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ABSTRACT

A FINITE ELEMENT APPROACH TO MODEL ELECTROMAGNETIC FIELDS
SCATTERED BY A BURIED CAVITY

By
Nicole Pernischo&

December 2008

Thesis supervised by Dr. John Fleming

This research investigates the plane-wave scattering &two-dimensional arbitrarily
shaped cavity embedded in an infinite metallic surface thatheen covered with a layer
or layers of dielectric material, considering both tramseeelectric and transverse magnetic
polarizations. Due to the shape of the cavity, this problsrapgproached using the finite
element method. This approach provides a boundary conditithe opening of the cavity
which accounts for the effect of the overlayer(s) while coinfy the problem to the finite
domain of the cavity itself. After determination of the b for the electric and magnetic
fields at the cavity aperture, the strength of the return ezdothen be calculated and
displayed in a radar cross section. In addition, numerieaifications and experiments
illustrating the efficacy of the approach will be provideddmmparison to other previously

tested methods.
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Chapter 1

Introduction

The study of electromagnetic plane scattering and radas@ection (RCS) measurements
has been extensively investigated, specifically for thé&amnyl aircraft development industry.
There are many practical applications that require the kedge of the RCS signature. An
example is radar technology used to detect and locate &jrehgps and missiles [32, 12].

A radar system emits electromagnetic waves towards a faaigdtby comparing the
strength of the emitted wave to the return echo, displaygdhkalts in a RCS. The RCS
of each object is unique and also dependent on the way in vihetvave scatters from its
surface. Thus itis important to analyze the effect thatoteggisurfaces have on the scattering
profile [26]. Any inconsistency in a target’s surface createlifferent RCS signature, which
has driven research to focus on the effect of gaps, crackseards on these profiles.

The accurate prediction and calculation of the RCS signafusggets is very important
to the modern military because of different RCS enhancemepiicagions [32, 12]. The
military utilizes these types of predictions in camouflagstealth aircraft, where the objective
is to reduce the total RCS signature by minimizing the scattereergy from the surface
of the body. Stealth aircraft proved their efficiency in therdtan Gulf War by utilizing
the element of surprise in an attack while providing inceebsurvival rates for American
pilots.

There are also occasions where the military needs to enlmarater the expected RCS



profile for defense purposes. For example, unmanned, réyateted air vehicles are used
to gather intelligence data or to saturate enemy air defertsis kind of vehicle is smaller
in size than a fighter aircraft. Enhancing its RCS signatureselrer, reduces an enemy’s
capacity for distinguishing between it and a much largentéghize aircraft [12].

In either scenario, whether reducing the RCS or enhancingig,necessary to have
efficient methods of calculating the RCS signatures of a soagtdoody. This can be
accomplished by optimizing the design of the aircraft. Thdyshape and material coating
can alter these signatures, and both factors should bedawadiwhen attempting to model
accurate predictions.

The prediction of these scattering profiles has also beagrered as a possible
nondestructive technique and is currently an importard béktudy for aircraft maintenance
[5]. Typical maintenance procedures begin with strippheydircraft surface of its coating in
order to perform a visual inspection for signs of fatigue aratks in the surface. Alternate
methods for these inspections have been of interest duests associated with the process,
and when considering the use of electromagnetic scattettiegability to account for the
material coating in predicting the RCS is essential. Parafghments can be made for the
maintenance of other large metallic structures, such agési and buildings, where cost

and time constraints are equally demanding.

1.1 Statement of the Problem

A small crack or seam in a metallic surface can be modeled byaare! in an infinite
plane. (See Figure 2.1) This structure is visualized ingtdienensions, however the study
of similar structures in two-dimensions offers computadilty efficient approximations.
Since the problem can be decomposed into two-dimensioagntarest is in seeking the
results when the incident wave is of transverse electrig @rtel transverse magnetic (TM)
polarization. Methods to determine the scattering in fre&ce typically involve the use

of Green’s functions. The material layer over the surfacktae material inside the cavity



adds much complexity to the problem of determining the fiegilde the cavity. An alternate
approach is the use of the finite element method (FEM). In phigect, a closed form
solution of the plane wave inside the cavity space utilizes EEM, then the restriction
of this solution to the opening of the cavity determines the RCHe scattered wave. The
aim of this research is to investigate the two-dimensiogattering of an incident plane
wave off the surface of a metal ground plane, with embeddeitrary shaped cavity, that

has been completely covered with a dielectric material.

1.2 Related Work

The importance of cavity problems in the computation of RC$teasome extensive
studies [1, 2, 3, 6, 14, 15, 16, 17, 18, 19, 31]. A two-dimenaiaavity can be used to
model long seams or cracks in metallic surfaces which camfgigntly contribute to the
overall radar profile of large objects. There have been noosetechniques developed to
account for the electromagnetic scattering from a cavagkied aperture in a ground plane,
including Fourier transform, finite element, integral etiu@s, cavity mode coupling and
impedance boundary conditions. These approaches arerpyiagaplied to a problem with
a material filled cavity in a perfect electrical conductoE(® ground plane that opens into
an empty half space.

The Fourier transform technique was utilized by Park and Emexamine the TE and
TM scattering from a rectangular cavity embedded in an i&iground plane [20, 23,
22]. The method computes a closed form solution by applyiogriér techniques and
approximating a series solution for the field inside the tyavihe Fourier approach can be
extended to the case of the cavity underneath an overlaykrappropriate modifications
[7]. However, the Fourier solution is limited to the case afeatangular cavity. When
dealing with non-rectangular cavities, the Fourier appihda applicable in creating a boundary
condition which can be incorporated to the FEM [28].

Integral equation methods are able to model arbitrarilypsdacavities embedded in



a ground plane. Analysis of the TM case of a material filledteably shaped cavity
was analyzed by Wood using a set of scalar integral equatibtimves master’s thesis
expanded Wood’s results to examine the results of the TE [G&ask?, 32, 31]. Integral
equations can also be combined with the FEM to restrict tiodlpm to a finite domain.
The combined approach is known as the hybrid FE-BI (finite el@nntegral equation)
approach. Again, these techniques are not directly afipéda the case where the material
layer or layers exist outside the cavity. To accommodateveeayers the integral equation
method could employ a Greens function for a layered media.prbblem with the layered
Greens function is that it is in the form of an infinite seri8f [Once an infinite series is
included the important questions of convergence and ttiorcarror are introduced into
the problem. Therefore, an approach which does not needrgen& function will be more
favorable.

