basis functions employed with 6-31G(X,Y) (A), 6-31+G(X,Y) (B), 6-31++G(X,Y) (C), 
6-311G(X,Y) (D), and 6-311+G(X,Y) (E). The correspondence between the number of basis 
functions and the basis set is given in Table 3.2. The light blue area represents the range of 
uncertainty for the experimental gas phase result of 1.658 ± 0.002 Å.26 
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Table 3.3. Predicted H3B–NH3 Coordinate Covalent Bond Lengths (Å). Experimental B–N Bond 
Length is 1.658 ± 0.002 Å. 

 
Basis 
Functions MPW1K B3LYP MP2 HF QCISD 

6-31G(d) 42 1.6446 1.6691 1.6637 1.6889 1.6681 
6-31G(d,p)  60 1.6429 1.6678 1.6607 1.6873 1.6651 
6-31G(2d,p) 72 1.6330 1.6556 1.6592 1.6785 1.6659 
6-31G(2d,2p) 90 1.6316 1.6537 1.6563 1.6757 1.6645 
6-31G(3df,2p) 116 1.6344 1.6590 1.6450 1.6748 1.6498 
6-31G(3df,pd) 134 1.6349 1.6600 1.6489 1.6754 1.6545 
6-31G(3df,3pd) 170 1.6343 1.6592 1.6471 1.6749 1.6526 
6-31G(3d2f,3p2d)  220 1.6332 1.6574 1.6465 1.6733 1.6522 
       
6-31+G(d) 50 1.6441 1.6700 1.6639 1.6857 1.6676 
6-31+G(d,p)  68 1.6435 1.6702 1.6612 1.6853 1.6675 
6-31+G(2d,p) 80 1.6355 1.6615 1.6627 1.6796 1.6694 
6-31+G(2d,2p) 98 1.6335 1.6587 1.6598 1.6760 1.6671 
6-31+G(3df,2p) 124 1.6359 1.6612 1.6476 1.6760 1.6523 
6-31+G(3df.pd) 142 1.6363 1.6622 1.6510 1.6765 1.6566 
6-31+G(3df,3pd) 178 1.6357 1.6611 1.6491 1.6760 1.6545 
6-31+G(3d2f,3p2d)  228 1.6341 1.6583 1.6484 1.6741 1.6538 
       
6-31++G(d) 56 1.6425 1.6673 1.6624 1.6845 1.6662 
6-31++G(d,p)  74 1.6420 1.6671 1.6599 1.6838 1.6663 
6-31++G(2d,p) 86 1.6338 1.6584 1.6611 1.6778 1.6679 
6-31++G(2d,2p) 104 1.6320 1.6560 1.6585 1.6745 1.6658 
6-31++G(3df,2p) 130 1.6351 1.6595 1.6470 1.6752 1.6517 
6-31++G(3df,pd) 148 1.6354 1.6604 1.6501 1.6756 1.6557 
6-31++G(3df,3pd) 184 1.6352 1.6601 1.6485 1.6755 1.6540 
6-31++G(3d2f,3p2d)  234 1.6341 1.6575 1.6479 1.6735 1.6533 
       
6-311G(d) 54 1.6352 1.6601 1.6523 1.6769 1.6569 
6-311G(d,p) 72 1.6378 1.6633 1.6538 1.6788 1.6595 
6-311G(2d,p) 82 1.6318 1.6565 1.6506 1.6711 1.6556 
6-311G(2d,2p) 100 1.6308 1.6561 1.6506 1.6700 1.6562 
6-311G(3df,2p) 124 1.6308 1.6556 1.6452 1.6699 1.6498 
6-311G(3df,pd)  136 1.6307 1.6553 1.6467 1.6701 1.6516 
6-311G(3df,3pd)  172 1.6310 1.6561 1.6469 1.6700 1.6516 
6-311G(3d2f,3p2d)  216 1.6314 1.6565 1.6467 1.6702 1.6513 
       
6-311+G(d) 62 1.6362 1.6619 1.6544 1.6778 1.6585 
6-311+G(d,p) 80 1.6389 1.6654 1.6561 1.6803 1.6615 
6-311+G(2d,p) 90 1.6328 1.6585 1.6531 1.6723 1.6578 
6-311+G(2d,2p) 108 1.6321 1.6580 1.6530 1.6713 1.6581 
6-311+G(3df,2p) 132 1.6317 1.6570 1.6470 1.6712 1.6516 
6-311+G(3df,pd)  144 1.6316 1.6566 1.6482 1.6704 1.6531 
6-311+G(3df,3pd)  180 1.6318 1.6572 1.6479 1.6711 1.6524 
6-311+G(3d2f,3p2d)  224 1.6314 1.6574 1.6474 1.6709 1.6519 
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Table 3.3. (continued).       

6-311++G(d) 68 1.6363 1.6618 1.6545 1.6778 1.6590 
6-311++G(d,p) 86 1.6389 1.6653 1.6562 1.6803 1.6616 
6-311++G(2d,p) 96 1.6326 1.6583 1.6530 1.6722 1.6577 
6-311++G(2d,2p) 114 1.6320 1.6579 1.6530 1.6714 1.6585 
6-311++G(3df,2p)  138 1.6317 1.6569 1.6469 1.6711 1.6515 
6-311++G(3df,pd)  150 1.6316 1.6565 1.6482 1.6711 1.6529 
6-311++G(3df,3pd)  186 1.6317 1.6571 1.6479 1.6711 1.6525 
6-311++G(3d2f,3p2d)  230 1.6319 1.6574 1.6474 1.6710 1.6520 
       
cc-pVDZ 58 1.6335 1.6541 1.6565 1.6775 1.6636 
cc-pVTZ 144 1.6334 1.6587 1.6500 1.6737 1.6547 
cc-pVQZ 290 1.6317 1.6568 1.6459 1.6712 1.6497 
cc-pV5Z 512 1.6317 1.6568 1.6452 1.6712  1.6490 
       
aug-cc-pVDZ 100 1.6361 1.6588 1.6679 1.6809 1.6750 
aug-cc-pVTZ 230 1.6336 1.6591 1.6519 1.6730 1.6560 
aug-cc-pVQZ 436 1.6321 1.6571 1.6470 1.6717 1.6515 
aug-cc-pV5Z 734 1.6321 1.6571 1.6457 1.6716 na 

 

In general, quality of the basis set is important to predicting the B–N bond 

length. The triple-zeta split-valence quality basis sets [e.g. 6-311G(X,Y), 

6-311+G(X,Y), and 6-311++G(X,Y)] yielded converged B–N bond lengths. In 

particular, the bond length predicted with the 6-311++G(X,Y) basis sets converged 

smoothly to the bond length yielded by the correlation consistent basis sets, and was 

found to be within 1% of the experimental accuracy of ± 0.002 Å for most methods 

employed. In the final assessment, the 6-311++G(3df,pd) and 6-311++G(2d,p) basis sets 

(150 and 96 basis functions, respectively) or greater are necessary to ensure a converged 

B–N coordinate covalent bond length for post-SCF methods and DFT or HF methods, 

respectively.  
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3.4 Sensitivity of Binding Enthalpy upon Variations in the H3B–NH3 

Coordinate Covalent Bond Length  

In order to investigate the energetic sensitivity upon bond length variation, 

binding enthalpies determined by MP2/aug-cc-pVXZ (X = D, T and Q) single point 

energy calculations on ammonia borane structures that possess the shortest and longest 

B–N bond lengths across all levels of theory considered were compared to binding 

enthalpies determined from full geometry optimizations at the MP2/aug-cc-pVXZ level 

of theory. MP2 has been chosen due to its accuracy and efficiency, as discussed in 

Chapter 3.7. The longest B–N bond length of 1.689 Å resulted from HF/6-31G(d) and 

the shortest of 1.632 Å was located using MPW1K/6-31G(2d,2p). Table 3.4 displays the 

predicted binding enthalpies, B–N coordinate covalent bond lengths, and corresponding 

differences between the higher and lower levels of theory. The largest binding enthalpy 

difference predicted was 0.2 kcal/mol. Thus, the data indicate that the predicted B–N 

bond length variation using different levels of theory (Table 3.1) does not account for 

the wide discrepancy of 23.2 kcal/mol in binding energies. 
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ΔH298 

 SP 

ΔH298  
FOPT 
Higher  
level 

B–N  
FOPT 
Higher  
Level 

B–N  
FOPT 
 Lower 
 Level ΔB–N ΔΔH298 

MP2/aug-cc-pVDZ// 
HF/6-31G(d) 
 

-26.7 -26.6 1.668 1.689 0.021 0.1 

MP2/aug-cc-pVTZ// 
HF/6-31G(d) 
 

-27.6 -27.8 1.652 1.689 0.037 0.2 

MP2/aug-cc-pVQZ// 
HF/6-31G(d) 
 

-27.9 -28.1 1.647 1.689 0.042 0.2 

MP2/aug-cc-pVDZ// 
MPW1K/6-31G(2d,2p) 
 

-26.5 -26.6 1.668 1.632 0.036 0.1 

MP2/aug-cc-pVTZ//  
MPW1K /6-31G(2d,2p) 
 

-27.8 -27.8 1.652 1.632 0.020 0.0 

MP2/aug-cc-pVQZ// 
 MPW1K /6-31G(2d,2p) 
 

-28.1 -28.1 1.647 1.632 0.015 0.0 

QCISD/aug-cc-pVDZ// 
MP2/6-311++G(3df,2p) 
 

-24.7 -24.6 1.675 1.647 0.028 0.1 

QCISD/6-311++G(d,p)// 
MP2/6-311++G(3df,2p) 
 

-26.1 -26.1 1.662 1.647 0.015 0.0 

QCISD/6-311++G(3df,2p)// 
MP2/6-311++G(3df,2p) 
 

-26.2 -26.2 1.652 1.647 0.005 0.0 

QCISD(T)/aug-cc-pVDZ// 
MP2/6-311++G(3df,2p) 
 

-25.7 -25.7 1.677 1.647 0.030 0.0 

QCISD(T)/6-311++G(d,p)// 
MP2/6-311++G(3df,2p) 
 

-27.4 -27.4 1.662 1.647 0.015 0.0 

QCISD(T)/6-311++G(3df,2p)// 
MP2/6-311++G(3df,2p) 
 

-27.5 -27.5 1.653 1.647 0.006 0.0 

a All energies are in kcal/mol. 
b All bond lengths are in Å 

 

Considering post-SCF methods, the B–N bond length converges at the 

6-311++G(3df,pd) basis set. However, binding enthalpies converge earlier at the similar 

6-311++G(3df,2p) basis set as discussed in Chapter 3.6. The use of 6-311++G(3df,2p) 

Table 3.4. Predicted H3B–NH3 Binding Enthalpies, ΔH298, from Single Point (SP) Energy 
Evaluations and Full Geometry Optimizations (FOPT).a,b 
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instead 6-311++G(3df,dp) saves 12 basis functions for H3B–NH3 and 36 for the largest 

methyl substituted ammonia trimethylborane considered. Despite the resource savings, 

FOPTs remain impractical on the larger methyl substituted ammonia trimethylborane 

structures with available resources utilizing QCISD and QCISD(T) with either basis set. 

However, SP energy evaluations and BSSE corrections were possible with QCISD and 

QCISD(T) using the 6-311++G(3df,2p) basis set. To justify this approach, QCISD SP 

energy evaluations using small (aug-cc-pVDZ) to large (6-311++G(3df,2p)) basis sets 

on MP2/6-311++G(3df,2p) optimized H3B–NH3 structures were compared to 

QCISD/6-311++G(3df,2p) FOPT energies. As shown in Table 3.4, there is a negligible 

(< 0.1 kcal/mol) difference between binding enthalpies determined by the QCISD 

FOPTs and SPs. Finally, QCISD(T) SP energies on MP2 optimized structures were 

compared to QCISD(T) FOPT energies. As seen in Table 3.4, QCISD(T) FOPT binding 

enthalpies differ from QCISD(T)//MP2 values by an insignificant amount (< 0.0 

kcal/mol). The data suggest that performing QCISD and QCISD(T) SP energy 

evaluations on MP2 optimized structures is a valid approximation to analyze the larger 

trimethylboranes. Consequently, energy evaluations were conducted using the 

6-311++G(3df,2p) basis set rather than the unbalanced 6-311++G(3df,pd) basis set.  

  

3.5 Impact of Basis Set Superposition Error upon Binding Enthalpies 

between BH3 and NH3 

 The influence of BSSE has been well-documented,184, 201, 204, 206-208, 243, 244 but has 

been inconsistently applied to the energetics concerning the coordinate covalent bond, as 
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summarized by Table 3.1. To investigate the impact of this factor on coordinate covalent 

bonding systematically, the amount BSSE has been determined for each method 

utilizing the correlation consistent basis sets, as shown by Figure 3.5. In general, the 

BSSE corrected binding enthalpies are weaker than those not corrected for BSSE. 

 

 

 

 

Two interesting trends are observed for the BSSE corrected binding enthalpies. 

First, cc-pVXZ basis sets result in more BSSE than the augmented basis sets, especially 

with smaller basis sets. Second, post-SCF computations result with increased BSSE, as 
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Figure 3.5. Basis set superposition error (BSSE) (kcal/mol) for HF, B3LYP, MPW1K, MP2, 
QCISD, and QCISD(T) utilizing the cc-pVXZ (dashed lines) and aug-cc-pVXZ (solid lines) basis 
sets. The BSSE is determined by subtracting the uncorrected ΔH298 from the BSSE corrected 
ΔH298. QCISD and QCISD(T) BSSE corrections employed with the aug-cc-pv5z basis set are 
performed on the MP2/6-311++G(3df,2p) optimized structure. 
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compared to DFT and HF. It has been previously noted that methods incorporating 

electron correlation result in more BSSE as compared to HF and DFT methods with 

smaller basis sets.201, 243, 244, 255 For example, the cc-pVDZ basis set (58 basis functions) 

with post-SCF, DFT, and HF methods incorporates BSSE on the order of ca. 7.0, 4.5, 

and 3.5 kcal/mol, respectively. BSSE is practically eliminated (0.0 to 0.4 kcal/mol) with 

the use of the cc-pV5Z basis set (512 basis functions). More specifically, BSSE is 

completely removed for DFT and HF with the use of the aug-cc-pVTZ basis set (230 

basis functions), whereas aug-cc-pVQZ (436 basis functions) is needed to eliminate 

BSSE (0.2 to 0.4 kcal/mol) for post-SCF methods. The same trend is seen for the Pople 

basis sets, where basis sets lacking diffuse functions incorporate more BSSE than those 

that include diffuseness. The amount of BSSE yielded for all basis sets and HF, B3LYP, 

MPW1K, MP2, QCISD, and QCISD(T) are reported in Table 3.5. In general, the basis 

sets typically employed (Table 3.1) in the evaluation of the coordinate covalent bond are 

too small and require the adjustment for BSSE. 
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Basis 
Functions MPW1K B3LYP MP2 HF QCISD QCISD(T) 

6-31G(d) 42 2.6 3.0 6.2 2.4 6.2 6.6 
6-31G(d,p)  60 2.5 3.1 5.8 2.2 5.8 6.2 
6-31G(2d,p) 72 2.2 3.1 4.7 1.9 4.5 4.8 
6-31G(2d,2p) 90 2.4 3.4 4.7 2.1 4.4 4.7 
6-31G(3df,2p) 116 2.5 3.5 5.0 2.1 4.5 4.8 
6-31G(3df,pd) 134 2.4 3.2 4.7 2.0 4.3 4.6 
6-31G(3df,3pd) 170 2.3 2.9 4.0 2.0 3.5 3.8 
6-31G(3d2f,3p2d)  220 2.3 2.9 3.8 2.0 3.4 3.6 
        
6-31+G(d) 50 1.9 1.7 5.2 1.8 5.3 5.7 
6-31+G(d,p)  68 1.4 1.3 4.5 1.2 4.6 4.9 
6-31+G(2d,p) 80 0.6 0.7 2.7 0.5 2.6 2.9 
6-31+G(2d,2p) 98 0.5 0.6 2.3 0.4 2.1 2.4 
6-31+G(3df,2p) 124 0.2 0.2 2.2 0.2 1.9 2.2 
6-31+G(3df.pd) 142 0.3 0.2 2.1 0.3 2.0 2.2 
6-31+G(3df,3pd) 178 0.3 0.2 1.6 0.3 1.4 1.5 
6-31+G(3d2f,3p2d)  228 0.3 0.4 1.5 0.3 1.2 1.3 
        
6-31++G(d) 56 1.8 1.7 5.2 1.6 5.3 5.6 
6-31++G(d,p)  74 1.4 1.4 4.5 1.2 4.6 5.0 
6-31++G(2d,p) 86 0.6 0.7 2.7 0.5 2.7 2.9 
6-31++G(2d,2p) 104 0.5 0.6 2.3 0.4 2.2 2.4 
6-31++G(3df,2p) 130 0.2 0.3 2.2 0.2 1.9 2.2 
6-31++G(3df,pd) 148 0.2 0.3 2.2 0.3 2.1 2.3 
6-31++G(3df,3pd) 184 0.3 0.2 1.6 0.3 1.4 1.5 
6-31++G(3d2f,3p2d)  234 0.3 0.4 1.4 0.3 1.2 1.3 
        
6-311G(d) 54 4.2 4.9 8.7 3.6 8.4 8.9 
6-311G(d,p) 72 3.1 3.9 6.9 2.8 6.5 7.0 
6-311G(2d,p) 82 2.6 3.4 5.4 2.3 5.1 5.4 
6-311G(2d,2p) 100 2.5 3.2 4.9 2.2 4.5 4.8 
6-311G(3df,2p) 124 2.5 3.3 4.8 2.2 4.2 4.5 
6-311G(3df,pd)  136 2.6 3.4 4.8 2.3 4.3 4.5 
6-311G(3df,3pd)  172 1.7 2.1 3.3 1.5 2.9 3.1 
6-311G(3d2f,3p2d)  216 1.6 1.9 3.0 1.4 2.6 2.7 
        
6-311+G(d) 62 2.7 2.6 6.7 2.3 6.6 7.0 
6-311+G(d,p) 80 1.1 1.1 4.3 1.0 4.2 4.6 
6-311+G(2d,p) 90 0.6 0.6 2.8 0.5 2.8 3.0 
6-311+G(2d,2p) 108 0.3 0.3 2.1 0.2 1.9 2.1 
6-311+G(3df,2p) 132 0.2 0.2 1.7 0.2 1.5 1.6 
6-311+G(3df,pd)  144 0.3 0.2 1.7 0.2 1.5 1.7 
6-311+G(3df,3pd)  180 0.2 0.2 1.4 0.2 1.2 1.3 
6-311+G(3d2f,3p2d)  224 0.2 0.2 1.3 0.2 1.1 1.2 
        
        

Table 3.5. Amount of BSSE in Predicted Binding Enthalpies for H3B–NH3 at 298 K.a 
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Table 3.5. (continued)        

6-311++G(d) 68 2.6 2.5 6.5 2.2 6.5 6.8 
6-311++G(d,p) 86 1.1 1.1 4.3 0.9 4.2 4.6 
6-311++G(2d,p) 96 0.6 0.6 2.8 0.4 2.7 3.0 
6-311++G(2d,2p) 114 0.3 0.3 2.1 0.2 1.9 2.1 
6-311++G(3df,2p)  138 0.2 0.2 1.7 0.2 1.5 1.6 
6-311++G(3df,pd)  150 0.3 0.2 1.7 0.2 1.5 1.7 
6-311++G(3df,3pd)  186 0.2 0.2 1.4 0.2 1.2 1.3 
6-311++G(3d2f,3p2d)  230 0.2 -0.1 1.3 0.2 1.1 1.2 
        
cc-pVDZ 58 3.8 5.1 7.1 3.3 6.8 7.2 
cc-pVTZ 144 1.3 1.8 3.1 1.1 2.7 2.9 
cc-pVQZ 290 0.5 0.8 1.3 0.4 1.0 1.1 
cc-pV5Z 512 0.0 0.1 0.4 0.0 0.2 0.2 
        
aug-cc-pVDZ 100 0.8 1.0 2.6 0.7 2.4 2.6 
aug-cc-pVTZ 230 0.0 0.0 1.0 0.0 0.8 0.8 
aug-cc-pVQZ 436 0.0 0.0 0.4 0.0 0.2 0.3 
aug-cc-pV5Z 734 -0.1 -0.1 0.1 -0.1  0.0b   0.0 b 

a  All energies are in kcal/mol. The difference between BSSE corrected and uncorrected ΔH298 is the 
amount of BSSE each basis set incorporates.  

b SP energy evaluations have been performed on MP2/6-311++G(3df,2p) optimized structures.  

