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ABSTRACT 

 

MODELING THE BINDING OF INHIBITORS/DRUGS TO THE SEROTONIN 

TRANSPORTER 

 

 

 

By 

Kalyan Immadisetty 

May 2015 

 

Dissertation supervised by Dr. Jeffry D. Madura 

Human serotonin transporter (hSERT), a membrane protein from the 

neurotransmitter sodium symporter family, is implicated in depression disorder and has 

been the primary target of antidepressant discovery research for several decades. Since 

the currently available antidepressants may cause adverse effects and have several 

limitations, novel drugs are highly desired. However, the efforts to develop better 

therapeutics are hampered by the lack of a crystal structure of hSERT. Knowledge of the 

binding site of the drug and its orientation in the protein is crucial in structure-based drug 

discovery. We employed a novel computational protocol comprised of active site 

detection, docking, scoring, molecular dynamics simulations, and absolute binding free 

energy (ABFE) calculations to elucidate the binding site and the binding mode of a dual 

hSERT/5HT-1A blocker SSA-426 and our in-house hSERT inhibitor DJLDU-3-79 in 



 v 

hSERT. Through this approach, we propose that both of these inhibitors bind in the S1 

pocket of hSERT and in a similar orientation. This disproves the earlier hypothesis that 

both these inhibitors bind in the S2 site; however, we are in agreement with the earlier 

hypothesis that both of the ligands orient similarly. Further, we resolved the ambiguity in 

binding energies and binding trends of the tricyclic antidepressant drugs clomipramine, 

imipramine, and desipramine with leucine transporter (LeuT) (a bacterial homologue of 

hSERT) through relative binding free energy (RBFE) calculations. Based on our RBFE 

results, we proposed that clomipramine should have the highest affinity for LeuT, 

followed by imipramine and desipramine. Finally, to achieve accuracy in binding energy 

estimations and to perform all CHARMM simulations, we developed CHARMM general 

force field parameters (CGenFF) for fifteen monoamine transporter ligands. 



 vi 

DEDICATION 

 

 I dedicate this dissertation to my family for supporting and motivating me 

throughout. I also dedicate this to my friends who helped me in many ways, especially in 

the last one year. 

 

 

 

 

 

 

 

 



 vii 

ACKNOWLEDGEMENT 

 

I would like to take this opportunity to express my gratitude to my dissertation 

advisor Dr. Jeffry D. Madura for giving me this wonderful opportunity. I am fortunate to 

have a legendary person like him as my dissertation advisor. From day one onwards, Dr. 

Madura encouraged and supported me in every possible way. Thank you for his extra 

efforts in preparing me for the earlier defenses, despite being busy as the chair of the 

department. Dr. Madura constantly motivated me to overcome my shortcomings and 

patiently pushed me towards the target. I am indebted to him for offering me research 

assistantship for five consecutive years and also for financially supporting me to go to the 

Chemical Computing Group (CCG) workshop and three ACS national conferences. Dr. 

Madura gave absolute freedom and constantly encouraged me to figure out problems on 

my own, which helped me become an independent thinker. Had he not been patient and 

motivated me I don't think I would have finished my dissertation. 

I am thankful to my dissertation committee members Dr. David W. Seybert, Dr. 

Jeffrey D. Evanseck for mentoring and encouraging me through the years. Special thanks 

to Dr. Christopher K. Surratt, an external committee member and our experimental 

collaborator. It was a pleasant experience working with Dr. Surratt; I had the opportunity 

to write a review article with him and learned a lot in that process. He should be specially 

appreciated for organizing weekly collaboration meetings along with Dr. David Lapinsky 

and Dr. Michael Cascio. I thank you all for patiently listening to my research 

presentations and offering your valuable advice and also for clarifying my doubts. These 



 viii 

meetings are always filled with positive energy and there was not a situation where I was 

being let down.  

I sincerely thank Dr. Ralph A. Wheeler for his presence in the weekly joint group 

meetings and offering his suggestions. Thanks to Dr. Michael Cascio for his input during 

my original research proposal. I need to express my gratitude to Dr. Sai Pakkala for 

helping me get this wonderful opportunity to work in Dr. Madura’s lab and also for 

helping me settle down in Pittsburgh. Many thanks to Dr. Sankar Manepalli for guiding 

me through the research project in the beginning days. My current and past lab mates, 

Riley Workman, Emily Benner, Bernadine Jean, Timothy Gaborek, Matt Srnec, Bonnie 

Merchant, Dr. Ileana Esposito, Dr. Ignacio General, James Thomas, Jimmy Brancho and 

Marco Acevedo, thank you all for this wonderful experience, it has been a joy working 

with all of you. I need to specially thank Dr. Tammy Nolan for helpful discussions, 

offering valuable advice and fresh vegetables from her backyard. I am grateful to Debesai 

Hailemicael for patiently listening and for supporting and motivating me throughout. 

Thank you Laura Geffert for many leisure lunches and fun moments. My Indian 

colleagues at Duquesne, Dr. Dinesh Nath, Dr. Sumangala Shetty, Nageswari 

Yerravarapu, Rathna Veeramachaneni, Kiran Venna, Dr. Srikanth Singamsetty, Dr. 

Roheeth Pavana, Dr. Uday Kotreka, Dr. Druk Vyas, Dr. Balasundarreddy Dodda and Dr. 

Ranganadh Velagelati for making this a memorable experience at Duquesne. 

Thanks to the administrative staff Amy Stroyne, Sandy Russell, Margaret 

Cowburn and academic advisor Heather Costello for their assistance in many ways. I also 

thank Department of Chemistry and Biochemistry and Duquesne University for giving 

me this wonderful opportunity to pursue my graduate studies and also for supporting me 



 ix 

in every way possible. Lastly I would like to thank Dr. Philip Reeder, dean of BSNES, 

for offering me tuition scholarship for spring and fall semesters, 2014. 

  



 x 

TABLE OF CONTENTS 

Page 

ABSTRACT ....................................................................................................................... iv 

DEDICATION ................................................................................................................... vi 

ACKNOWLEDGEMENT ................................................................................................ vii 

LIST OF TABLES ............................................................................................................ xv 

LIST OF FIGURES ....................................................................................................... xviii 

LIST OF ABBREVIATIONS ......................................................................................... xxii 

1. CHAPTER 1 ................................................................................................................ 1 

1.1. Introduction....................................................................................................................... 1 

1.1.1. Monoamine transporter inhibitors and their therapeutic applications ....................... 2 

1.2. Free Energy Methods for Protein-Ligand Interactions ..................................................... 8 

1.2.1. Explicit methods ........................................................................................................ 8 

1.2.2. Implicit methods ...................................................................................................... 16 

1.2.3. Hybrid methods ....................................................................................................... 17 

1.3. Free Energy Calculations on MATs ............................................................................... 20 

1.4. Conclusions..................................................................................................................... 23 

1.5. References....................................................................................................................... 25 

2. CHAPTER 2 .............................................................................................................. 39 

2.1. Introduction..................................................................................................................... 39 

2.2. Methods .......................................................................................................................... 44 

2.3. Results and Discussion ................................................................................................... 46 

2.3.1. Charge optimization ................................................................................................ 47 

2.3.2. Geometry optimization ............................................................................................ 76 

2.3.3. Dihedral energy scans ........................................................................................... 103 



 xi 

2.3.4. Lennard-Jones parameter optimization ................................................................. 103 

2.4. Conclusions................................................................................................................... 103 

2.5. References..................................................................................................................... 104 

3. CHAPTER 3 ............................................................................................................ 108 

3.1. Introduction................................................................................................................... 108 

3.2. Methods ........................................................................................................................ 114 

3.2.1. Relative binding energy calculations ..................................................................... 114 

3.2.2. System preparation and simulation details ............................................................ 116 

3.2.2.1. Amino acid perturbations ............................................................................... 118 

3.2.2.2. TCA perturbations .......................................................................................... 118 

3.2.2.2.1. Clomipramine-to-imipramine ................................................................. 118 

3.2.2.2.2. Imipramine-to-desipramine .................................................................... 118 

3.2.2.2.3. Clomipramine-to-desipramine ................................................................ 119 

3.3. Results and Discussion ................................................................................................. 119 

3.3.1. Relative binding of amino acid ligands leucine, alanine, and glycine with LeuT . 119 

3.3.2. Relative binding of clomipramine, imipramine and desipramine with LeuT ........ 125 

3.4. Conclusions................................................................................................................... 131 

3.5. References..................................................................................................................... 134 

4. CHAPTER 4 ............................................................................................................ 138 

4.1. Introduction................................................................................................................... 138 

4.2. Materials and Methods ................................................................................................. 144 

4.2.1. Computational protocol ......................................................................................... 144 

4.2.1.1. Automated active site identification and scoring protocol (AADS) .............. 145 

4.2.1.1.1. Active site finder ..................................................................................... 146 

4.2.1.1.2. Docking .................................................................................................. 147 



 xii 

4.2.1.1.3. Scoring function...................................................................................... 148 

4.2.1.2. AADS validation on LeuT crystal structures ................................................. 149 

4.2.1.3. Application of AADS to hSERT .................................................................... 150 

4.2.1.4. hSERT docking using MOE docking protocol .............................................. 150 

4.2.1.5. System preparation and protocol for MD simulations ................................... 151 

4.2.1.6. Absolute binding energy calculations ............................................................ 151 

4.2.1.6.1. System preparation and simulation details ............................................. 154 

4.3. Results and Discussion ................................................................................................. 156 

4.3.1. Validation of AADS protocol with LeuT crystal structures .................................. 156 

4.3.1.1. Binding site identification .............................................................................. 157 

4.3.1.1. Binding site validation ................................................................................... 158 

4.3.1.2. Pose validation ............................................................................................... 161 

4.3.2. DJLDU-3-79 and SSA-426 binding in hSERT ..................................................... 163 

4.3.2.1. Application of AADS protocol to hSERT homology model ......................... 163 

4.3.2.2. Molecular dynamics simulations of poses of DJLDU-3-79 and SSA-426 .... 168 

4.3.2.3. Role of electrostatics in drifting of ligands in MD simulations ..................... 176 

4.3.2.4. Estimation of absolute binding energies through FEP method ...................... 179 

4.4. Discussion and Conclusions ......................................................................................... 188 

4.5. References..................................................................................................................... 192 

5. CHAPTER 5 ............................................................................................................ 201 

5.1. Introduction................................................................................................................... 201 

5.2. Materials and Methods ................................................................................................. 202 

5.2.1. Computational protocol ......................................................................................... 202 

5.2.1.1. System preparation and MD simulation details ............................................. 203 

5.2.1.2. Absolute binding energy calculations ............................................................ 203 

5.2.1.3. Relative binding energy calculations ............................................................. 203 



 xiii 

5.3. Results and Discussion ................................................................................................. 205 

5.3.1. AADS results ......................................................................................................... 205 

5.3.2. Absolute binding energy calculations ................................................................... 208 

5.3.3. Mutation of glutamic acid 493 to glutamine ......................................................... 211 

5.4. Conclusions................................................................................................................... 212 

5.5. References..................................................................................................................... 213 

FUTURE WORK ............................................................................................................ 217 

APPENDIX ..................................................................................................................... 218 

6. A REVIEW OF NEW DESIGN STRATEGIES FOR ANTIDEPRESSANT DRUGS

 218 

6.1. Introduction................................................................................................................... 218 

6.1.1. First-generation antidepressant drugs .................................................................... 218 

6.1.2. Second-generation antidepressant drugs ............................................................... 219 

6.1.3. Rational design of an antidepressant drug: fluoxetine (ProzacTM) ........................ 221 

6.1.4. SSRI effects on systems served by 5-HT receptor subtypes ................................. 223 

6.1.5. Landmark achievements toward elucidating SERT and 5-HT receptor three-

dimensional structures ........................................................................................................ 225 

6.1.6. Antidepressant mechanisms beyond the MATs .................................................... 227 

6.2. Methods for Antidepressant Discovery and Design ..................................................... 228 

6.2.1. Experimental methods ........................................................................................... 229 

6.2.2. Knowledge-based methods .................................................................................... 231 

6.2.3. Computational methods ......................................................................................... 232 

6.2.3.1. Ligand-based VS ............................................................................................ 232 

6.2.3.2. Structure-based VS ........................................................................................ 233 

6.2.3.3. Hybrid (structure/ligand) VS.......................................................................... 235 



 xiv 

6.2.3.4. Fragment-based drug discovery ..................................................................... 237 

6.2.4. Summary of VS comparison with HTS ................................................................. 237 

6.3. A Hybrid VS Strategy for Discovery of Novel SERT Inhibitors / 5-HT Receptor 

Modulators .............................................................................................................................. 238 

6.4. Conclusion .................................................................................................................... 241 

6.5. Expert Opinion.............................................................................................................. 241 

6.6. References..................................................................................................................... 244 

 

  



 xv 

LIST OF TABLES 

Page 

Table 1.1. MAT inhibitors classified according to their application. ................................. 4 

Table 1.2. Comparison of the calculated and experimental relative binding energies of the 

three amino acid ligands with LeuT. ................................................................................. 23 

Table 2.1. Comparison of CGenFF and HF/6-31G* water interaction energies and 

distances of amphetamine. ................................................................................................ 48 

Table 2.2. Interaction energies and distances of dopamine - water complexes in different 

geometries. ........................................................................................................................ 49 

Table 2.3. Interaction energies and distances of serotonin - water complexes in different 

geometries. ........................................................................................................................ 51 

Table 2.4. Interaction energies and distances of methylphenidate - water complexes in 

different geometries. ......................................................................................................... 53 

Table 2.5. Interaction energies and distances of bupropion - water complexes in different 

geometries. ........................................................................................................................ 55 

Table 2.6. Interaction energies and distances of benztropine - water complexes in 

different geometries. ......................................................................................................... 57 

Table 2.7. Interaction energies and distances of cocaine - water complexes in different 

geometries. ........................................................................................................................ 59 

Table 2.8. Interaction energies and distances of clomipramine - water complexes in 

different geometries. ......................................................................................................... 61 

Table 2.9. Interaction energies and distances of imipramine - water complexes in 

different geometries. ......................................................................................................... 63 



 xvi 

Table 2.10. Interaction energies and distances of desipramine - water complexes in 

different geometries. ......................................................................................................... 65 

Table 2.11. Interaction energies and distances of fluoxetine (R) - water complexes in 

different geometries. ......................................................................................................... 67 

Table 2.12. Interaction energies and distances of fluoxetine (S) - water complexes in 

different geometries. ......................................................................................................... 69 

Table 2.13. Interaction energies and distances of citalopram (R) - water complexes in 

different geometries. ......................................................................................................... 71 

Table 2.14. Interaction energies and distances of citalopram (S) - water complexes in 

different geometries. ......................................................................................................... 73 

Table 2.15. Interaction energies and distances of sertraline - water complexes in different 

geometries. ........................................................................................................................ 75 

Table 2.16. CGenFF equilibrium geometry of amphetamine compared to MP2 Level. .. 77 

Table 2.17. CGenFF equilibrium geometry of dopamine compared to MP2 level. ......... 78 

Table 2.18. CGenFF equilibrium geometry of serotonin compared to MP2 Level. ......... 79 

Table 2.19. CGenFF equilibrium geometry of methylphenidate compared to MP2 Level.

........................................................................................................................................... 81 

Table 2.20. CGenFF equilibrium geometry of bupropion compared to MP2 Level. ....... 82 

Table 2.21. CGenFF equilibrium geometry of benztropine compared to MP2 Level. ..... 84 

Table 2.22. CGenFF equilibrium geometry of cocaine compared to MP2 Level. ............ 86 

Table 2.23. CGenFF equilibrium geometry of clomipramine compared to MP2 Level. .. 88 

Table 2.24. CGenFF equilibrium geometry of imipramine compared to MP2 level. ....... 90 

Table 2.25. CGenFF equilibrium geometry of desipramine compared to MP2 Level. .... 92 



 xvii 

Table 2.26. CGenFF equilibrium geometry of fluoxetine (R) compared to MP2 Level. . 94 

Table 2.27. CGenFF equilibrium geometry of fluoxetine (S) compared to MP2 Level. .. 96 

Table 2.28. CGenFF equilibrium geometry of citalopram (R) compared to MP2 Level. 98 

Table 2.29. CGenFF equilibrium geometry of citalopram (S) compared to MP2 Level. 100 

Table 2.30. CGenFF equilibrium geometry of sertraline compared to MP2 level. ........ 102 

Table 3.1. Relative binding energies of amino acids leucine, alanine, and glycine with 

LeuT. ............................................................................................................................... 123 

Table 3.2. Relative binding energies of the three TCAs with LeuT estimated using FEP 

method............................................................................................................................. 127 

Table 4.1. Validation of AADS protocol on different LeuT crystal structures. ............. 160 

Table 4.2. Validation of absolute FEP method with the LeuBAT:Clomipramine crystal 

complex. .......................................................................................................................... 181 

Table 4.3. Calculated binding affinity of pose-1 of SSA-426 with hSERT. .................. 182 

Table 4.4. Absolute binding energies of poses 5 and M of DJLDU-3-79 with hSERT. 187 

Table 5.1. Absolute binding energies of poses 1, 2, 4, and 10 with hSERT................... 209 

Table 5.2. Mutation of E493-to-Q. ................................................................................. 210 

Table 6.1. Common classes of known antidepressants ................................................... 220 



 xviii 

LIST OF FIGURES 

Page 

Figure 1.1. Flow chart of free energy methods to compute protein-ligand binding 

energies. .............................................................................................................................. 8 

Figure 1.2. Thermodynamic cycle for calculating relative binding energy. ..................... 10 

Figure 1.3. Thermodynamic cycle for calculating absolute binding energy. .................... 12 

Figure 1.4. Thermodynamics of double decoupling method. ........................................... 13 

Figure 1.5. Schematic representation of pulling methods. ................................................ 14 

Figure 1.6. Schematic representation of endpoint free energy methods. .......................... 18 

Figure 1.7. Comparison of different free energy methods for accuracy and speed. ......... 20 

Figure 2.1. Chemical structures of various MAT ligands for which the CGenFF 

parameters were developed. .............................................................................................. 43 

Figure 2.2. CGenFF parameterization philosophy and target data. .................................. 45 

Figure 2.3. Orientation of water molecules around amphetamine used for charge 

optimization. ..................................................................................................................... 47 

Figure 2.4. Orientation of water molecules around dopamine used for charge 

optimization. ..................................................................................................................... 50 

Figure 2.5. Orientation of water molecules around serotonin used for charge optimization.

........................................................................................................................................... 52 

Figure 2.6. Orientation of water molecules around methylphenidate used for charge 

optimization. ..................................................................................................................... 54 

Figure 2.7. Orientation of water molecules around bupropion used for charge 

optimization. ..................................................................................................................... 56 



 xix 

Figure 2.8. Orientation of water molecules around benztropine used for charge 

optimization. ..................................................................................................................... 58 

Figure 2.9. Orientation of water molecules around cocaine used for charge optimization.

........................................................................................................................................... 60 

Figure 2.10. Orientation of water molecules around clomipramine used for charge 

optimization. ..................................................................................................................... 62 

Figure 2.11. Orientation of water molecules around imipramine used for charge 

optimization. ..................................................................................................................... 64 

Figure 2.12. Orientation of water molecules around desipramine used for charge 

optimization. ..................................................................................................................... 66 

Figure 2.13. Orientation of water molecules around R-fluoxetine used for charge 

optimization. ..................................................................................................................... 68 

Figure 2.14. Orientation of water molecules around S-fluoxetine used for charge 

optimization. ..................................................................................................................... 70 

Figure 2.15. Orientation of water molecules around R-citalopram used for charge 

optimization. ..................................................................................................................... 72 

Figure 2.16. Orientation of water molecules around S-citalopram used for charge 

optimization. ..................................................................................................................... 74 

Figure 2.17. Orientation of water molecules around sertraline used for charge 

optimization. ..................................................................................................................... 76 

Figure 3.1. 3D-model of leucine transporter with S1 (blue) and S2 (green) pockets 

highlighted. ..................................................................................................................... 108 

Figure 3.2. TCAs and amino acids binding in LeuT....................................................... 110 



 xx 

Figure 3.3. Thermodynamic cycle for computing relative binding energies. ................. 115 

Figure 3.4. Chemical structures of leucine (A), alanine (B) and glycine (C). ................ 119 

Figure 3.5. Convergence of the simulations in the amino acid ligand perturbations...... 124 

Figure 3.6. Structures of (A) clomipramine, (B) imipramine, and (C) desipramine. ..... 126 

Figure 3.7. Convergence of free energy simulations in the clo-to-imi, imi-to-desi and clo-

to-desi transformations.................................................................................................... 133 

Figure 4.1. Serotonin transporter embedded in a membrane bilayer. ............................. 141 

Figure 4.2. Computational protocol for elucidating the binding site and binding mode of 

inhibitors. ........................................................................................................................ 146 

Figure 4.3. Double annihilation approach for estimating absolute binding energy. ....... 153 

Figure 4.4. AADS cavity points vs. S1 and S2 sites in the LeuT crystal structures. ...... 159 

Figure 4.5. Closest AADS pose vs. conformation of ligands in LeuT crystal structures.

......................................................................................................................................... 162 

Figure 4.6. Chemical structures of DJLDU-3-79 (A) and SSA-426 (B). ....................... 163 

Figure 4.7. Poses 1 and 3 of SSA-426 binding between the S1 and S2 sites of hSERT. 165 

Figure 4.8. Docking poses of DJLDU-3-76 considered for this study. .......................... 167 

Figure 4.9. Ligand and protein RMSD changes vs. time in MD simulations. ................ 169 

Figure 4.10. Snapshot of pose-1 of SSA-426 from MD simulations. ............................. 170 

Figure 4.11. Average structure of pose-M of DJLDU-3-79 from MD simulations. ....... 172 

Figure 4.12. MD snapshots of pose-M of DJLDU-3-79 and pose-1of SSA-426. .......... 173 

Figure 4.13. Snapshot of pose-5 of DJLDU-3-79 from MD simulations. ...................... 174 

Figure 4.14. Docking vs. MD snapshot of pose-5 of DJLDU-3-79. ............................... 174 

Figure 4.15. Docking pose and MD snapshot of pose-4 of DJLDU-3-79. ..................... 175 



 xxi 

Figure 4.16. Electrostatic potential surfaces of binding sites of docking poses (left 

column) and MD (right column) snapshots of SSA-426 and DJLDU-3-79 in hSERT. . 178 

Figure 4.17. Validation of free energy perturbation method with the 

LeuBAT:Clomipramine complex. .................................................................................. 183 

Figure 4.18. Estimation of absolute binding energy of pose-1 of SSA-426 with hSERT 

using FEP method. Free energy change versus  for annihilation of SSA-426 in (A) water 

(ΔG2) and in (B) hSERT (ΔG1). ...................................................................................... 184 

Figure 4.19. Calculating absolute binding energies of poses M and 5 of DJLDU-3-79 

with hSERT. .................................................................................................................... 186 

Figure 5.1. Chemical structure of R-fluoxetine. ............................................................. 202 

Figure 5.2. Thermodynamic cycle for estimating the impact of mutation in a protein. . 204 

Figure 5.3. Seven AADS poses of R-fluoxetine in the S2 pocket. ................................. 206 

Figure 5.4. Pose-4 (A) of R-fluoxetine in hSERT vs. R-fluoxetine in LeuT (B). .......... 206 

Figure 5.5. Docking pose vs. MD snapshot of Pose-4 of R-fluoxetine. ......................... 207 

Figure 5.6. The four poses considered for MD simulations and FEP calculations. ........ 208 

Figure 5.7. Pose-4 in the S2 site interacting with the gated residue E493. ..................... 211 

Figure 5.8. G vs.  -  ............... 212 

Figure 6.1. Structure-activity relationship (SAR)-based drug discovery leading to 

fluoxetine (ProzacTM), the first SSRI. ............................................................................. 222 

Figure 6.2. Primary (S1) and secondary (S2) substrate binding pockets of the SERT. .. 227 

Figure 6.3. Different methods for antidepressant discovery/design. .............................. 229 

Figure 6.4. Structure- and ligand-based VS methods for discovery of novel ligands. ... 236 

Figure 6.5. Multi-VS scheme toward discovery of antidepressant lead compounds. ..... 240 



 xxii 

LIST OF ABBREVIATIONS 

 

AADS: Automated Active Site Detection, Docking and Scoring Protocol 

ABFE: Absolute Binding Free Energy 

ADHD: Attention Deficit Hyperactivity Disorder 

ALA: Alanine 

CGenFF: CHARMM General Force Field 

CLO: Clomipramine 

DA: Dopamine  

DDM: Double Decoupling Method 

DES: Desipramine 

DRI: Dopamine Reuptake Inhibitor 

FEP: Free Energy Perturbation 

GAFF: General Amber Force Field 

GLY: Glycine hDAT: Plasma Membrane Human Dopamine Transporter Protein 

hNET: Plasma Membrane Human Norepinephrine Transporter Protein 

hSERT: Plasma Membrane Human Serotonin Transporter Protein 

HTS: High-Throughput Screening 

5-HT: 5-Hydroxytryptamine 

5-HTR: 5-Hydroxytryptamine Receptor 

IL: Intracellular Loop 

IMI: Imipramine  

LeuT: Leucine Transporter 



 xxiii 

LIE: Linear Interaction Energy 

LRA: Linear Response Approximation 

MAT: Monoamine Transporter Protein 

MAOI: Monoamine Oxidase Inhibitor 

MD: Molecular Dynamics  

MDMA: Methylenedioxymethamphetamine 

MM-PBSA: Molecular Mechanics-Poisson-Boltzmann Surface Area 

MM-GBSA: Molecular Mechanics-Generalized Born Surface Area 

NE: Norepinephrine  

NRI: Norepinephrine Reuptake Inhibitor 

NSS: Neurotransmitter Sodium Symporter 

OSP: One Step Perturbation 

PDLD: Protein Dipoles Langevin Dipoles 

PMF: Potential of Mean Force 

QM: Quantum Mechanics 

RBFE: Relative Binding Free Energy 

RESP: Restrained Electrostatic Potential 

RE: Replica Exchange 

SAR: Structure Activity Relationship 

SF: Scoring Function 

SRPG: Smooth Reaction Path Generation 

SLC6: Solute Carrier 6 

SNRI: Serotonin-Norepinephrine Reuptake Inhibitor 



 xxiv 

SSRI: Selective Serotonin Reuptake Inhibitor 

TCA: Tricyclic Antidepressant 

TI: Thermodynamic Integration 

TM: Transmembrane 

VS: Virtual Screening 

 



  1 

1. CHAPTER 1 

 

A REVIEW OF MONOAMINE TRANSPORTER-LIGAND 

INTERACTIONS 

 

1.1. Introduction 

Monoamine neurotransmitters serotonin (5-HT), dopamine (DA), and norepinephrine 

(NE) present in the central nervous system (CNS) control several functions such as mood, 

appetite, sleep, sexual desire, memory, aggression and learning [1-6]. Functions of the 

three monoamines are regulated by the respective transporters (MATs): the human 

serotonin transporter (hSERT), the human dopamine transporter (hDAT), and the human 

norepinephrine transporter (hNET), by reuptake of excess monoamines from the synapse 

into the presynaptic nerve terminal, thereby maintaining homeostasis [7-9]. MATs are 

integral membrane proteins belonging to the neurotransmitter sodium symporter (NSS) 

family, and uses an ion gradient to transport the monoamines against the concentration 

gradient [10]. MATs are associated with several mental disorders such as anxiety, 

depression, drug addiction, Parkinson’s disease, and schizophrenia [11-14]. Hence, 

MATs are established as important drug targets for the treatment of these mental 

disorders (targets for >30 clinically approved drugs). MATs are also target for drugs of 

abuse including cocaine, amphetamine, methamphetamine, and 

methylenedioxymethamphetamine (MDMA, popularly known as “ecstasy”). Particularly, 

hSERT is the primary target for depression treatment. hDAT is the target for 

psychostimulants such as cocaine, amphetamine, and methylphenidate [15-18]. Although 
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to a lesser extent, several antidepressants and cocaine also bind to hDAT and hNET. The 

three MATs share a common membrane topology characterized by 12 transmembrane 

(TM) helices and intracellular N- and C-termini [7, 19]. The size of the three MATs is 

fairly similar (hSERT, hDAT, and hNET have 630, 617, and 620 residues, respectively). 

Despite being important drug targets, little definitive information is known about 

the structure, function and pharmacology of MATs until the recent availability of the 

Drosophila dopamine transporter (dDAT) crystal structure [20]. Although earlier 

biochemical and mutagenesis experiments provided valuable insight into the transporter 

topology and secondary structure of the MATs, it was only after the determination of the 

leucine transporter (LeuT) crystal structure in 2005 [21] that real advancement in the 

computational research of MATs has taken place. LeuT is a bacterial protein from 

Aquifex aeolicus, belonging to the NSS family as MATs. LeuT was used as a template to 

generate the homology models of MATs [21-23]. LeuT shares only 20-25% sequence 

identity with the MATs; still, it has proved as a useful template in addressing the 

structural, functional and pharmacological aspects of the MATs [24, 25]. 

 

1.1.1. Monoamine transporter inhibitors and their therapeutic applications 

Efforts to develop drugs targeting the MATs for the treatment of mood disorders have 

increased in the last few decades, with the view that MATs regulate the monoamines in 

the synapse and maintain homeostasis. Drugs acting at MATs are used for treating 

disorders such as depression, anxiety, attention deficit hyperactivity disorder (ADHD), 

and obesity (Table 1.1). The first generation of antidepressants developed targeting 

MATs were tricyclic antidepressants (TCAs) (imipramine, clomipramine, and 



  3 

desipramine) [26]. However, they have off-target actions at G protein-coupled receptors 

and cardiac sodium channels, which cause several adverse effects [27]. Drugs acting on 

specific targets were next developed. These drugs include selective serotonin reuptake 

inhibitors (SSRIs) (fluoxetine, fluvoxamine, citalopram, sertraline, and paroxetine), 

selective norepinephrine reuptake inhibitors (NRIs) (reboxetine and atomoxetine), and 

selective dopamine reuptake inhibitors (bupropion). SSRIs have very minimal or no 

affinity for other targets and improved side effect profiles compared to the TCAs [28]. 

Although NRIs can be used to treat depression, they are primarily prescribed to treat 

ADHD [29]. Later, dual acting inhibitors were developed, which include serotonin and 

norepinephrine reuptake inhibitors (SNRIs) (duloxetine and desvenlafaxine), hNET and 

hDAT inhibitors (nomifensine). SNRIs display better antidepressant efficacy and faster 

onset of action compared to SSRIs [30]. Lately, triple reuptake inhibitors were also 

identified (tesofensine) [31]. Drugs targeting hDAT such as amphetamine and its analogs 

methylphenidate, dextroamphetamine, dextromethamphetamine, and modafinil are used 

to treat ADHD. Inhibitors to treat cocaine addiction (benztropine and analogs) primarily 

target hDAT as it is the primary target for cocaine [32]. Bupropion, which is a 

hNET/hDAT blocker, is used for nicotine treatment and obesity [33]. 
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Table 1.1. MAT inhibitors classified according to their application. 

 
Antidepressants Drugs of Abuse ADHD 

TCA SSRI SNRI NRI DRI NRI/DRI SRI+   

Imipramine Fluoxetine Venlafaxine Reboxetine Bupropion Nomifensine Trazodone Cocaine Amphetamine 

Desipramine Fluvoxamine Duloxetine Atomoxetine    Amphetamine Methylphenidate 

Clomipramine Paroxetine Milnacipran Mirtazapine    MDMA Modafinil 

Amitriptyline Sertraline Desvenlafaxine Viloxazine      

Nortriptyline Citalopram Sibutramine       

Protriptyline Escitalopram        

Butriptyline         

Opripramol         

Dosulepin         

Doxepin         

Amoxapine         

Loferamine         

Compounds approved for depression treatment are only presented in here. SR1+ refers to compounds with hSERT inhibition and 

monoamine receptor agonistic or antagonistic effects as well.  
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Despite the availability of several effective drugs to treat mental disorders, attempts 

are still being made to develop novel treatments targeting MATs, because of the 

shortcomings associated with the current drugs. For example, currently available 

antidepressants have several limitations such as late onset of action and a large fraction of 

non-responding patients, along with several side effects like weight gain, sexual 

dysfunction, and disturbed sleep. Efforts are launched to develop novel drugs targeted at 

MATs with lesser limitations than the current drugs. Several experimental and 

computational techniques are being used to identify and optimize the novel lead 

compounds targeting the MATs. However, experimental methods, which demand 

considerable time, effort, and money, can be complemented using various computational 

tools. The entire drug discovery process takes on average 10-15 years to release the drug 

into the market. Efficient utilization of computational tools hastens the process of drug 

discovery, and also significantly reduces the cost. Computational tools were successfully 

utilized in the drug discovery process of several marketed drugs like zanamivir [34], HIV 

protease inhibitors [35], and in the development of new inhibitors for hepatitis C protease 

[36] and beta-secretase [37]. 

Computing the binding affinity of protein-ligand is a key aspect of rational drug 

design. Since the experimental determination of binding affinity is expensive and time-

consuming, a wide spectrum of computational free energy methods have been developed 

to simplify the task. Free energy calculations through quantitative estimation of the 

interaction between ligands and proteins allow comparing computation to the experiment. 

Select applications of free energy methods include (a) screening of databases to identify a 
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novel lead compound, (b) lead optimization, (c) identify the impact of mutation on the 

binding of a ligand to a protein, (d) compare the differential binding of ligands and drugs 

to the same target, (e) assist in understanding the transport mechanism of ligands through 

the membrane proteins, (f) mechanism of inhibition of proteins by several drugs, (g) 

affinity and selectivity of different ions to proteins, (h) folding and unfolding of proteins, 

and (i) estimation of membrane-water partition coefficient of drugs. 

In rational drug design, free energy calculations are highly used in ranking millions of 

compounds against a target protein to identify the lead compound. However, scoring 

functions (SF) used in these screening stages had only mixed success in terms of 

accuracy because of the approximations involved. Fast yet accurate free energy methods 

that can be applied in the industrial setting are not yet available. Although explicit 

methods like free energy perturbation (FEP) are available, they need significant 

computational resources to achieve appropriate sampling; this makes them infeasible to 

screen the databases. Preparing the system for explicit free energy calculations, like 

preparing the topology files, is very time-consuming and requires a skillful and proficient 

modeler to perform the calculations. Another bottleneck for these free energy methods 

for using in a pharmaceutical setting is the lack of good force fields for drug-like 

compounds. Because of these reasons, explicit free energy methods can only be used in 

the lead optimization and not in the screening stages of drug design. Hybrid methods 

such as MM-PBSA/GBSA and linear interaction energy (LIE) are not only faster than the 

FEP methods, but they also offer better accuracies than the SFs. However, they are not 

fast enough to use in the screening stages of drug discovery. Although significant 

improvements have been seen in the past decade in terms of accuracy and efficiency,  
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free energy methods are not reliable enough to screen large numbers of compounds in a 

short period of time. Especially, accurately calculating binding affinities of large 

biomolecules like membrane proteins is still a challenging task. However, considerable 

progress has been made in sampling aspects, partly due to improved sampling techniques 

and also due to the availability of advanced computers. In addition, the theory behind 

various free energy methods is clearly understood, and errors are better characterized 

than before. 

Identifying a lead compound for a target of unknown structure is a challenging task. 

Homology models of MATs developed using LeuT provide opportunities to apply free 

energy methods to study various aspects of MATs, apart from the lead identification and 

optimization. Performing free energy calculations on homology models of membrane 

proteins is a challenging task. The chances of failure are high, and it is difficult to predict 

the source of error. Since the sequence homology between LeuT and MATs is low, 

homology models should be validated before applying free energy calculations as a 

predictive tool. To achieve good accuracies, a system should be sampled sufficiently and 

have good force field parameters. These parameters are highly desirable for both the 

protein and ligand. Since good force fields for drug-like molecules are not yet available, 

Amber and CHARMM general force fields (GAFF and CGenFF) can be extended to 

these molecules to achieve accuracy. Inclusion of polarizability in the force field is highly 

encouraged. In this review, an overview of free energy methods to compute protein-

ligand interactions, along with their advantages and drawbacks are presented. Various 

free energy studies carried on MATs so far are also reviewed. 
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1.2. Free Energy Methods for Protein-Ligand Interactions 

In this section, I reviewed different free energy methods, their application in drug 

design and their pros and cons. Free energy methods can be broadly classified into 

explicit, implicit, and hybrid methods (Fig. 1.1). 

 

 
 

Figure 1.1. Flow chart of free energy methods to compute protein-

ligand binding energies. 

 

1.2.1. Explicit methods 

Explicit methods, which are capable of quantitatively reproducing the experimental 

binding affinities, explicitly treat the protein, ligand, and solvent using a molecular force 

field. These MD based methods extensively sample the system in all degrees of freedom 

and offer detailed molecular insights [38, 39]. Explicit inclusion of water in these 

calculations certainly makes the system more realistic, as the role played by water 

Free Energy Calculations

Explicit 
methods

Relative free 
energy 

calculations

Absolute free energy 

calculations

Alchemical methods 
(Annihilation and Decoupling 

Approaches)

Non-Alchemical methods 
(Pulling methods)

Implicit 
methods

Hybrid 
methods



  9 

molecules in the binding of ligands to proteins was illustrated in several crystal structures 

[40]. However, explicit methods are computationally demanding and slow, making them 

impractical for computational screening of drugs in rational drug design. Binding 

energies calculated through these methods are true free energies, as they incorporate both 

energetic and entropic contributions from all components of the system [41]. Since they 

simulate experimental conditions (temperature and pressure) in MD, calculated binding 

energies can be compared to experimental values [42].  

Explicit methods can be used to compute both relative (RBFE) and absolute (ABFE) 

binding free energies. RBFE calculations allow us to compute relative binding of two 

different ligands to a protein, and also to compute the impact of point mutation on the 

binding of a ligand. RBFE calculations are alchemical in nature and make use of the FEP 

and thermodynamic integration (TI) formalism [43]. Starting from the 1980s, alchemical 

methods have been used to compute RBEs [44-47].  

FEP methodology utilizes the thermodynamic cycle to compute protein-ligand 

binding affinities (Fig. 1.2). Since free energy is a state function, it only depends on the 

initial and final state and not on the path. To compute the RBFE of ligands A and B with 

a protein P, ligand A is perturbed to ligand B in bound (ΔGC) and unbound states (ΔGD), 

and the RBFE (ΔΔGAB) is calculated using equation 1. 

                                                               -Equation 1 

ΔGA and ΔGB are the absolute binding energies of ligands A and B with a protein P. The 

same methodology can be used to compute the impact of point mutation on ligand 

binding, except that in both vertical legs of the thermodynamic cycle (Fig. 1.2) ligand 

remains the same, but protein varies. FEP method can also be used to compute ABEs. 

DDGAB =DGA -DGB =DGD -DGC
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Care should be taken that the configurational ensembles representing the reference 

and target state sufficiently overlap to get reasonable accuracy [48]. To circumvent this 

problem, a coupling parameter (λ) is introduced, and the transformation between initial 

and final stages is a function of λ. λ varies from 0 to 1, and the entire transformation is 

divided into several windows. Typically, the number of windows should be chosen such 

that the free energy change between each window is similar. 

 

 
 

Figure 1.2. Thermodynamic cycle for calculating relative binding energy.   

ΔGA and ΔGB are the absolute binding free energies of ligands (A and B) 

with the protein (P); ΔGC and ΔGD are the free energy changes involved 

in the transformation of ligand A to B in the bound state and the solvent, 

respectively. 

 

Several strategies have been designed to handle end-point catastrophes in the dual 

topology approach. Introduction of a soft-core potential (A modified potential typically 

used to obtain smoothness in free energy curves) [49] is one among them, and by far the 
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most elegant method. Limitations of RBFE methods include (a) high computational needs 

and (b) prior knowledge of at least one complex is required. In addition, it is applicable 

only to closely related ligands. Although few comparisons were made, generally explicit 

methods offer better accuracies than SFs [50, 51] and MM-PBSA [52, 53] methods. In 

most cases, FEP offers accurate RBEs with a mean error lower than 1 kcal/mol. It is 

much more useful in the lead optimization stages [54] than in the lead identification. 

TI methodology is closely related to FEP, and the difference in the free energy 

between a reference and a target state is an integral over ensemble average of the 

configurations representative of the respective states governed by λ [55]. Unlike FEP, 

convergence in TI is represented by the smoothness of the free energy as a function of λ 

[56]. Both FEP and TI are widely used methods to compute protein-ligand binding 

affinities. 

ABEs can be computed through alchemical and non-alchemical approaches. 

Alchemical approaches include the widely used annihilation and double decoupling 

approaches, whereas the non-alchemical approaches are comprised of pulling methods 

(Fig. 1.1).  

Annihilation approaches in principle are FEP [57] and TI [55] based methods and 

compute binding free energy changes rigorously [43]. These methods make use of the 

thermodynamic cycle to compute ABEs (Fig. 1.3). In the annihilation approaches, to 

compute the ABFE (∆GAbs) of a ligand (L) with a protein (P), two separate MD 

simulations are performed. The first one has P-L complex in the solvent, and the second 

one has L alone in the solvent. In simulation one, L is gradually decoupled from the P in 

the solvent, and the free energy change is ∆G1. In the second MD simulation, L 
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interactions with the solvent are gradually turned off, and the free energy change is ∆G2. 

ABFE (∆GAbs) is calculated as  

                                                                                       - Equation 2 

Double annihilation [58] approach had problems incorporating the standard states, 

and it was later modified in the closely related double decoupling method (DDM) [59] 

and applied successfully to compute ABEs [60-62]. 

 

 
 

Figure 1.3. Thermodynamic cycle for calculating absolute binding energy.  