An alternate solution to this problem was presented by Vah\Wood which coupled
the FEM with Fourier transforms, expressing the resultsathlbhe TM and TE case [28].
While this approach provides efficient solutions for an asily shaped cavity, the solution
requires that the material is restricted to the cavity sgaglew the half plane and that
the upper half space is empty. Wood was able to account foptioblem, and extended the
research to consider the effect of over-filling the cavitgapwith a dielectric material. This
was accomplished by creating an artificial boundary comwlitin a semi-circle containing
the over-filled material region, and again combining a FENhWourier transforms to solve
for the far field scattering [29, 30]. This methodology failgh the possibility of the entire
surface being coated with a material layer due to the inorgasize of the semi-circle
needed to bound the material region.

When dealing with the problem of a cavity buried beneath acumiflayered material,
the semicircular domain approach fails since no radius cata the material outside of
the cavity. The importance of such a problem is that a twoetisional cavity beneath
a layered material serves as a model of seams or cracks wiectosered by paint or

materials applied during a manufacturing process. Thesiksiand seems would be invisible



to a visual inspection but may be revealed by understantimgdattering characteristics of
the cavity. The mathematical model can serve as a predittioe gcattering of electromagnetic
waves by the buried cavity for use in non-destructive tgsfi). Therefore, it is important

to be able to accommodate such a situation in cavity scagieomputations.

The work proposed in this paper is an extension of previopahjished literature. A
new boundary condition will be provided which restricts greblem to a finite domain yet
properly accounts for the influence of the material layerse FEM will be used to compute
the fields in the finite cavity region. In order to apply the FENE boundary condition will

be incorporated into the weak formulation of the problem.

1.3 Background

Electromagnetic waves are comprised of electric and magoeimponents that oscillate
transversely to one another, while also transversely talifextion of propagation. The
relationship between these two components is best dedanbéematically by Maxwell’s

equations:

O(pH)

VxE = — 5 (1.1)
B 0(eF)

VxH = J+ 5 (1.2)

V-eE = p, (1.3)

V-uH = 0 (1.4)

where E and H are the electric and magnetic fields, respectivélis the current density,
¢ Is the permittivity of the mediumny, is the permeability of the medium and is the free
charge density.

In the problem described, the incident wave is the only seumtroduced into the
problem, as free-space has no current or electric chargeebsittbn, and a dielectric

material is a non-conductive substance which also lacksramiand electric charge. Thus



J = p = 0. Applying this knowledge to the time-harmonic case where= Ee ! is
a shorter way of stating that(xz,y, z,t) = E(z,y,2)e™™", the time-varying forms are
replaced by the corresponding phasor %ld)y (—w). Then Maxwell's equations are

represented as:

VxE = wul (1.5)
VxH = —weFE (1.6)
V-eE = 0 (1.7)
V-uH = 0 (1.8)

The wave equation for the electric field can be determinedibyireating the magnetic

field from Maxwell’'s equations. Taking the curl of both sideequation 1.5 results in:

Vx(VxE) = wuV xH

Use equation 1.6 to substitute forx H, which results in the wave equation for the electric

field as

V xV xE=weuk.

Using some vector calculu§, x V x E can be written as-AE + V(V - E).
SinceV - E = 0, the previous expression reduces+té\ £, which can also be written
as—V?E.

Therefore the wave equation reduces to the so-called HédtmBquation

AE+KE = 0 (1.9)

wherek = /w?ue represents the wave number of the medium. Becalisea vector, the



Helmholtz Equation applies component-wise which means

ANE, +K*E, = 0,
AEy—I—k:2Ey = 0,and

AE,. +K*E, = 0.

In a similar fashion, the wave equation for the magnetic field be determined by eliminating

the electric field, resulting in:

AH+EH =0 (1.10)

wherek = /w?pe and it is also component-wise sinégis a vector.

Maxwell's Equations give the foundation to the Helmholtaiatgon which are later
used to determine important boundary and continuity camtitnecessary for solving the
back scatter and RCS from the buried cavity. The next chaptedescribe the geometry,
continuity and boundary conditions to find the solution & thave lies inside the cavity. It

also includes the RCS plots.



Chapter 2

Formulation of the Problem

2.1 Cavity Problem

In this paper, a solution is being sought given a two-dimamsi model of the cavity
problem. Thus without loss of generality, the entire geayneill be considered invariant
in the z direction. Consider a two-dimensional infinite half planenpuised of an idealized
metal, a PEC. An arbitrarily shaped cavity with the openinggta L is embedded in the
half plane. The entire conducting surface is covered withi dielectric material layer.
(See Figure 2.1) The upper half above the PEC will consistmof tegions. The upper
most region, designated as region 0, contains a sourcereeum that is time-invariant,
homogeneous and linear, with electric permittivityand magnetic permeabilify,. It can
be considered to be open space or air. Below is region 1, comgga dielectric material
with electric permittivitye; and magnetic permeability;. Additionally, the cavity space
below the half plane is defined as region 2 and contains aatlielenaterial with electric
permittivity e, and magnetic permeability,. The thickness of the material layer atop of
the ground plane is denoted fastherefore the layer thickness ranges frgre 0 toy = h

[21].



Begion 0

€040 y=~rh
Begion |
€141 g=0  r=1 y=0
Region 2 (
Ea
PEC

Figure 2.1: Material covered plane with a cavity

2.2 Boundary and Continuity Conditions

Boundary conditions are imposed at the interface betweetwibdomogeneous regions,
where the tangential electric component of a wave is alwaygimuous on crossing a
material boundary, and the tangential magnetic comporfeatir@ve is continuous across
the boundary only if there does not exist a surface currettt@boundary. Since it has been
already established that a surface current does not exisebe any of the three regions,

the general boundary conditions can be considered:

nx (Bg—FE) = 0 (2.1)
nx (By—FEy) = 0 (2.2)
Ax (Hy—Hy) = 0 (2.3)
Ax (Hy—Hy) = 0 (2.4)

wheren is the normal vector to the surface.



Since the electric fields do not exist within the PEC, the bampdonditions outlined

by equations 2.1 and 2.2 reduce to

at the planar surface and inside the cavity walls.

2.3 TMand TE

As previously stated, there are two polarizations and bothb&ing considered in this
research. The electromagnetic waves can be described op-{tlane and are decomposed

into these two polarizations:

1. Ifthe electric componentis perpendicular to theplane, then the magnetic component

is parallel to thery-plane. Together, these two components form the TM field.

