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ABSTRACT

A FINITE ELEMENT APPROACH TO MODEL ELECTROMAGNETIC FIELDS

SCATTERED BY A BURIED CAVITY

By

Nicole Pernischov́a

December 2008

Thesis supervised by Dr. John Fleming

This research investigates the plane-wave scattering froma two-dimensional arbitrarily

shaped cavity embedded in an infinite metallic surface that has been covered with a layer

or layers of dielectric material, considering both transverse electric and transverse magnetic

polarizations. Due to the shape of the cavity, this problem is approached using the finite

element method. This approach provides a boundary condition at the opening of the cavity

which accounts for the effect of the overlayer(s) while confining the problem to the finite

domain of the cavity itself. After determination of the solution for the electric and magnetic

fields at the cavity aperture, the strength of the return echocan then be calculated and

displayed in a radar cross section. In addition, numerical verifications and experiments

illustrating the efficacy of the approach will be provided bycomparison to other previously

tested methods.
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Chapter 1

Introduction

The study of electromagnetic plane scattering and radar cross section (RCS) measurements

has been extensively investigated, specifically for the military aircraft development industry.

There are many practical applications that require the knowledge of the RCS signature. An

example is radar technology used to detect and locate aircraft, ships and missiles [32, 12].

A radar system emits electromagnetic waves towards a target, and by comparing the

strength of the emitted wave to the return echo, displays theresults in a RCS. The RCS

of each object is unique and also dependent on the way in whichthe wave scatters from its

surface. Thus it is important to analyze the effect that various surfaces have on the scattering

profile [26]. Any inconsistency in a target’s surface creates a different RCS signature, which

has driven research to focus on the effect of gaps, cracks andseams on these profiles.

The accurate prediction and calculation of the RCS signature of targets is very important

to the modern military because of different RCS enhancement applications [32, 12]. The

military utilizes these types of predictions in camouflaging stealth aircraft, where the objective

is to reduce the total RCS signature by minimizing the scattered energy from the surface

of the body. Stealth aircraft proved their efficiency in the Persian Gulf War by utilizing

the element of surprise in an attack while providing increased survival rates for American

pilots.

There are also occasions where the military needs to enhanceor alter the expected RCS
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profile for defense purposes. For example, unmanned, remotely-piloted air vehicles are used

to gather intelligence data or to saturate enemy air defense. This kind of vehicle is smaller

in size than a fighter aircraft. Enhancing its RCS signature, however, reduces an enemy’s

capacity for distinguishing between it and a much larger fighter-size aircraft [12].

In either scenario, whether reducing the RCS or enhancing it, it is necessary to have

efficient methods of calculating the RCS signatures of a scattering body. This can be

accomplished by optimizing the design of the aircraft. The body shape and material coating

can alter these signatures, and both factors should be considered when attempting to model

accurate predictions.

The prediction of these scattering profiles has also been recognized as a possible

nondestructive technique and is currently an important field of study for aircraft maintenance

[5]. Typical maintenance procedures begin with stripping the aircraft surface of its coating in

order to perform a visual inspection for signs of fatigue andcracks in the surface. Alternate

methods for these inspections have been of interest due to costs associated with the process,

and when considering the use of electromagnetic scattering, the ability to account for the

material coating in predicting the RCS is essential. Parallelarguments can be made for the

maintenance of other large metallic structures, such as bridges and buildings, where cost

and time constraints are equally demanding.

1.1 Statement of the Problem

A small crack or seam in a metallic surface can be modeled by a channel in an infinite

plane. (See Figure 2.1) This structure is visualized in three-dimensions, however the study

of similar structures in two-dimensions offers computationally efficient approximations.

Since the problem can be decomposed into two-dimensions, the interest is in seeking the

results when the incident wave is of transverse electric (TE) and transverse magnetic (TM)

polarization. Methods to determine the scattering in free space typically involve the use

of Green’s functions. The material layer over the surface and the material inside the cavity
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adds much complexity to the problem of determining the field inside the cavity. An alternate

approach is the use of the finite element method (FEM). In thisproject, a closed form

solution of the plane wave inside the cavity space utilizes the FEM, then the restriction

of this solution to the opening of the cavity determines the RCSof the scattered wave. The

aim of this research is to investigate the two-dimensional scattering of an incident plane

wave off the surface of a metal ground plane, with embedded arbitrary shaped cavity, that

has been completely covered with a dielectric material.

1.2 Related Work

The importance of cavity problems in the computation of RCS started some extensive

studies [1, 2, 3, 6, 14, 15, 16, 17, 18, 19, 31]. A two-dimensional cavity can be used to

model long seams or cracks in metallic surfaces which can significantly contribute to the

overall radar profile of large objects. There have been numerous techniques developed to

account for the electromagnetic scattering from a cavity-backed aperture in a ground plane,

including Fourier transform, finite element, integral equations, cavity mode coupling and

impedance boundary conditions. These approaches are primarily applied to a problem with

a material filled cavity in a perfect electrical conductor (PEC) ground plane that opens into

an empty half space.

The Fourier transform technique was utilized by Park and Eomto examine the TE and

TM scattering from a rectangular cavity embedded in an infinite ground plane [20, 23,

22]. The method computes a closed form solution by applying Fourier techniques and

approximating a series solution for the field inside the cavity. The Fourier approach can be

extended to the case of the cavity underneath an overlayer with appropriate modifications

[7]. However, the Fourier solution is limited to the case of arectangular cavity. When

dealing with non-rectangular cavities, the Fourier approach is applicable in creating a boundary

condition which can be incorporated to the FEM [28].

Integral equation methods are able to model arbitrarily shaped cavities embedded in
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a ground plane. Analysis of the TM case of a material filled arbitrarily shaped cavity

was analyzed by Wood using a set of scalar integral equations. Howes master’s thesis

expanded Wood’s results to examine the results of the TE case[3, 12, 32, 31]. Integral

equations can also be combined with the FEM to restrict the problem to a finite domain.

The combined approach is known as the hybrid FE-BI (finite element integral equation)

approach. Again, these techniques are not directly applicable to the case where the material

layer or layers exist outside the cavity. To accommodate theoverlayers the integral equation

method could employ a Greens function for a layered media. The problem with the layered

Greens function is that it is in the form of an infinite series [9]. Once an infinite series is

included the important questions of convergence and truncation error are introduced into

the problem. Therefore, an approach which does not need the Greens function will be more

favorable.

An alternate solution to this problem was presented by Van and Wood which coupled

the FEM with Fourier transforms, expressing the results of both the TM and TE case [28].

While this approach provides efficient solutions for an arbitrarily shaped cavity, the solution

requires that the material is restricted to the cavity spacebelow the half plane and that

the upper half space is empty. Wood was able to account for this problem, and extended the

research to consider the effect of over-filling the cavity space with a dielectric material. This

was accomplished by creating an artificial boundary condition on a semi-circle containing

the over-filled material region, and again combining a FEM with Fourier transforms to solve

for the far field scattering [29, 30]. This methodology failswith the possibility of the entire

surface being coated with a material layer due to the increasing size of the semi-circle

needed to bound the material region.

