
Duquesne University
Duquesne Scholarship Collection

Electronic Theses and Dissertations

2005

Kidney Development in Eleutherodactylus coqui
With Relation to Edema Syndrome
Seung Yun Lee

Follow this and additional works at: https://dsc.duq.edu/etd

This Immediate Access is brought to you for free and open access by Duquesne Scholarship Collection. It has been accepted for inclusion in Electronic
Theses and Dissertations by an authorized administrator of Duquesne Scholarship Collection. For more information, please contact
phillipsg@duq.edu.

Recommended Citation
Lee, S. (2005). Kidney Development in Eleutherodactylus coqui With Relation to Edema Syndrome (Master's thesis, Duquesne
University). Retrieved from https://dsc.duq.edu/etd/809

https://dsc.duq.edu?utm_source=dsc.duq.edu%2Fetd%2F809&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dsc.duq.edu/etd?utm_source=dsc.duq.edu%2Fetd%2F809&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dsc.duq.edu/etd?utm_source=dsc.duq.edu%2Fetd%2F809&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dsc.duq.edu/etd/809?utm_source=dsc.duq.edu%2Fetd%2F809&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:phillipsg@duq.edu


 
 
 
 

Kidney Development in Eleutherodactylus coqui  
 

With Relation to Edema Syndrome 
 
 
 
 
  

A Thesis  
Presented to the Bayer School of Natural and Environmental Sciences 

Department of Biological Sciences 
 
 

In partial fulfillment of the requirements 
For the Degree of Masters of Science 

 
 
 
 
 

By 
 

Seung Yun Lee 
 
 
 
 
 

Thesis Advisor: Richard P. Elinson, Ph.D. 
 
 

Thesis Committee: 
John A. Pollock, Ph.D. 

Jana L. Patton-Vogt, Ph. D. 



 ii

 
Name: Seung Yun Lee 
  
Thesis title Kidney Development in Eleutherodactylus coqui with relation to 

Edema Syndrome 
  
Degree: Masters of Science 
  
Date: September 28, 2005 
 
 
 
 
Approved: ______________________________________________________________ 

Dr. John Doctor, Interim Chairperson 
Department of Biological Sciences 

 
 

 
 
Approved: ______________________________________________________________ 

Dr. Richard Elinson, Advisor 
Department of Biological Sciences 

 
 
 
 
Approved: ______________________________________________________________ 

Dr. Jana Patton-Vogt, Committee member 
Department of Biological Sciences 

 
 
 
 
Approved: ______________________________________________________________ 

Dr. John Pollock, Committee member 
Department of Biological Sciences 

 
 
 

 
Approved: ______________________________________________________________ 

Dr. David W. Seybert, Dean 
Bayer School of Natural and Environmental Sciences 

 



 iii

Abstract 

 Vertebrates develop embryonic kidneys before the final adult kidney.  Particularly for 

organisms with aquatic larvae such as frogs, the first embryonic kidney, the pronephros is 

essential for the larvae’s survival.  Those larvae with defective or without pronephroi 

exhibited pronounced edema.  Edema is severe swelling of a body part as a result of fluid 

retention.  To date, although the embryonic kidneys have been extensively studied in 

various model organisms, it has not been studied in Eleutherodactylus coqui.  E. coqui is 

a direct developing frog and lacks a tadpole phase in its life cycle.  I examined the kidney 

development in E. coqui using endogenous alkaline phosphatase staining and histology.  

From the histology, I found that E. coqui embryos develop a pronephros followed by the 

mesonephros in normal development.  The endogenous alkaline phosphatase staining was 

a novel finding and a good marker for early pronephric development in E. coqui.  The 

kidney development in E. coqui embryos exhibiting edema was also studied.  The key 

characteristic in the edematous embryos was the large lumens of the tubules.  The 

edematous embryos also had poor limb development.  I speculate that the edema in the E. 

coqui embryos was due to a defective pronephros, however, it is a correlation in the 

scope of this study and other causal possibilities are considered such as defects in the 

lymphatic system, the circulatory system and the skin.  The possible relations between 

limb and kidney development is also discussed.  
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Introduction 

I. Biphasic vs. Direct Development 

 The biphasic mode of development occurs throughout the animal kingdom.  This 

mode of development involves the fertilized egg first developing into a feeding and 

motile larva.  At the end the larval stage, metamorphosis occurs which gives rise to the 

adult form.  Among the frogs, the anuran amphibians, many undergo biphasic 

development; however, there are also those that undergo direct development.  Direct 

development is the mode of development in anuran amphibians in which there is no 

tadpole stage.  The terrestrial life style correlates with trends towards direct development 

(Duellman and Trueb, 1986).  If water is not always present for feeding tadpoles to hatch 

into, direct development allows such adverse environmental conditions to be overcome 

by ultimately producing a terrestrial adult at hatching.  Thus, it can be viewed as an 

extreme developmental adaptation to environment.  The continued reduction in larval 

period with accompanied accumulation of developmental modifications may have 

eventually led to direct development (Callery et al., 2001).  Since metamorphosis could 

occur in a non-aquatic environment, there would have been no selective advantage to 

retaining feeding larva or tadpole-specific structures.  A selectively neutral character may 

have been retained if it was involved in pleiotropic roles in other morphogenetic events or 

the larval structure may have been adapted to a new developmental mode.  

 
 

II. Eleutherodactylus coqui 

 The genus Eleutherodactylus contains approximately 500 species which are all direct 

developers (Hanken, 1999), and Eleutherodactylus coqui is the particular species of 
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direct developing frogs of interest in this thesis.  E. coqui frogs are an entirely terrestrial 

species, native to Puerto Rico, which now have become abundant in Hawaii.  An E. coqui 

mating pair produces a clutch of 30 eggs each month in a laboratory colony setting 

(Elinson et al., 1990).  In their natural environment, the eggs are incubated by the father 

for approximately three weeks.  Then, little free-living froglets emerge from jelly 

capsules (Townsend and Stewart, 1985).  

 
 E. coqui have large eggs which are approximately 3.5 mm in diameter.  That size is 

twenty times the size of a Xenopus laevis egg.  Only 3% of the egg volume is the animal 

cytoplasm while the rest is the vegetal yolk.  The increase in vegetal cytoplasm has likely 

led to expansion of the endoderm used solely for nutrition.  The increased nutritive 

endoderm alters the development of the body wall in which a secondary coverage of the 

yolk occurs (Elinson and Fang, 1998), an event which does not occur in biphasic frogs.  

This expansion of the body wall is similar to the spreading of the chorion to enclose the 

yolk in chicks and may represent a way that evolved to accommodate the large uncleaved 

yolk mass.  The E. coqui egg still follows the typical amphibian yolk cleavage pattern in 

having complete divisions.  This is in contrast to the large yolky eggs of amniotes in 

which the yolk is not cleaved.  In amniotes, following gastrulation, the yolk is surrounded 

by growth of extraembryonic tissues (Elinson, 1987; Elinson and Fang, 1998) 

 
 The development of the E. coqui embryo is very interesting because there are tadpole-

specific features which have been lost and early development of adult structures (Elinson 

et al., 1990).  The E. coqui embryo lacks tadpole features such as horny mouth parts, an 

adhesive organ called the cement gland, lateral line organs, and a coiled gut.  The 
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tadpole’s long gut enables it to digest fibrous plant matter.  Likewise, only rudimentary 

gills are present in E. coqui.  The failure of the cement gland (Fang and Elinson, 1996) 

and lateral line formation (Schlosser et al, 1999) is due to the lack of response of the 

ectoderm to inducing signals in E. coqui.  This means that the genes needed to develop 

tadpole structures are absent in E. coqui; however, transplant experiments show that E. 

coqui embryos are still able to send out inductive signals for both cement glands and 

lateral line organs.  While lacking tadpole features, there is early and simultaneous 

appearance of all four limbs, which occurs at late larval stages in biphasically developing 

frogs (Callery and Elinson, 2000).  In X. laevis, the hindlimb buds appear first at stage 46, 

4 days into development just before the tadpole begins to feed.  Forelimb buds do not 

appear until stage 48, 3.5 days later (Nieuwkoop and Faber, 1994).  The E. coqui embryo 

also develops a large membranous tail which is not used for swimming; but is thought to 

have a respiratory function.  Lastly, an egg tooth develops prior to hatching.  This egg 

tooth may be homologous to the tadpole teeth.  The egg tooth of E. coqui is a structure in 

place of the hatching gland in biphasic embryos and is similar to the egg tooth in chicks.   

 
 

III. Kidney development 

 A. Vertebrate kidney development  

 All vertebrates have distinct embryonic and adult kidneys (Goodrich, 1930; Burns, 

1955; Saxén, 1987).  In amphibians and fish, the first functional embryonic kidney is the 

pronephros.  Well-developed pronephroi are present in all fish and amphibians while 

birds and most mammals have poorly developed pronephroi.  The adult kidney in 

amphibians and fish is called variously the mesonephros or the opisthonephros.  The term 
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opisthonephros is sometimes used to distinguish it 

from the transient mesonephros of amniotes.  The 

metanephros is the adult kidney in birds and 

mammals. 

 
 The pronephros is essential for survival in 

organisms with aquatic larvae such as frogs.  It 

produces dilute urine that allows the animals to 

maintain water balance.  If the pronephros is not 

functional, aquatic larvae die rapidly from edema 

(Howland, 1921).  Edema is severe swelling of a body 

part as a result of fluid retention.  The pronephros is simple and forms within a day or 

two of fertilization.  The entire pronephros is in essence a single large nephron.  The 

nephron is the functional unit of the kidney which is responsible for the purification and 

filtration of the blood.  The pronephros can be divided into three parts: the glomus, the 

tubules, and the duct, in which each has particular functions (Fig. i).  The job of the 

glomus is filtration.  The glomus is a tuft of capillaries which filters the blood as would 

the glomeruli in a nephron; however, the filtrate is deposited into a cavity rather than the 

Bowman’s space.  The cavity is the coelom, also known as the body cavity, in some cases. 

In others, a dorsal subcompartment of the coelom is called the nephrocoel, and in others 

the pericardial cavity is used.  The tubules perform resorptive and excretory functions.  

The tubules have distinct proximal and distal segments in which solute resorption and 

waste excretion occur in the proximal segment and water resorption occurs in the distal 

segment.  The urine passes down from the distal tubule to the pronephric duct and 

Figure i: Schematic diagram of pronephros 

duct 

coelom 

tubules 

glomus 

Illustration by Carolyn Griffel 
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ultimately to the cloaca.  The duct disposes urine and assists in the induction of the adult 

kidneys in a range of organisms from amphibians to mammals (Burns, 1955; Saxén, 

1987).  The amphibian pronephros also functions as a hematopoietic organ, and is a 

major site of myeloid cell differentiation.  The hematopoietic function is taken over by 

the mesonephros during metamorphosis. 

 
 The mesonephros has a more complex organization.  It consists of a linear sequence 

of nephrons linked to the nephric duct (Fig. ii).  The 

glomerulus is the glomus renamed.  The glomus 

becomes the glomerulus when it becomes 

surrounded by the Bowman’s capsule and is now 

internal.  This means the filtration unit is directly 

integrated into the kidney tubule.  While the 

mesonephros is the terminal kidney in amphibians 

and fish, the degree of development of the 

mesonephros in amniotes is linked to the form of 

placental development.  In some organisms, such as 

the pig, the fetal and maternal tissues are opposed 

and the embryo has a large, well-developed 

mesonephros that remains until the adult kidney 

becomes functional.  In other organisms such as 

rodents and primates, the maternal epithelium breaks down and bathes the intervillous 

spaces of the fetal epithelium directly with blood, allowing for a more efficient supply of 

Figure ii: Schematic diagram of mesonephros 

pronephros 

glomerulus 

 tubule 

 nephron 

 coelom 

duct 

Illustration by Carolyn Griffel
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nutrients and removal of wastes.  In such cases, the embryonic kidney is less complex 

and often degenerates before the metanephros is formed (Bremer, 1916; Witschi, 1956).   

 
 The metanephros is the final kidney that 

develops in all amniotes, from reptiles to 

humans.  It is the most complex of kidneys.  

As opposed to the linear organization of the 

nephrons in the mesonephros, a branched 

architecture with arborized networks of 

nephrons is present in the metanephros (Fig. 

iii).  The functions of the metanephros are to 

eliminate waste, regulate blood fluid volume 

and solute levels, control blood pH, produce 

endocrine hormones and modify some metabolites. 

 
 B. Xenopus laevis kidney development  

 In the model amphibian X. laevis, the South African clawed frog, a part of the 

pronephros first begins to function at stage 31, which is approximately a day and a half 

after fertilization at 22º to 24ºC under laboratory conditions (Nieuwkoop and Faber, 

1994).  By stage 35/36, two days post-fertilization, a rich blood supply to the pronephros 

has developed.  At stage 37/38, the entire pronephros has become functional.  From stage 

37 to stage 47, the complexity of the pronephros increases by coiling of its tubules and 

collecting tube.  The tubes become thicker, and the lumina widen.  The tadpole begins to 

feed after five days at stage 47 and stops during metamorphosis which begins after 

 Figure iii: Schematic diagram of metanephros 

branched network of nephrons 

mesonephric 
duct 

Illustration by Carolyn Griffel
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approximately 17 days at stage 51.  Metamorphosis in many biphasic frogs is triggered 

by the thyroid hormone and its interaction with its receptors (Tata, 1996).  Starting at 

stage 53, approximately 24 days into development when the fore and hindlimbs have foot 

paddles, the pronephros begins to degenerate.  From stage 58 and beyond, the pronephros 

is no longer functional.  At this stage, the forelimbs are broken through the skin, and all 

three claws are present in the hindlimb.  The climax of metamorphosis is through stage 

59 to stage 65; which lasts eight days (Leloup and Buscaglia, 1977).  The pronephros has 

completely disappeared at stage 64, at which the embryo has become a metamorphosed 

frog with a little bit of the tail remaining. 

 
 While the pronephros develops and later degenerates, the adult kidney of amphibians, 

the mesonephros also begins to form.  At stage 39, the first mesonephric cells appear.  At 

stage 48, the first 6 to 8 pairs of mesonephric tubes extend and begin to coil.  Some of the 

tubes also become functional.  Unlike the pronephros, the mesonephros degenerates and 

then reorganizes.  First signs of degeneration in the mesonephros occur at stage 55.  The 

mesonephros reaches full length at stage 58.  By stage 62, new mesonephric tubes and 

glomeruli are formed. (Nieuwkoop and Faber, 1993) 

 
 Development of the X. laevis pronephros has been studied with antibodies specific to 

the pronephros (Vize et al., 1995).  The antibody 3G8 recognizes the pronephric tubules 

starting at stage 31.  By stage 38, the extended and coiled structures of the tubules are 

positive for 3G8.  The antibody 4A6 recognizes the pronephric duct and the stain first 

appears at stage 38.  Solid duct staining was observed by stage 43.  Staining with the 4A6 

antibody overlaps slightly with the point where the 3G8 antibody staining stops.  The 
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antibodies allowed better differentiation between the tubules and duct in the later stages.  

This differentiation had been difficult because the duct coils underneath the pronephric 

tubules and the structures appear very similar.  