2. If the electric component is parallel to thg-plane, then the magnetic component is

perpendicular to they-plane. This situation creates the TE field.

Therefore, the two-dimensional scattering of a TM incideate from an object’s surface
is measured independently of the scattering of a TE incideanve and the results of each
polarization can be analyzed independently.

Since the parameters and the geometry are assumed to biambvarthe z-direction,

the result is a two-dimensional problem. For TM polarizatibe fields have the form

E=(0,0,E,) H=(H,H,O0). (2.7)

10



For TE polarization the fields have the form

E =(E, E,0) H=(0,0,H.). (2.8)

Throughout the paper, the notatiomndv will be used to represerit, andH. respectively.
When necessary, subscripts will be added to denote in whigbiréhe fields are contained.
Also, the superscriptsandr will denote incoming and reflected or outgoing plane waves
while s andt represent scattered and transmitted fields.

The scattering of the electromagnetic wave in the far field fsinction of the plane
wave at the cavity opening. Thus the first step in the propesat is to determine the
wave equation at this location. This solution requires ftdumnsideration of the boundary
conditions affecting the wave. A schematic detailing th@oming, reflected and scattered
waves is provided in Figure 2.2. The total electric field afiom 0, £, is the summation
of all electric fields of the area, whefg, = u, + uj, + u;. Likewise, the total electric field
of region 1 and 2 are similarly determined By = v} + | + u$ and Ey = ub. Similar
formulations for the total magnetic fields of each region barderived.

The representation of an electromagnetic wave is dependehé surrounding constraints
and can take on various forms. The geometry in the describmalgm can be considered
a combination of two entities, separated by the half planeloé¢he half plane, the
electromagnetic wave is bounded by the conducting wallovalihe half plane, the wave
is only restricted by the continuity conditions across thatenal interface. These two
representations can be coupled to solve for the finite eleswfficients along the cavity

opening and applied to the equation of the wave restrictatidogavity at the opening [21].

2.4 Approximation with Finite Element

If the shape of the cavity is rectangular, a Fourier Seriesieaused to find the solution, but
this will not work for an arbitrarily shaped cavity. The FEMrcproduce an approximate

solution for a cavity of any shape. The FEM originated in tleddfiof structural analysis

11
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Figure 2.2: Field representations of the proposed geometry

and it was applied to electromagnetic problems in 1968. Eweungh the finite difference
method and the method of moments are easier to program andmtoally simpler, FEM is
more powerful for handling problems involving complex gexires and nonhomogeneous
media.

The finite element analysis of any problem involves bagidallir steps [11]:

1. discretizing the solution region into a finite number dbiggions or elements,
2. deriving governing equations for a typical element,

3. assembling of all elements in the solution region, and

4. solving the system of equations obtained.

In this setting, the discretization of the continuum inesdwdividing up the solution
region, in this case region 2 or the cavity, into subdomaialied finite elements [25] (see

figure 2.4). This triangular grid over the cavity consistsaadfet of piecewise linear basis

12



functions producing an approximation to the solution sunett t

N
Uy ~ Z @i, (2.9)
i=1

where thep;'s are the known basis functions (see figure 2.4) anchifseare the unknown

coefficients which will be computed.
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Figure 2.4: Basis function
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2.5 Goals

The results of the magnetic and electric polarizations aedyaed separately in this paper,
where the TM case is discussed first in Chapter Three, folldwyetthe TE case in Chapter
Four. Both of these chapters apply the necessary continaodybaundary conditions to

solve for the coefficients of the finite element solution, ethare then used to solve for the
wave at the cavity opening. The RCS is then computed in Chapterf@ised on the results
from chapters three and four. The numerical results witfedshtly shaped cavities and
settings for both the TM and TE case, including RCS plots, aogiged in Chapter Six.

Lastly, Chapter Seven states the conclusion of this paparsuggested future research.

14



Chapter 3

TM Case

This chapter discusses the transverse magnetic part ofrtibem. Using equation 2.1,
only thez component in the electric field plays a significant role. Efiere, £ = (0,0, u)

whereu = E.. The Helmholtz Equation for this case can be written as
Au+ k=0,

wherek? = w?su. The notationu; with j = 0,1, 2 refers to the total fields in regions 0,
1 and 2 respectively. Solutions of Maxwell’'s equationsssgtiwo continuity conditions.
These conditions state that the tangential component @féutric fieldE and the magnetic
field H are continuous across material interfaces. From sect®ith2. electric continuity

for TM case implies that

up=uy, at y=~h (3.1)

up =ug, at y=20 (3.2)

while the magnetic continuity implies that

15



i%iy _ ﬂi% at y—h (3:3)
i%—? = i%—?, at y=0. (3.4)

Since the electric fields are zero inside a PEC material,0 aty = 0 [0, L] and at the
walls of the cavity inside region 2.

In region 0, the total field consists of three parts. The knamaoming plane wave
is denoted as). The plane wave reflected at the interface between regiomslQlas
denotedy;. The scattered field is denoted#s The total fieldu, is the sum of these three
components,, = uj, + ug + uj as mentioned in Chapter Two.

In region 1,u} andu; represent the plane waves due to the transmission of thaeinici
field from region O and the reflection at the interface at th€ Piaterial. The scattered
field in region 1 is denoted;. The total fieldu, is the sum of these three components
uy = ul 4 uj + uj.

In region 2, the total field:, is the field transmitted into the cavity and it will not be
decomposed into a superposition of fields. The FEM will bedusecomputeu, while

enforcing the appropriate boundary conditions at the gawills as well as continuity

conditions with the fields in region 1 above the cavity.

3.1 Incident and Reflected Fields

This section explains how to compute the fields v} andu} given the known incident
plane waveu),. These fields will be computed as if there was no cavity preaed then
considered as source fields which produce scattered arsiriiiéed fields when interacting
with the cavity region. They are computed only in region 0 eegion 1 by enforcing the
continuity of the electric and magnetic fieldsyat= h and the PEC boundary condition at

= 0. When appropriate the notatiaff = v 4 v for j = 0, 1 will be used.
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Since the material parameters are constant in both regiow @eggion 1, a plane wave
solution for the Helmholtz equation in both regions can benfb Solution for these
incoming and outgoing plane waves is a result of applyingctheinuity conditions.