P, L, and D are protein, ligand, and dummy. ∆GAbs is the absolute binding 

energy of L-P complex; ∆G1 is the free energy change involved in 

decoupling L from P and solvent; ∆G2 is the free energy change involved 

in turning off the interactions of L with the solvent; ∆G0 is the absolute 

binding energy of D-P complex. 

 

The theory behind DDM is shown in Figure 1.4. DDM involves two simulations; the 

first one is the transfer of L from solvent to the gas phase that yields , and the other is 

DGAbs =DG2 -DG1

DG
2

o
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the transfer of L bound to the solvated P into the gas phase, which gives . Standard 

free energy of binding (absolute binding energy) is the difference of and  

[59]. As discussed earlier,  and  can be computed using either FEP or TI. 

 

 
 

Figure 1.4. Thermodynamics of double decoupling method.  

(PL)Sol is P-L complex in the solvent; PSol is P in the solvent; 

LSol is L in the solvent; LGas refers to L in the gas phase.  

 

Recent applications of decoupling approaches include (a) estimating the binding 

energy contribution of interface water molecules in the HIV-1 protease Kynostatin-272 

complex [63], (b) calculation of free energies of water molecules in the hydrophobic 

pocket of -lactoglobulin [64], (c) computing the ABEs of nonpolar aromatic ligands 

with T4 lysozyme L99A mutant [65], (d) estimating the ABEs of FK506-related ligands 

with FKBP12 (accuracies within 2 kcal/mol were obtained) [66], and (e) calculating the 

binding energies of charged compounds benzamidine and diazamidine with trypsin. 

Inclusion of polarization in the force field leads to excellent agreement between the 

calculated and experimental binding energies (within 0.5 kcal/mol) [67]. This is the most 

powerful and rigorous approach for computing binding affinities, although 

computationally expensive. Double decoupling approaches do not require prior 

experimental knowledge to compute ABEs. Another advantage of DDM is that the path 

between two endpoints can be defined automatically. Decoupling approaches are 
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impractical for computing binding affinities of charged ligands with proteins, which 

involve larger binding affinities [68]. 

As mentioned earlier, non-alchemical methods to compute ABEs are the pulling 

methods. Pulling methods are potential of mean force (PMF) based and typically used to 

calculate ABEs. In pulling methods as shown in Figure 1.5, L bound to P is gradually 

pulled away along a reaction coordinate to a distance representative of the unbound state, 

while the interactions with the rest of the system (solvent “S”) are maintained. Free 

energy changes are computed as a function of separation distances and summed to give 

the total free energy change [68, 69]. A major advantage of pulling methods over DDM is 

that they can be used to compute binding affinities of charged ligands with the receptor 

[68]. A major drawback is slow convergence compared to alchemical methods, if the 

protein undergoes large conformational changes during the ligand separation. Pulling 

methods are impracticable if the pockets are deeply buried in the protein, in which case 

DDM is highly effective. 

 

 
 

Figure 1.5. Schematic representation of pulling methods.  

L bound to P is gradually pulled from the pocket into 

solvent (S), and free energy changes along the path 

separating the protein and ligand are computed. 
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Methods based on PMF approach include the smooth reaction path generation method 

(SRPG) [70] and methods using restraining potentials [68, 71-73]. Recent successful 

applications of PMF based methods include: (a) estimating the ABFE of phosphotyrosine 

peptide pYEEI with the Src homology 2 (SH2) domain of human Lck kinase [68], (b) 

computing ABEs of FK506 and 4-hydroxy-2-butanone with FKBP [69], and (c) 

calculation of ABFE of pteroic acid with ricin toxin A-chain [74]. Good agreement 

between the calculated and experimental binding affinities (within 1 kcal/mol) [68, 69, 

72] demonstrates the utility of PMF based methods. 

In general, the chance of errors in RBFE calculations is smaller compared to ABFE 

calculations, but both these methods suffer from similar challenges with regards to 

sampling and accuracies. RBFE calculations may benefit from cancellation of errors if 

both the ligands share a similar binding mode and conformational changes of the protein 

show a similar impact on ligand binding. ABFE calculations are computationally 

expensive, but rigorous compared to RBFE calculations. The major advantages of 

explicit methods over implicit methods are inclusion of protein flexibility and explicit 

water in the simulations. The shortcomings of explicit methods include the computational 

and time expenses. Additionally, binding energies may not always converge due to 

insufficient sampling of the system. Several efforts have been made to improve 

convergence and speed [75]. The accuracy of these methods largely depends on the 

accuracy of the force field parameters. Increase in accuracy of the results by 

incorporating polarizability in the force fields [76] has been reported [67]. 
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1.2.2. Implicit methods 

Implicit methods are typically referred to as scoring functions (SF) and used for ligand 

docking and ranking of poses [77, 78]. SFs are also used to screen large databases to 

identify a novel lead compound. They enable us to identify a possible binding mode of a 

ligand and to approximately estimate its binding affinity with the protein. Implicit 

methods [79, 80], unlike the accurate methods, are fast enough to screen databases in a 

reasonable amount of time. However, they compromise on accuracy by treating the 

protein as a rigid entity and the solvent as a continuum medium; only the ligand is 

sampled explicitly. SFs offer poor correlation between the predicted and experimental 

binding affinities. SFs are either force field-based, knowledge-based or empirical [79-81]. 

Currently, empirical SFs are widely used in docking and scoring activities. Since none of 

the SFs offer accurate binding energies, consensus-scoring methods are gaining 

momentum [82-85]. Apart from the above two approximations, there are other limitations 

for these methods. Ligand entropy [86, 87] and molecular weight bias [88-90] need to be 

accounted for in these methods. Examples of implicit methods are Poisson-Boltzmann 

(PB) [91] and Generalized Born (GB)-based [92] models. 

The major drawbacks of implicit methods are inflexibility of the protein and implicit 

treatment of the solvent. Since flexibility is key for the protein function [93], it can be 

incorporated by including an ensemble of protein conformations in the calculations, [94-

96] by explicitly treating only certain degrees of freedom, [94] or both [97]. Keeping in 

mind the importance of water at the binding interfaces of biomolecules [98], and in the 

binding of ligands to proteins [99], molecular hydration can be included by explicitly 

placing water molecules at selected sites in the complexes [100, 101]. For details about 
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different SFs, please see references [102-104]. 

 

1.2.3. Hybrid methods 

Hybrid methods are a combination of explicit and implicit methods. They combine MD 

with the free energy scoring to calculate the binding free energies. Hybrid methods use 

MD to generate an ensemble of structures and use SFs to calculate the average binding 

energy. Hybrid methods are not as slow as explicit methods and not as approximate as 

implicit methods. Although faster than explicit methods, hybrid methods are not fast 

enough for computational screening of inhibitors. Hybrid methods offer reasonable 

accuracies, with typical r2 values in the range of 0.4-0.9 [105-108]. Several hybrid 

methods are available; notable among them are Molecular Mechanics-Poisson-Boltzmann 

Surface Area (MM-PBSA), Molecular Mechanics-Generalized Born Surface Area (MM-

GBSA), and LIE (Linear Interaction Energy) methods [109]. 

MM-PBSA/GBSA methods [110, 111] involve calculating the changes in MM, 

electrostatic and nonpolar solvation energies, and entropic contributions. Entropic 

contributions are ignored if the ligands are relatively close. However, they are often 

estimated with normal mode analysis [106], quasi-harmonic analysis [112], or the restrain 

and release approach [105]. Only the bound and unbound states of a ligand are 

considered in the calculations. The big drawback of MM-PBSA/GBSA methods is that 

the ligand is considered in the same configuration in both the unbound and bound state, 

which is often not true. Other major concerns are the choice of solute dielectric constant, 

which is crucial for the PBSA method [106], and the overestimation of the entropic 

contributions [105]. Entropic contributions are often ignored with the assumption that 
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they cancel out when calculating the RBFE of two closely related ligands [113]. These 

methods performed reasonably well in several cases (r2 > 0.8, and errors < 2 kcal/mol) 

[110, 111, 114], yet in some cases their performance was inferior to the SFs [52]. Since 

these methods are based on ensemble averages from MD, they are more appropriate for 

lead optimization than lead identification. Both absolute and relative binding energies can 

be estimated through MM-PBSA and GBSA methods.  

 

 
 

Figure 1.6. Schematic representation of endpoint free energy methods.  

On the left is system 1 with L-P in the solvent (S), and on the right is 

system 2 with L itself in the S. 

 

LIE is also an endpoint method, which is used to estimate the binding free energy 

from the MD simulations. It is based on the linear response approximation, according to 

which the protein-ligand binding energy linearly depends on the polar and non-polar 

energy contributions from the resulting MD averages [115]. Binding energy is the 

difference of the interaction energy of a ligand with solvent and solvated protein. Only 

two simulations are required in this method, the ligand itself in water and the protein-

ligand complex in water (Fig. 1.6). Recent developments include incorporation of 
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multiple binding modes of ligands [116], continuum electrostatics [117], quantum 

mechanical (QM) calculations to treat polarization effects, and new parameterization 

approaches [118]. 

Hybrid methods, unlike implicit methods, incorporate protein flexibility by using MD 

generated conformational ensemble in the free energy calculations. However, they are 

faster than explicit methods because they skip the intermediate stages between the bound 

and unbound states, giving them the name ‘endpoint’ free energy methods [109, 113, 

119]. They are approximate because in this method implicit solvent calculations are 

performed on the structures resulting from MD [109]. Multiple snapshots from a MD 

trajectory are included for computing free energies and the average is calculated. Overall, 

they are computationally less demanding and easier to execute than the explicit methods 

and more reliable and accurate than the implicit methods. Contrary to FEP methods, these 

methods can handle large structural changes in the ligands. Binding energies calculated 

through hybrid methods are close to real free energies because of the extensive sampling 

involved and incorporation of entropic contributions. 

The latest advance in free energy methods is to combine various methods to take 

advantage of the positives in the individual methods. For example, PDLD/S-LRA/ 

method is a combination of the Protein Dipoles Langevin Dipoles method (PDLD), the 

Linear Response Approximation (LRA) and LIE. It performed more effectively than the 

individual endpoint methods [105]. The TI method was combined with the replica 

exchange (RE) to overcome the sampling problems, and the new method (RETI) was 

more efficient than the TI method [120-122]. Similarly, the one-step perturbation (OSP) 

was combined with the LIE to improve accuracy [123]. 
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Good force field parameters are always essential for accuracy in the binding energies. 

Recent developments include incorporation of polarizability in the force fields [124] 

(e.g., CHARMM and AMOEBA polarizable force fields), which is critical for accuracy 

[67]. However, polarizable force fields are not yet extensively validated and are 

computationally intensive. The choice of method depends on the nature of the problem. 

The speed and accuracy of different free energy methods are compared in Figure 1.7. For 

complete technical details of different free energy methods, please see the references 

[124-126]. 

 

 
 

Figure 1.7. Comparison of different free 

energy methods for accuracy and speed. 

 

1.3. Free Energy Calculations on MATs 

In this section, different free energy studies carried on MATs are reviewed. However, the 

implicit methods used in the docking and virtual screening studies are not reviewed. 

Huang et al. [127], through free energy calculations, identified the binding mode of 
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dopamine in hDAT. Free energy calculations were performed on the homology model of 

hDAT, which was developed using LeuT as a template [21]. An ensemble of hDAT-DA 

complexes required for the free energy calculations was obtained from MD simulations. 

Using the MM-PBSA method [110], the calculated binding energy of DA-hDAT was 

reported as -6.4 kcal/mol, while the experimental binding affinity was -7.4 kcal/mol 

[128]. A difference of 1 kcal/mol between the calculated and experimental binding 

energies was attributed to the inherent approximations in the MM-PBSA method. RESP 

charges for DA were used in these calculations. 

Huang et al. [129], through MM-PBSA [110] calculations, demonstrated that cocaine 

binds stronger to hDAT in the absence of DA in the substrate binding site. The calculated 

RBFE of cocaine with the hDAT-DA complex and hDAT alone was approximately 4 

kcal/mol, which translates to a difference of 1000-fold between the Kd’s of cocaine-

hDAT-DA and cocaine-hDAT. Binding modes of DA and cocaine in the homology 

model of hDAT [127] were explored through AutoDock 3.0.5 [130]. The complexes were 

initially energy minimized and further refined through MD in the sander module of 

Amber 8 [131]. Atomic charges, determined through RESP fitting, were used for DA and 

cocaine [132-134]. 

Hill et al. [135] quantitatively estimated the impact of mutations on the inhibition of 

hDAT and hNET by RTI-113 through MM-PBSA [110] calculations. The calculated 

RBFE of RTI-113 with the wild-type hNET-NE and hNET/Y151F-NE was 1.8 kcal/mol, 

whereas the experimental RBFE was 1.6 kcal/mol [135]. Similarly, the calculated and 

experimental RBEs of RTI-113 with the wild-type hDAT-DA and hDAT/F155Y-DA 

were 1.5 kcal/mol and 1.8 kcal/mol, respectively [135]. The homology model of hDAT 
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[127, 129] was used to develop the hNET homology model [135]. Binding modes of DA, 

NE and RTI-113 were explored using AutoDock 3.0.5 [130], and the complexes were 

energy minimized using Amber 9 [136]. RESP charges for the DA, NE and RTI-113 

were used in the binding energy calculations. 

Henry et al. [137] calculated the shift in pKa’s of Cys336 and Cys372 upon 

deprotonation in hSERT using the FEP approach [138]. In the presence of Na+ in the site-

1 (also known as the NA1 site), shift in pKa’s of Cys336 and Cys372 were 

approximately -5.0 and -0.9, respectively. Therefore, the net pKa’s of Cys336 and 

Cys372 were ~3.0 and ~7.1, indicating a higher probability of deprotonation of Cys336 

compared to Cys372 in the presence of Na+ in the Na1 site. This was due to the proximity 

of Cys336 to the Na1 site compared to Cys372. The homology model of hSERT was 

developed using LeuT as a template [140]. Binding mode of 5-HT was initially modeled 

identical to the experimentally validated mode of Kaufmann et al. [140] and later refined 

through a series of energy minimizations and equilibrations. FEP calculations were 

performed using NAMD 2.7b1 [139] and analyzed using CHARMM c36b2. 

CHARMM27 [141] force field parameters were used for the protein and lipids; for the 

deprotonated cysteine, parameters developed by Foloppe and Nillson [142] were used. 

Bond lengths and bond angles of 5-HT were obtained by QM calculations at the 

B3LYP/6–31G* level of theory using the RESP fitting approach [143].  

For the first time, our group has optimized the novel hSERT inhibitors using the FEP 

calculations (Not yet published). We developed CGenFF [144] parameters for fifteen 

ligands of MATs for using in the FEP studies and MD simulations. CGenFF is a force 

field for drug-like molecules, which is compatible with the CHARMM additive all-atom 
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force field for the proteins, carbohydrates, lipids and nucleic acids. This allows 

performing “all-CHARMM” simulations to study protein-drug interactions. Prior to its 

application to hSERT, FEP method was first validated by calculating the RBEs of three 

amino acid ligands glycine, alanine, and leucine with LeuT and compared to the 

experimental binding affinities (Table 1.2). The calculated RBEs were in good agreement 

with the experimental RBEs. 

 

Table 1.2. Comparison of the calculated and experimental relative binding 

energies of the three amino acid ligands with LeuT. 

 

Calculation GCalc (kcal/mol) GExpt (kcal/mol) 

LeuTAa: Ala  Gly 3.26 ± 0.05 2.85 ± 0.22[145] 

LeuTAa: Leu  Ala 3.39 ± 0.07 3.17 ± 0.30[145] 

GCalc and GExpt are the calculated and experimental relative binding energies. Gly, 

Ala, and Leu refer to the amino acid ligands glycine, alanine, and leucine. The 

experimental relative binding affinities (GExpt) are from the reference 149. 

 

1.4. Conclusions 

Here, various free energy studies carried on MATs were reviewed. This review also 

covers free energy methods available to compute protein-ligand binding affinities, their 

advantages, pitfalls and applicability in drug design, along with the recent developments. 

Although computationally expensive and slow, explicit methods offer quantitative 

agreement with the experiment, making them more practical in the lead optimization 

stages of drug discovery. On the other end of the spectrum, there are scoring functions 

that are fast and computationally less demanding than explicit methods. However, these 

methods are applicable only in the screening stages of drug discovery because of the 

inherent approximations involved. Hybrid methods, which are a mix of explicit and 

implicit methods, are faster than accurate methods and more accurate than scoring 
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functions. However, they are not fast enough for virtual screening since they use MD 

simulations to sample the endpoints of a free energy simulation. Recent advances include 

incorporation of polarizability in the force fields, and development of combination 

methods. Explicit methods largely benefited from the improved force fields and parallel 

computing architecture. Sampling issues and errors are better understood than before. 

Despite the recent advancements, free energy methods are not yet ready for the routine 

use in drug design. Despite several drawbacks, they can still be used to enhance the drug 

discovery process and to derive valuable information about the structure and function of 

proteins. 

MATs have been targeted for drug discovery for several decades because of their role 

in the regulation of neurotransmitter signaling in the CNS. Since the crystal structures of 

MATs were not available until recently, LeuT was used to understand the structure and 

function of MATs. Homology models of MATs using LeuT were developed, and several 

computational techniques have been used to explore the molecular details underlying 

several functional aspects of MATs. Free energy calculations have been applied to MATs 

for various purposes. However, there was not a single report on the optimization of MAT 

ligands using free energy methods. This may be partly due to the lack of good force field 

parameters for drug-like molecules, which are key for the accurate determination of free 

energies; other reasons include computational costs associated with the explicit methods 

and sampling issues because of the size of the membrane proteins. Keeping in mind the 

importance of force field parameters for achieving accuracy, CGenFF parameters were 

developed for several MAT ligands. RBEs of the three amino acid ligands glycine, 

alanine, and leucine with LeuT computed through FEP were reported. The calculated 
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RBEs were in good agreement with the experimental values. Finally, free energy 

calculations reached a stage where they could be used as a predictive tool rather than 

simply to support the experimental data. 

 

1.5. References 

1. Carlsson, A., Perspectives on the discovery of central monoaminergic 

neurotransmission. Annual Review of Neuroscience, 1987. 10(1): p. 19-40. 

 

2. Clark, L., J. Roiser, R. Cools, D. Rubinsztein, B. Sahakian, and T. Robbins, Stop 

signal response inhibition is not modulated by tryptophan depletion or the 

serotonin transporter polymorphism in healthy volunteers: implications for the 5-

HT theory of impulsivity. Psychopharmacology, 2005. 182(4): p. 570-578. 

 

3. Greengard, P., The neurobiology of slow synaptic transmission. Science, 2001. 

294(5544): p. 1024-1030. 

 

4. Olivier, B., Serotonin and aggression. Annals of the New York Academy of 

Sciences, 2004. 1036(1): p. 382-392. 

 

5. Romero-Ramos, M., J.A. Rodriguez-Gomez, J.L. Venero, J. Cano, and A. 

Machado, Chronic inhibition of the high-affinity dopamine uptake system 

increases oxidative damage to proteins in the aged rat substantia nigra. Free 

Radical Biology and Medicine, 1997. 23(1): p. 1-7. 

 

6. Volkow, N.D., J.S. Fowler, G.J. Wang, J. Logan, D. Schlyer, R. MacGregor, R. 

Hitzemann, and A.P. Wolf, Decreased dopamine transporters with age in healthy 

human subjects. Annals of Neurology, 1994. 36(2): p. 237-239. 

 

7. Amara, S.G. and M.J. Kuhar, Neurotransmitter transporters: recent progress. 

Annual Review of Neuroscience, 1993. 16(1): p. 73-93. 

 

8. Blakely, R.D., S. Ramamoorthy, S. Schroeter, Y. Qian, S. Apparsundaram, A. 

Galli, and L.J. DeFelice, Regulated phosphorylation and trafficking of 

antidepressant-sensitive serotonin transporter proteins. Biol Psychiatry, 1998. 

44(3): p. 169-78. 

 

9. Murphy, D.L. and K.-P. Lesch, Targeting the murine serotonin transporter: 

insights into human neurobiology. Nat Rev Neurosci, 2008. 9(2): p. 85-96. 

 



  26 

10. Chen, N.-H., M.A. Reith, and M. Quick, Synaptic uptake and beyond: the sodium- 

and chloride-dependent neurotransmitter transporter family SLC6. Pflügers 

Archiv European Journal of Physiology, 2004. 447(5): p. 519-531. 

 

11. Gainetdinov, R.R., T.D. Sotnikova, and M.G. Caron, Monoamine transporter 

pharmacology and mutant mice. Trends in Pharmacological Sciences, 2002. 

23(8): p. 367-373. 

 

12. Kugaya, A., M. Fujita, and R. Innis, Applications of SPECT imaging of 

dopaminergic neurotransmission in neuropsychiatric disorders. Annals of 

Nuclear Medicine, 2000. 14(1): p. 1-9. 

 

13. Rabey, J.M., A. Lerner, M. Sigal, E. Graff, and Z. Oberman, [3H] Dopamine 

uptake by platelet storage granules in schizophrenia. Life Sciences, 1992. 50(1): 

p. 65-72. 

 

14. Seeman, P. and H. Niznik, Dopamine receptors and transporters in Parkinson's 

disease and schizophrenia. The FASEB Journal, 1990. 4(10): p. 2737-2744. 

 

15. Reith, M.E.A., B. de Costa, K.C. Rice, and A.E. Jacobson, Evidence for mutually 

exclusive binding of cocaine, BTCP, GBR 12935, and dopamine to the dopamine 

transporter. European Journal of Pharmacology: Molecular Pharmacology, 1992. 

227(4): p. 417-425. 

 

16. Ritz, M., R. Lamb, Goldberg, and M. Kuhar, Cocaine receptors on dopamine 

transporters are related to self-administration of cocaine. Science, 1987. 

237(4819): p. 1219-1223. 

 

17. Sandoval, V., E.L. Riddle, Y.V. Ugarte, G.R. Hanson, and A.E. Fleckenstein, 

Methamphetamine-induced rapid and reversible changes in dopamine transporter 

function: an in vitro model. The Journal of Neuroscience, 2001. 21(4): p. 1413-

1419. 

 

18. Saunders, C., J.V. Ferrer, L. Shi, J. Chen, G. Merrill, M.E. Lamb, L.M.F. Leeb-

Lundberg, L. Carvelli, J.A. Javitch, and A. Galli, Amphetamine-induced loss of 

human dopamine transporter activity: an internalization-dependent and cocaine-

sensitive mechanism. Proceedings of the National Academy of Sciences, 2000. 

97(12): p. 6850-6855. 

 

19. Nelson, N., The family of Na+/Cl− neurotransmitter transporters. Journal of 

Neurochemistry, 1998. 71(5): p. 1785-1803. 

 

20. Penmatsa, A., K.H. Wang, and E. Gouaux, X-ray structure of dopamine 

transporter elucidates antidepressant mechanism. Nature, 2013. 503(7474): p. 85-

90. 

 



  27 

21. Yamashita, A., S.K. Singh, T. Kawate, Y. Jin, and E. Gouaux, Crystal structure of 

a bacterial homologue of Na+/Cl--dependent neurotransmitter transporters. 

Nature, 2005. 437(7056): p. 215-223. 

 

22. Beuming, T., L. Shi, J.A. Javitch, and H. Weinstein, A comprehensive structure-

based alignment of prokaryotic and eukaryotic neurotransmitter/Na+ symporters 

(NSS) aids in the use of the LeuT structure to probe NSS structure and function. 

Molecular Pharmacology, 2006. 70(5): p. 1630-1642. 

 

23. Henry, L.K., J.R. Field, E.M. Adkins, M.L. Parnas, R.A. Vaughan, M.-F. Zou, 

A.H. Newman, and R.D. Blakely, Tyr-95 and Ile-172 in transmembrane segments 

1 and 3 of human serotonin transporters interact to establish high affinity 

recognition of antidepressants. Journal of Biological Chemistry, 2006. 281(4): p. 

2012-2023. 

 

24. Singh, S.K., LeuT: A prokaryotic stepping stone on the way to a eukaryotic 

neurotransmitter transporter structure. Channels, 2008. 2(5): p. 380-389. 

 

25. Jørgensen, A.M., L. Tagmose, A.M.M. Jørgensen, K.P. Bøgesø, and G.H. Peters, 

Molecular dynamics simulations of Na+/Cl−-dependent neurotransmitter 

transporters in a membrane-aqueous system. ChemMedChem, 2007. 2(6): p. 827-

840. 

 

26. Andersen, J., A.S. Kristensen, B. Bang-Andersen, and K. Stromgaard, Recent 

advances in the understanding of the interaction of antidepressant drugs with 

serotonin and norepinephrine transporters. Chemical Communications, 2009(25): 

p. 3677-3692. 

 

27. Gillman, P.K., Tricyclic antidepressant pharmacology and therapeutic drug 

interactions updated. British Journal of Pharmacology, 2007. 151(6): p. 737-748. 

 

28. Waitekus, A.B. and P. Kirkpatrick, Duloxetine hydrochloride. Nat Rev Drug 

Discov, 2004. 3(11): p. 907-908. 

 

29. Wong, D.T., P.G. Threlkeld, K.L. Best, and F.P. Bymaster, A new inhibitor of 

norepinephrine uptake devoid of affinity for receptors in rat brain. Journal of 

Pharmacology and Experimental Therapeutics, 1982. 222(1): p. 61-65. 

 

30. Tran, P.V., F.P. Bymaster, R.K. McNamara, and W.Z. Potter, Dual monoamine 

modulation for improved treatment of major depressive disorder. Journal of 

Clinical Psychopharmacology, 2003. 23(1): p. 78-86. 

 

31. Astrup, A., S. Madsbad, L. Breum, T.J. Jensen, J.P. Kroustrup, and T.M. Larsen, 

Effect of tesofensine on bodyweight loss, body composition, and quality of life in 

obese patients: a randomised, double-blind, placebo-controlled trial. The Lancet, 

2008. 372(9653): p. 1906-1913. 



  28 

 

32. Newman, A.H. and S. Kulkarni, Probes for the dopamine transporter: new leads 

toward a cocaine-abuse therapeutic—A focus on analogues of benztropine and 

rimcazole. Medicinal Research Reviews, 2002. 22(5): p. 429-464. 

 

33. Jorenby, D., Clinical efficacy of bupropion in the management of smoking 

cessation. Drugs, 2002. 62: p. 25-35. 

 

34. von Itzstein, M., W.-Y. Wu, G.B. Kok, M.S. Pegg, J.C. Dyason, B. Jin, T.V. 

Phan, M.L. Smythe, H.F. White, S.W. Oliver, P.M. Colman, J.N. Varghese, D.M. 

Ryan, J.M. Woods, R.C. Bethell, V.J. Hotham, J.M. Cameron, and C.R. Penn, 

Rational design of potent sialidase-based inhibitors of influenza virus replication. 

Nature, 1993. 363(6428): p. 418-423. 

 

35. Jorgensen, W.L., The many roles of computation in drug discovery. Science, 

2004. 303(5665): p. 1813-1818. 

 

36. Liverton, N.J., M.K. Holloway, J.A. McCauley, M.T. Rudd, J.W. Butcher, S.S. 

Carroll, J. DiMuzio, C. Fandozzi, K.F. Gilbert, S.-S. Mao, C.J. McIntyre, K.T. 

Nguyen, J.J. Romano, M. Stahlhut, B.-L. Wan, D.B. Olsen, and J.P. Vacca, 

Molecular modeling based approach to potent P2-P4 macrocyclic inhibitors of 

hepatitis C NS3/4A protease. Journal of the American Chemical Society, 2008. 

130(14): p. 4607-4609. 

 

37. Stauffer, S.R., M.G. Stanton, A.R. Gregro, M.A. Steinbeiser, J.R. Shaffer, P.G. 

Nantermet, J.C. Barrow, K.E. Rittle, D. Collusi, A.S. Espeseth, M.-T. Lai, B.L. 

Pietrak, M.K. Holloway, G.B. McGaughey, S.K. Munshi, J.H. Hochman, A.J. 

Simon, H.G. Selnick, S.L. Graham, and J.P. Vacca, Discovery and SAR of 

isonicotinamide BACE-1 inhibitors that bind beta-secretase in a N-terminal 10s-

loop down conformation. Bioorganic &amp; Medicinal Chemistry Letters, 2007. 

17(6): p. 1788-1792. 

 

38. Mackerell, A.D., Empirical force fields for biological macromolecules: overview 

and issues. Journal of Computational Chemistry, 2004. 25(13): p. 1584-1604. 

 

39. Guvench, O. and A.D. MacKerell, Comparison of protein force fields for 

molecular dynamics simulations molecular modeling of proteins, A. Kukol, 

Editor. 2008, Humana Press. p. 63-88. 

 

40. Zhou, Z., J. Zhen, N.K. Karpowich, C.J. Law, M.E.A. Reith, and D.-N. Wang, 

Antidepressant specificity of serotonin transporter suggested by three LeuT-SSRI 

structures. Nat Struct Mol Biol, 2009. 16(6): p. 652-657. 

 

41. Guvench, O. and A.D. MacKerell Jr, Computational evaluation of protein-small 

molecule binding. Current Opinion in Structural Biology, 2009. 19(1): p. 56-61. 

 



  29 

42. Tuckerman, M.E. and G.J. Martyna, Understanding modern molecular dynamics: 

techniques and applications. The Journal of Physical Chemistry B, 1999. 104(2): 

p. 159-178. 

 

43. Simonson, T., Free energy calculations. Computational Biochemistry and 

Biophysics, ed. M.A. Becker OM, Roux B, Watanabe M 2001: Marcel Dekker, 

Inc. 

 

44. Tembre, B.L. and J.A. Mc Cammon, Ligand-receptor interactions. Computers 

&amp; Chemistry, 1984. 8(4): p. 281-283. 

 

45. Warshel, A., F. Sussman, and G. King, Free energy of charges in solvated 

proteins: microscopic calculations using a reversible charging process. 

Biochemistry, 1986. 25(26): p. 8368-8372. 

 

46. Shirts, M.R., D.L. Mobley, and J.D. Chodera, Chapter 4 Alchemical free energy 

calculations: ready for prime time?, in Annual Reports in Computational 

Chemistry, D.C. Spellmeyer and R. Wheeler, Editors. 2007, Elsevier. p. 41-59. 

 

47. Bash, P., U. Singh, F. Brown, R. Langridge, and P. Kollman, Calculation of the 

relative change in binding free energy of a protein-inhibitor complex. Science, 

1987. 235(4788): p. 574-576. 

 

48. Lu, N., D.A. Kofke, and T.B. Woolf, Improving the efficiency and reliability of 

free energy perturbation calculations using overlap sampling methods. Journal of 

Computational Chemistry, 2004. 25(1): p. 28-40. 

 

49. Beutler, T.C., A.E. Mark, R.C. van Schaik, P.R. Gerber, and W.F. van Gunsteren, 

Avoiding singularities and numerical instabilities in free energy calculations 

based on molecular simulations. Chemical Physics Letters, 1994. 222(6): p. 529-

539. 

 

50. Mobley, D.L., A.P. Graves, J.D. Chodera, A.C. McReynolds, B.K. Shoichet, and 

K.A. Dill, Predicting absolute ligand binding free energies to a simple model site. 

Journal of Molecular Biology, 2007. 371(4): p. 1118-1134. 

 

51. Pearlman, D.A. and P.S. Charifson, Are free energy calculations useful in 

practice? A comparison with rapid scoring functions for the p38 MAP kinase 

protein system. Journal of Medicinal Chemistry, 2001. 44(21): p. 3417-3423. 

 

52. Pearlman, D.A., Evaluating the molecular mechanics poisson-boltzmann surface 

area free energy method using a congeneric series of ligands to p38 MAP kinase. 

Journal of Medicinal Chemistry, 2005. 48(24): p. 7796-7807. 

 



  30 

53. Steinbrecher, T., D.A. Case, and A. Labahn, A multistep approach to structure-

based drug design: studying ligand binding at the human neutrophil elastase. 

Journal of Medicinal Chemistry, 2006. 49(6): p. 1837-1844. 

 

54. Jorgensen, W.L., Efficient drug lead discovery and optimization. Accounts of 

Chemical Research, 2009. 42(6): p. 724-733. 

 

55. Kirkwood, J.G., Statistical mechanics of fluid mixtures. The Journal of Chemical 

Physics, 1935. 3(5): p. 300-313. 

 

56. Chipot, C. and K. Schulten, Understanding structure and function of membrane 

proteins using free energy calculations, in Biophysical Analysis of Membrane 

Proteins. 2008, Wiley-VCH Verlag GmbH & Co. KGaA. p. 187-211. 

 

57. Zwanzig, R.W., High-temperature equation of state by a perturbation method. I. 

Nonpolar gases. The Journal of Chemical Physics, 1954. 22(8): p. 1420-1426. 

 

58. Jorgensen, W.L., J.K. Buckner, S. Boudon, and J. Tirado-Rives, Efficient 

computation of absolute free energies of binding by computer simulations. 

Application to the methane dimer in water. The Journal of Chemical Physics, 

1988. 89(6): p. 3742-3746. 

 

59. Gilson, M.K., J.A. Given, B.L. Bush, and J.A. McCammon, The statistical-

thermodynamic basis for computation of binding affinities: a critical review. 

Biophysical journal, 1997. 72(3): p. 1047-1069. 

 

60. Boresch, S., F. Tettinger, M. Leitgeb, and M. Karplus, Absolute binding free 

energies: a quantitative approach for their calculation. The Journal of Physical 

Chemistry B, 2003. 107(35): p. 9535-9551. 

 

61. Donnini, S. and A.H. Juffer, Calculation of affinities of peptides for proteins. 

Journal of Computational Chemistry, 2004. 25(3): p. 393-411. 

 

62. Roux, B., M. Nina, R. Pomes, and J.C. Smith, Thermodynamic stability of water 

molecules in the bacteriorhodopsin proton channel: a molecular dynamics free 

energy perturbation study. Biophysical journal, 1996. 71(2): p. 670-681. 

 

63. Lu, Y., C.-Y. Yang, and S. Wang, Binding free energy contributions of interfacial 

waters in HIV-1 protease/inhibitor complexes. Journal of the American Chemical 

Society, 2006. 128(36): p. 11830-11839. 

 

64. Qvist, J., M. Davidovic, D. Hamelberg, and B. Halle, A dry ligand-binding cavity 

in a solvated protein. Proceedings of the National Academy of Sciences, 2008. 

105(17): p. 6296-6301. 

 



  31 

65. Deng, Y. and B. Roux, Calculation of standard binding free energies: aromatic 

molecules in the T4 lysozyme L99A mutant. Journal of Chemical Theory and 

Computation, 2006. 2(5): p. 1255-1273. 

 

66. Wang, J., Y. Deng, and B. Roux, Absolute binding free energy calculations using 

molecular dynamics simulations with restraining potentials. Biophysical journal, 

2006. 91(8): p. 2798-2814. 

 

67. Jiao, D., P.A. Golubkov, T.A. Darden, and P. Ren, Calculation of protein-ligand 

binding free energy by using a polarizable potential. Proceedings of the National 

Academy of Sciences, 2008. 105(17): p. 6290-6295. 

 

68. Woo, H.-J. and B. Roux, Calculation of absolute protein-ligand binding free 

energy from computer simulations. Proceedings of the National Academy of 

Sciences of the United States of America, 2005. 102(19): p. 6825-6830. 

 

69. Lee, M.S. and M.A. Olson, Calculation of absolute protein-ligand binding affinity 

using path and endpoint approaches. Biophysical journal, 2006. 90(3): p. 864-

877. 

 

70. Fukunishi, Y., D. Mitomo, and H. Nakamura, Protein-ligand binding free energy 

calculation by the smooth reaction path generation (SRPG) method. Journal of 

Chemical Information and Modeling, 2009. 49(8): p. 1944-1951. 

 

71. Doudou, S., N.A. Burton, and R.H. Henchman, Standard free energy of binding 

from a one-dimensional potential of mean force. Journal of Chemical Theory and 

Computation, 2009. 5(4): p. 909-918. 

 

72. Gan, W. and B. Roux, Binding specificity of SH2 domains: insight from free 

energy simulations. Proteins: Structure, Function, and Bioinformatics, 2009. 

74(4): p. 996-1007. 

 

73. Ge, X. and B. Roux, Calculation of the standard binding free energy of 

sparsomycin to the ribosomal peptidyl-transferase P-site using molecular 

dynamics simulations with restraining potentials. Journal of Molecular 

Recognition, 2010. 23(2): p. 128-141. 

 

74. Lee, M.S. and M.A. Olson, Calculation of absolute ligand binding free energy to 

a ribosome-targeting protein as a function of solvent model. The Journal of 

Physical Chemistry B, 2008. 112(42): p. 13411-13417. 

 

75. Rodinger, T. and R. Pomes, Enhancing the accuracy, the efficiency and the scope 

of free energy simulations. Current Opinion in Structural Biology, 2005. 15(2): p. 

164-170. 

 



  32 

76. Rick, S.W. and S.J. Stuart, Potentials and algorithms for incorporating 

polarizability in computer simulations, in Reviews in Computational Chemistry. 

2003, John Wiley & Sons, Inc. p. 89-146. 

 

77. Alonso, H., A.A. Bliznyuk, and J.E. Gready, Combining docking and molecular 

dynamic simulations in drug design. Medicinal Research Reviews, 2006. 26(5): p. 

531-568. 

 

78. Zhong SJ, M.A., MacKerell AD, Computational identification of inhibitors of 

protein-protein interactions. Curr Top Med Chem, 2007. 7: p. 63-82. 

 

79. Brooijmans, N. and I.D. Kuntz, Molecular recognition and docking algorithms. 

Annual Review of Biophysics and Biomolecular Structure, 2003. 32(1): p. 335-

373. 

 

80. Sousa, S.F., P.A. Fernandes, and M.J. Ramos, Protein–ligand docking: current 

status and future challenges. Proteins: Structure, Function, and Bioinformatics, 

2006. 65(1): p. 15-26. 

 

81. Rajamani R, G.A., Ranking poses in structure-based lead discovery and 

optimization: current trends in scoring function development. Curr Opin Drug 

Discov Dev, 2007. 10: p. 308-315. 

 

82. Clark, R.D., A. Strizhev, J.M. Leonard, J.F. Blake, and J.B. Matthew, Consensus 

scoring for ligand/protein interactions. Journal of Molecular Graphics and 

Modelling, 2002. 20(4): p. 281-295. 

 

83. Feher, M., Consensus scoring for protein-ligand interactions. Drug Discovery 

Today, 2006. 11(9-10): p. 421-428. 

 

84. Oda, A., K. Tsuchida, T. Takakura, N. Yamaotsu, and S. Hirono, Comparison of 

consensus scoring strategies for evaluating computational models of protein-

ligand complexes. Journal of Chemical Information and Modeling, 2005. 46(1): p. 

380-391. 

 

85. Konstantinou-Kirtay, C., J. Mitchell, and J. Lumley, Scoring functions and 

enrichment: a case study on Hsp90. BMC Bioinformatics, 2007. 8(1): p. 27. 

 

86. Chang, C.-e.A., W. Chen, and M.K. Gilson, Ligand configurational entropy and 

protein binding. Proceedings of the National Academy of Sciences, 2007. 104(5): 

p. 1534-1539. 

 

87. Ruvinsky, A.M., Role of binding entropy in the refinement of protein–ligand 

docking predictions: analysis based on the use of 11 scoring functions. Journal of 

Computational Chemistry, 2007. 28(8): p. 1364-1372. 

 



  33 

88. Pan, Y., N. Huang, S. Cho, and A.D. MacKerell, Consideration of molecular 

weight during compound selection in virtual target-based database screening. 

Journal of Chemical Information and Computer Sciences, 2002. 43(1): p. 267-

272. 

 

89. Jacobsson, M. and A. Karlen, Ligand bias of scoring functions in structure-based 

virtual screening. Journal of Chemical Information and Modeling, 2006. 46(3): p. 

1334-1343. 

 

90. Carta, G., A.J.S. Knox, and D.G. Lloyd, Unbiasing scoring functions: a new 

normalization and rescoring strategy. Journal of Chemical Information and 

Modeling, 2007. 47(4): p. 1564-1571. 

 

91. Honig, B. and A. Nicholls, Classical electrostatics in biology and chemistry. 

Science, 1995. 268(5214): p. 1144-1149. 

 

92. Still, C., A. Tempczyk, R. Hawley, and T. Hendrickson, Semianalytical treatment 

of solvation for molecular mechanics and dynamics. Journal of the American 

Chemical Society, 1990. 112(16): p. 6127-6129. 

 

93. Dodson, G.G., D.P. Lane, and C.S. Verma, Molecular simulations of protein 

dynamics: new windows on mechanisms in biology. EMBO Rep, 2008. 9(2): p. 

144-150. 

 

94. Wong, C.F., Flexible ligand-flexible protein docking in protein kinase systems. 

Biochimica et Biophysica Acta (BBA) - Proteins &amp; Proteomics, 2008. 

1784(1): p. 244-251. 

 

95. Totrov, M. and R. Abagyan, Flexible ligand docking to multiple receptor 

conformations: a practical alternative. Current Opinion in Structural Biology, 

2008. 18(2): p. 178-184. 

 

96. Amaro, R., R. Baron, and J. McCammon, An improved relaxed complex scheme 

for receptor flexibility in computer-aided drug design. Journal of Computer-Aided 

Molecular Design, 2008. 22(9): p. 693-705. 

 

97. Nabuurs, S.B., M. Wagener, and J. de Vlieg, A flexible approach to induced fit 

docking. Journal of Medicinal Chemistry, 2007. 50(26): p. 6507-6518. 

 

98. Li, Z. and T. Lazaridis, Water at biomolecular binding interfaces. Physical 

Chemistry Chemical Physics, 2007. 9(5): p. 573-581. 

 

99. Young, T., R. Abel, B. Kim, B.J. Berne, and R.A. Friesner, Motifs for molecular 

recognition exploiting hydrophobic enclosure in protein-ligand binding. 