 
 In addition to the kidney specific antibodies, over 200 genes have been examined by 

in situ hybridization and approximately 30 genes have been confirmed to be have specific 

expression during the development of the pronephros (Brändli, 1999).  Specifically,   

Lim-1, which encodes a LIM class homeodomain may be essential for the development of 

the entire urogenital system (Shawlot and Behringer, 1995) and Pax-2, a paired-box 

transcription factor has been identified to be necessary for elongation and/or maintenance 

of the nephric duct (Torres et al., 1995; Favor et al., 1996).  HNF-1β, Pax-8, and Lim-1 

are the earliest markers for the pronephros (Demartis et al., 1994; Taira et al., 1994; 

Heller and Brändli, 1999).  Likewise, gene expression in the pronephros has been 

reported for the following genes Pax-8, Delta-1, Wnt-4, Iro-3, Sal-1, WT-1, and Msr 

(Heller and Brändli, 1997, 1999).  A brief summary of gene expression in the pronephros 

is presented in Table 1.  

 
 C. Eleutherodactylus kidney development 

 Kidney development in several species of the genus Eleutherodactylus has been 

studied.  The studies were all done prior to Townsend and Stewart’s (1985) staging table 

for E. coqui, so there is no standardized staging.  Fortunately, Townsend and Stewart 

provide a table to compare the various staging between authors and their frogs.  Staging 

according to Townsend and Stewart’s table is noted ‘TS’. 
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  Table 1. Genes expressed in the pronephros. 

Type of  
gene product  Gene name Location of expression Reference 

 
Emx-1 - Pannese et al., 1997 
ets-2 - Meyer et al., 1997 
HNF-1β 
 (LFB-3) 

pronephric tubules, 
duct 

Demartis et al., 1994 

Iro-3 pronephric tubules Bellefroid et al., 1998 
Lim-1 pronephric tubules, 

duct 
Taira et al., 1994 

Pou-2 pronephric duct Witta et al., 1995 
Sal-1 pronephric duct Hollemann et al., 1996 
WT-1 pronephric capsule Carroll and Vize, 1996; 

Semba et al., 1996 
XFD-11 - Koster et al., 1998 

Transcription factors 

Id-2 pronephric duct Wilson and Mohun, 1995; 
Gawantka et al., 1998  

 
BMP-7 pronephric tubules Wang et al., 1997 
gremlin  Hsu et al., 1998 
VEGF pronephric capsule Cleaver et al., 1997 
WIF - Hsieh et al.,  1999 

Secreted factors 

Wnt-4 pronephric tubules, 
duct 

Saulnier et al.,2002 

 
integrin-α6 pronephric duct Lallier et al., 1996 Cell surface 

receptors frizzled-3 pronephric tubules Shi et al., 1998 
 
Na+/K+  ATPase 
Pump 

 pronephric tubules, 
duct 

Uochi et al., 1997 

 
Transporters SGLT, SLC5A, 

SLC64A14, 
SLC7A8, NKCC2, 
ROSIT 

pronephric tubules Zhou and Vize, 2004; 
Zhou and Vize, 2005a, b 

 
Chloride 
conductance channel 

CIC-K pronephric distal 
tubule, duct 

Vize, 2003 
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 Lynn (1942) reports a detailed description of the embryology of E. nubicola in which 

the embryos were staged according to the number of days prior to hatching, designated    

‘- number’ (days).  The descriptions are based on observations from numerous embryos 

that were fixed, embedded, sectioned and stained.  At -23 days (equivalent to TS 4 of             

E. coqui), there is an early sign of the pronephros indicated by the thickening of the 

somatic layer of the lateral mesoderm in the anterior body region.  By -21 days (TS 5), 

definite pronephric tubules have developed, illustrated by the histological sections.  At -

20 days (TS 6), three nephrostomes are present in the pronephros and a well developed 

glomerulus projects into the body cavity.  At -11 days (TS 12), the pronephros reaches its 

maximum development; however, it is present at hatching as a compact organ lacking 

nephrostomes.   

 
 At -18 days (TS 7), a small mesonephric tubule opening into the Wolffian duct, also 

called the nephric duct, in its central part is discernable.  By -10 days (TS 13), the 

mesonephros exceeds the pronephros in size.  At the time of hatching, the pronephros is 

still present with glandular secretion and the mesonephros is almost of definitive size.  

The degeneration of the pronephros correlates with other bodily changes, such as growth 

of limbs and changes in pigment pattern from embryo to frog, occurring at its usual place 

in the metamorphic pattern.  When biphasic frogs undergo metamorphosis, the following 

changes occur: hindlimbs grow rapidly, the pigment pattern changes from that of the 

tadpole to that of the adult frog, the gills, tail, and intestine undergoes extensive 

resorption, and the larval mouth part is replaced by adult structures. 
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  2.  Eleutherodactylus augusti latrans   

 The barking frog, Eleutherodactylus augusti latrans, is found in Southern Arizona, 

parts of New Mexico to Texas and parts of Mexico including along the Pacific coast.  At 

a stage equivalent to TS 10-12, large pronephroi are present in the anterior region.  

Several nephrostomes are developed (Valett and Jameson, 1961). 

 
  3. Eleutherodactylus martinicensis  

 The whistling frog, Eleutherodactylus martinicensis, is found in Barbados and other 

islands in the Caribbean.  At stage II (TS 4), the primordia of the pronephros are present.  

The region is small and limited to the extreme cranial portion of the nephrogenic 

mesoderm.  Only two tubules are present.  At stage III (TS 5), the pronephros has 

expanded and the duct has formed.  There are four tubules which are extensively dilated, 

coiled and form a compact organ.  At stage IV (TS 7), the pronephros starts to regress, 

and the mesonephric tubules appear.  By stage V (~ TS 9), only two pronephric tubules 

retain their lumen.  More mesonephric tubules continue to develop, show dilation and 

coiling.  At stage VI (~ TS 11), several mesonephric tubules have developed and they 

open medially into the pronephric duct (Adamson, 1960). 

 
 The emergence of the pronephros in E. martinicensis occurs at approximately the 

same time as it does in E. nubicola.  However, the pronephros regresses earlier in E. 

martinicensis at TS 7 than in the other two frogs.  For E. nubicola, its pronephros does 

not reach maximum development until TS 12 and E. a. latrans has large pronephroi at  

TS 10-12.  The mesonephros of E. nubicola and E. martinicensis begins to develop at the 

same stage.  Overall, the Eleutherodactylus pronephros develops early in development 
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and may remain until the embryo hatches.  The development of the mesonephros overlaps 

with the presence of the pronephros.  

  

 D. Edema 

 There have been a few studies in which occurrences of edema in developing embryos 

were found to be due to defects in the developing kidney.  Surgical removal of the 

pronephros in the spotted salamander, Ambystoma punctatum (Howland, 1921) or a 

genetic lesion in zebrafish, Danio rerio (Drummond, 1998) which compromised 

pronephric function led to severe edema and ultimately death in the developing embryos.  

Edema has also been observed in haploid embryos (Rafferty, 1961) 

 
 When the pronephric rudiments were removed from both sides of the Ambystoma 

embryo, the most conspicuous condition was pronounced edema, particularly in the 

anteroventral region (Howland, 1921).  Even when interruptions to the development of 

the pronephros were less radical, as in removal of segments of the pronephros as opposed 

to the entire pronephros, embryos exhibited the same symptoms.  When only one 

pronephros was removed, the remaining pronephros exhibited hypertrophy, enlargement 

of the cells already present.  The walls of the hypertrophied tubules were thinner and the 

cell were often flattened and elongated.  The lumens of the hypertrophied tubules were 

also remarkably larger than that of an unoperated control specimen.  When only one of 

the pronephroi were removed, edema was absent while hypertrophy of the remaining 

pronephros occurred.  The tubules were thicker with thinner walls and the length was 

longer. 
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 In zebrafish, eighteen independent recessive mutations affecting pronephric 

development were isolated (Drummond et al., 1998) from a large-scale ENU mutagenesis 

screen for development mutants (Driever et al, 1996).  The unifying phenotype of all the 

mutants was the appearance of fluid-filled cysts in the region of the normal pronephros.  

All homozygous pronephric mutants died by 5 to 6 days post-fertilization with the larvae 

becoming grossly edematous.  The largest group of mutants manifest cysts soon after 

hatching, develop severe edema, and display an axis curvature defect.  Since heart 

function appeared to be normal in the mutant homozygotes, the edema is assumed to be 

due to loss in pronephric function and failed osmoregulation (Drummond et al., 1998).   

Edema can occur due to heart defects and/or heart failure because a weak heart is unable 

to pump hard enough to keep up with the cycle of sending and receiving the blood from 

the rest of the body.  The blood in which the heart was unable to pump out back ups and 

seeps out of the blood vessels into other tissues, such as the lungs. 

 
 Haploid frog (Rana pipiens) embryos were generated by fertilizing eggs with sperm 

that were irradiated with UV light.  One of the notable symptoms of haploidy was edema 

which was often severe.  When transplantation experiments were done with diploid 

larvae receiving a haploid pronephros and vice versa, diploid larvae with a haploid 

pronephros displayed an edematous, retarded development and limited survival which 

was similar to unoperated haploid larvae (Rafferty, 1961).  In haploid embryos of X. 

laevis, Fox and Hamilton (1964) concluded that the edema in the embryos is a result of 

excess water flowing through the ectoderm rather than renal failure because the 

embryonic kidneys were hypertrophied. 
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 Edema in humans can be categorized based on the primary location of swelling. Some 

of the main categories are the following.  Angioedema is swelling of the skin and can be 

caused by an allergic reaction.  Lymphedema is accumulation of the lymphatic fluid in 

the interstitial tissue which results in swelling in various parts of the body.  Lymphedema 

occurs when lymphatic vessels are missing, impaired, damaged or when lymph nodes are 

removed.  Pulmonary edema is the condition where fluid fills into the lungs instead of air.  

This prevents the lung from absorbing oxygen.  Often, heart problems cause pulmonary 

edema.  Other causes are illnesses such as pneumonia, exposure to certain toxins and 

medication and exercising or living at high elevations. 

(http://www.nlm.nih.gov/medlineplus/edema.html) 

    
 E. Alkaline phosphatase activity in the developing kidney 

 Alkaline phosphatase (AP) is commonly conjugated to secondary antibodies and 

molecular probes. Its activity is easily visualized using various substrates.  Endogenous 

AP activity can also be easily visualized using the same substrates.  Endogenous AP 

activity is present in the pronephric duct in axolotl, Ambystoma mexicanum, at the tailbud 

stage (Zackson and Steinberg, 1988).  Zackson and Steinberg (1988) speculated that AP 

acts as a cell guidance associated molecule responsible for migration of the pronephric 

duct and cranial neural crest cells.  The expression pattern of AP in Xenopus embryos is 

similar to that in the axolotl (J. Drawbridge, Rider College, pers. comm. Aug 4, 2005).  

Endogenous AP is also present on the apical surfaces of pronephric duct cells of zebrafish 

embryos (Drummond et al, 1998). 
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 AP activity in the pronephros of various organisms does not appear to be necessary 

for development of the excretory system.  In mice, a multi-gene family has 3 loci 

encoding alkaline phosphatases.  They are designated embryonic, intestinal and tissue-

non-specific (TNS) alkaline phosphatases (Terao and Mintz, 1987; Manes et al., 1990; 

Narisawa et al., 1994).  TNS AP is expressed in numerous tissues which included bone, 

liver, kidney, testis, fibroblasts, macrophages and many other lower level cell types 

(McComb et al., 1979).  When AP is expressed ubiquitously in the mouse embryo, the 

development of the embryo is unaffected (Skynner et al, 1999).  In an opposite case, 

when embryonic AP was knocked out, no obvious phenotypic abnormalities were present 

(Narisawa et al, 1997).  When TNS AP was knocked out, abnormalities were present.  

There was abnormal bone mineralization and central nervous system defects in neonates 

in which there was aberrant development of the lumbar nerve roots.  There were also 

disturbances in the intestinal physiology, increased apoptosis in the thymus, and 

abnormal spleens.  Nevertheless, most organ systems, including the kidney, developed 

fine (Narisawa et al, 1997). 

 
 

IV. Thesis Objectives 

 To date, there has been no study on the development of the kidney of E. coqui.  In 

this thesis, I intend to examine normal kidney development in E. coqui embryos using 

endogenous alkaline phosphatase staining and histology.  Then, kidney development in 

embryos exhibiting edema to various degrees will be examined using the same techniques 

in order to infer whether the edema is related to abnormal kidney development.   
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Materials and Methods 

I. E. coqui embryos and staging 

 A. Embryos 

 All E. coqui embryos were obtained from natural matings in the laboratory colony 

consisting of adult frogs that had been caught in the wild.  The adults were collected in 

Puerto Rico under the permit issued by the Departmento de Recursos Naturales and in 

Hawaii under the Injurious Wildlife Exports Permits issued by the Department of Land 

and Natural Resources.  After fertilization occurred, the eggs were removed from the 

guarding male.  The eggs were placed in a plastic Petri dish with a piece of filter paper, 

moistened with 20% Steinberg’s solution.  The embryos were examined daily to 

document their developmental progress.  The Petri dish chamber was kept moist by 

adding more 20% Steinberg’s solution as needed.  When embryos reached a desired stage, 

the chosen embryos were separated.  The selected embryos were submerged in 20% 

Steinberg’s solution for a few hours to allow the jelly capsule to swell with fluid.  Then 

the jelly layers and the fertilization membrane were removed using watchmaker’s forceps. 

 
 All Steinberg’s solutions were made from two separate 20X stock solutions which 

were kept in 4°C.  Steinberg’s Stock A is 1.16M NaCl, 13mM KCl, 17mM MgSO4·7H2O, 

and 6.7mM CaNO3.  Steinberg’s Stock B is 100mM Tris, pH adjusted to 7.4 with HCl.  

To make the 20% solution, 10ml of Stock A and 10ml of Stock B was brought up to a 

liter with deionized (dI) H2O.  
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 B. Staging  

 For those embryos with normal development, the stage of development was 

determined according to Townsend and Stewart’s (1985) staging table.  Each stage is 

denoted ‘TS number’. 

  
 For the embryos that displayed the edema syndrome, there was difficulty in staging 

due to lack of any previously documented studies and due to the variance in severity of 

the syndrome in the different embryos.  Growth was greatly retarded in the embryos 

exhibiting the edema syndrome when comparing the edematous embryos to the normally 

developing embryos in the same clutch.  Initially, staging was based on hindlimb 

development according to Townsend and Stewart since the hindlimb was not as severely 

affected by the edema syndrome.  This staging could be misleading, however, depending 

on the severity of the syndrome exhibited in the embryo.  Therefore, the approximate age 

of the edematous embryos was also determined using the date in which the clutch was 

collected and from the clutch’s developmental progress notes that were kept in the 

laboratory. 

 
 

II. Fixation 

 All embryos were removed from their jelly capsules prior to fixation using one of the 

following fixatives. 

 

A. MEMFA 

 MEMFA (100mM MOPS, 2mM EGTA, 1mMgSO4, 3.7% formaldehyde, pH 7.4) was 

prepared fresh using 1 part 10X MEM stock solution (1M MOPS, 20mM EGTA, 
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10mMgSO4, autoclaved), 1 part 37% formaldehyde stock solution, and 8 parts dI H2O.  