In region 0, the known incident plane wave is given as

ué = gloortifoy (3.5)

Refer to figure 2.2 and consider it without the cavity. Theltéigdd in region 0 can be
represented as the summation of incidence and reflected &efdlthe total field in region
1 as the summation of the incidence and reflected fields. Tar@mtontinuity conditions,
equation (3.1) aty = h has to hold. Thus, the reflected field in region O can be writfen
the form

upy = Celoor=iboy, (3.6)

In region 1, there are incoming and outgoing:; plane waves

uh = Agirstib (3.7)

u = Beir=iby, (3.8)

Using the basic theory of reflection and transmission of@laaves F, = E; aty = h:

eiaoeri,Boh + Ceiozgxfiﬁoh _ Aeialeriﬁlh 4 Beialgﬂ*iﬁlh (39)
eiaoz (eiﬁoh + Ce*’iﬁoh) — eialw (Aeiﬁlh + B(g*wlh) (310)
If 2 =0
(e + ey = (A" 4 Bemh) (3.11)
eiaor eialfb 7 (3 12)
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thusagy = a4. The next steps follow from the continuity conditions:

2 2 2 2
ky = weopo = oy + By

2 2 2 2
ki = weiur = aj + B

= a5

_ 2
B = (/w1 — af.

In order to compute the coefficients B andC, enforce the continuity and boundary

conditions. From the PEC boundary conditionyat 0,
Ae'® | Bel® = (), (3.13)
which reveals thaB = — A. Therefore,
ull = Aeleortibiy _ pgione=ifiy — pgioor (oifry _ o=y, (3.14)
Now, by enforcing the continuity of the electric field| = u{" aty = h or
A(ey — 7Yy _ Q=i — cifoh, (3.15)
By enforcing the continuity of the magnetic field

1 Quly 1 Ouf

o Oy Oy

(3.16)
we obtain
A% (iB1e"" +iBre™ ") + Cifge P = iBye’. (3.17)
1

Equations (3.15) and (3.17) provide a system of equationghé&unknownsd andC. Use

18



Cramer’s Rule to arrive at

- 2if3
iﬁoe—iﬂoh(ez‘mh _ e—iﬁlh) + (%) e‘woh(iﬁleiﬁlh + iﬁle_iﬁlh)

and

iﬂoe—iﬁoh(eiﬁﬁl _ 6—i,31h) _ <%) eiﬁoh(iﬁleiﬁlh + iﬁle—iﬁlh)

iBye—iBoh (eibrh — e=ibih) 4 (@) e—iBoh (i3, eiPih | ’iﬁle*iﬁlh)'
B

Once the coefficients of the incident and reflected field atained, the transmitted field
uy inside the cavity can be computed. The interaction of thelemt and reflected plane

waves with cavity opening creates the transmitted field.

3.2 Artificial Boundary Condition

The goal of this section is to provide the representatiorhefdcattered fields in regions
0 and 1 which are also created due to the interaction of theephleaves with the cavity.

When there is the scattered field, the continuity conditidrtt@opening of the cavity are
enforced. At this point, a boundary value problem is conghjetontained in region 2. The
representations of the scattered fields are found usingdbadf theory and the fact that

they must satisfy the Helmholtz equation. The represemntatin regions 0 and 1 are

uy = / C'(N)e " 0ve?mAr g\ (3.18)
uj = / [A(N)e™™¥ + B(\)e"¥]e* ™ d\ (3.19)
wherer; = /(2r\)? — k3 for j = 0,1 and A()), B()\), C()) are the unknown Fourier

transforms of the scattered field. The strategy will be tmilate A(\) and B(\) from the
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problem by employing the continuity conditionsyat . Solve forA(\) andB(\) in terms

of C'(\) and substitute the solutions into equation (3.19). Thetedefteld continuity gives

uy = u; and the magnetic continuity giV%%%—qf =

result in two equations:

Ho

C(\)eroh
— Ko (ﬂ> C(\)eroh

1 0uf
p1 Oy

—r  A(N)e P

A(/\)e_'“h + B(/\)e’“h

aty = h. These two conditions

(3.20)

+ k  B(\)emh, (3.21)

Applying the above scattered field equations into the caitiirconditions yields a system

of equations that can be solved férand B in terms ofC' using Cramer’s Rule.

— oW [ (Z,; (2) KO)] (3.22)
_ o [ o—(ro+r1)h (5;_ (5-;) m0>] (3.29)

Therefore, above = 0 in region 1, the scattered field can be written in terms of aieou

Transform. Substitute (3.22) and (3.23) into (3.19) tovarat

([

(3.24)

whereRyy(y) = ek (s; + (5—) Ko)e 1Y 4 e~ (RotROR (g (’ZT) Ko )em1Y.

Aty =0,

Use (3.25) to solve fof'(\).

Felui] = [Rgﬁfo)} ).
00 = | ey |
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They-derivative ofuj from equation (3.24) has the following representation

- {5}

where

Srar(y) = =70 (k5 + (&) Ko)e 1Y 4 e (RotRh (g (&> Kp)e Y.
Ho Ho

Wheny = 0,

where

STM<O) = —6(517’{0)h(/€1 + (&) /‘io) + 67(50+m)h(/€1 — <&) /io).

Ho o

Substituting in (3.26) gives the following at= 0

ou; _ s
8y1 = F U ILF,[uf]] (3.27)
k1570 (0
wherell = W((()))'
The magnetic continuity condition at the cavity openigg= 0) yields
Ous  fio (8u‘f 8u§’“>
iR Y (it St S I 3.28
dy i \ 0y Oy (3.28)

Enforcing the electric continuity conditions@at= 0, uy = u$ +u%". Sinceu!” = 0 aty = 0,
thenu] = uy. Substituteu, into (3.27), then substitute (3.27) into (3.28) to arrive at

— =T(us) +¢g (3.29)
where
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T(u) = (5—) F N w]),

-() %
9= \m) oy

Use (3.29) to restrict the problem to region 2 where a satuioo u, will be found.

3.3 Finite Element Solution

Given the boundary condition from the previous section fidgld (u,) transmitted into the

cavity will satisfy the following boundary value problem:

Auy + k2uy =0 in - Q(Region 2) (3.30)
up =0 on 9OQ\{y =0}, (3.31)
88—1;2 =T(uz)+g on 9QN{y=0}. (3.32)

Note that(2 represents the cavity (region 2).