 

BSSE was not systematically investigated for the M06-2X, M06, M05-2X, M05, 

MPW1B95, and MPWB1K functionals due to their unavailability at the time of this 

analysis. However, a brief account of BSSE regarding the untested functionals is 

warranted and thus presented. As will be discussed in Chapter 3.6, binding enthalpies 

converge at the 6-311++G(3df,2p) basis set as a function of the number of basis 

functions. Consequently, the impact of BSSE on binding enthalpies predicted by 

M06-2X, M06, M05-2X, M05, MPW1B95, and MPWB1K in conjunction with the 

6-311++G(3df,2p) basis set has been explored and compared to the BSSE yielded with 

HF, B3LYP, and MPW1K and the same basis set. The amount of BSSE for all DFT 

methods and HF utilizing the 6-311++G(3df,2p) basis set is summarized in Table 3.6.  

M06, M06-2X, M05, M05-2X, MPWB1K, and MPW1B95 yield BSSEs comparable to 
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that found for HF, B3LYP, and MPW1K. Since HF, B3LYP and MPW1K yield a 

converged binding enthalpy at this basis set, it is reasonable to assume that the 

remaining functionals behave similarly. A M06-2X/aug-cc-pVQZ optimization of 

ammonia borane supports this assumption; where the B–N coordinate covalent bond 

length and BSSE corrected binding enthalpy differ from that predicted by 

M06-2X/6-311++G(3df,2p) by 0.0008 Å and 0.2 kcal/mol, respectively. Consequently, 

M06-2X is used with the 6-311++G(3df,2p) basis set to deliver a value near 

convergence with a minimum amount of BSSE without jeopardizing efficiency and 

practicality. 

 

 BH3-NH3 n=0 n=1 n=2 n=3 Average 
HF24 0.2 0.3 0.3 0.3 0.4 0.3 
M05173 0.2 0.4 0.3 0.4 0.4 0.4 
B3LYP24 0.2 0.3 0.3 0.4 0.4 0.3 
MPW1K24 0.2 0.3 0.4 0.4 0.5 0.4 
M06173 0.3 0.4 0.5 0.6 0.7 0.5 
MPW1B95173 0.2 0.3 0.3 0.4 0.5 0.3 
MPWB1K173 0.2 0.3 0.3 0.3 0.4 0.3 
M05-2X173 0.2 0.3 0.4 0.5 0.6 0.4 
M06-2X173 0.2 0.3 0.5 0.5 0.7 0.4 

 

a BSSE computed by subtracting the ΔH BSSE corrected value from the ΔH uncorrected value. The  
6-311++G(3df,2p) basis set has been utilized. All values in kcal/mol. 
 

 

Table 3.6. Amount of BSSE in Predicted Binding Enthalpies for H3B–NH3 and 
(CH3)3B−N(CH3)nH3-n (n = 0 to 3).a 
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3.6 Convergence Rate of H3B–NH3 Binding Enthalpy  

The binding enthalpy convergence for H3B–NH3 was analyzed in the same 

manner as for the bond length. The rate of binding enthalpy convergence with BSSE 

corrections as a function of the number of basis functions has been determined, and the 

converged value has been compared to estimations provided by Haaland (-31.1 ± 1.0 

kcal/mol),19 Gurvich (-37.5 ± 4.3 kcal/mol),249 and Piela (-25.7 ± 2.0 kcal/mol).204 The 

experimental binding enthalpy has not been reported. Convergence was identified when 

the change in binding enthalpy between consecutive basis sets, and for all subsequent 

pair-wise comparisons, was less than 0.3 kcal/mol. For each chemical method utilized, 

smooth convergence is observed for the correlation consistent basis sets with and 

without augmentation, as shown by Figure 3.6. 
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Three important conclusions can be drawn concerning the predicted BSSE 

corrected ∆H298, utilizing the correlation consistent basis sets. First, the inclusion of 

diffuse functions is significant for smaller basis set computations, such as those reported 

in Table 3.1. Each method with augmentation underestimates the converged binding 

enthalpy by several kcal/mol up until about 225 basis functions. Second, the binding 

enthalpy convergence is slower using post-SCF methods, as compared to DFT and HF. 

For example, MP2, QCISD, and QCISD(T) binding enthalpies continue to change by 0.2 
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Figure 3.6. BSSE corrected H3B–NH3 binding enthalpies, ΔH298 (kcal/mol), vs. basis functions 
for aug-cc-pVXZ (solid line) and cc-pVXZ (dashed line) (X = D, T, Q, and 5). The blue and 
orange areas represent Haaland’s estimation (-31.1 ± 1.0 kcal/mol) and Piela’s estimation (-25.7 
± 2.0 kcal/mol), respectively. Gurvich’s estimation (-37.5 ± 4.3 kcal/mol) is not shown on the 
figure. The QCISD(T)/aug-cc-pV5Z data point is a SP energy evaluation on the 
MP2/6-311++G(3df,2p) optimized structure.  
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to 0.3 kcal/mol between cc-pVQZ and cc-pV5Z with and without augmentation. Further 

evaluation using cc-pV6Z is currently not possible due to resource limitations. In 

contrast, binding enthalpies predicted by DFT and HF converge earlier between 

cc-pVTZ (144 basis functions) and aug-cc-pVTZ (230 basis functions). Third, DFT and 

post-SCF binding enthalpy predictions fall between the Piela and Haaland estimates. As 

expected, the order of converged binding enthalpies supports the order of B–N bond 

lengths. The weakest to strongest binding enthalpies are HF < B3LYP < QCISD < 

QCISD(T) < MP2 < MPW1K. Both HF and MPW1K are in poor energetic agreement 

with the previous estimates. Lastly, BSSE corrected ∆H298 converge to the same BSSE 

uncorrected ∆H298 for each method. Consequently, the BSSE approaches zero in the 

limit of the complete basis set, as discussed in Chapter 2.9. 

For Pople basis sets, the convergence of the BSSE corrected ∆H298 has been 

analyzed using the 6-311++G(X,Y) basis sets, which is shown by Figure 3.7. All 

methods yield converged binding enthalpies at the 6-311++G(3df,2p) basis set, the same 

converged value as predicted by the correlation consistent basis sets, except post-SCF 

methods. MP2, QCISD, and QCISD(T) in conjunction with the 6-311++G(3df,2p) basis 

set predict weaker binding enthalpies than with the aug-cc-pV5Z basis set by 1.5, 1.3 

and 1.6 kcal/mol, respectively. It is found that the post-SCF predicted and BSSE 

corrected binding enthalpies converge slowly and do not converge even when the largest 

Pople basis set is employed. It is assumed that post-SCF predicted and BSSE corrected 

binding enthalpies will converge eventually to that predicted by the aug-cc-pV5Z basis 

set when polarization functions are added to the 6-311++G(X,Y) basis sets, as found for 

the B–N bond lengths. As a consequence, the residual error of 1.5, 1.3 and 1.6 kcal/mol 
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for MP2, QCISD, and QCISD(T), respectively, called the “convergence correction,” will 

be subtracted (increase the magnitude) from the predicted ∆H373 for methyl substituted 

ammonia trimethylboranes discussed in the Chapter 3.7. All BSSE corrected binding 

enthalpies predicted by all levels of theory are reported in Table 3.7. It must be 

remembered that although all binding enthalpies have been corrected for BSSE, the 

larger basis sets incorporate a negligible amount of BSSE; therefore, in practice, BSSE 

does not need to be corrected when larger basis sets are utilized.  

 

 

 

 

-33

-30

-27

-24

-21

-18

-15

50 100 150 200 250

Δ
H

29
8

Basis Functions

HF
B3LYP
MPW1K
MP2
QCISD
QCISD(T)

Figure 3.7. BSSE corrected H3B–NH3 binding enthalpies, ΔH298 (kcal/mol), vs. basis functions 
for 6-311++G(X,Y). The light blue and light orange areas represent Haaland’s estimation (-31.1 
± 2.0 kcal/mol) and Piela’s estimation (-25.7 ± 1.0 kcal/mol), respectively. Gurvich’s estimation 
(-37.5 ± 4.3 kcal/mol) is not shown on the figure. 
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 Basis 
Functions MPW1K B3LYP MP2 HF QCISD QCISD(T) 

6-31G(d) 42 -30.2 -25.7 -24.2 -17.1 -22.6 -23.3 
6-31G(d,p) 60 -29.8 -25.3 -23.9 -16.7 -22.1 -22.8 
6-31G(2d,p) 72 -29.2 -24.7 -24.0 -16.0 -21.9 -22.7 
6-31G(2d,2p) 90 -29.1 -24.6 -24.4 -15.9 -22.4 -23.2 
6-31G(3df,2p) 116 -28.6 -23.7 -25.3 -16.0 -23.6 -24.6 
6-31G(3df,pd) 134 -28.7 -23.8 -25.3 -16.1 -23.5 -24.5 
6-31G(3df,3pd) 170 -28.7 -23.8 -25.7 -16.0 -24.0 -25.0 
6-31G(3d2f,3p2d) 220 -28.9 -24.3 -26.2 -16.2 -24.5 -25.6 
        
6-31+G(d) 50 -29.0 -24.3 -22.7 -16.0 -21.3 -22.0 
6-31+G(d,p) 68 -28.5 -23.9 -22.4 -15.7 -20.8 -21.6 
6-31+G(2d,p) 80 -28.4 -23.8 -23.0 -15.4 -21.1 -21.9 
6-31+G(2d,2p) 98 -28.4 -23.8 -23.5 -15.4 -21.7 -22.6 
6-31+G(3df,2p) 124 -28.8 -24.1 -25.6 -16.1 -23.9 -24.9 
6-31+G(3df.pd) 142 -28.8 -24.1 -25.5 -16.2 -23.7 -24.7 
6-31+G(3df,3pd) 178 -28.9 -24.2 -26.0 -16.2 -24.3 -25.4 
6-31+G(3d2f,3p2d) 228 -29.0 -24.5 -26.4 -16.3 -24.7 -25.8 
        
6-31++G(d) 56 -29.2 -24.6 -22.9 -16.2 -21.6 -22.3 
6-31++G(d,p) 74 -28.7 -24.2 -22.6 -15.8 -21.0 -21.8 
6-31++G(2d,p) 86 -28.6 -24.1 -23.2 -15.6 -21.3 -22.2 
6-31++G(2d,2p) 104 -28.7 -24.1 -23.7 -15.6 -21.9 -22.8 
6-31++G(3df,2p) 130 -28.9 -24.3 -25.8 -16.3 -24.1 -25.1 
6-31++G(3df,pd) 148 -28.9 -24.3 -25.6 -16.3 -23.9 -24.9 
6-31++G(3df,3pd) 184 -29.0 -24.3 -26.2 -16.3 -24.4 -25.5 
6-31++G(3d2f,3p2d) 234 -29.1 -24.6 -26.6 -16.4 -24.8 -26.0 
        
6-311G(d) 54 -29.4 -25.2 -24.2 -16.5 -22.6 -23.4 
6-311G(d,p) 72 -29.0 -24.8 -24.5 -16.1 -22.6 -23.5 
6-311G(2d,p) 82 -29.4 -25.1 -25.3 -16.5 -23.4 -24.4 
6-311G(2d,2p) 100 -29.4 -25.0 -25.6 -16.6 -23.8 -24.8 
6-311G(3df,2p) 124 -29.5 -25.0 -26.8 -16.8 -25.0 -26.2 
6-311G(3df,pd) 136 -29.6 -25.1 -26.7 -16.8 -24.8 -25.9 
6-311G(3df,3pd) 172 -29.5 -24.9 -26.8 -16.7 -25.0 -26.2 
6-311G(3d2f,3p2d) 216 -29.4 -24.8 -26.8 -16.6 -25.0 -26.2 
        
6-311+G(d) 62 -28.8 -24.3 -23.3 -15.9 -21.9 -22.7 
6-311+G(d,p) 80 -28.3 -23.9 -23.7 -15.6 -21.9 -22.8 
6-311+G(2d,p) 90 -28.8 -24.4 -24.7 -16.0 -22.9 -23.9 
6-311+G(2d,2p) 108 -28.9 -24.4 -25.0 -16.1 -23.2 -24.2 
6-311+G(3df,2p) 132 -29.2 -24.7 -26.5 -16.5 -24.8 -25.9 
6-311+G(3df,pd) 144 -29.3 -24.8 -26.4 -16.6 -24.6 -25.7 
6-311+G(3df,3pd) 180 -29.3 -24.7 -26.6 -16.5 -24.9 -26.0 
6-311+G(3d2f,3p2d) 224 -29.2 -24.7 -26.7 -16.5 -24.9 -26.1 
        
6-311++G(d) 68 -28.8 -24.3 -23.4 -16.0 -21.9 -22.7 
6-311++G(d,p) 86 -28.3 -23.9 -23.7 -15.6 -21.9 -22.8 

Table 3.7. BSSE Corrected Binding Enthalpies for H3B–NH3 at 298 K.a 
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Table 3.7. (continued)        

6-311++G(2d,p) 96 -28.8 -24.4 -24.7 -16.0 -22.9 -23.9 
6-311++G(2d,2p) 114 -28.9 -24.4 -25.0 -16.1 -23.3 -24.3 
6-311++G(3df,2p) 138 -29.2 -24.7 -26.5 -16.5 -24.8 -25.9 
6-311++G(3df,pd) 150 -29.3 -24.8 -26.4 -16.6 -24.6 -25.7 
6-311++G(3df,3pd) 186 -29.3 -24.7 -26.6 -16.5 -24.9 -26.0 
6-311++G(3d2f,3p2d) 230 -29.2 -24.7 -26.7 -16.5 -24.9 -26.1 
        
cc-pVDZ 58 -29.5 -25.5 -24.5 -16.4 -22.5 -23.3 
cc-pVTZ 144 -29.5 -25.1 -26.8 -16.8 -25.0 -26.1 
cc-pVQZ 290 -29.5 -25.0 -27.6 -16.8 -25.8 -27.1 
cc-pV5Z 512 -29.4 -24.9 -27.9 -16.7 -26.1 -27.4 
        
aug-cc-pVDZ 100 -28.5 -24.4 -24.0 -15.7 -22.3 -23.1 
aug-cc-pVTZ 230 -29.3 -24.7 -26.9 -16.7 -25.1 -26.3 
aug-cc-pVQZ 436 -29.4 -24.8 -27.7 -16.7 -25.9 -27.2 
aug-cc-pV5Z 734 -29.4 -24.9 -28.0 -16.7  -26.1b      -27.5b 

a  All energies are in kcal/mol. 
b  SP energy evaluation on MP2/6-311++G(3df,2p) optimized structures.  

 

Our final prediction for the binding enthalpy at 298 K for ammonia borane is 

-27.5 ± 0.5 kcal/mol, using QCISD(T)/aug-cc-pV5Z with BSSE corrections on the 

MP2/6-311++G(3df,2p) optimized geomertry. However, BSSE is insignificant at such a 

large basis set (Table 3.5) and can be ignored. The error of 0.5 kcal/mol is estimated 

from the QCISD(T) mean absolute deviation (MAD) of four methyl substituted 

ammonia trimethylboranes analyzed and discussed in Chapter 3.7. The error of 0.5 

kcal/mol is not unreasonable, because high accuracy compound methods, such as 

Gaussian-4, report energetics with an average absolute deviation of 0.80 kcal/mol.258 

Our prediction is within the uncertainty of Piela’s -25.7 ± 2.0 kcal/mol,204 yet 

significantly weaker than Haaland’s estimate of -31.1 ± 1.0 kcal/mol,19 and Gurvich’s 

recommendation of -37.5 ± 4.3 kcal/mol.249  
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3.7 Accuracy Assessment of Binding Enthalpies for Methyl Substituted 

Ammonia Trimethylboranes  

 The binding enthalpies of four methyl substituted ammonia trimethylboranes, 

(CH3)3B–NH3, (CH)3B–NH2CH3, (CH)3B–NH(CH3)2, and (CH)3B–N(CH3)3 have been 

predicted with HF, B3LYP, MPW1K, MPW1B95, MPWB1K, M05-2X, M05, M06-2X, 

M06, MP2, QCISD, and QCISD(T) using the 6-311++G(3df,2p) basis set and compared 

with experiment.252 Although the MPW1B95, MPWB1K, M05-2X, M05, M06-2X,  and 

M06 density functionals were not systematically analyzed with regard to basis set size 

and BSSE, as completed for HF, B3LYP, MPW1K, MP2, QCISD, and QCISD(T), the 

convergence rate observed with other DFT methods, such as MPW1K and B3LYP, 

allow us to assume that the untested DFT methods will converge similarly at the 

6-311++G(3df,2p) basis set. Support for this assumption is discussed in Chapter 3.5. 

Consequently, all methods employ the 6-311++G(3df,2p) basis set to achieve a 

converged binding enthalpy. BSSE corrections as well as the appropriate convergence 

corrections for MP2 (1.5 kcal/mol), QCISD (1.3 kcal/mol), and QCISD(T) (1.6 

kcal/mol) have been applied. Table 3.8 displays the BSSE corrected binding enthalpies 

at the appropriate temperature.  
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 BH3-NH3 n = 0 n = 1 n = 2 n = 3 MAD 
HF24 -16.5 -2.0 -3.5 -1.2 3.6 15.2 
M05173 -23.2 -6.8 -9.0 -7.3 -2.4 9.4 
B3LYP24 -24.7 -6.8 -8.8 -7.0 -2.4 9.2 
MPW1K24 -29.2 -11.9 -14.2 -12.9 -9.1 4.4 
M06173 -25.3 -10.3 -14.0 -14.5 -12.5 3.9 
MPW1B95173 -30.0 -12.5 -15.4 -14.9 -12.5 3.1 
QCISD//MP224,a -26.1 -12.6 -13.8 -16.8 -14.7 2.3 
MPWB1K173 -30.3 -13.4 -16.4 -16.1 -13.9 2.3 
MP224,a -28.0 -15.6 -20.1 -21.4 -20.2 1.9 
M05-2X173 -25.9 -12.2 -16.3 -17.3 -16.1 1.6 
QCISD(T)//MP224,a -27.5 -14.4 -18.6 -19.5 -17.8 0.4 
M06-2X173 -27.8 -14.2 -18.4 -19.2 -17.8 0.3 
Experiment252 -27.5 ± 0.5b -13.8 ± 0.3 -17.6 ± 0.2 -19.3 ± 0.3 -17.6 ± 0.2  

 
a BSSE corrections and convergence corrections of 1.5, 1.3 and 1.6 kcal/mol for MP2, QCISD, and 
QCISD(T), respectively, have been applied. The temperatures are 298 K for BH3-NH3, and 373 K for 
(CH3)3B-N(CH3)nH3-n; n = 0 to 3. The 6-311++G(3df,2p) basis set has been employed with all chemical 
methods. Chemical methods in boldface indicate that the experimental trend was reproduced. 

b Best estimate predicted by QCISD(T)/aug-cc-pV5Z//MP2/6-311++G(3df,2p). 

 

All methods predict a stronger ammonia borane B–N coordinate covalent bond 

as compared to the trimethylboranes. However, beyond (CH)3B–NH3, experiment yields 

an increase in B–N coordinate covalent bond strength for each methyl group added to 

the nitrogen atom, until the third methyl group, in which the B–N coordinate covalent 

bond strength decreases to that of the one methyl case. Although DFT and HF are less 

affected by BSSE, only M06-2X, M06, and M05-2X are found to replicate the B–N 

coordinate covalent bond strengthening upon methyl substitution on the donor side (n = 

0 to 2) with subsequent weakening as the last methyl group is added (n = 3). The HF, 

M05, B3LYP, MPW1K, MPW1B95, and MPW1BK methods predict that the addition of 

the second methyl group will decrease the B–N coordinate covalent bond strength, 

Table 3.8. Predicted and Experimental Binding Enthalpies for Ammonia Borane and 
(CH3)3B−N(CH3)nH3-n (n = 0 to 3), ΔHT.a 
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which contradicts the experimental trend. Furthermore, HF, M05, B3LYP, MPW1K, 

MPW1B95, and MPW1BK are also unable to model the B–N binding enthalpies on a 

quantitative level as well, evident by MADs of 15.2, 9.4, 9.2, 4.4, 3.1, and 2.3 kcal/mol 

(Table 3.8), respectively. 