Proceedings of the National Academy of Sciences, 2007. 104(3): p. 808-813. 

 



  34 

100. Rarey, M., B. Kramer, and T. Lengauer, The particle concept: placing discrete 

water molecules during protein-ligand docking predictions. Proteins: Structure, 

Function, and Bioinformatics, 1999. 34(1): p. 17-28. 

 

101. Mancera, R., Molecular modeling of hydration in drug design. Curr Opin Drug 

Discov Dev, 2007. 10: p. 275-280. 

 

102. de Azevedo WFJ, D.R., Computational methods for calculation of ligand-binding 

affinity. Curr Drug Targets, 2008. 9: p. 1031-9. 

 

103. KontoyianniM, M.P., Suchanek E, SeibelW, Theoretical and practical 

considerations in virtual screening: a beaten field? Curr Med Chem, 2008. 15: p. 

107-16. 

 

104. Moitessier, N., P. Englebienne, D. Lee, J. Lawandi, and C.R. Corbeil, Towards 

the development of universal, fast and highly accurate docking/scoring methods: 

a long way to go. British Journal of Pharmacology, 2008. 153(S1): p. S7-S26. 

 

105. Singh, N. and A. Warshel, Absolute binding free energy calculations: on the 

accuracy of computational scoring of protein–ligand interactions. Proteins: 

Structure, Function, and Bioinformatics, 2010. 78(7): p. 1705-1723. 

 

106. Hou, T., J. Wang, Y. Li, and W. Wang, Assessing the performance of the 

MM/PBSA and MM/GBSA Methods. 1. The accuracy of binding free energy 

calculations based on molecular dynamics simulations. Journal of Chemical 

Information and Modeling, 2010. 51(1): p. 69-82. 

 

107. Guimaraes, C.R.W. and A.M. Mathiowetz, Addressing limitations with the MM-

GB/SA scoring procedure using the watermap method and free energy 

perturbation calculations. Journal of Chemical Information and Modeling, 2010. 

50(4): p. 547-559. 

 

108. de Ruiter, A. and C. Oostenbrink, Free energy calculations of protein-ligand 

interactions. Current Opinion in Chemical Biology, 2011. 15(4): p. 547-552. 

 

109. Foloppe N, H.R., Towards predictive ligand design with free-energy based 

computational methods? Curr Med Chem, 2006. 13: p. 3583-3608. 

 

110. Kollman, P.A., I. Massova, C. Reyes, B. Kuhn, S. Huo, L. Chong, M. Lee, T. Lee, 

Y. Duan, W. Wang, O. Donini, P. Cieplak, J. Srinivasan, D.A. Case, and T.E. 

Cheatham, Calculating structures and free energies of complex molecules: 

combining molecular mechanics and continuum models. Accounts of Chemical 

Research, 2000. 33(12): p. 889-897. 

 

111. Wang, J., P. Morin, W. Wang, and P.A. Kollman, Use of MM-PBSA in 

reproducing the binding free energies to HIV-1 RT of TIBO derivatives and 



  35 

predicting the binding mode to HIV-1 RT of efavirenz by docking and MM-PBSA. 

Journal of the American Chemical Society, 2001. 123(22): p. 5221-5230. 

 

112. Singh, N. and A. Warshel, A comprehensive examination of the contributions to 

the binding entropy of protein–ligand complexes. Proteins: Structure, Function, 

and Bioinformatics, 2010. 78(7): p. 1724-1735. 

 

113. Gilson, M.K. and H.-X. Zhou, Calculation of protein-ligand binding affinities. 

Annual Review of Biophysics and Biomolecular Structure, 2007. 36(1): p. 21-42. 

 

114. Suenaga, A., N. Okimoto, Y. Hirano, and K. Fukui, An efficient computational 

method for calculating ligand binding affinities. PLoS ONE, 2012. 7(8): p. 

e42846. 

 

115. Aqvist, J., C. Medina, and J.-E. Samuelsson, A new method for predicting binding 

affinity in computer-aided drug design. Protein Engineering, 1994. 7(3): p. 385-

391. 

 

116. Stjernschantz, E. and C. Oostenbrink, Improved ligand-protein binding affinity 

predictions using multiple binding modes. Biophysical journal, 2010. 98(11): p. 

2682-2691. 

 

117. Huang, D. and A. Caflisch, Efficient evaluation of binding free energy using 

continuum electrostatics solvation. Journal of Medicinal Chemistry, 2004. 47(23): 

p. 5791-5797. 

 

118. Valiente, P.A., A. Gil L, P.R. Batista, E.R. Caffarena, T. Pons, and P.G. Pascutti, 

New parameterization approaches of the LIE method to improve free energy 

calculations of PlmII-inhibitors complexes. Journal of Computational Chemistry, 

2010. 31(15): p. 2723-2734. 

 

119. Huang N, J.M., Physics-based methods for studying protein-ligand interactions. 

Curr Opin Drug Discov Dev, 2007. 10: p. 325-331. 

 

120. Jiang, W., M. Hodoscek, and B. Roux, Computation of absolute hydration and 

binding free energy with free energy perturbation distributed replica-exchange 

molecular dynamics. Journal of Chemical Theory and Computation, 2009. 5(10): 

p. 2583-2588. 

 

121. Steiner, D., C. Oostenbrink, F. Diederich, M. Zürcher, and W.F. van Gunsteren, 

Calculation of binding free energies of inhibitors to plasmepsin II. Journal of 

Computational Chemistry, 2011. 32(9): p. 1801-1812. 

 

122. Woods, C.J., J.W. Essex, and M.A. King, The development of replica-exchange-

based free-energy methods. The Journal of Physical Chemistry B, 2003. 107(49): 

p. 13703-13710. 



  36 

 

123. Oostenbrink, C., Efficient free energy calculations on small molecule host-guest 

systems—a combined linear interaction energy/one-step perturbation approach. 

Journal of Computational Chemistry, 2009. 30(2): p. 212-221. 

 

124. Michel, J. and J. Essex, Prediction of protein–ligand binding affinity by free 

energy simulations: assumptions, pitfalls and expectations. Journal of Computer-

Aided Molecular Design, 2010. 24(8): p. 639-658. 

 

125. Truhlar, D., Chipot, C., Pohorille, A., Eds. Free energy calculations: theory and 

applications in chemistry and biology. Theoretical Chemistry Accounts: Theory, 

Computation, and Modeling (Theoretica Chimica Acta), 2008. 121(1): p. 105-

106. 

 

126. Christ, C.D., A.E. Mark, and W.F. van Gunsteren, Basic ingredients of free 

energy calculations: a review. Journal of Computational Chemistry, 2010. 31(8): 

p. 1569-1582. 

 

127. Huang, X. and C.-G. Zhan, How dopamine transporter interacts with dopamine: 

insights from molecular modeling and simulation. Biophysical journal, 2007. 

93(10): p. 3627-3639. 

 

128. Dar, D.E., T.G. Metzger, D.J. Vandenbergh, and G.R. Uhl, Dopamine uptake and 

cocaine binding mechanisms: the involvement of charged amino acids from the 

transmembrane domains of the human dopamine transporter. European Journal of 

Pharmacology, 2006. 538(1-3): p. 43-47. 

 

129. Huang, X., H.H. Gu, and C.-G. Zhan, Mechanism for cocaine blocking the 

transport of dopamine: insights from molecular modeling and dynamics 

simulations. The Journal of Physical Chemistry B, 2009. 113(45): p. 15057-

15066. 

 

130. Morris, G.M., D.S. Goodsell, R.S. Halliday, R. Huey, W.E. Hart, R.K. Belew, and 

A.J. Olson, Automated docking using a Lamarckian genetic algorithm and an 

empirical binding free energy function. Journal of Computational Chemistry, 

1998. 19(14): p. 1639-1662. 

 

131. Case, D.A.D., T. A.; Cheatham, T. E., III; Simmerling, C. L.;, et al, AMBER 8. 

2004. 

 

132. Gao, D. and C.-G. Zhan, Modeling effects of oxyanion hole on the ester hydrolysis 

catalyzed by human cholinesterases. The Journal of Physical Chemistry B, 2005. 

109(48): p. 23070-23076. 

 

133. Pan, Y., D. Gao, W. Yang, H. Cho, G. Yang, H.-H. Tai, and C.-G. Zhan, 

Computational redesign of human butyrylcholinesterase for anticocaine 



  37 

medication. Proceedings of the National Academy of Sciences of the United 

States of America, 2005. 102(46): p. 16656-16661. 

 

134. Zhan, C.-G. and D. Gao, Catalytic mechanism and energy barriers for 

butyrylcholinesterase-catalyzed hydrolysis of cocaine. Biophysical journal, 2005. 

89(6): p. 3863-3872. 

 

135. Hill, E.R., X. Huang, C.-G. Zhan, F. Ivy Carroll, and H.H. Gu, Interaction of 

tyrosine 151 in norepinephrine transporter with the 2β group of cocaine analog 

RTI-113. Neuropharmacology, 2011. 61(1-2): p. 112-120. 

 

136. D.A. Case, T.A.D., T.E. Cheatham, III, C.L. Simmerling, J. Wang, R.E. Duke, R., 

et al, AMBER 9. 2006. 

 

137. Henry, L.K., H. Iwamoto, J.R. Field, K. Kaufmann, E.S. Dawson, M.T. Jacobs, C. 

Adams, B. Felts, I. Zdravkovic, V. Armstrong, S. Combs, E. Solis, G. Rudnick, 

S.Y. Noskov, L.J. DeFelice, J. Meiler, and R.D. Blakely, A conserved asparagine 

residue in transmembrane segment 1 (TM1) of serotonin transporter dictates 

chloride-coupled neurotransmitter transport. Journal of Biological Chemistry, 

2011. 286(35): p. 30823-30836. 

 

138. Simonson, T., J. Carlsson, and D.A. Case, Proton binding to proteins: pKa 

calculations with explicit and implicit solvent models. Journal of the American 

Chemical Society, 2004. 126(13): p. 4167-4180. 

 

139. Phillips, J.C., R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. 

Chipot, R.D. Skeel, L. Kalé, and K. Schulten, Scalable molecular dynamics with 

NAMD. Journal of Computational Chemistry, 2005. 26(16): p. 1781-1802. 

 

140. Kaufmann, K.W., E.S. Dawson, L.K. Henry, J.R. Field, R.D. Blakely, and J. 

Meiler, Structural determinants of species-selective substrate recognition in 

human and Drosophila serotonin transporters revealed through computational 

docking studies. Proteins: Structure, Function, and Bioinformatics, 2009. 74(3): p. 

630-642. 

 

141. Brooks, B.R., C.L. Brooks, A.D. Mackerell, L. Nilsson, R.J. Petrella, B. Roux, Y. 

Won, G. Archontis, C. Bartels, S. Boresch, A. Caflisch, L. Caves, Q. Cui, A.R. 

Dinner, M. Feig, S. Fischer, J. Gao, M. Hodoscek, W. Im, K. Kuczera, T. 

Lazaridis, J. Ma, V. Ovchinnikov, E. Paci, R.W. Pastor, C.B. Post, J.Z. Pu, M. 

Schaefer, B. Tidor, R.M. Venable, H.L. Woodcock, X. Wu, W. Yang, D.M. York, 

and M. Karplus, CHARMM: the biomolecular simulation program. Journal of 

Computational Chemistry, 2009. 30(10): p. 1545-1614. 

 

142. Foloppe, N. and L. Nilsson, Stabilization of the catalytic thiolate in a mammalian 

glutaredoxin: structure, dynamics and electrostatics of reduced pig glutaredoxin 

and its mutants. Journal of Molecular Biology, 2007. 372(3): p. 798-816. 



  38 

 

143. Anisimov, V.M., G. Lamoureux, I.V. Vorobyov, N. Huang, B. Roux, and A.D. 

MacKerell, Determination of electrostatic parameters for a polarizable force field 

based on the classical drude oscillator. Journal of Chemical Theory and 

Computation, 2004. 1(1): p. 153-168. 

 

144. Vanommeslaeghe, K., E. Hatcher, C. Acharya, S. Kundu, S. Zhong, J. Shim, E. 

Darian, O. Guvench, P. Lopes, I. Vorobyov, and A.D. Mackerell, CHARMM 

general force field: a force field for drug-like molecules compatible with the 

CHARMM all-atom additive biological force fields. Journal of Computational 

Chemistry, 2010. 31(4): p. 671-690. 

 

145. Singh, S.K., C.L. Piscitelli, A. Yamashita, and E. Gouaux, A competitive inhibitor 

traps LeuT in an open-to-out conformation. Science, 2008. 322(5908): p. 1655-

1661. 

 

 

 

 



  39 

2. CHAPTER 2 

 

DEVELOPMENT OF CHARMM GENERAL FORCE FIELD 

PARAMETERS FOR LIGANDS/DRUGS OF MONOAMINE 

TRANSPORTERS 

 

2.1. Introduction 

Monoamine transporters (MATs) are membrane proteins and belong to the NSS family. 

MATs (hSERT, hDAT and hNET) reuptake respective neurotransmitters from the 

synapse to the presynaptic neuron thereby maintaining homeostasis in the body. MATs 

were implicated in several mental disorders including depression, schizophrenia and 

Parkinson’s disease; several psychostimulants exert their function by acting at MATs [1-

7]. However, the exact mechanism of action of ligands/drugs at MATs were not clearly 

understood due to the non-availability of crystal structures of MATs, not at least for 

hSERT and hNET, which were primarily implicated in the depression disorder. 

Therefore, over the years several computational techniques including homology 

modeling, docking, MD simulations and free energy calculations have been utilized to 

study various aspects of MATs [8-10]. Computational methods were also pursued for 

drug discovery [1, 11-14]. However, traditionally computational results have been 

validated through experiments because of the limitations of various computational 

methods or calculations. For example, free energy calculations are suffering from the 

non-availability of good force field parameters for the drug-like ligands. 
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A force field is defined as a functional form and parameter sets that relate chemical 

structure and conformation to the potential energy. Well-characterized force field 

parameters are available to treat proteins (e.g., CHARMM, AMBER and MMFF). 

Especially, accurate prediction of protein-ligand binding energies requires well-

characterized ligand force field parameters and is a limitation for performing the binding 

free energy calculations on a regular basis [8, 15].  

The recent availability of general force fields (e.g., CGenFF [16] and GAFF [17]) is a 

saving grace, and these can be extended to drug-like molecules. CGenFF parameters for 

15 MAT ligands including dopamine, serotonin, amphetamine, bupropion, 

methylphenidate, cocaine, benztropine, clomipramine, imipramine, desipramine, R- and 

S- fluoxetine, R- and S- citalopram and sertraline (structures are shown in Fig. 2.1) were 

developed. To our knowledge, this is the first report of extension of the CGenFF to MAT 

ligands. CGenFF is an organic force field parameterized for drug-like molecules and 

compatible with the CHARMM force field for biomolecules such as proteins [18] and 

nucleic acids [19]. This offers the advantage of performing all CHARMM simulations 

[20, 21] to study protein-ligand interactions. CGenFF is an all-atom force field and 

explicitly treats all atoms of the system. CGenFF parameterization philosophy was shown 

in Fig. 2.2. The force field parameters were optimized by comparing against the quantum 

mechanical (QM) data. CGenFF results were in good agreement with the target data. 

Development of CGenFF parameters enables the accurate estimation of MAT-ligand 

binding energies, which helps to resolve the ambiguity of drug binding sites and binding 

modes in MATs, and also to develop better therapeutics targeted at MATs. 
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Figure 2.1. Chemical structures of various MAT ligands for which the CGenFF parameters were developed. 

(A) dopamine, (B) serotonin, (C) amphetamine, (D) methylphenidate, (E) bupropion, (F) clomipramine, (G) 

imipramine, (H) desipramine, (I) sertraline, (J) R-fluoxetine, (K) S-fluoxetine, (L) R-citalopram, (M) S-citalopram, 

(N) benztropine, and (O) cocaine. 
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2.2. Methods 

CGenFF parameterization philosophy 

As described earlier, CGenFF is the extension of CHARMM force field for organic 

molecules. The potential energy function of CGenFF is shown in equation 1. 
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  - Equation 1 

E R
®æ

è
ç

ö

ø
÷  is the potential energy of a system as a function of Cartesian coordinates and is a 

sum of intermolecular and intramolecular energy terms. The intermolecular component is 

comprised of electrostatic and van der Waals terms; bonds, angles, Urey-Bradley, 

dihedrals and impropers constitute the intramolecular part of the potential energy. qi and 

qj are the partial atomic charges of atoms i and j, respectively, and rij is the distance 

separating the atoms i and j. Rmin,ij is the distance at which Lennard-Jones (LJ) potential 

reaches minimum and εij is the well depth. lo, o, So and ωo are the equilibrium bonds, 

angles, Urey-Bradley and impropers, respectively; , n and δ are the dihedral angle, 

multiplicity and phase; Kl, K, Ks, K and Kω are the force constants of respective 

intramolecular terms. 

The CGenFF parameterization procedure explained elsewhere is followed [16] 

and is shown in Figure 2.2. Briefly, in the first-step initial parameters were assigned to 

the novel ligands. The available parameters were taken directly from the CGenFF 
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parameter file, and the missing parameters were assigned based on analogy. Bond lengths 

were chosen such that at least one atom type was similar, whereas for the bond angles a 

middle atom type was similar and for the dihedrals two middle atom types were similar. 

Lately, the development of automated procedures for assigning the initial set of 

parameters such as partial charges, atom types and bonded parameters [22, 23] simplifies 

the parameterization procedure. 

 
 

Figure 2.2. CGenFF parameterization philosophy and target data. 

 

In the next step, partial atomic charges were optimized with emphasis on water 

interaction energies. Prior to the calculation of water interaction energies, equilibrium 

geometries of the ligands were generated at MP2/6-31G(d) level of theory [24, 25]. For 

Parametrization

 Procedure Target Data

Charge

optimization

HF/6-31G* water interaction

energies and distances

Optimized

parameters

Initial parameters

based on analogy

MP2/6-31G(d) equilibrium 

geometry/crystal structures

MP2/6-31G(d) vibrational 

spectrum

MP2/6-31G(d) potential 

energy scans

Liquid densities and heats 

of vaporization

Lennard-Jones

 parameters

Equilibrium bond and 

angle optimization

Optimization of bond, angle,

 dihedral and improper force 

constants

Dihedral and improper 

force constant optimization
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the purpose of charge optimization, TIP3P waters [26] were placed around the MP2/6-

31G(d) optimized geometry of the ligands in various orientations and interaction energies 

of the individual hydrates were calculated at HF/6-31G* level of theory [27, 28]. 

Similarly, interaction energies of the monohydrates were calculated using the CGenFF 

charges and compared against the HF/6-31G* interaction energies. CGenFF charges on 

the individual atoms were adjusted and energies recalculated until they correlated well 

with the HF/6-31G* interaction energies. QM interaction energies were not scaled since 

all our compounds were protonated and have a net charge. Further, the equilibrium 

bonds, angles, dihedrals and impropers were optimized using the equilibrium structure 

generated at the MP2/6-31G(d) level of theory. Next, is the optimization of bond and 

angle force constants (target data is MP2/6-31G(d) vibration spectra), followed by the 

dihedral and improper force constants (target data is MP2/6-31G(d) potential energy 

scans); however, we did not pursue this step. The last step in the parameterization is the 

optimization of LJ parameters, however, in the CGenFF parameterization philosophy this 

step is not typically needed and we did not optimize LJ parameters.. The entire 

parameterization was performed in an iterative manner until the required quality was 

attained. All QM calculations were carried with Gaussian 09 [29] and empirical 

calculations with the CHARMM program [30]. 

 

2.3. Results and Discussion 

All the ligands from Figure 2.1 were parameterized via the CGenFF procedure, and the 

results are shown below. 
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2.3.1. Charge optimization 

a) Amphetamine 

As described earlier in the methods section, charges were optimized using the water 

interaction energies.  

 

 
 

Figure 2.3. Orientation of water molecules around 

amphetamine used for charge optimization. 

 

Fourteen monohydrates of amphetamine in different configurations were generated using 

the MP2/6-31G(d) optimized geometry, and HF/6-31G* water interaction energies of 

these individual hydrates were compared against the CGenFF interaction energies. The 

CGenFF charges on the individual atoms were slightly adjusted, and the CGenFF 

interaction energies were recalculated to match the HF/6-31G* interaction energies. 
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According to the CGenFF parameterization philosophy, ideally the CGenFF and HF/6-

31G* interaction energy differences should be within 0.2 kcal/mol, and the CGenFF 

interaction distances should be 0.2Å less than the QM distances since the interaction 

distances in bulk are typically shorter than in vacuum [16]. 

 

Table 2.1. Comparison of CGenFF and HF/6-31G* water interaction energies and distances 

of amphetamine. 

 

Interaction 

geometry 
E 

(HF) 

E 

(CGenFF) 

E 

(HF-CGenFF) 

r 

(HF) 

r 

(CGenFF) 
r 

(HF-CGenFF) 

H24…OHH -5.45 -5.29 0.15 2.55 2.65 0.1 

H22…OHH -4.28 -3.93 0.34 2.41 2.60 0.19 

H20…OHH -3.96 -3.54 0.41 2.43 2.62 0.19 

ZH18…OHH -3.97 -3.63 0.34 2.45 2.62 0.17 

H16…OHH -4.27 -4.32 -0.05 2.61 2.68 0.07 

H8…..OHH -7.18 -6.91 0.26 2.42 2.58 0.16 

H9..…OHH -7.01 -6.85 0.15 2.45 2.58 0.16 

H6…..OHH -7.93 -7.91 0.02 2.31 2.54 0.23 

H11…OHH -4.97 -5.17 -0.20 2.61 2.60 -0.01 

H12…OHH -6.80 -6.51 0.28 2.43 2.56 0.13 

H13…OHH -6.99 -7.00 -0.01 2.43 2.54 0.11 

H2…..OHH -16.87 -17.06 -0.19 1.84 1.77 -0.07 

H3…..OHH -17.19 -17.14 0.05 1.83 1.76 -0.07 

H4…..OHH -17.08 -17.16 -0.08 1.84 1.76 -0.08 

AD 0.105  

RMSD 0.197  

AAE 0.18  

All energies are in kcal/mol and distances in Å. E is the water interaction energy, E is the 

difference of HF/6-31G* and CGenFF water interaction energies, r is the interaction distance, and r 

is the difference of HF and CGenFF interaction distances. 

 

As shown in Table 2.1 and Figure 2.3, the CGenFF interaction energies were in good 

agreement with the HF/6-31G* data. The interaction energy differences of nine hydrates 

were in the ideal range, and the differences of the remaining six hydrates were less than 

0.4 kcal/mol. The interaction distances of three ammonium hydrogens (H2, H3 and H4) 

with water were ideally lower than HF/6-31G*, which might be because they are regular 



  49 

hydrogen bonds; whereas the interaction distances of the remaining hydrates were greater 

than or equal to HF/6-31G* (but the deviation was lesser than 0.2Å) due to the weaker 

hydrogen bonding nature of the interactions. 

 

b) Dopamine 

Table 2.2. Interaction energies and distances of dopamine - water complexes in different 

geometries. 

 

Interaction 

geometry 
E 

(HF) 

E 

(CGenFF) 

E  

(HF-CGenFF) 

r 

(HF) 

r 

(CGenFF) 
r 

(HF-CGenFF) 

H7…OHH -6.67 -6.49 0.18 2.45 2.60 0.15 

H8…OHH -4.65 -4.46 0.19 2.33 2.56 0.23 

H5…OHH -7.55 -7.35 0.20 2.32 2.52 0.20 

H10…OHH -7.03 -6.38 0.65 2.41 2.59 0.18 

H11…OHH -6.68 -5.49 1.19 2.33 2.61 0.28 

H13…OHH -8.72 -7.96 0.77 2.27 2.55 0.28 

H14…OHH -8.70 -7.59 1.10 2.23 2.53 0.30 

H15…OHH -2.78 -1.97 0.80 2.54 2.50 -0.04 

H16…OHH -17.06 -16.87 0.18 1.82 1.77 -0.05 

H17…OHH -16.94 -17.01 -0.07 1.84 1.77 -0.07 

O4…HOH -3.05 -3.23 -0.18 2.35 2.22 -0.13 

H4…OHH -12.06 -12.16 -0.10 1.87 1.81 -0.05 

O1…HOH 0.30 0.09 0.21 2.21 2.03 -0.18 

H1…OHH -2.81 -2.98 -0.16 3.3 3.44 0.14 

AD 0.32      

RMSD 0.47      

AAE 0.43      

 

Fourteen monohydrates of dopamine were generated (Fig. 2.4) in various configurations 

and the water interaction energies and distances were calculated to optimize the charges. 

The interaction energies of the real hydrates H16…OHH, H17…OHH, O4…HOH, 

H4…OHH, O1…HOH, and H1…OHH were in the ideal range (i.e., deviation within 0.2 

kcal/mol), except for H15…OHH, which was 0.8 kcal/mol (Table 2.2). The interaction 

distances of the real hydrogen bonds were lower than the QM distances, except for 

H1…OHH. The interaction energy differences of aliphatic hydrogens (H10, H11, H13, 
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and H14) were not in the ideal range as expected; however, the deviations were less than 

0.2 kcal/mol for the three aromatic hydrogens. The interaction distances of the three 

aromatic and aliphatic hydrogens with water were greater than QM distances, probably 

due to the feeble hydrogen bond nature of the interactions. 

 

 
 

Figure 2.4. Orientation of water molecules around 

dopamine used for charge optimization. 

 

c) Serotonin 

Fifteen monohydrates of serotonin were generated in multiple configurations (Fig. 2.5). 

The interaction energy differences of the real hydrogen bonds (N9…HOH, H9…OHH, 

01…HOH, H1…OHH, H17…OHH, and H18…OHH) were below 0.35 kcal/mol, except 

for the H19…OHH because of the bad atom position (Table 2.3). The interaction energy 

differences of the remaining hydrates were below 0.3 kcal/mol, except for one hydrate 

(H11…OHH), which was -0.62 kcal/mol. The interaction distances of all the real 
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hydrates were lower than the QM distances except for the hydrate H19…OHH. The 

interaction distances of remaining hydrates (except H8…OHH) were greater than QM 

distances. 

 

Table 2.3. Interaction energies and distances of serotonin - water complexes in different 

geometries. 

 

Interaction 

geometry 
E 

(HF) 

E 

(CGenFF) 

E  

(HF-CGenFF) 

r 

(HF) 

r 

(CGenFF) 
r 

(HF-CGenFF) 

H14…OHH -7.88 -7.62 0.25 2.27 2.53 0.26 

H15…OHH -8.15 -7.99 0.15 2.25 2.51 0.26 

H11…OHH -6.36 -6.98 -0.62 2.46 2.54 0.08 

H12…OHH -6.32 -6.01 0.29 2.35 2.57 0.22 

H8…OHH -6.77 -6.91 -0.14 2.26 2.22 -0.04 

H5…OHH -5.59 -5.64 -0.05 2.33 2.52 0.19 

H6…OHH -5.96 -5.82 0.13 2.31 2.51 0.2 

H2…OHH -6.20 -6.01 0.18 2.58 2.64 0.06 

N9…HOH -3.34 -3.53 -0.19 3.12 2.94 -0.18 

H9…OHH -10.46 -10.53 -0.07 1.95 1.84 -0.11 

01…HOH -3.93 -3.83 0.09 2.07 1.95 -0.12 

H1…OHH -10.80 -10.97 -0.17 1.92 1.83 -0.09 

H17…OHH -16.20 -15.92 0.27 1.84 1.77 -0.07 

H18…OHH -16.18 -16.53 -0.35 1.86 1.78 -0.08 

H19…OHH -11.05 -2.96 8.09 2.49 2.56 0.54 

AD -0.01   

RMSD 0.25   

AAE 0.21   
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Figure 2.5. Orientation of water molecules around 

serotonin used for charge optimization. 

 

d) Methylphenidate 

Twenty-two monohydrates of methylphenidate were generated to optimize the CGenFF 

charges (Fig. 2.6). Although the interaction energy differences of half of the hydrates 

were in the ideal range, differences of the remaining half deviated significantly (Table 

2.4). The interaction energy differences indicate that the charges require better fitting to 

minimize the energy differences. The interaction distances of real hydrates were lower 

than the QM distances as expected, except for the hydrate H14…OHH; whereas the 

interaction distances of the rest of the hydrates (aliphatic and aromatic) were greater than 

QM distances. 

 

 



  53 

Table 2.4. Interaction energies and distances of methylphenidate - water complexes in 

different geometries. 

 

Interaction 

geometry 
E 

(HF) 

E 

(CGenFF) 

E  

(HF-CGenFF) 

r 

(HF) 

r 

(CGenFF) 
r 

(HF-CGenFF) 

H7…OHH -7.75 -6.48 1.27 2.39 2.62 0.24 

H4…OHH -4.18 -3.62 0.56 2.73 2.83 0.10 

H3…OHH -3.75 -2.39 1.36 2.46 2.71 0.25 

H2…OHH -3.77 -2.17 1.60 2.44 2.7 0.26 

H1…OHH -3.67 -2.18 1.49 2.46 2.71 0.25 

H6…OHH -2.5 -1.84 0.66 2.89 4.49 1.60 

H11…OHH -7.45 -8.69 -1.24 2.22 2.50 0.28 

H16…OHH -8.08 -9.44 -1.36 2.27 2.49 0.22 

H17…OHH -7.85 -8.67 -0.82 2.26 2.50 0.24 

H19…OHH -5.90 -6.63 -0.73 2.47 2.56 0.09 

H20…OHH -5.90 -6.51 -0.61 2.37 2.55 0.18 

H22…OHH -5.12 -5.49 -0.37 2.42 2.58 0.16 

H23…OHH -5.41 -6.80 -1.39 2.48 2.56 0.08 

H25...OHH -5.14 -5.78 -0.64 2.48 2.57 0.09 

H26...OHH -6.42 -7.06 -0.64 2.69 2.6 -0.09 

H13…OHH -15.15 -17.42 -2.27 1.90 1.78 -0.12 

H14…OHH -11.04 -7.80 3.24 2.40 2.59 0.19 

O8…HOH -1.49 -4.53 -3.04 2.23 1.79 -0.44 

O9….OHH 1.70 -0.18 -1.88 2.84 2.08 -0.76 

H101…OHH -5.44 -5.61 -0.17 2.44 2.57 0.13 

H102..OHH -4.91 -4.43 0.48 2.32 2.53 0.21 

H103..OHH -4.91 -4.92 -0.01 2.38 2.54 0.16 

AD -0.20      

RMSD 1.46      

AAE 1.14      
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Figure 2.6. Orientation of water molecules around 

methylphenidate used for charge optimization. 

 

e) Bupropion 

Fifteen monohydrates of bupropion were generated to optimize the charges (Fig. 2.7). 

The interaction energy differences of most of the hydrates were deviating significantly 

from the ideal range (Table 2.5). The interaction distances of the real hydrates 

(H14…OHH, H15…OHH, and O7…HOH) and also CL2…HOH were smaller than the 

QM distances; however, they were larger for the remaining hydrates. 
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Table 2.5. Interaction energies and distances of bupropion - water complexes in different 

geometries. 

 

Interaction 

geometry 
E 

(HF) 

E  

(CGenFF) 

E  

(HF-CGenFF) 

r 

(HF) 

r 

(CGenFF) 
r 

(HF-CGenFF) 

CL2…HOH -0.27 -1.13 -0.86 3.02 2.39 -0.63 

H3…OHH -4.35 -2.01 2.34 2.26 2.7 0.44 

H1…OHH -5.63 -2.46 3.17 2.26 2.66 0.40 

H6…OHH -5.79 -3.33 2.46 2.32 2.66 0.34 

H5…OHH -8.45 -7.55 0.90 2.54 2.76 0.22 

H8…OHH -9.45 -10.68 -1.23 2.33 2.51 0.18 

H10…OHH -7.75 -7.49 0.26 2.34 2.53 0.19 

H11…OHH -5.08 -6.40 -1.32 2.56 2.59 0.03 

H12…OHH -7.25 -7.28 -0.03 2.31 2.51 0.20 

H17…OHH -8.27 -9.85 -1.58 2.21 2.46 0.25 

H19…OHH -8.45 -9.41 -0.96 2.23 2.46 0.23 

H18…OHH -8.51 -10.0 -1.49 2.26 2.46 0.20 

H14…OHH -4.16 -6.19 -2.03 3.19 2.89 -0.30 

H15…OHH -15.70 -19.21 -3.51 1.88 1.77 -0.11 

O7…HOH -0.39 -2.45 -2.06 2.22 1.71 -0.51 

AD -0.39      

RMSD 1.89      

AAE 1.53      
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Figure 2.7. Orientation of water molecules around 

bupropion used for charge optimization. 

 

f) Benztropine 

Twenty-seven monohydrates of benztropine have been generated (Fig. 2.8) to optimize 

the partial atomic charges. Except for the eleven hydrates (including the real hydrates 

H5...OHH and O24…HOH), the interaction energy differences of rest of the hydrates 

were below 1 kcal/mol (Table 2.6). The interaction distances of the real hydrates 

H5...OHH and O24…HOH were lower than the QM distances, but distances of rest of the 

aliphatic and aromatic hydrates were greater than the CGenFF distances. 
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Table 2.6. Interaction energies and distances of benztropine - water complexes in different 

geometries. 

 

Interaction 

geometry 
E 

(HF) 

E 

(CGenFF) 

E 

(HF-CGenFF) 

r 

(HF) 

r 

(CGenFF) 
r 

(HF-CGenFF) 

H3...OHH -7.75 -8.78 -1.03 2.60 2.64 0.04 

H4...OHH -7.75 -8.82 -1.07 2.26 2.48 0.22 

H2...OHH -7.95 -8.70 -0.75 2.26 2.47 0.21 

H9...OHH -3.97 -4.19 -0.22 4.12 2.55 -1.57 

H10...OHH -6.45 -7.14 -0.69 2.39 2.56 0.17 

H12...OHH -6.39 -7.25 -0.86 2.42 2.56 0.14 

H13...OHH -6.30 -7.35 -1.05 2.41 2.55 0.14 

H17...OHH -5.62 -5.51 0.11 2.38 2.58 0.20 

H18...OHH -5.74 -6.19 -0.45 2.44 2.59 0.15 

H22...OHH -3.26 -4.04 -0.78 3.23 3.14 -0.09 

H23...OHH -5.28 -6.38 -1.10 2.55 2.57 0.02 

H7...OHH -7.84 -7.54 0.30 2.29 2.55 0.26 

H15...OHH -7.44 -8.32 -0.88 2.33 2.52 0.19 

H20...OHH -5.38 -5.65 -0.27 3.54 3.65 0.11 

H37...OHH -2.63 -1.79 0.84 2.81 3.05 0.24 

H35...OHH -2.71 -1.65 1.06 2.55 2.75 0.20 

H33...OHH -2.88 -1.70 1.18 2.49 2.72 0.23 

H31...OHH -2.91 -1.71 1.20 2.49 2.72 0.23 

H29...OHH -3.18 -2.20 0.98 2.52 2.72 0.20 

H26...OHH -4.31 -4.28 0.03 2.58 2.65 0.07 

H48...OHH -4.05 -3.90 0.15 2.55 2.68 0.13 

H46...OHH -3.64 -2.81 0.83 2.49 2.70 0.21 

H44...OHH -3.61 -2.46 1.15 2.46 2.70 0.24 

H42…OHH -3.50 -2.24 1.26 2.46 2.71 0.25 

H40…OHH -2.46 -1.57 0.89 2.75 2.86 0.11 

H5...OHH -13.73 -18.17 -4.44 1.95 1.79 -0.16 

O24…HOH -1.15 -3.26 -2.11 2.84 2.62 -0.22 

AD -0.21      

RMSD 1.26      

AAE 0.94      
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Figure 2.8. Orientation of water molecules around 

benztropine used for charge optimization. 

  

g) Cocaine 

Twenty-six monohydrates were generated, and the interaction energies to optimize the 

CGenFF charges were calculated (Fig. 2.9). The interaction energy differences of the real 

hydrogen bonds (H13…OHH, O3...HOH, O20…HOH, O1…HOH and O21…HOH) 

were lower than 0.28 kcal/mol and close to the ideal range. The interaction energy 

differences of rest of the hydrates were below 1.26 kcal/mol, except for the H161...OHH, 

which was -2.91 kcal/mol because of the bad atom position. The interaction distances of 

the real hydrogen bonds were lower than the QM distances, except for the hydrate 

O1…HOH. The interaction distances of the remaining hydrates (except H161...OHH) 

were greater than QM distances (Table 2.7). 
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Table 2.7. Interaction energies and distances of cocaine - water complexes in different 

geometries. 

 

Interaction 

geometry 
E 

(HF) 

E  

(CGenFF) 

E  

(HF-CGenFF) 

r 

(HF) 

r 

(CGenFF) 
r 

(HF-CGenFF) 

H181…OHH -7.73 -7.47 0.26 2.27 2.51 0.24 

H182…OHH -7.93 7.81 0.11 2.27 2.50 0.23 

H183…OHH -8.98 -8.39 1.16 2.23 2.42 0.19 

H221…OHH -3.96 -2.69 1.26 2.45 2.69 0.24 

H222…OHH -3.03 -2.96 0.06 2.55 2.67 0.12 

H223…OHH -3.68 -2.94 0.73 2.44 2.62 0.18 

H5…OHH -2.10 -1.88 0.21 2.36 2.65 0.29 

H6…OHH -3.26 -3.02 0.24 2.47 2.63 0.16 

H7…OHH -3.49 -3.34 0.14 2.44 2.6 0.16 

H8…OHH -3.01 -2.80 0.21 2.53 2.65 0.12 

H9…OHH -2.35 -2.42 -0.07 3.00 4.49 1.49 

H10…OHH -3.86 -3.56 0.30 2.53 2.73 0.2 

H111…OHH -3.90 -3.96 -0.06 2.44 2.66 0.22 

H112…OHH -6.41 -6.06 0.35 2.55 2.64 0.09 

H12…OHH -8.17 -7.89 0.28 2.26 2.53 0.27 

H14…OHH -7.38 -7.14 0.24 2.29 2.56 0.27 

H15...OHH -5.92 -5.60 0.32 2.58 2.72 0.14 

H161...OHH -0.93 -3.85 -2.91 6.76 2.77 -3.99 

H162...OHH -6.21 -5.94 0.27 2.41 2.58 0.17 

H171…OHH -6.33 -6.45 -0.12 2.39 2.56 0.17 

H172...OHH -7.05 -6.57 0.48 2.21 2.49 0.28 

H13…OHH -15.10 -14.82 0.28 1.89 1.85 -0.04 

O3...HOH -3.40 -3.59 -0.19 2.06 1.85 -0.21 

O20…HOH -2.21 -2.44 -0.23 2.16 1.88 -0.28 

O1…HOH -3.19 -3.36 -0.17 2.20 2.26 0.06 

O21…HOH -2.41 -2.56 -0.15 2.11 1.93 -0.18 

AD -0.09      

RMSD 0.68      

AAE 0.39      
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Figure 2.9. Orientation of water molecules around cocaine 

used for charge optimization. 

 

h) Clomipramine 

Twenty-four hydrates (Fig. 2.10) of clomipramine were generated to optimize the 

charges. As shown in Table 2.8, most of the interaction energy differences were far away 

from the ideal situation and require further optimization. The positive QM energies of the 

hydrates NZ…HOH and HB23...OHH indicate that these hydrates have to be carefully 

analyzed, and energies are to be recalculated. Interestingly, the interaction distances of 

CL...HOH and NZ…HOH were lower than the QM distances, although energies deviated 

significantly. The interaction distances of rest of the hydrates were greater than the QM 

distances as expected since they were not real hydrogen bonds. 
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Table 2.8. Interaction energies and distances of clomipramine - water complexes in 

different geometries. 

 

Interaction 

geometry 
E 

(HF) 

E 

(CGenFF) 

E  

(HF-CGenFF) 

r 

(HF) 

r 

(CGenFF) 
r 

(HF-CGenFF) 

HA11...OHH -6.34 -10.40 -4.06 2.33 2.46 0.13 

HA12...OHH -7.72 -10.40 -2.68 2.25 2.45 0.2 

HA13...OHH -7.39 -10.01 -2.62 2.28 2.46 0.18 

HB21...OHH -6.34 -10.21 -3.87 2.52 2.46 -0.06 

HB22...OHH -7.72 -9.89 -2.17 2.29 2.46 0.17 

HG1...OHH -8.06 -9.55 -1.49 2.32 2.49 0.17 

HG2...OHH -7.95 -9.18 -1.23 2.30 2.51 0.21 

HD1...OHH -5.60 -5.96 -0.36 2.65 2.67 0.02 

HD2...OHH -6.05 -7.74 -1.69 2.36 2.58 0.22 

HE1...OHH -7.15 -6.14 1.01 2.36 2.56 0.2 

HE2...OHH -5.60 -4.16 1.44 2.48 2.95 0.47 

HD4...OHH -5.88 -2.31 3.57 2.54 4.31 1.77 

HE4...OHH -3.92 -1.84 2.08 2.43 2.74 0.31 

HZ2...OHH -4.52 -1.89 2.63 2.32 2.70 0.38 

HE5...OHH -5.27 -1.86 3.41 2.37 2.73 0.36 

HE11...OHH -5.00 -1.58 3.42 2.54 2.80 0.26 

HE12...OHH -5.46 -1.17 4.29 3.35 3.18 -0.17 

HE21...OHH -3.70 -1.06 2.64 2.60 2.85 0.25 

HE22...OHH -3.64 -0.46 3.18 2.51 2.88 0.37 

HE3...OHH -4.09 -1.44 2.65 2.44 2.74 0.3 

HZ1...OHH -3.82 -1.71 2.11 2.42 2.72 0.3 

HD3...OHH -5.21 -1.92 3.29 2.86 2.96 0.1 

CL...HOH 6.04 -1.71 -7.75 2.75 2.34 -0.41 

NZ…HOH 7.45 0.95 -6.5 3.58 3.39 -0.19 

AD 0.05      

RMSD 3.40      

AAE 2.91      

 

 



  62 

 
 

Figure 2.10. Orientation of water molecules around 

clomipramine used for charge optimization. 