When dealing with the problem of a cavity buried beneath a uniform layered material,

the semicircular domain approach fails since no radius can contain the material outside of

the cavity. The importance of such a problem is that a two-dimensional cavity beneath

a layered material serves as a model of seams or cracks which are covered by paint or

materials applied during a manufacturing process. These cracks and seems would be invisible
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to a visual inspection but may be revealed by understanding the scattering characteristics of

the cavity. The mathematical model can serve as a predictor of the scattering of electromagnetic

waves by the buried cavity for use in non-destructive testing [5]. Therefore, it is important

to be able to accommodate such a situation in cavity scattering computations.

The work proposed in this paper is an extension of previouslypublished literature. A

new boundary condition will be provided which restricts theproblem to a finite domain yet

properly accounts for the influence of the material layers. The FEM will be used to compute

the fields in the finite cavity region. In order to apply the FEM, the boundary condition will

be incorporated into the weak formulation of the problem.

1.3 Background

Electromagnetic waves are comprised of electric and magnetic components that oscillate

transversely to one another, while also transversely to thedirection of propagation. The

relationship between these two components is best described mathematically by Maxwell’s

equations:

∇× E = −
∂(µH)

∂t
(1.1)

∇×H = J +
∂(εE)

∂t
(1.2)

∇ · εE = ρv (1.3)

∇ · µH = 0 (1.4)

whereE andH are the electric and magnetic fields, respectively,J is the current density,

ε is the permittivity of the medium,µ is the permeability of the medium andρv is the free

charge density.

In the problem described, the incident wave is the only source introduced into the

problem, as free-space has no current or electric charge by definition, and a dielectric

material is a non-conductive substance which also lacks a current and electric charge. Thus
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J = ρ = 0. Applying this knowledge to the time-harmonic case whereE = Ee−ıωt is

a shorter way of stating thatE(x, y, z, t) = E(x, y, z)e−ıωt, the time-varying forms are

replaced by the corresponding phasor and∂
∂t

by (−ıω). Then Maxwell’s equations are

represented as:

∇× E = ıωµH (1.5)

∇×H = −ıωεE (1.6)

∇ · εE = 0 (1.7)

∇ · µH = 0 (1.8)

The wave equation for the electric field can be determined by eliminating the magnetic

field from Maxwell’s equations. Taking the curl of both side of equation 1.5 results in:

∇× (∇× E) = ıωµ∇×H

Use equation 1.6 to substitute for∇×H, which results in the wave equation for the electric

field as

∇×∇× E = ω2εµE.

Using some vector calculus,∇×∇× E can be written as−△E +∇(∇ · E).

Since∇ · E = 0, the previous expression reduces to−△E, which can also be written

as−∇2E.

Therefore the wave equation reduces to the so-called Helmholtz Equation

△E + k2E = 0 (1.9)

wherek =
√

ω2µε represents the wave number of the medium. BecauseE is a vector, the
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Helmholtz Equation applies component-wise which means

△Ex + k2Ex = 0,

△Ey + k2Ey = 0, and

△Ez + k2Ez = 0.

In a similar fashion, the wave equation for the magnetic fieldcan be determined by eliminating

the electric field, resulting in:

△H + k2H = 0 (1.10)

wherek =
√

ω2µε and it is also component-wise sinceH is a vector.

Maxwell’s Equations give the foundation to the Helmholtz equation which are later

used to determine important boundary and continuity conditions necessary for solving the

back scatter and RCS from the buried cavity. The next chapter will describe the geometry,

continuity and boundary conditions to find the solution if the wave lies inside the cavity. It

also includes the RCS plots.
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Chapter 2

Formulation of the Problem

2.1 Cavity Problem

In this paper, a solution is being sought given a two-dimensional model of the cavity

problem. Thus without loss of generality, the entire geometry will be considered invariant

in thez direction. Consider a two-dimensional infinite half plane comprised of an idealized

metal, a PEC. An arbitrarily shaped cavity with the opening lengthL is embedded in the

half plane. The entire conducting surface is covered with a thin dielectric material layer.

(See Figure 2.1) The upper half above the PEC will consist of two regions. The upper

most region, designated as region 0, contains a source-freemedium that is time-invariant,

homogeneous and linear, with electric permittivityε0 and magnetic permeabilityµ0. It can

be considered to be open space or air. Below is region 1, containing a dielectric material

with electric permittivityε1 and magnetic permeabilityµ1. Additionally, the cavity space

below the half plane is defined as region 2 and contains a dielectric material with electric

permittivity ε2 and magnetic permeabilityµ2. The thickness of the material layer atop of

the ground plane is denoted ash; therefore the layer thickness ranges fromy = 0 to y = h

[21].

8



Figure 2.1: Material covered plane with a cavity

2.2 Boundary and Continuity Conditions

Boundary conditions are imposed at the interface between thetwo homogeneous regions,

where the tangential electric component of a wave is always continuous on crossing a

material boundary, and the tangential magnetic component of a wave is continuous across

the boundary only if there does not exist a surface current onthe boundary. Since it has been

already established that a surface current does not exist between any of the three regions,

the general boundary conditions can be considered:

n̂× (E0 − E1) = 0 (2.1)

n̂× (E1 − E2) = 0 (2.2)

n̂× (H0 −H1) = 0 (2.3)

n̂× (H1 −H2) = 0 (2.4)

wheren̂ is the normal vector to the surface.

9



Since the electric fields do not exist within the PEC, the boundary conditions outlined

by equations 2.1 and 2.2 reduce to

n̂× E1 = 0 (2.5)

n̂× E2 = 0 (2.6)

at the planar surface and inside the cavity walls.

2.3 TM and TE

As previously stated, there are two polarizations and both are being considered in this

research. The electromagnetic waves can be described on thexy-plane and are decomposed

into these two polarizations:

1. If the electric component is perpendicular to thexy-plane, then the magnetic component

is parallel to thexy-plane. Together, these two components form the TM field.

2. If the electric component is parallel to thexy-plane, then the magnetic component is

perpendicular to thexy-plane. This situation creates the TE field.

Therefore, the two-dimensional scattering of a TM incidentwave from an object’s surface

is measured independently of the scattering of a TE incidentwave and the results of each

polarization can be analyzed independently.

Since the parameters and the geometry are assumed to be invariant in thez-direction,

the result is a two-dimensional problem. For TM polarization the fields have the form

E = (0, 0, Ez) H = (Hx, Hy, 0). (2.7)
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For TE polarization the fields have the form

E = (Ex, Ey, 0) H = (0, 0, Hz). (2.8)

Throughout the paper, the notationu andv will be used to representEz andHz respectively.

When necessary, subscripts will be added to denote in which region the fields are contained.

Also, the superscriptsi andr will denote incoming and reflected or outgoing plane waves

while s andt represent scattered and transmitted fields.