The dejellied embryos were placed into glass vials containing MEMFA, and fixed 

overnight with gentle rocking on the Nutator at room temperature.  The next morning, 

two 30 minute (min) 100% ethanol washes were done at room temperature.  After the 

second ethanol wash, the embryos were stored in fresh 100% ethanol at -20°C until used 

for further assays. (Harland, 1991)  This fixation method was used primarily for detection 

of alkaline phosphatase activity.  

 
B. Smith’s fixative 

 For fixation using Smith’s fixative, equal parts of two stock solutions were mixed 

fresh for use (Rugh, 1965).  Stock Smith’s A is 1% potassium dichromate (K2Cr2O7) and 

is a bright orange solution.  Stock Smith’s B is a 5% acetic acid, 7.4% formaldehyde 

solution.  The dejellied embryos were placed into glass vials containing Smith’s fixative 

for 1 to 2 days in the dark.  The glass vials were covered with foil and gently rocked on 

the Nutator at room temperature.  The originally orange solution became a greenish 

yellow color after the embryos were fixed.  After fixation, the embryos were rinsed twice 

for 30 min each with dI H2O.  The rinsed embryos were then preserved and stored in 

1.5% formaldehyde solution at room temperature.  This fixation method was used for 

histology.   

 
C. Bouin’s fixative 

 For fixation using Bouin’s fixative, the pre-made fixative was purchased from 

LabChem Inc.  The fixative can also be made in the lab (Rugh, 1965).  The dejellied 

embryos were placed in the yellow colored Bouin’s fixative in a glass vial at room 
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temperature.  Parafilm was used to thoroughly seal the vials because the picric acid may 

explode if it becomes dry.  This fixative serves as a preservative, so the embryos were not 

transferred to a preservative after fixation.  Fixed embryos were kept in Bouin’s solution 

until further study.  This fixation method was also used for histology. 

 
 

III. Alkaline phosphatase activity stain – modified immunohistology protocol 

 This alkaline phosphatase activity stain protocol is a modified version of the 

immunohistology protocol which uses an alkaline phosphatase substrate for detection of 

the secondary antibody.  All embryos used for this assay were fixed in MEMFA and 

preserved in 100% ethanol at -20°C. 

 
 First, the embryos were rehydrated through an ethanol series consisting of 10 min 

washes in each of the following ethanol solutions: 100% ethanol, 95% ethanol, 75% 

ethanol/25% PBS (1X phosphate buffered saline: 137mM NaCl, 2.7mM KCl, 10mM 

Na2HPO4, 1.8mM KH2PO4), 50% ethanol/50% PBS, 25% ethanol/75% PBS, and finally 

100% PBS.  Following rehydration, the embryos were permeabilized with four 30 min 

washes in 0.1% Triton-X in PBS.  After permeabilization, the embryos were washed with 

a blocking solution (10mg/ml BSA (bovine serum albumin, Sigma) in 0.1% Triton-X in 

PBS) for 30 min.  In the original immunohistology protocol, BSA is used to block non-

specific sites.  Then, the embryos went through four 1 hour washes in PBT (2mg/ml BSA 

in 0.1% Triton-X in PBS) which is the step to remove any residual non-bound antibodies 

remaining in the embryo in the original protocol.  The embryos were prepared for the 

alkaline phosphatase substrate by three 5 min washes in alkaline phosphatase buffer 
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(100mM Tris pH 9.5, 50mM MgCl2, 100mM NaCl, 0.1% Tween 20).  Half of the 

embryos were also washed with alkaline phosphatase buffer with levamisole (5mM) 

freshly added.  Levamisole is used to block endogenous alkaline phosphatase activity in 

the original protocol.  After buffering in alkaline phosphatase buffer, BM Purple AP 

Substrate (Roche) was added to the embryos for approximately 30 min.  A light 

aquamarine blue stain begins to appear in the pronephric region after approximately 15 

minutes.  Another alkaline phosphatase substrate, NBT/BCIP, was tried.  NBT/BCIP is 

4.5µl NBT (4-nitro blue tetrazolium chloride (Roche), 75mg/ml stock in 70% DMF (N, 

N-dimethyl formamide), stored at -20°C) and 3.5µl BCIP (5-bromo-4-chloro-3-indolyl 

phosphate (Roche), stored at -20°C) in 1ml alkaline phosphatase buffer.  This stain 

appeared faster, but there was much more background staining in older embryos, and thus 

was not as effective as BM Purple.   

 
 After alkaline phosphatase activity became apparent, the embryos were fixed with 

3.7% formaldehyde in TBS (Tris buffered saline: 150mM NaCl, 50mM Tris HCl pH 7.4) 

or with MEMFA overnight with gentle rocking on the Nutator. 

 
 After fixation of the stain, embryos were cleared to better visualize the stain pattern.  

The embryos went through a methanol series to dehydrate and prepare them for 

infiltration with the organic clearing solution.  The methanol series was as follows: 30 

min washes in 100% PBS, 30% methanol/70% PBS, 50% methanol/50% PBS, 70% 

methanol, 95% methanol and two 30 min washes in 100% methanol.  Then the embryos 

were placed into the clearing solution BABB (benzyl alcohol: benzyl benzoate:: 1:1) in a 

watch glass.  Using a glass container was important because BABB dissolves the plastic 
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well plates and the solution becomes cloudy.  The embryo may also get stuck to the 

bottom of the plate as the plastic dissolves in the organic solution. 

 
 

IV. Embedding and Sectioning 

 The embryos were fixed with either Smith’s fixative or Bouin’s fixative for 

embedding and sectioning.  

 
 A. Embedding 

 The embedding procedure begins with a dehydration series to prepare the fixed 

embryos for the paraplast.  The dehydration series is as follows: two 10 min washes with 

dI H2O, one 30 min wash with 50% ethanol, followed by two 30 min washes with 70% 

ethanol.  In the case for Bouin fixed embryos, instead of the two 30 min 70% ethanol 

washes, several 30 min washes with 70% ethanol solution with 2% NH4OH, prepared 

from a 28% NH4OH stock, were done until the wash solution was clear and no longer 

yellow at the end of the wash period.  The NH4OH washes remove the picric acid, and 

usually six to eight washes were necessary before the ethanol wash solution was clear.  

After the 70% ethanol wash, one 20 min 90% ethanol wash followed by two 20 min 

100% ethanol washes were done.  The total time for the 90% and 100% ethanol washes 

was kept under 1 hour.   

 
 Next, the embryos were left in amyl acetate overnight or longer to thoroughly remove 

any water that may be remaining in the tissues.  After amyl acetate, the embryos were 

cleared with toluene in the fume hood.  The toluene was changed three times over a 30 

min period.   
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 The cleared embryos were placed individually into wells of a ceramic 12-well plate 

containing melted paraplast in the 60°C incubator.  The ceramic well plates worked well. 

They insulated the heat better and kept the paraplast melted during transfers in which the 

incubator temperature drops due to the incubator door being open.  This was also easier 

than transferring the embryos out of the glass vials as had been previously done in the lab.  

The embryos were transferred from toluene into fresh paraplast using trimmed plastic 

transfer pipettes.  This needed to be carefully done so as not to damage the very brittle 

embryos.  Approximately every 30 min, the embryos were carefully transferred into wells 

with fresh paraplast. The embryos were placed into fresh paraplast three times.  

 
 To embed the paraplast infiltrated embryos, melted paraplast was poured into 

paper boats constructed from index cards. The boats were placed outside of the incubator 

at room temperature.  The embryos were placed into the melted paraplast in the paper 

boats.  This transfer needed to be done quickly before all of the paraplast solidified in the 

paper boat.  The embryos were oriented before the paraplast completely solidified using 

heated dissecting needles.  The paper boats now containing the embedded embryos were 

kept on the cold surface of the Tissue-Tec II apparatus to allow the paraplast to complete 

solidify quickly.   
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B. Horizontally placed ribbon 

D V

A. Vertically placed ribbon 

D

V

ribbon 

Figure 2: Two possible placement orientations of section ribbons on a slide. 

 

 B. Sectioning 

 The paraplast blocks containing the embryos 

were trimmed into trapezoid shapes using a razor 

blade and mounted onto wooden blocks.  

Sections of 10µm thickness were made using the 

Spencer 820 Microtome.  The trimmed paraplast 

block containing the embedded embryo was 

positioned in the microtome so that the microtome blade cuts through the dorsal side of 

the embryo first (Fig. 1).  Thus, the dorsal side of the embryo was the wider side of the 

trapezoid. 

 
 Section ribbons were floated onto dI H2O on slides coated with aminoalkyl silane  

 

(Sigma), which were on a slide warmer at approximately 45°C.  Placing the ribbon 

vertically (Fig. 2A), allowed for easier visualization later under the microscope.  In this 

way, the embryo’s dorsal side was facing up and not sideways which is what happens if 

the ribbon was placed horizontally (Fig 2B).  More water was added onto the slide 

gradually as more ribbons were added to the slide.  If the slide was completely covered 

with water, the ribbons moved around when trying to place the ribbon and made it 

microtome blade 

yolk 

embryo 

Figure 1:  Orientation of the block face 
relative to the microtome blade.  
V; ventral side, D; dorsal side   

V

D
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difficult to position the ribbons.  The water allows expansion of the section, giving better 

adherence to the slide.  Each embryo was not sectioned all at once.  Sectioned short 

ribbons were placed onto the slide as sectioning proceeded.  This also allowed for easier 

placement of the ribbons.  Serial sections were done, and each slide contained 

approximately six to eight ribbon strips with each strip containing six to nine sections per 

strip depending on the trimming and the size of the embryo.  Once section ribbons filled a 

slide, the water was kept on the slide for approximately 15 min.  Then, the excess water 

was removed using a glass Pasteur pipette.  There would still be residual water on the 

slides, so the slides were left on the slide warmer overnight to dry completely and to 

allow the sections to adhere to the slide. 

 
 

V. Hematoxylin and Eosin staining 

 Each solution in the following procedure was in a Wheaton glass staining dish.  The 

rectangular dishes were set up in a series, so that the slides were just carried through each 

solution in a removable glass slide rack. 

 
 The slides with the paraplast embedded sections were first carried through three 

washes of 100% xylene in the fume hood for 10 min each to remove the paraplast.  Next 

the slides went through an ethanol series to rehydrate the sections: two 5 min washes in 

100% ethanol, two 5 min washes in 95% ethanol, one 5 min wash in 70% ethanol, one 5 

min wash in 50% ethanol and lastly 5 min in 100% dI H2O.  The slides were stained in 

Harris Hematoxylin solution (Fisher).  The manufacturer’s protocol recommended 

staining in the hematoxylin solution for only 8 to 10 min.  The short staining time was 
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insufficient, however, since the stain was faint.  A 30 min staining time was found to be 

more effective.  Since Harris Hematoxylin is a regressive stain, the slides could be kept in 

the differentiating solution slightly longer if the 30 min overstained them.  After 30 min 

in hematoxylin, the slides were rinsed briefly in tap water until the water no longer had 

any trace of stain.  Then, the stained slides went into the differentiation solution (1% HCl 

in 70% ethanol) for 5-10 seconds.  The slides were dipped in the solution a few times 

until the dark purple Hematoxylin stain was not as strong.  The slide was briefly viewed 

under the microscope to determine if more destaining was needed.  It is suggested to 

destain in the differentiating solution until the cytoplasm has only a faint stain but the 

sharp nuclear stain remains (Clopton, 2004).  After the destain, the slides were rinsed in 

running tap water for 10 min by having the Wheaton glass stain dish at an angle under the 

running faucet so that the water flowed over.  Next, the slides went into blueing solution 

(0.3% NH4OH) for 30-90 seconds followed by Eosin Y stain solution (10g Eosin Y, 1ml 

acetic acid, brought up to 500ml with dI H2O) for 10 min.  For this stain as well, 

recommended staining time was only 2 min; however, the longer stain time was more 

effective.  After the eosin stain, the stained slides went through an ethanol dehydration 

series: two 2 min washes in 95% ethanol and two 2 min washes in 100% ethanol.  In the 

fume hood, the slides went through one 2 min wash in ethanol: xylene:: 1:1, followed by 

two 2 min washes in 100% xylene.  The last xylene wash could be longer without 

damaging or reducing the stain.  The slides were removed from the last xylene wash, and 

the excess xylene was absorbed using paper towels. The sections were mounted with 

Permount (Fisher) and a glass cover slip.  The Permount was allowed to solidify 

overnight in the fume hood. 
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VI. Imaging 

 The stained sections were examined using the Leitz compound microscope.  The 

pronephric alkaline phosphatase activity was examined using the Leica MZ6 dissecting 

microscope.  Images were photographed using the QImaging Retiga 1300 digital camera 

which could be connected to either microscope.  The photographs were then processed 

with the QCapture software and Adobe Photoshop. 
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Results 

I. Normal and edematous E. coqui embryos  

 A. Normal E. coqui embryos  

 Embryos of E. coqui were staged according to the table of Townsend and Stewart 

(1985).  In normal development, all four limb buds appear by TS 4 (Fig. 3).  As 

development progresses, the limb buds elongate and become little limbs with foot 

paddles at TS 7 (Fig. 3).  Starting at TS 8, the digits of the feet become evident, and the 

embryos begins to resemble a little frog with a large membranous tail and big belly.  The 

white yolk is approximately half covered by the body wall by late TS 9 (Fig. 3) and will 

become almost fully covered by TS 11 (Fig. 3).  The toes of both fore and hindlimbs are 

distinct and the irises of the eyes are black at TS 11(Fig. 3).  Pigmentation in the skin 

starts to appear at TS 6.  By late TS 10, the pigmentation is quite dark on the torso of the 

embryo, and it becomes difficult to see any structures underneath.  Each stage is 

equivalent to approximately a day of development at 23°C ± 1°C. 

 
  B. E. coqui embryos with edema 

 Edema is defined as swelling of an organ or tissue due to accumulation of excess 

fluid.  There are many root causes.  In E. coqui embryos that are raised in the lab, it was 

common to observe a few embryos in a clutch that developed poorly and became severely 

swollen.  At times, entire clutches would consist of edematous embryos. 

 
 In the early stages of development, the edema syndrome was not very apparent.  

When the normal embryos were approximately TS 4 and TS 5 with all four limb buds, it 

became possible to pick out the ones beginning to develop the edema syndrome.  In the 
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early edematous embryo, one of the key features was the absence of the forelimb buds 

(Fig. 4A) and in some cases, swelling was seen in these early embryos as well.  The rest 

of the embryo resembles a normal TS 5 embryo with prominent hindlimb buds.  In the 

severe cases, the forelimbs never appeared (Fig. 4C); however, in less severe embryos, 

small forelimb buds appeared later on (Fig. 4B).  Only looking at the limbs, the embryo 

did not look much older than a TS 6 embryo (Fig. 3), but the pigmentation of the irises 

was closer to a TS 7 embryo (Fig. 3).  As these edematous embryos developed, the 

pigmentation on their body also became darker (Fig. 4C) as would occur in normal 

development.  Blood clots were often seen in edematous embryos as well as the swelling 

on the ventral side of the embryo in the abdomen area (Fig. 4C).    In those embryos that 

developed forelimbs, the forelimbs were quite small even at a later stage in development 

(Fig. 4D).  Embryos with edema not only developed abnormally, but development in 

general was retarded.  Other features such as the tail remained quite small in the 

edematous embryos.    