All post-SCF methods with the 6-311++G(3df,2p) basis set incorporating BSSE 

and convergence corrections reproduced the experimental trend of B–N coordinate 

covalent bond strength with MADs of 2.3, 1.9, and 0.4 kcal/mol for MP2, QCISD, and 

QCISD(T), respectively. The BSSE and convergence corrected QCISD(T) binding 

enthalpies are within the experimental uncertainty for trimethylboranes (n = 2 and 3), 

and slightly outside the experimental accuracy by 0.3 and 0.8 kcal/mol for n = 0 and 1, 

respectively. The data suggest that the triples correction to the wavefunction is critical, 

accounting for ca. 10 to 25% of the ∆H373 in order to align QCISD computations with 

experiment. Similar results regarding the importance of the triples contribution were 

reported by Pople and Head-Gordon, where electronic energies predicted by QCISD(T) 

and QCISD differed from FCI results by 4.3 and 1.3 kcal/mol respectively.132  

M06 yields the highest MAD (3.9 kcal/mol) out of the functionals able to 

reproduce the experimental trend, and consistently underestimates the strength of the 

B−N coordinate covalent bond. M05-2X yields a comparable MAD to MP2 at a much 

lower computational cost. Formally, MP2 scales as N5, while DFT scales as N3 (N = 

number of basis functions).125 M05-2X and MP2 MADs are 1.6 and 1.9 kcal/mol, 

respectively; however, MP2 tends to overestimate the strength of the coordinate covalent 

bond, while M05-2X underestimates it. M06-2X is comparable to QCISD(T), yielding a 

MAD of 0.3 kcal/mol, 0.1 kcal/mol lower than that of QCISD(T)’s MAD. Consequently, 
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M06-2X is a practical and efficient functional suitable for modeling the energetic 

character of the B–N coordinate covalent bond. Comparing resources, QCISD(T) scales 

as N7 compared to DFT methods which grow as N3.125 Furthermore, M06-2X does not 

require a convergence correction for the basis set limit, a requirement for QCISD(T) to 

realign predicted results with experiment, due to the slow convergence of predicted post 

SCF results.  

 

3.7.1 Possible Origins of M06-2X’s Success 

M06-2X, M06, and M05-2X are the only DFT methods found in this study that 

reproduce the experimental trend in binding enthalpies. Furthermore, only M06-2X and 

M05-2X yield comparable MADs to QCISD(T) and MP2, respectively. The Minnesota 

functionals were designed with a balance of kinetic energy density between the 

exchange and correlation functionals. In contrast, MPWB1K and MPW1B95 incorporate 

kinetic energy density within the correlation functional only, while B3LYP and MPW1K 

consider it in neither the exchange nor the correlation functionals. However, this cannot 

be the only reason for the relative quantitative success of M06-2X and M05-2X, since 

M05 also incorporates kinetic energy density in both the exchange and correlation 

functionals and is unable to model the experimental trend. The two main differences 

between the successful functionals (M06-2X and M05-2X) and M05 involves nearly 

double the amount of Hartree–Fock exchange (M06-2X and M05-2X) and a different 

formulation of the functional form (M06-2X). The linear combination of the M05 class 

functional and VSXC159, 182 (yielding the M06 style) allows both M06 and M06-2X to 
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model the experimental binding enthalpy trend accurately; however, doubling the 

Hartree–Fock exchange allows a more quantitative assessment of the B–N coordinate 

covalent bond by M06-2X compared to M06. The empirical nature of the functional 

forms associated with M06-2X, M06, M05-2X, and M05, possessing 33, 36, 23, and 23 

optimized parameters, respectively, may contribute to the high accuracy as well. 

However, M05 possesses the same number of optimized parameters as M05-2X and is 

unable to account for the experimental trend. In contrast, M05-2X is able to reproduce 

the experimental trend by just doubling the amount of Hartree-Fock exchange, but with 

a higher MAD compared to M06-2X. Consequently, the balance of kinetic energy 

density in both the exchange and correlation functionals, the higher amount of 

Hartree-Fock exchange, and the functional forms of the exchange and correlation 

functionals within the M06 class of functionals are critical in order to model a balance of 

short and medium range exchange-correlation interactions that exist within the sterically 

hindered B–N coordinate covalent bonded adducts.  

 

3.8 Significance of Thermal Corrections 

The ability of theory to predict accurate B–N coordinate covalent binding 

enthalpies has been shown to depend upon the method, basis set size, and BSSE. 

However, thermal corrections can also make important contributions to the predicted 

binding energetics. For example, the thermal adjustments with BSSE corrections 

associated with the highest level of theory employed, 

QCISD(T)/6-311++G(3df,2p)//MP2/6-311++G(3df,2p), are listed in Table 3.9. 
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As expected, thermal factors are found to influence the predicted binding 

energetics significantly, yet are not always applied for comparison with experiment 

(Table 3.1). BSSE alone can account for an absolute difference from the binding 

electronic energy by up to 3.6 kcal/mol, BSSE and zero-point energy corrections up to 

7.9 kcal/mol, and BSSE and enthalpic (thermal) corrections up to 6.9 kcal/mol. This 

does not mean that the predicted binding energetics are necessarily incorrect; however, 

care must be taken for valid comparison with experiment. For example, the predicted 

∆Eelec for H3B–NH3 is -31.5 kcal/mol using 

QCISD(T)/6-311++G(3df,2p)//MP2/6-311++G(3df,2p), which is in fortuitous 

agreement with Haaland’s estimation of -31.1 ± 1.0 kcal/mol. Haaland’s estimation is 

not a ∆Eelec value, rather an extrapolation from ∆H298 values. When the appropriate 

thermal corrections are applied to the QCISD(T) prediction, ∆H298 is predicted to be 

-25.9 kcal/mol, which is 5.2 kcal/mol different from Haaland’s estimation. Thus, without 

a systematic study, it is possible for theory and experimental values to match 

accidentally; however, this could be avoided when proper corrections are applied and 

comparisons are made. Consequently, the methyl substituted ammonia trimethylboranes 

require enthalpic adjustments at T = 373 for accurate experimental comparison, as 

performed in Chapter 3.7.  
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 Average 
Difference H3B–NH3

b n = 0b n = 1b n = 2b n = 3b 

∆Eelec 0.0 -31.5  -18.1  -22.6  -24.1  -23.1  
∆Eelec 

c 2.7 -29.9 (1.7) -15.7 (2.4) -19.9 (2.7) -21.0 (3.1) -19.5 (3.6) 
∆E0

c
   7.2 -24.3 (7.3) -11.2 (6.9) -15.9 (6.7) -17.0 (7.1) -15.2 (7.9) 

∆HT 
c 5.9 -25.9 (5.6) -12.8 (5.3) -17.0 (5.6) -17.9 (6.2) -16.2 (6.9) 

 
a Relative values to the predicted binding electronic energy, ΔEelec, are given in parentheses. The 
convergence correction of 1.6 kcal/mol for QCISD(T) is not applied. The 6-311++G(3df,2p) basis set has 
been employed. All energies are in kcal/mol. 

b T = 298 K for BH3-NH3 and T = 373 K for (CH3)3B–N(CH3)nH3-n; n = 0 to 3. Geometries optimized with 
MP2/6-311++G(3df,2p) 

c BSSE corrected. 

  

When a lower level of theory is utilized, such as with MP2/6-311++G(d,p), the 

corrections are larger (Table 3.10) due to BSSE. Since each level of theory is corrected 

by the same scaled frequencies (refer to Chapter 2.12 and 3.2), BSSE is the only variable 

in this study. However, the binding electronic energy can change up to 8.2 kcal/mol, 

BSSE and ZPE corrections up to 12.4 kcal/mol, and BSSE and enthalpic (thermal) 

corrections up to 11.4 kcal/mol. The results demonstrate the importance of thermal 

corrections and BSSE.  

Table 3.9. Factors Influencing QCISD(T) Predicted Binding Energetics for H3B–NH3 and 
(CH3)3B–N(CH3)nH3-n; n = 0-3.a 
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 Average 
Difference H3B–NH3

b n = 0b n = 1b n = 2b n = 3b 

∆Eelec 0.0 -32.0  -19.9  -24.4  -26.1  -25.7  
∆Eelec 

c 6.4 -27.6 (4.3) -13.9 (6.0) -18.0 (6.4) -19.0 (7.1) -17.5 (8.2) 
∆E0

c
   11.0 -21.1 (10.8)   -9.4 (10.5) -14.0 (10.4) -14.9 (11.1) -13.3 (12.4) 

∆HT 
c 9.6 -23.7 (8.3) -11.0 (8.9) -15.1 (9.3) -15.9 (10.2) -14.3 (11.4) 

 
a Relative values to the predicted binding electronic energy, ΔEelec, are given in parentheses. The 
6-311++G(d,p) basis set has been employed. All energies are in kcal/mol. 

b T = 298 K for BH3-NH3 and T = 373 K for (CH3)3B–N(CH3)nH3-n; n = 0 to 3.  
c BSSE corrected. 
 

 

It has been previously recommended that the MP2 method be employed with at 

least a triple-zeta split-valence basis set to model the B–N coordinate covalent bond 

accurately.244, 245 Evaluation of the methyl substituted ammonia trimethylboranes 

utilizing MP2/6-311++G(d,p) reveals that BSSE ranges between 4.3 to 8.2 kcal/mol, as 

shown in Table 3.10. The comparison with experiment should include thermal and 

BSSE corrections. For example, the MP2/6-311++G(d,p) BSSE uncorrected binding 

energies employing only ZPE corrections for (CH3)3B–N(CH3)nH3-n, where n is 0, 1, 2 

and 3, are -15.4, -20.4, -22.1, -21.4 kcal/mol (MAD of 2.8 kcal/mol),245 respectively. 

The reported values are significantly different than the MP2/6-311++G(d,p) predicted 

binding enthalpies of -11.0, -15.1, -15.9, -14.3 kcal/mol (MAD of 3.0 kcal/mol), 

respectively, which are adjusted for thermal factors (373 K) and BSSE. 

When a DFT method, such as M06-2X, is utilized in conjunction with 

6-311++G(3df,2p) the corrections are smaller (Table 3.11), since there is less BSSE. 

However, the binding electronic energy can change up to 0.6 kcal/mol, BSSE and ZPE 

Table 3.10. Factors Influencing MP2 Predicted Binding Energetics for H3B–NH3 and 
(CH3)3B-N(CH3)nH3-n; n = 0-3.a  
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corrections up to 4.8 kcal/mol, and BSSE and enthalpic (thermal) corrections up to 3.9 

kcal/mol. The results demonstrate the importance of thermal corrections and BSSE. 

 

 Average 
Difference H3B–NH3

b n = 0b n = 1b n = 2b n = 3b 

∆Eelec 0.0 -32.0 -17.4 -21.7 -22.8 -21.7 
∆Eelec 

c 0.4 -31.7 (0.3) -17.1 (0.3) -21.3 (0.4) -22.3 (0.5) -21.1 (0.6) 
∆E0

c
   4.9 -26.1 (5.9) -12.6 (4.8) -17.3 (4.4) -18.3 (4.5) -16.9 (4.8) 

∆HT 
c 3.6 -27.8 (4.2) -14.2 (3.2) -18.4 (3.3) -19.2 (3.6) -17.8 (3.9) 

 
a Relative values to the predicted binding electronic energy, ΔEelec, are given in parentheses. The 6-
311++G(3df.2p) basis set has been employed. All energies are in kcal/mol. 

b T = 298 K for BH3-NH3 and T = 373 K for (CH3)3B–N(CH3)nH3-n; n = 0 to 3.  
c BSSE corrected. 

 

There are three key conclusions. First, the electronic energy should be adjusted 

with the necessary thermodynamic corrections at the appropriate temperature in order to 

make proper comparisons with experiment. Second, the 6-311++G(3df,2p) basis set 

should be utilized to ensure a negligible amount of BSSE and a converged binding 

enthalpy. Lastly, BSSE must be corrected when small basis sets are utilized. It is 

recommended that if accurate binding enthalpies are desired on a quantitative level 

(MAD of 0.3 kcal/mol) then M06-2X/6-311++G(3df,2p) should be utilized, 

incorporating BSSE corrections. This level of theory may be utilized in order to model 

the structural and energetic properties of B–N coordinate covalent bonds.  

 

Table 3.11. Factors Influencing M06-2X Predicted Binding Energetics for for H3B–NH3 and 
(CH3)3B–N(CH3)nH3-n; n = 0-3.a 
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3.9 Chemical Descriptors of the B–N Coordinate Covalent Bond 

In order to probe the electronic nature of the coordinate covalent bond, NBO and 

NRT analysis has been employed to provide the chemical descriptors (atomic charges, 

bond orders, bond covalency, bond ionicity, and charge-transfer frustration) of H3B-NH3 

and the four methyl substituted ammonia trimethylboranes. 

QCISD(T)/6-311++G(3df,2p) with BSSE and convergence corrections has been shown 

to predict accurate binding enthalpies for substituted trimethyl boranes. However, the 

electronic wavefunction predicted by QCISD(T) cannot be analyzed by NBO, since the 

requisite density matrix is not available. M06-2X provides accuracies comparable to 

QCISD(T); however, the NBO analysis was not available within NWChem 5.1 at the 

time of this investigation. Consequently, QCISD(T), M06-2X, and M06 are omitted 

from the NBO and NRT discussion.  

To uncover the “physical” reasons for the wide variability in predicted binding 

enthalpies by different levels of theory, NBO and NRT analysis has been performed 

with HF, B3LYP, MPW1K, MPWB1K, MPW1B95, M05, M05-2X and MP2 utilizing 

the 6-311++G(3df,2p) basis set on the corresponding optimized structures to explore the 

relationship between  the variation in binding enthalpies and the error in predicted 

charges, bond orders, covalencies, and ionicities. Due to its proven semi-quantitative 

results, MP2/6-311++G(3df,2p) predicted charges, bond orders, covalencies, ionicities, 

and binding enthalpies with BSSE and convergence corrections are taken as the 

reference or “exact” value for percent error calculations. M05-2X provides comparable 

accuracies to that of MP2 (Table 3.8); however, due to the high empirical nature of the 
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M05-2X exchange-correlation functional, MP2 data is considered to be the reference 

rather than M05-2X.  

 

3.9.1 Charge Transfer Frustration 

 From the Lewis perspective, the formation of a coordinate covalent bond within 

H3B–NH3 occurs when two electrons are donated by the nitrogen atom and accepted by 

boron.221 This is an oversimplification of the coordinate covalent bond concept, where 

the strength of the donor does not necessarily match that of the acceptor. A mismatch in 

donor and acceptor strength endows the termini with a reduction or build-up of electron 

density, which we refer to as “frustration.” The frustrated termini utilize their immediate 

substituents to satisfy further electronic needs and provide a unique character of 

chemical bonding. 

Frustration is quantified by examining the differences in charges between the 

bonded and separated states. The atomic termini of the coordinate covalent bond 

experience a change in atomic charge [  and ] compared to their separated 

states [ and ] by approximately equal but opposite amounts, as shown by 

Equation 3.2.221 

   

 

3.2  
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In other words, the donation (loss) of electron density from the donor ( ) will be 

approximately equal in magnitude to the electron density accepted (gained) by the 

acceptor ( ). Consequently, the extent in which equals is used to gauge 

the coordinate covalent character of a chemical bond. If  equals , then the 

B–N bond is considered fully coordinate covalent, indicating no offset from equality, 

where a perfect match between donating and accepting electron density is achieved. If 

does not equal , then the difference represents the charge-transfer 

frustration, , or mismatch of donor and acceptor strength, between the two atoms 

(Equation 3.3).  

   3.3  

For example, considering H3B–NH3 and isolated species, MP2/6-311++G(3df,2p) 

predicts  and  to be 0.230 and 0.503 e, respectively, resulting in a  of 

0.273 e, which is considered to have relatively weak coordinate covalent character in 

comparison to F3B–NH3, where a  of 0.000 e is computed at the same level of 

theory. This is in good agreement with the B3LYP/6-311++G(d,p) predicted value of -

0.013 e by Weinhold.221  This suggests that BF3 is more compatible with NH3 than BH3, 

which agrees with Pearson’s Hard Soft Acid Base (HSAB) principles, because BF3 and 

NH3 are both hard and BH3 is soft.57-59 

In addition, the B–N bond strength is stronger in H3B–NH3 as compared to 

F3B-NH3.241, 246 Therefore, the relationship between the trend of binding enthalpies from 

methyl substituted ammonia boranes and the extent of predicted charge-transfer 



 

118 
 

frustration is of interest in characterizing the coordinate covalent bond. Figure 3.8 

displays the BSSE and convergence corrected MP2/6-311++G(3df,2p) predicted binding 

enthalpies vs.   A strong linear correlation (R2 = 0.91) is found suggesting that as 

the coordinate covalent character of the B–N bond increases, its corresponding strength 

decreases. 

 

 

 

Figure 3.9 shows the percent error in the corrected predicted binding enthalpies 

for H3B–NH3 and four trimethylboranes utilizing HF, B3LYP, MPW1K, MPWB1K, 

R² = 0.91
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Figure 3.8. MP2/6-311++G(3df,2p) predicted binding enthalpies (BSSE and convergence 
corrections included) for (CH3)3B–N(CH3)nH3-n (n = 0-3) and ammonia borane vs. the charge-
transfer frustration, QCTF = -(ΔQB + ΔQN). Labels near each data point refer to n, or number of 
methyl substitutions. P refers to the prototype coordinate covalent, H3B–NH3. T = 298 K for P 
and T = 373 when n = 0-3. 
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MPW1B95, M05, M05-2X and MP2 employing the 6-311++G(3df,2p) basis set versus 

the percent error in charge-transfer frustration between boron and nitrogen for each 

corresponding method. A linear correlation (R2 = 0.79) exists, which suggests that 

modeling the B–N coordinate covalent bond character accurately is critical to achieving 

accurate binding enthalpies. Errors as large as 118% occur in the predicted binding 

enthalpy, if    is underestimated by 28%, as predicted for (CH)3B–N(CH3)3 by HF. 

All , percent error in , and percent error in binding enthalpies are reported in 

Table 3.12, 3.13, and 3.14 respectively. 
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Figure 3.9. Percent error in the predicted binding enthalpy versus the percent error in the 
predicted charge-transfer frustration, QCTF = -(ΔQB + ΔQN) for HF, B3LYP, MPW1K, MPWB1K, 
MPW1B95, M05, and M05-2X utilizing the 6-311++G(3df,2p) basis set on the corresponding 
optimized H3B–NH3 and (CH3)3B–N(CH3)nH3-n (n = 0-3) structures.  
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 H3B–NH3
 n = 0 n = 1 n = 2 n = 3 

HF 0.232 0.173 0.204 0.208 0.173 
B3LYP 0.267 0.166 0.200 0.211 0.188 
M05 0.274 0.180 0.210 0.213 0.170 
MPW1K 0.281 0.196 0.226 0.237 0.216 
MPW1B95 0.288 0.187 0.217 0.229 0.205 
MPWB1K 0.286 0.194 0.223 0.236 0.210 
M05-2X 0.278 0.176 0.211 0.227 0.215 
MP2 0.273 0.202 0.234 0.253 0.241 

a QCTF = -(∆QB + ∆QN) in electrons. 
b All methods utilize the 6-311++G(3df,2p) basis set. 

 

 H3B–NH3
 n = 0 n = 1 n = 2 n = 3 

HF -15.2 -14.3 -13.1 -17.6 -28.2 
B3LYP   -2.3 -17.7 -14.6 -16.7 -22.0 
M05 0.2 -10.8 -10.4 -15.7 -29.4 
MPW1K 2.9 -2.9 -3.4 -6.3 -10.4 
MPW1B95 5.3 -7.1 -7.2 -9.5 -15.2 
MPWB1K 4.6 -3.8 -4.7 -6.8 -12.9 
M05-2X 1.8 -12.6 -9.9 -10.2 -11.1 
MP2 0.0 0.0 0.0 0.0 0.0 

a MP2/6-311++G(3df,2p) data is taken as the exact data for percent error calculations.  
b The sign is maintained to determine if the error corresponds to an over or underestimation. 

 

 H3B–NH3
 n = 0 n = 1 n = 2 n = 3 

HF -40.9 -86.9 -82.7 -94.3 -117.9 
B3LYP -11.9 -56.5 -56.3 -67.2 -88.3 
M05 -17.0 -56.1 -55.1 -66.1 -88.0 
MPW1K 4.5 -23.7 -29.6 -39.7 -55.0 
MPW1B95 7.9 -17.9 -21.7 -28.4 -35.7 
MPWB1K 8.9 -12.6 -17.1 -23.4 -28.8 
M05-2X -7.6 -21.5 -19.0 -19.2 -20.3 
MP2 0.0 0.0 0.0 0.0 0.0 

a MP2/6-311++G(3df,2p) data is taken as the exact data for percent error calculations.  
b The sign is maintained to determine if the error corresponds to an over or underestimation. 