As mentioned in section 2.4, the FEM can produce an appradgisalution for the
boundary value problem with a cavity of any shape. The Heltatlitquation has a weak
form used to find the solution. By multiplying both sides of dgpiation by one of the basis

functions and integrating over the solution regieywe have

1
/ |:Iu—v2U2 + k’géQUQ gbde = 0. (333)
2

Apply Green’s identity to the first term of the integrationhi§ weakens the derivatives to

first order and creates the weak form of the Helmholtz eqoatio

/ Vs - Vep;dS2 — %—‘;gbjdr + / k2 us¢;dQ = 0, (3.34)
Q Q

o0
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whereg; is an appropriate test function. Note there is a boundaggnal overoS) and this
term involves the normal derivative of the solution.
The boundary represents the opening of the cavity into theewupalf space. Now

assume there is a set of piecewise linear basis functipris= 1, ..., N defined on the
N

grid. The goal is to produce an approximate solution of thenfo, ~ >  a;¢;. This
=1

approximation is substituted into equation (3.34):

(ﬁ az¢1> N
O — | Ni=L S 2 A g0 —
/ (; Oéz@) V¢;dQ 84 a9y ¢;dl’ +Q/k0€2 (; O‘Z¢z> ¢;d2 =0

(3.35)
The basis functiong,; are assumed to satisfy the PEC boundary condition at theéycavi

walls. Therefore, the boundary integral in the weak form lbanvritten as

N
) ele)
|

o0

Substituting in the transparent boundary condition gives

/L (Z owbz) NE) /L (T (fj aigzﬁi) + g) ¢;de. (3.37)

0 0
Therefore, for each basis function there is an equation

L

N
/ (Z am) VS - 0/ T (Z am-) osdx

L

N
+ / ke (; ai@) ¢, = / go;d.

Q 0

(3.38)

These equations create a system which can be used to sothe fanknown coefficients;

j=1,..N.
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Similar calculations will be discussed for the TE polari@aatin Chapter Four. Chapter

Five shows the RCS computation for both polarizations.
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Chapter 4

TE Case

This chapter discusses the transverse electric polasizafithe problem. Again, consider
the TE case, where the incoming and reflected fields are asbtdgst. Examination of
the effect of the material layer with embedded cavity in tladf plane takes place after
determination of the incoming and reflected fields. Thesaopus will then be used to
determine a solution at the cavity opening.

In the TE case/ = (0,0,v), wherev = H,.. Note that the TE case as well as the
TM case has to satisfy all boundary and continuity condgioAs with the TM case, the
field transmitted into the cavityf) also satisfies the Helmholtz equatidn, + k?v, = 0
wherek? = w?ep. Sincewv, represents the magnetic field, when PEC boundary condgion i

enforced, Maxwell’'s Equations show tlﬂ%gi = 0 at the walls of the cavity.

4.1 Incident Field

The incoming and outgoing plane waves can be derived fronateans in the TM case.
Equation (3.5) is now = ei@ortifov equation (3.6) i3, = Dei0z=iy equation (3.7)
is vl = Eei*0v+#1y and equation (3.8) is] = Fe®*~w wheref, = /w2eiu — af

anday = a3 using the same strategy as in the TM case. By enforcing the PEGdary

conditions aty = 0, £ = F. Solve the system of equations for and £ by enforcing
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continuity conditions ay = h:

o 2 (&) it
(a;) iBo(eM(Br=o) 1 e=ih(Bo+B1)) 4 B, (eth(B1—Bo) — e—ih(Bo+A0))

( )zﬁ (eh(Bothr) | gih(Bo—B)) _ i, (¢ih(Bot) _ cih(Bo—a))

E= .
(Z—;) iBo(€ih(Br=Po) 4 e=ih(BatB1)) 4 3, (eih(B1—Bo) — —ih(Bo+B1))

Once the incoming and outgoing plane waves are computegion®0,1 they will then be
used as source fields which produce scattered and trandringtigs when they interact with

the cavity opening.

4.2 Artificial Boundary

Again, following the calculations in the TM case the scatkfield in regions 0 and 1 can

be represented as

vy = /D(A)e”oye%i’\xdx 4.1)
v o= / [BE(\)e ™ 4 F(X)emYe?™] dA (4.2)

whereE(\) andF'(\) can be written in terms aD(\).

Enforcing the electric continuity at= h as in TM case equation (3.20), results in
D(N)e "oh = B(N)e ™" 4 F(\)emh, (4.3)
Enforcing the magnetic continuity gt= A, as in the TM equation (3.21), results in
—Ko (i—;) D(N)e™ " = g BE(\)e™™" 4 ki F(N)e™ . (4.4)
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The equations (4.3) and (4.4) provide system of equationalicch £(\) and F'(\) can be

solved in terms ofD(\) using Cramer’s Rule:

o () )
E()\) = D(\) o (4.5)
e—(m-&-ﬁo)h ((z_;) Ko — l€1>
F()\) = D(\) . (4.6)
Substitute (4.5) and (4.6) into (4.2) to get
i =7 {72 iy} @)
R1
where
RTE(Z/) _ (m1—r0)h <<€_1> Ko + "11) e~ 1Y _ o= (ritro)h ((i) Ko — Hl) eF1Y.
€0 o
Aty =0,
7l = |29 o, @8)
R1
Take they—derivative ofv§ from equation (4.7) to arrive at
dui 1 [ [Sre(y)
— D(\ 4.9
{2 by @9)
where
Sre(y) = —elmroh <(i) Ko + Iﬁ) e~y — o~ (mitro)h ((i) Ko — m) ey,
€0 o
Solve forD(\):
° 7, {aﬂ — D(N). (4.10)



Wheny =0

v; :f_l{[w} D(A)} (4.11)

where

STE(O) = —e(m_’iO)h ((5—1> Ko + Kl) — 6_(H1+H0)h ((8—1) Ko — Iil) .
€o €0

Substituting in (4.10) ag = 0 gives

81}1” . f_l |:"115TE<O>

= Fon(0] 0 [vf]} . (4.12)

By enforcing the continuity conditions at the opening of theity (y = 0) vy = vj + v{"

and=t 22 — %1 Therefore ay = 0
e Oy oy

where

dup\ @%
T<8_y> B {@fx Ll ayH

@ /'ilSTE(O)
Rre(0)
G = "

4.3 Finite Element Solution

Just like in the TM case, the FEM Solution uses a set of piesslinear basis functions to
produce an approximation to the solution such that > «;¢;.

Consider the weak formulation
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- / Yoy - Vo dSd + %¢de+ / k2 0p60,dS2 = 0. (4.14)
o0 Q

Note, there is a boundary integral ov#e and this term represents the opening of the cavity

into the layered material. Therefore it can be written as

L
@Ug

%Qb]dl'

0
In this case,
81}2 _ M
E Z Biti
1=1

Make a substitution fon, and %—22. Then multiply by they; function to get a system of

equations that is used for computation of the solution.