The scattering of the electromagnetic wave in the far field isa function of the plane

wave at the cavity opening. Thus the first step in the proposedwork is to determine the

wave equation at this location. This solution requires careful consideration of the boundary

conditions affecting the wave. A schematic detailing the incoming, reflected and scattered

waves is provided in Figure 2.2. The total electric field of region 0,E0, is the summation

of all electric fields of the area, whereE0 = ui0 + ur0 + us0. Likewise, the total electric field

of region 1 and 2 are similarly determined byE1 = ui1 + ur1 + us1 andE2 = ut2. Similar

formulations for the total magnetic fields of each region canbe derived.

The representation of an electromagnetic wave is dependenton the surrounding constraints

and can take on various forms. The geometry in the described problem can be considered

a combination of two entities, separated by the half plane. Below the half plane, the

electromagnetic wave is bounded by the conducting walls. Above the half plane, the wave

is only restricted by the continuity conditions across the material interface. These two

representations can be coupled to solve for the finite element coefficients along the cavity

opening and applied to the equation of the wave restricted bythe cavity at the opening [21].

2.4 Approximation with Finite Element

If the shape of the cavity is rectangular, a Fourier Series can be used to find the solution, but

this will not work for an arbitrarily shaped cavity. The FEM can produce an approximate

solution for a cavity of any shape. The FEM originated in the field of structural analysis
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Figure 2.2: Field representations of the proposed geometry

and it was applied to electromagnetic problems in 1968. Eventhough the finite difference

method and the method of moments are easier to program and conceptually simpler, FEM is

more powerful for handling problems involving complex geometries and nonhomogeneous

media.

The finite element analysis of any problem involves basically four steps [11]:

1. discretizing the solution region into a finite number of subregions or elements,

2. deriving governing equations for a typical element,

3. assembling of all elements in the solution region, and

4. solving the system of equations obtained.

In this setting, the discretization of the continuum involves dividing up the solution

region, in this case region 2 or the cavity, into subdomains,called finite elements [25] (see

figure 2.4). This triangular grid over the cavity consists ofa set of piecewise linear basis
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functions producing an approximation to the solution such that

u2 ≈
N
∑

i=1

αiφi, (2.9)

where theφi’s are the known basis functions (see figure 2.4) and theαi’s are the unknown

coefficients which will be computed.
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Figure 2.3: Triangular grid over the cavity

Figure 2.4: Basis functionφi
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2.5 Goals

The results of the magnetic and electric polarizations are analyzed separately in this paper,

where the TM case is discussed first in Chapter Three, followedby the TE case in Chapter

Four. Both of these chapters apply the necessary continuity and boundary conditions to

solve for the coefficients of the finite element solution, which are then used to solve for the

wave at the cavity opening. The RCS is then computed in Chapter Five based on the results

from chapters three and four. The numerical results with differently shaped cavities and

settings for both the TM and TE case, including RCS plots, are provided in Chapter Six.

Lastly, Chapter Seven states the conclusion of this paper with suggested future research.

14



Chapter 3

TM Case

This chapter discusses the transverse magnetic part of the problem. Using equation 2.1,

only thez component in the electric field plays a significant role. Therefore,E = (0, 0, u)

whereu = Ez. The Helmholtz Equation for this case can be written as

△u+ k2u = 0,

wherek2 = ω2εµ. The notationuj with j = 0, 1, 2 refers to the total fields in regions 0,

1 and 2 respectively. Solutions of Maxwell’s equations satisfy two continuity conditions.

These conditions state that the tangential component of theelectric fieldE and the magnetic

field H are continuous across material interfaces. From section 2.2 the electric continuity

for TM case implies that

u0 = u1, at y = h (3.1)

u1 = u2, at y = 0 (3.2)

while the magnetic continuity implies that
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1

µ0

∂u0
∂y

=
1

µ1

∂u1
∂y

, at y = h (3.3)

1

µ1

∂u1
∂y

=
1

µ2

∂u2
∂y

, at y = 0. (3.4)

Since the electric fields are zero inside a PEC material,u = 0 at y = 0 [0, L] and at the

walls of the cavity inside region 2.

In region 0, the total field consists of three parts. The knownincoming plane wave

is denoted asui0. The plane wave reflected at the interface between regions 0 and 1 is

denotedur0. The scattered field is denoted asus0. The total fieldu0 is the sum of these three

componentsu0 = ui0 + ur0 + us0 as mentioned in Chapter Two.

In region 1,ui1 andur1 represent the plane waves due to the transmission of the incident

field from region 0 and the reflection at the interface at the PEC material. The scattered

field in region 1 is denotedus1. The total fieldu1 is the sum of these three components

u1 = ui1 + ur1 + us1.

In region 2, the total fieldu2 is the field transmitted into the cavity and it will not be

decomposed into a superposition of fields. The FEM will be used to computeu2 while

enforcing the appropriate boundary conditions at the cavity walls as well as continuity

conditions with the fields in region 1 above the cavity.

3.1 Incident and Reflected Fields

This section explains how to compute the fieldsur0, u
i
1 andur1 given the known incident

plane waveui0. These fields will be computed as if there was no cavity present and then

considered as source fields which produce scattered and transmitted fields when interacting

with the cavity region. They are computed only in region 0 andregion 1 by enforcing the

continuity of the electric and magnetic fields aty = h and the PEC boundary condition at

y = 0. When appropriate the notationuirj = uij + urj for j = 0, 1 will be used.
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Since the material parameters are constant in both region 0 and region 1, a plane wave

solution for the Helmholtz equation in both regions can be found. Solution for these

incoming and outgoing plane waves is a result of applying thecontinuity conditions.

In region 0, the known incident plane wave is given as

ui0 = eiα0x+iβ0y. (3.5)

Refer to figure 2.2 and consider it without the cavity. The total field in region 0 can be

represented as the summation of incidence and reflected fields and the total field in region

1 as the summation of the incidence and reflected fields. To enforce continuity conditions,

equation (3.1) aty = h has to hold. Thus, the reflected field in region 0 can be writtenof

the form

ur0 = Ceiα0x−iβ0y. (3.6)

In region 1, there are incomingui1 and outgoingur1 plane waves

ui1 = Aeiα1x+iβ1y (3.7)

ur1 = Beiα1x−iβ1y. (3.8)

Using the basic theory of reflection and transmission of plane waves,E0 = E1 aty = h:

eiα0x+iβ0h + Ceiα0x−iβ0h = Aeiα1x+iβ1h + Beiα1x−iβ1h (3.9)

eiα0x
(

eiβ0h + Ce−iβ0h
)

= eiα1x
(

Aeiβ1h + Be−iβ1h
)

(3.10)

If x = 0

(

eiβ0h + Ce−iβ0h
)

=
(

Aeiβ1h + Be−iβ1h
)

(3.11)

eiα0x = eiα1x, (3.12)
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thusα0 = α1. The next steps follow from the continuity conditions:

k20 = ω2ε0µ0 = α2
0 + β2

0

k21 = ω2ε1µ1 = α2
1 + β2

1

= α2
0 + β2

1

β1 =
√

ω2ε1µ1 − α2
1.