 
 In the severely edematous embryos, the observations were based primarily on 

previously fixed specimens.  The edema syndrome was not as severe when I was 

collecting the specimens.  In comparison to the early and intermediate edematous 

embryos, in the severely edematous embryos more severe swelling was first evident.  In 

the younger embryo with severe edema, the embryo resembled a ball with a head, two 

stubs of feet and a tail sticking out (Fig. 5A).  The embryo had no forelimb buds and its 

hindlimb buds were small.  In an older severely edematous embryo (Fig. 5B), very small 

forelimb buds appeared, and the embryo was severely swollen.  The view from the 

posterior side of the embryo exhibits the large accumulation of fluid in the embryo’s 
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body.  The yolky tissue was slightly stretched.  In a normal embryo, the embryo would be 

close to hatching at approximately 18 days after fertilization, but the edematous embryo’s 

development was very much behind.  A similar extent of swelling was also present in a 

slighter younger embryo (Fig. 5C).  The yolk tissue was not stretched in this embryo, but 

the embryo was very severely swollen throughout its entire body.  The most extreme 

cases of edema were those embryos in which the yolk tissue was very stretched and 

ruptured through the body wall (Fig. 5D).  Some embryos also had very tiny forelimb 

buds and small hindlimbs with such severe swelling (Fig. 5D). 

 
 
II. Pronephric development indicated by alkaline phosphatase activity 

 A. Rationale – Immunohistochemistry control 

 In X. laevis, the pronephros is the first embryonic kidney in development.  A 

functional pronephros is essential for proper development, and there has already been 

much research on the embryonic organ.  In particular, there have been antibodies 

developed specifically against the X. laevis pronephros (Vize et al, 1995).  Since 

antibodies are often used cross species, the anti-Xenopus pronephros antibodies were 

used in hopes of detecting the pronephros in E. coqui.  

 
 Immunohistochemistry was tried using the known antibodies against X. laevis 

pronephric tubules (3G8) and duct (4A6) (Vize et al, 1995) with an alkaline phosphatase 

conjugated secondary antibody on both X. laevis and E. coqui embryos.  There were no 

positive results in the X. laevis embryos, but there was positive alkaline phosphatase 

staining in the pronephric region of E. coqui embryos in both E. coqui experimental and 

control groups.  There were two experimental groups in which each experimental group 



 30 

was treated with one of the anti-kidney antibodies and secondary antibody, while the 

control group was treated with only the secondary antibody.  This positive staining in a 

control group suggested that there was endogenous alkaline phosphatase activity in the 

pronephric region of E. coqui embryos.  Accordingly, endogenous alkaline phosphatase 

activity was assayed by modifying the immunohistochemistry protocol without using any 

antibodies. 

 
 B. Alkaline phosphatase activity in limbs and spinal column  

 Alkaline phosphatase activity was detectable in the limbs and the spinal column of E. 

coqui embryos.  Alkaline phosphatase stain in the bone/cartilage began in the middle of 

the spinal column of TS 6 embryos (Fig. 6C).  Staining began in the middle of the upper 

forelimb and both upper and lower hindlimb of TS 9 embryos (Fig. 7B).  By TS 11, there 

was strong alkaline phosphatase stain in the entire fore and hindlimbs (Fig. 7D).  The 

staining pattern beyond TS 11 was not determined. 

 
 C. Alkaline phosphatase activity in pronephros of normal embryos  

 In the normal TS 4 embryo, a small area of blue alkaline phosphatase (AP) stain was 

present by the forelimb bud area (Fig. 6A).  There was some dark blue background stain 

on the surface of the snout area, eyes and future backbone area.  In the normal TS 5 

embryo, the area of the AP stain was larger and darker by the forelimb buds (Fig. 6B).  

There also was slightly more background stain on the surface of the entire embryo.  In the 

normal TS 6 embryo, the aquamarine blue colored AP stain was larger and in the same 

area as in the earlier embryos.  The area would now be considered the shoulder area (Fig. 

6C).  The staining was not a solid patch of stain, but rather, there appeared to be a pattern.  
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After removing some of the tissue surrounding the stain, coiling of the pronephric tubules 

was visualized more clearly (Fig. 8A).  There was some dark blue colored background 

stain on the surface of the embryo.  In the normal TS 7 embryo, the size of the AP stain in 

the shoulder area was approximately the same as it was in TS 6 (Fig. 6D).  As was done 

with the TS 6 embryo, the tissue surrounding the stained pronephros was removed and 

coiling of the tubules was visualized in the TS 7 embryo (Fig. 8B).     

 
 In the normal TS 8 embryo, the AP stain continued to appear in the shoulder area (Fig. 

7A).  Any pattern in the stain was difficult to see due to the presence of more 

pigmentation in the embryo’s skin.  In the normal late TS 9 embryo, the AP stain was 

fainter in the shoulder area (Fig. 7B).  Likewise it was more difficult to see the stain 

because the pigmentation in the skin was darker.  A close up image of the area was 

difficult to capture as well because of the location.  In the normal TS 10 embryo, the AP 

stain in the shoulder area was still present (Fig. 7C).  To get a better view, some of the 

outer pigmented skin layer was removed to better visualize the stain (close up of Fig. 7C).   

 
 At TS 11, the AP stain no longer seemed to be present (Fig. 7D).  Either the stain was 

much fainter, or perhaps due to the darker pigmentation of the skin, the stain was not as 

easily visualized.  To overcome the problem of dark pigmentation in the skin, early and 

late stage embryos were bleached.  No AP stain was present; however, in all of the 

bleached embryos.  And thus, the staining was not determined for stages beyond TS 11 

because the pigmentation in the skin is quite dark in the later stages which make it 

difficult to see any staining of structures underneath.  
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 The AP stain appeared despite the embryos being exposed to the endogenous AP 

inhibitor, levamisole (Fig. 6A, B).  The degree of AP stain in the embryos without 

exposure to levamisole was not significantly different to the stain in embryos treated with 

levamisole.  At times, the AP stain was darker in the levamisole treated embryos and at 

other times it was the opposite.   

 
 The total number of embryos examined for AP staining in normal E. coqui embryos is 

summarized in Table 2.  AP stain was present in all embryos examined for stages TS 4 

through TS 7.  For stages TS 8 through TS 10, AP stain was seen in most but not all of 

the embryos examined. 

 
 D. Alkaline phosphatase activity in pronephros of edematous embryos 

 Once the staining pattern in the normal embryos was known, the staining in 

edematous embryos was examined.  In an early edematous embryo; eTS 4/5 - 5 days old, 

with no forelimb buds, the AP stain was present in what would be the forelimb bud area 

but the size of the stain was much smaller (Fig. 9A) than the staining in a normal TS 5 

embryo (Fig. 6B).  In a slightly older embryo; 7 days old, AP stain was present in what 

would be the forelimb bud area but the staining was quite faint (Fig. 9B).  The 

development of the embryo itself was very retarded in comparison to a normal embryo 

(Fig. 9C) from the same clutch.  In another edematous embryo which was approximately 

7 days old with no forelimbs, the AP stain was present in what would be the forelimb bud 

area (Fig. 9D).  The size of the area of stain was small as well.  In an older embryo which 

was approximately 10 days old with no forelimbs, the AP stain was present in what 
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would be the shoulder area; but the stain was faint and no pattern of the stain could be 

determined (Fig. 9E).   

 
 In another edematous embryo which was approximately 10 days old but with 

forelimbs (Fig. 10A), the AP stain was in the shoulder area and similar to the stain 

present in a normal TS 6 embryo.  However, a normal embryo from the same clutch at 

the time of fixation was a TS 8 embryo which exhibited less AP stain (Fig. 10B) as had 

been seen in normal TS 8 embryos.  In an older edematous embryo with small forelimbs, 

AP stain was present in the shoulder area more distinctly only on one side (Fig. 10C).  In 

the normal embryo from the same clutch at the time of fixation was a TS 11 embryo (Fig. 

10D) and it shows no AP stain as had been in other normal TS 11 embryos.   

 
 There was a difference between the edematous specimens in that some of the 

embryos examined had been fixed in August, 2004, and stored for a year before staining, 

while others were fixed more recently, in June, 2004 and then stained.  The longer 

storage period, however, does not seem to be a cause for the decreased stain in the 

edematous embryos.  In particular, recently fixed edematous embryos showed little (Fig. 

9B) or no (Fig. 10E) AP stain in the pronephric area, while a normal embryo fixed at the 

same time from the same clutch (Fig. 9C, 10F) shows definite AP staining.   

 
 The total number of embryos examined for AP staining in edematous E. coqui 

embryos is summarized in Table 3.   
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III. Histology  

 A. Pronephros of normal E. coqui embryos 

 In addition to the whole mount visualization of the pronephros via the alkaline 

phosphatase stain, serial histological sections were made and studied.  In order to make 

comparisons in the edematous embryos, the histology of normal kidney development was 

first examined. 

 
 In a normal TS 4 embryo, openings in the mesodermal tissue were present at 

approximately the region of the forelimb bud (Fig. 11A).  Under higher magnification, it 

was evident that there was a beginning of organization of the cells surrounding the 

openings (Fig. 11B).  In a normal TS 5 embryo, pronephric tubules were evident near the 

forelimb bud (Fig. 11C).  The cells were organized in a circular manner, as a cross 

section of a tube would be, and these cells and structures were easily distinguishable from 

the other cells in the section (Fig. 11D).  In a normal TS 6 embryo, more pronephric 

tubules were present, and the area of the pronephros was bigger (Fig. 11E) than in TS 5 

(Fig. 11C).  The openings were larger and blood cells were present around the tubules 

(Fig. 11F).  In sections from a more posterior part of the embryo, the early signs of the 

developing mesonephros were present in a group of clustered cells located ventral to the 

notochord (Fig. 11G).  The cells of the mesonephros were smaller and more tightly 

organized (Fig. 11H) than were in the pronephros.   

 
 In a normal TS 7 embryo, the size of the pronephros was approximately the same (Fig. 

12A) as in TS 6 (Fig. 11E).  In a section from a more posterior part of the embryo, the 

mesonephros at TS 7 continued to be in the early stages of development (Fig. 12C).  The 
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specific organization of the cells was difficult to determine at a higher magnification; 

however, the groups of cells were distinct from the rest (Fig. 12D).  In a normal TS 8 

embryo, the area of the pronephros was larger, and there were bigger lumens in the 

pronephric tubules (Fig. 12E).  The shape of the cells was the same as in the previous 

stages; however, the overall tubule structures were larger (Fig. 12F).  The mesonephros 

was now more distinct at TS 8 and both mesonephroi were located just ventral to the 

notochord (Fig. 12G).  The organization of the cells was easily distinguishable under 

higher magnification (Fig. 13H).  The individual cells were difficult to resolve; however, 

there seemed to be one to two very tightly packed tubules.    

 
 In a normal TS 9 embryo, the size of the pronephros was approximately the same as 

TS 8 (Fig. 13A).  The cells were organized in a similar manner as in previous stages; 

however some of the tubules were not hollow in the lumen.  There was a diffuse pink 

stain in the lumen (Fig. 13B).  The mesonephros was more developed and more easily 

distinguishable from the rest of the structures of the embryo (Fig. 13C).  The 

mesonephric cells were very tightly organized without much of a lumen (Fig. 13D).  In a 

normal TS 10 embryo, the epithelium of the pronephric tubules was thinner (Fig. 13E).  

The pronephric cells were slightly smaller and blood cells surrounded the tubules (Fig. 

13F).  The mesonephros was now larger and the mesonephric tubules were more distinct 

(Fig. 13G).  Blood cells surrounded the mesonephric tubules.  The mesonephric tubules 

were less tightly packed and the lumens of the tubules were visible (Fig. 13H). 

 
 In a normal TS 11 embryo, the pronephros was slightly smaller than at TS 10.  The 

lumens of the pronephric tubules were smaller as well (Fig. 14A).  Under higher 
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magnification, the pronephric cells were somewhat swollen (Fig. 14B).  The 

mesonephros was larger with a more elongated overall shape (Fig. 14C).  The 

mesonephric tubules were more tightly organized than in TS 10 (Fig. 14D).  In a normal 

TS 12 embryo, the pronephros was approximately the same size as in TS 11 (Fig. 14E).  

Some of the lumens of the pronephric tubules were not hollow and contained a material 

which diffusely stained (Fig. 14F).  The mesonephros was approximately the same size 

and shape as in TS 11 (Fig. 14G); however, the mesonephric tubules were less tightly 

organized (Fig. 14H) than in TS 11 (Fig. 14D). 

 
 In a normal TS 13 embryo, the pronephros was slightly smaller (Fig. 15A) than it was 

in TS 12.  There was more space between the pronephric tubules, and some of the lumens 

of the pronephric tubules were not hollow (Fig. 15B).  The mesonephros was smaller (Fig. 

15C) than in TS 12 and less tightly packed.  The mesonephric cells resembled the 

pronephric cells, and there was space between the mesonephric tubules (Fig. 15D).  In a 

normal TS 14 embryo, the pronephros was more tightly organized (Fig. 15E).  The 

boundaries between the tubules were less distinct.  The lumens of the tubules were not 

hollow but contained some material that stained pink (Fig. 15F).  The mesonephros was 

smaller (Fig. 15G) but the organization of the tubules (Fig. 15H) was similar to TS 13. 

 
 In a normal TS 15 embryo, the pronephros was very tightly packed and small (Fig. 

16A).  There was hardly any space between the tubules and the lumens of the tubules 

were minimal (Fig. 16B).  The mesonephros (Fig. 16C) was approximately the same size 

as in TS 14.  There was a rich blood supply adjacent to the mesonephros (Fig. 16D).   
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 B. Pronephros of edematous E. coqui embryos 

 Two sets of edematous E. coqui embryos were examined.  One set was fixed recently 

in Smith’s fixative.  The other set was fixed a few years ago in Bouin’s fixative.  The 

embryos which were fixed in Smith’s fixative displayed less severe cases of edema and 

most embryos had small forelimbs.  The embryos that were fixed in Bouin’s fixative 

exhibited more severe cases of the edema syndrome and did not have any forelimbs.  

 
 In an early edematous embryo; approximately 5.5 days post-fertilization, a few 

pronephric tubules were present (Fig. 17A).  There were fewer tubules present in the 

edematous embryos than in a normal embryo of the same age, TS 5 (Fig. 11C).  The cells 

of the pronephric tubules had a smaller nucleo-cytoplasmic ratio in the edematous 

embryo (Fig. 17B).  In another early but more severely edematous embryo, 

approximately 6.5 days post-fertilization, there were structures that appeared to be early 

pronephric tubules (Fig. 17C).  Under higher magnification, organization of cells was 

evident but it was not a mature pronephric tubule (Fig. 17D).  In an older edematous 

embryo, approximately 8 days post-fertilization, the most notable difference compared to 

a normal embryo was that the lumens of the tubules were very large (Fig. 17E).  The 

diameter of the lumen of one of the tubules was almost equal the size of the forelimb bud.  

The epithelium of the large tubules was very thin and the individual cells of the 

epithelium were difficult to distinguish (Fig. 17F).  There was no mesonephros in the 

embryo. 