(91}2
Zm =) - (a—y) (4.15)

For the interaction of and¢ functions, it is also needed to have

/b (iW) vt = / ide - Z@ / SORWIFR . (4.16)

Reproducing the equation (4.14) for eaghand reproducing the equation (4.15) for
eachy; with the above results will provide a system which can beeblfor the unknown
«; andg; values. Once the;’s and thegs;’s are known, the finite element approximation of

the solution of the transmitted field can be computed.
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Chapter 5

Radar Cross Section Results

A radar system uses a transmitter to emit short pulses ofrefeagnetic waves towards a
target and a receiver to record the strength of the return.edhcomparison of these two
values are depicted in a RCS. The location of the receiver sfsiygtem can vary between
the site emitting the source or multiple locations not atstierce. When the transmitter and
receiver are positioned at the same location, the incidedtreflective angles of the plane
waves are equal and the RCS is termed monostatic. In the caserthatisite radar system
is used, the reflective angles differ from the incident aragid the RCS is termed bistatic.
Chapter Six provides numerical results for both types ofesyist

Once the cavity is illuminated by an incoming electromagnaine wave, the resulting
effect is a scattering of the plane wave into the far field. c8iwe are interested in the
intensity of the scattered energy, a technique must be gmglto predict this quantity
given the strength of the incoming wave and the cavity gepm8&ince the cavity aperture
lies within an infinite PEC, we can consider covering the opgnvith a conductor so that
the image theory can be implemented. A surface can then bstraoted on top of the

infinite plane to produce equivalent electrif) @nd magneticK’) sources, where:
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Ji=nxH (5.1)

K, = FE; X n. (5.2)

Applying the method of images guarantees that the PEC plam&e removed and the
combination of the original charge configuration that araily laid above the PEC and
the image configuration is electrically equivalent to thigioal charge configuration in the
presence of the PEC. This process eliminates the electnicesdaaving a doubled magnetic
source located along the cavity aperture. The far field corapts of the electric field are
computed from the resulting sources, and from this the RCSnfigroed by taking the
norm of the squared far field values [24].

The general form of the two-dimensional scattering crossicge for the TM and TE

polarization is

2

- k / S ! a3
orm(9,¢') = —O // (nJ. + K, sin ¢ — K, cos ¢) ekl cos(@tysin(@) g/ gy (5.3)
2
orp(6,¢") = ( Sin ¢ — J, cos ¢ — —) (@' cospty'sind) g/ gy | (5.4)
wheren = ‘E‘—g J., J, and.J, represents the electric current of they andz components,

K,, K, andK, represents the magnetic current of ihey and= components. Additionally,
the value ofy’ is fixed, such that if there does not exist a material layevatibe cavity
surfacey’ = 0, otherwisey’ = h [24].

The results of the image process revealed that our RCS is adaraftonly magnetic
sources at the cavity aperture, thus eliminatihgrom our equations. Additionally, the
magnetic sources as determined by equation (5.1) are adaraftthe electric field. In the
TM polarization, the electric field is invariant in thedirection, where the product of this
function with the normal results in the magnetic sourcey @xisting in thex direction.

Likewise, for the TE polarization, the electric field is imant in thex direction, which

31



results in the magnetic sources existing in thdirection. Applying these facts reduces the

equations representing the RCS to

2
b / K, sin getko(@’ cos oty sine) g,/

orm(p,¢') = (5.5)

2

UTE(¢7 ¢Z) = ko

/ Z zko(x cos ¢+’ sin ¢)dl'

(5.6)

Since double the magnetic source remains at the cavityuapetter applying the method

of images, substituting in the electric field further redutieese equations to:

. k 2

orm(¢,9') = —40 —Q/ETM sin et @ cos ¢ty sin ) ./ (5.7)
, k ETE ‘o 2

orp(¢,¢9') = —40 2/_77 etho(@’ cos dysin @) g,/ (5.8)

Computation of far field or RCS quantities is a post-processiag.sThe computed
transmitted fields.,, andwv, will be used to compute the strength of the scattered fields at
a distance far from the cavity opening. The trick is that te tiee standard formula for far
field values, it is necessary to have the scattered field ahtedace with free space. That

is the values ofi§ andvj aty = h need to be known. The far field formulas become

2
UTM(¢7 QSZ) = % / uo(x h) qin gbezko x cos¢+hsm¢)d (59)
i k?g <o aUS / iko(a’ cos p+hsing) 3,./ ?
ore(¢,¢9') = 5 m_wa_y(x ,h)e dx (5.10)

The computation of these integrals can potentially be dilfisince they are over the
entire real line. However, evaluation of such an impropergral can be avoided by relating

the scattered fields back to the transmitted fieldandwv,.

) k 00 . 2
0TM(¢7 sz) _ o sin ¢61k0 (hsin ¢) / ug (ZL/, h)ezko(z cos ¢) dr' (511)
i kO i 1ko(h sin ¢) - aU(s) / iko(z' cos @) 7,/ ?
org(p,¢') = - _ngwe n (x', h)e dx (5.12)
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S
ovg

Now the integrals are Fourier transformsugfand 7,

. By equation (3.18) the Fourier
transform ofug aty = h is C(\)e~"". Solve forC'()\) in terms of the known solution,

by using equation (3.25) and the continuityyat 0 to arrive at

2k e 1ok

CA)eroh — {—RTM 0

} F.lusly]. (5.13)

Applying the above steps, the far field for TM case takes osdlierms:

. k .
oru(p,¢') = 50 |sin ¢e’k°(hsm¢)0()\)e’“°h’2 (5.14)
. ko . ko (hsin ¢) 2K1€_K0h 2
? - X 7 sin B 1
0TM(¢> o ) 9 sin ge —RTM(O) Fa [U2|y_o] (5.15)

By equation (4.7) the Fourier transform %ﬁyg aty = his —kgD(N)e ™" D()) is
solved in terms of the known solution f(%‘;—? aty = 0 by using equation (4.10) and the
continuity.