Table 3.12. Charge Transfer Frustration for H3B–NH3 and (CH3)3B–N(CH3)nH3-n; n = 0-3.a, b 

Table 3.13. Percent Error in Charge Transfer Frustration for H3B–NH3 and (CH3)3B–N(CH3)nH3-n; 
n = 0-3.a, b 

Table 3.14. Percent Error in Binding Enthalpy for H3B–NH3 and (CH3)3B–N(CH3)nH3-n; n = 0-3.a, b 
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The charge-transfer frustration predicted by MP2/6-311++G(3df,2p) for 

BH3-NH3, (CH3)3B–NH3, (CH)3B–NH2CH3, (CH)3B–NH(CH3)2, and (CH)3B–N(CH3)3 

is 0.273, 0.202, 0.234, 0.253, and 0.241 e, respectively. The QCTF  trend across the 

coordinate covalent bond with methyl substitution at either the donor or acceptor is 

rationalized by the electronegativities for nitrogen, carbon, hydrogen and boron, which 

are 3.0, 2.5, 2.1, and 2.0, respectively.7 Methyl substitution of boron(comparing 

H3B-NH3 and (CH3)3B–NH3)) withdraws electron density from boron, due to the 

difference in electronegativities, resulting in a decrease of charge-transfer frustration and 

weakening of the B–N bond, as observed by experiment.252 For the donor, increasing n 

within (CH3)3B–N(CH3)nH3-n results in more donation of electron density to nitrogen, 

allowing nitrogen to become a stronger Lewis base. Thus, the charge-transfer frustration 

across the B–N bond increases from n = 0 to n = 2 yielding a stronger B–N bond, except 

for when n = 3. Steric congestion cannot be ignored in the methyl substituted adduct 

when n = 3; therefore, a balance of sterics and electronics must be considered, as 

discussed in Chapter 3.10.  

 

3.9.2 Bond Covalency and Ionicity 

Although no strong correlation exists between bond order and binding enthalpy 

(R2 = 0.30, Figure 3.10) moderate correlations were found between the errors in binding 

enthalpy and both the errors in percent bond ionicity and percent bond covalency. Table 

3.15 through Table 3.20 report the B–N bond order, percent bond covalency, percent 

bond ionicity, and percent error of each descriptor with MP2 data taken as the reference.  
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Figure 3.11 displays a liner correlation (R2 = 0.70) between the percent error in binding 

enthalpy versus percent error in percent bond covalency. Large errors in the predicted 

binding enthalpy result from moderate errors in the percent bond covalency. For 

example, HF underestimates the percent bond covalency of the B–N coordinate covalent 

bond within (CH3)3B–N(CH3)3 by 16.3%, resulting in a predicted binding enthalpy of 

∆H373 = 3.6 kcal/mol, a 118% underestimation of the BSSE and convergence corrected 

MP2 predicted value of -20.2 kcal/mol. DFT and HF underestimate the binding enthalpy 

of the B–N bond for all systems, except for H3B–NH3, as predicted with MPW1K, 

MPWB1K and MPW1B95. The data support that the bond covalency must be predicted 

correctly in order to model an accurate binding enthalpy. 
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 H3B–NH3
 n = 0 n = 1 n = 2 n = 3 

HF 1.003 0.973 0.967 0.955 0.940 
B3LYP 1.012 0.972 0.965 0.951 0.932 
M05 1.011 0.967 0.961 0.944 0.925 
MPW1K 1.012 0.974 0.966 0.954 0.934 
MPW1B95 1.013 0.974 0.965 0.952 0.932 
MPWB1K 1.012 0.974 0.962 0.953 0.934 
M05-2X 1.007 0.971 0.965 0.952 0.934 
MP2 1.026 0.964 0.930 0.911 0.897 

 

  

R² = 0.30
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Figure 3.10. Percent error in the predicted binding enthalpy vs. the percent error in the B–N 
bond order for HF, B3LYP, MPW1K, MPWB1K, MPW1B95, M05, M05-2X and MP2 utilizing the 
6-311++G(3df,2p) basis set on the corresponding optimized H3B–NH3 and (CH3)3B–N(CH3)nH3-n 
(n = 0-3) structures. 

Table 3.15. B–N Bond Order for H3B–NH3 and (CH3)3B–N(CH3)nH3-n; n = 0-3 
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 H3B–NH3
 n = 0 n = 1 n = 2 n = 3 

HF -2.2 0.9 3.9 4.8 4.7 
B3LYP -1.3 0.8 3.8 4.4 3.9 
M05 -1.4 0.3 3.3 3.6 3.1 
MPW1K -1.4 1.0 3.9 4.7 4.2 
MPW1B95 -1.3 1.1 3.8 4.5 3.9 
MPWB1K -1.4 1.0 3.4 4.6 4.2 
M05-2X -1.9 0.7 3.7 4.4 4.1 
MP2 0.0 0.0 0.0 0.0 0.0 

a MP2/6-311++G(3df,2p) data is taken as the exact data for percent error calculations.  
b The sign is maintained to determine if the error corresponds to an over or underestimation. 

 

 

 H3B–NH3
 n = 0 n = 1 n = 2 n = 3 

HF 33.8 30.3 29.5 27.4 24.2 
B3LYP 36.8 34.3 33.2 30.8 28.0 
M05 35.4 32.9 31.5 28.8 24.7 
MPW1K 37.6 35.2 33.8 31.5 28.8 
MPW1B95 37.5 35.4 33.9 31.6 28.8 
MPWB1K 37.3 35.1 33.8 31.5 28.6 
M05-2X 36.6 34.2 33.2 31.3 28.7 
MP2 35.4 33.5 33.4 31.7 28.9 

 

 H3B–NH3
 n = 0 n = 1 n = 2 n = 3 

HF -4.5 -9.6 -11.7 -13.5 -16.3 
B3LYP 4.2 2.3 -0.8 -2.7 -3.2 
M05 0.0 -1.8 -5.8 -9.2 -14.4 
MPW1K 6.2 4.9 1.2 -0.5 -0.3 
MPW1B95 6.1 5.6 1.6 -0.1 -0.4 
MPWB1K 5.6 4.7 1.2 -0.6 -1.1 
M05-2X 3.6 1.9 -0.6 -1.4 -0.6 
MP2 0.0 0.0 0.0 0.0 0.0 

a MP2/6-311++G(3df,2p) data is taken as the exact data for percent error calculations.  
b The sign is maintained to determine if the error corresponds to an over or underestimation. 

 

Table 3.16. Percent Error in B–N Bond Order for H3B–NH3 and (CH3)3B–N(CH3)nH3-n; n = 0-3.a, b 

Table 3.17. Percent  B–N Bond  Covalency for H3B–NH3 and  (CH3)3B–N(CH3)nH3-n;  n = 0-3 

Table 3.18. Percent Error in Percent B–N Bond Covalency for H3B–NH3 and 
(CH3)3B-N(CH3)nH3-n; n = 0-3.a, b 
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 H3B–NH3
 n = 0 n = 1 n = 2 n = 3 

HF 66.2 69.7 70.5 72.6 75.8 
B3LYP 63.2 65.7 66.8 69.1 72.0 
M05 64.6 67.1 68.5 71.2 75.3 
MPW1K 62.4 64.8 66.2 68.5 71.2 
MPW1B95 62.5 64.6 66.1 68.3 71.2 
MPWB1K 62.7 64.9 66.2 68.5 71.4 
M05-2X 63.4 65.8 66.8 68.7 71.3 
MP2 64.6 66.5 66.6 68.3 71.1 

 

 

 H3B–NH3
 n = 0 n = 1 n = 2 n = 3 

HF 2.5 4.8 5.8 6.3 6.6 
B3LYP -2.3 -1.1 0.4 1.2 1.3 
M05 0.0 0.9 2.9 4.3 5.9 
MPW1K -3.4 -2.5 -0.6 0.2 0.1 
MPW1B95 -3.3 -2.8 -0.8 0.1 0.2 
MPWB1K -3.0 -2.4 -0.6 0.3 0.5 
M05-2X -2.0 -0.9 0.3 0.7 0.3 
MP2 0.0 0.0 0.0 0.0 0.0 

a MP2/6-311++G(3df,2p) data is taken as the exact data for percent error calculations.  
b The sign is maintained to determine if the error corresponds to an over or underestimation. 

 
 

 

Table 3.19. Percent B–N Bond Ionicity for H3B–NH3 and (CH3)3B–N(CH3)nH3-n; n = 0-3.  

Table 3.20. Percent Error in Percent B–N Bond Ionicity for H3B–NH3 and (CH3)3B–N(CH3)nH3-n; 
n = 0-3.a, b 
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MP2/6-311++G(3df,2p) predicts the percent bond covalency for the coordinate 

covalent bond between boron and nitrogen to decrease with increasing methyl 

substitutions within H3B–NH3, (CH3)3B–NH3, (CH)3B–NH2CH3, (CH)3B–NH(CH3)2, 

and (CH)3B–N(CH3)3 with values of 35.4, 33.5, 33.4, 31.7, 28.9%, respectively. The 

data suggest that the covalency must be modeled correctly in order to predict an accurate 

binding enthalpy; however, it does not explain the trend in predicted or observed binding 

enthalpies, which is in agreement with Jonas and coworkers.241 Jonas and coworkers 

found that strong coordinate covalent bonds may be primarily bound by either covalent 

or ionic interactions, and that no correlation exists between the strength of the bond and 

R² = 0.70
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Figure 3.11. Percent error in the predicted binding enthalpy vs. the percent error in the percent 
B-N bond covalency for HF, B3LYP, MPW1K, MPWB1K, MPW1B95, M05, M05-2X and MP2 
utilizing the 6-311++G(3df,2p) basis set on the corresponding optimized H3B–NH3 and 
(CH3)3B-N(CH3)nH3-n (n = 0-3) structures. The equation of the line that fits the data is y = 4.87x –
28.6. 
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the degree of covalency or ionicity.241 A balance of electronics and steric factors must be 

considered in such crowded systems, as discussed in Chapter 3.10.  

A correlation (R2 = 0.69) exists between errors in percent bond ionicity and 

binding enthalpy, as shown in Figure 3.12. HF overestimates the percent bond ionicity, 

which results in weaker predicted binding enthalpies compared to MP2. In addition, HF 

and DFT result in weaker binding enthalpies, except for H3B–NH3, as predicted by 

MPW1K, MPWB1K, and MPW1B95. As with the error in covalency, moderate errors in 

ionicity yield large errors in the binding enthalpy. For example, an error of 6.7% in 

percent ionicity results in a 118% error in binding enthalpy. The data support that the 

percent bond ionicity must be predicted correctly in order to predict an accurate binding 

enthalpy. MP2/6-311++G(3df,2p) predicts the percent bond ionicity for the coordinate 

covalent bond between boron and nitrogen to increase with increasing methyl 

substitutions within H3B–NH3, (CH3)3B–NH3, (CH)3B–NH2CH3, (CH)3B–NH(CH3)2, 

and (CH)3B–N(CH3)3, with percentages of 64.6, 66.5, 66.6, 68.3, 71.1%, respectively. 

The ionicity increases by approximately the same amount as the decrease in covalency 

with methyl substitution. As discussed with the covalency, the extent to which the bond 

is ionic does not explain the binding enthalpy trend. The percent error in binding 

enthalpy is more sensitive to the percent error in ionic character over covalent character 

as indicated by the magnitude of the slope of the fitted line displayed in Figure 3.11 and 

Figure 3.12 (10.3 vs. 4.9). The data suggest that the ionic nature of the wavefunction is 

more difficult to model than the covalent character.  
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A few points may be summarized. First, as the charge-transfer frustration 

approaches zero, the donor and acceptor are perfect matches and thus the bond becomes 

purely coordinate covalent. Second, the ammonia borane coordinate covalent bond is 

64.6 % ionic and 35.4% covalent. Finally, coordinate covalent bond descriptors such as 

the charge-transfer frustration, bond covalency and ionicity are important factors that 

must be modeled accurately in order to achieve results comparable with experiment. 

Consequently, the correct modeling of the coordinate covalent bond descriptors allows 

MP2/6-311++G(3df,2p) to predict accurately the binding enthalpy trend of the 

R² = 0.69
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Figure 3.12. Percent error in the predicted binding enthalpy vs. the percent error in the percent 
bond ionicity for HF, B3LYP, MPW1K, MPWB1K, MPW1B95, M05, and M05-2X utilizing the 6-
311++G(3df,2p) basis set on the corresponding optimized H3B–NH3 and (CH3)3B–N(CH3)nH3-n (n 
= 0-3) structures. The equation of the line that fits the data is y = -10.3x – 29.6. 
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(CH3)3B-N(CH3)nH3-n (n = 0-3) adducts. If the coordinate covalent bond descriptors are 

not modeled accurately, errors in predicted binding energetics can be as large as 118%.   

 

3.10 A Balance of Steric and Electronic Effects Accounts for the Binding 

Enthalpy Trend within (CH3)3B−N(CH3)nH3-n 

The charge-transfer frustration at equilibrium is crucial to characterizing the 

nature of the coordinate covalent bond, and subsequently predicting accurate binding 

enthalpies. However, from the previous discussion, the predicted coordinate covalent 

bond descriptors do not fully explain the reported experimental trend for n = 2 to n = 3. 

The MP2/6-311++G(3df,2p) predicted binding enthalpies (with BSSE and convergence 

corrections) vs.  displays a strong linear correlation (R2 = 0.91), implying the nature 

of the coordinate covalent bond has consequences on the binding enthalpy. However, the 

reason for why the binding enthalpy decreases and the coordinate covalent character has 

increased upon methyl substitution (n = 2 to n = 3) is not revealed by analyzing the 

coordinate covalent bond descriptors. A balance of sterics and electronics must be 

considered.  

 In an analysis of the predicted geometries, it is found that the atomic termini of 

the coordinate covalent bond allow for the substituted groups to relieve steric strain by 

the bending of angles (Figure 3.13). The acceptor’s tetrahedral geometry is rigid 

compared to the donor’s. The predicted acceptor XBN angles (X = H or C) vary only by 

3.1°, whereas the donor XNB angles vary by 14.2° depending upon the number of 
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methyl substitutions. As methyl groups are added to the donor, steric congestion is 

relieved by expanding the CNB angles with a corresponding angle compression of 

HNB for n = 1 and n = 2. The donor group appears to “rotate” to relieve the steric 

congestion away from the three methyl groups on the acceptor. For example, when one 

methyl is added (n = 1), the CNB angle becomes 117.2° (6.4° greater than HNB when 

n = 0), while the HNB angles compress to 106.7° (4.1° less than HNB when n = 0). 

With the combined relief of steric strain and the donation of electron density by the 

methyl group, the computed B–N bond is strengthened and shortens by 0.005 Å. The 

result is an experimentally observed energy lowering of 3.8 kcal/mol, compared to when 

n = 0. When two methyl groups are added, the CNB angles become 114.0° (3.2° greater 

than HNB when n = 0) with a corresponding HNB angle of 103.0° (7.8° less than 

HNB when n = 0). There is less rotation of the methyl groups for steric relief; 

however, the two methyl groups donate electron density to nitrogen, decreasing the 

coordinate covalent character of the B–N bond. Consequently, the combined effect is a 

1.7 kcal/mol stabilization observed experimentally. Finally, addition of the last methyl 

group cannot utilize the rotation mechanism for stabilization due to the symmetric nature 

of the substitution. When n = 3 the CNB angle is found to be nearly tetrahedral at 

110.9°, contracting by only 0.1° when n = 0. Despite the electron donation by three 

methyl groups, the lack of steric relief by rotation prevents potential stabilization. 

Consequently, a destabilization of 3.4 kcal/mol occurs with a B–N bond elongation of 

0.027 Å, as compared to when n = 0, decreasing the charge-transfer frustration and 

subsequently increasing the coordinate covalent character. The B–N destabilization and 

corresponding  decrease is observed within Figure 3.8, correlating well with the 
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remaining ammonia borane data. In summary, the data suggest that methyl substitution 

stabilizes the B–N bond by decreasing the coordinate covalent (and thus covalent) 

nature. The bond is further stabilized as a result of relieving steric congestion by 

geometric distortion. Subsequent methyl substitutions become increasingly crowded and 

difficult to accommodate despite the stabilization offered by reducing the coordinate 

covalent nature of the bond. In addition, N–C and B–C elongations participate very little 

in the relief of steric congestion, if at all, since only a 0.003 and 0.007 Å variation is 

predicted across the methylated ammonia boranes, respectively.   
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Figure 3.13. (CH3)3B–N(CH3)nH3-n (n = 0-3) MP2/6-311++G(3df,2p) optimized geometries. B-N 
bond lengths are reported under each structure. BNC and BNH angles are reported as well.  
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3.11 Conclusion 

 The coordinate covalent bond of ammonia borane is 64.6 % ionic and 35.4% 

covalent, where the charge-transfer frustration between boron and nitrogen is 0.273. It is 

discovered that a balance of coordinate covalent bond descriptors and steric factors at 

the equilibrium distance are necessary to model and characterize the coordinate covalent 

bond. Discrepancies in the binding energetics reported within the literature are not a 

consequence of varying coordinate covalent bond length, but rather of how the specific 

method and basis set models the electronics within the system. More specifically, the 

charge-transfer frustration between boron and nitrogen must be predicted correctly, in 

order to model the B–N coordinate covalent bond accurately. The binding enthalpy trend 

is a consequence of the coordinate covalent character of the bond, which is measured by 

the completeness of charge-transfer. In these particular methyl substituted systems, 

steric forces cannot be ignored. The Lewis donor has been found to be more flexible 

than the acceptor, allowing steric congestion to be relieved for the addition of two 

methyl groups. However, addition of the final methyl group results in severe steric 

congestion (n = 3), and the binding enthalpy weakens, since the molecule can no longer 

distort to lower its energy.  

M06-2X, M06 and M05-2X in conjunction with the 6-311++G(3df,2p) basis set 

are able to reproduce the experimental trend with MADs of 0.3, 3.9 and 1.6 kcal/mol, 

respectively. M05-2X (MAD = 1.6 kcal/mol) and M06-2X (MAD = 0.3 kcal/mol) yield 

comparable MADs to that of MP2 (MAD = 1.9 kcal/mol) and QCISD(T) (MAD = 0.4 

kcal/mol), respectively. M06-2X is able to model the B–N coordinate covalent bond 

efficiently and accurately without the residual convergence correction and intense 
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computational resources necessary for post-SCF methods. M06-2X incorporates the 

proper balance of short-range exchange-correlation energy necessary to model the 

electronics within the B–N coordinate covalent chemical bond, as well as the 

medium-range exchange-correlation energy demonstrated by sterically congested 

environments near the coordinate covalent bond. M06-2X/6-311++G(3df,2p) is a 

practical and efficient choice for investigating chemical systems possessing B–N 

coordinate covalent bonds, where quantitative trends in energetics are necessary. In 

summary, this study provides a comprehensive evaluation of computational protocols 

used in the study of coordinate covalent bonds. However, it is suspected that weaker 

Lewis acid-base adducts or stronger organometallic compounds may have different 

sensitivity and response to the computational factors studied here.  
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Chapter 4  
 
 
Periodic Trends and Index of Boron Lewis Acidity 
 
 
 
Reproduced in part with permission from Plumley, J. A.; Evanseck, J. D., J. Phys. 
Chem. A 2009, 113, (20), 5985. Copyright 2009 American Chemical Society 
 

Lewis acidity is customarily gauged by comparing the relative magnitude of 

coordinate covalent bonding energies, where the Lewis acid moiety is varied and the 

Lewis base is kept constant.  However, the prediction of Lewis acidity from first 

principles is sometimes contrary to that suggested by experimental bond energies. 