 
 In an edematous embryo which was approximately 10 days post-fertilization, the 

pronephric tubules were even larger and there seemed to be fewer tubules compared to a 
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normal embryo as well (Fig. 18A).  As in the 8 day edematous embryo, the epithelium of 

the large tubules was thin (Fig. 18B).  Early mesonephros was present in this edematous 

embryo (Fig. 18C).  The structure and shape of the mesonephric cells (Fig. 18D) were 

similar to those in a normal TS 8 embryo (Fig. 12G).  At eTS 8, approximately 10.5 days 

post-fertilization, a severely edematous embryo only exhibited a few pronephric tubules 

(Fig. 18E).  The tubules were small and but contained normal pronephric cells (Fig. 18F).  

In a section from a more posterior area of the embryo, a very small mesonephros was 

present (Fig. 18G).  The shape and size of the cells resembled normal mesonephric cells; 

however, the cells were not tightly packed (Fig. 18H). 

 
 In an eTS 9/10 edematous embryo, 11 days post-fertilization, there were more 

pronephric tubules and the pronephros resembled a normal one (Fig. 19A); however, the 

cells of the pronephric tubules had a smaller nucleo-cytoplasmic ratio (Fig. 19B).  The 

lumens were larger than in a normal embryo.  The mesonephros of the edematous embryo 

resembled a normal mesonephros but the lumens were larger (Fig. 19C).  The cells were 

less tightly packed (Fig. 19D). 

 
 In the severely edematous embryo at 18 days post-fertilization, the pronephros was 

similar to those in the early edematous embryos, in which the lumens were large (Fig. 

20A).  The cells were like normal pronephric cells, but their boundaries were unclear in 

the pronephros on the one side (Fig. 20B).  In the oldest severely edematous embryo; 20 

days post-fertilization, the pronephric tubules were large (Fig. 20C).  The cells of the 

tubules on the one side resembled normal pronephric cells surrounding large lumens.  As 

seen previously, the very large tubule on the other side had a thin epithelium (Fig. 20D).  
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This embryo had a small mesonephros (Fig. 20E).  The cells of the larger tubules 

resembled pronephric cells (Fig. 20F).  The remaining cells, which were more closely 

packed, were more like mesonephric cells (Fig. 20F). 

 
 Overall, the pronephros of the edematous embryos contained large tubules with thin 

epithelia.  The mesonephros also contained large tubules.  In the more severely 

edematous embryos, the pronephros was less developed with few tubules, as was the 

mesonephros. 



 40 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Normal E. coqui embryos.  The stages are assigned according to Townsend and 

Stewart (1985) and designated TS.  The yolk width is approximately 3.5 mm in the early 

stages; TS 4 through TS 7.  The length of the embryo reaches approximately 5 mm from 

head to the beginning of the tail at TS 11.  

flb: forelimb bud. fp: foot paddle. hlb: hindlimb bud. 
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Figure 4: E. coqui embryos exhibiting early and intermediate edema syndrome.  All 

embryos were MEMFA fixed.  A) Early edema - ~ 5 days post-fertilization.  Dorsal view.  

No forelimb buds were present (dotted circles) while hindlimb were obvious.  B) Early 

edema- ~ 7 days post-fertilization.  Lateral view.  Small forelimb buds were seen (white 

arrow).  C) Intermediate edema - ~ 11 days post-fertilization.  Forelimbs were absent 

(dotted circles), although hindlimbs were present.  There was swelling in the abdominal 

area.  Blood clots were present in the area where the forelimb would be (dotted circle).  

D) Intermediate edema - ~ 12 days post-fertilization.  Small but short forelimbs were 

present (black arrow).  There was severe swelling in the abdominal area. 

bct: blood clot.  flb: forelimb bud. hlb: hindlimb bud. 
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Figure 5: E. coqui embryos exhibiting severe edema.  The embryos of (A), (B), and (D) 

were fixed in Bouin’s fixative while the embryo of (C) was alive.  A) ~ 10.5 days post-

fertilization.  Anterior view.  No forelimbs were present (dotted circles) and the 

hindlimbs were small (black arrows).  There was severe swelling in the entire embryo.  

B) ~ 18 days post-fertilization.  Posterior view.  Small forelimb buds (black arrow) and 

small hindlimbs (red arrows) were present.  Growth was very retarded for the age of 

embryo and there was severe swelling of the entire embryo.  C) ~14 days post-

fertilization.  Forelimbs were small (black arrow).  There was severe swelling in the 

entire embryo.  D) ~ 18 days post-fertilization.  There was severe swelling in the entire 

embryo.  Very small forelimb buds were present (black arrow) and development was 

retarded for all limbs.  The yolk tissue was stretched, and it ruptured through the body 

wall.   

fl: forelimb.  flb: forelimb bud.  hls: hindlimbs. 
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Figure 6: Endogenous alkaline phosphatase (AP) activity in normal early (TS 4-7) E. 

coqui embryos.  All images were taken after clearing the embryos.  A) TS 4 embryo.  AP 

stain was present in an area by each forelimb bud, despite treatment with levamisole.  B) 

TS 5 embryo.  AP stain was larger in the area of the forelimb buds than in TS 4, despite 

treatment with levamisole.  C) TS 6 embryo.  AP stain in the forelimb bud/shoulder area 

was quite prominent.  AP stain also began to appear in the spinal column.  D) TS 7 

embryo.  AP stain in the shoulder area was approximately the same as in the TS 6 embryo.  

The stain in the spinal column has now extended more posteriorly.  There was stain in the 

brain as well. 
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Figure 7: Endogenous alkaline phosphatase (AP) activity in normal later (TS 8-11) E. 

coqui embryos.  All images were taken after clearing the embryos. A) TS 8 embryo.  AP 

stain in the shoulder area was prominent.  The stain in the spinal column was present 

slightly more anterior as well as extending more posterior, down to the beginning of the 

tail.  B) Late TS 9 embryo.  AP stain in the shoulder area was less prominent but 

remained apparent.  It was more difficult to see the stain due to the darker pigmentation 

in the outer skin.  The stain was present in the middle of the upper forelimbs and both the 

upper and lower hindlimbs.  C) TS 10 embryo. AP stain in the shoulder area was less 

prominent but remained apparent.  A higher magnification of the area is shown on the 

right.  This was after some of the pigmented skin layer was removed before 

photographing the image.  Stain was present in the upper forelimbs and the both the 

upper and lower hindlimbs.  D) TS 11 embryo.  AP stain in the shoulder area was no 

longer visible.  Stain was present through the entire length of both fore and hindlimbs.  



 49 

 
 

 

  

 

  

 
 

 
  

 

Figure 7 

A 

B 

C 

D 



 50 

 
 
 
 

Table 2. Alkaline phosphatase activity in pronephros of normal E. coqui embryos 

Stage Number of embryos with 
 alkaline phosphatase activity 

Total number of  
embryos examined 

 

TS 4 10 10 

TS 5 12 12 

TS 6 12 12 

TS 7 22 28 

TS 8 7 9 

TS 9 3 6 

TS 10 9 11 

TS 11 0 5 
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Figure 8: Coiling of the pronephric tubules in normal E. coqui embryos stained for 

alkaline phosphatase (AP) activity.  All images were taken after clearing the embryos.  

The tissues surrounding the pronephros were removed to better visualize the coiling that 

can be seen.  A) AP staining of the pronephros in a TS 6 embryo.  B) AP staining of the 

pronephros in a TS 7 embryo.   
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Figure 9: Endogenous alkaline phosphatase (AP) activity in early E. coqui embryos with 

edema.  All images were taken after clearing the embryos.  Specimens in (A), (D), and 

(E) were fixed August, 2004, stored in ethanol at -20°C and stained June, 2005.  

Specimens in (B) and (C) were fixed in June, 2005, stored in ethanol at -20°C and stained 

in June, 2005.  A) eTS 4/5 embryo - 5 days post-fertilization.  No forelimb buds were 

present, and AP stain was present in the forelimb bud area.  B) eTS 4/5 embryo - 7 days 

post-fertilization.  All limb buds were very small.  AP stain was present in the forelimb 

bud areas.  C) Normal TS 6 embryo of the same clutch at the time of fixation as (B) 

served as a reference.  Dark AP stain was present in the shoulder areas.  D) eTS 6 embryo 

- 7 days post-fertilization.  No forelimb buds were present.  AP stain was present in 

forelimb bud area.  Faint AP stain was present in the spinal column.  E) eTS 7 embryo - 

10 days post-fertilization.  No forelimbs were present.  AP stain was present in the 

shoulder areas.  Faint AP was present in the spinal column.   
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Figure 10: Endogenous alkaline phosphatase (AP) activity in older E. coqui embryos 

with edema.  All images were taken after clearing the embryos.  Specimens in (C) and 

(D) were fixed August, 2004, stored in ethanol at -20°C and stained June, 2005.  

Specimens in (A), (B), (E) and (F) were fixed in June, 2005, stored in ethanol at -20°C 

and stained in June, 2005.  A) eTS 7 embryo - 7 days post-fertilization.  Small forelimbs 

were present.  AP stain was present in the shoulder area.  Stain was present in middle part 

of spinal column.  B) Normal TS 8 embryo of the same clutch at the time of fixation as 

(A) served as a reference.  C) eTS 9 embryo - 13 days post-fertilization.  Small forelimbs 

were present.  Light AP stain was present in the shoulder area.  Stain was present in the 

spinal column and in the upper hindlimbs.  D) Normal TS 11 embryo of the same clutch 

as (C) served as a reference.  E) eTS 5 embryo - 7 days post-fertilization.  Both fore and 

hindlimbs buds were present.  No AP staining was present in the pronephric area.  Only 

background stain was present.  F) Normal TS 6 embryo of the same clutch at the time of 

fixation as (E) served as a reference.   
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 Table 3: Alkaline phosphatase activity in pronephros of edematous E. coqui embryos 

Stage; Age of embryo in days 
(d) 

Number of embryos with 
 alkaline phosphatase 

activity 

Total number of  
embryos examined 

 

eTS 4/5; 5d 
no forelimb  1 2 

eTS 4/5; 5d 
small forelimb bud 2 2 

eTS 4/5; 7d 
delayed limb bud growth 4 4 

eTS 6; 7d 
no forelimb 2 2 

eTS 7; 10d 
no forelimb 1 2 

eTS 7; 9d 
small forelimb 5 5 

eTS 7; 7d 
(normal TS 8) 2 2 

eTS 8; 11d 
small forelimb 4 5 

eTS 9; 13d 
 2 2 
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Figure 11: Histology of embryonic kidney(s) in normal E. coqui embryos (TS 4-6).  

Histological sections (10 µm) of Smith fixed, paraplast embedded embryos were stained 

with Harris hematoxylin and Eosin Y.  A) TS 4.  In approximately the region of the 

forelimb bud on one side, openings were present (box).  B) Higher magnification of 

openings in (A).  Organization of cells was evident.  C) TS 5. The pronephric tubules 

were evident on both sides of the embryo near the forelimb bud.  D) Higher 

magnification of some of the tubules boxed in (C).  The cells were organized in a circular 

manner and easily distinguishable from the other cells.  E) TS 6.  More pronephric 

tubules were present.  F) Higher magnification of the pronephros boxed in (E).  The 

openings are larger and blood cells were present around the tubules.  G) TS 6.  Early 

signs of the developing mesonephros in a section more posterior in the embryo.  H) 

Higher magnification of the mesonephros boxed in (G).  The cells were smaller and more 

tightly organized.  

flb: forelimb bud. bc: blood cells. n: notochord.   
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Figure 12: Histology of embryonic kidneys in normal E. coqui embryos (TS 7, 8).  A) TS 

7.  The size of the pronephros was approximately the same as in TS 6.  B) Higher 

magnification of the pronephros boxed in (A).  The organization of the cells looks similar 

to TS 6.  C) TS 7.  The mesonephros continued to be in the early stages of development.  

D) Higher magnification of the mesonephros boxed in (C).  The specific organization of 

the cells was difficult to determine.  E) TS 8.  The area of the pronephros was larger and 

there were bigger lumens in the pronephric tubules.  F) Higher magnification of the 

pronephros boxed in (E).  The shape of the cells were the same as in the previous stages, 

however the overall structures were larger.  G) TS 8.  The mesonephros was now more 

distinct.  H) Higher magnification of mesonephroi in (G).  The organization of the cells 

was clear. 

l: lumen.  n: notochord. 
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Figure 13: Histology of embryonic kidneys in normal E. coqui embryos (TS 9, 10).  A) 

TS 9.  The size of the pronephros was approximately the same as TS 8.  B) Higher 

magnification of the pronephros boxed in (A).  The cells were organized in a similar 

manner as in previous stages; however, some of the tubules were not hollow in the lumen.  

There was a diffuse pink stain.  C) TS 9.  The mesonephros was more developed and 

more easily distinguishable from the rest of the structures of the embryo.  D) Higher 

magnification of the mesonephroi in (C).  The mesonephric cells were very tightly 

organized without there being much of a lumen.  E) TS 10.  The epithelium of the 

pronephric tubules was thinner.  F) Higher magnification of the pronephros boxed in (E). 

The pronephric cells were slightly smaller.  G) TS10.  The mesonephros was now larger 

and the mesonephric tubules were more distinct.  H) Higher magnification of the 

mesonephros in (G).  Blood cells surrounded the mesonephric tubules.  The mesonephric 

tubules were less tightly packed.  

bc: blood cells. 
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Figure 14: Histology of embryonic kidneys in normal E. coqui embryos (TS 11, 12).  A) 

TS 11.  The lumens of the pronephric tubules were smaller than in TS 10.  B) Higher 

magnification of the pronephros boxed in (A).  The pronephric cells had a smaller 

nucleo-cytoplasmic ratio.  C) TS 11. The mesonephros was larger.  D) Higher 

magnification of the mesonephroi in (C).  The mesonephric tubules were more tightly 

organized than in TS 10.  E) TS 12.  The pronephros was approximately the same size as 

in TS 11.  F) Higher magnification of the pronephros boxed in (E).  Some of the lumens 

of the pronephric tubules were not hollow.  G) TS 12.  The mesonephros was 

approximately the same size as in TS 11.  H) Higher magnification of the mesonephros 

boxed in (G).  The mesonephric tubules were less tightly organized than in TS 11. 
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Figure 15: Histology of embryonic kidneys in normal E. coqui embryos (TS 13, 14).  A) 

TS 13.  The pronephros was slightly smaller than it was in TS 12.  B) Higher 

magnification of the pronephros boxed in (A).  There was more space between the 

pronephric tubules and some of the lumens of the pronephric tubules were not hollow.  C) 

TS 13.  The mesonephros was smaller than in TS 12 and less tightly packed.  D)  Higher 

magnification of the mesonephros in boxed (C).  The mesonephric cells resembled the 

pronephric cells.  There was space between the mesonephric tubules.   E) TS 14.  The 

pronephros was more tightly organized.  The dark line in the middle is the epidermis that 

folded over when the section was placed on the slide after sectioning.  F) Higher 

magnification of the pronephros in boxed (E).  The boundaries between the tubules were 

less distinct.  The lumens of the tubules were not hollow.  G) TS 14.    The mesonephros 

was small.  H) Higher magnification of the mesonephros boxed in (G).  The organization 

of the tubules was similar to TS 13. 

ep: epidermis. 
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Figure 16: Histology of embryonic kidneys in a normal E. coqui embryo (TS 15).  A)  

TS 15.  The pronephros was very tightly packed and small.  B) Higher magnification of 

the pronephros boxed in (A).  There was hardly any space between the tubules.  The 

lumens of the tubules were minimal.  C) TS 15.  The mesonephros was approximately the 

same size as in TS 14.  D) Higher magnification of the mesonephros boxed in (C).   There 

was a rich blood supply adjacent to the mesonephros.   
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Figure 17: Histology of embryonic kidneys in early edematous E. coqui embryos.  The 

embryos of (A), (B), (E), and (F) were fixed in Smith’s fixative while the embryo of (C) 

and (D) was fixed in Bouin’s fixative.  A) eTS 4 embryo without forelimb buds - ~ 5.5 

days post-fertilization (p-f).  There were fewer pronephric tubules than in a normal TS 5 

embryo.  B) Higher magnification of (A).  The cells appeared to have a smaller nucleo-

cytoplasmic ratio than those of normal embryos.  C) eTS 5 - ~ 6.5 days post-fertilization 

embryo without forelimb buds.  There were early signs of pronephric tubules.  D)  Higher 

magnification of (C).  Individual pronephric tubule cells were very difficult to distinguish.  