—koh
—/{OD()\)G_HOh - —_2/11&06 : T [61 an

Str(0)

—_—— 5.16
N ] (5.16)

Applying the above steps, the far field for TE case takes osetf@ms:

2

ko

l

ore(6,¢") = 5 | (=Rl D(Y)e " (5.17)
2
. ko ) ko(h sin @) —2/%1%067/{0]1 &1 0112
7 — Y e sin z | ——— 518
O'TE<¢7 ¢ ) 9 new STE(O) £ 8y o ( )

Therefore the far field values are completely in terms of thigefielement approximations

from the cavity using

koh 2

j : 7 sin ki€
orar(6,0°) = ko |sin ge o) T [uy|, ] (5.19)
Rra(0)
ore(¢,¢') = k L@%omsiw)“l’%e*“h €10vz 2 (5.20)
TEV 0 new STE(O) E9 8y y=0 .

Also, note that both of the finite element solutions have suplmited to [0, L] in the x
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direction. Therefore, the integrals performed in the Fauiansforms are performed on a

finite interval.
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Chapter 6

Numerical Results

This chapter presents figures of the results obtained byyegpthe FEM. Sections 6.2

displays the RCS signature for various test cases for the Thrigation of a rectangular

cavity, while sections 6.3 provides similar results for ffié polarization. The layered

methodology suggested by this research was coded usingtfathd validation testing of

the code is provided in sections 6.1 to assure the outputwalicdte the signatures of other
publications.

Sections 6.2 and 6.3 address the resulting effect of a sutaer on the RCS. To
maintain consistency in test parameters for each polasizathe following set of general

test cases was implemented:
1. Increasing the dimension of the material layer
2. Increasing the cavity depth
3. Increasing the cavity length.

Each of these test cases is based on either a monostatidatidaiadar system and will be
noted within each description. All monostatic plots werenpoited using an incident angle
ranging betweeifD, ]. Section 6.4 demonstrates the results produced by sonrestitey

cavity geometries since FEM is capable of handling more dexngavity shapes.
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6.1 Validation Testing

When dealing with a rectangular cavity a Fourier based smiwtan be found. The solution
is exact in principle, but in reality it is an approximationedto the truncation of the Fourier
series solution. Despite the approximation errors, theiEogolution is a convenient basis
for comparison to verify that the finite element approachasking correctly. The following
figures compare the Fourier and finite element solutions efiening of a rectangular
cavity with width 1.25 and depth .2 meters. The angle of ianik is7/3 radians and
the frequency i$7. The material overlayer is .1 meter thick and consists oennmtwith
parameters; = 2 andu; = 2. The material parameters for the cavity ase= 1 — .52 and

1o = 1 — 5. Both the TM and TE cases provided show a strong agreement.

Solution Comparison

1.5
X FEM-real

x  FEM-imaginary

Fourier-real
Fourier—imaginary
1T - : f :
/

-15 i i i i i i
0 0.2 0.4 0.6 0.8 1 1.2
X—positio at cavity opening

Figure 6.1: Cavity Opening: Fourier vs FEM TM case
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Solution Comparison
T

T
X FEM-real
x  FEM-imaginary

0.8

Fourier-real N
Fourier-imaginary|

0.6

0.4

0.2

0 0.2 0.4 0.6 0.8 1 12
X-position at cavity opening

Figure 6.2: Cavity Opening: Fourier vs FEM TE case

The RCS produced from the Fourier and FEM methods are compar€égures 6.3,
6.4, 6.5 and 6.6. The geometry and parameters are the sameths Eomparisons above.

As expected, good agreement is demonstrated for both TM Emblarizations.

FEM vs. Fourier TM
20 T T T

* FEM
Fourier

10 f

-10+

Monostatic RCS (dB)

-301

10 20 30 40 50 60 70 80 920
Angle of incidence (degrees)

Figure 6.3: Monostatic Cross Section: Fourier vs FEM TM case
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FEM vs. Fourier TE
20 T T T

10

-10

!
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=]

Monostatic RCS (dB)
&
S

-80 I I I I I
0 10 20 30 40 50 60 70 80 90
Angle ofincidence (degrees)

Figure 6.4: Monostatic Cross Section: Fourier vs FEM TE case

Btatic RCS (dB)

I I I I I
20 40 60 80 100 120 140 160 180
Theta (degrees)

Figure 6.5: Bistatic Cross Section: Fourier vs FEM TM case
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Bistatic RCS (dB)

_s0l o FEM |
Fourier
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Figure 6.6: Bistatic Cross Section: Fourier vs FEM TE case

6.2 TM: Testing

6.2.1 Increasing the dimensions of the material layer

Monostatic RCS Plots

The tested thickness of the material layer ranges from @®23 meters with material
parameters; = 4 andyu; = 1. This test uses a rectangular cavity of depth 0.5 meters and
material parameters, = 1 andu, = 2. The angle of incidence i% with frequency6r.

Figure 6.7 shows results of material layer ranging from 5.@20.075 meter while figure

6.8 has a material layer ranging from 0.1 to 1.0.
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Figure 6.7: Monostatic RCS for TM polarization testing vagyihickness parameters of
the material surface whewi = 7/4, L = 1.25,ey =4 andu; =1
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Figure 6.8: Monostatic RCS for TM polarization testing vagythickness parameters of
the material surface whewi = 7/4, L = 1.25,ey =4 andu; = 1
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6.2.2 Increasing the cavity depth

Monostatic RCS Plots

The tested depth of a rectangular cavity ranges from 0.25arteters with material
parameters, = 2 andu; = 1. Thistestuses 0.1 meters thick material layer with pararset
€1 = 4andy; = 1. The angle of incidence i with frequency6r. Figure 6.9 shows results
of cavity depth 0.2, 1.2 and 3.2 meters while figure 6.10fitates cavity depth of 0.5, 3.0
and 5.5.
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Figure 6.9: Monostatic RCS for TM polarization testing vagyishepth parameters of the
material surface wheto: = 7/4, L = 1.25,¢; = 4 andyu; = 1
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Figure 6.10: Monostatic RCS for TM polarization testing vagydepth parameters of the
material surface whetmoi = 7/4, L = 1.25,¢; = 4 andyu; = 1

6.2.3 Increasing the cavity length

Monostatic RCS Plots

The tested length of the opening of a rectangular cavityearfigpm 0.25 to 5.25 meters.
The cavity filled with a material of parameters = 1 andu, = 2 is covered with a 0.1
meter thick material layer with parameters= 16 — 52 andp; = 4 — 1.25:.. The angle of

incidence is; with frequencydr. Figure 6.11 shows results of all cavity opening ranges.
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Figure 6.11: Monostatic RCS for TM polarization testing vagyilength of the cavity

opening to the upper half plane with layer parameters, 6t 16 — 52 andyu; = 4 — 1.25
with aoi = /3.
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6.3 TE: Testing