In order to compute the coefficientsA, B andC, enforce the continuity and boundary

conditions. From the PEC boundary condition aty = 0,

Aeiα0x +Beiα0x = 0, (3.13)

which reveals thatB = −A. Therefore,

uir1 = Aeiα0x+iβ1y − Aeiα1x−iβ1y = Aeiα0x(eiβ1y − e−iβ1y). (3.14)

Now, by enforcing the continuity of the electric field,uir0 = uir1 aty = h or

A(eiβ1y − e−iβ1y)− Ce−iβ0h = eiβ0h. (3.15)

By enforcing the continuity of the magnetic field

1

µ0

∂uir0
∂y

=
1

µ1

∂uir1
∂y

, (3.16)

we obtain

A
µ0

µ1

(

iβ1e
iβ1h + iβ1e

−iβ1h
)

+ Ciβ0e
−iβ0h = iβ0e

iβ0h. (3.17)

Equations (3.15) and (3.17) provide a system of equations for the unknownsA andC. Use
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Cramer’s Rule to arrive at

A =
2iβ0

iβ0e−iβ0h(eiβ1h − e−iβ1h) +
(

µ0

µ1

)

e−iβ0h(iβ1eiβ1h + iβ1e−iβ1h)

and

C =
iβ0e

−iβ0h(eiβ1h − e−iβ1h)−
(

µ0

µ1

)

eiβ0h(iβ1e
iβ1h + iβ1e

−iβ1h)

iβ0e−iβ0h(eiβ1h − e−iβ1h) +
(

µ0

µ1

)

e−iβ0h(iβ1eiβ1h + iβ1e−iβ1h)
.

Once the coefficients of the incident and reflected field are obtained, the transmitted field

u2 inside the cavity can be computed. The interaction of the incident and reflected plane

waves with cavity opening creates the transmitted field.

3.2 Artificial Boundary Condition

The goal of this section is to provide the representation of the scattered fields in regions

0 and 1 which are also created due to the interaction of the plane waves with the cavity.

When there is the scattered field, the continuity conditions at the opening of the cavity are

enforced. At this point, a boundary value problem is completely contained in region 2. The

representations of the scattered fields are found using the Fourier theory and the fact that

they must satisfy the Helmholtz equation. The representations in regions 0 and 1 are

us0 =

∞
∫

−∞

C(λ)e−κ0ye2πiλxdλ (3.18)

us1 =

∞
∫

−∞

[A(λ)e−κ1y + B(λ)eκ1y]e2πiλxdλ (3.19)

whereκj =
√

(2πλ)2 − k2j for j = 0, 1 andA(λ), B(λ), C(λ) are the unknown Fourier

transforms of the scattered field. The strategy will be to eliminateA(λ) andB(λ) from the
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problem by employing the continuity conditions aty = h. Solve forA(λ) andB(λ) in terms

of C(λ) and substitute the solutions into equation (3.19). The electric field continuity gives

us0 = us1 and the magnetic continuity gives1
µ0

∂us

0

∂y
= 1

µ1

∂us

1

∂y
at y = h. These two conditions

result in two equations:

C(λ)e−κ0h = A(λ)e−κ1h + B(λ)eκ1h (3.20)

−κ0

(

µ1

µ0

)

C(λ)e−κ0h = −κ1A(λ)e
−κ1h + κ1B(λ)eκ1h. (3.21)

Applying the above scattered field equations into the continuity conditions yields a system

of equations that can be solved forA andB in terms ofC using Cramer’s Rule.

A(λ) = C(λ)





e(κ1−κ0)h
(

κ1 +
(

µ1

µ0

)

κ0

)

2κ1



 (3.22)

B(λ) = C(λ)





e−(κ0+κ1)h
(

κ1 −
(

µ1

µ0

)

κ0

)

2κ1



 (3.23)

Therefore, abovey = 0 in region 1, the scattered field can be written in terms of a Fourier

Transform. Substitute (3.22) and (3.23) into (3.19) to arrive at

us1 = F−1
x

{[

RTM(y)

2κ1

]

C(λ)

}

, (3.24)

whereRTM(y) = e(κ1−κ0)h(κ1 +
(

µ1

µ0

)

κ0)e
−κ1y + e−(κ0+κ1)h(κ1 −

(

µ1

µ0

)

κ0)e
κ1y.

At y = 0,

Fx[u
s
1] =

[

RTM(0)

2κ1

]

C(λ). (3.25)

Use (3.25) to solve forC(λ).

C(λ) =

[

2κ1
RTM(0)

]

Fx[u
s
1] (3.26)
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They-derivative ofus1 from equation (3.24) has the following representation

∂us1
∂y

= F−1
x

{[

STM(y)

2

]

C(λ)

}

,

where

STM(y) = −e(κ1−κ0)h(κ1 +

(

µ1

µ0

)

κ0)e
−κ1y + e−(κ0+κ1)h(κ1 −

(

µ1

µ0

)

κ0)e
κ1y.

Wheny = 0,

∂us1
∂y

= F−1
x

{[

STM(0)

2

]

C(λ)

}

,

where

STM(0) = −e(κ1−κ0)h(κ1 +

(

µ1

µ0

)

κ0) + e−(κ0+κ1)h(κ1 −

(

µ1

µ0

)

κ0).

Substituting in (3.26) gives the following aty = 0

∂us1
∂y

= F−1
x [ΠFx[u

s
1]] (3.27)

whereΠ = κ1STM (0)
RTM (0)

.

The magnetic continuity condition at the cavity opening(y = 0) yields

∂u2
∂y

=
µ2

µ1

(

∂us1
∂y

+
∂uir1
∂y

)

. (3.28)

Enforcing the electric continuity conditions aty = 0, u2 = us1+u
ir
1 . Sinceuir1 = 0 aty = 0,

thenus1 = u2. Substituteu2 into (3.27), then substitute (3.27) into (3.28) to arrive at

∂u2
∂y

= T (u2) + g (3.29)

where
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T (u2) =

(

µ2

µ1

)

F−1
x [ΠFx[u2]] ,

g =

(

µ2

µ1

)

∂uir

∂y
.

Use (3.29) to restrict the problem to region 2 where a solution for u2 will be found.

3.3 Finite Element Solution

Given the boundary condition from the previous section, thefield (u2) transmitted into the

cavity will satisfy the following boundary value problem:

△u2 + k22u2 = 0 in Ω(Region 2), (3.30)

u2 = 0 on ∂Ω\{y = 0}, (3.31)

∂u2
∂y

= T (u2) + g on ∂Ω ∩ {y = 0}. (3.32)

Note thatΩ represents the cavity (region 2).

As mentioned in section 2.4, the FEM can produce an approximate solution for the

boundary value problem with a cavity of any shape. The Helmholtz Equation has a weak

form used to find the solution. By multiplying both sides of theequation by one of the basis

functions and integrating over the solution regionΩ, we have

∫

Ω

[

1

µ2

∇2u2 + k20ε2u2

]

φjdΩ = 0. (3.33)

Apply Green’s identity to the first term of the integration. This weakens the derivatives to

first order and creates the weak form of the Helmholtz equation:

∫

Ω

∇u2 · ∇φjdΩ−

∫

∂Ω

∂u2
∂y

φjdΓ +

∫

Ω

k2u2φjdΩ = 0, (3.34)
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whereφj is an appropriate test function. Note there is a boundary integral over∂Ω and this

term involves the normal derivative of the solution.