E) eTS 5/6  embryo with small forelimb buds - ~ 8 days post-fertilization.  Pronephric 

tubules were present near the forelimb buds.  The lumens of the pronephric tubules were 

very large. F) Higher magnification of (E).  The epithelium of the enlarged pronephric 

tubules was very thin.   

flb: forelimb bud 
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Figure 18: Histology of embryonic kidneys in older edematous E. coqui embryos.  The 

embryos of (A), (B), (C), and (D) were fixed in Smith’s fixative while the embryos of (E), 

(F), (G), and (H) were fixed in Bouin’s fixative.  A) eTS 7/8 embryo with small forelimbs 

- ~ 10 days post-fertilization.  The pronephric tubules were present near the forelimb and 

were very large.  B) Higher magnification of (A).    The epithelium of the pronephric 

tubules was very thin and individual cells were difficult to distinguish.  C) eTS 7/8 

embryos with small forelimbs - ~ 10 days post-fertilization.  There were a few 

mesonephric tubules.  D) Higher magnification of the mesonephros boxed in (C).  The 

structure and shape were similar to the mesonephros present in normal TS 8 embryos.  E) 

eTS 8 - ~ 10.5 days post-fertilization embryo without forelimbs.  There were a few 

pronephric tubules.  F) Higher magnification of (E).  The cells resembled those of 

pronephric cells of normal embryos.  G) eTS 8 - ~ 10.5 days post-fertilization embryo 

without forelimbs.  A single mesonephric tubule was present.  H) Higher magnification 

of (G).  The shape and size of the cells were similar to mesonephric tubule cells of 

normal embryos; however, the cells were not as tightly packed. 

fl: forelimb. 
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Figure 19: Histology of embryonic kidneys in 11 day old edematous E. coqui embryos.   

The embryo was fixed in Smith’s fixative.  A) eTS 9/10 embryo with small forelimbs -   

~ 11 days post-fertilization.  The lumens of the pronephric tubules were large.  There 

were several pronephric tubules.  B) Higher magnification of the pronephros boxed in (A).  

The pronephric tubule cells were larger than in normal embryos.  C) eTS 9/10 embryo 

with small forelimbs - ~ 11 days post-fertilization.  The lumens of the mesonephric 

tubules were large.  D)  Higher magnification of the mesonephros boxed in (C).  The 

mesonephric tubule cells were similar to those seen in normal embryos however less 

tightly packed. 
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Figure 20: Histology of embryonic kidneys in older but severely edematous E. coqui 

embryos.  All embryos were fixed in Bouin’s fixative.  A)  eTS 7 - ~ 18 days post-

fertilization.  The pronephric tubules have very large lumens.  B) Higher magnification of 

the pronephros boxed in (A).  The boundaries of each of the tubules were not clear.  The 

cells look similar to the pronephric cells present in normal embryos. C) eTS 9 - ~20 days 

post fertilization embryo.  Large pronephric tubules were present.  D) Higher 

magnification of (C).  The cells of the smaller tubules resembled normal tubule cells with 

large lumens.  The epithelium of the one very large tubule on the right was much thinner.  

E) eTS 9 - ~20 days post-fertilization embryo.  There were mesonephric tubules in the 

more posterior region of the embryo.  The lumens of the tubules were large.  F) Higher 

magnification of (E).  The cells in the larger tubules resembled more closely to 

pronephric tubule cells, while the more closely packed cells were similar to normal 

mesonephric cells. 
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Discussion 

I. Primary findings 

 The histology of the pronephros and the mesonephros in normal E. coqui embryos 

was examined.  The histology of the embryonic kidneys in edematous E. coqui embryos 

was also studied.  The severity of edema varied considerably between embryos.  In mild 

cases, there was just an overall swelling of the embryo and all of the limbs formed.  In the 

severe cases, no forelimbs ever formed and all of development was very retarded.  

Development in general was retarded in the edematous embryo when compared to the 

normal embryos from the same clutch.  There was a clear difference in histology between 

the normal versus the edematous embryos.  The key characteristic in the edematous 

embryos was the large lumens of the tubules. 

 
 Endogenous alkaline phosphatase (AP) was discovered to be a marker for the 

developing pronephros in E. coqui.  There was definite AP stain in the normal pronephroi 

in the early stages; TS 4 through TS 7.  Starting at TS 8, the AP stain was more difficult 

to see and the stain was not as strong.  In the late stages, stages beyond TS 11, the AP 

stain was not able to be determined due to the dark pigmentation of the skin.  There was 

more stain in the normal compared to the edematous embryos.   

 
 

II. Kidney development in E. coqui versus other Eleutherodactylus frogs 

 Kidney development in E. coqui is as follows (Table 4).  The first sign of pronephros 

is present at TS 4 as seen with AP staining and histology.  The pronephros persists 

throughout the embryo’s entire development, even until hatching.  It is not known 
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however, when it is functional and whether it is still functional at hatching.  The 

mesonephros first appears at TS 6.  This is known only through histology because AP 

staining is only present in the pronephros. 

 
 The developmental progress of the E. coqui pronephros is similar to E. nubicola 

(Lynn, 1942) as presented in Table 4.  The mesonephric development of E. coqui is also 

similar to E. nubicola.  Lynn claims that the mesonephros is larger than the pronephros at 

-10 days (= TS 13) in E. nubicola; however, without morphometric analysis, it is difficult 

to tell if the mesonephros becomes larger in E. coqui.    

  
 Not much was reported regarding kidney development in E. augusti latrans (Valett 

and Jameson, 1961).  The only comparison that can be made is that E. augusti latrans has 

a large pronephros like E. coqui, although ‘large’ is a relative term which was not well 

defined by Valett and Jameson.  

 
 The developmental progress of the embryonic kidneys in E. martinicensis (Adamson, 

1960) in comparison to E. coqui is shown in Table 4.  Adamson reports on the individual 

compartments of the pronephros, the pronephric duct, the pronephric tubules and the 

glomerulus (refer to schematic diagram in Fig. i).  It is not clear how the specific number 

of tubules was determined, and thus I am unable to compare the numbers in E. coqui.  

The major difference in E. martinicensis is the early regression of the pronephros at the 

stage equivalent of TS 7.  In E. coqui, the pronephros continues to develop and only 

becomes a very compact organ at hatching. 
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 Table 4. Comparison of kidney development among Eleutherodactylus frogs 

 E. coqui E. nubicola E. martinicensis 

First signs of pronephros TS 4 - 23 days 
(= TS 4) 

Stage II 
(= TS 4) 

Definite pronephric 
tubules 

TS 5 - 21 days 
(= TS 5) 

Stage III 
(= TS 5) 

Maximum development 
of pronephros 

~ TS 12 - 11 days 
(= TS 12) 

n/a 

Early mesonephros TS 6, TS 7 - 18 days 
(= TS 7) 

Stage IV 
(= TS 7) 

Mesonephros is larger 
than pronephros 

Difficult to tell - 10 days 
(= TS 13) 

n/a 

Degeneration of 
pronephros 

Remains present 
at hatching 

Remains present 
at hatching 

Begins at stage IV 
(= TS 7) 

 

 

III. Alkaline phosphatase as a marker for pronephros 

 The AP stain in the pronephros was a novel finding in E. coqui.  Endogenous AP 

activity can be used as marker for the pronephros in the early stages in E. coqui.  The AP 

stain showed a coiling pattern and seemed to only stain the pronephric tubules.  The duct 

was not visible by AP staining.  The increasing size of the AP stain area corresponds to 

development of pronephros as seen in the histology in the early stages; TS 4 to TS 7.  The 

reason for the decrease in AP stain in the later stages, TS 8 and beyond, is unknown.  

Perhaps AP activity is no longer necessary in a fully developed pronephros.  AP activity 

may be associated with the differentiation of the pronephros and the activity may cease 

once the pronephros is functional which is shown by the AP stain disappearing.  

Therefore, it would be useful to know when the pronephros becomes functional, if it 

becomes functional at all.      
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 There was a definite difference present between normal and edematous embryos, with 

distinctly less AP stain in the pronephroi of the edematous embryos.  This decrease in 

stain was not due to a longer storage period prior to staining.  In recently fixed edematous 

embryos, there was little (Fig. 9B) or no (Fig. 10E) AP stain, while a normal embryo 

fixed at the same time from the same clutch (Fig. 9C, 10F) showed definite AP staining. 

 
 AP activity has shown to be a marker for the pronephros in other organisms such as 

the biphasic frog, X. laevis (Drawbridge, pers. comm.), axolotl, A. mexicanum (Zackson 

and Steinberg, 1988) and zebrafish, D. rerio (Drummond et al, 1998).  Thus, perhaps it is 

not so surprising that the same enzyme is present in the E. coqui pronephros and works as 

a pronephric marker.  In relation to the necessity for alkaline phosphatase in the 

development of an organism, perhaps some of the abnormalities present in the edematous 

embryos can be explained by the decreased AP activity.  In mice, the embryonic form of 

AP was not essential; however, when tissue-non-specific (TNS) AP was knocked out, the 

neonates had various abnormalities, such as severe epileptic seizures, poor coordination, 

no body fat, reduced muscle structure, a smaller spleen, impaired intestinal movement, 

and poor mineralization in bones (Narisawa et al., 1997).  Perhaps E. coqui AP is an 

ortholog to the TNS AP and the decrease in AP accounts for the poor kidney and limb 

development present in the edematous E. coqui embryos.  Although the kidney was not 

one of the organs severely affected in the AP deficient mice, the other abnormalities in 

the mice can be correlated to the abnormalities in the edematous E. coqui embryos.  It 

may be that AP activity is more necessary in the development of the kidney in E. coqui 

embryos.  
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 It is unclear why levamisole did not fully inhibit endogenous AP activity as it did in 

the axolotl embryos from Zackson and Steinberg’s study (1988).  This may be due to the 

levamisole that was used being old and no longer effective.   

 
 The AP stain in the limbs confirms that the stain present in the area of the pronephros 

was indeed AP activity.  Bone and cartilage formation has been previously studied 

(Hanken et al., 1992) and the results are comparable to my AP staining.  Hanken et al 

(1992) report that at TS 7, cartilage is present in the femur, tibia and fibula, but not in the 

distal hindlimbs nor in the forelimbs.  At TS 8, there is cartilage in the hindlimbs, 

proximal to the metatarsals and in the forelimbs proximal to the manus.  At TS 9, there is 

cartilage in the forelimbs and hindlimbs from the limb girdles to proximal phalanges.  

Starting at TS 10, the cartilage is ‘distinct’ in all limbs.  From my experiments, AP stain 

in the limbs starts in late TS 9.  AP activity must not be active in the early cartilages since 

AP stain was not present in the limbs in the stages prior to TS 9. 

 
 
IV. Edema 

 In this thesis, I present a definite correlation between the development of the 

pronephros and the occurrence of edema.  In the pronephros of edematous E. coqui 

embryos, compared to normal embryos, there were overall fewer tubules.  The histology 

showed that the epithelia cells were very thin in the tubules with large lumens.  When the 

lumen was not so large, the cells still looked different from those in normal embryos in 

that the they had a smaller nucleo-cytoplasmic ratio, making them look swollen.  When 

the lumens are so large, there may not be enough pressure in the tubules to move the fluid 

through.  This would slow the excretory process and lead to fluid building up, resulting in 
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edema.  From the AP stain, the stained area was clearly smaller in the pronephros of the 

edematous embryos.  In one edematous case, there was no AP stain.  If the AP stain is 

indicative of the size of the pronephros, the edematous embryo has very small pronephroi, 

and they may not be large enough to accommodate the embryo’s excretory need.  The 

mesonephros was not always present in older edematous embryos and especially when 

the embryos were more severely swollen.  The mesonephric cells in the edematous 

embryos were similar to normal mesonephric cells, and the mesonephric cells were 

smaller than the cells in the edematous pronephros.  In some embryos, large lumens were 

present in the edematous mesonephros.  The larger lumens may have made the 

mesonephros less effective, similar to the defective pronephros.  

 
 These observations indicate that the embryonic kidneys in the edematous embryos 

could be defective.  Edema has been seen in various cases in other organisms in which 

the pronephros was involved.  In amphibian larvae, the pronephros is a functioning organ.  

When both pronephroi were removed in the salamander, A. punctatum embryos, severe 

edema occurred (Howland, 1921).  Edema occurred as well when parts of the pronephros 

were surgically removed in the A. puctatum embryos.  When a single pronephros was 

removed, although edema was not seen, the remaining pronephros hypertrophied.  In 

zebrafish, mutants were screened for defective pronephric development.  Theses 

genetically mutant zebrafish embryos had fluid filled cysts in the region of the 

pronephros and exhibited gross edema (Drummond et al., 1998).  Drummond et al (1998) 

assumes that the edema is due to loss in pronephric function and failed osmoregulation 

since the heart function appeared to be normal in these mutant zebrafish embryos.   

  



 84 

 I speculate that the edema in the E. coqui embryos was due to a defective pronephros, 

however, it is a correlation in the scope of this study and other causal possibilities have to 

be considered such as defects in the lymphatic system, the circulatory system and the skin 

for reasons explained below. 

 
 The edema could be due to a defective lymphatic system.  The lymphatic system is 

important in water balance in amphibians.  It mediates fluid and solute return to the 

circulatory system during osmotic stress (Baustian, 1988; Hillman et al., 1987; Jones et 

al., 1992).  Cranial lymphatic hearts form at stage Gosner 18 in Rana esculenta, the 

common water frog (Hoyer, 1905a, b), which is equivalent to the Nieuwkoop and Faber 

(1994) stage 26 in X. laevis.  The lymph hearts are a series of contractile vesicles that 

pump the lymphatic fluid, the lymph, through the lymphatic system (Duellman and Trueb, 

1986).  The tadpole continues to develop an extensive lymphatic system throughout its 

development until metamorphosis.  The lymph vessels are thin walled, arise from the 

mesoderm, and empty into large subcutaneous lymph sacs (Conklin, 1930).  These sacs 

include all spaces between the skin and muscle and surrounding internal organs (Carter, 

1979).  The sacs are loosely separated by septa between the muscles and skin.  Fluid is 

able to readily flow through the perforations in the septa.  Lymph hearts are independent 

of the cardiovascular heart and also pump the fluid within the spaces (Deyrup, 1964).  As 

fluid enters into the lymph sacs via the skin and other organs, the lymph is pumped into 

the posterior veins.  A significant number of these veins supply blood to the peritubular 

vessels in the kidney.  Then the kidney excretes the excess water without diluting the 

arterial blood (Feder and Burggren, 1992).   
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 The importance of the lymphatic system has been demonstrated by death of the 

animal which had its lymph hearts destroyed (Baldwin et al., 1990; Baustian, 1988).  