6.3.1 Increasing the dimensions of the material layer

Monostatic RCS Plots

TE polarization was tested with the same parameters as Thtipation. The tested
thickness of the material layer ranges from 0.025 to 1.0 meith material parameters
g1 = 4andyu; = 1. This test uses a rectangular cavity of depth 0.5 meters atdrial
parameters, = 1 andu, = 2. The angle of incidence i$ with frequency6r. Figure 6.12
shows results of material layer from 0.025 to 0.075 metetemigure 6.13 material layer

ranges from 0.1 to 1.0.
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Figure 6.12: Monostatic RCS for TE polarization testing vagythickness parameters of
the material surface whewi = 7/4, L = 1.25,ey =4 andu; =1
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Figure 6.13: Monostatic RCS for TE polarization testing vagythickness parameters of
the material surface whewi = 7/4, L = 1.25,e; =4 andu; =1

6.3.2 Increasing the cavity depth

Monostatic RCS Plots

As in the TM polarization, the tested depth of a rectanguaitg ranges from 0.2 t0 5.5
meters with material parameters= 2 andu, = 1. This test uses 0.1 meter thick material
layer with parameters; = 4 andy;, = 1. The angle of incidence i with frequency6r.
Figure 6.14 shows results of cavity depth 0.2, 1.2 and 3.2rmsethile figure 6.15 illustrates

cavity depth of 0.5, 3.0 and 5.5 meters.
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Figure 6.14: Monostatic RCS for TE polarization testing viagydepth parameters of the
material surface wheimoi = 7/4, L = 1.25,¢; = 4 andyu; = 1
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Figure 6.15: Monostatic RCS for TE polarization testing viagydepth parameters of the
material surface whetmo: = 7/4, L = 1.25,¢; = 4 andyu; = 1
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6.3.3 Increasing the cavity length

Monostatic RCS Plots

The tested length of the opening of a rectangular cavityeafigpm 0.25 to 5.25 meters.
The cavity is filled with a material having these parametess= 1 andu, = 2. This test
uses 0.1 meter thick material layer with parameters- 16 — 5: andu; = 4 — 1.25:. The

angle of incidence i§ with frequency4r. Figure 6.16 shows results of all cavity opening

ranges.
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Figure 6.16: Monostatic RCS for TE polarization testing vagyiength of the cavity

opening to the upper half plane with layer parameters, 6t 16 — 52 andu; = 4 — 1.25
with aoi = /3.
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6.4 Numerical Experiments

The comparison with the Fourier results shows that the figiéenent formulation gives
correct results for the rectangular cavity underneath @naiayer. The remaining figures
will demonstrate the results produced by some interest@wgycgeometries with a variety
of parameters. All cases use the opening length of 1 unitlaadréquency of the incident

field is 8.

6.4.1 Triangle

The first experiment is a triangular filled cavity with maééparameters, = 1 andu, = 2.
The material overlayer has thickness .3 meter and the rabpetiameters; = 1+ 0.12 and

11 = 2. The angle of incident field i /3. The first two figures are the results for the
TM case. The absolute value of the field in the cavity is shawthe first figure and the

monostatic radar cross section for the field is given in tloese figure.
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Figure 6.17: Absolute Value: TM Triangular Geometry
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Figure 6.18: Monostatic Cross Section: TM Triangular Geoynet
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Figure 6.19: Absolute Value: TE Triangular Geometry

40

30

20

101

ol

—10F

20k

Monostatic Cross Section dB

_30F

_a0b

50k

_eok . . . . . . . .
0 10 20 30 40 50 60 70 80 %0
Angle in degrees

Figure 6.20: Monostatic Cross Section: TE Semicircular Getoyn
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6.4.2 Semicircle

The second experiment is a semicircular filled cavity withtenial parameters, = 1 and
e = 2. The material overlayer has thickness .1 meter and maparalmeters; = 16 + 5
andp; = 4 — 1.252. The angle of the incidence field ig/4. The first two figures are the
results of the TM case. The absolute value of the field in thatyc#s shown in the first

figure and second figure represents the monostatic rada £ecton for the field.

Figure 6.21: Absolute Value: TM Semicircular Geometry
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Figure 6.22: Monostatic Cross Section: TE Semicircular Getoyn
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Figure 6.24: Monostatic Cross Section: TE Semicircular Getoyn
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6.4.3 Random Polygon

In order to get away from the classic geometric shapes, treb@kperiment is an arbitrarily
polygonal figure with material parameters= 2 andu, = 1. The material overlayer has
thickness .2 meter and the material parameters 3 andp; = 2. The angle of incident
field is O radians. The first two figures are the results for TBeca he absolute value of the
field in the cavity is shown in the first figure and the secondrégepresents the monostatic

radar cross section for the field.

Figure 6.25: Absolute Value: TM Third Cavity

Figure 6.26: Monostatic Cross Section: TM Third cavity
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Figure 6.27: Absolute Value: TE Third Cavity
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Figure 6.28: Monostatic Cross Section: TE Third cavity
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Chapter 7

Conclusion and Future Work

The problem of an electromagnetic cavity beneath a unifoeteckric layer can now be
modeled with the FEM. The representation of the incomingé$ighe scattered and transmitted
fields, along with a transparent boundary condition whiahtoaincorporated into the FEM,
are provided here. In addition, it has been shown how to coetpe far field values in terms
of the computed finite element solution. Methods solvingtiier TM and TE polarizations
were both explored. The results offer the ability of predigtRCS for complex geometries.

In the examples displayed in Chapter Six, the parametersinigfine material coating
above the half plane and inside the rectangular cavity pteseo types of materials, a
conductive §, = 16 — 51, u,, = 4 — 1.25) and non-conductive layee,( = 4, p, = 1).
The results of coating the surface with a conductive mdtareasimilar for the TE and TM
polarizations, with a trend showing that as the materia¢ddiickens, the strength of the
return echo weakens. This is consistent in the monostatidbétatic signatures. Coating
the surface with a non-conductive material results in annscstent behavior, but usually
reveals an increase in the strength of the return signal.

When time is a consideration, this methodology offers a mnealsie approximation but
the computation is very time consuming.

There exist a number of avenues that are yet to be explored givs base model. In

the future, the problem should be considered in the time damdso, the problem should
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be studied for three-dimensional cavities in both the fezgy and time domain. One last
advancement is testing the effect of multiple material taysbove the half plane on the

output of the RCS in both domains.
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