 

i) Imipramine 

Twenty-six monohydrates (Fig. 2.11) of imipramine were generated, and charges were 

adjusted to match the interaction energies. The interaction energy differences of the real 

hydrates (HB1…OHH and NZ…HOH) were below 1.29 kcal/mol. Half of the remaining 

hydrates were close to the ideal range and the rest deviated significantly (Table 2.9). The 

interaction distances of the real hydrogen bonds were smaller than the QM distances; 

whereas the distances of remaining hydrates were greater than QM, except for a few. 
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Table 2.9. Interaction energies and distances of imipramine - water complexes in 

different geometries. 

 

Interaction 

geometry 
E 

(HF) 

E 

 (CGenFF) 

E  

(HF-CGenFF) 

r 

(HF) 

r 

(CGenFF) 
r 

(HF-CGenFF) 

HA11…OHH -9.78 -9.75 0.03 2.22 2.46 0.24 

HA12…OHH -9.20 -9.71 -0.51 2.25 2.46 0.21 

HA13…OHH -9.74 -9.93 -0.19 2.23 2.46 0.23 

HB21…OHH -9.21 -9.59 -0.38 2.27 2.47 0.2 

HB22…OHH -9.21 -9.83 -0.62 2.27 2.47 0.2 

HB23…OHH -6.62 -8.95 -2.33 2.18 2.48 0.3 

HG1…OHH -9.59 -8.91 0.68 2.26 2.50 0.24 

HG2…OHH -8.80 -9.19 -0.39 2.32 2.50 0.18 

HD1…OHH -7.11 -7.35 -0.24 2.53 2.60 0.07 

HD2…OHH -3.92 -4.54 -0.62 4.30 3.26 -1.04 

HE1…OHH -4.69 -3.81 0.88 2.61 3.01 0.4 

HE2…OHH -5.14 -3.71 1.43 2.95 2.70 -0.25 

HD3...OHH -4.16 -1.89 2.27 2.81 2.95 0.14 

HD4…OHH -3.74 -3.19 0.55 2.56 2.86 0.3 

HE6…OHH -3.64 -2.48 1.16 2.53 2.72 0.19 

HZ2…OHH -3.44 -2.11 1.33 2.59 2.71 0.12 

HE5…OHH -3.03 -1.78 1.25 2.94 2.74 -0.2 

HE11...OHH -3.05 -1.48 1.57 2.62 2.81 0.19 

HE12...OHH -3.71 -1.31 2.40 2.62 3.10 0.47 

HE21...OHH -4.41 -0.31 4.10 2.57 2.90 0.33 

HE22...OHH -4.09 -1.07 3.02 2.70 2.83 0.13 

HZ1...OHH -4.06 -1.69 2.37 2.52 2.72 0.20 

HE3…OHH -4.19 -1.41 2.78 2.55 2.74 0.19 

HE4…OHH -3.97 -1.85 2.12 2.58 2.74 0.16 

HB1…OHH -17.17 -18.46 -1.29 1.86 1.80 -0.06 

NZ…HOH -0.79 -0.10 0.69 3.29 2.73 -0.56 

AD 0.84      

RMSD 1.49      

AAE 1.20      
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Figure 2.11. Orientation of water molecules around 

imipramine used for charge optimization. 

 

j) Desipramine 

Twenty-four monohydrates of desipramine were generated to optimize the charges (Fig. 

2.12). The interaction energy differences of more than half of the hydrates deviated 

significantly from the ideal situation (Table 2.10), including the real hydrogen bonds. The 

interaction distances of the hydrates NZ…HOH, HB1…OHH, and HB2…OHH were 

lower than the QM distances, whereas for the rest they were greater than QM distances. 

The QM interaction distance of the hydrate HE22...OHH was huge (6.68Å), probably due 

to the bad atom position. 
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Table 2.10. Interaction energies and distances of desipramine - water complexes in different 

geometries. 

 

Interaction 

geometry 
E 

(HF) 

E 

 (CGenFF) 

E  

(HF-CGenFF) 

r 

(HF) 

r 

(CGenFF) 
r 

(HF-CGenFF) 

HA11…OHH -10.02 -9.78 0.24 2.20 2.46 0.26 

HA12…OHH -2.74 -4.30 -1.56 1.94 2.27 0.33 

HA13…OHH -9.54 -9.94 -0.4 2.24 2.45 0.21 

HG1…OHH -9.69 -9.52 0.17 2.24 2.48 0.24 

HG2…OHH -9.99 -9.24 0.75 2.23 2.48 0.25 

HD1…OHH -4.11 -5.03 -0.92 5.74 4.08 -1.66 

HD2…OHH -7.39 -7.21 0.18 2.5 2.59 0.09 

HE1…OHH -5.03 -3.98 1.05 2.59 2.70 0.11 

HE2…OHH -4.81 -3.56 1.25 3.04 3.08 0.04 

HE3…OHH -4.49 -1.91 2.58 2.54 2.73 0.19 

HE4...OHH -4.31 -2.71 1.6 2.57 2.72 0.15 

HE5…OHH -4.02 -1.44 2.58 2.56 2.74 0.18 

HE6…OHH -3.73 -1.89 1.84 2.59 2.74 0.15 

HZ1...OHH -4.36 -2.25 2.11 2.51 2.71 0.2 

HZ2…OHH -3.92 -1.73 2.19 2.53 2.72 0.19 

HE11...OHH -3.49 -0.37 3.12 2.56 2.89 0.33 

HE12...OHH -4.00 -1.12 2.88 2.61 2.83 0.22 

HD3...OHH -4.32 -2.96 1.36 2.79 2.88 0.09 

HD4…OHH -4.08 -2.45 1.63 2.75 2.9 0.15 

HE21...OHH -4.40 -1.58 2.82 2.64 2.81 0.17 

HE22...OHH -3.12 -1.51 1.61 6.68 3.06 -3.62 

NZ…HOH -1.56 -0.20 1.36 3.27 2.89 -0.38 

HB1…OHH -17.67 -20.41 -2.74 1.84 1.75 -0.09 

HB2…OHH -17.54 -20.30 -2.76 1.85 1.75 -0.1 

AD 0.95      

RMSD 1.66      

AAE 1.30      
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Figure 2.12. Orientation of water molecules around desipramine 

used for charge optimization. 

 

k) R-Fluoxetine 

Twenty-one hydrates of R-fluoxetine were generated to optimize the charges (Fig. 2.13 

and Table 2.11). The interaction energy difference of the hydrate H33…OHH was huge, 

probably due to the bad atom position. The interaction distances of real hydrogen bonds 

(O15…HOH, H36…OHH, H37…OHH, and H38…OHH) and also F12...HOH, 

F13...HOH, and F14...HOH were below QM distances; whereas, for most of the hydrates, 

they were greater than QM distances. 
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Table 2.11. Interaction energies and distances of fluoxetine (R) - water complexes in 

different geometries.  

 

Interaction 

geometry 
E 

(HF) 

E  

(CGenFF) 

E  

(HF-CGenFF) 

r 

(HF) 

r 

(CGenFF) 
r 

(HF-CGenFF) 

H33…OHH 11.70 -8.23 -19.93 2.23 2.75 0.52 

H34…OHH -5.80 -9.77 -3.97 3.14 2.46 -0.68 

H30…OHH -7.72 -5.49 2.23 2.46 3.39 0.93 

H31…OHH -6.72 -7.76 -1.04 2.66 2.56 -0.1 

H17…OHH -6.98 -3.59 3.39 2.42 2.73 0.31 

H20…OHH -4.45 -2.93 1.52 2.68 3.53 0.85 

H22…OHH -3.99 -2.06 1.93 2.44 2.74 0.3 

H24…OHH -4.02 -1.83 2.19 2.41 2.72 0.31 

H26…OHH -4.12 -1.55 2.57 2.43 2.73 0.3 

H28…OHH -4.99 -0.35 4.64 2.48 3.01 0.53 

H12…OHH -6.27 -2.93 3.34 2.48 2.75 0.27 

H14…OHH -4.36 -4.24 0.12 2.33 2.58 0.25 

H9…OHH -6.27 -1.76 4.51 2.50 3.5 1 

H7…OHH -4.41 -4.18 0.23 2.33 2.58 0.25 

F12...HOH 3.64 -1.82 -5.46 2.18 2.06 -0.12 

F13...HOH 2.96 -1.33 -4.29 2.16 1.96 -0.2 

F14...HOH 4.80 -1.31 -6.11 2.21 1.96 -0.25 

O15…HOH 2.66 -5.28 -7.94 2.33 1.74 -0.59 

H36…OHH -17.75 -22.53 -4.78 1.81 1.71 -0.1 

H37…OHH -17.87 -22.58 -4.71 1.82 1.72 -0.1 

H38…OHH -17.48 -22.38 -4.9 1.82 1.71 -0.11 

AD -1.73      

RMSD 4.42      

AAE 5.72      
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Figure 2.13. Orientation of water molecules around R-fluoxetine 

used for charge optimization. 

 

l) S-Fluoxetine 

Twenty-one hydrates of R-fluoxetine were generated to optimize the charges (Fig. 2.14 

and Table 2.12). The interaction energy difference of the hydrate H12…OHH was huge 

due to the bad atom position. The interaction distances of the real hydrogen bonds 

(H36…OHH, H37…OHH, and H38…OHH) and also F12...HOH, F13...HOH, and 

F14...HOH were below QM distances (except O15…HOH), whereas the distances of the 

rest of the hydrates were greater than QM distances. 
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Table 2.12. Interaction energies and distances of fluoxetine (S) - water complexes in 

different geometries. 

 

Interaction 

geometry 
E 

(HF) 

E  

(CGenFF) 

E  

(HF-CGenFF) 

r 

(HF) 

r 

(CGenFF) 
r 

(HF-CGenFF) 

H33…OHH -6.71 -5.49 1.22 2.36 3.83 1.47 

H34…OHH -7.57 -5.76 1.81 2.03 2.58 0.55 

H30…OHH -7.78 -7.20 0.58 2.7 2.61 -0.09 

H31…OHH -7.27 -4.92 2.35 2.34 4.27 1.93 

H17…OHH -5.87 -3.30 2.57 2.36 2.76 0.4 

H20…OHH -4.35 -3.36 0.99 2.36 2.72 0.36 

H22…OHH -4.17 -2.49 1.68 2.4 2.71 0.31 

H24…OHH -4.15 -2.33 1.82 2.45 2.70 0.25 

H26…OHH -4.25 -2.38 1.87 2.29 2.71 0.42 

H28…OHH -5.08 -2.12 2.96 2.51 3.6 1.09 

H12…OHH 30.09 -3.20 -33.29 2.42 2.77 0.35 

H14…OHH -3.66 -4.22 -0.56 2.4 2.58 0.18 

H9…OHH -3.31 -3.65 -0.34 2.41 2.77 0.36 

H7…OHH -3.75 -4.21 -0.46 2.45 2.58 0.13 

F12...HOH 3.92 -1.56 -5.48 2.19 1.97 -0.22 

F13...HOH 4.45 -0.58 -5.03 2.19 2.0 -0.19 

F14...HOH 2.69 0.45 -2.24 2.15 2.05 -0.1 

O15…HOH -5.72 -1.32 4.4 2.33 2.69 0.36 

H36…OHH -17.75 -22.32 -4.57 1.81 1.71 -0.1 

H37…OHH -17.68 -22.49 -4.81 1.82 1.71 -0.11 

H38…OHH -17.56 -22.17 -4.61 1.82 1.72 -0.1 

AD -0.29      

RMSD 3.08      

AAE 2.54      
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Figure 2.14. Orientation of water molecules around 

S-fluoxetine used for charge optimization. 

 

m) R-Citalopram 

A total of twenty-five monohydrates (Fig. 2.15) of R-citalopram were generated to 

optimize the partial charges. The interaction energy differences of the three real hydrates 

(N1…HOH, H15…OHH and O11…HOH) and F27...HOH were below 1.4 kcal/mol 

(Table 2.13). The interaction energy differences of half of the remaining twenty-one 

hydrates were in the ideal range and rest of them deviated significantly. The interaction 

distances of the three real hydrogen bonds and F27...HOH were lower than the QM 

distances. The distances of half of the remaining hydrates were also lower than the QM 

distances, whereas the distances of the other half were greater than QM. 
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Table 2.13. Interaction energies and distances of citalopram (R) - water complexes in 

different geometries. 

 

Interaction 

geometry 
E 

(HF) 

E 

 (CGenFF) 

E  

(HF-CGenFF) 

r 

(HF) 

r 

(CGenFF) 
r 

(HF-CGenFF) 

H17…OHH -8.79 -11.56 -2.77 2.23 1.99 -0.24 

H18…OHH -2.08 -8.60 -6.52 2.03 1.90 -0.13 

H19…OHH -8.05 -10.72 -2.67 2.28 2.01 -0.27 

H21…OHH -8.88 -11.11 -2.23 1.87 2.00 0.13 

H22…OHH -8.58 -10.66 -2.08 2.23 2.00 -0.23 

H23…OHH -7.62 -9.56 -1.94 2.24 2.23 -0.01 

H36…OHH -8.24 -6.78 1.46 2.45 2.66 0.21 

H37…OHH -0.91 -8.18 -7.27 2.36 3.53 1.17 

H34…OHH -5.12 -4.95 0.17 4.68 2.70 -1.98 

H35…OHH -6.30 -6.22 0.08 2.54 2.67 0.13 

H32…OHH -6.16 -5.26 0.9 2.58 2.74 0.16 

H33…OHH -4.29 -4.46 -0.17 2.67 2.61 -0.06 

H25…OHH -1.94 -1.79 0.15 2.528 2.95 0.422 

H26…OHH -3.64 -1.62 2.02 3.04 2.73 -0.31 

H29…OHH -4.89 -3.41 1.48 2.37 2.74 0.37 

H28…OHH -3.77 -1.90 1.87 2.57 2.53 -0.04 

H30...OHH -4.15 -4.40 -0.25 2.37 2.66 0.29 

H31...OHH -3.92 -5.49 -1.57 2.62 2.55 -0.07 

H8.....OHH -5.76 -5.46 0.3 2.46 2.40 -0.06 

H4….OHH -5.52 -4.99 0.53 2.27 2.40 0.13 

H5….OHH -6.12 -5.08 1.04 2.28 2.60 0.32 

F27...HOH -1.02 -2.42 -1.4 2.38 1.95 -0.43 

N1….HOH -2.87 -3.16 -0.29 2.27 2.00 -0.27 

H15…OHH -15.33 -13.95 1.38 2.29 1.85 -0.44 

O11…HOH -4.05 -3.56 0.49 1.99 1.81 -0.18 

AD -0.69      

RMSD 2.35      

AAE 1.78      
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Figure 2.15. Orientation of water molecules around 

R-citalopram used for charge optimization. 

 

n) S-Citalopram 

Twenty-five monohydrates (Fig. 2.16) of S-citalopram were generated and optimized the 

charges. Although the interaction energy differences of half of the hydrates are in the 

ideal range, the remaining half deviated significantly (Table 2.14). The interaction 

distances of the real hydrates (H15…OHH, N1…HOH, and O11…HOH) and F27...HOH 

were smaller than the QM interaction distances, whereas the distances of the rest were 

greater, except for six hydrates (Table 2.14). 
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Table 2.14. Interaction energies and distances of citalopram (S) - water complexes in 

different geometries. 

 

Interaction 

geometry 
E 

(HF) 

E  

(CGenFF) 

E  

(HF-CGenFF) 

r 

(HF) 

r 

(CGenFF) 
r 

(HF-CGenFF) 

H17…OHH -8.29 -11.41 -3.12 2.22 1.99 -0.23 

H18…OHH -8.06 -10.42 -2.36 2.23 1.99 -0.24 

H19…OHH -8.19 -10.37 -2.18 2.23 2.01 -0.22 

H21…OHH -8.28 -11.02 -2.74 2.22 2.00 -0.22 

H22…OHH -8.17 
 

-10.54 -2.37 2.23 2.00 -0.23 

H23…OHH -6.32 -8.60 -2.28 2.24 2.16 -0.08 

H36…OHH -8.15 
 

-6.18 1.97 2.25 2.64 0.39 

H37…OHH -8.15 -6.19 1.96 2.28 2.63 0.35 

H34…OHH 1.41 -4.16 -5.57 2.38 4.02 1.64 

H35…OHH -3.99 -4.76 -0.77 2.77 2.82 0.05 

H32…OHH -5.56 -5.32 0.24 2.59 2.66 0.07 

H33…OHH -3.68 -4.10 -0.42 2.57 2.67 0.10 

H25…OHH -3.72 -3.63 0.09 3.75 3.89 0.14 

H26…OHH -3.19 -1.99 1.20 2.39 2.72 0.33 

H29…OHH -2.70 -3.35 -0.65 2.70 2.90 0.20 

H28…OHH -3.07 -2.28 0.79 2.41 2.53 0.12 

H30...OHH -3.11 -4.09 -0.98 2.49 2.61 0.12 

H31...OHH -3.01 -4.97 -1.96 2.48 2.56 0.08 

H8.....OHH -4.07 -4.45 -0.38 2.29 2.41 0.12 

H4….OHH -3.79 -4.07 -0.28 2.30 2.41 0.11 

H5….OHH -3.49 -3.97 -0.48 2.52 2.64 0.12 

H15…OHH -15.04 -14.72 0.32 1.87 1.85 -0.02 

F27...HOH -0.60 -2.68 -2.08 2.25 1.95 -0.30 

N1….HOH -2.31 -3.09 -0.78 2.28 2.01 -0.27 

O11…HOH -6.41 -7.45 -1.04 2.02 1.91 -0.11 

AD -0.95      

RMSD 1.69      

AAE 1.29      
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Figure 2.16. Orientation of water molecules around S-

citalopram used for charge optimization. 

 

o) Sertraline 

Twenty monohydrates of sertraline were generated to optimize the charges (Fig. 2.17). 

Except for a few, most of the interaction energy differences deviated significantly from 

the ideal range (Table 2.15). The interaction distances of real hydrogen bonds 

(H6…OHH and H7…OHH), CL34...HOH, and CL36...HOH are lower than the QM 

distances, and the rest of them are greater than QM distances. 

After optimizing the partial atomic charges; bonds, angles, dihedrals and 

impropers were optimized. 

 



  75 

Table 2.15. Interaction energies and distances of sertraline - water complexes in different 

geometries. 

 

Interaction 

geometry 
E 

(HF) 

E 

(CGenFF) 

E 

(HF-CGenFF) 

r 

(HF) 
r 

(CGenFF) 
r 

(HF-CGenFF) 

H2…OHH -7.28 -10.05 -2.77 2.28 2.46 0.18 

H3…OHH -7.63 -10.05 -2.42 2.23 2.45 0.22 

H4…OHH -6.25 -9.19 -2.94 2.58 2.58 0 

H9…OHH -7.58 -10.10 -2.52 2.31 2.48 0.17 

H17…OHH -5.49 -3.61 1.88 2.35 2.65 0.30 

H14…OHH -4.60 -7.09 -2.49 3.08 2.92 -0.16 

H15…OHH -4.78 -4.05 0.73 2.43 2.64 0.21 

H11…OHH -6.06 -7.62 -1.56 2.50 2.61 0.11 

H12…OHH -4.92 -4.98 -0.06 2.37 2.57 0.20 

H21…OHH -5.00 -5.55 -0.55 2.47 2.64 0.17 

H23…OHH -4.18 -3.10 1.08 2.39 2.67 0.28 

H25…OHH -4.22 -2.70 1.52 2.37 2.68 0.31 

H27…OHH -4.31 -2.84 1.47 2.42 2.68 0.26 

H30…OHH -4.93 -4.82 0.11 2.42 2.64 0.22 

H32…OHH -4.63 -4.66 -0.03 2.29 2.56 0.27 

H38...HOH -1.77 -3.25 -1.48 4.90 2.67 -2.23 

CL34...HOH 1.27 -0.59 -1.86 3.59 2.44 -1.15 

CL36...HOH 1.41 -0.76 -2.17 3.12 2.42 -0.70 

H6…OHH -14.04 -20.07 -6.03 1.86 1.75 -0.11 

H7…OHH -3.45 -7.08 -3.63 4.45 4.01 -0.44 

AD -1.18      

RMSD 2.03      

AAE 1.68      
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Figure 2.17. Orientation of water molecules around 

sertraline used for charge optimization. 

 

2.3.2. Geometry optimization 

After the charges were optimized, the geometries were optimized using MP2/6-31G(d) 

optimized equilibrium geometry as the target data. Bond lengths followed by bond 

angles, dihedrals, and impropers were optimized. 

 CGenFF optimized equilibrium geometry for almost all the compounds were reasonably 

in good agreement with the MP2 optimized equilibrium geometry. 

a) Amphetamine 

Amphetamine geometry was optimized using the MP2/6-31G(d) equilibrium geometry as 

the target. The CGenFF geometry fits well with the QM geometry. All the bond 

differences were below 0.03Å, and all the angle differences were below 1.8Å, except for 
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angles C5-N1-H3 and N1-C5-H6, which were 2.1o and 2.6o, respectively. All the dihedral 

and improper angle differences were below 3o, except for the C5-C7-C14-C23 and C7-

N1-C5-C10, which were 4.2o and 4.8o, respectively (Table 2.16). These results 

demonstrate that CGenFF geometry matches well with the QM optimized geometry. 

Table 2.16. CGenFF equilibrium geometry of amphetamine compared to MP2 Level. 

 

Coordinate MP2 CGenFF Diff Coordinate MP2 CGenFF Diff 

Bond lengths/Å Angles/o 

N1-H2 1.03 1.04 -0.01 H2-C5-N1 110.4 109 1.4 

N1-H3 1.03 1.04 -0.01 C5-N1-H3 111.9 109.8 2.1 

N1-H4 1.03 1.04 -0.01 C5-N1-H4 111.6 109.8 1.8 

N1-C5 1.53 1.51 0.02 N1-C5-C7 108.1 108.3 -0.2 

C5-H6 1.09 1.12 -0.03 N1-C5-C10 108.0 108.3 -0.3 

C5-C10 1.52 1.53 -0.01 N1-C5-H6 104.7 107.3 -2.6 

C10-H11 1.09 1.11 -0.02 C5-C7-C14 110.1 110.3 -0.2 

C10-H12 1.09 1.11 -0.02 C5-C7-H8 109.8 111.2 -1.4 

C10-H13 1.10 1.11 -0.01 C5-C7-H9 109.5 111.2 -1.7 

C5-C7 1.53 1.54 -0.01 N1-C5-C10 108.0 108.5 -0.53 

C7-H8 1.10 1.11 -0.01 C5-C10-H11 108.7 110.5 -1.8 

C7-H9 1.10 1.11 -0.01 C5-C10-H12 112.0 111.2 0.8 

C7-C14 1.51 1.50 0.01 C5-C10-H13 111.1 111.31 -0.2 

C14=C15 1.40 1.40 0.00 C7-C14-C23 119.8 119.8 0.0 

C15-H16 1.09 1.08 0.01 C7-C14-C15 120.7 120.6 0.1 

C15-C17 1.40 1.40 0.00 C14-C15-C17 120.2 120.4 -0.2 

C17-H18 1.09 1.08 0.01 C14-C15-H16 120.0 120.2 -0.2 

C17=C19 1.40 1.40 0.00 C15-C17-C19 120.1 119.6 0.5 

C19-H20 1.09 1.08 0.01 C15-C17-H18 119.8 120.5 -0.7 

C19-C21 1.40 1.40 0.00 C17-C19-C21 120.0 120.00 0.0 

C21-H22 1.09 1.08 0.01 C17-C19-H20 120.1 119.8 0.3 

C21=C23 1.39 1.40 -0.01 C23-C19-C21 120.0 119.7 0.3 

C23-H24 1.09 1.08 0.01 C21-C14-C23 120.2 120.3 -0.1 

C23-C14 1.40 1.40 0.00 C14-C23-H24 120.2 120.4 -0.2 

Dihedrals/o Impropers/o 

H2-N1-C5-C7 62.7 59.7 3.0 H2-C5-N1-H3 119.6 119.7 -0.1 

N1-C5-C7-C14 174.4 175.5 -1.1 H2-C5-N1-H4 -119.4 -119.6 0.2 

N1-C5-C10-H11 -178.5 -176.7 -1.8 C10-N1-C5-H6 -118.2 -119.6 1.4 

C5-C7-C14-C23 -75.8 -71.6 -4.2 C14-C5-C7-H8 -121.0 -118.3 -2.7 

C7-C14-C15-C17 -178.3 -179 0.7 H11-C5-C10-H12 119.2 118.9 0.3 

C14-C15-C17-C19 0.5 0.1 0.4 H11-C5-C10-H13 -118.4 -119.7 1.3 

C15-C17-C19-C21 -0.7 -0.2 -0.5 C23-C7-C14-C15 177.9 178.9 -1.0 

    C17-C14-C15-H16 -178.5 -179.4 0.9 

    C19-C15-C17-H18 -179.9 -179.8 -0.1 

    C21-C17-C19-H20 -179.1 -179.5 0.4 

    C23-C19-C21-H22 -179.7 -179.6 -0.1 

    C21-C14-C23-H24 178.0 178.7 -0.7 

    C7-N1-C5-C10 -124.5 -119.7 -4.8 

H8-C5-C7-H9 -117.8 -120.9 3.1 
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b) Dopamine 

The MP2 optimized geometry was used as a target to optimize the CGenFF structure. The 

bond length and angle differences were less than 0.04Å and 3.2o, respectively, except for 

the C2-C3-O4, which was 7.2o. All the dihedral differences were less than 3.5o, except for 

C6-C9-C12-N15 and C9-C12-N15-H16, which were 6.1 and 13.2o, respectively. The 

impropers were less than 4.4o, except for the C6-C8-C7-H7, which was 6.4o (Table 2.17). 

Table 2.17. CGenFF equilibrium geometry of dopamine compared to MP2 level. 

 

Coordinate MP2 CGenFF Diff Coordinate MP2 CGenFF Diff 

Bond lengths/Å Angles/o 

O1-H1 0.98 0.96 0.02 H1-O1-C2 108.4 107.2 1.2 

O1-C2 1.35 1.39 -0.04 O1-C2-C8 119.7 117.50 2.2 

C2-C3 1.41 1.41 0 O1-C2-C3 120.8 122.3 -1.5 

C3-O4 1.37 1.40 -0.03 C2-C3-C5 120.6 119.6 1.0 

O4-H4 0.97 0.96 0.01 C2-C3-O4 113.9 121.0 -7.2 

C3=C5 1.39 1.40 -0.01 C3-O4-H4 110.8 109.06 1.7 

C5-H5 1.09 1.08 0.01 C3-C5-C6 120.1 120.2 -0.1 

C5-C6 1.41 1.40 0.01 C3-C5-H5 119.5 120.6 -1.1 

C6=C7 1.40 1.40 0.00 C2-C8-C7 119.9 119.9 0 

C7-H7 1.09 1.08 0.01 C2-C8-H8 118.5 118.9 -0.4 

C7-C8 1.40 1.40 0.00 C6-C8-C7 120.9 120.2 0.7 

C8-H8 1.09 1.08 0.01 C8-C7-H7 118.8 119.7 -1.1 

C2=C8 1.39 1.40 -0.01 C7-C5-C6 119.0 119.9 -0.9 

C6-C9 1.51 1.51 0.00 C5-C6-C9 120.1 119.9 0.2 

C9-H10 1.10 1.11 -0.01 C6-C9-C12 110.6 112.3 -1.7 

C9-H11 1.10 1.11 -0.01 C6-C9-H10 110.6 109.6 1.0 

C9-C12 1.53 1.54 -0.01 C6-C9-H11 111.6 108.4 3.2 

C12-H13 1.09 1.10 -0.01 C9-C12-N15 108.5 110.6 -2.1 

C12-H14 1.09 1.10 -0.01 C9-C12-H13 111.1 111.5 -0.4 

C12-N15 1.51 1.48 0.03 C9-C12-H14 113.7 110.7 3.0 

N15-H15 1.04 1.04 0.00 C12-N15-H16 113.0 111.1 1.9 

N15-H16 1.03 1.04 -0.01 C12-N15-H17 111.4 109.5 1.9 

N15-H17 1.03 1.04 -0.01 C12-N15-H15 107.9 108.9 -1.0 

Dihedrals/o Improper dihedrals/o 

H1-O1-C2-C8 176.0 177.1 -1.1 C8-O1-C2-C3 -177.7 -179.2 2.5 

O1-C2-C3-C5 -178.5 -179.6 1.1 C5-C2-C3-O4 177.5 180.1 -2.6 

C2-C3-O4-H4 171.0 167.5 3.5 C6-C3-C5-H5 184.3 181.0 3.3 

C2-C3-C5-C6 -4.0 -0.68 -3.3 C7-C2-C8-H8 180.3 178.7 1.6 

O1-C2-C8-C7 179.4 180.1 -0.7 C6-C8-C7-H7 172.7 179.1 -6.4 

C5-C6-C9-C12 -79.6 -77.8 -1.8 C7-C5-C6-C9 173.7 176.3 -2.6 

C6-C9-C12-N15 -55.2 -61.3 6.1 C12-C6-C9-H10 -122.1 -123.5 1.4 

C9-C12-N15-H16 163.6 176.8 -13.2 H10-C6-C9-H11 -118.4 -115.8 -2.6 

    N15-C9-C12-H13 116.3 120.5 -4.2 

    H13-C9-C12-H14 124.1 119.7 4.4 

    H16-C12-N15-H17 121.5 120.9 0.6 

    H16-C12-N15-H15 -121.2 -120.5 -0.7 
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c) Serotonin 

Table 2.18. CGenFF equilibrium geometry of serotonin compared to MP2 Level. 

 

Coordinate MP2 CGenFF Diff Coordinate MP2 CGenFF Diff 

Bond lengths/Å Angles/o 

N16-H17 1.03 1.04 -0.01 H1-O1-C1 109.6 107.4 2.2 

N16-H18 1.03 1.04 -0.01 O1-C1-C2 116.6 117.9 -1.3 

N16-H19 1.04 1.04 0.00 O1-C1-C6 122.2 120.7 1.5 

N16-C13 1.51 1.50 0.01 C1-C2-C3 118.5 119.1 -0.6 

C13-H14 1.09 1.10 -0.01 C1-C2-H2 118.0 118.2 -0.2 

C13-H15 1.09 1.10 -0.01 C2-C3-C7 133.7 132.1 1.6 

C13-C10 1.53 1.55 -0.02 C2-C3-C4 119.3 120 -0.7 

C10-H11 1.10 1.11 -0.01 C1-C6-C5 121.3 119.2 2.1 

C10-H12 1.10 1.11 -0.01 C1-C6-H6 119.4 120.1 -0.7 

C10-C7 1.50 1.51 -0.01 C4-C6-C5 117.6 119.3 -1.7 

C7-C3 1.44 1.44 0.00 C6-C5-H5 120.6 122.2 -1.6 

C3=C4 1.42 1.40 0.02 C3-C7-C10 126.2 123.3 2.9 

C4-N9 1.38 1.36 0.02 C3-C7-C8 106.6 107.2 -0.6 

N9-H9 1.01 1.01 0.00 C7-C8-N9 109.4 107.5 1.9 

N9-C8 1.37 1.38 -0.01 C7-C8-H8 129.8 128.6 1.2 

C8-H8 1.08 1.08 0.00 C4-C8-N9 109.9 111.3 -1.4 

C8=C7 1.38 1.37 0.01 C8-N9-H9 124.8 126.6 -1.8 

C3-C2 1.41 1.39 0.02 C7-C10-C13 111.2 114.0 -2.8 

C2-H2 1.09 1.08 0.01 C7-C10-H11 110.9 108.9 2 

C2=C1 1.39 1.39 0.00 C7-C10-H12 111.1 108.7 2.4 

C1-O1 1.37 1.40 -0.03 C10-C13-N16 109.1 111.6 -2.5 

O1-H1 0.97 0.96 0.01 C10-C13-H14 110.6 110.0 -0.6 

C6-C1 1.42 1.39 0.03 C10-C13-H15 113.7 111.0 2.7 

C6-H6 1.09 1.08 0.01 H17-C13-N16 112.7 111.6 1.1 

C5=C6 1.39 1.41 -0.02 C13-N16-H19 109.2 107.8 1.4 

C5-H5 1.09 1.08 0.01 C13-N16-H18 111.5 110.9 0.6 

C5-C4 1.40 1.38 0.02     

Dihedrals/o Impropers/o 

H1-O1-C1-C2 173.6 167.9 5.7 C2-O1-C1-C6 178.8 180.5 -1.3 

O1-C1-C2-C3 180.1 179.6 0.5 C3-C1-C2-H2 172.7 175.1 -2.4 

C1-C2-C3-C7 178.9 182.2 3.3 C7-C2-C3-C4 180.8 180.4 0.4 

O1-C1-C6-C5 178.9 178.2 0.7 C5-C1-C6-H6 182.0 181.2 10.8 

C2-C3-C7-C10 5.4 7.6 -2.2 C4-C6-C5-H5 179.0 180.3 -1.3 

C3-C7-C8-N9 -0.2 -1.5 1.3 C10-C3-C7-C8 175.8 174.4 1.4 

C3-C7-C10-C13 83.2 77.7 5.5 N9-C7-C8-H8 178.6 179.6 -1.0 

C7-C10-C13-N16 -55.8 -60.8 5 C4-C8-N9-H9 177.0 174.5 2.5 

C10-C13-N16-H17 165.1 160.1 5.0 C13-C7-C10-H11 -122.8 -123.7 0.9 

    H11-C7-C10-H12 -118.0 -115.7 -2.3 

    N16-C10-C13-H14 116.3 119.7 -3.4 

    H14-C10-C13-H15 123.9 119.4 4.5 

    H17-C13-N16-H18 121.3 122.4 -1.1 

H17-C13-N16-H19 -121.7 -119.8 -1.9 

 

The differences in bond lengths and angles between the MP2 and CGenFF were less than 

0.03Å and 2.9o, respectively; whereas the differences of dihedrals and impropers were 
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less than 5.7o and 10.8o, respectively (Table 2.18). This data shows that CGenFF structure 

was optimized and matches well with the QM optimized structure. 

 

d) Methylphenidate 

In the case of methylphenidate, the CGenFF geometry fits well with the QM geometry. 

The bond length and bond angle deviations were below 0.03Å and 2.82o, respectively. 

The dihedral differences were below 5.1o, except for C5-C7-C8-O9 and C7-C8-O9-C10, 

which were 10.1o and 7.26o, respectively. Improper deviations were below 4.49o, except 

for the O9-C7-C8-O8, which was 10.8o (Table 2.19). 
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Table 2.19. CGenFF equilibrium geometry of methylphenidate compared to MP2 Level. 

 

Coordinate MP2 CGenFF Diff Coordinate MP2 CGenFF Diff 

Bond lengths/Å Angles/o 

C1-H1 1.09 1.08 0.01 C2-C6-C1 120.5 120.0 0.46 

C1-C2 1.40 1.40 0.00 C6-C1-H1 119.5 120.8 -1.3 

C2-H2 1.09 1.08 0.01 C1-C6-C5 119.9 120.5 -0.62 

C2=C3 1.40 1.40 0.00 C1-C6-H6 119.4 118.7 0.65 

C3-H3 1.09 1.08 0.01 C6-C5-C7 122.4 122.7 -0.26 

C3-C4 1.40 1.40 0.00 C6-C5-C4 119.4 118.8 0.51 

C4-H4 1.09 1.08 0.01 C5-C4-C3 120.5 120.6 -0.12 

C4=C5 1.40 1.41 -0.01 C5-C4-H4 120.0 120.3 -0.32 

C5-C6 1.40 1.41 -0.01 C2-C4-C3 119.9 129.0 -0.09 

C6-H6 1.09 1.08 -0.01 C4-C3-H3 119.8 120.2 -0.40 

C6=C1 1.40 1.40 0.00 C3-C1-C2 119.8 119.9 -0.14 

C5-C7 1.51 1.52 -0.01 C1-C2-H2 120.1 120.0 0.1 

C7-H7 1.10 1.11 -0.01 C5-C7-C11 109.5 107.5 2.01 

C7-C8 1.53 1.53 0.00 C5-C7-C8 113.9 113.3 0.59 

C8=O8 1.21 1.21 0.00 C5-C7-H7 107.4 108.7 -1.34 

C8-O9 1.38 1.35 0.03 C7-C8-O9 110.1 110.0 0.11 

09-C10 1.46 1.45 0.01 C7-C8-O8 127.0 126.4 0.62 

C10-H101 1.09 1.11 -0.02 C8-O9-C10 113.9 111.2 2.74 

C10-H102 1.09 1.11 -0.02 O9-C10-H101 105.0 107.7 -2.68 

C10-H103 1.09 1.11 -0.02 O9-C10-H102 109.4 108.5 0.92 

C7-C11 1.54 1.51 0.03 O9-C10-H103 109.8 108.6 1.25 

C11-H11 1.10 1.12 -0.02 C7-C11-N12 110.1 109.3 0.76 

C11-N12 1.52 1.51 0.01 C7-C11-C24 115.1 114.5 0.61 

N12-H13 1.03 1.01 0.02 C7-C11-H11 107.6 110.4 -2.82 

N12-H14 1.04 1.02 0.02 C11-N12-C15 114.2 116.2 -2.04 

N12-C15 1.51 1.51 0.00 C11-N12-H13 109.0 108.8 0.24 

C15-H16 1.09 1.10 -0.02 C11-N12-H14 106.1 103.5 2.63 

C15-H17 1.09 1.10 -0.02 N12-C15-C18 109.7 110.8 -1.16 

C15-C18 1.52 1.53 -0.01 N12-C15-H16 106.4 105.1 1.24 

C18-H19 1.10 1.11 -0.01 N12-C15-H17 107.1 105.3 1.75 

C18-H20 1.09 1.11 -0.02 C15-C18-C21 110.8 109.7 1.07 

C18-C21 1.53 1.54 -0.01 C15-C18-H20 108.2 109.8 -1.62 

C21-H22 1.09 1.11 -0.02 C15-C18-H19 109.6 110.2 -0.65 

C21-H23 1.10 1.11 -0.01 C24-C18-C21 110.7 110.9 -0.25 

C21-C24 1.53 1.54 -0.01 C18-C21-H22 110.0 109.7 0.31 

C24-H25 1.09 1.11 -0.02 C18-C21-H23 109.8 109.8 0.0 

C24-H26 1.10 1.11 -0.01 C21-C11-C24 111.9 112.9 -0.96 

C24-C11 1.52 1.55 -0.03 C11-C24-H26 109.3 109.9 -0.63 

Dihedrals/o Impropers/o 

H1-C1-C6-C5 -179.9 -179.0 -0.9 C2-C6-C1-H1 -179.9 -179.4 -0.5 

C1-C6-C5-C7 -176.6 -177.2 0.6 C5-C1-C6-H6 176.8 178.8 -2.05 

C6-C5-C4-C3 0.3 0.3 0 C7-C6-C5-C4 176.1 176.8 -0.67 

C6-C5-C7-C11 83.9 88.6 -4.67 C3-C5-C4-H4 178.5 179.1 -0.6 

C5-C7-C8-O9 174.7 164.6 10.1 C2-C4-C3-H3 179.6 179.5 0.1 

C7-C8-O9-C10 176.4 169.1 7.26 C3-C1-C2-H2 -178.9 -179.3 0.4 

C5-C7-C11-N12 161.4 162.7 1.31 C11-C5-C7-C8 -127.3 -122.8 -4.49 

C7-C11-N12-C15 182.7 177.6 5.1 C8-C5-C7-H7 -116.0 -116.9 0.9 

C11-N12-C15-C18 -57.0 -54.5 -2.5 O9-C7-C8-O8 177.7 166.8 10.8 

N12-C15-C18-C21 55.7 55.9 -0.2 N12-C7-C11-C24 123.0 124.0 -1.06 

C8-O9-C10-H101 181.2 179.5 1.73 H101-O9-C10-H102 119.3 119.4 -0.18 

Impropers/o C24-C7-C11-H11 122.9 123.5 -0.64 
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C21-C15-C18-H20 122.2 120.7 1.5 C15-C11-N12-H13 123.0 126.6 -3.61 

C21-C15-C18-H19 -122.0 -120.8 -1.2 C18-N12-C15-H16 120.8 121.9 -1.1 

C24-C18-C21-H22 -121.4 -121.1 -0.3 H16-N12-C15-H17 116.3 115.8 0.5 

C15-C11-N12-H14 -123.8 -121.8 -2.0 H101-O9-C10-H103 -119.8 -119.7 -0.06 

C21-C11-C24-H26 121.8 121.6 0.15 H22-C18-C21-H23 -117.2 -117.6 0.37 

H26-C11-C24-H25 116.1 117.4 -1.33 

 

e) Bupropion 

Table 2.20. CGenFF equilibrium geometry of bupropion compared to MP2 Level. 