Specifically, the order of boron trihalide Lewis acidities predicted from substituent 

electronegativity arguments is opposite to that inferred by experiment. Contemporary 

explanations for the divergence between theory, computation, and experiment have led 

to further consternation. Due to the fundamental importance of understanding the origin 

of Lewis acidity, we report periodic trends for twenty-one boron Lewis acids, as well as 

their coordinate covalent bond strengths with NH3, utilizing ab initio, density functional 

theory and natural bond orbital analysis. Coordinate covalent bond dissociation energy 

has been determined to be an inadequate index of Lewis acid strength. Instead, acidity is 

measured in the manner originally intended by Lewis, which is defined by the valence of 

the acid of interest. Boron Lewis acidity is found to depend upon substituent 
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electronegativity and atomic size, differently than for known Brønsted-Lowry periodic 

trends. Across the second period, stronger substituent electronegativity correlates (R2 = 

0.94) with increased Lewis acidity. However, across the third period, an equal 

contribution from substituent electronegativity and atomic radii is correlated (R2 = 0.98) 

with Lewis acidity. The data suggest that Lewis acidity depends upon electronegativity 

solely down Group 14, while equal contribution from both substituent electronegativity 

and atomic size are significant down Groups 16 and 17.  Originally deduced from 

Pauling’s electronegativities, boron’s substituents determine acidity by influencing the 

population of its valence by withdrawing electron density.  However, size effects 

manifest differently than previously considered, where greater sigma bond (not pi bond) 

orbital overlap between boron and larger substituents increase the electron density 

available to boron’s valence thereby decreasing Lewis acidity. The computed 

electronegativity and size effects of substituents establish unique periodic trends that 

provide a novel explanation of boron Lewis acidity, consistent with first principle 

predictions. The findings resolve ambiguities between theory, computation, and 

experiment, and provide a clearer understanding of Lewis acidity. 

 

4.1 Introduction 

In 1923, Gilbert N. Lewis published landmark ideas on acid-base theory, where a 

base and acid donate and accept a pair of electrons, respectively.55, 56 Lewis originally 

defined acids and bases merely from chemical behavior in reactions without the need for 

any theory of molecular structure.55 Despite the fact that Lewis’ revered concept of 
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valency made it easier to understand the essential characteristics of acids and bases, he 

was hesitant in its use in the definition, because valency could not be measured directly. 

Without other recourse, indirect measurements of acidity have ensued, principally based 

upon the assumption that a stronger acid is more willing to accept an electron pair to 

complete its valence, thus resulting in a stronger coordinate covalent bond. An overview 

of different procedures that measure relative Lewis acid and base strengths has been 

given by Anslyn and Dougherty.54 Examples include Pearson’s hard soft acid base 

(HSAB) principle,57-60  Gutmann’s donor (DN) and acceptor numbers (AN),61-63 Drago, 

Marks, and Wayland’s E & C and D & O equations,64-66 and Christe and coworker’s 

fluoride affinities.67 Regardless of the scale utilized to predict the relative strengths of 

Lewis acids, it is assumed that a stronger coordinate covalent bond is due to the 

increased Lewis acidity when the Lewis base is held constant.  

From the beginning, Lewis cautioned that other factors could be important in 

determining the adduct’s bond strength, other than its tendency to accept an electron 

pair.55 Subsequently, it has been reported that the coordinate covalent bond is influenced 

by other forces between the Lewis acid and base, such as orbital and steric 

interactions.68-70 Lewis observed that relative Lewis acidity depends on the choice of 

Lewis base. For example, BH3 forms a more stable adduct with thioethers as compared 

to BF3; however, the reverse is true when the Lewis acids are bound to ethers.259 A 

similar exchange is observed when BF3 and BH3 are bound to pyridine N-oxide and p-

methyl pyridine oxide, where BF3 forms a more stable adduct with pyridine N-oxide as 

compared to BH3; however, BH3 forms a more stable adduct with p-methyl pyridine 

oxide.260 Lewis summarized “that the relative strength depends not only upon the chosen 



 

138 
 

solvent but also upon the particular base or acid used for reference.”55 Nevertheless, the 

indirect gauge of Lewis acidity based upon bond strengths remains. 

Even today, valency cannot be directly measured by experimental means, but 

computational methods and resources have now evolved such that valency and 

perturbations can be evaluated. As a result, a quantitative value indicating the degree of 

Lewis acidity is possible from the computed valency of boron. Thus, we use the term 

“intrinsic Lewis acidity” to measure relative Lewis acidity in the manner originally 

intended by Lewis,55 which we define as the valence deficiency of the acid of interest.  

Among the Lewis acids available, boron halides are commonly and widely 

utilized, due to their simplicity and strong influence over many diverse organic 

reactions.74, 261-273 The problem of assessing Lewis acidities based upon coordinate 

covalent bond strength is illustrated by a long-standing problem in organic chemistry, 

where opposite to that expected, the Lewis acidity of boron trihalides has been reported 

to increase as BF3 < BCl3 < BBr3.260, 274-282 The observed trend eludes explanations 

based upon Pauling’s electronegativity indices,7 Bent’s Rule of hybridization,283 steric 

hinderance,284 and HSAB.285 Despite extensive theoretical286-294 and experimental 

investigations, 260, 274-282, 290, 295-298 the origin of Lewis acidity differences between boron 

halides remains controversial, primarily due to the assessment of Lewis acidity as 

referenced against coordinate covalent bond dissociation energies. 

 Other ideas have been explored to account for Lewis acidities determined by 

coordinate covalent bond strengths.  Specifically, the importance of halogen lone pairs 

in Lewis acids has been considered in terms of resonance,277, 295 p(π) → p(π) 



 

139 
 

hyperconjugation,290, 291, 297 π-bonding,296 and energy necessary to reorganize planar 

Lewis acids during adduct formation.70, 286, 287, 290-292, 298 Despite the terms used, the 

underlying mechanism involved is the same,  where halogen lone pairs interact with 

boron’s formally empty 2p orbital, yielding coordinate covalent π-bonds.  The question 

of which halogen demonstrates a larger resonance or p(π) → p(π) hyperconjugation 

within boron halides continues to be debated.7, 299-302  Furthermore, the p(π) → p(π) 

hyperconjugation cannot account for the observed differences in Lewis acidity regarding 

BH3 when compared to BF3
259, 260, 275, 282

 or  BCl3.275, 281, 282   Thus, the impact of halogen 

lone pairs upon understanding Lewis acidity is dubious. 

 Computational studies of boron halides coordinated to nitrogen centered Lewis 

bases and ammonia borane have been reported.241, 245, 247, 250, 286-289, 292-294, 299, 300, 303-307 

However, it has been shown that the electronic description of coordinate covalent 

bonding is highly sensitive to the level of theory applied, and that post-SCF methods or 

M06-2X coupled with large basis sets are necessary to predict the binding energies of 

coordinate covalent systems accurately.24, 173 Commonly employed computational 

methods can result in binding enthalpy errors as great as 87% (15.2 kcal/mol), as found 

for methyl substituted  ammonia boranes.24, 173, 245  Consequently, lower levels of theory 

have resulted in conflicting ideas on coordinate covalent bonding and gauging Lewis 

acidity.24, 173, 241, 245, 247, 250, 286-289, 292, 293, 299, 300, 303-307  

Due to the importance of understanding Lewis acidity, twenty-one isolated boron 

Lewis acids (BH(3-n)Fn, BH(3-n)Cln, BCl(3-n)Fn, BH(3-n)(OH)n, BH(3-n)(SH)n, BH(3-n)(CH3)n, 

and BH(3-n)(SiH3)n ; n = 0 to 3) as well as their corresponding adducts with NH3 have 

been analyzed. Unique to this study is that second and third period substituents are 
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assessed in a systematic evaluation of boron Lewis acidity to capture periodic trends. 

Lewis acidity trends down Groups 14, 16, and 17 are also reported. The intrinsic ability 

of a Lewis acid to accept electron density is investigated in terms of boron’s valence, 

and its stereoelectronic dependence upon substituents. Our observations are rationalized 

in terms of first principle concepts including the Pauling electronegativity7, 308 and 

atomic radii309 of the atom from the substituent that is directly coordinated to boron.  

The periodic trends are contrasted against well-known Brønsted-Lowry acid-base 

behavior and extended to explain aluminum halide Lewis acidity. 

 

4.2 Computational Approach 

All electronic structure calculations have been explained in Chapter 2 and were 

carried out with Gaussian03111 and NWChem 5.1,112 using the computational resources 

at the Center for Computational Science at Duquesne University.256 Specifically, 

NWChem 5.1 was utilized for all M06-2X computations while Gaussian03 was utilized 

for all QCISD(T) and MP2 computations.  Ab initio, density functional theory, and 

natural bond orbital (NBO) analysis have been utilized to analyze stereoelectronic 

effects of substituted boron Lewis acids. A systematic computational investigation is 

employed utilizing a level of theory suitable for coordinate covalent bonds within Lewis 

acid adducts, as discussed in Chapter 3.24, 173   All adducts with NH3 and isolated Lewis 

acids have been fully optimized with M06-2X and the 6-311++G(3df,2p) Pople style 

basis set. In addition, all isolated boron halide Lewis acids and corresponding adducts 

with NH3 have been optimized with MP2/6-311++G(3df,2p). Subsequently, single point 
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energy calculations have been employed on MP2 optimized structures utilizing 

QCISD(T)/aug-cc-pVQZ correlation consistent basis set. As discussed in Chapter 3 the 

QCISD(T)/6-311++G(3df,2p) was found to deliver a low MAD of 0.4 kcal/mol; 

however, the 6-311++G(3df,2p) basis set has been exchanged with aug-cc-pVQZ to 

avoid the convergence correction factor necessary for QCISD(T).  

Basis set superposition error (BSSE) has been corrected with the counterpoise 

method developed by Boys and Bernardi. All minima have been confirmed by the 

absence of imaginary frequencies utilizing B3LYP/6-31G(d). Enthalpy corrections were 

predicted utilizing B3LYP/6-31G(d) and scaled by 0.9989 in order to predict binding 

enthalpies at 298 K for all Lewis acids adducts.  

All NBO computations have been performed with HF/cc-pVQZ on the 

M06-2X/6-311++G(3df,2p) optimized structures utilizing the NBO 5.G113, 220 program 

embedded within Gaussian03. Goodman reported inadequacies in the triple-split 

6-311++G Pople basis set, where diffuse function augmentation lead to misleading 

conclusions drawn from NBO analysis regarding the stability of common four heavy 

atom molecules.310 However, double-split 6-31G Pople-style and correlation consistent 

basis set are less sensitive to diffuse augmentation, and allow for accurate assessments. 

Consequently, specific stereoelectronic effects have been investigated utilizing 

HF/cc-pVQZ//M06-2X/6-311++G(3df,2p) since the requisite density matrix necessary 

for these types of analyses are not available for MP2 or QCISD(T) computations. The 

NBO analysis has been employed to determine the natural hybrid overlap (NHO) 

integral, S, as well as the atomic charge and boron valence deficiency. Briefly, atomic 

charge is defined as the nuclear charge minus the sum of electron populations from each 
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natural atomic orbital on the corresponding atom, including core and valence orbitals.213    

In contrast, valence deficiency is the formal valence minus the sum of electron 

populations from each valence natural atomic orbital. 

 

4.3 Intrinsic Lewis Acidity 

Boron’s electrophilicity within the isolated Lewis acid is considered in terms of 

boron’s atomic charge and its valence deficiency, calculated by subtracting the NBO 

predicted valence (HF/cc-pVQZ//M06-2X//6-311++G(3df,2p))310 from the formal 

valence of three (Table 4.1). As expected, boron’s valence deficiency and atomic charge 

are highly correlated (R2 = 0.999; Figure 4.1), indicating that both similarly reflect the 

degree of boron’s electrophilicity and thus Lewis acidity.  However, boron’s valence 

deficiency and binding enthalpy are not correlated (Figure 4.2; R2 = 0.28), which 

underscores the need for a new paradigm regarding the prediction of Lewis acidity. 

Confidence in the data is engendered, since the same trend in binding enthalpy is 

predicted by using both QCISD(T)//MP2 and the M06-2X functional. Furthermore, the 

M06-2X predicted binding enthalpy for (CH3)B–NH3 lies within the uncertainty of the 

experimental value, ΔH298 = -13.8 ± 0.3 kcal/mol.19 In addition, the M06-2X and 

QCISD(T)//MP2 predicted binding enthalpies of -25.1 and -23.8 kcal/mol, respectively, 

are in excellent agreement with the experimental value of -24.0 kcal/mol regarding the 

Cl3B–NH3 adduct.311 As far as we are aware, there are no other experimental binding 

enthalpies regarding the NH3 adducts of interest for further comparison. 
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BVD qB 
QCISD(T)c 

∆H298 

M06-2Xd 

∆H298
 

BF3 1.64 1.60 -19.6 -20.2 
B(OH)3 1.42 1.38 - 1.1 
BClF2 1.35 1.30 -20.8 -21.9 
BHF2 1.30 1.27 -15.2 -16.1 
BH(OH)2 1.11 1.08 - -1.3 
B(CH3)3 1.00 0.98 - -14.1 
BCl2F 0.97 0.91 -22.2 -23.5 
BH2F 0.92 0.90 -18.8 -19.6 
BH(CH3)2 0.79 0.77 - -17.5 
BH2OH 0.77 0.76 - -10.1 
BH2CH3 0.61 0.60 - -22.0 
BCl3 0.50 0.44 -23.8 -25.1 
BHCl2 0.50 0.46 -24.0 -25.4 
BH2Cl 0.47 0.45 -25.2 -26.2 
BH3 0.43 0.43 -27.1 -27.7 
BH2SH 0.26 0.24 - -18.1 
BH2SiH3 0.17 0.16 - -30.9 
BH(SH)2 0.17 0.14 - -12.6 
B(SH)3 0.11 0.07 - -9.3 
BH(SiH3)2 -0.11 -0.14 - -33.1 
B(SiH3)3 -0.41 -0.44 - -35.1 

a Energies are in kcal/mol.  
b Charges are in electrons.  
c QCISD(T)/aug-cc-pVQZ//MP2/6-311++G(3df,2p). 
d M06-2X/6-311++G(3df,2p). 
 

Table 4.1. Binding enthalpies with NH3,a Boron’s valence deficiency (BVD),b and atomic charge 
(qB).b 
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Figure 4.1. Boron valence deficiency vs. boron’s charge within the isolated Lewis acid. 

Figure 4.2. M06-2X/6-311++G(3df,2p) predicted BSSE corrected binding enthalpies with NH3, 
ΔH298 (kcal/mol) vs. boron’s valence deficiency (electrons).    



 

145 
 

The average substituent electronegativity is estimated as one-third the sum of all 

atomic electronegativities coordinated to boron. Considering all twenty-one Lewis acids, 

a moderate linear correlation is observed (R2 = 0.74; Figure 4.3A), indicating that as 

substituents coordinated to boron become more electronegative, boron’s valence 

becomes more deficient, yielding a stronger Lewis acid.  The Allen,312 Sanderson, 313 

Allred-Rochow,314  and  Mulliken-Jaffe315-317   electronegativity scales have been 

considered, yielding comparable results as shown by Figure 4.3B to Figure 4.3E. 

Considering Brønsted-Lowry acids,68 a binary acid increases in strength across a period, 

because the conjugate base is stabilized with increasing electronegativity without 

significant atomic size changes. However, within a periodic group, electronegativity 

effects become negligible compared to atomic size changes and Brønsted-Lowry acids 

strengthen with increasing size. In contrast to Brønsted-Lowry acid behavior, increasing 

substituent atomic radii results in weaker Lewis acids for all systems considered (R2 = 

0.72, Figure 4.4). 
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Figure 4.3. (A) Boron’s valence deficiency (electrons) vs. the average Pauling electronegativity 
of the atoms coordinated to boron. (B) vs. Allen electronegativitity312 (C) vs. Sanderson 
electronegativitiy313 (D) Allred-Rochow electronegativity314  (E) vs. Mulliken-Jaffe 
electronegativity.315-317 Second and third period atoms as well as hydrogen are considered. 
Boron’s valence deficiency is the formal valence of three minus the valence electrons predicted 
by NBO employing HF/cc-pVQZ//M06-2X//6-311++G(3df,2p). 
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4.3.1 Trends Across Periods 

When second period substituted boron Lewis acids (BH(3-n)(CH3)n, BH(3-n)(OH)n 

and BH(3-n)Fn; n = 0 to 3) are considered, boron’s valence deficiency is highly correlated 

with substituent electronegativity (R2 = 0.94; Figure 4.5A), but not with atomic radii (R2 

= 0.33, ; Figure 4.5B). This suggests that substituent electronegativity accounts for 61% 

more of the observed differences in Lewis acidity for second period substituted boron 

Lewis acids than does substituent atomic radii. This is in accordance with Brønsted-

Lowry theory, where substituent electronegativity differences explain the differences in 

strength of acids within the same period.  In contrast, when third period substituted 

boron Lewis acids (BH(3-n)Cln–NH3, BH(3-n)(SH)n, and BH(3-n)(SiH3)n; n = 0 to 3) are 
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Figure 4.4. Boron’s valence deficiency vs. the sum of atomic radii (Å) coordinated to boron. 
Second and third period atoms as well as hydrogen are considered. 
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considered, little correlation is observed with electronegativity (R2 = 0.54; Figure 4.6A) 

and only a moderate correlation is observed with atomic radii (R2 = 0.72; Figure 4.6B). 

In order to achieve 94% of the variance in third period substituted boron Lewis acidity, 

an equal balance of electronegativity and atomic radii is necessary (R2 = 0.98; Figure 

4.6C). The coefficients of partial determination (r2)318 have been determined to gauge 

which independent variable is more prominent in explaining the variance in boron’s 

valence deficiency. The coefficients of partial determination are discussed in Chapter 

4.3.3.  

A linear combination of substituent electronegativities and atomic radii explains 

the observed variance in boron’s valence deficiency when considering second period 

substituents, similarly to that discovered for third period substituents.  As Figure 4.5C 

displays, a 0.05 increase in the R2 value is observed. Although the R2 value is increased 

by considering the atomic radii in addition to the substituent electronegativity, only 5% 

more of the variance in boron’s valence deficiency is ascribed.  When second period 

substituents are coordinated to boron, a simpler and more concise explanation of 

differences in valence deficiency is achieved by considering only the substituent 

electronegativity. 
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Figure 4.5. (A) Boron’s valence deficiency (electrons) vs. the average substituent Pauling 
electronegativity. (B) vs. the sum of atomic radii (Å) coordinated to boron. (C) vs. a linear 
combination of average substituent electronegativities (E.N.) and atomic radii sums (A.R.) of 
atoms coordinated to boron. The line of best fit for the linear combination is y = -2.2 + 0.82×E.N. 
+ 0.56×A.R. Only second period atoms and hydrogen are considered. 
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Coordinate covalent π-bonds between halogen lone pairs and boron’s formally 

empty 2p orbital were previously thought to regulate boron halide Lewis acidity and 

explain periodic trends. It was reported that fluorine lone pairs yield stronger coordinate 

covalent π-bonds, thus occupying more of boron’s 2p orbital and accounting for the 

weaker acidity of BF3 compared to BCl3.7, 287, 295 However, heavier halogens with more 
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Figure 4.6. (A) Boron’s valence deficiency (electrons) vs. the average substituent Pauling 
electronegativity. (B) vs. the sum of atomic radii (Å) coordinated to boron. (C) vs. a linear 
combination of average substituent electronegativities (E.N.) and atomic radii sums (A.R.) of 
atoms coordinated to boron. The line of best fit for the linear combination is y = 0.17 + 
0.41×E.N.- 0.41×A.R. Only third period atoms and hydrogen are considered. 
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diffuse polarizable lone pairs were predicted to form stronger coordinate covalent 

π-bonds.299-301 Thus, a weaker interaction between fluorine’s lone pair and boron’s 

formally empty 2p orbital is expected when compared to chlorine.299-301 However, the 

overlap integral, Sπ,  representing the magnitude of π-overlap between pB and pF, is 

marginally greater than that between pB and pCl (Figure 4.7), in accord with previous 

reports.7, 287, 295 Thus, the importance of substituent effects on Lewis acidity solely 

through coordinate covalent π-bond interactions is questionable.70, 277, 286, 287, 290-292, 295-298  

 Sπ = 0.402 Sπ = 0.369 

  

Sπ = 0.374 Sπ = 0.360 

  

Figure 4.7. Natural hybrid orbital overlap yielding coordinate covalent π bonds between boron 
and X (X = OH, F, SH, and Cl) within BH2X. Sπ is the overlap integral corresponding to the 
natural hybrid orbitals involved.   
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Sigma bond orbital overlap, Sσ, reported in this work represents a novel approach 

to understanding the correlation between atomic size and Lewis acidity. Sσ between spn 

hybrid orbitals on boron and substituents is correlated with atomic radii (Figure 4.8), 

where both decrease upon moving across the second and third period from carbon to 

fluorine (Sσ = 0.82 > 0.78 > 0.72) and from silicon to chlorine (Sσ = 0.83 > 0.79 > 0.76), 

respectively. Differences in Sσ are also correlated with atomic sizes, where both increase 

upon moving down a periodic group. Larger atoms possess larger spn orbitals and thus 

result in a greater Sσ with boron’s hybrid spn orbital. Increased Sσ provides additional 

electron density for electron deficient boron, decreasing its valence deficiency, and 

ultimately decreasing its acidity. The increase in Sσ between the second and third period 

within the same group underscores the need to consider a balance of both 

electronegativity and size effects for a complete description of third period substituted 

boron Lewis acid strength.  
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4.3.2 Trends Down Groups 

Only two elements in Groups 14 (carbon and silicon), 16 (oxygen and sulfur), 

and 17 (fluorine and chlorine) have been considered due to basis set limitations. 