When embryos with their lymph hearts destroyed were in a hydrating environment, the 

animals exhibited increase in weight and edema (Foglia, 1941).  The surrounding water 

contributed to the total amount of fluid present in the subcutaneous lymph sacs.  The 

edematous E. coqui embryos may have dysfunctional lymph hearts which do not 

sufficiently pump the fluid that ultimately reaches the kidneys for excretion.  Likewise, 

the lymph sacs may be defective and unable to retain the lymph properly.  Fluid leaking 

into the body cavity may be resulting in edema.  However, the lymphatic system of E. 

coqui has not been studied for this thesis.  

 
 The edema could be due to defective circulation.  In humans, pulmonary edema, in 

which fluid fills the lungs, is the most severe manifestation of congestive heart failure 

(www.emedicine.com).  With a defective heart, blood will not be pumped and circulated 

throughout the body sufficiently and the blood may leak back into the organs.  This 

reduced blood flow would mean that less blood is supplied to the kidney for excretion of 

any excess fluid in the body.  There is poor circulation in the edematous E. coqui 

embryos as seen by blood clots on the surface of the embryos, although the beating heart 

was clearly visible in most cases.  Perhaps because the circulation is poor, blood is 

pooling in areas, leading to the blood clots.  The poor circulation may allow easier 

coagulation of the blood in blood vessels that may have minor injuries.  In addition to the 

blood clots, the poor circulation may be resulting fluid retention in the edematous E. 

coqui embryos.  More detailed examination of the cardiovascular system has not been 

done on E. coqui for this thesis.  
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 Defective skin could also cause the edema syndrome.  Frog skin is a stratified 

epithelium containing several different layers and is a major source of fluid entrance into 

the embryo.  The skin is a like semi-permeable membrane.  The osmotic flow of water is 

proportional to the osmotic gradient between the surrounding aquatic medium and the 

animal’s body fluids in a healthy animal.  When amphibians are placed in fresh water, 

water is taken up rapidly across the skin.  Water uptake in dehydrated amphibians is also 

increased by the secretion of neurohypophyseal peptide hormones (Bentley, 1971).  The 

nervous system, likewise, has influences on water uptake by the skin, independent of the 

neurohypophysis.  Lesions in the midbrain greatly augmented water uptake (Adolph, 

1934; Segura et al., 1982).  In adult terrestrial frogs, the pelvic region of the ventral skin 

is the primary region for water uptake.  Various pharmacological agents increase or 

decrease water uptake as well.  For example, α-adrenergic agonist, phenoxygensamine, 

injected into the midbrain increases osmotic permeability and subcutaneous injection 

stimulates osmotic uptake (Segura et al., 1982).  Conversely, the β-adrenergic antagonist, 

propranolol blocks uptake of water (Yokota and Hillman, 1984).   

 
 There were no visible lesions or other obvious indications of a skin defect in the 

edematous E. coqui embryos.  It is possible, however, that there are defects at a cellular 

level.  The skin may no longer be semi-permeable and is allowing water to enter the 

embryo without control.  Alternatively, the nervous system of these edematous embryos 

is disrupted and is unable to influence water uptake.  A closer study of the E. coqui 

embryonic skin has not been conducted for this thesis. 
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V. Relation between edema and limb development 

 In addition to the severe swelling in the edematous embryos, limb development 

was poor.  The forelimb development was most affected in the edematous embryos, in 

which in severe cases of edema, the forelimb never develops.  In tetrapod limb formation, 

three axes are under consideration.  The proximal-distal axis is the shoulder to finger axis.  

The anterior-posterior axis is the thumb to pinky orientation.  Lastly, the dorsal-ventral 

axis is the knuckle to palm sides.  Induction of the early limb bud is initiated by fibroblast 

growth factor, FGF10.  FGF10 is secreted by the lateral plate mesodermal cells.  If 

FGF10 is present in a region where limbs do not normally form, extra limbs emerge 

(Ohuchi et al., 1997; Sekine et al., 1999).  Wnt proteins stabilize the expression of 

FGF10.  In addition to initiation of limb formation, FGF10 also induces the overlying 

ectoderm to form the apical ectodermal ridge (AER) which is the major signaling center 

for a developing limb.  The AER synthesizes and secretes another FGF, FGF8, which 

feedsback positively to cause mesodermal cells to continue expressing FGF10.  The AER 

enables the proximal-distal growth of the developing limb, expresses molecules which 

generate the anterior-posterior axis, and interacts with proteins that specify the dorsal-

ventral axis.  Sonic hedgehog protein is the main regulatory molecule in establishing the 

anterior-posterior axis.  Sonic hedgehog initiates and maintains a gradient of proteins 

such as BMP2 and BMP7 (Laufer et al., 1994; Kawakami et al., 1996; Drossopoulou et 

al., 2000).  The dorsal-ventral axis is regulated in part by Wnt7a.  Wnt7a induces the 

activation of Lmx1, a transcription factor that is essential for specifying dorsal cell fates 

in the limb.   
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 Knowing the molecular pathways established in limb development, I wondered if 

there were any common molecular pathways in pronephric development.  If such 

common molecular pathways existed, the misexpression of one and/or more of the genes 

involved could cause the defects in both limb and kidney development.  Table 1 lists the 

genes expressed in the pronephros and BMP7 is a gene involved in both pronephros and 

limb development.  In a recent study, Michos et al (2004) found that the BMP antagonist 

Gremlin is essential for the initiation of the epithelial-mesenchymal signaling interactions 

during limb and metanephric kidney organogenesis in mice.  Gremlin mediated BMP 

antagonism was essential in inducing the initiation of ureter growth.  Ureter growth is a 

key event in metanephric development.  The ureter is a tubular structure that connects the 

kidney to the bladder, which is the organ that stores urine until urination.  In early limb 

buds, Gremlin is required to establish a functional AER and the epithelial-mesenchymal 

feedback signaling that propagates sonic hedgehog.  In addition to its involvement in 

metanephric development, Gremlin is expressed in the pronephros (Hsu et al, 1998) as 

well as BMP7 (Table 1). 

 

VI. Future directions 

 There still remain a few questions regarding the occurrence of edema in the E. coqui 

embryos.  Although not explicitly recorded, there seemed to be fewer edematous embryos 

when the E. coqui were fed with vitamin supplements.  If limb and kidney development 

is related, it should be noted that retinoic acid is critical for initiation of limb bud 

outgrowth.  When synthesis of retinoic acid was blocked by the drug Disulphiram, limb 

bud initiation was prevented (Stratford et al., 1996).  Retinoic acid is synthesized in the 
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body from retinol, also known as vitamin A.  Perhaps sufficient vitamin A in the E. coqui 

diet is necessary for correct limb development as well as proper kidney development.  

This can be tested by eliminating vitamin A in the E. coqui diet or by blocking the 

synthesis of retinoic acid using Disulphiram (Stratford et al., 1996) and look for defects 

in limb and pronephric development.  The retinoic acid receptors in the edematous 

embryos can be studied for any defects as well.     

 
 Edematous embryos have thus far only been reported to occur in laboratory colonies.  

Why does edema occur in laboratory colonies? Or is this phenomenon only noticed in the 

laboratory setting because embryos are more closely studied?  It is possible that in a 

natural setting, the edematous embryos die off because they rarely hatched naturally from 

their jelly capsules in the lab.  The older edematous embryos in my study were all 

dejellied early in their development.  Likewise, when some of the less severely 

edematous embryos developed to a hatching morphology, they often had dysfunctional 

hindlimbs which do not bend making mobility limited.  If this were the case in the wild, 

they would not only be easy prey but also be unable to sufficiently feed itself. 

 
 In this thesis, I provide an overview of the histology of the embryonic kidneys in E. 

coqui at each TS stage.  I studied E. coqui kidney development at a macroscopic level, 

looking mostly at morphology.  This overview establishes the framework for a more 

thorough analysis of each pronephric and mesonephric compartments: the duct, tubules 

and the glomus/glomerulus.   
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 To date, there have been many molecular studies on embryonic kidney development 

in other organisms.  It would be of importance to take a molecular approach to the 

embryonic kidney development in E. coqui for several reasons.  To begin, it would be 

interesting to clone and examine the expression of E. coqui orthologs of HNF-1β, Lim-1 

and Pax-2.  The three genes are the earliest markers for the pronephros.  Shawlot and 

Behringer (1995) speculated that Lim-1 is essential for development of the entire 

urogenital system, so perhaps the edematous embryos have defective expression of Lim-1.  

Another gene of interest would be Pax-2, because Torres et al (1995) and Favor et al 

(1996) reported that it is necessary for duct elongation or maintenance in X. laevis.  This 

is another gene that may show disrupted expression in the edematous embryos.  In 

addition to the pronephric marker genes, it would be interesting to examine the 

expression of Gremlin and BMP7, genes involved in both limb and kidney development, 

to explore the link between the limb and pronephros development.   

 
 It would also be important to determine if and when the pronephros and mesonephros 

become functional in E. coqui.  The pronephros may not be as important an organ in the 

direct developing E. coqui.  The importance of the pronephros could be tested by 

removing the pronephroi in E. coqui embryos that are developing normally and observe 

for possible development of edema.  If the embryos develop normally without their 

pronephroi, this would shed light on the possibility that the lymphatic system, circulatory 

system or the skin is involved.  To test for the importance of the lymphatic system, the 

lymph hearts in E. coqui could be removed in normal embryos and the organisms’ 

development of edema could be monitored.  If the embryos develop normally without 
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lymph hearts as well, the circulatory system and the skin may play bigger roles in water 

regulation in E. coqui.   



 92 

References 
 
 
Adamson, L., Harrison, R. G., and Bayley, I. (1960). The development of the whistling 
 frog Eleutherodactylus martinicensis of Barbados. Proc. Zool. Soc. London 133, 
 453-469.  
 
Adolf, E. F. (1934). Influences of the nervous system on the intake and excretion of 
 water by the frog. J. Cellular and Comparative Physiology 96, 569-596.  
 
Baldwin, A. L., Ferrer, P., Rozum, J. S., and Gore, R. W. (1993). Regulation of 
 water balance between blood and lymph in the frog, Rana pipiens. Lymphology 26, 
 4–18. 
 
Balinsky, B. I. (1970). An introduction to embryology Saunders, Philadelphia. 
 
Baustian, M. (1988). The contribution of lymphatic pathways during recovery from 
 hemorrhage in the toad Bufo marinus. Physiol. Zool. 61, 555–563. 
 
Bellefroid, E. J., Kobbe, A., Gruss, P., Pieler, T., Gurdon, J. B., and Papalopulu, N. 
 (1998). Xiro3 encodes a Xenopus homolog of the Drosophila Iroquois genes and 
 functions in neural specification. EMBO J. 17, 191-203. 
 
Bentley, P. J. (1971). Endocrines and Osmoregulation: A Comparative Account of the 
 Regulation of Salt and Water in Vertebrates. New York: Springer-Verlag.  
 
Boutilier, R. G., Stiffler, D. F., and Toews, D. P. (1992). Exchange of respiratory gases, 
 ions, and water in amphibian and aquatic amphibians. In: Environmental 
 Physiology of the Amphibians. (eds M. E. Feder and W. W.  Burggren) Chicago: 
 The University of Chicago Press. 115-116. 
 
Brändli, A. W. (1999). Towards a molecular anatomy of the Xenopus pronephric kidney. 
 Int. J. Dev. Biol. 43, 381-395. 
 
Bremer, J. L. (1916). The interrelations of the mesonephros, kidney and placenta in 
 different classes of animals. Am. J. Anta.  19, 179-209. 
 
Burns, R. (1955). Urogenital system. In Analysis of development. B. Willier, P. Weiss, 
 and V.  Hamburger, (ed. W. B. Saunders). Philadelphia. 
 
Callery, E. M., Fang, H., and Elinson, R. P. (2001). Frogs without polliwogs: 
 Evolution of anuran direct development. BioEssays 23, 233-241. 
 
Callery, E. M. and Elinson, R. P. (2000). Opercular development and ontogenic re-
 organization in a direct developing frog. Proc. Natl. Acad. Sci. 97, 2615-2620. 
 



 93 

Carroll, T. J. and Vize, P. D. (1996). Wilms’ tumor suppressor gene is involved in 
 the development of disparate kidney forms: evidence from expression in the 
 Xenopus pronephros. Dev. Dynamics 206, 131-138. 
 
Carter, D. B. (1979). Structure and function of the subcutaneous lymph sacs in the 
 Anura (Amphibia). J Herpetology 13, 321-327. 
 
Cleaver, O., Tonissen, K. F., Saha, M. S., and Krieg, P. A. (1997). Neovascularization 
 of the Xenopus embryo. Dev. Dynamics 210, 66-77. 
 
Clopton, R. E. ‘Harris Hematoxylin & Eosin-Xylol Staining Protocol’. (2004).
 http://science.peru.edu/gregarina/html/harris.html. 
 
Conklin, A. E. (1930). The formation and circulation of lymph in the frog: 1. The rate of 
lymph production. American J Physiology 1, 79-110. 
 
Demartis, A., Maffei, M., Vignali, R., Barsacchi, G., and De Simone, V. (1994). 
 Cloning and developmental expression of LFB3/HNF1β transcription factor in 
 Xenopus laevis. Mech. Dev. 47, 19-28. 
 
Deyrup, I. J. (1964). Water balance and kidney. In: Physiology of the Amphibia. (ed. J. 
 A. Moore) New York: Acadmic Press. 251-328. 
 
Drawbridge, J. Rider College, Personal. Communication. Aug 4, 2005. 
 
Drossopoulou, G., Lewis, K. E., Sanz-Ezquerro, J. J., Nikbakht, N., McMahon, A. P., 
 Hofmann, C., and Tickle, C. (2000). A model for anteroposterior patterning of 
 the vertebrate limb based on sequential long- and short-range Shh signalling and 
 Bmp signalling. Development 127(7), 1337-1348.  
 
Drummond, I.A., Majumdar, A., Hentschel, H., Elger, M., Solnica-Krezel, L., Schier, 
 A. F., Neuhauss, S. C., Stemple, D. L., Zwartkruis, F., Rangini, Z., Driever, 
 W., and Fishman, M. C. (1998). Early development of the zebrafish pronephros 
 and analysis of mutations affecting pronephric function. Development 125(23), 
 4655-4667.  
 
Duellman, W. E. and Trueb, L. (1986). Biology of amphibians. New York: McGraw-
 Hill Book Co. 
 
Elinson, R. P. (1987). Change in developmental patterns: embryos of amphibians with 
 large eggs. In: Complex organismal functions: Integration and evolution in 
 vertebrates. (eds. R. A. Raff and E. C. Raff) 251-262. Chichester: John Wiley.  
 
Elinson, R. P., del Pino, E. M., Townsend, D. S., Cuesta, F. C., and Eichhorn, P. 
 (1990). A practical guide to the developing biology of terrestrial-breeding frogs. 
 Biol. Bull. 179, 163-177. 



 94 

 
Elinson, R. P. and Fang, H. (1998). Secondary coverage of the yolk by the body wall in 
 the direct developing frog, Eleutherodactylus coqui: an unusual process for 
 amphibian embryos. Dev Genes Evol. 208(8), 457-66. 
 