 

Coordinate MP2 CGenFF Diff Coordinate MP2 CGenFF Diff 

Bond lengths/Å Angles/o 

C1-H1 1.09 1.08 0.01 C2-C1-C6 119.6 120.1 -0.5 

C1=C2 1.40 1.40 0.00 C6-C1-H1 120.7 120.1 0.6 

C2-CL2 1.73 1.74 -0.01 C1-C2-C3 120.8 120.0 0.8 

C2-C3 1.39 1.40 -0.01 C1-C2-CL2 119.7 120.1 -0.4 

C3-H3 1.09 1.08 0.01 C2-C3-C4 119.1 120.6 -1.5 

C3=C4 1.41 1.40 0.01 C2-C3-H3 121.0 118.5 2.5 

C4-C5 1.40 1.41 -0.01 C1-C6-C5 120.6 120.1 0.5 

C5-H5 1.09 1.08 0.01 C1-C6-H6 119.4 119.5 -0.1 

C5=C6 1.39 1.40 -0.01 C4-C5-C6 119.2 120.3 1.1 

C6-H6 1.09 1.08 0.01 C6-C5-H5 118.9 117.4 1.5 

C6=C1 1.39 1.40 -0.01 C5-C4-C3 120.7 118.8 1.9 

C4-C7 1.47 1.50 -0.03 C3-C4-C7 116.9 118.5 -1.6 

C7=O7 1.24 1.22 0.02 C4-C7-C8 119.9 121.8 -1.9 

C7-C8 1.54 1.52 0.02 C4-C7-O7 123.7 121.0 2.7 

C8-H8 1.09 1.11 -0.02 C7-C8-N13 104.6 107.2 -2.6 

C8-C9 1.52 1.54 -0.02 C7-C8-C9 110.6 111.8 -1.2 

C9-H10 1.09 1.11 -0.02 C7-C8-H8 112.4 111.3 1.1 

C9-H11 1.09 1.11 -0.02 C8-C9-H10 113.3 111.4 1.9 

C9-H12 1.09 1.11 -0.02 C8-C9-H11 109.6 110.8 -1.2 

C8-N13 1.50 1.52 -0.02 C8-C9-H12 110.6 111.7 -1.1 

N13-H14 1.04 1.02 0.02 C8-N13-C16 114.5 117.3 -2.8 

N13-H15 1.03 1.01 0.02 C8-N13-H14 103.9 104.6 -0.7 

N13-C16 1.50 1.51 -0.01 C8-N13-H15 110.6 109.0 1.6 

C16-H17 1.09 1.11 -0.02 N13-C16-H17 108.0 106.6 1.4 

C16-H18 1.09 1.11 -0.02 N13-C16-H18 108.8 106.8 2.0 

C16-H19 1.09 1.11 -0.02 N13-C16-H19 108.6 106.6 2.0 

Dihedrals/o Impropers/o 

C6-C1-C2-C3 -0.1 0.06 -0.16 C2-C6-C1-H1 180.0 180 0.0 

C1-C2-C3-C4 0.4 0.1 0.3 C3-C1-C2-CL2 -179.9 -179.9 0.0 

C2-C1-C6-C5 -0.1 -0.04 -0.06 C4-C2-C3-H3 179.7 179.8 -0.1 

C3-C4-C7-C8 -168.6 -174.5 5.9 C5-C1-C6-H6 179.7 179.9 -0.2 

C4-C7-C8-N13 -164.3 -166.9 2.6 C4-C6-C5-H5 179.4 179.9 -0.5 

C7-C8-C9-H10 177.8 178.8 -1.0 C5-C3-C4-C7 -179.2 -179.2 0.0 

C7-C8-N13-C16 85.0 88.0 -3.0 C8-C4-C7-O7 176.2 178.9 -2.7 

C8-N13-C16-H17 -57.2 -57.94 0.74 N13-C7-C8-C9 -118.6 -119.3 0.7 

Impropers/o C9-C7-C8-H8 -125.5 -124.6 -0.9 

H17-N13-C16-H19 -119.3 -119.6 0.4 H10-C8-C9-H11 119.4 119.1 0.3 

H17-N13-C16-H18 120.5 120.3 0.2 H10-C8-C9-H12 -121.8 -121.4 -0.4 

H14-C8-N13-H15 -116.9 -112.9 -4 C16-C8-N13-H14 -117.6 -119.8 2.2 
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The optimized CGenFF geometry was in good correlation with the QM geometry. The 

bond length and angle deviations were below 0.03Å and 2.8o, respectively. All the 

dihedral and improper differences did not exceed 5.9o and 4o, respectively (Table 2.20). 

 

f) Benztropine 

The CGenFF geometry fits reasonably well with the QM geometry. Bond length and 

bond angle deviations were below 0.02Å and 2.6o, respectively; whereas, the dihedral 

differences were below 5.1o, except for C16-C19-O24-C25, O24-C25-C27-C28, and 

O24-C25-C38-C39, which were 9.8o, 9.1o, and 8.8o, respectively. All the improper 

deviations did not exceed 5.8o (Table 2.21). 
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Table 2.21. CGenFF equilibrium geometry of benztropine compared to MP2 Level. 

 

Coordinate MP2 CGenFF Diff Coordinate MP2 CGenFF Diff 

Bond lengths/Å Angles/o 

C1-H2 1.09 1.11 -0.02 H2-N5-C1 108.6 106.5 2.1 

C1-H3 1.09 1.11 -0.02 N5-C1-H3 109.2 108.1 1.1 

C1-H4 1.09 1.11 -0.02 N5-C1-H4 108.7 106.6 2.1 

C1-N5 1.49 1.50 -0.01 C1-N5-C14 114.0 114.5 -0.5 

N5-H5 1.03 1.04 -0.01 C1-N5-C6 114.1 114.0 0.1 

N5-C6 1.52 1.50 0.02 C1-N5-H5 108.1 108.5 -0.4 

C6-H7 1.09 1.11 -0.02 N5-C6-C21 107.2 109.4 -2.2 

C6-C8 1.53 1.54 -0.01 N5-C6-C8 102.0 102 0 

C8-H9 1.09 1.10 -0.01 N5-C6-H7 108.1 107.6 0.5 

C8-H10 1.09 1.10 -0.01 C6-C8-C11 105.3 104.8 0.5 

C8-C11 1.55 1.56 -0.01 C6-C8-H10 111.2 111.5 -0.3 

C11-H12 1.09 1.10 -0.01 C11-C6-C8 105.4 104.8 0.6 

C11-H13 1.09 1.10 -0.01 C6-C8-H9 109.5 111.8 -2.3 

C11-C14 1.54 1.54 0.00 C14-C8-C11 105.4 104.8 0.6 

C14-H15 1.10 1.11 -0.01 C8-C11-H13 111.2 110.5 0.7 

C14-N5 1.52 1.50 0.02 C8-C11-H12 112.6 112.4 0.2 

C14-C16 1.53 1.54 -0.01 C11-N5-C14 101.9 101.8 0.1 

C16-H17 1.09 1.11 -0.02 N5-C14-C16 107.0 109.3 -2.3 

C16-H18 1.10 1.11 -0.01 N5-C14-H15 108.2 107.8 0.4 

C16-C19 1.53 1.54 -0.01 C14-C16-C19 111.6 112.9 -1.3 

C19-H20 1.10 1.11 -0.01 C14-C16-H18 110.6 109.4 1.2 

C19-C21 1.53 1.54 -0.01 C14-C16-H17 109.4 110.0 -0.6 

C21-H22 1.09 1.11 -0.02 C21-C16-C19 110.9 111.6 -0.7 

C21-H23 1.10 1.11 -0.01 C16-C19-O24 106.8 105.3 1.5 

C21-C6 1.52 1.53 -0.01 C16-C19-H20 109.2 109.9 -0.7 

C6-H7 1.09 1.10 -0.02 C19-C6-C21 111.6 112.9 -1.3 

C19-O24 1.42 1.42 0 C6-C21-H22 109.0 109.2 -0.2 

C25-O24 1.45 1.43 0.02 C6-C21-H23 110.7 109.7 1.0 

C25-H26 1.10 1.11 -0.01 C19-O24-C25 114.0 114.0 0.0 

C25-C38 1.51 1.53 -0.02 O24-C25-C27 107.7 110.3 -2.6 

C38-C39 1.4 1.41 0.01 O24-C25-C38 110.5 109.3 1.2 

C39-H40 1.09 1.08 0.01 O24-C25-H26 107.9 108.1 -0.2 

C39-C41 1.39 1.40 -0.01 C25-C27-C28 118.3 118.9 -0.6 

C41-H42 1.09 1.08 0.01 C25-C27-C36 122.0 122.6 -0.6 

C41=C43 1.4 1.40 0 C27-C28-C30 120.3 120.8 -0.5 

C43-H44 1.09 1.08 0.01 C27-C28-H29 119.8 119.8 0 

C43-C45 1.40 1.40 0 C28-C30-C32 120.0 120.0 0 

C45-H46 1.09 1.08 0.01 C28-C30-H31 119.8 120.0 -0.2 

C45=C47 1.4 1.40 0 C30-C32-C34 119.8 120.0 -0.2 

C47-H48 1.09 1.08 0.01 C30-C32-H33 120.1 120 0.1 

C47-C38 1.4 1.41 -0.01 C36-C32-C34 120.4 120.0 0.4 

C25-C27 1.51 1.53 -0.02 C32-C34-H35 120.0 119.8 0.2 

C27=C28 1.4 1.41 -0.01 C34-C27-C36 119.9 120.7 -0.8 

C28-H29 1.09 1.08 0.01 C27-C36-H37 119.7 120.0 -0.3 

C28-C30 1.39 1.40 -0.01 C25-C38-C39 120.0 121.0 -1 

C30-H31 1.09 1.08 0.01 C38-C39-C41 120.2 120.6 -0.4 

C30-C32 1.4 1.40 0 C38-C39-H40 119.3 119.5 -0.2 

C32-H33 1.09 1.08 0.01 C39-C41-C43 120.2 120 0.2 

C32-C34 1.4 1.40 0 C39-C41-H42 119.8 120.0 -0.2 

C34-H35 1.09 1.08 0.01 C41-C43-C45 120.0 120 0 

C34-C36 1.4 1.40 0 C41-C43-H44 120.0 119.9 0.1 
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C36-H37 1.09 1.08 0.01 C47-C43-C45 119.9 120.0 0.1 

C36-C27 1.4 1.41 -0.01 C43-C45-H46 120.1 119.8 0.3 

C45-C38-C47 120.4 120.5 -0.1 

C38-C47-H48 119.7 120.1 -0.4 

Dihedrals/o Impropers/o 

H2-C1-N5-C14 -178.6 -179.1 0.5 H2-N5-C1-H3 120.0 120.2 -0.2 

C1-N5-C6-C21 163.7 164.8 -1.1 H2-N5-C1-H4 -119.8 -119.5 -0.3 

N5-C6-C8-C11 -27.9 -27.8 -0.1 C14-C1-N5-C6 116.6 118.4 -1.8 

C19-O24-C25-C27 -179.0 -175.5 -3.5 C14-C1-N5-H5 -121.7 -121.3 -0.4 

C16-C19-O24-C25 138.4 128.6 9.8 C21-N5-C6-C8 119.1 117.1 2.0 

O24-C25-C27-C28 163.2 172.3 -9.1 C8-N5-C6-H7 120.3 120.8 -0.5 

C25-C27-C28-C30 177.7 180.7 -3.0 C11-C6-C8-H10 120.5 119.6 0.9 

C27-C28-C30-C32 -0.4 0.2 -0.6 C11-C6-C8-H9 -121.5 -122.2 0.7 

O24-C25-C38-C39 71.6 62.8 8.8 C14-C8-C11-H13 120.4 120.2 0.2 

C25-C38-C39-C41 -173.6 -178.7 5.1 C14-C8-C11-H12 -119.9 -121.8 1.9 

C38-C39-C41-C43 0.1 -0.06 0.16 C11-N5-C14-C16 119.4 117.2 2.2 

C39-C41-C43-C45 -1.1 -0.2 -0.9 C11-N5-C14-H15 -120.2 -1207 0.5 

Impropers/o N5-C14-C16-C19 -62.2 -58.1 -4.1 

C30-C27-C28-H29 179.8 180.8 -1 C19-C14-C16-H18 121.2 121.6 -0.4 

C28-C30-C32-C34 0.3 -0.06 0.36 C19-C14-C16-H17 -122.0 -121.5 -0.5 

C34-C30-C32-H33 179.5 180.1 -0.6 C21-C16-C19-O24 120.8 115.0 5.8 

C36-C32-C34-H35 -179.8 -179.9 0.1 C21-C16-C19-H20 -120.5 -123.5 3.0 

C34-C27-C36-H37 181.5 179.7 1.8 C19-C6-C21-H22 122.2 121.3 0.9 

C39-C25-C38-C47 -174.2 -179.1 4.8 H22-C6-C21-H23 117.0 116.7 0.3 

C41-C38-C39-H40 -179.0 -179.3 0.3 C27-O24-C25-C38 -123.4 -121.3 -2.1 

C43-C39-C41-H42 -179.4 -179.1 -0.3 C38-O24-C25-H26 -118.8 -121.2 2.4 

C47-C43-C45-H46 -179.3 -179.1 -0.2 C28-C25-C27-C36 177.0 181.1 -4.1 

    C45-C41-C43-H44 -178.2 -178.9 0.7 

 

g) Cocaine 

The CGenFF geometry of cocaine was optimized by fitting it against the QM optimized 

geometry. The differences in bond lengths and bond angles were all below 0.03Å and 3o, 

respectively. The dihedral deviations did not exceed 4.5o, except for C10-C15-C19-O21, 

which was 18o. The improper deviations were all below 6.2o (Table 2.22), and these 

deviations indicate the quality of CGenFF structure. 
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Table 2.22. CGenFF equilibrium geometry of cocaine compared to MP2 Level. 

 

Coordinate MP2 CGenFF Diff Coordinate MP2 CGenFF Diff 

Bond lengths/Å Angles/o 

C7-H7 1.09 1.08 0.01 C9-C4-C2 122.1 119.7 2.4 

C7=C6 1.40 1.40 0.00 C2-C4-C5 117.3 119.8 -2.5 

C6-H6 1.09 1.08 0.01 C4-C5-C6 119.6 120.1 -0.4 

C6-C5 1.39 1.40 -0.01 C4-C5-H5 119.2 120.6 -1.4 

C5-H5 1.09 1.08 0.01 C5-C6-C7 120.1 120.1 0.0 

C5=C4 1.40 1.41 -0.01 C5-C6-H6 119.8 120.1 -0.3 

C4-C9 1.40 1.41 -0.01 C4-C9-C8 119.3 120.1 -0.8 

C9-H9 1.09 1.08 0.01 C4-C9-H9 120.3 120.4 -0.1 

C9=C8 1.39 1.40 -0.01 C8-C7-C6 120.1 120.1 0.0 

C8-H8 1.09 1.08 0.01 C6-C7-H7 120.0 119.9 0.0 

C8-C7 1.40 1.40 0.00 C7-C9-C8 120.3 120.1 0.2 

C4-C2 1.48 1.49 -0.01 C9-C8-H8 119.7 120.0 -0.3 

C2=O3 1.22 1.22 0.00 C4-C2-01 112.3 110.4 2.3 

C2-O1 1.38 1.36 0.02 C4-C2-O3 126.2 124.2 2.2 

O1-C10 1.43 1.42 0.01 C2-O1-C10 113.7 113.2 0.5 

C10-H10 1.09 1.12 -0.03 O1-C10-C15 105.1 106.6 -1.5 

C10-C11 1.53 1.52 0.01 O1-C10-C11 110.9 109.4 1.5 

C11-H111 1.09 1.12 -0.03 O1-C10-H10 108.4 111.2 -2.8 

C11-H112 1.09 1.11 -0.02 C10-C15-C14 110.7 113.2 -2.5 

C11-C12 1.52 1.52 0.00 C10-C15-C19 109.9 107.0 2.9 

C12-H12 1.09 1.11 -0.01 C10-C15-H15 110.1 109.4 0.7 

C12-N13 1.53 1.51 0.02 C15-C19-O21 110.4 107.5 2.9 

N13-H13 1.03 1.01 0.02 C15-C19-O20 123.9 123.3 0.6 

N13-C18 1.49 1.51 -0.02 C19-O21-C22 114.4 113.8 0.6 

C18-H181 1.09 1.11 -0.02 O21-C22-H221 104.8 106.9 -2.1 

C18-H182 1.09 1.11 -0.02 O21-C22-H222 109.9 108.0 1.9 

C18-H183 1.09 1.11 -0.02 O21-C22-H223 109.6 107.8 1.8 

N13-C14 1.52 1.52 0.00 O1-C10-C11 110.9 109.4 1.5 

C14-H14 1.09 1.11 -0.02 C10-C11-H112 109.7 109.3 0.4 

C14-C15 1.53 1.54 -0.01 C10-C11-H111 108.9 108.6 0.3 

C15-H15 1.09 1.11 -0.02 C10-C11-C12 111.1 114.0 -2.9 

C15-C10 1.52 1.51 0.01 C11-C12-N13 109.0 112.0 -3.0 

C14-C16 1.53 1.53 0.00 C11-C12-C17 113.2 111.0 2.1 

C16-H161 1.09 1.10 -0.01 C11-C12-H12 111.7 113.7 2.6 

C16-H162 1.09 1.10 -0.01 C14-C12-N13 102.0 103.6 -1.6 

C16-C17 1.56 1.59 -0.03 C12-N13-C18 117.6 115.7 1.8 

C17-H171 1.09 1.10 -0.01 C12-N13-H13 106.2 106.5 -0.3 

C17-H172 1.09 1.10 0.01 N13-C15-C14 108.7 111.5 -2.9 

C17-C12 1.54 1.53 0.01 C15-C14-C16 113.4 112.9 0.5 

C15-C19 1.52 1.51 0.01 C15-C14-H14 110.9 113.2 0.3 

C19=O20 1.22 1.22 0.00 C17-C14-C16 105.3 105.1 0.2 

C19-O21 1.34 1.34 0.00 C14-C16-H161 110.4 112.4 -2.0 

O21-C22 1.46 1.49 -0.03 C14-C16-H162 110.2 112.0 -1.8 

C22-H221 1.09 1.11 -0.02 C16-C12-C17 105.5 105.0 0.5 

C22-H222 1.09 1.11 -0.02 C12-C17-H171 110.6 111.3 -0.7 

C22-H223 1.09 1.11 -0.02 C12-C17-H172 110.4 111.9 -1.5 

    N13-C18-H181 108.3 106.6 1.7 

    N13-C18-H183 110.2 107.8 2.4 

    N13-C18-H182 108.2 106.5 1.7 

Dihedrals/o Impropers/o 

C2-C4-C5-C6 180.2 180.1 -0.1 C9-C2-C4-C5 179.7 179.8 0.1 
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C4-C5-C6-C7 -0.1 0.04 0.14 C6-C4-C5-H5 179.7 179.8 0.1 

C2-C4-C9-C8 179.8 179.9 0.1 C7-C5-C6-H6 180.0 179.8 -0.2 

C5-C4-C2-O1 -177.2 -177.9 -0.7 C8-C4-C9-H9 180.2 -179.9 -0.1 

C4-C2-O1-C10 -175.9 -177.4 -1.5 C8-C6-C7-H7 179.9 179.8 -0.1 

C2-O1-C10-C15 157.7 161.0 3.3 C7-C9-C8-H8 -179.9 -179.9 0 

O1-C10-C15-C14 168.3 167.3 -1 O1-C4-C2-O3 179.6 179.4 -0.2 

C10-C15-C19-O21 147.9 165.9 18 C15-O1-C10-C11 121.7 119.3 -2.4 

C15-C19-O21-C22 179.2 174.7 -4.5 C11-O1-C10-H10 121.2 121.1 -0.1 

C19-O21-C22-H221 179.4 178.8 -0.6 C14-C10-C15-C19 127.1 124.5 -2.6 

O1-C10-C11-C12 -164.7 -162.6 2.1 C14-C10-C15-H15 -125.8 -122.4 3.4 

C10-C11-C12-N13 60.4 57.5 -2.9 O21-C15-C19-O20 178.0 171.8 -6.2 

Impropers/0 H221-O21-C22-H222 119.7 119.5 -0.2 

H161-C14-C16-H162 -118.4 -118.5 -0.1 H221-O21-C22-H223 -119.5 -119.2 0.3 

C16-C12-C17-H171 120.9 119.4 -1.5 C12-C10-C11-H112 124.2 123.8 -0.4 

C16-C12-C17-H172 -121.8 -121.8 0 H112-C10-C11-H111 116.4 115.1 -1.3 

C12-N13-C18-H181 179.4 180.5 1.1 N13-C11-C12-C17 -111.0 -109.1 1.9 

H181-N13-C18-H183 120.4 120.0 -0.4 N13-C11-C12-H12 119.1 121.2 2.1 

H181-N13-C18-H182 -119.4 -119.6 -0.2 C14-C12-N13-C18 130.4 128.3 -2.1 

N13-C15-C14-H14 -118.9 -119.4 -0.5 C14-C12-N13-H13 -110.6 -111.5 -0.9 

C17-C14-C16-H161 -119.6 -119.1 0.5 N13-C15-C14-C16 111.3 110.4 -0.9 

 

h) Clomipramine 

The geometry optimization of tricyclic antidepressants is complicated because of the 

three rings in the structure. Despite multiple iterations, only desipramine fits fairly well 

with the QM structure. In the case of clomipramine and imipramine, a few 

dihedrals/torsions in the tricyclic region still need some optimization. 

In the case of clomipramine, all the bond length and bond angle deviations were 

less than 0.03Å and 4.7o, respectively. All the impropers fit fairly well with the QM data 

(difference <6.1o), except for the CD2-NZ-CG3-CD3, whose difference was 17.4o (Table 

2.23). The dihedrals in the tail region match well with the QM angles, but several 

dihedrals in the tricyclic rings deviated significantly. 
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Table 2.23. CGenFF equilibrium geometry of clomipramine compared to MP2 Level. 
 

Coordinate MP2 CGenFF Diff Coordinate MP2 CGenFF Diff 

Bond lengths/Å Angles/o 

CD1=CG2 1.41 1.41 0 CA-NB-CG 111.4 109.3 2.0 

CG2-CD4 1.40 1.40 0 CG-NB-CB 112.6 111.4 1.2 

CD4-HD4 1.09 1.08 0.01 CG-NB-HB 106.5 107.0 -0.6 

CD4=CE6 1.39 1.40 -0.01 NB-CA-HA11 109.0 107.2 2.2 

CE6-CL 1.74 1.74 0.00 NB-CA-HA12 108.8 107.2 1.6 

CE6-CZ2 1.39 1.40 -0.01 NB-CA-HA13 108.1 106.9 1.1 

CZ2-HZ2 1.09 1.08 0.01 NB-CB-HB21 108.6 107.0 1.6 

CZ2=CE5 1.40 1.40 0 NB-CB-HB22 108.0 107.3 0.9 

CE5-HE5 1.09 1.08 0.01 NB-CB-HB23 109.3 107.0 2.2 

CE5-CD1 1.40 1.40 0 NB-CG-CD 112.5 112.3 0.2 

CD1=CE1 1.50 1.51 -0.01 NB-CG-HG1 105.8 106.0 0.2 

CE1-HE11 1.10 1.11 -0.01 NB-CG-HG2 106.2 105.5 0.6 

CE1-HE12 1.10 1.11 -0.01 CG-CD-CE 110.9 110.3 0.6 

CE1-CE2 1.53 1.55 -0.02 CG-CD-HD1 110.1 110.7 -0.6 

CE2=HE21 1.10 1.11 -0.01 CG-CD-HD2 111.8 111.5 0.2 

CE2-HE22 1.10 1.11 -0.01 CD-CE-NZ 110.2 112.5 -2.3 

CE2-CD2 1.52 1.52 0 CD-CE-HE1 110.0 108.5 1.4 

CD2=CG3 1.41 1.42 -0.01 CD-CE-HE2 109.1 108.7 0.4 

CG3-NZ 1.44 1.43 0.01 CE-NZ-CG2 114.0 117.3 -3.3 

NZ-CG2 1.43 1.43 0.00 CE-NZ-CG3 116.1 114.2 2.2 

CD2-CE3 1.41 1.41 0.00 NZ-CG2-CD1 121.7 117.0 4.7 

CE3-HE3 1.09 1.08 0.01 NZ-CG2-CD4 117.5 118.9 -1.4 

CE3=CZ1 1.39 1.40 -0.01 CG2-CD1-CE1 119.5 119.4 0.1 

CZ1-HZ1 1.09 1.08 0.01 CG2-CD1-CE5 118.3 120.1 -1.8 

CZ1-CE4 1.40 1.40 0.00 CD1-CE1-CE2 110.6 111.9 -1.3 

CE4-HE4 1.09 1.08 0.01 CD1-CE1-HE12 111.8 108.2 3.6 

CE4=CD3 1.39 1.40 -0.01 CD1-CE1-HE11 109.1 109.3 -0.2 

CD3-HD3 1.09 1.08 0.01 CE1-CE2-CD2 116.6 115.3 1.3 

CD3-CG3 1.41 1.41 0.01 CE1-CE2-HE22 108.1 107.1 0.9 

NZ-CE 1.46 1.49 -0.03 CE1-CE2-HE21 108.8 110.7 -1.9 

CE-HE1 1.09 1.12 -0.03 CG2-CD4-CE6 119.6 120.9 -1.4 

CE-HE2 1.10 1.11 -0.01 CG2-CD4-HD4 119.4 119.2 0.2 

CE-CD 1.53 1.54 -0.01 CD4-CE6-CL 119.3 119.4 -0.1 

CD-HD1 1.10 1.11 -0.01 CD4-CE6-CZ2 120.7 119.7 0.6 

CD-HD2 1.09 1.11 -0.02 CE5-CE6-CZ2 119.0 119.9 -0.9 

CD-CG 1.52 1.53 -0.01 CE6-CZ2-HZ2 120.1 120.2 -0.1 

CG-HG1 1.09 1.10 -0.02 CZ2-CD1-CE5 121.6 120.1 1.5 

CG-HG2 1.09 1.10 -0.01 CD1-CE5-HE5 119.3 119.9 -0.6 

CG-NB 1.51 1.51 0 CD2-NZ-CG3 125.5 122.3 3.2 

NB-HB 1.03 1.05 -0.02 NZ-CG3-CD3 114.6 117.1 -2.5 

NB-CA 1.50 1.51 -0.01 CG3-CD3-CE4 121.6 121.3 0.3 

CA-HA11 1.09 1.11 -0.02 CG3-CD3-HD3 117.9 119.5 -1.6 

CA-HA12 1.09 1.11 -0.02 CZ1-CD3-CE4 119.1 119.7 -0.6 

CA-HA13 1.09 1.11 -0.02 CD3-CE4-HE4 120.2 120.4 -0.2 

NB-CB 1.50 1.51 -0.01 CE4-CZ1-CE3 119.4 120.0 -0.6 

CB-HB21 1.09 1.11 -0.02 CE4-CZ1-HZ1 120.5 120.2 0.3 

CB-HB22 1.09 1.11 -0.02 CD2-CZ1-CE3 122.6 120.8 0.6 

CB-HB23 1.09 1.11 -0.02 CZ1-CE3-HE3 119.1 119.4 -0.3 

Dihedrals/o Impropers/o 

CG-NB-CA-HA11 -176.7 -178.5 -1.8 CA-CG-NB-CB 125.5 121.4 -4.1 

CG-NB-CB-HB21 -178 -60.3 117.7 CA-CG-NB-HB -117.2 -118.8 -1.6 
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HB-NB-CG-CD 54.8 46.6 -8.2 HA11-NB-CA-HA12 120.3 120.0 -0.3 

NB-CG-CD-CE -167.1 -168.3 -1.2 HA11-NB-CA-HA13 -119.8 -120.3 -0.5 

CG-CD-CE-NZ -182 -62.3 119.7 HB21-NB-CB-HB22 119.6 120.1 0.5 

CD-CE-NZ-CG2 -71.3 109.1 180.4 HB21-NB-CB-HB23 -120.1 -120.0 0.1 

CG2-CE-NZ-CG3 215.2 144.2 -71 CD-NB-CG-HG1 -121.2 -121.3 -0.1 

CE-NZ-CG2-CD1 -77.9 59.7 137.6 HG1-NB-CG-HG2 -115.1 -115.9 -0.8 

NZ-CG2-CD1-CE1 -9.3 33.4 42.7 CE-CG-CD-HD1 119.7 118.4 -1.3 

CG2-CD1-CE1-CE2 -64.6 44.7 109.3 HD1-CG-CD-HD2 119.8 120.9 1.1 

CD1-CE1-CE2-CD2 71.3 -28.2 -99.5 NZ-CD-CE-HE1 118.4 123.0 4.6 

NZ-CG2-CD4-CE6 183.3 144.9 -38.4 HE1-CD-CE-HE2 -117.6 -114.1 3.5 

CG2-CD4-CE6-CL 179.7 190.5 10.8 CD1-NZ-CG2-CD4 176.3 206.3 30 

NZ-CG3-CD3-CE4 178.7 198.2 19.5 CE1-CG2-CD1-CE5 -173.6 -179.7 -6.1 

CG3-CD3-CE4-CZ1 0.9 -1.2 -2.1 CE2-CD1-CE1-HE12 122.5 118.9 -3.6 

CD3-CE4-CZ1-CE3 -176.7 -178.5 -1.8 CE2-CD1-CE1-HE11 -119.9 -123.7 -3.8 

Impropers/o CD2-CE1-CE2-HE22 -123.4 -120.4 -3.0 

CE4-CG3-CD3-HD3 177.5 179.8 2.3 CD2-CE1-CE2-HE21 121.8 122.9 1.1 

CZ1-CD3-CE4-HE4 178.8 180.6 1.8 CE6-CG2-CD4-HD4 183.4 180.0 -3.4 

CE3-CE4-CZ1-HZ1 179.3 181.5 2.2 CL-CD4-CE6-CZ2 178.9 173.3 -5.6 

CD2-CZ1-CE3-HE3 -178.2 -178.9 -0.7 CE5-CE6-CZ2-HZ2 182.1 176.7 -5.4 

CD2-NZ-CG3-CD3 181.3 163.9 -17.4 CZ2-CD1-CE5-HE5 -179.0 -179.5 -0.5 

 

i) Imipramine 

The CGenFF geometry fits fairly well with the QM structure, but some angles and 

dihedrals in the rings still deviated significantly. All the bond length deviations were less 

than 0.03Å, whereas most of the angle deviations were less than 4o, except five angles in 

the rings (NZ-CG2-CD4, CG2-CD1-CE1, CD1-CE1-CE2, CG3-CE2-CD2, and CE2-

CD2-CE3), which varied between 4-9o (Table 2.24). All the dihedrals and impropers 

match well with the QM torsions, except a few dihedrals (CE-NZ-CG2-CD1, NZ-CG2-

CD1-CE1, CG2-CD1-CE1-CE2, and NZ-CG2-CD4-CE6) in the rings. 
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Table 2.24. CGenFF equilibrium geometry of imipramine compared to MP2 level. 
 

Coordinate MP2 CGenFF Diff Coordinate MP2 CGenFF Diff 

Bond lengths/Å Angles/o 

CD1=CG2 1.41 1.44 -0.03 CA-CG-NB 111.4 110.97 0.4 

CG2-CD4 1.40 1.41 -0.01 CG-NB-CB 112.5 111.96 0.5 

CD4-HD4 1.09 1.08 0.01 CG-NB-HB1 106.4 106.84 -0.4 

CD4=CE6 1.40 1.40 0.00 NB-CA-HA11 109.0 106.85 3.8 

CE6-HE6 1.09 1.08 0.01 NB-CA-HA12 108.8 106.88 1.9 

CE6-CZ2 1.40 1.39 0.01 NB-CA-HA13 108.1 106.94 1.2 

CZ2-HZ2 1.09 1.08 0.01 NB-CB-HB21 108.6 106.79 1.8 

CZ2=CE5 1.40 1.39 0.01 NB-CB-HB22 108 107.04 0.9 

CE5-HE5 1.09 1.08 0.01 NB-CB-HB23 109.3 107.26 2.0 

CE5-CD1 1.40 1.40 0.00 NB-CG-CD 112.5 111.09 1.4 

CD1-CE1 1.50 1.53 -0.03 NB-CG-HG1 105.8 105.77 0.1 

CE1-HE11 1.10 1.11 -0.01 NB-CG-HG2 106.1 106.18 -0.1 

CE1-HE12 1.10 1.11 -0.01 CG-CD-CE 110.6 110.75 -0.1 

CE1-CE2 1.53 1.55 -0.02 CG-CD-HD1 111.9 111.27 0.6 

CE2-HE21 1.10 1.11 -0.01 CG-CD-HD2 110.3 110.4 -0.1 

CE2-HE22 1.10 1.11 -0.01 CD-CE-NZ 110.1 108.33 1.8 

CE2-CD2 1.52 1.51 0.01 CD-CE-HE1 109.0 106.65 2.3 

CD2=CG3 1.41 1.42 -0.01 CD-CE-HE2 109.9 112.57 -2.7 

CG3-NZ 1.44 1.43 0.01 CE-NZ-CG2 114.1 116.28 -2.2 

NZ-CG2 1.43 1.44 -0.01 CE-NZ-CG3 115.8 113.65 2.1 

CD2-CE3 1.41 1.40 0.01 NZ-CG2-CD1 121.4 118.75 2.6 

CE3-HE3 1.09 1.08 0.01 NZ-CG2-CD4 118.0 122.57 -4.6 

CE3=CZ1 1.39 1.40 -0.01 CG2-CD1-CE1 119.5 123.74 -4.2 

CZ1-HZ1 1.09 1.08 0.01 CG2-CD1-CE5 118.5 120.23 -1.7 

CZ1-CE4 1.40 1.40 0.00 CD1-CE1-CE2 110.4 119.20 -8.8 

CE4-HE4 1.09 1.08 0.01 CD1-CE1-HE12 112.1 108.46 3.6 

CE4=CD3 1.39 1.40 -0.01 CD1-CE1-HE11 111.5 109.89 1.6 

CD3-HD3 1.09 1.08 0.01 CE1-CE2-CD2 116.7 113.04 3.7 

CD3-CG3 1.41 1.41 0.00 CE1-CE2-HE22 108.8 108.91 -0.1 

NZ-CE 1.46 1.43 0.03 CE1-CE2-HE21 108.0 107.41 0.6 

CE-HE1 1.10 1.11 -0.01 CG2-CD4-CE6 120.3 121.61 -1.3 

CE-HE2 1.10 1.12 -0.02 CG2-CD4-HD4 118.4 120.78 -2.4 

CE-CD 1.53 1.55 -0.02 CG3-CE2-CD2 126.1 117.27 8.8 

CD-HD1 1.09 1.11 -0.02 CE2-CD2-CE3 116.5 121.76 -5.3 

CD-HD2 1.10 1.11 -0.01 CD2-CE3-HE3 118.2 120.05 -1.8 

CD-CG 1.52 1.53 -0.01 CE3-CZ1-HZ1 120 119.85 0.1 

CG-HG1 1.09 1.10 -0.01 CZ1-CE4-HE4 120.6 119.85 0.7 

CG-HG2 1.09 1.10 -0.01 CD4-CE6-HE6 120.1 120.32 -0.2 

NB-CA 1.50 1.51 -0.01 CD4-CE6-CZ2 119.7 119.83 -0.1 

CA-HA11 1.09 1.11 -0.02 CE5-CE6-CZ2 120 119.82 0.2 

CA-HA12 1.09 1.11 -0.02 CE6-CZ2-HZ2 120.2 120.23 -0.1 

CA-HA13 1.09 1.11 -0.02 CZ2-CD1-CE5 121.1 120.81 0.3 

NB-CB 1.50 1.51 -0.01 CD1-CE5-HE5 119.2 119.55 -0.3 

CB-HB21 1.09 1.11 -0.02 CG3-CD3-CE4 121.6 120.58 1.0 

CB-HB22 1.09 1.11 -0.02 CZ1-CD3-CE4 119.2 119.92 -0.7 

CB-HB23 1.09 1.11 -0.02 CE4-CZ1-CE3 119.4 120.07 -0.7 

CG-NB 1.51 1.51 0.00 CD2-CZ1-CE3 122.6 119.83 2.8 

NB-HB1 1.03 1.04 -0.01 

Dihedrals/o Impropers/o 

CG-NB-CA-HA11 -176.9 -178.0 1.1 CA-CG-NB-CB 125.6 123.9 1.7 

CG-NB-CB-HB21 180.9 178.6 2.3 CA-CG-NB-HB1 -117.2 -118.1 0.9 
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HB1-NB-CG-CD 54.4 41.9 12.5 HA11-NB-CA-HA12 120.3 119.5 0.8 

NB-CG-CD-CE -167.3 -178.6 11.3 HA11-NB-CA-HA13 -119.9 -120.3 0.4 

CG-CD-CE-NZ 177.6 190.4 12.8 HB21-NB-CB-HB22 119.6 120.2 -0.6 

CD-CE-NZ-CG2 -70.7 -72.7 2.0 HB21-NB-CB-HB23 -120.2 -119.4 -0.8 

CE-NZ-CG2-CD1 283.5 149.7 133.8 CD-NB-CG-HG1 -121.2 -120.2 -1 

NZ-CG2-CD1-CE1 -9.7 27.5 -37.2 HG1-NB-CG-HG2 -115.1 -116.2 1.1 

CG2-CD1-CE1-CE2 -64.5 -22.2 -42.3 CE-CG-CD-HD1 -120.4 -119.1 -1.3 

CD1-CE1-CE2-CD2 71.3 62.6 8.7 HD1-CG-CD-HD2 -120.1 -119.6 -0.5 

NZ-CG2-CD4-CE6 182.7 161.3 21.4 NZ-CD-CE-HE1 -124.1 -126.0 1.9 

CG2-CD4-CE6-CZ2 1.2 2.1 -0.9 HE1-CD-CE-HE2 -117.5 -116.7 -0.8 

CE3-CZ1-CE4-CD3 -0.2 -0.6 0.4 CD1-NZ-CG2-CD4 176.8 193.2 16.4 

CE2-CD2-CE3-CZ1 183.6 187.4 -3.8 CE1-CG2-CD1-CE5 187.0 170.6 9.4 

CD2-CE3-CZ1-CE4 -1.3 0.7 -2 CE2-CD1-CE1-HE12 122.5 122.4 0.1 

Impropers/o CE2-CD1-CE1-HE11 -119.7 -122.0 2.3 

CG3-CE4-CD3-HD3 182.7 179.1 3.6 CD2-CE1-CE2-HE22 121.8 121.8 0 

CD3-CZ1-CE4-HE4 180.1 179.4 0.7 CD2-CE1-CE2-HE21 236.6 236.6 0 

CE4-CE3-CZ1-HZ1 180.6 179.0 1.6 CE6-CG2-CD4-HD4 183.4 178.5 4.9 

CG2-CE-NZ-CG3 -144.1 -133.3 -10.8 CZ2-CD1-CE5-HE5 180.4 182.5 -2.1 

CG3-CE2-CD2-CE3 181.7 176.8 4.9 CE5-CE6-CZ2-HZ2 182.2 177.0 5.2 

CZ1-CD2-CE3-HE3 178.3 179.1 -0.8 CZ2-CD4-CE6-HE6 180.0 178.3 1.7 

  

j) Desipramine 

Desipramine CGenFF geometry fits better with the QM geometry compared to 

clomipramine and imipramine. All the bond length and angle deviations were less than 

0.03Å and 3.6o, respectively. Most of the dihedral and improper deviations were less than 

9.4o, except for the CE-NZ-CG3-CD2 and the NZ-CG2-CD4-CE6 in the tricyclic region, 

which were 19.1o and 24.1o (Table 2.25), respectively. 
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Table 2.25. CGenFF equilibrium geometry of desipramine compared to MP2 Level. 