Interesting differences with Brønsted-Lowry trends are apparent. Group 14 substituent 

electronegativity is highly correlated with boron’s electron deficiency (R2 = 0.98; Figure 

4.9A) and atomic radii is only moderately correlated (R2 = 0.68, Figure 4.9B). For 

example, the difference in Sσ of 0.003, concerning BH2SiH3 and BH2CH3 can hardly 

explain the variance in boron’s valence deficiency of 0.44 e (Figure 4.8). Consequently, 

the large differences in electronegativity between carbon and silicon are necessary to 

Sσ = 0.824 Sσ = 0.779 Sσ = 0.720 

   

Sσ = 0.827 Sσ = 0.789 Sσ = 0.761 

 
  

 

Figure 4.8. Natural hybrid orbital overlap yielding the σ between boron and X (X = CH3, OH, F, 
SiH3, SH, and Cl) within BH2X. Sσ is the overlap integral corresponding to the natural hybrid 
orbitals involved.   
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account for the differences in boron’s valence deficiency. Electronegativity best explains 

the variance in boron’s valence deficiency as compared to substituent size regarding 

Group 14 substituents. An equal balance of electronegativity and atomic size is required 

when considering Groups 16 and 17, as shown by Figure 4.10C and Figure 4.11C, 

respectively. Again, Sσ influences boron’s valence in the same manner as described in 

Chapter 4.3.1. It is suspected that considering atoms further down Groups 16 and 17 will 

reveal that boron’s valence deficiency exhibits an even greater dependence on size 

effects through sigma bond orbital overlap. 
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Figure 4.9. (A) Boron’s valence deficiency (electrons) vs. the average substituent Pauling 
electronegativity. (B) vs. the sum of atomic radii (Å) coordinated to boron. (C) vs. a linear 
combination of average substituent electronegativities (E.N.) and atomic radii sums (A.R.) of 
atoms coordinated to boron. The line of best fit for the linear combination is y = -3.02 + 
1.77×E.N.- 0.17×A.R. Only Group 14 atoms and hydrogen are considered. 
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Figure 4.10. (A) Boron’s valence deficiency (electrons) vs. the average substituent Pauling 
electronegativity. (B) vs. the sum of atomic radii (Å) coordinated to boron. (C) vs. a linear 
combination of average substituent electronegativities (E.N.) and atomic radii sums (A.R.) of 
atoms coordinated to boron. The line of best fit for the linear combination is y = -0.31 + 
0.75×E.N.- 0.59×A.R. Only Group 16 atoms and hydrogen are considered. 
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4.3.3 Coefficients of Partial Determination 

The coefficient of partial determination (r2)318 has been analyzed in order to 

determine the importance of each independent variable (substituent electronegativity and 

atomic radii) in explaining the dependent variable’s variance (boron’s valence 

deficiency). The coefficient of partial determination measures the contribution of one 
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Figure 4.11. (A) Boron’s valence deficiency (electrons) vs. the average substituent Pauling 
electronegativity. (B) vs. the sum of atomic radii (Å) coordinated to boron. (C) vs. a linear 
combination of average substituent electronegativities (E.N.) and atomic radii sums (A.R.) of 
atoms coordinated to boron. The line of best fit for the linear combination is y = -0.16 + 
0.59×E.N.- 0.63×A.R. Only Group 17 atoms and hydrogen are considered. 
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independent variable when added to a model containing other independent variables. For 

example, the  regarding a multiple linear regression containing a dependent variable 

( ) and two independent variables (  and ) would take the following form: 

 

  
 

4.1  

 

Where  is defined as the error sum of squares of the regression incorporating the 

independent variables within the parentheses. The entries to the right of the dot within 

the subscript of  indicate the variable that is already within the model where the 

entries to the left indicate the dependent variable as well as the independent variable 

being introduced to the model. Multiplying the result by 100 yields a percent decrease in 

the error sum of squares when  is added to the model that already contains . 

Comparing coefficients of partial determination allows the importance of each variable 

to be assessed. For example, if   is added to a model that contains only , and the 

error sum of squares is decreased to a greater extent than when  is added to the model 

that contains only , than  is more important than  when modeling the variance of 

. Table 4.2 summarizes the coefficients of partial determination for each multiple linear 

regression discussed throughout Chapter 4.  
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Plot   
Figure 4.6Ca 0.94 0.96 
Figure 4.10Cb 0.99 0.99 
Figure 4.11Cc 0.99 0.98 

a  Only third period atoms and hydrogen are considered. 
b  Only Group sixteen atoms (oxygen periodic group) and hydrogen are considered. 
c  Only Group seventeen atoms (fluorine periodic group) and hydrogen are considered. 

 

 Regarding, third period, Group 16, and Group 17 trends, the data indicates that 

when substituent electronegativity or atomic radii are added to a model that contains the 

remaining independent variable, the error sum of squares decreases by about the same 

extent. This indicates that each is equally important when modeling the boron valence 

deficiency.   

 

4.4 Comparison to Previous Models 

The present work demonstrates that boron’s valence deficiency is an innate 

chemical property that accounts for the electrophilicity of boron and ultimately 

determines its Lewis acidity. The influence of p(π) → p(π) hyperconjugation on Lewis 

acid reorganization energy70, 286, 287, 290, 291, 298 was previously assumed to be an intrinsic 

property of the acid, independent from external Lewis bases. However, Drago and 

coworkers have shown a weakness with this assumption and that reorganization energies 

are a function of the coordinate covalent bond strength.290 Furthermore, our results 

suggest that the p(π) → p(π) hyperconjugation strength is not consistent with boron’s 

valence deficiency. Consequently, our comparison to other models is limited to that 

described by the lowest unoccupied molecular orbital (LUMO).287, 288, 293, 303, 305 

Table 4.2. Partial Coefficients of Determination Regarding Boron’s Valence  Deficiency (Y) vs. a 
Linear Combination of Substituent Electronegativity (EN) and Atomic Radii (AR).   
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It has been reported, utilizing ab initio electronic structure theory, that BCl3 is a 

stronger Lewis acid than BF3 when coordinated to NH3 due to BCl3’s  lower energy 

LUMO.287, 288, 293, 303, 305 Thus, the relationship between boron halide LUMOs and its 

acidity in terms of valence deficiency were re-investigated in this study. First, only BX3 

(X = H, F, Cl) Lewis acids are considered to establish a direct comparison with previous 

theoretical investigations, where only homogenous Lewis acids such as BF3 and BCl3 

were analyzed.287, 288, 293, 303, 305  Indeed, a moderately strong correlation (Figure 4.12; R2 

= 0.82) is found between increasing boron valence deficiency (stronger Lewis acidity) 

and higher energy LUMOs. The relative LUMOs regarding BF3 and BCl3 are in accord 

with previous studies.287, 288, 293, 303, 305  To further probe the boron Lewis acid LUMO 

and its consequence upon Lewis acidity, the systematic halogen substituted Lewis acids, 

BH(3-n)Fn–NH3, BH(3-n)Cln–NH3, and BCl(3-n)Fn–NH3 (n = 0 to 3) were  analyzed. Upon 

analyzing all nine boron halide Lewis acids, the correlation decreases from R2 = 0.82 to 

0.42 (Figure 4.12) essentially eliminating the correlation that was demonstrated when 

only BX3 Lewis acids were considered. When the mixed halogen substituted Lewis acids 

are considered, more subtle differences are revealed indicating that Lewis acidity is not a 

strict consequence of the LUMO energy level.   
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It is common to gauge the strength of a Lewis acid from the strength of the 

coordinate covalent bond formed with a common base, as discussed in the Introduction.  

The binding enthalpies of X3B–NH3 adducts (X = H, F, Cl) vs. the corresponding boron 

valence deficiency supports previous results, where Lewis acidity increases as BF3 < 

BCl3 < BH3 (Figure 4.13; R2 = 0.91) with (CH3)3P and (CH3)3As as Lewis bases;281 

however, when the systematic halogen substituted Lewis acids were analyzed the 

correlation decreases from R2 = 0.91 to 0.63 (Figure 4.13) More subtle differences are 

revealed, similarly to that observed for boron’s valence deficiency vs. LUMO, 
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Figure 4.12. Boron’s valence deficiency (electrons) vs. the LUMO energy level (hartrees). 
Energy levels refer to Hartree Fock-orbitals. The black trend line indicates that all boron halide 
Lewis acids are considered. The blue trend line considers only BX3 homogenous Lewis acids (X 
= H, F, Cl).  
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supporting that adduct stability is not a useful indicator of Lewis acidity, as discussed 

previously and shown by Figure 4.2.  

 

 

 

4.5 Extension to Aluminum Halides 

A similar conundrum between predicted and observed Lewis acidities is found 

for the aluminum halide series, where complications arise from using coordinate 

covalent bond strengths as an acidity index, insufficient levels of theory, and different 

Lewis bases.67, 299, 319-326 It was initially predicted, utilizing MP2/PDZ, that AlF3 had a 

stronger fluoride affinity than AlCl3.67 However, experimental evaluation in conjunction 
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Figure 4.13. Binding enthalpy with NH3 vs. the boron valence defciency (electrons). The black 
trend line indicates that all boron halide Lewis acids are considered. The blue trend line 
considers only BX3 homogenous Lewis acids (X = H, F, Cl). 
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with additional theoretical work revealed that AlCl3 had a larger affinity for fluoride 

than AlF3.320, 323 Furthermore, MP2/II+//MP2/II predicts that AlCl3  forms a stronger 

coordinate covalent bond with NH3 than with AlF3.319 However, when NH3 is exchanged 

with CO or H2O, reverse trends are predicted by MP2/II+//MP2/II,319 

MP2/VTZ+D+P,299 and MP2/6-31G(d,p)324 calculations. Furthermore, inappropriate 

levels of theory obscure clear conclusions. For example, coordinate covalent bond 

strengths between AlX3 (X = F, Cl, Br, and I) and NH3 predicted by B3LYP in 

conjunction with effective core potentials were reported to decrease as the halogen size 

increased.322 In contrast, AlBr3
325

 forms a stronger bond with NH3 than with AlCl3
326 

according to experimental bond dissociation energies, and AlCl3 forms a stronger bond 

than found for AlF3, according to MP2/II+//MP2/II predicted results.319  Interestingly, a 

quantitative Lewis acid scale regarding AlX3 (X = F, Cl, Br, and I) was attempted by 

comparing electron pair affinities.327 It was reported that AlX3 Lewis acidities increase 

as the halogen size increases. Although the external effects of the Lewis base were 

eliminated, the reorganization energy demonstrated by the Lewis acid remains as a 

contaminant in describing the innate ability of a Lewis acid to capture electron density.  

 Extension of our ideas on boron Lewis acidity indicates that both atomic size and 

electronegativity regulate aluminum halide Lewis acidity. For example, fluorine 

possesses a larger electronegativity compared to other halides, thus creating a more 

electrophilic aluminum center and a stronger Lewis acid. In addition, fluorine possesses 

a smaller atomic radius, yielding a smaller Sσ by 0.02, decreasing the electron population 

available to boron’s valence, increasing its deficiency and thus its Lewis acidity. NBO 

results support this prediction, where the aluminum valence deficiency for AlF3 is 
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greater than that predicted for AlCl3 by 0.77 electrons. It is also of interest to predict 

Lewis acidities by exchanging the Group 13 atom rather than the substituent. The 

intrinsic Lewis acidity of YX3 (Y = Group 13 atom) should increase upon moving down 

Group 13 due to electronegativity differences between the Group 13 atom and the 

halide. For example, the electronegativity difference between aluminum and fluorine (Δ 

= 2.37) is greater than that between boron and fluorine (Δ = 1.94). Therefore, the 

valence deficiency and ultimately the Lewis acidity of aluminum halides should be 

greater than that exhibited by boron halides. A NBO analysis of AlF3 and BF3 supports 

this prediction, where the valence deficiency on aluminum and boron is 2.43 and 1.64 

electrons, respectively. Preliminary data suggest that size is not important when 

comparing the acidity of Group 13 substituted Lewis acids. For example, Sσ is greater 

between boron and fluorine than predicted for aluminum and fluorine by only 0.06. This 

may be an indication that the large electronegativity difference found between aluminum 

and fluorine dominates over size differences. Electron density is more localized on 

fluorine when coordinated to aluminum than when coordinated to boron and therefore 

overlap with aluminum is decreased. Aluminum halide Lewis acids follow the same 

periodic trends as boron halides, further illustrating that valence deficiency is an 

apparent index of Lewis acidity that may be rationalized utilizing first principle ideas 

such as substituent atomic radii and electronegativity.  
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4.6 Conclusion 

Two main points are realized in describing Lewis acidity from a systematic 

analysis of twenty-one isolated boron Lewis acids. First, coordinate covalent bond 

strengths are not an adequate measure of Lewis acidity. Rather, Lewis acidity should be 

gauged by determining boron’s valence deficiency, or its ability to accept an electron-

pair. Second, Lewis acidity may be rationalized by the same principles that regulate 

Brønsted-Lowry acidity, but by different contributions.  Specifically, substituent 

electronegativity explains boron Lewis acidity when second period atoms are 

coordinated to boron, while an equal balance of substituent electronegativity and atomic 

size are necessary when third period atoms are considered. Furthermore, substituent 

electronegativity explains Group 14 substituted boron Lewis acidity, while an equal 

balance of substituent electronegativity and atomic size are necessary when Group 16 

and 17 substituents are considered.  Atomic size is found to influence intrinsic boron 

Lewis acidity, through σ-bond overlap, independent of π-overlap. Specifically, the 

overlap between the hybrid orbitals present on boron and the substituents that form the σ 

bond are found to regulate Lewis acidity. A larger overlap increases the electron 

population available to boron’s valence, decreasing its deficiency and thus its Lewis 

acidity. The present analysis delivers a fundamental report on Lewis acidity, consistent 

with first principle periodic trends, such as substituent electronegativity and atomic size, 

which has the potential to realign our understanding and prediction of Lewis acidities. 
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Chapter 5  
 
 
Geminal Interactions Key to Lewis Acid Activation of 
Diels-Alder Reactions 
 
 

Geminal interactions are fundamental to the binding strength of Lewis acid 

adducts, and ultimately the rate enhancement of eleven BF2X catalyzed Diels-Alder 

reactions between 2-propenal and 1,3-butadiene. Geminal interactions lower sigma 

anti-bonding energy levels between boron and substituents to facilitate π-conjugation 

and decrease the energy of the dienophile’s lowest unoccupied molecular orbital. The 

results are consistent with FMO theory, yet provide a novel and quantitative explanation 

on the activation of organic reactions by Lewis acids. 

 

5.1 Introduction 

It is well known that Lewis acids enhance the rate of organic reactions, 

especially those involving α,β enals.263, 328-333  Lewis acid catalysis is traditionally 

explained using Fukui’s FMO theory for Diels-Alder and other pericyclic reactions,72, 95 

as recently reviewed by Houk and coworkers.334 The main idea is that electron density 

withdrawal from the dienophile provides a better energetic match between the 

dienophile LUMO and diene HOMO, allowing a more favorable interaction and 

activation energy lowering in normal electron demand Diels-Alder processes.93 
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A key assumption regarding Lewis acid catalysis is that the acid withdraws 

electron density from the dienophile. However as originally proposed by Lewis,4, 55, 56 

the acid accepts an electron pair to complete its valence in coordinate covalent bond 

formation (Figure 5.1). Once the adduct forms and the valency of boron is essentially 

satisfied, the mechanism of electron density withdrawal from the dienophile becomes 

much less obvious. Consequently, the purpose of this study is to bring clarity to Lewis 

acid activation of organic reactions, and report our findings involving stereoelectronic 

features of Lewis acid activation that correlate with the catalysis of the Diels-Alder 

reaction.  

 

 

 

The present analysis utilizes density functional theory and natural bond orbital 

(NBO) analysis to determine the stereoelectronic features335 within Lewis acid adducts 

that govern the decrease in Gibbs free activation energy, Δ‡G298, of eleven BF2X 

catalyzed Diels-Alder reactions between 1,3-butadiene and 2-propenal. Lewis acid 

substituents, X (Table 5.1), have been chosen to cover a full range of strong electron 

Figure 5.1. Main donor-acceptor interaction of the coordinate covalent bond in Lewis adduct 
formation. 
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donor groups (EDG) and acceptor groups (EWG), as given by Hammett’s substituent 

constants,336, 337 to investigate the impact of such variance upon rate enhancement. 

 

X σp
336, 337 

-N2
+ 1.910 

-NO2 0.778 
-CN 0.660 
-CF3 0.540 
-CO2H 0.450 
-F 0.062 
-H 0.000 
-CH2CH3 -0.151 
-CH3 -0.170 
-OCH3 -0.268 
-OH -0.370 
-NH2 -0.660 

 

 

5.2 Computational Approach 

Electronic structure calculations have been explained in detail within Chapter 2, 

and were carried out with NWChem 5.1112 and Gaussian09,338 using the computational 

resources at the Center for Computational Science at Duquesne University.256 All gas 

phase results are acquired by using NWChem 5.1, while solvent effects are included by 

utilizing the polarizable continuum model, as implemented by Gaussian09 and discussed 

below. All geometry optimizations and frequency analyses pertaining to Lewis acid 

catalyzed Diels-Alder reactions between 2-propenal and 1,3-butadiene were performed 

in the gas phase with the M06-2X163 density functional method in conjunction with the 

6-311++G(3df,2p) basis set.187-193 The M06-2X/6-311++G(3df,2p) level of theory has 

Table 5.1. Hammett Constants Pertaining to the Substituents Investigated. 
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been found to be accurate within experimental accuracy when predicting the binding 

energies of coordinate covalent bonded complexes.24, 173 The performance of 

M06-2X/6-311++G(3df,2p) is critical to this study, because Lewis acid adducts involve 

the coordinate covalent bond. The performance of M06-2X and M05-2X141 in 

conjunction with the correlation consistent basis sets194-196 (cc-pVXZ; X = D, T, Q, 5) 

was also evaluated and compared to the experimental activation energy of the 

uncatalyzed Diels-Alder reaction between 2-propenal and 1,3-butadiene. In addition, the 

performance of the B3LYP density functional method was also assessed, due to its 

popularity and wide-spread use. M06-2X/6-311++G(3df,2p) has been used to determine 

the activation energy of the AlCl3 catalyzed and uncatalyzed Diels-Alder reaction 

between methyl acrylate and 1,3-butadiene to determine if M06-2X/6-311++G(3df,2p) 

is capable of reproducing the experimental difference in activation energies between 

catalyzed and uncatalyzed reactions. 

Binding enthalpies predicted by M06-2X/6-311++G(3df,2p) have been corrected 

for basis set superposition error (BSSE) by using the counterpoise method developed by 

Boys and Bernardi.201-203 As expected with such a basis set, the amount of BSSE is 

found to be about 1 kcal/mol or less for these specific adducts. All minima and first 

order saddle points have been confirmed by the absence of imaginary frequencies and 

the presence of one imaginary frequency, respectively. Regarding Lewis acid catalyzed 

reactions, enthalpy and entropy corrections were predicted utilizing 

M06-2X/6-311++G(3df,2p) in order to compute binding enthalpies, ΔH298, and Gibbs 

free activation barriers, Δ‡G298. Activation energies, Δ‡E298, determined with the 

cc-pVXZ (X = D, T, Q, 5) basis sets become resource intensive as X increases. 
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Consequently, employing frequency calculations to compute the appropriate thermal 

corrections, using the cc-pVQZ and cc-pV5Z basis sets, are not possible at this time. For 

the sake of maintaining consistency across the four different correlation consistent basis 

sets, the appropriate thermal corrections were determined by M05-2X, M06-2X, and 

B3LYP in conjunction with the 6-311++G(3df,2p) basis set and were subsequently 

added to the corresponding electronic energy predicted by each method and correlation 

consistent basis set.   