The boundary represents the opening of the cavity into the upper half space. Now

assume there is a set of piecewise linear basis functionsφi i = 1, ..., N defined on the

grid. The goal is to produce an approximate solution of the form u2 ≈
N
∑

i=1

αiφi. This

approximation is substituted into equation (3.34):

∫

Ω

1

µ2

∇

(

N
∑

i=1

αiφi

)

· ∇φjdΩ−

∫

∂Ω

∂

(

N
∑

i=1

αiφi

)

∂y
φjdΓ +

∫

Ω

k20ε2

(

N
∑

i=1

αiφi

)

φjdΩ = 0

(3.35)

The basis functionsφj are assumed to satisfy the PEC boundary condition at the cavity

walls. Therefore, the boundary integral in the weak form canbe written as

∫

∂Ω

∂

(

N
∑

i=1

αiφi

)

∂y
φjdΓ =

L
∫

0

∂

(

N
∑

i=1

αiφi

)

∂y
φjdx. (3.36)

Substituting in the transparent boundary condition gives

L
∫

0

∂

(

N
∑

i=1

αiφi

)

∂y
φjdx =

L
∫

0

(

T

(

N
∑

i=1

αiφi

)

+ g

)

φjdx. (3.37)

Therefore, for each basis functionφj there is an equation

∫

Ω

1

µ2

∇

(

N
∑

i=1

αiφi

)

· ∇φjdΩ−

L
∫

0

T

(

N
∑

i=1

αiφi

)

φjdx

+

∫

Ω

k20ε2

(

N
∑

i=1

αiφi

)

φjdΩ =

L
∫

0

gφjdx.

(3.38)

These equations create a system which can be used to solve forthe unknown coefficientsαj

j = 1, ..., N .
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Similar calculations will be discussed for the TE polarization in Chapter Four. Chapter

Five shows the RCS computation for both polarizations.
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Chapter 4

TE Case

This chapter discusses the transverse electric polarization of the problem. Again, consider

the TE case, where the incoming and reflected fields are addressed first. Examination of

the effect of the material layer with embedded cavity in the half plane takes place after

determination of the incoming and reflected fields. These equations will then be used to

determine a solution at the cavity opening.

In the TE caseH = (0, 0, v), wherev = Hz. Note that the TE case as well as the

TM case has to satisfy all boundary and continuity conditions. As with the TM case, the

field transmitted into the cavity (v2) also satisfies the Helmholtz equation△v2 + k2v2 = 0

wherek2 = ω2εµ. Sincev2 represents the magnetic field, when PEC boundary condition is

enforced, Maxwell’s Equations show that∂v2
∂n

= 0 at the walls of the cavity.

4.1 Incident Field

The incoming and outgoing plane waves can be derived from equations in the TM case.

Equation (3.5) is nowvi0 = eiα0x+iβ0y , equation (3.6) isvr0 = Deiα0x−iβ0y, equation (3.7)

is vi1 = Eeiα0x+iβ1y and equation (3.8) isvr1 = Feiα0x−iβ1y whereβ1 =
√

ω2ε1µ− α2
0

andα0 = α1 using the same strategy as in the TM case. By enforcing the PEC boundary

conditions aty = 0, E = F . Solve the system of equations forD andE by enforcing
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continuity conditions aty = h:

D =
2
(

ε1
ε0

)

iβ0
(

ε1
ε0

)

iβ0(eih(β1−β0) + e−ih(β0+β1)) + iβ1(eih(β1−β0) − e−ih(β0+β1))

E =

(

ε1
ε0

)

iβ0(e
ih(β0+β1) + eih(β0−β1))− iβ1(e

ih(β0+β1) − eih(β0−β1))
(

ε1
ε0

)

iβ0(eih(β1−β0) + e−ih(β0+β1)) + iβ1(eih(β1−β0) − e−ih(β0+β1))
.

Once the incoming and outgoing plane waves are computed in regions 0,1 they will then be

used as source fields which produce scattered and transmitted fields when they interact with

the cavity opening.

4.2 Artificial Boundary

Again, following the calculations in the TM case the scattered field in regions 0 and 1 can

be represented as

vs0 =

∞
∫

−∞

D(λ)e−κ0ye2πiλxdx (4.1)

vs1 =

∞
∫

−∞

[

E(λ)e−κ1ye2πiλx + F (λ)eκ1ye2πiλx
]

dλ (4.2)

whereE(λ) andF (λ) can be written in terms ofD(λ).

Enforcing the electric continuity aty = h as in TM case equation (3.20), results in

D(λ)e−κ0h = E(λ)e−κ1h + F (λ)eκ1h. (4.3)

Enforcing the magnetic continuity aty = h, as in the TM equation (3.21), results in

−κ0

(

ε1
ε0

)

D(λ)e−κ0h = −κ1E(λ)e
−κ1h + κ1F (λ)e

κ1h. (4.4)
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The equations (4.3) and (4.4) provide system of equations for whichE(λ) andF (λ) can be

solved in terms ofD(λ) using Cramer’s Rule:

E(λ) = D(λ)





e(κ1−κ0)h
((

ε1
ε0

)

κ0 + κ1

)

2κ1



 (4.5)

F (λ) = D(λ)





e−(κ1+κ0)h
((

ε1
ε0

)

κ0 − κ1

)

−2κ1



 (4.6)

Substitute (4.5) and (4.6) into (4.2) to get

vs1 = F−1
x

{[

RTE(y)

2κ1

]

D(λ)

}

(4.7)

where

RTE(y) = e(κ1−κ0)h

((

ε1
ε0

)

κ0 + κ1

)

e−κ1y − e−(κ1+κ0)h

((

ε1
ε0

)

κ0 − κ1

)

eκ1y.

At y = 0,

Fx[v
s
1] =

[

RTE(0)

2κ1

]

D(λ). (4.8)

Take they−derivative ofvs1 from equation (4.7) to arrive at

∂vs1
∂y

= F−1
x

{[

STE(y)

2

]

D(λ)

}

(4.9)

where

STE(y) = −e(κ1−κ0)h

((

ε1
ε0

)

κ0 + κ1

)

e−κ1y − e−(κ1+κ0)h

((

ε1
ε0

)

κ0 − κ1

)

eκ1y.

Solve forD(λ):
2

STE(0)
Fx

[

∂vs1
∂y

]

= D(λ). (4.10)
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Wheny = 0

∂vs1
∂y

= F−1
x

{[

STE(0)

2

]

D(λ)

}

(4.11)

where

STE(0) = −e(κ1−κ0)h

((

ε1
ε0

)

κ0 + κ1

)

− e−(κ1+κ0)h

((

ε1
ε0

)

κ0 − κ1

)

.

Substituting in (4.10) aty = 0 gives

∂vs1
∂y

= F−1
x

[

κ1STE(0)

RTE(0)
Fx [v

s
1]

]

. (4.12)

By enforcing the continuity conditions at the opening of the cavity (y = 0) v2 = vs1 + vir1

and ε1
ε2

∂v2
∂y

=
∂vs

1

∂y
. Therefore aty = 0

v2 = T

(

∂v2
∂y

)

+ G (4.13)

where

T

(

∂v2
∂y

)

= F−1
x

{

ΘFx

[

ε2
ε1

∂v2
∂y

]}

Θ =
κ1STE(0)

RTE(0)

G = vir1 .