 

Coordinate MP2 CGenFF Diff Coordinate MP2 CGenFF Diff 

Bond lengths/Å Angles/o 

CD1=CG2 1.41 1.41 0 CA-NB-CG 115.1 116.15 1.05 

CG2-CD4 1.4 1.4 0 CG-NB-HB1 109.0 108.50 -0.5 

CD4-HD4 1.09 1.08 -0.01 CG-NB-HB2 108.4 107.54 -0.86 

CD4=CE6 1.39 1.4 0.01 NB-CA-HA11 108.6 106.71 -1.89 

CE6-HE6 1.09 1.08 -0.01 NB-CA-HA12 108.9 106.87 -2.03 

CE6-CZ2 1.4 1.39 -0.01 NB-CA-HA13 108.1 106.73 -1.37 

CZ2-HZ2 1.09 1.08 -0.01 NB-CG-CD 111.5 112.12 0.62 

CZ2=CE5 1.39 1.4 0.01 NB-CG-HG1 106.2 105.19 -1.01 

CE5-HE5 1.09 1.08 -0.01 NB-CG-HG2 106.0 105.78 -0.22 

CE5-CD1 1.41 1.4 -0.01 CG-CD-CE 110.7 109.15 -1.55 

CD1-CE1 1.51 1.52 0.01 CG-CD-HD1 111.0 110.74 -0.26 

CE1-HE11 1.1 1.11 0.01 CG-CD-HD2 110.7 110.54 -0.16 

CE1-HE12 1.1 1.11 0.01 CD-CE-NZ 109.9 106.7 -3.2 

CE1-CE2 1.53 1.55 0.02 CD-CE-HE1 110.0 110.1 0.1 

CE2-HE21 1.1 1.11 0.01 CD-CE-HE2 109.1 108.79 -0.31 

CE2-HE22 1.1 1.11 0.01 CE-NZ-CG2 115.7 115.9 0.2 

CE2-CD2 1.5 1.51 0.01 CE-NZ-CG3 114.2 115.7 1.5 

CD2=CG3 1.41 1.4 -0.01 NZ-CG3-CD2 121.5 120.6 -0.9 

CG3-NZ 1.44 1.44 0 NZ-CG2-CD1 125.5 121.9 -3.6 

NZ-CG2 1.43 1.43 0 CG3-CD2-CE2 119.5 121.9 2.4 

CD2-CE3 1.4 1.4 0 CG3-CD2-CE3 118.4 119.3 0.9 

CE3-HE3 1.09 1.08 -0.01 CD2-CE2-CE1 110.4 109.33 -1.07 

CE3=CZ1 1.4 1.4 0 CE2-CE1-HE12 108.8 106.67 -2.13 

CZ1-HZ1 1.09 1.08 -0.01 CE2-CE1-HE11 108.0 109.83 1.83 

CZ1-CE4 1.4 1.4 0 CD2-CE2-HE22 112.1 111.91 -0.19 

CE4-HE4 1.09 1.08 -0.01 CD2-CE2-HE21 109.2 110.34 1.14 

CE4=CD3 1.4 1.4 0 CE2-CE1-CD1 116.8 114.27 -2.53 

CD3-HD3 1.09 1.08 -0.01 CD1-NZ-CG2 122.1 121.35 -0.75 

CD3-CG3 1.4 1.39 -0.01 NZ-CG2-CD4 114.6 115.9 1.3 

NZ-CE 1.46 1.46 0.00 CG2-CD4-CE6 121.6 121.4 -0.2 

CE-HE1 1.09 1.12 0.03 CG2-CD4-HD4 117.8 119.7 1.9 

CE-HE2 1.1 1.12 0.02 CD4-CE6-CZ2 119.1 119.54 0.44 

CE-CD 1.53 1.54 0.01 CD4-CE6-HE6 120.2 120.45 0.25 

CD-HD1 1.09 1.11 0.02 CE6-CZ2-CE5 119.4 119.75 0.35 

CD-HD2 1.1 1.11 0.01 CE6-CZ2-HZ2 120.6 120.26 -0.34 

CD-CG 1.52 1.53 0.01 CD1-CZ2-CE5 122.6 120.95 -1.65 

CG-HG1 1.09 1.1 0.01 CZ2-CE5-HE5 119.1 119.27 0.17 

CG-HG2 1.09 1.1 0.01 CG3-CD3-HD3 118.4 118.98 0.58 

NB-CA 1.5 1.51 0.01 CD3-CE4-CZ1 119.6 119.67 0.07 

CA-HA11 1.09 1.11 0.02 CG3-CD3-CE4 120.3 120.5 0.2 

CA-HA12 1.09 1.11 0.02 CD3-CE4-HE4 120.1 120.32 0.22 

CA-HA13 1.09 1.11 0.02 CE3-CE4-CZ1 120.0 119.9 -0.1 

CG-NB 1.52 1.51 -0.01 CE4-CZ1-HZ1 120.2 120.15 -0.05 

NB-HB1 1.03 1.01 -0.02 CZ1-CD2-CE3 121.2 120.40 -0.8 

NB-HB2 1.03 1.01 -0.02 CD2-CE3-HE3 119.2 119.95 0.75 

Dihedrals/o Impropers/o 

CG-NB-CA-HA11 176.1 176 -0.1 CA-CG-NB-HB1 122.6 122.9 0.3 

HB1-NB-CG-CD 189.1 188.9 -0.2 HB1-CG-NB-HB2 114.8 113.6 -1.2 

NB-CG-CD-CE 177.3 177 -0.3 HA11-NB-CA-HA12 120.3 120.1 -0.2 

CG-CD-CE-NZ 174.6 174 -0.6 HA11-NB-CA-HA13 -119.8 -119.9 -0.1 

CD-CE-NZ-CG3 -70.7 -82.4 -11.7 CD-NB-CG-HG1 237.3 238.6 1.3 
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CE-NZ-CG3-CD2 -76 -56.9 19.1 HG1-NB-CG-HG2 -115.5 -115.4 0.1 

NZ-CG3-CD2-CE2 -9.8 -19.2 -9.4 CE-CG-CD-HD1 119.7 120.1 0.4 

CG3-CD2-CE2-CE1 -64.3 -55.8 8.5 HD1-CG-CD-HD2 120 119.9 -0.1 

CD2-CE2-CE1-CD1 71.2 74 2.8 NZ-CD-CE-HE1 118.4 122.3 3.9 

NZ-CG2-CD4-CE6 178.7 154.6 -24.1 HE1-CD-CE-HE2 117.6 116.2 -1.4 

CG2-CD4-CE6-CZ2 0.7 2 1.3 CD2-NZ-CG3-CD3 176.9 165.8 -11.1 

NZ-CG3-CD3-CE4 -177.3 -164.3 13 CE2-CG3-CD2-CE3 187 182.8 -4.2 

CG3-CD3-CE4-CZ1 1.1 -0.3 -1.4 HE11-CE2-CE1-HE12 -114.7 -114.6 0.1 

CD-CG-NB-CA 66 66 0 CZ1-CD3-CE4-HE4 180 180.6 0.6 

CD4-CE6-CZ2-CE5 -0.1 1.8 1.9 CE4-CG3-CD3-HD3 183.4 180.3 3.1 

CG2-NZ-CE-CD 145 145 0 CD1-CE2-CE1-HE11 -123.4 -123.4 0 

Impropers/o CE1-CD2-CE2-HE21 -119.7 -118.1 -1.6 

CZ1-CD2-CE3-HE3 180.2 178.6 1.6 CD1-NZ-CG2-CD4 -178.5 -159.5 19 

CD1-CZ2-CE5-HE5 181.7 177.0 4.7 CE6-CG2-CD4-HD4 177.4 181.1 3.7 

CE3-CE4-CZ1-HZ1 182.1 181.2 0.9 CE5-CE6-CZ2-HZ2 179.3 176.7 -2.6 

CG2-CE-NZ-CG3 143.7 132.6 8.0 CZ2-CD4-CE6-HE6 178.9 178.5 -0.4 

 

k) Fluoxetine (R) 

The optimized CGenFF geometry was in excellent correlation with the QM optimized 

geometry. The distance deviations were all less than 0.04Å, and all the angles deviated 

less than 3.1o; whereas the dihedral and improper deviations were all less than 7.2o and 

5.1o, respectively (Table 2.26). 
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Table 2.26. CGenFF equilibrium geometry of fluoxetine (R) compared to MP2 Level. 

 

Coordinate MP2 CGenFF Diff Coordinate MP2 CGenFF Diff 

Bond lengths/Å Angles/o 

C1-F12 1.35 1.34 -0.01 C5-C1-F12 111.6 111.4 -0.2 

C1-F13 1.35 1.34 -0.01 F12-C1-F13 107.4 106.8 -0.6 

C1-F14 1.35 1.34 -0.01 F12-C1-F14 107.3 106.9 -0.4 

C1-C5 1.50 1.54 0.04 C1-C5-C6 120.0 120.7 0.7 

C5=C6 1.39 1.41 0.02 C1-C5-C13 119.7 120.8 1.1 

C6-H7 1.09 1.08 -0.01 C5-C6-C8 120.5 120.8 0.3 

C6-C8 1.40 1.40 0 C5-C6-H7 120.0 120.7 0.7 

C8-H9 1.08 1.08 0 C6-C8-H9 119.6 117.6 -2 

C8=C10 1.40 1.41 0.01 C8-C10-O15 125.6 124.1 -1.5 

C10-C11 1.40 1.40 0 C8-C10-C11 120.4 118.6 -1.8 

C11-H12 1.09 1.08 -0.01 C13-C11-C10 120.1 121.2 1.1 

C11-C13 1.39 1.40 0.01 C10-C11-H12 118.7 118.9 0.2 

C13-H14 1.09 1.08 -0.01 C11-C13-C5 119.6 120.5 0.9 

C13-C5 1.40 1.41 0.01 C5-C13-H14 120.3 120.8 0.5 

C10-O15 1.39 1.42 0.03 C10-O15-C16 119.3 120.1 0.8 

O15-C16 1.44 1.43 -0.01 O15-C16-C18 113.0 115.7 2.7 

C16-H17 1.10 1.12 0.02 O15-C16-C29 109.7 109.4 -0.3 

C16-C18 1.51 1.52 0.01 O15-C16-H17 101.6 104.7 3.1 

C18-C19 1.40 1.41 0.01 C16-C29-C32 109.1 108.1 -1 

C19-H20 1.09 1.08 -0.01 C16-C29-H30 110.4 109.3 -1.1 

C19-C21 1.40 1.40 0 C16-C29-H31 108.7 108.7 0 

C21-H22 1.09 1.08 -0.01 C29-C32-N35 109.8 109.0 -0.8 

C21=C23 1.40 1.40 0 C29-C32-H33 112.1 112.3 0.2 

C23-H24 1.09 1.08 -0.01 C29-C32-H34 112.6 111.2 -1.4 

C23-C25 1.40 1.40 0 C32-N35-H36 111.9 110.1 -1.8 

C25-H26 1.09 1.08 -0.01 C32-N35-H37 111.6 109.1 -2.5 

C25-C27 1.39 1.40 0.01 C32-N35-H38 110.7 108.0 -2.7 

C27-H28 1.09 1.08 -0.01 C16-C18-C27 118.0 118.0 0 

C27-C18 1.40 1.41 0.01 C16-C18-C19 122.4 123.3 0.9 

C16-C29 1.54 1.55 0.01 C18-C19-C21 120.2 120.4 0.2 

C29-H30 1.09 1.11 0.02 C18-C19-H20 121.3 121.5 0.2 

C29-H31 1.10 1.11 0.01 C19-C21-C23 120.2 120.1 -0.1 

C29-C32 1.52 1.53 0.01 C19-C21-H22 119.7 120.2 0.5 

C32-H33 1.09 1.10 0.01 C21-C23-C25 119.7 119.9 0.2 

C32-H34 1.09 1.10 0.01 C21-C23-H24 120.1 120.1 0 

C32-N35 1.52 1.51 -0.01 C27-C23-C25 120.3 120.0 -0.3 

N35-H36 1.03 1.04 0.01 C23-C25-H26 120.0 120.1 0.1 

N35-H37 1.03 1.04 0.01 C25-C18-C27 120.1 120.8 0.7 

N35-H38 1.03 1.04 0.01 C18-C27-H28 119.6 119.4 -0.2 

Dihedrals/o Impropers/o 

F12-C1-C5-C6 90.7 86.9 -3.8 C5-F12-C1-F13 122.4 123.1 0.7 

C1-C5-C6-C8 -177.5 -176.9 0.6 F13-F12-C1-F14 115.4 113.6 -1.8 

C5-C6-C8-C10 0.6 0.5 -0.1 C6-C1-C5-C13 -176.1 -175.2 0.9 

C6-C8-C10-O15 -179.5 -183.7 -4.2 C8-C5-C6-H7 -179.7 -181.3 -1.6 

C8-C10-O15-C16 21.4 17.9 -3.5 C10-C6-C8-H9 176.5 177.5 1 

C10-O15-C16-C18 -70.6 -68.2 2.4 O15-C8-C10-C11 179.3 184.4 5.1 

O15-C16-C29-C32 42.5 45.5 3 C13-C10-C11-H12 177.8 177.8 0 

C16-C29-C32-N35 177.5 181.7 4.2 C11-C5-C13-H14 178.8 181.3 2.5 

C29-C32-N35-H36 179.4 183.1 3.7 C18-O15-C16-C29 130 132.3 2.3 

O15-C16-C18-C27 -34.5 -41.7 -7.2 C29-O15-C16-H17 113.7 113.6 -0.1 

C16-C18-C19-C21 177.9 178.9 1 C32-C16-C29-H30 -121 -120.8 0.2 
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C18-C19-C21-C23 -0.6 -0.3 0.3 H30-C16-C29-H31 -118.4 -118.6 -0.2 

C19-C21-C23-C25 0.05 -0.11 -0.16 N35-C29-C32-H33 117.8 118.9 1.1 

Impropers/o H33-C29-C32-H34 123.6 121.1 2.5 

C25-C18-C27-H28 -179 -178.9 0.1 H36-C32-N35-H37 120.7 121.2 0.5 

C23-C19-C21-H22 -179.6 -178.8 0.8 H36-C32-N35-H38 -119.8 -119.8 0 

C25-C21-C23-H24 179.9 180.1 0.2 C27-C16-C18-C19 -176.8 -178.2 -1.4 

C27-C23-C25-H26 180.3 180 -0.3 C21-C18-C19-H20 179.7 179.9 0.2 

 

l) Fluoxetine (S) 

Similar to the R-fluoxetine, the CGenFF geometry correlates well with the QM geometry. 

All the bond length and bond angle deviations were below 0.02Å and 2.7o, respectively. 

Except for the dihedrals C16-C29-C32-N35 and O15-C16-C18-C27 (8.5o and 13.2o, 

respectively), the remaining dihedral deviations were all less than 2.8o. The deviations of 

all the impropers were below 3.8o (Table 2.27). 
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Table 2.27. CGenFF equilibrium geometry of fluoxetine (S) compared to MP2 Level. 

 

Coordinate MP2 CGenFF Diff Coordinate MP2 CGenFF Diff 

Bond lengths/Å Angles/o 

C1-F12 1.36 1.34 0.02 C5-C1-F12 110.8 110.8 0 

C1-F13 1.35 1.34 0.01 F12-C1-F13 107.2 106.7 -0.5 

C1-F14 1.35 1.34 0.01 F12-C1-F14 107.2 106.7 -0.5 

C1-C5 1.50 1.52 -0.02 C1-C5-C6 119.9 120.8 0.9 

C5=C6 1.39 1.41 -0.02 C1-C5-C13 119.6 120.8 1.2 

C6-H7 1.09 1.08 0.01 C5-C6-C8 120.2 120.8 0.6 

C6-C8 1.40 1.40 0.00 C5-C6-H7 120.0 120.6 0.6 

C8-H9 1.09 1.08 0.01 C6-C8-H9 119.3 118.3 -1 

C8=C10 1.40 1.40 0.0 C8-C10-O15 124.3 122.8 -1.5 

C10-C11 1.40 1.40 0 C8-C10-C11 120.6 119.0 -1.6 

C11-H12 1.09 1.08 0.01 C13-C11-C10 119.9 120.9 1 

C11-C13 1.39 1.40 -0.01 C10-C11-H12 118.9 119.2 0.3 

C13-H14 1.09 1.08 0.01 C11-C13-C5 119.7 120.8 1.1 

C13-C5 1.40 1.41 -0.01 C5-C13-H14 120.2 120.8 0.67 

C10-O15 1.38 1.40 -0.01 C10-O15-C16 117.9 118.8 0.9 

O15-C16 1.43 1.43 0.00 O15-C16-C18 107.8 109.0 1.2 

C16-H17 1.10 1.12 -0.02 O15-C16-C29 109.1 108.2 -0.9 

C16-C18 1.51 1.52 -0.01 O15-C16-H17 110.9 111.2 0.3 

C18-C19 1.40 1.41 -0.01 C16-C29-C32 108.9 108.3 -0.6 

C19-H20 1.09 1.08 0.01 C16-C29-H30 108.3 110.1 1.8 

C19-C21 1.39 1.40 -0.01 C16-C29-H31 110.1 108.3 -1.8 

C21-H22 1.09 1.08 0.01 C29-C32-N35 110.1 109.2 -0.92 

C21=C23 1.40 1.40 0 C29-C32-H33 111.8 111.7 -0.1 

C23-H24 1.09 1.08 0.01 C29-C32-H34 111.9 112.1 0.2 

C23-C25 1.40 1.40 0 C32-N35-H36 112.0 109.9 -2.05 

C25-H26 1.09 1.08 0.01 C32-N35-H37 111.1 108.7 -2.4 

C25-C27 1.40 1.40 0.00 C32-N35-H38 111.0 108.3 -2.7 

C27-H28 1.09 1.08 0.01 C16-C18-C27 121.9 123 1.1 

C27-C18 1.40 1.41 -0.01 C16-C18-C19 118.4 118.5 0.15 

C16-C29 1.54 1.54 0.00 C18-C19-C21 120.3 120.7 0.44 

C29-H30 1.10 1.11 -0.01 C18-C19-H20 120.2 120.0 -0.2 

C29-H31 1.10 1.11 -0.01 C19-C21-C23 120.0 120.0 0 

C29-C32 1.52 1.53 -0.01 C19-C21-H22 119.9 120.1 0.24 

C32-H33 1.09 1.10 -0.01 C21-C23-C25 119.8 119.9 0.16 

C32-H34 1.09 1.10 -0.01 C21-C23-H24 120.0 120.0 0.05 

C32-N35 1.52 1.51 0.01 C27-C23-C25 120.4 120.0 -0.39 

N35-H36 1.03 1.04 -0.01 C23-C25-H26 120.0 119.9 -0.05 

N35-H37 1.03 1.04 -0.01 C25-C18-C27 119.8 120.7 0.89 

N35-H38 1.03 1.04 -0.01 C18-C27-H28 119.9 120.0 0.1 

Dihedrals/o Impropers/o 

F12-C1-C5-C6 -90.4 -88.5 1.9 C5-F12-C1-F13 122 123.2 1.2 

C1-C5-C6-C8 176.1 178 1.9 F13-F12-C1-F14 115.8 113.5 -2.3 

C5-C6-C8-C10 -0.6 -1.44 -0.84 C6-C1-C5-C13 176.6 176.4 -0.2 

C6-C8-C10-O15 179.3 176.5 -2.8 C8-C5-C6-H7 178.7 178 -0.7 

C8-C10-O15-C16 29.6 28.8 -0.8 C10-C6-C8-H9 177.9 178.3 0.4 

C10-O15-C16-C18 182.9 184 1.1 O15-C8-C10-C11 181.7 184.8 3.1 

O15-C16-C29-C32 50.6 51.7 1.1 C13-C10-C11-H12 177.6 178.4 0.8 

C16-C29-C32-N35 173 181.5 8.5 C11-C5-C13-H14 180.4 182 1.6 

C29-C32-N35-H36 179.1 179.7 0.6 C18-O15-C16-C29 -120.7 -116.7 4 

O15-C16-C18-C27 -16.6 -3.4 13.2 C29-O15-C16-H17 240 236.2 -3.8 

C16-C18-C19-C21 177.8 178.8 1 C32-C16-C29-H30 120.9 122.7 1.8 
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C18-C19-C21-C23 -0.6 0.43 1.03 H30-C16-C29-H31 118.3 117.4 -0.9 

C19-C21-C23-C25 1 0.5 -0.5 N35-C29-C32-H33 118.1 119.3 1.2 

Impropers/o H33-C29-C32-H34 123.2 121.3 1.9 

C25-C18-C27-H28 -176.8 -179.0 -2.2 H36-C32-N35-H37 120.3 120.6 0.3 

C23-C19-C21-H22 179.6 178.9 -0.7 H36-C32-N35-H38 -120.3 -120.2 0.1 

C25-C21-C23-H24 178.5 178.5 0.0 C27-C16-C18-C19 -177.3 -180.2 -2.9 

C27-C23-C25-H26 179.8 178.7 -1.1 C21-C18-C19-H20 177.4 178.5 1.1 

 

m) Citalopram (R) 

The CGenFF optimized structure matches reasonably well with the QM optimized 

structure. The deviations of all the bond lengths were less than 0.03Å. The bond angle 

deviations were less than 2.7o, except for the angles C6-C9-C24 and C6-C9-C12, which 

were 4.8o and 4.7o, respectively. The dihedrals and impropers fit reasonably well with the 

QM, except one dihedral angle C6-C9-C24-C29 (deviation was 33.7o)(Table 2.28). 
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Table 2.28. CGenFF equilibrium geometry of citalopram (R) compared to MP2 Level. 

 

Coordinate MP2 CGenFF Diff Coordinate MP2 CGenFF Diff 

Bond lengths/Å Angles/o 

N1Ξ C2 1.18 1.18 0.00 N1-C2-C3 178.9 178.8 -0.1 

C2-C3 1.43 1.44 -0.01 C2-C3-C4 119.4 120.2 0.8 

C3=C4 1.41 1.40 0.01 C2-C3-C8 119.4 120.0 0.6 

C4-H4 1.09 1.08 0.01 C3-C4-C5 120.1 120.4 0.3 

C4-C5 1.40 1.40 0.00 C3-C4-H4 119.3 120.2 0.9 

C5-H5 1.09 1.08 0.01 C4-C5-C6 118.7 119.9 1.2 

C5=C6 1.40 1.39 0.01 C4-C5-H5 119.7 119.3 -0.4 

C6-C7 1.40 1.41 -0.01 C5-C6-C9 131.2 132.6 1.4 

C7=C8 1.39 1.39 0.00 C5-C6-C7 120.8 119.2 -1.6 

C8-H8 1.09 1.08 0.01 C7-C8-C3 117.8 119.5 1.7 

C8-C3 1.41 1.40 0.01 C6-C9-C24 111.0 106.2 -4.8 

C6-C9 1.51 1.52 -0.01 C6-C9-C12 115.7 111.0 -4.7 

C9-O11 1.45 1.43 0.02 C6-C9-O11 102.0 103.3 1.3 

O11-C10 1.44 1.43 0.01 C9-O11-C10 106.7 109.3 2.6 

C10-H30 1.09 1.1 -0.01 C7-C10-O11 102.9 103.6 0.7 

C10-H31 1.1 1.1 0.00 O11-C10-H31 110.5 108.9 -1.6 

C10-C7 1.5 1.52 -0.02 O11-C10-H30 107.8 107.6 -0.2 

C9-C24 1.52 1.54 -0.02 C9-C12-C13 115.1 116.9 1.8 

C24-C25 1.4 1.41 -0.01 C9-C12-H33 108.2 108.9 0.7 

C25-H25 1.09 1.08 0.01 C9-C12-H32 108.4 110.2 1.8 

C25=C26 1.39 1.40 -0.01 C12-C13-C14 113.2 111.7 -1.5 

C26-H26 109 1.08 0.01 C12-C13-H34 107.7 108.4 0.7 

C26-C27 1.39 1.39 0.00 C12-C13-H35 107.6 107.2 -0.4 

C27-F27 1.35 1.36 -0.01 C12-C13-C14 113.2 111.7 -1.5 

C27=C28 1.39 1.39 0.00 C13-C14-N15 112.2 111.6 -0.6 

C28-H28 1.09 1.08 0.01 C13-C14-H36 113.1 113.4 0.3 

C28-C29 1.40 1.40 0.00 C13-C14-H37 110.4 110.7 0.3 

C29-H29 1.09 1.08 0.01 C14-N15-C16 110.7 108.9 -1.8 

C29-C24 1.40 1.42 -0.02 C14-N15-C20 113.3 110.6 -2.7 

C9-C12 1.53 1.53 0.00 C14-N15-H15 106.3 107.1 0.8 

C12-H32 1.10 1.11 -0.01 N15-C16-H17 109.1 108.4 -0.7 

C12-C13 1.54 1.55 -0.02 N15-C16-H18 108.7 107.7 -1 

C13-H34 1.1 1.11 -0.01 N15-C16-H19 108.2 107.9 -0.3 

C13-H35 1.09 1.11 -0.02 C14-N15-C20 113.3 110.6 -2.7 

C13-C14 1.52 1.53 -0.01 N15-C20-H21 108.7 108.4 -0.3 

C14-H36 1.10 1.1 0.00 N15-C20-H22 108.0 108.1 0.1 

C14-H37 1.09 1.1 -0.01 N15-C20-H23 109.4 107.8 -1.6 

C14-N15 1.52 1.50 0.02 C9-C24-C29 121.9 121.4 -0.5 

N15-H15 1.03 1.06 -0.03 C9-C24-C25 118.6 121.3 2.7 

N15-C20 1.50 1.50 0.00 C24-C25-C26 120.6 121.4 0.8 

C20-H21 1.09 1.11 -0.02 C24-C25-H25 119.5 120.9 1.4 

C20-H22 1.09 1.11 -0.02 C25-C26-C27 118.6 119.1 0.5 

C20-H23 1.09 1.11 -0.02 C25-C26-H26 121.7 120.7 -1 

N15-C16 1.50 1.50 0.00 C24-C29-C28 120.6 121.3 0.7 

C16-H17 1.09 1.11 -0.02 C24-C29-H29 120.7 121.4 0.7 

C16-H18 1.09 1.11 -0.02 C28-C27-C26 122.1 121.7 -0.4 

C16-H19 1.09 1.11 -0.02 C26-C27-F27 118.9 119.4 0.5 

C12-H33 1.09 1.11 -0.01 C27-C28-C29 118.7 119.1 0.4 

    C29-C28-H28 121.7 120.4 -1.3 

Dihedrals/o Impropers/o 

N1-C2-C3-C4 99.1 101.4 2.3     
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C2-C3-C4-C5 181.6 181.4 -0.2 C4-C2-C3-C8 181.6 182.1 0.5 

C3-C4-C5-C6 0.8 -1.5 -2.3 C5-C3-C4-H4 -179.6 -179.7 -0.1 

C4-C5-C6-C9 179.3 176.3 -3 C6-C4-C5-H5 -180.7 -178.5 2.2 

C5-C6-C9-C24 83.6 74.52 -9.0 C9-C5-C6-C7 -180.4 -172.3 8.1 

C6-C9-O11-C10 325.2 334.5 9.3 C7-C3-C8-H8 180 179.8 -0.2 

C6-C9-C12-C13 284.4 271.1 -13.3 C24-C6-C9-C12 -126.9 -116.6 10.3 

C9-C12-C13-C14 56.7 67.1 10.4 C12-C6-C9-O11 -115.8 -120.8 -5 

C12-C13-C14-N15 -173 -178.7 -5.7 C7-O11-C10-H31 121.8 123.7 1.9 

C13-C14-N15-C16 169.2 162.4 -6.8 C7-O11-C10-H30 -119.2 -120.7 -1.5 

C14-N15-C16-H17 -176.1 -179.7 -3.6 C13-C9-C12-H33 -120.1 -119.5 0.6 

C14-N15-C20-H21 -178.7 -180.3 -1.6 H33-C9-C12-H32 -114.8 -116.3 -1.5 

C6-C9-C24-C29 320.8 287.1 -33.7 C14-C12-C13-H34 -120.7 -122.1 -1.4 

C9-C24-C25-C26 177.1 179.3 2.2 H34-C12-C13-H35 -116.4 -116.1 0.3 

C24-C25-C26-C27 -1 -0.06 0.9 N15-C13-C14-H36 -120.2 -120 0.2 

C9-C24-C29-C28 -176.6 -179.6 -3 C16-C14-N15-H15 -116.5 -120.9 -4.4 

Impropers/o H17-N15-C16-H18 120.4 119.7 0.17 

H21-N15-C20-H23 -120.2 -119.7 0.5 H17-N15-C16-H19 -119.9 -121 -1.1 

C29-C9-C24-C25 -176 -178.5 -2.5 H21-N15-C20-H22 119.7 121 1.3 

C26-C24-C25-H25 -181.3 -177.9 3.4 C28-C26-C27-F27 179.5 180.4 0.9 

C27-C25-C26-H26 -179.7 -179.7 0 C28-C24-C29-H29 181.6 181.6 0 

 

n) Citalopram (S) 

The CGenFF optimized structure is in reasonable agreement with the QM structure. All 

the bond length and angle deviations were below 0.03Å and 2.94o, respectively. All the 

dihedral deviations were less than 3.1o, except for the N1-C2-C3-C4, the C6-C9-C12-C13 

and the C13-C14-N15-C16, which were 15o, 7.5o, and 7.9o, respectively. Impropers were 

below 4.2o, except for the C24-C6-C9-C12 and the C12-C6-C9-O11, which were 11.6o 

and 7.7o, respectively (Table 2.29). 
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Table 2.29. CGenFF equilibrium geometry of citalopram (S) compared to MP2 Level. 

 

Coordinate MP2 CGenFF Diff Coordinate MP2 CGenFF Diff 

Bond lengths/Å Angles/o 

N1C2 1.18 1.18 0.00 N1-C2-C3 179.8 179.78 0.02 

C2-C3 1.44 1.44 0.00 C2-C3-C4 119.3 120.22 -0.92 

C3=C4 1.41 1.40 0.01 C2-C3-C8 119.5 120.11 -0.61 

C4-H4 1.09 1.08 0.01 C3-C4-C5 120.1 120.46 -0.36 

C4-C5 1.40 1.40 0.00 C3-C4-H4 119.4 120.20 -0.80 

C5-H5 1.09 1.08 0.01 C4-C5-C6 118.8 119.57 -0.77 

C5=C6 1.39 1.39 0.00 C4-C5-H5 119.3 119.46 -0.16 

C6-C7 1.40 1.41 -0.01 C5-C6-C9 130.9 133.20 -2.3 

C7=C8 1.39 1.39 0.00 C5-C6-C7 120.9 119.83 1.07 

C8-H8 1.09 1.08 0.01 C7-C8-C3 117.8 119.54 -1.74 

C8-C3 1.41 1.40 0.01 C6-C9-C24 111.8 108.86 2.94 

C6-C9 1.51 1.54 -0.03 C6-C9-C12 113.2 112.19 1.01 

C9-O11 1.44 1.43 0.01 C6-C9-O11 103.3 104.65 -1.35 

O11-C10 1.44 1.43 0.01 C9-O11-C10 108.5 107.91 0.59 

C10-H30 1.09 1.1 -0.01 C7-C10-O11 103.7 103.76 -0.06 

C10-H31 1.1 1.1 0.00 O11-C10-H31 110.3 108.28 1.95 

C10-C7 1.5 1.52 -0.02 O11-C10-H30 107.5 110.34 -2.84 

C9-C24 1.52 1.54 -0.02 C9-C12-C13 111.0 112.79 -1.79 

C24-C25 1.4 1.42 -0.02 C9-C12-H33 107.6 106.33 1.27 

C25-H25 1.09 1.08 0.01 C9-C12-H32 109.0 109.87 -0.87 

C25=C26 1.39 1.4 -0.01 C12-C13-C14 110.3 110.11 0.19 

C26-H26 109 1.08 0.01 C12-C13-H34 109.0 109.64 -0.64 

C26-C27 1.39 1.39 0.00 C12-C13-H35 107.7 107.98 -0.28 

C27-F27 1.35 1.36 -0.01 C12-C13-C14 110.3 110.11 0.19 

C27=C28 1.39 1.39 0.00 C13-C14-N15 112.6 111.54 1.06 

C28-H28 1.09 1.08 0.01 C13-C14-H36 112.4 113.38 -0.98 

C28-C29 1.40 1.40 0.00 C13-C14-H37 111.1 110.52 0.48 

C29-H29 1.09 1.08 0.01 C14-N15-C16 111.4 109.11 2.29 

C29-C24 1.40 1.42 -0.02 C14-N15-C20 112.6 110.50 2.10 

C9-C12 1.53 1.56 -0.03 C14-N15-H15 106.5 107.17 -0.67 

C12-H32 1.1 1.11 0.00 N15-C16-H17 109.0 108.39 0.61 

C12-C13 1.53 1.55 -0.02 N15-C16-H18 108.9 107.75 1.15 

C13-H34 1.1 1.11 -0.01 N15-C16-H19 108.1 107.96 0.14 

C13-H35 1.09 1.11 -0.02 C14-N15-C20 112.6 110.49 2.11 

C13-C14 1.52 1.53 -0.01 N15-C20-H21 108.6 108.35 0.25 

C14-H36 1.09 1.1 -0.01 N15-C20-H22 107.9 108.11 -0.21 

C14-H37 1.09 1.1 -0.01 N15-C20-H23 109.4 107.80 1.6 

C14-N15 1.52 1.50 0.02 C9-C24-C29 120.3 119.83 0.47 

N15-H15 1.03 1.06 -0.03 C9-C24-C25 120.6 121.82 -1.22 

N15-C20 1.50 1.50 0.00 C24-C25-C26 120.8 120.81 -0.01 

C20-H21 1.09 1.11 -0.02 C24-C25-H25 120.4 120.98 -0.58 

C20-H22 1.09 1.11 -0.02 C25-C26-C27 118.6 119.12 -0.52 

C20-H23 1.09 1.11 -0.02 C25-C26-H26 121.7 120.73 0.97 

N15-C16 1.50 1.50 0.00 C24-C29-C28 120.7 120.98 -0.28 

C16-H17 1.09 1.11 -0.02 C24-C29-H29 119.3 120.49 -1.19 

C16-H18 1.09 1.11 -0.02 C28-C27-C26 122.0 121.80 0.2 

C16-H19 1.09 1.11 -0.02 C26-C27-F27 118.9 119.33 -0.43 

C12-H33 1.10 1.11 -0.01 C27-C28-C29 118.7 119.03 -0.33 

    C29-C28-H28 121.7 120.41 1.29 

Dihedrals/o Impropers/o 

N1-C2-C3-C4 -135.2 -120.2 -15     
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C2-C3-C4-C5 179.7 179.8 -0.1 C4-C2-C3-C8 179.3 179.2 0.1 

C3-C4-C5-C6 0.1 1.1 -1 C5-C3-C4-H4 180.5 180.1 0.4 

C4-C5-C6-C9 179.7 182.1 -2.4 C6-C4-C5-H5 180.8 179.9 0.9 

C5-C6-C9-C24 -79.3 -74.3 -5 C9-C5-C6-C7 179.0 174.8 4.2 

C6-C9-O11-C10 27.6 27.5 0.1 C7-C3-C8-H8 179.0 179.5 0.5 

C6-C9-C12-C13 171.7 179.2 -7.5 C24-C6-C9-C12 127.0 115.4 11.6 

C9-C12-C13-C14 -175.9 -175.6 -0.3 C12-C6-C9-O11 114.3 122.0 -7.7 

C12-C13-C14-N15 -173.0 -176.1 3.1 C7-O11-C10-H31 120.8 120.3 0.5 

C13-C14-N15-C16 170.7 162.8 7.9 C7-O11-C10-H30 -121.3 -123.5 2.2 

C14-N15-C16-H17 -177.2 -179.7 2.5 C13-C9-C12-H33 -121.0 -119.1 -1.9 

C14-N15-C20-H21 180.9 179.5 1.4 H33-C9-C12-H32 -117.0 -116.8 -0.2 

C6-C9-C24-C29 -126.6 -124.2 -2.4 C14-C12-C13-H34 -121.2 -120.5 -0.7 

C9-C24-C25-C26 178.1 176.5 1.6 H34-C12-C13-H35 -117.0 -117.6 0.6 

C24-C25-C26-C27 0.1 0.0 0.1 N15-C13-C14-H36 -119.7 -120.0 -1.0 

C9-C24-C29-C28 -178.4 -176.5 -1.9 C16-C14-N15-H15 -117.1 -120.9 3.8 

Impropers/o H17-N15-C16-H18 120.4 119.7 0.7 

H21-N15-C20-H23 -120.3 -119.7 -0.6 H17-N15-C16-H19 -119.9 -121.0 1.1 

C29-C9-C24-C25 -178.0 -176.7 -1.3 H21-N15-C20-H22 119.6 121.0 -1.4 

C26-C24-C25-H25 178.3 180.2 -0.5 C28-C26-C27-F27 179.9 180.6 -0.7 

C27-C25-C26-H26 179.1 179.8 -0.7 C28-C24-C29-H29 180.9 179.1 1.8 

 

o) Sertraline 

The optimized CGenFF geometry of sertraline fits well with the QM structure. All the 

bond length and bond angle differences were below 0.03Å and 3.1o, respectively. All the 

dihedral and improper deviations were below 6.3o and 4.6o, respectively (Table 2.30). 
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Table 2.30. CGenFF equilibrium geometry of sertraline compared to MP2 level. 

  
Coordinate MP2 CGenFF Diff Coordinate MP2 CGenFF Diff 

Bond lengths/Å Angles/o 

C1-H2 1.09 1.11 -0.02 H2-C1-N5 108.7 106.8 -1.9 

C1-H3 1.09 1.11 -0.02 N5-C1-H3 108.5 106.6 -1.9 

C1-H4 1.09 1.11 -0.02 N5-C1-H4 108.8 107.1 -1.7 

C1-N5 1.50 1.49 0.01 C1-N5-C8 116.4 119.5 3.1 

N5-H6 1.03 1.01 0.02 C1-N5-H6 109.5 111.4 1.9 

N5-H7 1.04 1.01 0.03 C1-N5-H7 110.4 109.9 -0.5 

N5-C8 1.53 1.51 0.02 N5-C8-C19 108.6 105.9 -2.7 

C8-H9 1.10 1.12 0.02 N5-C8-C10 111.5 109.1 -2.4 

C8-C10 1.52 1.54 0.02 N5-C8-H9 104.8 105.8 1 

C10-H11 1.10 1.11 -0.01 C8-C10-H11 112.2 112.0 -0.2 

C10-H12 1.09 1.12 -0.03 C8-C10-H12 104.8 107.8 3 

C10-C13 1.54 1.53 0.01 C10-C13-C16 114.7 115.7 1 

C13-H14 1.10 1.11 -0.01 C10-C13-H14 109.6 108.2 -1.4 

C13-H15 1.09 1.11 -0.02 C10-C13-H15 108.1 107.7 -0.4 

C13-C16 1.56 1.56 0.00 C13-C16-C28 110.8 110.0 -0.8 

O15-C16 1.43 1.43 0.00 C13-C16-C18 113.0 112.3 -0.7 

C16-H17 1.10 1.12 -0.02 C13-C16-H17 107.8 105.8 -2 

C16-C18 1.51 1.53 -0.02 C18-C19-C8 117.8 118.7 0.9 

C16-C28 1.53 1.53 0.00 C8-C19-C20 121.2 120.0 -1.2 

C18=C19 1.41 1.42 -0.01 C19-C20-C22 119.9 120.0 0.1 

C19-C8 1.50 1.49 0.01 C19-C20-H21 120.1 121.1 1 

C19-C20 1.40 1.41 -0.01 C20-C22-C24 119.7 120.1 -1.9 

C20-H21 1.09 1.08 0.01 C20-C22-H23 120.0 120.2 -1.9 

C20=C22 1.40 1.40 0.00 C22-C24-C26 120.2 120.0 -1.7 

C22-H23 1.09 1.08 0.01 C22-C24-H25 120.0 120.0 3.1 

C22-C24 1.40 1.40 0.00 C18-C26-C24 120.8 120.6 1.9 

C24-H25 1.09 1.08 0.01 C24-C26-H27 119.8 119.5 -0.5 

C24=C26 1.40 1.40 0.00 C16-C28-C29 119.4 117.6 -2.7 

C26-H27 1.09 1.08 0.01 C16-C28-C37 122.5 124.3 -2.4 

C26-C18 1.40 1.41 -0.01 C28-C29-C31 120.9 121.0 1 

C28=C29 1.41 1.41 0.00 C28-C29-H30 120.2 119.89 -0.2 

C29-H30 1.09 1.08 0.01 C29-C31-C33 120.7 120.3 3 

C29-C31 1.39 1.40 -0.01 C29-C31-H32 120.5 120.0 1 

C31-H32 1.09 1.08 0.01 C31-C33-C35 119.0 119.5 -1.4 

C31=C33 1.40 1.40 0.00 C31-C33-CL34 119.3 118.5 -0.4 

C33-CL34 1.72 1.74 -0.02 C37-C35-C33 120.0 119.7 -0.8 

C33-C35 1.40 1.41 -0.01 C33-C35-CL36 121.6 122.1 -0.7 

C35-CL36 1.73 1.74 -0.01 C28-C37-H38 120.7 120.6 -2 

C35=C37 1.40 1.40 0.00     

C37-H38 1.09 1.08 0.01 

C37-C28 1.40 1.41 -0.01 

Dihedrals/o Impropers/o 

H2-C1-N5-C8 52.8 59.0 6.2 H2-N5-C1-H3 120.0 119.9 -0.1 

C1-N5-C8-C19 178.7 181.6 2.9 H2-N5-C1-H4 -120.3 -120.4 -0.1 

N5-C8-C10-C13 59.9 53.6 -6.3 C8-C1-N5-H6 -121.3 -125.9 -4.6 

C8-C10-C13-C16 32.5 36.2 3.7 H6-C1-N5-H7 -114.6 -115.3 -0.7 

C10-C13-C16-C28 -111.4 -119.6 -8.2 C19-N5-C8-C10 -120.4 -116.1 4.3 

C20-C22-C24-C26 0.8 -0.2 -1 C10-N5-C8-H9 -120.6 -123.1 -2.5 

C13-C16-C28-C29 -55.6 -57.2 -1.6 C13-C8-C10-H11 -125.5 -124.9 0.6 

C16-C28-C29-C31 180.5 179.4 -1.1 H11-C8-C10-H12 -114.7 -116.4 -1.7 

C28-C29-C31-C33 -0.9 -0.01 0.89 C16-C10-C13-H14 -122.8 -125.6 -2.8 
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C29-C31-C33-C35 1.5 1.5 0 H14-C10-C13-H15 -114.7 -113.5 1.2 

Impropers/o C28-C13-C16-C18 125.5 126.9 -0.5 

C35-C31-C33-CL34 179.5 179.8 0.3 C18-C13-C16-H17 118.6 117.2 -1.4 

C37-C33-C35-CL36 180.0 180.7 0.7 C18-C8-C19-C20 184.5 -176.9 -1.4 

C35-C28-C37-H38 183.2 181.5 -1.7 C8-C19-C20-C22 176.5 178.6 2.1 

C18-C24-C26-H27 180.2 180.2 0 C22-C19-C20-H21 -178.9 -179.8 -0.9 

C29-C16-C28-C37 181.1 181.9 0.8 C19-C20-C22-C24 -1.2 -0.8 0.4 

C31-C28-C29-H30 178.0 179.0 1 C24-C20-C22-H23 -178.6 -179.2 -0.6 

C33-C29-C31-H32 180.0 179.8 -0.2 C26-C22-C24-H25 180.0 179.3 -0.7 

 

2.3.3. Dihedral energy scans 

Since the CGenFF geometries of all the compounds fit reasonably well with the QM 

optimized structures, dihedral/torsion angles were not fitted against the dihedral energy 

scans. 

 

2.3.4. Lennard-Jones parameter optimization 

According to the CGenFF parameterization philosophy, LJ parameters are to be 

optimized only when the new atom types are created. Since the new atom types were not 

created in our study, this step was not performed. 