Natural bond orbital (NBO) analysis221 was performed using the NBO 5.G 

program,113 embedded within NWChem 5.1. NBO is discussed in detail elsewhere.213, 

220-222, 339 Goodman reported inadequacies in the triple-split 6-311++G Pople basis set, 

where diffuse function augmentation lead to misleading conclusions drawn from NBO 

analysis regarding the stability of common four heavy atom molecules.310 However, 

double-split 6-31G Pople and correlation consistent basis sets are less sensitive to 

diffuse augmentation, and allow for accurate assessments. Consequently, specific 

stereoelectronic effects have been investigated utilizing HF/cc-pVQZ on the 

M06-2X/6-311++G(3df,2p) computed minima.  

The activation energies corresponding to the AlCl3 catalyzed and uncatalyzed 

Diels-Alder reaction between methyl acrylate and 1,3 butadiene have been 

experimentally determined in benzene.100   In order for a direct comparison between 

theory and experiment, solvent effects must be included. Consequently, the polarizable 

continuum model (PCM) developed by Tomasi and coworkers340-342 has been employed, 

as implemented by Gaussian09.338  The implicit model involves effective Hamiltonian 

methods that use continuum distributions to describe the solvent.343 The advantage of 
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such a scheme is that bulk solvent effects calibrated against macroscopic properties can 

be efficiently included within the quantum mechanical framework.344 The PCM model 

has been used to investigate successfully the effect of solvent upon the energetics and 

equilibria of other small molecular systems, such as the similar Diels-Alder reaction 

between 2-propenal and 1,3-butadiene.345 The PCM method has been described in 

detail.343 Briefly, the solute is represented by a charge distribution in a cavity embedded 

in an infinite polarizable dielectric medium. The cavity shape is obtained from the van 

der Waals radii of the atoms of the solute. The solvent used in this study is benzene, 

which possesses a dielectric constant of ε = 2.27. Full geometry optimizations and 

frequency analyses were performed on the appropriate ground states and transition 

structures to determine the activation energies, Δ‡E298. 

 

5.3 Geometries of BF2X Ground State Adducts 

Four dienophile adducts are possible by the coordination between boron and the 

carbonyl oxygen lone pair syn to the formyl proton, with B−X synclinal, antiperiplanar, 

synperiplanar, or anticlinal to the uncomplexed oxygen lone pair, as illustrated by 

Figure 5.2.  
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All four possible conformations are investigated for each substituted BF2X 

adduct. Thus, the relative energies between all four adducts regarding each BF2X 

substitution are revealed by Table 5.2. Only the lowest energy adducts are discussed and 

considered for further computations regarding activation barriers and stereoelectronic 

effects. Previous reports attribute conformational preferences to an electrostatic 

interaction, known as nontraditional hydrogen bonding (O=C–H….X, X=F or O).346-348 

In contrast, theoretical analyses suggest that a generalized anomeric effect between the 

uncomplexed oxygen lone pair on the carbonyl group and the antiperiplanar 

antibonding sigma orbital between boron and the heteroatom (n(O) → σ*(B–X) (X=H, 

Figure 5.2. Newman projections that illustrate the four possible adduct conformations between 
BF2X and 2-propenal. Adduct 1 possesses the substituent, X, synclinal (∠( X–B–O–H) = 120.0°)  
to the uncomplexed oxygen lone pair. Adduct 2, Adduct 3, and Adduct 4 represent the 
antiperiplanar (∠( X–B–O–H) = 0.0°), synperiplanar (∠( X–B–O–H) = 180.0°), and anticlinal 
(∠(X–B–O–H) = 60.0°) conformations, respectively.  
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O, F, or Cl)) is responsible for the conformational preference.349-352 Other 

stereoelectronic effects have been reported to govern the conformational preference as 

well, including π(C=O) → σ*(B–X), n(X) → π*(C=O), and σ(B–X) → π*(C=O).352 It is 

not within the scope of this dissertation to address the factors that govern the 

conformational preferences between the various adducts. Only the lowest energy 

adducts are of interest and are shown by Figure 5.3.  

 

X Adduct 1 Adduct 2 Adduct 3 Adduct 4 
-N2

+ b 0.0 3.5 3.7 0.0 
-NO2 NAc 0.0 2.1 NAc 
-CN 0.6 0.0 1.8 0.5 
-CF3 NAc 2.3 2.3 0.0 
-CO2H NAc 3.3 4.5 0.0 
-Fd 0.0 - 0.4 - 
-H 0.0 1.4 0.4 NAc 
-CH2CH3 0.0 2.7 0.3 NAc 
-CH3 0.0 2.4 0.1 NAc 
-OCH3 0.0 3.0 4.3 0.1 
-OH 0.0 NAc NAc 0.2 
-NH2 NAc NAc 0.0 NAc 

a All values are in kcal/mol. 
b The lowest energy adduct forms a planar sp2 boron center with each fluorine synperiplanar and 

antiperiplanar to the uncomplexed oxygen lone pair, as shown by Figure 5.3, possessing characteristics 
of Adduct 1 and Adduct 4, and thus is considered in both columns. 

c After exhaustive searches, a local minimum could not be found or the saddle point corresponds to a first 
order transition state.  

d  Adduct 1 and Adduct 2 are equivalent. Adduct 3 and Adduct 4 are equivalent.   

Table 5.2. Relative Energies between Each Adduct for All Substituted BF2X Lewis Acids 
Coordinated to 2-propenal.a 
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X = N2
+

   r(O–B) = 1.43 Å ∠( X–B–O–H) = 88.1°  

  

X = NO2 r(O–B) = 1.61Å ∠( X–B–O–H) = 0.0° (Adduct 2) 

  

X = CN r(O–B) = 1.65Å ∠( X–B–O–H) = 0.0°(Adduct 2) 

  

  

Figure 5.3. BF2X Lewis acids coordinated to 2-propenal, forming a coordinate covalent bond 
between oxygen and boron.   B–O bond lengths are reported above each structure to the left 
and the X–B–O–H dihedral angle is reported above each structure to the right. Small white balls 
are hydrogen atoms, large white balls are fluorine atoms, grey atoms are carbon atoms, red 
balls are oxygen atoms, and blue balls are nitrogen atoms. 
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X = CF3 r(O–B) = 1.63Å ∠( X–B–O–H) = 86.9° (Adduct 4) 

  
X = CO2H r(O–B) = 1.60Å ∠( X–B–O–H) = 70.7°(Adduct 4) 

  
X = F r(O–B) = 1.69Å ∠( X–B–O–H) = 0.0°(Adduct 2 = 1) 

  
X = H r(O–B) = 1.71 Å ∠( X–B–O–H) = 116.5° (Adduct 1) 

 
 

Figure 5.3. (continued).  
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X = CH2CH3 r(O–B) = 1.81 Å ∠( X–B–O–H) = 177.0° (Adduct 3) 

  

X = CH3 r(O–B) = 1.78 Å ∠( X–B–O–H) = 126.3° (Adduct 1) 

  

X = OCH3 r(O–B) = 2.32 Å ∠( X–B–O–H) = 121.1° (Adduct 1) 

  

Figure 5.3. (continued).  
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X = OH r(O–B) = 1.89 Å ∠( X–B–O–H) = 113.6° (Adduct 1) 

 
 

X = NH2 r(O–B) = 2.58 Å ∠( X–B–O–H) = 180.0° (Adduct 3) 

  

Figure 5.3. (continued).  

 

5.4 Binding Enthalpies between BF2X and 2-Propenal 

 Binding enthalpies, ∆H298, between the BF2X Lewis acids and 2-propenal are 

reported in Table 5.3. A strong linear correlation (Figure 5.4; R2 = 0.87) is found 

between σp and ∆H298, where stronger EWGs coordinated to BF2X yield an increase in 

affinity. Thus, as expected in coordinate covalent bond formation, the stronger the 

electron withdrawing substituent on the Lewis acid, the stronger the binding affinity of 

the adduct. Hammett's constants were originally derived to understand reaction 
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mechanisms by taking advantage of linear free energy relationships.336, 353 Consequently, 

the strong linear correlation found between the binding enthalpy and Hammett's 

constants should not be overinterpreted, since free energy is not considered. Hammett's 

constants are merely being used as a tool to gauge the electron donating and 

withdrawing tendency of the substituent. 

 

X σp
336, 337 ∆H298 

-N2
+ 1.910 -76.1 

-NO2 0.778 -24.2 
-CN 0.660 -16.6 
-CF3 0.540 -19.7 
-CO2H 0.450 -18.1 
-F 0.062 -11.7 
-H 0.000 -8.3 
-CH2CH3 -0.151 -6.7 
-CH3 -0.170 -6.0 
-OCH3 -0.268 -5.5 
-OH -0.370 -5.1 
-NH2 -0.660 -3.2 

a  All energies are in kcal/mol. 

 

Table 5.3. Substituents, Hammett Constants, and Binding Enthalpies between BF2X and 2-
propenal. 
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Eighteen stereoelectronic effects presumed to influence ∆H298 between the 

dienophile and BF2X have been investigated and reported in Table 5.4. Unsurprisingly, 

the principal FMO interaction responsible for the formation of the coordinate covalent 

bond through donation from the carbonyl oxygen lone pair to the empty 2p orbital on 

boron (n(O) → n*(B)) is orders of magnitude stronger than all other interactions (Table 

5.4). However, n(O) → n*(B) does not explain ∆H298 variation satisfactorily (Figure 

5.5D; R2 = 0.59). Thus, despite its strength, the traditional donor-acceptor interaction 

does not correlate with the binding affinity of adduct formation. 
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Figure 5.4. Binding enthalpy between BF2X and 2-propenal vs. the Hammett substituent 
constant, σp.  All energies are in kcal/mol. 
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 π(C=O) → σ*(B–X) π(C=O) → σ*(B–F) 
-N2

+ NAc 20.28 
-NO2 0.00 6.34 
-CN 0.00 5.26 
-CF3 2.63 2.25 
-CO2H 2.75 2.66 
-F 0.00 3.94 
-H 0.98 2.04 
-CH2CH3 0.00 2.75 
-CH3 0.61 1.93 
-OCH3 0.08 0.12 
-OH 0.79 0.76 
-NH2 0.00 0.00 
 σ(B–X) → σ*(B–O) σ(B–F) → σ*(B–O) 
-N2

+ NAc 0.45 
-NO2 3.44 1.40 
-CN 3.12 2.44 
-CF3 3.23 3.17 
-CO2H 3.04 3.01 
-F 2.75 5.51 
-H 3.14 5.80 
-CH2CH3 1.68 7.47 
-CH3 1.63 6.69 
-OCH3 2.04 10.15 
-OH 1.39 7.16 
-NH2 0.38 0.45 
 n(O) → σ*(B–X) n(O) → σ*(B–F) 
-N2

+ NAc 7.67 
-NO2 2.95 2.06 
-CN 1.80 2.70 
-CF3 0.07 4.12 
-CO2H 0.00 4.44 
-F 1.67 2.89 
-H 0.40 1.99 
-CH2CH3 0.28 0.37 
-CH3 0.08 1.50 
-OCH3 0.00 0.00 
-OH 0.11 0.93 
-NH2 0.00 1.06 

 

  

Table 5.4. Total Strength of Each Stereoelectronic Effect within Each Substituted Lewis Acid 
Adduct.a 
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Table 5.4. (continued). 

 n(O) → n*(B)  
-N2

+ 466.0  
-NO2 329.3  
-CN 300.3  
-CF3 321.0  
-CO2H 342.8  
-F 236.9  
-H 228.6  
-CH2CH3 178.4  
-CH3 192.5  
-OCH3   20.0  
-OH 122.7  
-NH2    2.1  
 σ(B–O) → σ*(B–X) σ(B–O) → σ*(B–F) 
-N2

+ NAc 0.37 
-NO2 1.29 1.32 
-CN 0.58 2.00 
-CF3 1.70 1.88 
-CO2H 1.17 1.65 
-F 1.06 3.04 
-H 0.72 2.83 
-CH2CH3 0.61 2.90 
-CH3 0.52 3.00 
-OCH3 0.16 0.79 
-OH 0.56 2.40 
-NH2 NAd NAd 
 σ(B–O) → σ*(C–C)  
-N2

+ 4.66  
-NO2 8.09  
-CN 8.98  
-CF3 9.36  
-CO2H 9.16  
-F 11.34  
-H 11.57  
-CH2CH3 14.60  
-CH3 13.01  
-OCH3 24.84  
-OH 16.55  
-NH2 NAd  
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Table 5.4. (continued). 

 σ(C=O) → σ*(B–O)  
-N2

+ 0.87  
-NO2 0.75  
-CN 0.65  
-CF3 0.83  
-CO2H 1.03  
-F 0.47  
-H 0.50  
-CH2CH3 0.71  
-CH3 0.58  
-OCH3 0.32  
-OH 0.33  
-NH2 NAd  
 σ(C=O) → σ*(B–X) σ(C=O) → σ*(B–F) 
-N2

+ NAc 0.17 
-NO2 0.00 0.00 
-CN 0.00 0.00 
-CF3 0.00 0.00 
-CO2H 0.00 0.10 
-F 0.00 0.06 
-H 0.00 0.00 
-CH2CH3 0.00 0.00 
-CH3 0.00 0.00 
-OCH3 0.00 0.16 
-OH 0.00 0.11 
-NH2 0.00 0.00 
 n(O) → σ*(B–O)  
-N2

+ 0.23  
-NO2 1.21  
-CN 1.22  
-CF3 0.72  
-CO2H 0.66  
-F 1.18  
-H 1.03  
-CH2CH3 1.67  
-CH3 1.57  
-OCH3 4.73  
-OH 2.75  
-NH2 NAd  
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Table 5.4. (continued). 

 σ(B–O) → σ*(C–H)  
-N2

+ 0.78  
-NO2 2.24  
-CN 2.72  
-CF3 3.13  
-CO2H 2.84  
-F 4.57  
-H 4.76  
-CH2CH3 7.46  
-CH3 5.89  
-OCH3 25.0  
-OH 9.39  
-NH2 NAd  
 n(F) → σ*(B–O)b n(X) → σ*(B–O)b 
-N2

+ 52.49 NAe 
-NO2 50.08 NAe 
-CN 53.78 NAe 
-CF3 50.91 NAe 
-CO2H 48.10 NAe 
-F 78.21 25.11 
-H 50.99 NAe 
-CH2CH3 57.99 6.27 
-CH3 56.61 5.37 
-OCH3 78.83 60.56 
-OH 60.54 41.18 
-NH2 NAd NAd 
 σ(C–C) → σ*(B–O)  
-N2

+ 2.36  
-NO2 2.48  
-CN 2.58  
-CF3 2.31  
-CO2H 2.40  
-F 1.91  
-H 2.34  
-CH2CH3 2.08  
-CH3 2.23  
-OCH3 0.57  
-OH 1.60  
-NH2 NAd  
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Table 5.4. (continued). 

 σ(C–H) → σ*(B–O)  
-N2

+ 0.00  
-NO2 0.09  
-CN 0.00  
-CF3 0.00  
-CO2H 0.00  
-F 0.21  
-H 0.00  
-CH2CH3 0.00  
-CH3 0.00  
-OCH3 0.19  
-OH 0.24  
-NH2 NAd  
 σ(B–X) → π*(C=O) σ(B–F) → π*(C=O) 
-N2

+ NAc 0.25 
-NO2 0.00 0.24 
-CN 0.00 0.00 
-CF3 0.75 0.05 
-CO2H 0.72 0.00 
-F 0.11 0.22 
-H 0.84 0.15 
-CH2CH3 0.00 0.00 
-CH3 0.93 0.34 
-OCH3 0.00 0.00 
-OH 0.07 0.05 
-NH2 0.00 0.00 
 σ(B–O) → σ*(C=O)  
-N2

+ 0.70  
-NO2 0.40  
-CN 0.00  
-CF3 0.43  
-CO2H 0.66  
-F 0.09  
-H 0.12  
-CH2CH3 0.09  
-CH3 0.06  
-OCH3 2.53  
-OH 0.06  
-NH2 NAd  
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Table 5.4. (continued). 

 σ(B–O) → π*(C=O)  
-N2

+ 0.00  
-NO2 0.00  
-CN 0.00  
-CF3 0.18  
-CO2H 0.57  
-F 0.00  
-H 0.00  
-CH2CH3 0.00  
-CH3 0.00  
-OCH3 0.00  
-OH 0.00  
-NH2 NAd  
 σ(B–X) → σ*(C=O) σ(B–F) → σ*(C=O) 
-N2

+ NAc 0.46 
-NO2 0.14 1.36 
-CN 0.00 1.10 
-CF3 0.66 0.97 
-CO2H 0.50 1.14 
-F 0.54 1.25 
-H 1.34 0.45 
-CH2CH3 0.95 0.16 
-CH3 0.93 0.34 
-OCH3 0.06 0.06 
-OH 0.33 0.43 
-NH2 0.00 0.00 
 π(C=O) → σ*(B-O)  
-N2

+ 0.00  
-NO2 0.00  
-CN 0.00  
-CF3 0.00  
-CO2H 0.25  
-F 0.00  
-H 0.00  
-CH2CH3 0.00  
-CH3 0.00  
-OCH3 0.00  
-OH 0.00  
-NH2 NAd  
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Table 5.4. (continued). 

 π(C=C) → π*(C=O)  
-N2

+ 93.69  
-NO2 47.15  
-CN 43.92  
-CF3 44.64  
-CO2H 43.58  
-F 39.42  
-H 37.82  
-CH2CH3 36.38  
-CH3 36.02  
-OCH3 29.54  
-OH 34.06  
-NH2 27.66  

a  Y=X or F. All values are in kcal/mol. When an interaction involves the B-F bond, the reported magnitude 
represents the sum of both interactions involving the B-F bonds.  

b Only antiperiplanar lone pairs are observed to be significant and thus considered. 
c  As displayed in Figure 5.3, the B—N2

+ distance is 2.59 Å, thus a σ(B-X) bond does not exist. 
d As displayed in Figure 5.3, the B—O distance is 2.58 Å, thus a σ(B-O) bond does not exist 
e No antiperiplanar orbitals with respect to the σ*(B-O). 

 

Figure 5.5 displays all linear correlations between stereoelectronic interactions 

considered and ΔH298. In particular, the total strength of the three π(C=O) → σ*(B–Y) 

(Y = F, F, and X) interactions (Table 5.4) yields the highest correlation with ΔH298 

(Figure 5.5A; R2 = 0.98), where a stronger orbital interaction results in an increased 

affinity. Moreover, the P-value (7.2 × 10-10) associated with the F-statistic is much lower 

than α = 0.05 (95% confidence interval), indicating the correlation is hardly a 

coincidence. As an illustration, a single π(C=O) → σ*(B–F) interaction between 

2-propenal and BF3 is shown by Figure 5.6, where the π density on the carbonyl group is 

transferred to the B–F anti-bonding sigma orbital. Thus, the first point of this work is 

realized, where the binding affinity of the Lewis acid adduct is controlled not by the 

traditional donor-acceptor model presented by Lewis, but by a transfer of electron 
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density from the dienophile π-system to the antibonding orbitals between boron and its 

substituents on the Lewis acid after the coordinate covalent bond formed. 

 

  

  

Figure 5.5. Binding enthalpy between BF2X and 2-propenal vs. the total strength of each 
interaction (Table 5.4). The σ(C-H) → σ*(B-O), σ(B-O) → π*(C=O) and π(C=O) → σ*(B-O) 
interactions are omitted since their strengths are 0.0 kcal/mol for the majority of X (Table 5.4). 
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Figure 5.5. (continued). 
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Figure 5.5. (continued).   
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In the next phase of the investigation, the origin and control of the π(C=O) → 

σ*(B–Y) (Y = F, F, and X) orbital interactions were investigated. Geminal interactions 

between each of the three substituents coordinated to boron were found to be crucial to 

the modulation of the π(C=O) → σ*(B–Y) strength. The net effect is that geminal 

interactions lower the σ* orbitals of the Lewis acid substituents, ultimately leading to 

efficient orbital overlap with the π(C=O) of the dienophile.  