4.3 Finite Element Solution

Just like in the TM case, the FEM Solution uses a set of piecewise linear basis functions to

produce an approximation to the solution such thatv2 ≈
∑

αiφi.

Consider the weak formulation
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−

∫

Ω

∇v2 · ∇φjdΩ +

∫

∂Ω

∂v2
∂n

φjdΓ +

∫

Ω

k2v2φjdΩ = 0. (4.14)

Note, there is a boundary integral over∂Ω and this term represents the opening of the cavity

into the layered material. Therefore it can be written as

L
∫

0

∂v2
∂n

φjdx.

In this case,
∂v2
∂y

≈

M
∑

i=1

βiψi.

Make a substitution forv2 and ∂v2
∂y

. Then multiply by theψj function to get a system of

equations that is used for computation of the solution.

N
∑

i=1

αiφi = vir1 − T

(

∂v2
∂y

)

(4.15)

For the interaction ofφ andψ functions, it is also needed to have

b
∫

a

(

N
∑

i=1

αiφi

)

ψjdx =

b
∫

a

vir1 ψjdx−

M
∑

i=1

βi

∞
∫

−∞

ε1
ε2
ΘFx[ψi]Fx[ψj]dx. (4.16)

Reproducing the equation (4.14) for eachφj and reproducing the equation (4.15) for

eachψj with the above results will provide a system which can be solved for the unknown

αi andβi values. Once theαi’s and theβi’s are known, the finite element approximation of

the solution of the transmitted field can be computed.
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Chapter 5

Radar Cross Section Results

A radar system uses a transmitter to emit short pulses of electromagnetic waves towards a

target and a receiver to record the strength of the return echo. A comparison of these two

values are depicted in a RCS. The location of the receiver of this system can vary between

the site emitting the source or multiple locations not at thesource. When the transmitter and

receiver are positioned at the same location, the incident and reflective angles of the plane

waves are equal and the RCS is termed monostatic. In the case that a multisite radar system

is used, the reflective angles differ from the incident angleand the RCS is termed bistatic.

Chapter Six provides numerical results for both types of systems.

Once the cavity is illuminated by an incoming electromagnetic plane wave, the resulting

effect is a scattering of the plane wave into the far field. Since we are interested in the

intensity of the scattered energy, a technique must be employed to predict this quantity

given the strength of the incoming wave and the cavity geometry. Since the cavity aperture

lies within an infinite PEC, we can consider covering the opening with a conductor so that

the image theory can be implemented. A surface can then be constructed on top of the

infinite plane to produce equivalent electric (J) and magnetic (K) sources, where:
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J1 = n̂×H1 (5.1)

K1 = E1 × n̂. (5.2)

Applying the method of images guarantees that the PEC plane can be removed and the

combination of the original charge configuration that originally laid above the PEC and

the image configuration is electrically equivalent to the original charge configuration in the

presence of the PEC. This process eliminates the electric source, leaving a doubled magnetic

source located along the cavity aperture. The far field components of the electric field are

computed from the resulting sources, and from this the RCS is configured by taking the

norm of the squared far field values [24].

The general form of the two-dimensional scattering cross section for the TM and TE

polarization is

σTM(φ, φi)=
k0
4

∣

∣

∣

∣

∫ ∫

(ηJz +Kx sinφ−Ky cosφ) e
ık0(x′ cos(φ+y′ sin(φ)))dx′dy′

∣

∣

∣

∣

2

(5.3)

σTE(φ, φ
i)=

k0
4

∣

∣

∣

∣

∫ ∫
(

Jx sinφ− Jy cosφ−
Kz

η

)

ejk(x
′ cosφ+y′ sinφ)dx′dy′

∣

∣

∣

∣

2

, (5.4)

whereη =
√

µ0

ε0
, Jx, Jy andJz represents the electric current of thex, y andz components,

Kx,Ky andKz represents the magnetic current of thex, y andz components. Additionally,

the value ofy′ is fixed, such that if there does not exist a material layer above the cavity

surface,y′ = 0, otherwise,y′ = h [24].

The results of the image process revealed that our RCS is a function of only magnetic

sources at the cavity aperture, thus eliminatingJ from our equations. Additionally, the

magnetic sources as determined by equation (5.1) are a function of the electric field. In the

TM polarization, the electric field is invariant in thez direction, where the product of this

function with the normal results in the magnetic sources only existing in thex direction.

Likewise, for the TE polarization, the electric field is invariant in thex direction, which
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results in the magnetic sources existing in thez direction. Applying these facts reduces the

equations representing the RCS to

σTM(φ, φi) =
k0
4

∣

∣

∣

∣

∫

Kx sinφe
ık0(x′ cosφ+y′ sinφ)dx′

∣

∣

∣

∣

2

(5.5)

σTE(φ, φ
i) =

k0
4

∣

∣

∣

∣

∫

Kz

η
eik0(x

′ cosφ+y′ sinφ)dx′
∣

∣

∣

∣

2

. (5.6)

Since double the magnetic source remains at the cavity aperture after applying the method

of images, substituting in the electric field further reduces these equations to:

σTM(φ, φi) =
k0
4

∣

∣

∣

∣

−2

∫

ETM sinφeık0(x
′ cosφ+y′ sinφ)dx′

∣

∣

∣

∣

2

(5.7)

σTE(φ, φ
i) =

k0
4

∣

∣

∣

∣

2

∫

ETE

η
eik0(x

′ cosφ+y′ sinφ)dx′
∣

∣

∣

∣

2

. (5.8)

Computation of far field or RCS quantities is a post-processing step. The computed

transmitted fieldsu2 andv2 will be used to compute the strength of the scattered fields at

a distance far from the cavity opening. The trick is that to use the standard formula for far

field values, it is necessary to have the scattered field at theinterface with free space. That

is the values ofus0 andvs0 aty = h need to be known. The far field formulas become

σTM(φ, φi) =
k0
2

∣

∣

∣

∣

∫

∞

−∞

us0(x
′, h) sinφeık0(x

′ cosφ+h sinφ)dx′
∣

∣

∣

∣

2

(5.9)

σTE(φ, φ
i) =

k0
2

∣

∣

∣

∣

∫

∞

−∞

i

ηεω

∂vs0
∂y

(x′, h)eik0(x
′ cosφ+h sinφ)dx′

∣

∣

∣

∣

2

. (5.10)

The computation of these integrals can potentially be difficult since they are over the

entire real line. However, evaluation of such an improper integral can be avoided by relating

the scattered fields back to the transmitted fieldsu2 andv2.