 

2.4. Conclusions 

Good force field parameters for the ligands are important for the accurate estimation of 

protein-ligand binding affinities. MATs are key therapeutic drug targets in humans. The 

unavailability of the crystal structures of MATs until recently necessitated the use of 

computational techniques for drug discovery as well as for structural and functional 

studies. More importantly, MD simulations and free energy calculations stand at the 

forefront among other computational methods, and utilization of good force field 

parameters ensures the reliability of the results. For that reason, parameters for fifteen 

MAT ligands using the CGenFF philosophy were developed. The CGenFF parameters 
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correlated well with the QM data, which was used as a target for parameter optimization. 

However, in this study dihedral fitting using the potential energy scans was not pursued 

since the CGenFF charges and equilibrium geometry matched well with the QM data. 

Also, the LJ parameters were not optimized, since no new LJ parameters were generated 

in this study. The CGenFF parameters for the ligands in conjugation with the CHARMM 

force field for the proteins improve the reliability of computational results and lessen the 

dependence on experiments; therefore, research efforts can be more economical and less 

time-consuming. 
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3. CHAPTER 3 

 

CALCULATION OF RELATIVE BINDING FREE ENERGIES OF 

LIGANDS TO LEUCINE TRANSPORTER 

 

3.1. Introduction 

 

 
 

Figure 3.1. 3D-model of leucine transporter with 

S1 (blue) and S2 (green) pockets highlighted.  

TM helices 1, 3, 6, 8, and 10 are colored red, 

purple, cyan, green, and blue, respectively; rest 

of the helices are colored yellow. 

 

Leucine transporter (LeuT) is a membrane protein of the NSS family. LeuT was the first 

member of the NSS family that was crystallized [1]. NSS family also consists of other 
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therapeutically important membrane proteins such as the human serotonin transporter 

(hSERT), the human dopamine transporter (hDAT) and the human norepinephrine 

transporter (hNET). All three are famously addressed as monoamine transporters (MATs) 

because they transport monoamines serotonin, dopamine and norepinephrine, 

respectively, across the presynaptic cell membrane. Until the crystal structure of dDAT 

recently became available, LeuT was the only member of NSS family that was 

crystallized, and to date 38 crystal structures of LeuT are available with several amino 

acids and drugs [1-5]. LeuT shares approximately 20-25% sequence identity with MATs 

[6]. LeuT also shares other similarities with MATs such as: 12 transmembrane alpha-

helices (Fig. 3.1), Na+/Cl- gradient to transport the neurotransmitters, and a hypothesized 

similar transport mechanism (alternating access) [1, 7]. LeuT has two unique binding 

sites, an S1 site that accommodates substrate leucine and other amino acids [1, 2, 8] and 

an S2 site which harbors the TCAs [3, 4] and selective serotonin reuptake inhibitors 

(SSRIs) [5] (Fig. 3.1). However, according to another hypothesis substrate leucine binds 

in both S1 and S2 sites [9]; this is still debatable. LeuT was extensively used to study the 

structure, function and dynamics aspects of the MATs through various computational and 

experimental approaches [6, 10-14]. Computer models of MATs generated using LeuT 

were successfully used for drug discovery purposes as well, especially for addiction and 

depression-related research [6, 10]. Here, we chose LeuT as an ideal system to test the 

accuracy of FEP method in estimating the RBEs of amino acids and TCAs.  

Binding free energy is a quantitative measure of how well a ligand binds with the 

protein/receptor. Since the determination of binding free energies of ligands for a target 

through experimental binding assays is an expensive process, free energy calculations are 
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gaining prominence. 

 

 

 
Figure 3.2. TCAs and amino acids binding in LeuT. 

(A) Clomipramine (pink), imipramine (cyan) and 

desipramine (purple) in the S2 site; (B) leucine (pink), 

alanine (blue) and glycine (yellow) in the S1 site. All 

ligands are represented as sticks. 

 

Computing the RBEs of ligands with a protein is a topic of interest, especially in drug 

discovery. RBEs can be calculated using ABFE and RBFE methods; however, because of 

the methodological challenges associated with ABFE methods, RBFE methods have been 

extensively used for this purpose. RBFE methods are also used to calculate the impact of 

protein mutation on the binding of a ligand and also for the lead optimization [15] in 
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rational drug design. We used FEP method to calculate the RBEs [16]. Alchemical 

methods have been used since the 1980s to calculate RBEs [17-20]. 

FEP is an MD-based method and explicitly treats protein, ligand and solvent using a 

force field. The binding affinities estimated through FEP method are quantitatively 

comparable to the experimental binding affinities. Most often, the calculated RBEs are 

within 1 kcal/mol of the experimental values. These methods offer detailed molecular 

insights by sampling in all degrees of freedom [21, 22]. Since the role of water in ligand 

binding was illustrated through several studies, inclusion of water explicitly makes the 

calculations more realistic [5]. The major advantage of RBFE calculations is the 

cancelation of errors, given that both the ligands have a similar binding mode and protein 

conformational changes have a similar impact on their binding. Limitations include (a) a 

need for prior knowledge of at least one complex and (b) can handle only small 

differences between ligands. Other factors affecting the accuracies of explicit free energy 

calculations are poor convergence due to insufficient sampling and lack of good force 

field parameters for drug-like molecules. Availability of better sampling techniques and 

high-performance supercomputers solved the sampling issues to some extent. Also, 

General force fields such as amber (GAFF) [23] and CHARMM (CGenFF) [24] can be 

extended to organic molecules to get reasonable accuracy in free energy calculations 

involving drug-like molecules. We used CGenFF parameters for calculations involving 

TCAs. 

FEP method was initially validated through estimation of RBEs of leucine-to-alanine 

and alanine-to-glycine perturbations in LeuT. We chose these two perturbations as a test 

case because crystal structures of all three amino acid ligands leucine, alanine and glycine 
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with LeuT [2] were available, and they binded in the same pocket and shared a similar 

binding mode (Fig. 3.2B). Also, the experimental inhibition constants (Ki) of all three 

amino acid ligands with LeuT were available [2], which enabled us to compare the 

experimental and calculated RBEs and also their trends, apart from the availability of 

well characterized force field parameters for the ligands. The calculated RBEs in both 

these cases were in excellent agreement with the experimental values. The calculated and 

experimental Gs for the alanine-to-glycine perturbation were 3.26 ± 0.05 and 2.85 ± 

0.22 kcal/mol, respectively; whereas in the case of leucine-to-alanine they were 3.34 ± 

0.07 and 3.17 ± 0.30 kcal/mol, respectively (Table 3.1). The calculated results were not 

only in quantitative agreement with the experimental values. They also reproduced the 

experimental binding trend: leucine binded stronger, followed by alanine and glycine 

with LeuT [2]. These results show the reliability of FEP method in calculating the RBEs, 

given that good force field parameters for the ligands and ample computational resources 

for sufficient sampling are available. These results also demonstrate the applicability of 

explicit free energy methods to membrane proteins such as LeuT. 

With the confidence gained through amino acid perturbations, RBEs of TCAs 

(clomipramine, imipramine and desipramine) with LeuT were calculated. All three TCAs 

were co-crystallized with LeuT, and they bind in the S2 site (Fig. 3.1) in a similar 

orientation (Fig. 3.2A). The structural differences between the three TCAs are minimal 

(Fig. 3.7) and inhibit the protein in a similar manner [3, 4]. However, there is an 

ambiguity with respect to the binding affinities and binding trends of the three TCAs with 

LeuT. TCAs are weak binders and either experimental Ki or Kd values with LeuT are not 

available. Half maximal inhibitory concentration (IC50) values are available, but not for 
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all three of them. Singh et al. reported only IC50 values of just clomipramine and 

imipramine with LeuT (IC50 of clomipramine is 8 fold lower than imipramine), but not 

desipramine [3]. However, Noskov et al. sought personal communication with Singh et 

al. and reported that imipramine inhibits stronger than desipramine [25]. Therefore, the 

experimental binding trend of TCAs with LeuT according to Singh et al. is that 

clomipramine binds stronger followed by imipramine and desipramine. On the contrary, 

Zhou et al. reported the IC50 values of imipramine and desipramine but not clomipramine. 

According to Zhou et al., desipramine is a potent inhibitor of leucine transport compared 

to imipramine (three-fold) [4]. Zhao et al. through ABFE and RBFE calculations reported 

a similar trend in binding affinities as Singh et al. However, they did not mention about 

the binding trend of Zhou et al., which was opposite of Singh et al. [25]. In this paper, 

they calculated the Gs of clomipramine-to-imipramine and imipramine-to-desipramine 

perturbations using the ABFE and RBFE methods; the calculated Gs resulting from 

both the methods were in reasonable agreement with each other. ABEs and RBEs were 

estimated using the FEP methodology; however, in the ABFE calculations reduced GSBP 

systems were used, and in the RBFE calculations the entire system was treated explicitly. 

For the clomipramine-to-imipramine perturbation, the ΔΔGs estimated through the ABFE 

and RBFE methods were 0.2 and 0.4 kcal/mol, respectively; whereas the experimental 

G was 1.26 kcal/mol. The calculated ΔΔGs for the perturbation of imipramine-to-

desipramine using the ABFE and RBFE methods were 1.3 and 1.0 kcal/mol, respectively, 

and the experimental G in this case was > 0 kcal/mol (The IC50 of desipramine was 

not reported; it was only reported that imipramine was more potent than desipramine). 

Since the clomipramine-to-desipramine transformation was not considered for RBFE 
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calculations, the Gs resulting from ABFE and RBFE calculations cannot be compared. 

The G of clomipramine-to-desipramine perturbation would have facilitated the 

estimation of reliability of RBFE calculations. The sum of Gs for the clomipramine-

to-imipramine, imipramine-to-desipramine and clomipramine-to-desipramine should add 

to zero; because they did not do clomipramine-to-desipramine calculation we were not 

able to test the validity of their results. Also, error bars were not reported for the RBFE 

calculations. For all these reasons, we repeated the RBFE calculations of TCAs using 

FEP method. Apart from clomipramine-to-imipramine and imipramine-to-desipramine 

perturbations, we also performed clomipramine-to-desipramine perturbation. 

Theoretically, the sum of all three calculated RBFEs should add up to zero, and this acts 

as an extra check on the calculations. Our results do support Singh et al. and Zhao et al. 

with regards to the binding trend of TCAs at LeuT and not Zhou et.al. The calculated 

RBEs were also in excellent agreement with the experimental numbers. 

 

3.2. Methods 

3.2.1. Relative binding energy calculations 

We used FEP [26] method to calculate the RBEs of ligands with the protein. RBFE 

calculations are based on the thermodynamic cycle shown in Figure 3.3. Relative binding 

(G) of two different ligands A and B to a protein P is estimated using equation 1. 

                                                                      - Equation 1 

∆G3 and ∆G4 are the free energy changes of perturbing ligand A to B in the solvent and 

the solvated protein P, respectively. ∆G1 and ∆G2 are the ABEs of ligands A and B, 

DDG =DG4 -DG3 =DG2 -DG1
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respectively, with a protein P. ∆G3 and ∆G4 are estimated using FEP method. In FEP 

method, free energy change (∆G) between states A and B is calculated using equation 2. 

                    - Equation 2 

GA and GB are the free energies of states A and B, respectively; UB and UA are the 

potentials of states B and A, respectively; KB is Boltzmann constant; T is the temperature. 

 

 

 

 

 

 

 

 

 

 

 

 

Experimental RBEs (∆GExpt) were estimated using either experimental Ki (in the 

case of amino acids) or IC50 values (in the case of TCAs) as shown in equations 3 and 4. 
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Ki
B and Ki

A are the inhibition constants of ligands B and A, respectively; IC50
B  and IC50

A  are 

the half maximal inhibitory concentrations of ligands B and A, respectively; R is the gas 

constant; T is the temperature. 

 

3.2.2. System preparation and simulation details 

All six crystal structures of LeuT with clomipramine (PDB ID: 2Q6H), imipramine (PDB 

ID: 2Q72), desipramine (PDB ID: 2QB4), leucine (PDB ID: 3F4J), alanine (PDB ID: 

3F3E) and glycine (PDB ID: 3F48) were downloaded from Protein Data Bank 

(www.pdb.org) [27]. Crystal complexes were reprocessed using MOE. Appropriate 

protonation states were assigned for the residues at pH 7, and hydrogens were added. 

Further, they were solvated using VMD [28]. Final size of the simulation box was 

approximately 89.0Å X 103.0Å X 87.0Å in all six cases. The complexes were then 

minimized using NAMD 2.9 [29] for 50,000s steps to remove steric clashes. Systems 

were treated under periodic boundary condition. The minimized complexes were used for 

calculating G4. NAMD 2.9 was used to perform free energy calculations. For the 

calculation of ΔG3, crystal conformations of the ligands were placed in the water boxes 

and minimized for 50,000s steps prior to calculation. Dual topology approach was 

followed for perturbing the ligands. Protein, water, (TIP3P model [30]) and ions [31] 

were treated using CHARMM force field. For TCA perturbations, CHARMM general 

force field (CGenFF) was used, [24] and in the case of amino acid mutations CHARMM 

force field parameters were used. Both G3 and G4 simulations were performed in 

forward and backward directions. This helps to assess the hysteresis and thereby 

improves the statistical precision in free energy calculation. Reliability and efficiency of 

http://www.pdb.org/
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free energy calculations are enhanced using bidirectional simulations. Perturbations were 

carried out by just turning off the intermolecular interactions of the outgoing atoms with 

the environment and simultaneously turning on the intermolecular interactions of the 

incoming atoms. Bonded interactions and masses of the perturbed atoms were not altered 

in these perturbations. The transformation between initial and final states was divided 

into multiple windows to get sufficient overlap between configurational ensembles and to 

get reasonable accuracy [32]. Bennett acceptance ratio (BAR) method [33] was used to 

calculate the free energy differences by combining the forward and backward 

simulations. Analysis of the free energy simulations, binding energy and error bars was 

carried using ParseFEP [34] plugin in VMD. The error bars are statistical errors in the 

binding energy estimation. Probability density plots produced by ParseFEP plugin helped 

assess the convergence between subsequent windows. Windows with poor convergence 

were further split to get good convergence and to reduce the error in the calculation. The 

transformation between initial and target states is a function of a coupling parameter (λ). 

 varies from 0 (initial state) to 1 (target state). End-point catastrophes were dealt with by 

introducing soft-core potentials [35]. Electrostatics and van der Waals interactions were 

turned off at λ=0.5 and λ=1.0, respectively. Simulations were carried out under NPT 

ensemble (temperature was 310K and pressure was 1 bar). A 2fs time step was used. 

Particle mesh Ewald (PME) method [36] was used to treat long-range electrostatics, 

whereas van der Waals and short-range electrostatics were cut off at 12Å. 
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3.2.2.1. Amino acid perturbations 

For estimatingG3 and G4, bidirectional simulations were carried, and the binding 

energy was estimated using BAR method. In both cases, a 23ns simulation was 

performed in each direction, and the simulation in each direction was split into 46 

windows. In each window, the system was equilibrated for 0.1ns and data was collected 

for 0.4ns. 

 

3.2.2.2. TCA perturbations 

Similar to the amino acid perturbations, the TCA perturbations were carried bi-

directionally, and a BAR estimator was used to calculate the binding energy. 

3.2.2.2.1. Clomipramine-to-imipramine 

For calculating ΔG4, a 1.5ns simulation in each direction was carried, and the entire 

simulation was bifurcated into 293 windows. In each window, system was equilibrated 

for 0.001ns and data was collected for 0.004ns. For ΔG3 calculation, in each direction a 

1.3ns simulation was performed and 263 windows were used. In each window, 0.001ns 

equilibration and 0.004ns data were collected. 

3.2.2.2.2. Imipramine-to-desipramine 

In both ΔG3 and ΔG4 calculations, in each direction a 1.3ns simulation was performed and 

263 windows were used. In each window, 0.001ns equilibration and 0.004ns data 

collection were carried. 
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3.2.2.2.3. Clomipramine-to-desipramine 

In this perturbation, a 5.2ns simulation was carried for estimating ΔG3 and ΔG4 in either 

direction, and the simulation in each direction was split into 263 windows. In each 

window, 0.004ns equilibration and 0.016ns data collection were carried. 

 

3.3. Results and Discussion 

3.3.1. Relative binding of amino acid ligands leucine, alanine, and glycine 

with LeuT 

As stated earlier, we initially validated the FEP method through alanine-to-glycine and 

leucine-to-alanine perturbations. Chemical structures of leucine, alanine and glycine are 

shown in Figure 3.4. In the alanine-to-glycine perturbation, the methyl side chain 

(highlighted in blue in Fig. 3.4B) attached to the alpha carbon was converted to a 

hydrogen atom (highlighted in pink in Fig. 3.4C). In the leucine-to-alanine perturbation, 

the isobutyl side chain (highlighted in red in Fig. 3.4A) was converted to a methyl group 

(highlighted in blue in Fig. 3.4B). 

 

 
 

Figure 3.4. Chemical structures of leucine (A), alanine (B) and glycine (C). 

Structural differences are highlighted in red, blue, and pink. 
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ΔG3 and ΔG4 for the alanine-to-glycine perturbation were -5.00 ± 0.02 and -1.74 ± 

0.03 kcal/mol, respectively. The calculated ΔΔG was 3.26 ± 0.05 kcal/mol, whereas the 

experimental ΔΔG was 2.85 ± 0.22 kcal/mol (Table 3.1). Simulations converged quickly 

and perfectly in the water box (Table 3.1 and Fig. 3.5A) unlike in the protein (Table 3.1 

and Fig. 3.5B). The hysteresis between the forward and backward simulations in ΔG3 

calculation was minimal (0.05 kcal/mol, Fig. 3.5A); whereas in the case of ΔG4 it was 

0.84 kcal/mol (Fig. 3.5B). Hydrogen is more soluble compared to a methyl group in 

water, and our result (-5.00 kcal/mol) in mutating the alanine-to-glycine in water supports 

this fact. The impact of mutating the alanine-to-glycine in water (-5.00 ± 0.02 kcal/mol) 

was more compared to the protein (-1.74 ± 0.03 kcal/mol), and this shows that the methyl 

group prefers to stay in the protein compared to the solvent. This might be because 

pocket environment is hydrophobic compared to bulk solvent. The calculated G of 

alanine-to-glycine was positive (3.26 ± 0.05 kcal/mol) and unfavorable (Fig. 3.5C and 

Table 3.1), which indicates that LeuT prefers to bind with alanine compared to glycine. 

This is due to the more hydrophobic nature of alanine compared to glycine. Since the 

pocket is predominantly hydrophobic, it favors alanine than glycine. Also, because of its 

size alanine fits better in the pocket than glycine and indulges in favorable van der Waals 

interactions with the pocket residues. The other important factor might be the desolvation 

penalty for the ligand to enter the hydrophobic pocket from the bulk solvent. Since 

glycine is less hydrophobic than alanine, it is more soluble in water compared to alanine 

and has to pay more penalty to enter the hydrophobic pocket of LeuT compared to 

alanine. The calculated G was slightly overestimated compared to the experimental 
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G; however, the calculated G was within 0.41 kcal/mol of the experimental G 

(Table 3.1). 

ΔG3 and ΔG4 for the leucine-to-alanine transformation were -2.63 ± 0.03 kcal/mol 

and 0.71 ± 0.04 kcal/mol, respectively; whereas the calculated and experimental RBEs 

were 3.34 ± 0.07 and 3.17 ± 0.30 kcal/mol, respectively. Interestingly, simulations 

converged better in the case of ΔG4 (Fig. 3.5E and Table 3.1) rather than ΔG3 (Fig. 3.5D 

and Table 3.1). This might be because isobutyl to methyl perturbation is huge and this 

perturbation samples huge volume in the water box compared to the protein pocket as it 

is packed and needs more simulation time in the water box than in the protein to get 

reasonable convergence. The hysteresis between the forward and backward simulations 

in ΔG3 calculation was 0.64 kcal/mol, whereas in the case of ΔG4 it was 0.52 kcal/mol. 

Compared to an isobutyl group, a methyl group is less hydrophobic and expected to 

solubilize more in water, and our result (-2.63 ± 0.03 kcal/mol) supports this fact. The 

calculated G was positive indicating that leucine binds stronger with LeuT compared 

to alanine. This is because leucine is a natural substrate of LeuT, and it is tightly packed 

compared to alanine in the protein pocket. Also, leucine is more hydrophobic compared 

to alanine, and LeuT pocket is predominantly hydrophobic; therefore, leucine can form 

more favorable van der Waals interactions compared to alanine with LeuT. Another 

factor might be the lower desolvation penalty of leucine compared to alanine to bind in 

the hydrophobic pocket. Since leucine is more hydrophobic than alanine, the desolvation 

penalty for leucine to enter the hydrophobic pocket should be lower compared to alanine. 

Similar to the alanine-to-glycine mutation, the calculated G was slightly overestimated 

compared to the experimental G, but it falls within the experimental error. This might 
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be because we used the crystal structure of LeuT:leucine for this calculation; when the 

crystal structures of alanine:LeuT and leucine:LeuT were compared, some of the pocket 

residues (F259 and I359) in the alanine:LeuT crystal structure moved into the pocket 

compared to the leucine:LeuT crystal structure to compensate for the smaller size of 

alanine[2]. Since we used the crystal structure of LeuT:Leucine for this calculation, the 

sampling time might not be sufficient for the leucine pocket in LeuT to adjust or collapse 

into alanine pocket. Therefore, alanine might not interact with the pocket as intended, 

making the perturbation more unfavorable than expected.  

RBEs of leucine-to-alanine and alanine-to-glycine mutations were estimated 

earlier by Sergei Noskov as the difference of ABEs [37]. FEP method was used to 

calculate the ABEs in this paper. For the sake of efficiency, only atoms within 20Å of the 

ligand were treated explicitly in these calculations, and the rest of the system was treated 

using reduced generalized solvent boundary potential (GSBP). In this study only the 

crystal structure of LeuT:Leucine complex was used since LeuT:Alanine and 

LeuT:Glycine crystal structures were not available at the time of this publication. 

Therefore, they modeled LeuT:Alanine and LeuT:Glycine complexes using 

LeuT:Leucine crystal structure for the free energy calculations. Also, error bars for ABEs 

and RBEs (calculated and experimental) were not provided in Noskov’s paper. In our 

RBFE calculations, we considered the crystal structures of all three amino acids with 

LeuT.



  

1
2
3
 

 

 

 

 

 

Table 3.1. Relative binding energies of amino acids leucine, alanine, and glycine with LeuT. 

 

 ΔG3  ΔG4 ΔΔGCalc ΔΔGExpt 

 For Back BAR  For Back BAR   

Ala  Gly -5.03 4.98 -5.00 ± 0.02  -1.29 2.13 -1.74 ± 0.03 3.26 ± 0.05 2.85 ± 0.22a 

Leu  Ala -3.01 2.37 -2.63 ± 0.03  0.92 -0.40 0.71 ± 0.04 3.34 ± 0.07 3.17 ± 0.30b 

All energies are in kcal/mol. GCalc and GExpt are the calculated and experimental RBEs. Ala, Leu, and Gly refer to 

leucine, alanine, and glycine, respectively. For and Back refer to forward and backward simulations. BAR is free energy 

estimated through Bennett acceptance ratio method. All energies are in kcal/mol. a,bThe experimental RBEs were calculated as 

the difference of experimental Ki values of the amino acids with LeuT [2]. 
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Figure 3.5. Convergence of the simulations in the amino acid ligand perturbations.  

Left and right columns represent the alanine-to-glycine and leucine-to-alanine 

transformations, respectively. A, B, and C are free energy changes vs. 

 ΔG3, ΔG4, and BAR values in the alanine-to-glycine 

transformation; D, E, and F are corresponding values for the leucine-to-alanine 

transformation. 

 

The earlier reported RBFE for this transformation (estimated as the difference of 

ABEs) was 2.3 kcal/mol, whereas our calculated G was 3.34 ± 0.07 kcal/mol, and the 

experimental G was 3.17 ± 0.30 kcal/mol. The earlier reported G for the alanine-to-
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glycine mutation (3.2 kcal/mol) was in good agreement with our calculated G (3.26 ± 

0.05 kcal/mol) and the experimental G (2.85 ± 0.22 kcal/mol). The experimental Gs 

reported in Noskov’s paper were slightly different from ours because they used 

experimental Kd values, and we considered experimental Ki values for calculating the 

experimental Gs. Kd values for all three amino acid ligands were not available, but Ki 

values were. 

Our results were not only in quantitative agreement with the experimental values, 

but they also reproduced the experimental binding trend, that is leucine binds stronger 

followed by alanine and glycine with LeuT. These calculations not only validated the 

FEP method, but also acted as a test for the CHARMM force field parameters of the 

amino acids. We used the ParseFEP [34] plugin in VMD [28] to analyze the free energy 

simulations and to calculate the BAR values. Convergence of the simulations was 

carefully monitored using the probability density plots generated by ParseFEP plugin. 

 

3.3.2. Relative binding of clomipramine, imipramine and desipramine with 

LeuT 

Next, we calculated the RBEs of TCAs with LeuT using the FEP method and compared 

RBEs to the experimental numbers. Since experimental Kd or Ki values were not 

available, we used IC50 values to calculate the experimental Gs. Dual topology 

approach was adopted for TCA calculations as well. The three TCAs are structurally very 

similar, and the differences are highlighted in Figure 3.6. We performed three 

perturbations calculations; clomipramine-to-imipramine, imipramine-to-desipramine, and 

clomipramine-to-desipramine. 



  126 

 

 
 

Figure 3.6. Structures of (A) clomipramine, (B) imipramine, and (C) desipramine.  

Differences in structures are highlighted in green, red, blue, and pink. 

 

In the clomipramine-to-imipramine perturbation, the chlorine atom of 

clomipramine (colored green in Fig. 3.6A) was mutated to a hydrogen atom; in the 

imipramine-to-desipramine perturbation, the methyl group attached to the protonated 

nitrogen (colored blue in the Fig. 3.6B) was mutated to a hydrogen atom; in the 

clomipramine-to-desipramine mutation, the chlorine atom attached to the tricyclic rings 

(colored green in Fig. 3.6A) and the methyl group attached to the protonated nitrogen 

(colored red in the Fig. 3.6A) were mutated to hydrogens at respective positions. ΔG3 and 

ΔG4 for the clomipramine-to-imipramine perturbation were 0.40 ± 0.11 and 1.42 ± 0.07, 

respectively. Simulations reasonably converged in both ΔG3 (Fig. 3.7A) and ΔG4 (Fig. 

3.7B) calculations. The hystereses in ΔG3 and ΔG4 calculations were minimal (0.08 

kcal/mol in either case) (Table 3.2).  
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Table 3.2. Relative binding energies of the three TCAs with LeuT estimated using FEP method. 

 

 ΔG3  ΔG4 ΔΔGCalc ΔΔGExpt 

 For Back BAR  For Back BAR  

Clo  Imi 0.37 -0.29 0.40 ± 0.11  1.26 -1.18 1.42 ± 0.07 1.02 ± 0.18 1.26 ± 0.17a 

Imi  Des -2.78 3.48 -3.47 ± 0.12  -1.44 2.67 -2.20 ± 0.15 1.27 ± 0.27 >0.0b 

Clo  Des -2.29 2.42 -2.77 ± 0.10  0.07 1.22 -0.56 ± 0.12 2.21 ± 0.22 >1.26c 

All energies are in kcal/mol. GCalc and GExpt are the calculated and experimental RBEs. Clo, Imi, and Des refer to 

clomipramine, imipramine, and desipramine, respectively. aThe experimental RBFE of clomipramine-to-imipramine 

mutation [3]; b,cThe experimental RBEs of imipramine-to-desipramine and clomipramine-to-desipramine mutations [3, 25, 

38]. The error bars associated with the calculated RBEs are the statistical errors in binding energy estimation. 
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The calculated G was 1.02 ± 0.18 kcal/mol (Fig. 3.7C and Table 3.2), and the 

experimental G was 1.26 ± 0.17 kcal/mol. The positive value of G indicates that the 

clomipramine-to-imipramine perturbation was unfavorable, which means clomipramine 

binds stronger with LeuT compared to the imipramine. The chlorine of clomipramine 

indulges in a polar interaction with the side chain amide of glu34. Imipramine lacking 

this chlorine cannot form this interaction and that partially explains the stronger potency 

of clomipramine compared to imipramine with LeuT [3]. Zhao et al. estimated G for 

this perturbation through the ABFE and RBFE calculations, which were 0.2 kcal/mol and 

0.4 kcal/mol, respectively [25]. 

In the case of the imipramine-to-desipramine mutation, ΔG3 and ΔG4 were 

estimated as -3.47 ± 0.12 and -2.20 ± 0.15 kcal/mol, respectively. As shown in Figures 

3.7D and 3.7E, simulations were well converged in both ΔG3 and ΔG4 calculations. 

Hysteresis between the forward and backward simulations in ΔG3 calculation was smaller 

(0.7 kcal/mol) compared to the ΔG4 calculation (1.23 kcal/mol) (Table 3.2).  

 Our result (ΔG3 = -3.47 ± 0.12 kcal/mol) supports the fact that imipramine with 

an extra methyl moiety is less soluble compared to desipramine in water. The calculated 

G was 1.27 ± 0.27 kcal/mol, which indicates that the perturbation is unfavorable and 

also that imipramine is a strong binder with LeuT compared to desipramine. We cannot 

quantitatively compare our calculated G to the experimental value since the IC50 of 

desipramine with LeuT was not reported by Singh et al. However, it was reported that 

desipramine was a less potent inhibitor of LeuT compared to imipramine, and our result 

supports it[25, 38]. The calculated Gs of Zhao et al. for this mutation were 1.3 

kcal/mol (through ABFE calculations) and 1.0 kcal/mol (through RBFE calculations) 
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[25], which were in good agreement with our calculated G (1.27 ± 0.27 kcal/mol). 

Imipramine because of the extra methyl group is more hydrophobic compared to 

desipramine and can form more favorable van der Waals interactions with the pocket 

residues (F320 and A319) than desipramine. This partially explains the increased potency 

of imipramine compared to desipramine. Also, the desolvation penalty required to enter 

the pocket from the bulk should be less in the case of imipramine compared to 

desipramine because imipramine is more hydrophobic than desipramine. 

Finally, we estimated the G of clomipramine-to-desipramine perturbation. ΔG3 

and ΔG4 for this calculation were -2.77 ± 0.10 and -0.56 ± 0.12 kcal/mol, respectively. 

The hysteresis between the forward and backward calculation for estimating ΔG3 and 

ΔG4 were 0.13 and 1.29 kcal/mol, respectively (Table 3.2). Simulations were reasonably 

converged in both ΔG3 and ΔG4 calculations (Fig. 3.7G,H). This calculation allows us to 

check the reliability and consistency of our RBFE calculations. Theoretically, the 

calculated G of clomipramine-to-desipramine perturbation should be equal to the sum 

of Gs of clomipramine-to-imipramine and imipramine-to-desipramine perturbations. 

The calculated G (2.21 ± 0.22 kcal/mol) was in good agreement with the sum of Gs 

of clomipramine-to-imipramine and imipramine-to-desipramine perturbations (2.29 ± 

0.45 kcal/mol), and this shows the consistency of RBFE methodology. Also, the sum of 

ΔG3 (-3.07 kcal/mol) and ΔG4 (-0.78 kcal/mol) values for the clomipramine-to-

imipramine and imipramine-to-desipramine perturbations were in good agreement with 

the direct clomipramine-to-desipramine perturbation (-2.77 and -0.56 kcal/mol). The 

positive G indicates that the transformation was unfavorable, and as expected, 
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clomipramine was a potent inhibitor compared to desipramine. Since the IC50 of 

desipramine was not available, we were not able to compare quantitatively. 

However, since the experimental G of clomipramine-to-desipramine 

perturbation is equal to the sum of experimental Gs of clomipramine-to-imipramine 

and imipramine-to-desipramine perturbations, GExpt
 for clomipramine-to-desipramine 

should be greater than 1.26 kcal/mol. GExpt was in good agreement with our GCalc 

(2.21 ± 0.22 kcal/mol). Since Zhao et al. did not perform this calculation, we cannot 

compare the calculated G  in this case. Unlike desipramine, clomipramine has an 

extra chlorine atom on the aromatic ring and can form a polar interaction with the side 

chain amide of glu34. Clomipramine also has an extra methyl group attached to the tail 

and can form favorable van der Waals interactions with the pocket residues. These 

reasons might explain the stronger potency of clomipramine compared to the 

desipramine. 

Theoretically, the sum of Gs of clomipramine-to-imipramine and imipramine-

to-desipramine perturbations is quantitatively equal and opposite in sign to the G of 

clomipramine-to-desipramine perturbation; therefore, the sum of all three Gs should 

add up to zero as shown below. The sum of all three calculated Gs was 0.08 kcal/mol 

and proves the reliability of our calculations. 

 

Clo Imi

Desi

1.02

1.272.21

DDGClo -> Imi + DDGImi -> Desi + (-DDGClo -> Desi) = 0

1.02 + 1.27 - 2.21 = 0.08
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Overall, our results indicate that the order of binding of TCAs with LeuT is clomipramine 

followed by imipramine and desipramine. 

 

3.4. Conclusions  

We estimated the relative binding affinities of TCAs clomipramine, imipramine and 

desipramine with LeuT through relative binding energy calculations. We used the FEP 

method to calculate the relative binding affinities. Our results indicate that clomipramine 

binds stronger than imipramine, followed by desipramine. This binding trend was in 

agreement with the experimental binding trend of Singh et al. Zhao et al. also supported 

this binding trend through binding energy calculations. Also, the calculated relative 

binding energies were in excellent agreement with the experimental binding energies. We 

used the ParseFEP tool in VMD to assist in accurately estimating the binding energies. 

ParseFEP facilitated the analysis of FEP calculations and application of good practices in 

free energy calculations. We initially tested the ability of relative binding energy method 

to reproduce the experimental binding energies through leucine-to-alanine and alanine-to-

glycine transformations with LeuT. The calculated relative binding energies in both the 

cases were within 0.4 kcal/mol of the experimental values. Our results demonstrate that, 

provided good force field parameters and adequate sampling, reasonable accuracy in 

estimation of binding free energies is achievable. 
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Figure 3.7. Convergence of free energy simulations in the clo-to-imi, imi-to-desi and clo-to-desi transformations. 

Clo, imi, and desi refer to clomipramine, imipramine, and desipramine, respectively. A, B, and C are simulations of ΔG3, 

ΔG4, and BAR values in clo-to-imi estimation; D, E, and F are simulations of ΔG3, ΔG4, and BAR values in imi-to-desi 

perturbation; G, H, and I are simulations of ΔG3, ΔG4, and BAR values in clo-to-desi calculations.  

 



  134 

 

3.5. References 

1. Yamashita, A., S.K. Singh, T. Kawate, Y. Jin, and E. Gouaux, Crystal structure of 

a bacterial homologue of Na+/Cl--dependent neurotransmitter transporters. 

Nature, 2005. 437(7056): p. 215-223. 

 

2. Singh, S.K., C.L. Piscitelli, A. Yamashita, and E. Gouaux, A competitive inhibitor 

traps LeuT in an open-to-out conformation. Science, 2008. 322(5908): p. 1655-

1661. 

 

3. Singh, S.K., A. Yamashita, and E. Gouaux, Antidepressant binding site in a 

bacterial homologue of neurotransmitter transporters. Nature, 2007. 448(7156): 

p. 952-956. 

 

4. Zhou, Z., J. Zhen, N.K. Karpowich, R.M. Goetz, C.J. Law, M.E.A. Reith, and D.-

N. Wang, LeuT-desipramine structure reveals how antidepressants block 

neurotransmitter reuptake. Science, 2007. 317(5843): p. 1390-1393. 

 

5. Zhou, Z., J. Zhen, N.K. Karpowich, C.J. Law, M.E.A. Reith, and D.-N. Wang, 

Antidepressant specificity of serotonin transporter suggested by three LeuT-SSRI 

structures. Nat Struct Mol Biol, 2009. 16(6): p. 652-657. 

 

6. Immadisetty, K., L.M. Geffert, C.K. Surratt, and J.D. Madura, New design 

strategies for antidepressant drugs. Expert Opin Drug Discov, 2013. 8(11): p. 

1399-414. 

 

7. Gouaux, E., Review. The molecular logic of sodium-coupled neurotransmitter 

transporters. Philos Trans R Soc Lond B Biol Sci, 2009. 364(1514): p. 149-54. 

 

8. Piscitelli, C.L., H. Krishnamurthy, and E. Gouaux, Neurotransmitter/sodium 

symporter orthologue LeuT has a single high-affinity substrate site. Nature, 2010. 

468(7327): p. 1129-32. 

 

9. Shi, L., M. Quick, Y. Zhao, H. Weinstein, and J.A. Javitch, The mechanism of a 

neurotransmitter:sodium symporter—inward release of Na+ and substrate 

is triggered by substrate in a second binding site. Molecular Cell, 2008. 30(6): p. 

667-677. 

 

10. Manepalli, S., C.K. Surratt, J.D. Madura, and T.L. Nolan, Monoamine transporter 

structure, function, dynamics, and drug discovery: a computational perspective. 

AAPS J, 2012. 14(4): p. 820-31. 

 

11. Koldsø, H., K. Severinsen, T.T. Tran, L. Celik, H.H. Jensen, O. Wiborg, B. 

Schiøtt, and S. Sinning, The two enantiomers of citalopram bind to the human 



  135 

serotonin transporter in reversed orientations. Journal of the American Chemical 

Society, 2010. 132(4): p. 1311-1322. 

 

12. Kristensen, A.S., J. Andersen, T.N. Jorgensen, L. Sorensen, J. Eriksen, C.J. 

Loland, K. Stromgaard, and U. Gether, SLC6 neurotransmitter transporters: 

structure, function, and regulation. Pharmacol Rev, 2011. 63(3): p. 585-640. 

 

13. Wang, H., A. Goehring, K.H. Wang, A. Penmatsa, R. Ressler, and E. Gouaux, 

Structural basis for action by diverse antidepressants on biogenic amine 

transporters. Nature, 2013. 503(7474): p. 141-5. 

 

14. Andersen, J., N. Stuhr-Hansen, L.G. Zachariassen, H. Koldso, B. Schiott, K. 

Stromgaard, and A.S. Kristensen, Molecular basis for selective serotonin 

reuptake inhibition by the antidepressant agent fluoxetine (Prozac). Mol 

Pharmacol, 2014. 85(5): p. 703-14. 

 

15. Jorgensen, W.L., Efficient drug lead discovery and optimization. Acc Chem Res, 

2009. 42(6): p. 724-33. 

 

16. Simonson, T., Free energy calculations. Computational Biochemistry and 

Biophysics, ed. M.A. Becker OM, Roux B, Watanabe M 2001: Marcel Dekker, 

Inc. 

 

17. Tembre, B.L. and J.A. Mc Cammon, Ligand-receptor interactions. Computers 

&amp; Chemistry, 1984. 8(4): p. 281-283. 

 

18. Warshel, A., F. Sussman, and G. King, Free energy of charges in solvated 

proteins: microscopic calculations using a reversible charging process. 

Biochemistry, 1986. 25(26): p. 8368-8372. 

 

19. Shirts, M.R., D.L. Mobley, and J.D. Chodera, Chapter 4 Alchemical free energy 

calculations: ready for prime time?, in Annual Reports in Computational 

Chemistry, D.C. Spellmeyer and R. Wheeler, Editors. 2007, Elsevier. p. 41-59. 

 

20. Bash, P., U. Singh, F. Brown, R. Langridge, and P. Kollman, Calculation of the 

relative change in binding free energy of a protein-inhibitor complex. Science, 

1987. 235(4788): p. 574-576. 

 

21. Mackerell, A.D., Empirical force fields for biological macromolecules: overview 

and issues. Journal of Computational Chemistry, 2004. 25(13): p. 1584-1604. 

 

22. Guvench, O. and A.D. MacKerell, Comparison of protein force fields for 

molecular dynamics simulations molecular modeling of proteins, A. Kukol, 

Editor. 2008, Humana Press. p. 63-88. 

 



  136 

23. Wang, J., R.M. Wolf, J.W. Caldwell, P.A. Kollman, and D.A. Case, Development 

and testing of a general amber force field. J Comput Chem, 2004. 25(9): p. 1157-

74. 

 

24. Vanommeslaeghe, K., E. Hatcher, C. Acharya, S. Kundu, S. Zhong, J. Shim, E. 

Darian, O. Guvench, P. Lopes, I. Vorobyov, and A.D. Mackerell, CHARMM 

general force field: a force field for drug-like molecules compatible with the 

CHARMM all-atom additive biological force fields. Journal of Computational 

Chemistry, 2010. 31(4): p. 671-690. 

 

25. Zhao, C., D.A. Caplan, and S.Y. Noskov, Evaluations of the absolute and relative 

free energies for antidepressant binding to the amino acid membrane transporter 

LeuT with free energy simulations. Journal of Chemical Theory and Computation, 

2010. 6(6): p. 1900-1914. 

 

26. Zwanzig, R.W., High‐ temperature equation of state by a perturbation method. I. 

Nonpolar gases. The Journal of Chemical Physics, 1954. 22(8): p. 1420-1426. 

 

27. Berman, H.M., J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N. 

Shindyalov, and P.E. Bourne, The protein data bank. Nucleic Acids Research, 

2000. 28(1): p. 235-242. 

 

28. Humphrey, W., A. Dalke, and K. Schulten, Visual molecular dynamics. Journal of 

Molecular Graphics, 1996. 14: p. 33-38. 

 

29. Phillips, J.C., R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. 

Chipot, R.D. Skeel, L. Kalé, and K. Schulten, Scalable molecular dynamics with 

NAMD. Journal of Computational Chemistry, 2005. 26(16): p. 1781-1802. 

 

30. Jorgensen, W.L., J. Chandrasekhar, J.D. Madura, R.W. Impey, and M.L. Klein, 

Comparison of simple potential functions for simulating liquid water. The Journal 

of Chemical Physics, 1983. 79(2): p. 926-935. 