Each antibonding orbital is modulated by the electronic tendencies (EWG or 

EDG) of the other two geminal substituents. A systematic evaluation of exchanging X 

with EDGs and EWGs reveals that the energy levels of the two σ*(B–F) orbitals 

decrease and increase, respectively, as compared to when X = H (neither EDG nor 

EWG). For example, when X = NO2 (e.g. an EWG) the average energy level of both 

 

 

Figure 5.6. Orbital overlap corresponding to one of the three possible π(C=O) → σ*(B–F) 
stereoelectronic interactions within the BF3 Lewis acid activated dienophile adduct. The strength 
of this individual interaction is 1.97 kcal/mol. 
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σ*(B–F) orbitals is 1.189 hartrees above the energy level of π(C=O). In contrast, when 

X = NH2 (e.g. an EDG) the average energy level of both σ*(B–F) orbitals is 1.248 

hartrees above the energy level of π(C=O). Consequently, there is a lower energy gap 

between σ*(B–F) and π(C=O) when X = NO2 than when X = NH2, thus a stronger 

π(C=O) → σ*(B–F) interaction is observed for when X = NO2.  Figure 5.7 displays the 

relative energies of σ*(B–F), as compared to π(C=O), when X = NO2, H, and NH2. 

 

 

 

Figure 5.7. Energy diagram comparing the relative average energies of both σ*(B-F) orbitals to 
π(C=O) when X = NO2, H, and NH2. All energies are in hartrees and kcal/mol as indicated. 
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As X is systematically exchanged with EDGs and EWGs, its effect upon the 

geminal σ*(B–F) orbitals has been computed. Figure 5.8 provides a more 

comprehensive connection between σp of X and the average energy level of the two 

geminal σ*(B–F) orbitals, where a stronger EWG substituted on the isolated Lewis acid 

decreases the average energy level of σ*(B–F) (R2 = 0.86). Subsequently, the lower 

σ*(B–F) orbitals relative to π(C=O) allow for stronger π(C=O) → σ*(B–F) interactions 

to occur (Figure 5.9; R2 = 0.90). An EWG decreases the energy levels of the geminal 

σ*(B–F) orbitals, decreasing the energy gap between σ*(B–F) and the dienophile 

π(C=O), thus facilitating the π(C=O) → σ*(B–F) hyperconjugation, and increasing the 

affinity between the Lewis acid and 2-propenal (Figure 5.10; R2 = 0.90). Although X is 

systematically substituted and discussed to illustrate the connection between geminal 

Lewis acid interactions, σ*(B–F) energy lowering, and π(C=O) → σ*(B–F) strengths, it 

must be remembered that the two fluorine substituents also influence the other σ*(B–F) 

and σ*(B–X) orbitals of the geminal pairs. However, the systematic impact of X’s 

electronic tendencies upon the energy levels of σ*(B–F) has been discussed for 

simplicity and clarity. Consequently, it is the total of the three π(C=O) → σ*(B–Y) 

interactions that is important, where Y = X, F and F, as discussed previously and in the 

following sections. 
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Figure 5.8. Average σ*(B–F) energy level (hartrees) within the isolated BF2X Lewis acids vs. 
Hammett substituent constants, σp. 

Figure 5.9. Average σ*(B–F) energy level (hartrees) within the isolated BF2X Lewis acids vs. the 
total strength of the two π(C=O) → σ*(B–F) interactions. 
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Lupton dissected σp
 into 53% resonance (R) and 47% field contributions (F).337 

In attempt to determine which factor influences the average energy level of σ*(B–F), 

correlations between the average energy level of σ*(B–F) and both F and R were 

determined and shown in Figure 5.11. Both correlations are lower than that achieved by 

considering σp. The data suggest that both R and F effects collectively influence the 

energy levels of σ*(B–Y).  In summary, the differences in adduct binding affinity are a 

direct result of the π(C=O) → σ*(B–Y) orbital interactions, which are facilitated by 

geminal interactions between each substituent coordinated to boron and the remaining 

σ* orbitals.   
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5.5 Convergence Behavior of Computed Activation Energies 

Similar to the study conducted for the ammonia borane coordinate covalent bond 

(Chapter 3), the convergence behavior of the activation energy for the Diels-Alder 

reaction between 1,3-butadiene and 2-propenal as a function of basis functions is 

explored and compared to the experimental activation energy of Δ‡E298 = 19.7 ± 0.3 

kcal/mol.354 The ability of density functionals to predict activation energies of the 

Diels-Alder reaction has been reported.178, 334, 355 In particular, B3LYP/6-31G(d) has 

been reported to be the most accurate, when compared to experiment and higher level 

computations.355 However, it has been reported that that B3LYP, employed with larger 

basis sets, yields activation energies with larger errors, i.e, showed divergent behavior 

from the experimental value.355  

A systematic evaluation of the activation energy with M06-2X, M05-2X, and 

B3LYP as a function of the correlation consistent basis sets (cc-pVXZ; X = D, T, Q, 5) 

has been performed in order to extrapolate the appropriate electronic energies to the 

complete basis set limit. The extrapolation scheme proposed by Martin has been 

employed, where the electronic energy ( ) is a function of inverse powers of the 

angular momentum, n (n = D, T, Q, and 5), plus the electronic energy in the limit of the 

complete basis ( ) set (Equation 5.1).197, 356  , A, and B are determined by a self 

consistent fit.  

  5.1  
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It is discovered that M06-2X must be employed with at least the cc-pV5Z basis 

set (1,278 basis functions) to yield a near converged Δ‡E298 (Figure 5.12). The cc-pV5Z 

basis set differs from the extrapolated value by 0.2 kcal/mol. The inherent error within 

the M06-2X functional is exposed in the limit of the complete basis set, where a 1.8 

kcal/mol difference with the experimental value of Δ‡E298 = 19.7 ± 0.3 kcal/mol354 is 

observed. An additional error of 1.3 kcal/mol is introduced when the smaller and more 

practical 6-311++G(3df,2p) basis set (412 basis functions) is employed with M06-2X, 

which is the level found to agree with experimental binding energies of the coordinate 

covalent bond. Consequently, the M06-2X/6-311++G(3df,2p) predicted activation 

energy is 16.6 kcal/mol, or 3.1 kcal/mol lower than the experimental value. M05-2X 

predicted activation energies converge similarly to that observed for the M06-2X 

functional; however, the inherent error introduced by the M05-2X functional is 3.1 

kcal/mol rather than 1.8 kcal/mol.  
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Although, B3LYP does not model coordinate covalent bound adducts accurately, 

24, 173 its convergence behavior is investigated, since it is a commonly employed 

functional, as discussed in Chapter 2.7.3. It is interesting to note that the activation 

energy predicted by B3LYP/6-31G(d) (Δ‡E298 = 19.5 kcal/mol) for the Diels-Alder 

reaction between 2-propenal and 1,3-butadiene, is in excellent agreement with the 

experimental value of Δ‡E298 = 19.7 ± 0.3 kcal/mol.354 However, increasing the basis set 

and extrapolating to the complete basis set limit reveals that B3LYP diverges from the 

experimental activation energy by 4.3 kcal/mol. The data suggest that B3LYP/6-31G(d) 
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Figure 5.12. Convergence behavior of Δ‡E298 as a function of basis functions. The M06-2X, 
M05-2X, and B3LYP methods are employed with the cc-pVXZ (X = D, T, Q, and 5) basis sets to 
extrapolate to the complete basis set limit, E(inf). M06-2X converges toward the experimental 
value but underestimates the activation energy by 1.8 kcal/mol. B3YLP predicts an accurate 
activation energy with a small basis set (6-31G(d)); however, it diverges from experiment in the 
limit of the complete basis set. The light blue box indicates the experimental activation energy of 
Δ‡E298 = 19.7 ± 0.3 kcal/mol. The data point symbolized by the black outlined triangle is the 
activation energy predicted by B3LYP/6-31G(d). 
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allows a unique cancellation of errors to occur, where the final result is in fortuitous 

agreement with experiment. Such a unique combination of method and basis set is 

referred to as a “Pauling point,” where excellent agreement with experiment is observed 

by employing a fairly low level of theory, but is eliminated whenever the level of theory 

is improved by increasing the basis set.357 Thus, the inherent error found in M06-2X (1.8 

kcal/mol) is improved over that found for B3LYP (4.3 kcal/mol). 

It is important to note that it is the relative differences in activation barriers 

(ΔΔ‡E298) that is of most importance to understand the effect of catalysis. It is assumed 

that the errors cancel by taking the difference between activation energies of catalyzed 

and uncatalyzed reactions. Consequently, the AlCl3 catalyzed and uncatalyzed 

Diels-Alder reaction between 1,3-butadiene and methyl acrylate has been investigated 

with M06-2X/6-311++G(3df,2p) and compared to experiment.100 The activation 

energies for the AlCl3 catalyzed and uncatalyzed Diels-Alder reactions are Δ‡E298 = 10.4 

± 1.9 and 18.0 ± 1.0 kcal/mol, respectively, and thus a relative difference of ΔΔ‡E298 = 

7.6 ± 2.1 kcal/mol is observed. The relative difference of 9.5 kcal/mol as predicted by 

M06-2X/6-311++G(3df,2p) is within the experimental uncertainty, thus confidence is 

conveyed in the fact that M06-2X/6-311++G(3df,2p) is able to model the relative 

differences in activation energies of Lewis acid catalyzed Diels-Alder reactions. 

Consequently, the practical and efficient M06-2X/6-311++G(3df,2p) basis set is 

employed to predict Gibbs free activation barriers for all Diels-Alder reactions 

discussed. 

In summary, it is discovered that the energetics associated with the transition 

structure converge slower in terms of basis functions than compared to those associated 
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with the coordinate covalent bound ground state. Consequently, a larger basis set must 

be used, specifically the cc-pV5Z basis set, in order to achieve a near converged 

activation energy. However, this is neither practical nor efficient. The inherent 

inaccuracies of the M06-2X formalism in the limit of the complete basis set introduce a 

1.8 kcal/mol error, while employing the smaller 6-311++G(3df,2p) basis set introduces 

an additional 1.3 kcal/mol error, totaling a final error of 3.1 kcal/mol. Although 

M06-2X/6-311++G(3df,2p) underestimates the activation barriers by ca 3.0 kcal/mol, it 

predicts the relative differences between the catalyzed and uncatalyzed activation 

energies within experimental uncertainty. Consequently, all Gibbs free activation 

barriers (Chapter 5.6) are predicted by M06-2X/6-311++G(3df,2p), realizing that the 

magnitude of each barrier is underestimated by ca. 3 kcal/mol, in better agreement than 

that observed for MP2/6-311++G(3df,2p) and M05-2X/6-311++G(3df,2p), where the 

differences with experiment are 12.4 and 4.4 kcal/mol, respectively. The combination of 

B3LYP with 6-31G(d) is recognized to be a Pauling point, where excellent agreement 

between experiment and theory is observed. 

 

5.6 BF2X Catalyzed and Uncatalyzed Diels-Alder Reaction between 2-

Propenal and 1,3-Butadiene 

Four reaction pathways are possible for the Diels-Alder reaction between 

2-propenal and 1,3- butadiene. Consistent with previous conventions,108, 358 the transition 

structures (TSs) are denoted as NC (endo, s-cis acrolein), XC (exo, s-cis acrolein), NT 

(endo, s-trans acrolein) and XT (exo, s-trans acrolein) (Figure 5.13).108, 358  
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NC, Δ‡G298 = 29.7 kcal/mol NT, Δ‡G298 = 30.6 kcal/mol 

  

XC, Δ‡G298 = 30.7 kcal/mol XT, Δ‡G298 = 32.3 kcal/mol 

  

 

The NC TS has been reported to be the most stable for the same uncatalyzed345, 

358 and BF3 catalyzed358 Diels-Alder reaction. The stability of the endo TS73 is 

commonly attributed to stabilizing secondary orbital interactions (SOIs) that are 

unobtainable during the exo reaction pathway, as discussed in Chapter 1.3.1.104-107 

Figure 5.13. Four possible transition structures for the Diels-Alder reaction between 2-propenal 
and 1,3-butadiene. NC (endo, s-cis acrolein), XC (exo, s-cis acrolein), NT (endo, s-trans 
acrolein) and XT (exo, s-trans acrolein). The dashed lines correspond to the C-C forming bonds. 
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However, the influence of SOIs upon stereoselectivity remains debated.109, 110 

Regardless of the stabilizing interactions that promote the endo TS, our results regarding 

the uncatalyzed Diels-Alder reaction between 1,3 butadiene and 2-propenal indicate that 

the NC TS is indeed more stable than the NT, XC, and XT TSs by 0.9, 1.0 and 2.6 

kcal/mol, respectively (Figure 5.13). Moreover, the BF3 catalyzed Diels-Alder reaction 

follows the NC reaction pathway as compared to the NT, XC, and XT pathways by 4.2, 

2.7, 7.1 kcal/mol, respectively (Figure 5.14).  It is suspected that the remaining BF2X 

catalyzed Diels-Alder reactions will follow the lower energy reaction pathway via the 

NC transition structure. Consequently, only the NC TSs have been computed, analyzed, 

and reported.  
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NC, Δ‡G298 = 19.1 kcal/mol NT, Δ‡G298 = 23.3 kcal/mol 

  

XC, Δ‡G298 = 21.8 kcal/mol XT, Δ‡G298 = 26.2 kcal/mol 

  

 

Activation barriers, ∆‡G298, for BF2X catalyzed Diels-Alder reactions between 

1,3-butadiene and 2-propenal decrease as the electron withdrawing nature of X increases 

(Table 5.5), as expected from FMO analysis. Figure 5.15 displays a correlation between 

Figure 5.14. Four possible transition structures for the BF3 catalyzed Diels-Alder reaction 
between 2-propenal and 1,3-butadiene. NC (endo, s-cis acrolein), XC (exo, s-cis acrolein), NT 
(endo, s-trans acrolein) and XT (exo, s-trans acrolein). The dashed lines correspond to the C-C 
forming bonds. 
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the total strength of the three π(C=O) → σ*(B–Y) interactions and the decrease in 

∆‡G298 (R2 = 0.81, P-value = 1.6 × 10-4). Furthermore, as the computed interaction 

becomes stronger, the π(C=C) → π*(C=O) interaction strengthens (Figure 5.16; R2 = 

0.98), indicating that the π(C=O) → σ*(B–Y) interaction facilitates dienophile π-

conjugation from π(C=C) to π*(C=O), lowering the energy of the dienophile LUMO, 

and ultimately decreasing the activation barrier. The magnitude of the π(C=C) → 

π*(C=O) interaction demonstrated by each BF2X activated dienophile is reported in 

Table 5.4. As an illustration, the π-conjugation from π(C=C) to π*(C=O) when X = F is 

shown by Figure 5.17. 

When π(C=C) → π*(C=O) strengthens, ∆‡G298 decreases (Figure 5.18; R2 = 

0.83), further illustrating the intimate connection between dienophile π-conjugation, 

initiated by π(C=O) → σ*(B–Y), and a lower activation barrier. The synergistic 

movement of electron density initiated by the Lewis acid geminal interaction explains 

the differences in ∆‡G298 and thus the rate enhancement of the Diels-Alder reaction.  It is 

natural to assume that as the σ*(B–Y) energy levels are lowered the empty 2p orbital of 

boron will be lowered as well. The consequence of lowering the n*(B) orbital should 

promote coordinate covalent bonding, where the traditional donor-acceptor 

hyperconjugation should strengthen. This is indeed found, where π(C=O) → σ*(B–Y) 

correlates strongly with n(O) → n*(B) (Figure 5.19; R2 = 0.95; P-value = 2.4 × 10-7). 
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X σp
336, 337 ∆‡G298 

-N2
+ 1.910 NAa 

-NO2 0.778 13.1 
-CN 0.660 15.8 
-CF3 0.540 18.6 
-CO2H 0.450 19.2 
-F 0.062 19.1 
-H 0.000 20.1 
-CH2CH3 -0.151 19.9 
-CH3 -0.170 20.7 
-OCH3 -0.268 23.4 
-OH -0.370 21.9 
-NH2 -0.660 28.5 

a  All energies are in kcal/mol. 
b After many attempts, a TS with X=N2

+ was unable to be located.   
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Table 5.5. Substituents, Hammett Constants, and Gibbs Free Activation Energies for the BF2X 
Catalyzed Diels-Alder Reaction between 2-propenal and 1,3-butadiene.a 

Figure 5.15. Gibbs free activation energy, Δ‡G298, for the BF2X catalyzed Diels-Alder reaction 
between 1,3-butadiene and 2-propenal vs. the total strength of the three π(C=O) → σ*(B–Y) 
interactions  (Y = X, F and F).  All  values  are  in  kcal/mol. 
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Figure 5.16. The strength of π(C=C) → π*(C=O) vs. the total strength of the three π(C=O) → 
σ*(B–Y) interactions (Y = X, F and F). All values are in kcal/mol.   

Figure 5.17. Orbital overlap corresponding to the π(C=O) → π *(C=O) stereoelectronic 
interaction within the BF3 Lewis acid activated dienophile adduct. The strength of this individual 
interaction is 39.42 kcal/mol. 
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Figure 5.18. Gibbs free activation energy, Δ‡G298, for the BF2X catalyzed Diels-Alder reaction 
between 1,3-butadiene and 2-propenal vs. the strength of π(C=C) → π*(C=O). All values are in 
kcal/mol.    
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5.7 Analysis of Four Additional Lewis Acids (BH3, BCl3, B(OH)3 and 

B(CF3)3) 

In order to extend the investigation beyond the specific case of each boron Lewis 

acid possessing two σ*(B–F) orbitals, four additional Lewis acids have been 

investigated (BH3, BCl3, B(OH)3, and B(CF3)3), which do not possess σ*(B–F) orbitals. 

The total strength of the three π(C=O) → σ*(B–X) (X = H, Cl, O, C) interactions 

increases across the Lewis acid activated dienophiles, as OH < H < F < Cl < CF3, where 

the magnitude is 0.0, 3.90, 3.94, 7.36 and 7.74 kcal/mol, respectively, in line with 
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Figure 5.19. The total strength of the three π(C=O) → σ*(B–Y) interactions (Y = X, F and F) 
within the BF2X activated 2-propenal vs. the strength of the main donor-acceptor interaction 
necessary for the formation of the coordinate covalent bond, n(O) → n*(B). All values are in 
kcal/mol. 
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increasing σp (-0.37 < 0.0 < 0.062 < 0.23 < 0.54). Consequently, ∆‡G298 is expected to 

decrease as OH > H > F > Cl > CF3, which is in fact the case, as predicted activation 

barriers are ∆‡G298 = 28.6, 22.5, 19.1, 13.5 and 11.9 kcal/mol, respectively (Figure 5.20; 

R2 = 0.90). The data suggest that the π(C=O) → σ*(B–X) interactions govern the rate 

enhancement of the Diels-Alder reaction with and without imposing the constraint of the 

boron Lewis acid possessing two σ*(B–F) orbitals. 
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Figure 5.20. Gibbs free activation energy, Δ‡G298, for the BX3 catalyzed Diels-Alder reaction 
between 1,3-butadiene and 2-propenal vs. the total strength of the three π(C=O) → σ*(B–X) 
interactions (X= OH, H, F, Cl, CF3).  All values are in kcal/mol. 
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5.8 Conclusions 

In summary, the identified Lewis acid geminal interactions govern both the 

binding affinity of adduct formation and the activation barrier of the Diels-Alder 

reaction. The geminal interactions lower the σ*(B–Y) orbitals, promoting the transfer of 

electron density from the carbonyl group of the dienophile. The donation from the 

carbonyl group initiates π-conjugation across the dienophile, lowering the π*(C=C) 

involved in the pericyclic process, and ultimately decreases the activation barrier. The 

results are consistent with Fukui’s traditional FMO model, but provide a level of detail 

that has not been reported previously. The presented quantitative connection between 

geminal Lewis acid interactions and the modulation of the dienophile LUMO provides a 

fundamental understanding of how the rates of common organic reactions are controlled 

through coordinate covalent bond involvement. 

It is discovered that B3LYP/6-31G(d) is a Pauling point, thus when the basis set 

is improved, the predicted activation energies diverge from experiment. 

B3LYP/6-31G(d) establishes a unique cancelation of errors, introduced by the 

approximate exchange-correlation functional and the basis set truncation. As a result, 

B3LYP/6-31G(d) yields a fortuitous result in excellent agreement with experiment. 

M06-2X predicted activation energies converge toward the experimental value, in 

contrast to B3YLP; however, the converged value underestimates the barrier by ca. 2 

kcal/mol. M06-2X in conjunction with the 6-311++G(3df,2p) basis set underestimates 

the barrier by ca. 3 kcal/mol; however, the errors cancel when the differences in 
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activation barriers are compared, and thus the relative differences are modeled 

accurately.    
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