σTM(φ, φi) =
k0
2

∣

∣

∣

∣

sinφeık0(h sinφ)

∫

∞

−∞

us0(x
′, h)eık0(x

′ cosφ)dx′
∣

∣

∣

∣

2

(5.11)

σTE(φ, φ
i) =

k0
2

∣

∣

∣

∣

i

ηεω
eık0(h sinφ)

∫

∞

−∞

∂vs0
∂y

(x′, h)eik0(x
′ cosφ)dx′

∣

∣

∣

∣

2

(5.12)

32



Now the integrals are Fourier transforms ofus0 and ∂vs
0

∂y
. By equation (3.18) the Fourier

transform ofus0 at y = h is C(λ)e−κ0h. Solve forC(λ) in terms of the known solutionu2

by using equation (3.25) and the continuity aty = 0 to arrive at

C(λ)e−κ0h =

[

2κ1e
−κ0h

RTM(0)

]

Fx[u2|y=0]. (5.13)

Applying the above steps, the far field for TM case takes on these forms:

σTM(φ, φi) =
k0
2

∣

∣sinφeık0(h sinφ)C(λ)e−κ0h
∣

∣

2
(5.14)

σTM(φ, φi) =
k0
2

∣

∣

∣

∣

sinφeık0(h sinφ)

[

2κ1e
−κ0h

RTM(0)

]

Fx[u2|y=0]

∣

∣

∣

∣

2

(5.15)

By equation (4.7) the Fourier transform of∂vs
0

∂y
at y = h is −κ0D(λ)e−κ0h. D(λ) is

solved in terms of the known solution for∂v2
∂y

at y = 0 by using equation (4.10) and the

continuity.

−κ0D(λ)e−κ0h =
−2κ1κ0e

−κ0h

STE(0)
Fx

[

ε1
ε2

∂v2
∂y

∣

∣

∣

∣

y=0

]

(5.16)

Applying the above steps, the far field for TE case takes on these forms:

σTE(φ, φ
i) =

k0
2

∣

∣

∣

∣

i

ηεω
eık0(h sinφ)(−κ0)D(λ)e−κ0h

∣

∣

∣

∣

2

(5.17)

σTE(φ, φ
i) =

k0
2
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∣

∣

∣

∣

i

ηεω
eık0(h sinφ)−2κ1κ0e

−κ0h

STE(0)
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ε1
ε2

∂v2
∂y

∣

∣

∣

∣

y=0

]∣

∣

∣

∣

∣

2

. (5.18)

Therefore the far field values are completely in terms of the finite element approximations

from the cavity using

σTM(φ, φi) = k0

∣

∣

∣

∣

sinφeık0(h sinφ) κ1e
−κ0h

RTM(0)
Fx[u2|y=0]

∣

∣

∣

∣

2

(5.19)

σTE(φ, φ
i) = k0

∣

∣

∣

∣

∣

i

ηεω
eık0(h sinφ)κ1κ0e

−κ0h

STE(0)
Fx

[

ε1
ε2

∂v2
∂y

∣

∣

∣

∣

y=0

]∣

∣

∣

∣

∣

2

. (5.20)

Also, note that both of the finite element solutions have support limited to [0, L] in thex
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direction. Therefore, the integrals performed in the Fourier transforms are performed on a

finite interval.
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Chapter 6

Numerical Results

This chapter presents figures of the results obtained by applying the FEM. Sections 6.2

displays the RCS signature for various test cases for the TM polarization of a rectangular

cavity, while sections 6.3 provides similar results for theTE polarization. The layered

methodology suggested by this research was coded using Matlab® and validation testing of

the code is provided in sections 6.1 to assure the output can duplicate the signatures of other

publications.

Sections 6.2 and 6.3 address the resulting effect of a surface layer on the RCS. To

maintain consistency in test parameters for each polarization, the following set of general

test cases was implemented:

1. Increasing the dimension of the material layer

2. Increasing the cavity depth

3. Increasing the cavity length.

Each of these test cases is based on either a monostatic or bistatic radar system and will be

noted within each description. All monostatic plots were computed using an incident angle

ranging between[0, π
2
]. Section 6.4 demonstrates the results produced by some interesting

cavity geometries since FEM is capable of handling more complex cavity shapes.
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6.1 Validation Testing

When dealing with a rectangular cavity a Fourier based solution can be found. The solution

is exact in principle, but in reality it is an approximation due to the truncation of the Fourier

series solution. Despite the approximation errors, the Fourier solution is a convenient basis

for comparison to verify that the finite element approach is working correctly. The following

figures compare the Fourier and finite element solutions at the opening of a rectangular

cavity with width 1.25 and depth .2 meters. The angle of incidence isπ/3 radians and

the frequency is3π. The material overlayer is .1 meter thick and consists of material with

parametersε1 = 2 andµ1 = 2. The material parameters for the cavity areε2 = 1− .5ı and

µ2 = 1− .5ı. Both the TM and TE cases provided show a strong agreement.
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Figure 6.1: Cavity Opening: Fourier vs FEM TM case
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Figure 6.2: Cavity Opening: Fourier vs FEM TE case

The RCS produced from the Fourier and FEM methods are compared in Figures 6.3,

6.4, 6.5 and 6.6. The geometry and parameters are the same as for the comparisons above.

As expected, good agreement is demonstrated for both TM and TE polarizations.
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Figure 6.3: Monostatic Cross Section: Fourier vs FEM TM case
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Figure 6.4: Monostatic Cross Section: Fourier vs FEM TE case
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Figure 6.5: Bistatic Cross Section: Fourier vs FEM TM case
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Figure 6.6: Bistatic Cross Section: Fourier vs FEM TE case

6.2 TM: Testing

6.2.1 Increasing the dimensions of the material layer

Monostatic RCS Plots

The tested thickness of the material layer ranges from 0.025to 1.0 meters with material

parametersε1 = 4 andµ1 = 1. This test uses a rectangular cavity of depth 0.5 meters and

material parametersε2 = 1 andµ2 = 2. The angle of incidence isπ
4

with frequency6π.

Figure 6.7 shows results of material layer ranging from 0.025 to 0.075 meter while figure

6.8 has a material layer ranging from 0.1 to 1.0.
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Figure 6.7: Monostatic RCS for TM polarization testing varying thickness parameters of
the material surface whenaoi = π/4, L = 1.25, ε1 = 4 andµ1 = 1
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Figure 6.8: Monostatic RCS for TM polarization testing varying thickness parameters of
the material surface whenaoi = π/4, L = 1.25, ε1 = 4 andµ1 = 1
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6.2.2 Increasing the cavity depth

Monostatic RCS Plots

The tested depth of a rectangular cavity ranges from 0.2 to 5.5 meters with material

parametersε2 = 2 andµ2 = 1. This test uses 0.1 meters thick material layer with parameters

ε1 = 4 andµ1 = 1. The angle of incidence isπ
4

with frequency6π. Figure 6.9 shows results

of cavity depth 0.2, 1.2 and 3.2 meters while figure 6.10 illustrates cavity depth of 0.5, 3.0

and 5.5.
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Figure 6.9: Monostatic RCS for TM polarization testing varying depth parameters of the
material surface whenaoi = π/4, L = 1.25, ε1 = 4 andµ1 = 1
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Figure 6.10: Monostatic RCS for TM polarization testing varying depth parameters of the
material surface whenaoi = π/4, L = 1.25, ε1 = 4 andµ1 = 1

6.2.3 Increasing the cavity length

Monostatic RCS Plots

The tested length of the opening of a rectangular cavity ranges from 0.25 to 5.25 meters.