Fang, H. and Elinson, R. P. (1996). Patterns of distal-less gene expression and inductive 
 interactions in  the head of the direct developing frog Eleutherodactylus coqui. 
 Dev. Biol. 176, 160-172. 
 
Favor, J., Sandulache, R., Neuhäusler-Klaus, A., Pretsch, W., Chatterjee, B., Senft, 
 E., Wurst, W., Blanquet, V., Grimes, P., Spörle, R., and Schughart, K. (1996). 
 The moutse Pax21Neu mutation is identical to human PAX2 mutation in a family 
 with renal-coloboma syndrome and results in developmental defects of the brain, 
 ear, eye and kidney. Proc. Natl. Acad. Sci. 93, 13870-13875.  
  
Foglia, V. G. (1941). Cause of death of toads after destruction of their lymph hearts. 
 Proc. Soc. Exp. Biol. Med. 46, 598–601. 
 
Fox, H. and Hamilton, L. (1964). Pronephric system in haploid and diploid larvae of 
 Xenopus laevis. Experientia. 20(5), 289.  
 
Gawantka, V., Pollet, N., Delius, H., Vingron, M., Pfister, R., Nitsch, R., 
 Blumenstock, C., and Niehrs, C. (1998). Gene expression screening in Xenopus 
 identifies molecular  pathways, predicts gene function and provides a global view 
 of embryonic patterning. Mech. Dev. 77, 95-141. 
 
Goodrich, E. S. (1930). Studies on the structure and development of vertebrates. 
 Macmillan and Co., London. 
 
Harland, R. M. (1991). Appendix G. In Situ Hybridization: An Improved Whole-Mount 
 Method for Xenopus Embryos. In Methods in Cell Biology Volume 36 Xenopus 
 laevis: Practical Uses in Cell and Molecular Biology. (eds B. K. Kay and H. B. 
 Peng). San Diego: Academic Press Inc. 685-695. 
 
Hanken, J., Klymkowsky, M.W., Summers, C.H., Seufert, D.W., and Ingebrigtsen, 
 N. (1992). Cranial ontogeny in the direct-developing frog, Eleutherodactylus 
 coqui (Anura: Leptodactylidae), analyzed using whole-mount 
 immunohistochemistry. J. Morphol. 211(1), 95-118.  
 
Hanken, J. (1999). Larvae in amphibian development and evolution. In The origin and 
 evolution of larval forms. (eds B. K. Hall and M. H. Wake). New York: 
 Academic Press. 61-108. 
 
Heller, N. and Brändli, A. W. (1997). Xenopus Pax-2 displays multiple splice forms 
 during embryogenesis and pronephric kidney development. Mech. Dev. 69, 83-
 104. 



 95 

 
Heller, N. and Brändli, A. W. (1999). Xenopus Pax-2/5/8 orthologues: novel insights 
 into Pax gene evolution and identification of Pax-8 as the earliest marker for otic 
 and pronephric cell lineages. Dev. Genet. 24, 208-219. 
 
Hillman, S. S., Zygmunt, A., and Baustian, M. (1987). Transcapillary fluid forces 
 during dehydration in two amphibians. Physiol. Zool. 60, 339–345. 
 
Hollemann, T., Schuh, T., Pieler, T., and Stick, R. (1996). Xenopus Xsal-1, a 
 vertebrate homolog of the region specific homeotic gene spalt of Drosophila. 
 Mech. Dev. 55, 19-32. 
 
Howland, R. B. (1921). Experiments on the effect of the removal of the pronephros of 
 Ambystoma punctatum. J. Exp. Zool. 32, 355-384. 
 
Hoyer, M. H. (1905a). Untersuchungen über das Lymphgefässytem der Froschlarven. I. 
 Teil. Bull. Acad. Cracov. 1905, 417-430. 
 
Hoyer, M. H. (1905b). Untersuchungen über das Lymphgefässytem der Froschlarven. II. 
 Teil. Bull. Acad. Cracov. 1905, 451-464. 
 
Hsieh, J. C., Kodjabachian, L., Rebbert, M.L., Rattner, A., Smallwood, P. M., 
 Samos, C. H., Nusse, R., Dawid, I. B., and Nathans, J. (1999). A new secreted 
 protein that binds to Wnt proteins and inhibits their activities. Nature 398, 431-
 436. 
 
Hsu, D., Ecominedies, A., Wang, X., Eimon, P., and Harland, R. M. (1998). The 
 Xenopus dorsalizing factor Gremlin identifies a new family of secreted proteins 
 that antagonize BMP activities. Mol. Cell 1, 673-683. 
 
Kawakami, Y., Ishikawa, T., Shimabara, M., Tanda, N., Enomoto-Iwamoto, M., 
 Iwamoto, M., Kuwana, T., Ueki, A., Noji, S., and Nohno, T. (1996). BMP 
 signaling during bone pattern determination in the developing limb. Development 
 122(11), 3557-3566.  
 
Köster, R., Stick, R., Loosli, F., and Wittbrodt, J. (1997). Medaka spalt acts as a target 
 gene of hedgehog signaling. Development 124, 3147-3156. 
 
Jones, J. M., Wentzell, L. A., and Toews, D. P. (1992). Posterior lymph heart pressure 
 and rate and lymph flow in the toad Bufo marinus in response to hydrated and 
 dehydrated conditions. J. Exp.Biol. 169, 207–220. 
 
Lallier, T. E., Whittaker, C. A., and Desimone, D. W. (1996). Integrin α6 expression 
 is required for early nervous system development in Xenopus laevis. Development 
 122, 2539-2554. 
 



 96 

Laufer, E., Nelson, C. E., Johnson, R. L., Morgan, B. A., and Tabin, C. (1994). Sonic 
 hedgehog and Fgf-4 act through a signaling cascade and feedback loop to 
 integrate growth and patterning of the developing limb bud. Cell 79(6), 993-1003.  
 
Leloup, J. and Buscaglia, M. (1977). Triiodothyronine, hormone of amphibian 
 metamorphosis. Comptes Rendus Hebdomadaires des Séances de l’Académie des 
 Sciences Serie D 284, 2261–2263. 
 
Lynn, W. G. (1942). The Embryology of Eleutherodactylus nubicola, an anuran which 
 has no tadpole stage. Contrib. Embryol. Carnegie Ist. Wash. Publ. 541, 27-62. 
 
McComb, R. B., Bowers, G. N., and Posen, S. (1979). Alkaline Phosphatase New 
 York: Plenum Press. 
 
Manes, T., Glade, K., Ziomek, C. A., and Millan, J. L. (1990). Genomic structure and 
 comparison of mouse tissue-specific alkaline phosphatase genes. Genomics. 8(3), 
 541-554.  
 
Meyer, D., Durliat, M., Senan, F., Wolff, M., Andre, M., Hourdry, J., and Remy, P. 
 (1997). Ets-1 and Ets-2 proto-oncogenes exhibit differential and restricted 
 expression patterns during Xenopus laevis oogenesis and embryogenesis. Int. J. 
 Dev. Biol. 41, 607-620. 
 
Michos, O., Panman, L., Vintersten, K., Beier, K., Zeller, R., and Zuniga, A. (2004). 
 Gremlin-mediated BMP antagonism induces the epithelial-mesenchymal feedback 
 signaling controlling metanephric kidney and limb organogenesis. Development 
 131(14), 3401-3410.  
 
Narisawa, S., Hasegawa, H., Watanabe, K., and Millan, J. L. (1994). Stage-specific 
 expression of alkaline phosphatase during neural development in the mouse. Dev 
 Dyn. 201(3), 227-235. 
 
Narisawa, S., Frohlander, N., and Millan, J. L. (1997). Inactivation of two mouse 
 alkaline phosphatase genes and establishment of a model of infantile 
 hypophosphatasia. Dev. Dyn. 208(3), 432-46.  
 
Nieuwkoop, P. D. and Faber, J. (1994). “Normal table of Xenopus laevis (Daudin).” 
 Garland, New York. 
 
Ohuchi, H., Nakagawa, T., Yamamoto, A., Araga, A., Ohata, T., Ishimaru, Y., 
 Yoshioka, H., Kuwana, T., Nohno, T., Yamasaki, M., Itoh, N., and Noji, S. 
 (1997). The mesenchymal factor, FGF10, initiates and maintains the outgrowth of 
 the chick limb bud through interaction with FGF8, an apical ectodermal factor. 
 Development 124(11), 2235-2244.  
 



 97 

Pannese, M., Lupo, G., Kablar, B., Boncinelli, E., Barsacchi, G. and Vignali, R. 
 (1997). The Xenopus Emx genes identify presumptive dorsal telencephalon and 
 are induced by head organizer signals. Mech. Dev. 73, 73-83. 
 
Rafferty, N. S. (1961). A study of the relationship between the pronephros and the 
 haploid syndrome in frog larvae. J. Morphol. 108, 203-217. 
 
Rugh, R. (1965). Techniques in experimental embryology. Equiptment and Procedures in 
 Experimental Embryology. In Experimental Embryology. Minneapolis: Burgess 
 Publishing Company. 1-30. 
 
Saxén, L. (1987). Organogenesis of the kidney. Cambridge University Press, Cambridge. 
 
Saulnier, D. M., Ghanbari, H., Brändli, A. W. (2002). Essential function of Wnt-4 for 
 tubulogenesis in the Xenopus pronephric kidney. Dev. Biol. 248(1),13-28.  
 
Schlosser, G., Klintner, C., and Northcutt, R. G. (1999). Loss of ectodermal 
 competence for lateral line placode formation in the direct developing frog 
 Eleutherodactylus coqui. Dev. Biol. 213(2), 354-369. 
 
Segura, E. T., Bandsholm, U. C., and Bronstein, A. (1982). Role of the CNS in the 
 control of the water economy of the toad Bufo arenarum Hensel: 2. Adrenergic 
 control of water uptake across the skin. J. Comparative Physiology. 146B, 101-
 106. 
 
Sekine, K., Ohuchi, H., Fujiwara, M., Yamasaki, M., Yoshizawa, T., Sato, T., 
 Yagishita, N., Matsui, D., Koga, Y., Itoh, N., and Kato, S. (1999). Fgf10 is 
 essential for limb and lung formation. Nat Genet. 21(1), 138-141.  
 
Semba, K., Saito-Ueno, R., Takayama, G., and Kondo, M. (1996). cDNA cloning and 
 its pronephros-specific expression of the Wilm’s tumor suppressor gene, WT1, 
 from Xenopus laevis. Gene 175, 167-172. 
 
Shawlot, W. and Behringer, R. R. (1995). Requirement for Lim1 in head-organizer 
 function. Nature 374, 435-430. 
 
Shi, D. L., Goisset, C., and Boucaut, J. C. (1998). Expression of Xfz3, a Xenopus 
 frizzled family member, is restricted to the early nervous system. Mech. Dev. 70, 
 35-47. 
 
Skynner, M. J., Drage, D. J., Dean, W. L., Turner, S., Watt, D. J., and Allen, N. D. 
 (1999). Transgenic mice ubiquitously expressing human placental alkaline 
 phosphatase (PLAP): an additional reporter gene for use in tandem with beta-
 galactosidase (lacZ). Int. J. Dev. Biol. 43(1), 85-90.  
 



 98 

Stratford, T., Horton, C., and Maden, M. (1996). Retinoic acid is required for the 
 initiation of outgrowth in the chick limb bud. Curr Biol. 6(9), 1124-1133.  
 
Taira, M., Otani, H., Jamrich, M., and Dawid, I. B. (1994). Expression of the LIM 
 class homeobox gene XLIM-1 in pronephros and CNS cell lineages of Xenopus 
 embryos is affected by retinoic acid and exogastrulation. Development 120, 1525-
 1536. 
 
Tata, J. R. (1996). In Metamorphosis: Postembryonic Reprogramming of Gene 
 Expression in Amphibian and Insect Cells. (eds. Gilbert, L. I., Tata, J. R. & 
 Atkinson, B. G.) Academic Press, New York, pp. 465–503. 
 
Terao, M. and Mintz, B. (1987). Cloning and characterization of a cDNA coding for 
 mouse placental alkaline phosphatase. Proc. Natl. Acad. Sci. 84(20), 7051-7055.  
 
Torres, M., Gómez-Pardo, E., Dressler, G. R., and Gruss, P. (1995). Pax-2 controls 
 multiple steps of urogenital development. Development 121, 1525-1536. 

Townsend, D. S., and M. M. Stewart. (1985). Direct development in Eleutherodactylus 
 coqui (Anura: Leptodactylidae): A staging table. Copeia 1985(2), 423-436. 

Uochi, T. and Asashima, M. (1996). Sequential gene expression during pronephric 
 tubule formation in vitro in Xenopus ectoderm. Dev. Growth Differ. 38, 625-634. 

Valett, B. B. and Jameson, D. L. (1961) The embryology of Eleutherodactylus augusti 
 latrans. Copeia 1961(1), 103-109. 

Vize, P. D., Jones, E.A., and Pfister, R. (1995). Development of the Xenopus 
 pronephric system. Dev. Biol. 171(2), 531-540.  
 
Vize, P. D. (2003). The chloride conductance channel ClC-K is a specific marker for the 
 Xenopus pronephric distal tubule and duct. Gene Expr Patterns. 3(3), 347-50.  
 
Wang, S., Krinks, M., Kleinwaks, L., and Moos, J. M. (1997). A novel Xenopus 
 homologue of bone morphogenetic protein-7 (BMP-7). Genes Funct. 1, 259-271. 
 
Wilson, R. and Mohun, T. (1995). XIdx, a dominant negative regulator of bHLH 
 function in early Xenopus embryos. Mech. Dev. 49, 211-222. 
 
Witschi, E. (1956). Development of Vertebrates. W. B. Saunders Company, Philadelphia. 
 
Witta, S. A., Agarwal, V. R., and Sato, S. M. (1995). XlPOU 2, a noggin-inducible 
gene,  has direct neuralizing activity. Development 121, 721-730. 
 
Yokota, S. D. and Hillman, S. S. (1984). Adrenergic control of anuran cutaneous 
 hydroosmotic response. General and Comparative Endocrinology 53, 193-221. 



 99 

 
Zackson, S. L. and Steinberg, M. S. (1988). A molecular marker for cell guidance 
 information in the axolotl embryo. Dev Biol. 127(2),435-442  
 
Zhou, X. and Vize, P. D. (2004) Proximo-distal specialization of epithelial transport 
 processes within the Xenopus pronephric kidney tubules. Dev Biol. 271(2), 322-
 338.  
 
Zhou X and Vize, P. D. (2005a). Pronephric regulation of acid-base balance; 
coexpression  of carbonic anhydrase type 2 and sodium-bicarbonate cotransporter-1 in 
the late  distal  segment. Dev. Dyn. 233(1), 142-144.  
 
Zhou, X. and Vize, P. D. (2005b). Amino acid cotransporter SLC3A2 is selectively 
 expressed in the early proximalsegment of Xenopus pronephric kidney nephrons. 
 Gene Expr. Patterns. 5(6),774-777.  
 
 
 


	Duquesne University
	Duquesne Scholarship Collection
	2005

	Kidney Development in Eleutherodactylus coqui With Relation to Edema Syndrome
	Seung Yun Lee
	Recommended Citation


	Microsoft Word - 433C3FD6-2E67-28150E.doc