The cavity filled with a material of parametersε2 = 1 andµ2 = 2 is covered with a 0.1

meter thick material layer with parametersε1 = 16 − 5ı andµ1 = 4 − 1.25ı. The angle of

incidence isπ
3

with frequency4π. Figure 6.11 shows results of all cavity opening ranges.
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Figure 6.11: Monostatic RCS for TM polarization testing varying length of the cavity
opening to the upper half plane with layer parameters ofε1 = 16 − 5ı andµ1 = 4 − 1.25ı
with aoi = π/3.
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6.3 TE: Testing

6.3.1 Increasing the dimensions of the material layer

Monostatic RCS Plots

TE polarization was tested with the same parameters as TM polarization. The tested

thickness of the material layer ranges from 0.025 to 1.0 meter with material parameters

ε1 = 4 andµ1 = 1. This test uses a rectangular cavity of depth 0.5 meters and material

parametersε2 = 1 andµ2 = 2. The angle of incidence isπ
4

with frequency6π. Figure 6.12

shows results of material layer from 0.025 to 0.075 meter while figure 6.13 material layer

ranges from 0.1 to 1.0.
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Figure 6.12: Monostatic RCS for TE polarization testing varying thickness parameters of
the material surface whenaoi = π/4, L = 1.25, ε1 = 4 andµ1 = 1
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Figure 6.13: Monostatic RCS for TE polarization testing varying thickness parameters of
the material surface whenaoi = π/4, L = 1.25, ε1 = 4 andµ1 = 1

6.3.2 Increasing the cavity depth

Monostatic RCS Plots

As in the TM polarization, the tested depth of a rectangular cavity ranges from 0.2 to 5.5

meters with material parametersε2 = 2 andµ2 = 1. This test uses 0.1 meter thick material

layer with parametersε1 = 4 andµ1 = 1. The angle of incidence isπ
4

with frequency6π.

Figure 6.14 shows results of cavity depth 0.2, 1.2 and 3.2 meters while figure 6.15 illustrates

cavity depth of 0.5, 3.0 and 5.5 meters.
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Figure 6.14: Monostatic RCS for TE polarization testing varying depth parameters of the
material surface whenaoi = π/4, L = 1.25, ε1 = 4 andµ1 = 1
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Figure 6.15: Monostatic RCS for TE polarization testing varying depth parameters of the
material surface whenaoi = π/4, L = 1.25, ε1 = 4 andµ1 = 1
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6.3.3 Increasing the cavity length

Monostatic RCS Plots

The tested length of the opening of a rectangular cavity ranges from 0.25 to 5.25 meters.

The cavity is filled with a material having these parameters:ε2 = 1 andµ2 = 2. This test

uses 0.1 meter thick material layer with parametersε1 = 16 − 5ı andµ1 = 4 − 1.25ı. The

angle of incidence isπ
3

with frequency4π. Figure 6.16 shows results of all cavity opening

ranges.
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Figure 6.16: Monostatic RCS for TE polarization testing varying length of the cavity
opening to the upper half plane with layer parameters ofε1 = 16 − 5ı andµ1 = 4 − 1.25ı
with aoi = π/3.
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6.4 Numerical Experiments

The comparison with the Fourier results shows that the finiteelement formulation gives

correct results for the rectangular cavity underneath a material layer. The remaining figures

will demonstrate the results produced by some interesting cavity geometries with a variety

of parameters. All cases use the opening length of 1 unit and the frequency of the incident

field is8π.

6.4.1 Triangle

The first experiment is a triangular filled cavity with material parametersε2 = 1 andµ2 = 2.

The material overlayer has thickness .3 meter and the material parametersε1 = 1+0.1ı and

µ1 = 2. The angle of incident field isπ/3. The first two figures are the results for the

TM case. The absolute value of the field in the cavity is shown in the first figure and the

monostatic radar cross section for the field is given in the second figure.

Figure 6.17: Absolute Value: TM Triangular Geometry
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Figure 6.18: Monostatic Cross Section: TM Triangular Geometry

Figure 6.19: Absolute Value: TE Triangular Geometry
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Figure 6.20: Monostatic Cross Section: TE Semicircular Geometry
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6.4.2 Semicircle

The second experiment is a semicircular filled cavity with material parametersε2 = 1 and

µ2 = 2. The material overlayer has thickness .1 meter and materialparametersε1 = 16+5ı

andµ1 = 4 − 1.25ı. The angle of the incidence field isπ/4. The first two figures are the

results of the TM case. The absolute value of the field in the cavity is shown in the first

figure and second figure represents the monostatic radar cross section for the field.

Figure 6.21: Absolute Value: TM Semicircular Geometry
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Figure 6.22: Monostatic Cross Section: TE Semicircular Geometry

50



Figure 6.23: Absolute Value: TE Semicircular Geometry
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Figure 6.24: Monostatic Cross Section: TE Semicircular Geometry
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6.4.3 Random Polygon

In order to get away from the classic geometric shapes, the third experiment is an arbitrarily

polygonal figure with material parametersε2 = 2 andµ2 = 1. The material overlayer has

thickness .2 meter and the material parametersε1 = 3 andµ1 = 2. The angle of incident

field is 0 radians. The first two figures are the results for TM case. The absolute value of the

field in the cavity is shown in the first figure and the second figure represents the monostatic

radar cross section for the field.

Figure 6.25: Absolute Value: TM Third Cavity
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Figure 6.26: Monostatic Cross Section: TM Third cavity
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Figure 6.27: Absolute Value: TE Third Cavity
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Figure 6.28: Monostatic Cross Section: TE Third cavity
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Chapter 7

Conclusion and Future Work

The problem of an electromagnetic cavity beneath a uniform dielectric layer can now be

modeled with the FEM. The representation of the incoming fields, the scattered and transmitted

fields, along with a transparent boundary condition which can be incorporated into the FEM,

are provided here. In addition, it has been shown how to compute the far field values in terms

of the computed finite element solution. Methods solving forthe TM and TE polarizations

were both explored. The results offer the ability of predicting RCS for complex geometries.

In the examples displayed in Chapter Six, the parameters defining the material coating

above the half plane and inside the rectangular cavity present two types of materials, a

conductive (εr = 16 − 5ı, µr = 4 − 1.25ı) and non-conductive layer (εr = 4, µr = 1).

The results of coating the surface with a conductive material are similar for the TE and TM

polarizations, with a trend showing that as the material layer thickens, the strength of the

return echo weakens. This is consistent in the monostatic and bistatic signatures. Coating

the surface with a non-conductive material results in an inconsistent behavior, but usually

reveals an increase in the strength of the return signal.

When time is a consideration, this methodology offers a reasonable approximation but

the computation is very time consuming.

There exist a number of avenues that are yet to be explored given this base model. In

the future, the problem should be considered in the time domain. Also, the problem should
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be studied for three-dimensional cavities in both the frequency and time domain. One last

advancement is testing the effect of multiple material layers above the half plane on the

output of the RCS in both domains.
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