 

31. MacKerell, A.D., D. Bashford, Bellott, R.L. Dunbrack, J.D. Evanseck, M.J. Field, 

S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, 

F.T.K. Lau, C. Mattos, S. Michnick, T. Ngo, D.T. Nguyen, B. Prodhom, W.E. 

Reiher, B. Roux, M. Schlenkrich, J.C. Smith, R. Stote, J. Straub, M. Watanabe, J. 

Wiórkiewicz-Kuczera, D. Yin, and M. Karplus, All-atom empirical potential for 

molecular modeling and dynamics studies of proteins. The Journal of Physical 

Chemistry B, 1998. 102(18): p. 3586-3616. 

 

32. Lu, N., D.A. Kofke, and T.B. Woolf, Improving the efficiency and reliability of 

free energy perturbation calculations using overlap sampling methods. Journal of 

Computational Chemistry, 2004. 25(1): p. 28-40. 

 



  137 

33. Bennett, C.H., Efficient estimation of free energy differences from monte carlo 

data. Journal of Computational Physics, 1976. 22(2): p. 245-268. 

 

34. Liu, P., F. Dehez, W. Cai, and C. Chipot, A toolkit for the analysis of free-energy 

perturbation calculations. Journal of Chemical Theory and Computation, 2012. 

8(8): p. 2606-2616. 

 

35. Beutler, T.C., A.E. Mark, R.C. van Schaik, P.R. Gerber, and W.F. van Gunsteren, 

Avoiding singularities and numerical instabilities in free energy calculations 

based on molecular simulations. Chemical Physics Letters, 1994. 222(6): p. 529-

539. 

 

36. Darden, T., D. York, and L. Pedersen, Particle mesh Ewald: An Nlog(N) 

method for Ewald sums in large systems. The Journal of Chemical Physics, 1993. 

98(12): p. 10089-10092. 

 

37. Noskov, S.Y., Molecular mechanism of substrate specificity in the bacterial 

neutral amino acid transporter LeuT. Proteins, 2008. 73(4): p. 851-63. 

 

38. Zdravkovic, I., C. Zhao, B. Lev, J.E. Cuervo, and S.Y. Noskov, Atomistic models 

of ion and solute transport by the sodium-dependent secondary active 

transporters. Biochim Biophys Acta, 2012. 1818(2): p. 337-47. 

 

 

  



  138 

4. CHAPTER 4 

 

MODELING THE BINDING OF INHIBITORS DJLDU-3-79 AND 

SSA-426 IN THE HUMAN SEROTONIN TRANSPORTER 

 

4.1. Introduction 

Monoamine transporters (MATs) such as the human serotonin transporter (hSERT), the 

human norepinephrine transporter (hNET), and the human dopamine transporter (hDAT) 

are membrane proteins whose function is to reuptake serotonin, norepinephrine and 

dopamine from the synapse into the presynaptic neuron, thereby maintaining homeostasis 

in the body. MATs play a key role in modulating sleeps, appetite, reward, fear, sexual 

drive, and motivation [1]. MATs are implicated in several CNS disorders such as 

depression, substance abuse and addiction, attention deficit hyperactivity disorder 

(ADHD), orthostatic hypertension, obsessive-compulsive disorder, Parkinson’s disease, 

and schizophrenia [2-7]. MATs belongs to the NSS family [8] and use sodium gradient to 

drive the neurotransmitters across the membrane [9]. hSERT requires symport of one 

Na+, one Cl- and antiport of one K+ ion to transport one substrate molecule across the 

membrane [10, 11]. 

Depression is a major psychological disorder affecting 121 million people around 

the world, and in the USA alone approximately 30 million people are suffering every 

year [12]. About one million people commit suicide yearly because of depression [13]. 

Already depression is the second-highest cause of DALYs (Disability Adjusted Life 

Years) in the age group of 15-44 today [14]. According to the world health organization, 
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depression is projected as the second largest health disorder by 2020 [13]. Health care 

costs per person diagnosed with depression in the USA was projected as $23,000 per year 

in 2012 [12]. Despite the seriousness of the condition, there is no sophisticated treatment 

for depression. Although several drugs are available for treating depression, they have 

several limitations such as adverse effects, a latency phase of 3-4 weeks and a high 

percentage of non-respondents (approximately 30%) [15]. This necessitates the 

development of novel medication to treat depression.  

hSERT is the primary target for several antidepressants and has been the target of 

antidepressant drug discovery for over five decades. Several of the currently prescribed 

antidepressants primarily act at hSERT, including tricyclic antidepressants (TCAs), 

selective serotonin reuptake inhibitors (SSRIs) and serotonin-norepinephrine reuptake 

inhibitors (SNRIs). Since the first class of antidepressants (e.g., TCAs) act on adrenergic, 

muscarinic acetylcholine and histamine receptors along with hSERT and hNET, thereby 

causing several adverse effects [16, 17], more selective antidepressants popularly known 

as SSRIs were discovered [18]. Although SSRIs are better than TCAs, they are not 

completely free of adverse effects. For example, SSRIs are known for causing insomnia 

or hypersomnia, somnolence, weight gain, gastrointestinal disturbances, cardiovascular 

problems and sexual dysfunction. These adverse effects are the result of secondary 

interactions of these drugs with several serotonin receptors. SSRIs are the most effective 

and highly prescribed antidepressants to date in the market and act by selectively 

inhibiting the hSERT. However, the molecular basis for their selectivity and efficacy, 

binding site location and drug binding mode is unknown and is highly debated [19]. 

Although several critical residues for antidepressant selectivity and affinity were 
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identified through mutagenesis experiments [20-24], non-availability of the crystal 

structure of hSERT hampers the development of better therapeutics for treating 

depression. 

Knowledge of the binding site and interaction of the drugs with hSERT prove 

critical for the potential development of future therapeutic agents. However, there is no 

clarity with regards to the binding site and the binding mode of antidepressants in 

hSERT. Although hSERT has been extensively studied with several experimental and 

computational methods, several predictions remain controversial because of the non-

availability of crystal structure of hSERT. For example, several studies proposed that 

antidepressants bind with high-affinity to the hSERT S1 pocket (Fig. 4.1) and the method 

of inhibition was competitive [20, 22-36]. This was further supported by studies showing 

that antidepressants depend on ions to bind with hSERT [37, 38]. On the contrary, there 

is a second hypothesis that has evidence to show that antidepressants bind in the S2 

pocket (Fig. 4.1) of hSERT and inhibit the protein in a noncompetitive manner [39-41]. 

The third hypothesis was that antidepressants bind to both S1 and S2 pockets in hSERT 

and inhibit the transporter by allosterism [42-46]. Lately, studies focused on the inhibitor 

ibogaine predict that it binds at a site other than S1 and S2 in hSERT [47]. 

To better understand the structural and functional aspects of hSERT and to gain 

insight into the molecular basis of drug affinity, selectivity and the inhibition process, 

computer models of hSERT were developed based on leucine transporter (LeuT) as a 

template [20, 23, 34, 35, 48-50]. LeuT is a bacterial membrane protein from Aquifex 

aeolicus, belongs to the NSS family and shares 20-25% sequence identity with hSERT 

[51]. 
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Figure 4.1. Serotonin transporter embedded in a membrane bilayer.  

The S1 or primary binding site (colored pink) is located halfway 

through the protein, and the S2 or secondary binding site (colored 

blue) is positioned towards the extracellular side. Transmembrane 

(TM) helices 1, 3, 6, and 8 are colored orange, green, red, and blue, 

respectively; remaining TM helices are colored yellow. The 

membrane bilayer is colored green. 

 

LeuT was the first member of the NSS family that has been crystallized, and, to 

date, over 38 crystal structures of LeuT are available with various amino acids [52, 53], 

TCAs [41, 54] and SSRIs [39]. Several aspects of LeuT include the following: binding 

pockets of various substrates and antidepressants, binding modes, mechanism of binding, 

transport and inhibition, different conformation states of protein, key structural 

determinants for ligand binding, and transport and inhibition. These aspects were 

extensively studied using various pharmacological, biophysical and computational 

experiments. With regards to the binding sites, similar to hSERT, LeuT has two 

distinguished binding pockets, S1 and S2. Substrate leucine [53] and other amino acids 

like alanine, glycine and tryptophan [52] bind in the S1 site, whereas antidepressants 
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TCAs [41, 54] and SSRIs [39] bind in the S2 site of LeuT. However, there is controversy 

with regards to the substrate-binding site in LeuT. Shi et al. proposed that there are two 

high-affinity substrate binding sites in LeuT (i.e., S1 and S2), and leucine occupies both 

the S1 and S2 sites simultaneously and substrate in the S2 site allosterically triggers the 

release of substrate from S1 site into the intracellular side [55]. However, this was later 

contradicted by Piscitelli et al. through various studies, which concluded that LeuT has 

only one high-affinity substrate-binding site (i.e., S1) [56]. Computer models of hSERT 

developed using LeuT were useful in guiding site-directed mutagenesis experiments [23], 

structure-based drug design to identify novel lead compounds [49, 57], exploration of 

binding sites [58] and for understanding the substrate translocation mechanism [59]. 

In view of this ambiguity and significance of hSERT in depression treatment, we 

explored the binding sites and binding modes of two antidepressant lead compounds 

SSA-426 and DJLDU-3-79 [40] in hSERT using a computational protocol involving 

active site detection, docking, scoring, MD simulations and ABFE calculations. Active 

site detection is a process of identifying the binding sites in a protein. Binding pockets are 

the regions where drugs bind and interact with the protein. Therefore, identifying binding 

pockets on proteins is key for the rational design of novel therapeutics in the structure-

based drug design. Docking is a process of generating all possible conformations of the 

ligand in the binding site of the protein. Scoring functions play a key role in ranking 

compounds in the computational drug screening approaches and also to rank various 

poses of a compound in docking simulations. Today in drug discovery, docking and 

scoring protocols are playing a significant role in lead identification and optimization. 

We utilized a unique protocol called AADS, which stands for automated active site 
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detection, docking and scoring [60], to identify the active site and bioactive conformation 

of the ligand. Further, we employed MD simulations and ABFE calculations to confirm 

or validate AADS results, thereby identifying the most probable bioactive conformation 

of the ligand and its binding site in the protein. We used the FEP technique to calculate 

ABEs. Identifying the binding mode allows optimizing the inhibitor for better affinity 

and improving selectivity. 

We initially validated the AADS protocol on five different LeuT crystal 

structures, where it successfully identified the active sites and reproduced the bioactive 

conformation of the ligands with reasonable accuracy. In all five cases, the active site was 

among the top 10 cavities identified, and the bioactive conformation of the ligand was 

within the top five AADS poses, except in the case of 2A65, where it was ranked 8th. 

Identification of a ligand pose is nearly superimposable on the bioactive conformation 

within the top 10 docking poses, which improved our confidence in the scoring function. 

These results prove that it is applicable to huge membrane proteins such as LeuT and 

hSERT. We also validated the ABFE method with LeuBAT:Clomipramine crystal 

complex [36] (PDB ID: 4MMA). The calculated binding affinity (-7.69 ± 0.34 kcal/mol) 

correlated well with the experimental binding value (-8.25 ± 0.05 kcal/mol). 

Finally, we applied this protocol to the hSERT homology model to explore the 

binding sites and the binding modes of antidepressant lead compounds SSA-426 and 

DJLDU-3-79. We used the homology model of hSERT developed by Manepalli et al. for 

this purpose [49]. SSA-426 is a dual hSERT and 5-HT1A-receptor antagonist and 

possesses a higher affinity for hSERT (Ki = 2.34  0.59nM). DJLDU-3-79 is our in-house 

designed antidepressant lead compound and a molecular hybrid of SSA-426 and MI-17, 
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which is a virtual screening hit compound. The binding affinity (Ki) of DJLDU-3-79 with 

hSERT is 37  4nM [48]. Since DJDLU-3-79 and SSA-426 are structurally similar, 

Nolan et al. proposed that both these inhibitors bind in the same pocket (i.e., S2) and in a 

similar orientation in hSERT [48]. However, our results do not correlate with the earlier 

predictions. Instead, we observed that these two inhibitors bind in the S1 site of hSERT, 

but in a similar orientation as proposed by Nolan et.al. We also identified a pose of 

DJLDU-3-79 binding in the S2 site, which is stable in the MD simulations and 

energetically less favorable than the pose binding in the S1 site. We propose this as the 

metastable pose and the S2 site as the low energy binding metastable site of DJLDU-3-79 

in hSERT. Our results also indicate that it is not always wise to use one static structure of 

the protein for docking purposes, as it restricts the sampling of ligand conformations in 

the protein. 

 

4.2. Materials and Methods 

4.2.1. Computational protocol 

The computational protocol we followed for identifying the binding site and binding 

mode of the inhibitors is shown in Figure 4.2. The first step of our protocol was to 

develop the hSERT homology model since the crystal structure is not yet available. 

However, we used the homology model of hSERT developed by Manepalli et al. [48] for 

this study. In the next step, binding sites in the protein were identified to dock the 

ligands. Then we docked the ligands and ranked the poses via scoring functions. For 

active site identification, docking and scoring purposes we used a web server, known as 

AADS [60]. We used AADS and molecular operating environment (MOE) software to 
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obtain docked poses [61]. The poses of interest were selected and MD simulations were 

performed to test the stability and also to understand the various interactions playing a 

key role in the binding of a ligand in the pocket. The last step is computing binding 

energies of various poses using the ABFE method. The ABFE method depends on the 

FEP technique; although it is computationally demanding, it is rigorous and accurate 

compared to scoring functions. Other advantages of the FEP method over scoring 

functions are the inclusion of protein flexibility and explicit water in the simulations. The 

pose whose calculated binding affinity matches with the experimental binding energy 

was considered the most probable experimental binding pose, and the site in which it is 

binding is considered the possible binding pocket of the ligand in hSERT. 

 

4.2.1.1. Automated active site identification and scoring protocol 

(AADS) 

AADS [60] is a robust automated protocol for active site detection, docking and scoring 

in proteins. It is three individual computational tools tied together to make the process 

easier. AADS methodology can be divided into three steps. In step 1, when a nascent 

protein is given to the AADS server, it identifies all the cavities in the protein and ranks 

them based on physiochemical properties of the functional groups circling the cavities. In 

step 2, the ligand of interest is docked into the top 10 ranked cavities and generates 

≈1000 conformations and finally saves eight low energy docked poses at each site. In 

step 3, all the 80 low energy docked poses corresponding to the 10 sites are energy 

minimized and ranked using a free energy scoring function and outputs ten best-ranked 
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complexes. Expectations of AADS are that it should predict the active site within the top 

10 cavities and bioactive conformation of the ligand within the top 5 poses. 

 

 
 

Figure 4.2. Computational protocol 

for elucidating the binding site and 

binding mode of inhibitors. 

 

4.2.1.1.1. Active site finder 

Active site finder [60] is a geometric-based algorithm and typically works in 3 steps. In 

the first-step, average coordinates of the grid points in the 4Å cluster are determined. A 

4Å cluster is a collection of grid points within a 4Å radius and encircled by protein atoms 

from two sides. In step 2, the average points surrounded by greater than 150 atoms of 
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protein are identified and clustered into 10Å radii, and a reference point is generated to 

represent the 10Å cavity position in the protein. Finally, all the cavities are ranked using 

equation 1. In scoring the cavities, physicochemical properties of the residues lining the 

cavities such as the number of hydrogen bond donors, acceptors, aromatic rings, and 

hydrophobic atoms were considered along with the volume of the cavity. 

                                                                               - Equation 1 

ScoreC is the score of cavity C; N is the total number of properties considered in 

calculating the score and in this case it is 5; P refers to properties such as the hydrogen 

bond donor, acceptor, aromatic rings, hydrophobic atoms and volume of the cavity; XPC 

is the value of the property P in the cavity C;  is the maximum value of that property 

in the protein. It is believed that the higher the score of a cavity, the higher the chances of 

that cavity being the active site in the protein. 

 

4.2.1.1.2. Docking 

Docking is carried through a program called Pardock (Parallel Dock). Docking of the 

candidate molecule at the top 10 sites and generation of conformations occurs in 5 stages 

[62]. In stage 1, the protein and the candidate molecule are prepared for docking 

calculations. Input conformation of the ligand is considered for docking purposes. 

Hydrogens are added to the ligand using AMBER [48] and an appropriate ionization state 

is assigned. Then the ligand is geometrically optimized through the AM1 procedure, and 

partial charges are derived through the AM1-BCC procedure [63]. Atom types, bond 

angle, dihedral and van der Waals parameters for the ligand are assigned using the GAFF 
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force field [64]. In stage 2, ligand is translated to the top 10 cavities identified by the 

active site finder. In stage 3, a cubic grid of 1Å resolution is generated around the protein, 

and the translational points with less number of clashes are identified for docking. In 

stage 4, at each of the ten binding sites around 1000 conformations are generated using a 

six-dimensional rigid body Monte Carlo methodology. All the conformations are ranked 

through a scoring function, which calculates the interaction energy of ligand 

conformations with a protein based on equation 2.  

                                                                         - Equation 2 

E is the interaction energy between the ligand atoms and proteins atoms, and  is the sum 

over all ligand atoms; Eele, Evdw and Ehpb are the electrostatic, van der Waals and 

hydrophobic components. 

In stage 5, the eight lowest energy conformations at each binding site are 

collected for the next stage of the calculation.  

 

4.2.1.1.3. Scoring function 

The eighty lowest energy conformations collected in stage 5 of the docking are energy 

minimized through AMBER [48] and ranked based on an empirical scoring function 

called BAPPL [65]. Change in binding energy (G) is calculated using equation 3. 

                              - Equation 3 

Eele and Evdw are the electrostatic and van der Waals components; ΔALSA is the loss in 

surface area; σA is the atomic desolvation parameter; ΔSCR is the loss in conformational 

  

E = Eele + Evdw + Ehpb( )å
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entropy. , , and  are the empirical coefficients for electrostatics, van der Waals and 

conformational entropy, respectively; δ is a constant. 

 

4.2.1.2. AADS validation on LeuT crystal structures 

We tested the AADS capability to explore binding sites and to retrieve the bioactive 

conformation of the ligand on five different LeuT crystal structures. All the five crystal 

structures (2A65, 2Q72, 3F3A, 3GWU, 3GWV) of LeuT were downloaded from the 

Protein Data Bank (www.pdb.org). Water, ions, and ligands were removed from the 

crystal structures using MOE software. The protonation states were assigned using the 

protonate 3D capability in MOE and hydrogens were added. All the crystal structures 

were then saved in standard pdb format and given as input to the AADS. Initially, AADS 

identified all possible cavities in the protein and ranked them using the scoring function 

as described earlier. AADS output consisted of all the cavities identified in the order of 

their ranks along with the residues forming the cavities, coordinates of the atoms 

surrounding the cavities, cavity points and volume of the cavities. Then the ligand of 

interest was provided to the AADS in standard pdb format and the total charge of the 

ligand was specified. Ligands were initially built in MOE using the molecule builder 

utility, protonation states were assigned using protonate 3D, hydrogens were added,  

energy minimized, and finally saved as pdb. The top 10 poses of the ligand in complex 

with the protein along with their binding energies (in kcal/mol) were output by AADS. 

The AADS results were summarized in Table 4.1. Cavities of LeuT identified by 

AADS were validated by comparing them against the pockets in the crystal structures. To 

identify a ligand pose closest to the bioactive conformation, all the ten AADS ligand 
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poses were superposed onto the crystal conformation of the ligand and calculated the 

RMSD. 

 

4.2.1.3. Application of AADS to hSERT 

AADS was applied to the hSERT homology model to explore the binding sites and the 

binding modes of SSA-426 and DJLDU-3-79. The development of hSERT homology 

model was previously described [66]. The rest of the procedure is the same as explained 

in section 1.2.1.2. 

 

4.2.1.4. hSERT docking using MOE docking protocol 

Induced-fit docking protocol in MOE was used to dock the ligands in the hSERT. 

Initially, the protein-ligand complex for docking was prepared in MOE. Ligand 

coordinates were generated using MOE. Two Na+ ions and one Cl- ion were placed at 

appropriate positions in the protein. Appropriate protonation states for the protein 

residues were assigned using the protonate 3D capability in MOE. The CHARMM force 

field was used to assign hydrogens and to add partial charges to the protein atoms, ligand 

atoms, and ions. The alpha site-finder in MOE was used to define the docking site in the 

protein. Wall constraints (radius 8Å) were placed around the docking site to restrict the 

docking poses. The proxy triangle placement method in combination with the London dG 

scoring function was employed to dock the ligands. Further, all the poses were refined via 

the force field refinement scheme and ranked through the affinity dG function. 
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4.2.1.5. System preparation and protocol for MD simulations  

Protein:Ligand complexes resulting from the AADS server were reprocessed using MOE. 

Two Na+ ions and one Cl- ion were placed at appropriate places in the protein, and the 

titratable residues were protonated appropriately at pH 7. The system prepared in MOE 

was hydrated using VMD [67]. The size of the simulation box was 90Å X 100Å X 96Å. 

The final system contains one hSERT protein, one ligand, 24,428 waters, two sodium 

ions and one chloride ion, to create a total of 81,764 atoms. Molecular dynamics 

simulations were performed using NAMD [68] in periodic boundary conditions. The 

system was initially energy minimized for 50,000 steps to remove steric clashes. 

Following minimization, systems were equilibrated in NPT ensemble (temperature = 

310K and pressure = 1 bar) for 2ns. A 2fs time step was used; van der Waals and short-

range electrostatics were cut off at 12Å. Long-range electrostatics were treated using the 

particle mesh Ewald (PME) method [69]. Following equilibration, each system was 

simulated for 50ns, including 2ns equilibration. Trajectories were saved every 0.5ps. The 

CHARMM force field [70] was used for protein, water (TIP3P model [71]) and ions. 

Inhibitors were treated with the CHARMM general force field (CGenFF) [72]. Poses 4, 5, 

and M of DJLDU-3-79, and pose-1 of SSA-426 were simulated using this procedure. The 

RMSDs of the protein backbone and the ligand non-hydrogen atoms were calculated 

using an RMSD trajectory tool in VMD. 

 

4.2.1.6. Absolute binding energy calculations 

We used the double annihilation approach to compute ABFE. The double annihilation 

approach depends on the thermodynamic cycle shown in Figure 4.3, and free energy 
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change (∆G) was computed using the FEP [73] principle. In the FEP method, ∆G 

between the initial and the final states (0 and 1) is calculated using equation 4. 

                                  
                 - Equation 4 

ΔG is the change in Gibbs free energy; G1 and G0 are the free energies of initial and final 

states 0 and 1, respectively; KB is the Boltzmann constant; T is the temperature; U1 and 

U0 are the potentials of states 1 and 0, respectively. 

In the double annihilation approach, ABFE (∆GAbs) of a ligand (L) with a protein 

(P) is computed as 

                                                                                             
- Equation 5 

 

∆G2 and ∆G1 are the free energy changes involved in annihilating the ligand L from the 

solvent and the solvated protein P.  

To prevent the ligand from escaping the binding site while calculating ΔG1, 

positional restraints were imposed on the ligand and the bias introduced by the restraints 

was estimated using equation 6 [74, 75].
 

                                                                    - Equation 6 

ΔGRestraint is the restraint free energy; R is the gas constant; T is the temperature. Voleff is 

the effective volume, which is the volume accessible by the ligand in the pocket in the 

presence of the restraints; Vol0 is the volume accessible by the ligand at standard 

concentration of 1M, which is equal to 1660 Å3. Voleff in turn was calculated using 

equation 7.  

                                                                                            - Equation 7 
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K is the force constant, which was used to restrain a ligand in the binding site of a 

protein. ΔGRestraint estimated through equation 6 was added to ∆GAbs calculated through 

equation 5 to compensate for the restraints, and the final expression for calculating ABFE 

is shown in equation 8. 

                                                                           
- Equation 8 

 

 
 

Figure 4.3. Double annihilation approach for estimating absolute binding energy.  

P, L, and D refer to protein, ligand, and dummy, respectively. ∆GAbs is the 

absolute binding energy of the L-P complex. ∆G2 and ∆G1 are the free energy 

changes of perturbing L to D in the solvent and in the P, respectively. ∆G0 is the 

absolute binding energy of the D-P complex, which is equal to zero. 

 

The experimental binding energy (∆GExp) was estimated from the experimental inhibition 

constant (Ki) using equation 9. 

                                                                                                 - Equation 9 

R is the gas constant; T is the temperature;  Ki is the inhibition constant. 

DGAbs =DG2 -DG1 +DGRestraint

DGExp = RT lnKi
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4.2.1.6.1. System preparation and simulation details 

In the case of hSERT, final structures of the protein-ligand complexes from MD 

simulations were used for estimating ΔG1. For the estimation of ΔG2, ligand 

conformation from the MD simulation was placed in the water box and energy minimized 

for 50,000 steps prior to decoupling with the solvent. The LeuBAT:Clomipramine 

complex for ΔG1 estimation, as well as clomipramine in the water box for ΔG2 

calculation, were prepared following the similar procedure as in the case of hSERT. The 

LeuBAT:Clomipramine complex and the clomipramine in the water box were energy 

minimized for 50,000 steps prior to decoupling calculations. Free energy calculations 

were performed using NAMD. A coupling parameter (λ) was introduced, and the 

transformation between the initial (0) and final states (1) is a function of λ. All 

simulations were carried in both forward and backward directions to monitor hysteresis 

and to improve the statistical precision. Free energy differences were estimated using the 

Bennett acceptance ratio (BAR) method [76]. Bidirectional simulations enhance the 

reliability and efficiency of the free energy estimation. The ParseFEP [77] plugin in 

VMD was used to analyze the free energy simulations and to compute the binding energy 

along with error bars. The error bars represent the statistical error in the binding energy 

calculation. Convergence of the binding energies due to the insufficient sampling is a 

bigger problem in the FEP method. Therefore, the entire transformation was divided into 

several windows, to ensure sufficient overlap between configurational ensembles 

representing the reference and target states, and to get reasonable accuracy [78]. 

Probability density plots generated using the ParseFEP plugin were used to assess the 
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convergence between subsequent windows, and to optimize them to reduce the statistical 

as well as systematic errors in the calculation. A soft-core potential [79] was introduced 

to handle the end-point catastrophes. Electrostatics were turned off from λ=0 to λ=0.5 

and van der Waals were turned off from λ=0 to λ=1.0. A 2fs time step was used in all the 

calculations. The CHARMM force field for the protein, water (TIP3P model) and ions 

[70], and CGenFF [72] parameters for the inhibitors (obtained from the ParamChem 

website) were used. No restraints were placed on the ligands in the calculation of ΔG2. 

All simulations were run under NPT ensemble (temperature = 310K and pressure = 1 

bar). 

 

LeuBAT:Clomipramine 

 

ΔG2 calculation: In each direction, a 10ns simulation was carried, and the total 

transformation was divided into 263 windows. A 0.008ns equilibration and a 0.03ns data 

collection were carried in each window. 

ΔG1 calculation: A 1.0ns forward and a 1.0ns backward simulation were performed. The 

total calculation was split into 150 windows. A force constant of 0.1 kcal/mol.Å2 was 

used to confine clomipramine to the binding site of LeuBAT. In each window, the system 

was equilibrated for 0.0022ns and data was collected for 0.0044ns. 

 

hSERT:SSA-426 (Pose-1) 

 

ΔG2 calculation: A 4.5ns simulation in each direction was performed, and we used 150 

windows in either direction. In each window, a 0.005ns equilibration followed by a 

0.025ns data collection was performed. 
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ΔG1 calculation: The simulation time and number of windows were similar to the ΔG2 

calculation. The ligand was restricted in the binding site using a force constant of 0.5 

kcal/mol.Å2. The system was equilibrated for 0.01ns in each window followed by a 

0.02ns data collection. 

 

hSERT:DJLDU-3-79 (Poses M and 5) 

 

ΔG2 calculation: A 15.6ns simulation was performed in each direction, and the total 

simulation was split into 130 windows in either direction. In each window, the system 

was equilibrated for 0.024ns and data was collected for 0.096ns.  

ΔG1 calculation: In each direction a 4.5ns simulation was performed and 150 windows 

were used. The ligand was restricted in the binding site with a force constant of 0.5 

kcal/mol.Å2. In every window, a 0.01ns equilibration and a 0.02ns data collection was 

carried out. 

 

4.3. Results and Discussion 

4.3.1. Validation of AADS protocol with LeuT crystal structures 

After careful inspection, we selected five high-resolution LeuT crystal structures to test 

the AADS method. Details of all the five crystal structures were provided in Table 4.1. 

We included all relevant variables into the data set. Since the goal was to test the ability 

of AADS in identifying the active site and reproducing the bioactive conformation, we 

included two well-established binding sites, S1 and S2, into the dataset. Similar to 

hSERT, the S1 pocket of LeuT is located halfway through the protein and harbors 

substrate leucine and inhibitors such as tryptophan; the S2 pocket is located 11Å above 
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the S1 on the extracellular side of the protein and shelters antidepressants such as 

imipramine, R-fluoxetine and sertraline. To see the impact of protein conformation in 

identifying the binding site, the two identified conformational states, open outside (Co) 

and occluded (Occ), were included in the dataset. In Co, the transporter is open toward the 

extracellular side, whereas in the case of Occ, the transporter is obscured both from the 

extracellular and intracellular side. Since our goal is to see where and how potential 

antidepressants bind in hSERT, we included two different classes of antidepressants, such 

as TCAs (e.g., Imipramine) and SSRIs (e.g., Sertraline and R-fluoxetine) into the dataset, 

along with inhibitor tryptophan and substrate leucine. The AADS performed reasonably 

well in identifying the binding pockets and bioactive conformations of ligands in all the 

crystal structures. 

 

4.3.1.1. Binding site identification 

AADS successfully identified the active sites in all five LeuT structures, although active 

site rank varies. In the case of 2Q72, 3GWU, and 3GWV, the active site rank was one; 

whereas it was nine in 2A65 and 3F3A. Interestingly, in all the three crystal structures 

(2Q72, 3GWU and 3GWV) ligand binds in the S2 pocket, and was ranked one by AADS 

in all three cases. In the case of 2A65 and 3F3A, ligand binds in the S1 pocket, and it was 

ranked nine by AADS in both cases. This might be because the S2 pocket is huge 

compared to the S1 pocket; moreover, it is located on the extracellular side, making it 

readily accessible to the ligands. Whereas the S1 pocket is small compared to the S2 site, 

and it is located deep in the protein making it inaccessible to the ligands. Therefore, it is 

no surprise to see that irrespective of the conformation of the protein, S2 is the highest 
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ranked site in all five of the crystal structures. The total number of pockets identified in 

each structure by AADS was shown in Table 4.1. The difference in the total pockets 

among five structures was due to the repeated identification of the same pockets in some 

structures. The conservation of S1 and S2 pockets in all five of the crystal structures 

shows the functional importance of those sites in LeuT. The results demonstrated that 

AADS was successful in identifying the active sites irrespective of the conformation of 

the protein and location of the binding sites. It is worth mentioning that all the active sites 

were within the top 10 sites identified by AADS. Since AADS docks the ligand only in 

the top 10 binding sites to identify the bioactive conformation, it is crucial that the active 

site is within the top 10 binding sites. 

 

4.3.1.1. Binding site validation 

After successful identification of the active sites in LeuT by AADS, we validated the 

AADS pockets by comparing them to the pockets in the crystal structures. Of all the 

AADS identified binding pockets in LeuT, only two pockets were well established, S1 

and S2. These two pockets were found in all five of the crystal structures, thereby 

attributing druggability and functional relevance.  

The S1 pocket is the harbor for the substrate leucine and the inhibitor tryptophan. 

We validated the S1 pocket identified by AADS by comparing it to the S1 pocket of 

2A65. 2A65 is a crystal structure of LeuT with substrate leucine bound in the S1 pocket. 

LeuT attains occluded conformation by accommodating leucine. In Figure 4.4A, we 

superposed cavity-9 identified by AADS onto 2A65 with leucine bound in the S1 pocket. 

Cavity-9 of AADS correlates well with the S1 pocket of 2A65 (Fig. 4.4). This validates 
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the S1 pocket of LeuT identified by AADS. We validated the S2 pocket by comparing it 

against the S2 pocket of 2Q72. 2Q72 is a crystal structure of LeuT with the 

noncompetitive inhibitor imipramine bound to the S2 pocket. LeuT was stabilized in an 

occluded conformation by the imipramine. In Figure 4.4B, we superposed cavity-1 of the 

AADS onto 2Q72 with the imipramine bound to the S2 pocket. Cavity-1 of AADS 

matches well with the S2 pocket of 2Q72. The correlation between AADS cavities and 

crystal pockets demonstrate the ability of AADS to detect the active sites. Further, we 

tested the AADS capability to retrieve the bioactive conformation of a ligand. 

 

  
 

Figure 4.4. AADS cavity points vs. S1 and S2 sites in the LeuT crystal structures.  

A is the S1 site of 2A65 with leucine (colored blue) bound, and B is the S2 site of 

2Q72 with imipramine (colored yellow) bound. Cavity points are represented as red 

spheres in both A and B. Cavity point nine matches with the S1 site of 2A65 and 

cavity point one matches with the S2 site of 2Q72. 



  

1
6
0
 

 

 

 

 

Table 4.1. Validation of AADS protocol on different LeuT crystal structures. 

 

Pdb code Ligand Resolution Conformation Binding 

site 

Site 

rank 

T.N.P RMSD Pose 

rank 

2A65 Leucine 1.65 Occ S1 9 30 3.35 8 

2Q72 Imipramine 1.70 Occ S2 1 31 2.47 2 

3F3A Tryptophan 2.00 Co S1 9 28 2.75 1 

3GWU Sertraline 2.14 Occ S2 1 29 3.75 4 

3GWV R-fluoxetine 2.35 Occ S2 1 29 1.93 3 
Occ and Co refer to occluded and outward facing conformations of LeuT; T.N.P refers to total number of pockets identified 

by AADS; site rank is the rank of the active site identified by AADS; pose rank is rank of the AADS pose that is closest to 

the bioactive conformation of the ligand. 
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4.3.1.2. Pose validation 

Identification of the bioactive conformation of ligands is a crucial aspect in drug 

discovery. Knowledge of the bioactive conformation of ligands helps in the rational 

design of new drugs. Several efficient docking tools are available to reproduce the 

bioactive conformation of ligands, but they lack an efficient scoring function. We tested 

the AADS docking and scoring protocol for its robustness and accuracy in reproducing 

the bioactive conformation. 

We self docked ligands leucine, imipramine, tryptophan, sertraline and R-

fluoxetine in the top 10 binding sites identified by AADS in the respective crystal 

structures. The top 10 docking poses of each ligand were analyzed for the closest match 

to the bioactive conformation. In all 5 cases, AADS was able to retrieve the bioactive 

conformation of the ligands. Except in the case of 2A65, the bioactive conformation was 

among the top 5 poses. As shown in Table 4.1, pose ranks were 8, 2, 1, 4 and 3 in 2A65, 

2Q72, 3F3A, 3GWU, and 3GWV. From the ranking of poses, it was clear that AADS 

performed equally well in retrieving the bioactive conformations in both the S1 and S2 

pockets of LeuT, except in the case of 2A65. Although ligand binds in the S1 pocket in 

both 2A65 and 3F3A, the difference in pose ranking might be because 2A65 was in 

occluded conformation making the pocket more compact and inaccessible unlike 3F3A, 

where the protein was in open to out conformation. Still, AADS performed reasonably 

well in reproducing the bioactive conformation of the ligand in 2A65. The RMSD 

between the closest AADS pose and the pose in the crystal structure was considerably 
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low (<3.8Å) as shown in Table 4.1. Comparison of the closest AADS poses with the 

poses from the crystal structures are shown in Figure 4.5. 

 

  

  

 
 

Figure 4.5. Closest AADS pose vs. conformation of ligands in LeuT crystal structures.  

(A) Leucine (2A65), (B) Imipramine (2Q72), (C) Tryptophan (3F3A), (D) Sertraline 

(3GWU), and (E) R-fluoxetine (3GWV). The crystal poses are depicted as balls and 

sticks and the AADS poses are depicted as sticks. 
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It is evident from the above results that AADS performed reasonably well in the active 

site identification and in retrieving the native conformations of the ligands. AADS 

identified the active sites in 2A65, 2Q72, 3F3A, 3GWU, and 3GWV, and also reproduced 

the crystal conformation of the ligands with reasonable accuracy. AADS performed better 

in identifying the bioactive conformation of the ligands than identifying the active sites. 

Retrieval of the native conformation of the ligands within the top 10 poses was 

outstanding. After successful validation of AADS with LeuT crystal structures, we used it 

to explore the binding sites of SSA-426 and DJLDU-3-79 in hSERT. 

 

4.3.2. DJLDU-3-79 and SSA-426 binding in hSERT 

4.3.2.1. Application of AADS protocol to hSERT homology model 

 

 
 

Figure 4.6. Chemical structures of DJLDU-3-79 (A) and SSA-426 (B). 
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After successful validation of AADS with LeuT, we investigated the binding site and 

binding mode of DJLDU-3-79 and SSA-426 in hSERT. AADS identified 34 binding 

pockets in hSERT; some of them were repeated twice. The S1 and S2 pockets, similar to 

LeuT, were conserved in the hSERT and were among the top 10 binding sites. Next, 

inhibitors were docked into the top 10 pockets of hSERT using the AADS docking and 

scoring protocol. 

The top 10 docking poses of both the inhibitors resulting from AADS were 

analyzed. In the case of SSA-426, only two poses (ranked 1 and 3) ended up in the sites 

of interest (S1 and S2), and rest of the eight poses were binding elsewhere in the protein. 

Poses 1 and 3 were binding between the S2 and S1 pockets in a similar fashion (Fig. 4.7). 

These two poses were accommodated between TMs 1, 3, 6, 8 and 10; the indole group 

was binding in the S1 pocket, the 2-methyl quinolone group was binding in the S2 pocket 

facing the extracellular side of the protein, and the tetrahydropyridine ring was caught 

between the S1 and S2 pockets. Both poses were passing through the extracellular 

hydrophobic gate formed by residues Tyr-176 and Phe-335. The indole moieties of both 

the poses were surrounded by the S1 (Asp-98, Ser-438, Tyr-95, Ile-172, and Ala-173) 

and S2 pocket residues (Tyr-175, Tyr-176, Phe-335, Thr-497, and Gly-442). Most 

importantly, the indole nitrogen was interacting with Asp-98, which was demonstrated to 

be key for the binding of various antidepressants with hSERT [20, 21, 23, 31-33, 36]. The 

tetrahydropyridine ring was caught between the extracellular gate (formed by Arg-104 

and Glu-493) and the extracellular hydrophobic gate (formed by Tyr-176 and Phe-335), 

and also surrounded by Gly-100, Leu-99, Phe-335, and Tyr-175. Whereas the 2,3-

dioxypropyl 2-methyl quinolone was packed with residues Arg-104, Glu-493, Trp-103, 
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Ile-179, Val-489, Lys-490, Tyr-107, Trp-182, Gly-402, Ala-401, Pro-403, Tyr-232, Tyr-

487, and Gln-238 of the S2 site. It is worth mentioning here that the S1 pocket residues 

Tyr-95, Asp 98, Ile-172, Asn-177, Phe-341, and Ser-438 [23], and the S2 pocket residues 

Val-489, Lys-490, Glu-493, Ala-401, Ile-179, Tyr-175, and Gly-100 [39] were 

established as important for the affinity of various antidepressants with hSERT through 

several studies. Orientation of poses 1 and 3 was similar to what was proposed earlier by 

Nolan et al.; however, the AADS poses are binding between the S1 and S2 sites, whereas 

Nolan et al. proposed that they bind completely in the S2 site [48]. 

 

 
 

Figure 4.7. Poses 1 and 3 of SSA-426 binding between the S1 and S2 sites of hSERT.  

Poses 1 and 3 (depicted as balls and sticks in yellow and cyan) bind in a similar 

fashion between the S1 and S2 sites. The two extracellular gated residues are depicted 

as sticks (green) and rest of the residues around the ligand are represented as lines 

(grey). The sodium and chloride ions are represented as orange and green spheres, 

respectively. TM helices 1, 3, 6, 8, and 10 are colored orange, green, red, blue and 

cyan, respectively. 
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With regards to DJLDU-3-79, only two poses (4 and 5) ended up in the 

functionally relevant regions (i.e., the S1 and S2 sites). Pose-4 was completely binding in 

the S1 site of hSERT (Fig. 4.8A). The indole group was surrounded by S1 pocket 

residues Glu-493, Arg-104, Ile-179, Trp-103, Tyr-175, and Leu-99; the 

tetrahydropyridine ring was packed with Tyr-176, Phe-335, Thr-497, Asp-98, and Ile-

172; the 2-hydroxypropyl 2-chlorobenzyl ether moiety was accommodated by residues 

Gly-442, Tyr-95, Ala-96, Leu-337, Asn-368, Ser-336, Asn-101, and Ser-438. The indole 

nitrogen was interacting with the gated residue Glu-493 through a hydrogen bond, and 

benzene was interacting with Tyr-175 through hydrogen-pi interactions. Pose-5 was 

binding between the S2 and S1 sites similar to poses 1 and 3 of SSA-426, but in a reverse 

orientation (Fig. 4.8B). 

The indole moiety and the tetrahydropyridine ring were binding in the S2 site, 

whereas the 2-hydroxypropyl-2-chlorobenzyl ether was binding in the S1 site. The indole 

group was packed with residues Tyr-487, Tyr-232, Lys-490, Trp-182, Phe-407, Pro-403, 

Gly-402, and Leu-406, and the tetrahydropyridine ring was surrounded by Ile-179, Trp-

103, Glu-493, Trp-182, Phe-407, and Arg-104. The 2-hydroxypropyl-2-chlorobenzyl 

ether moiety was accommodated by residues Arg-104, Glu-493, Tyr-175, Tyr-176, Gly-

100, Leu-99, Phe-335, Asp-98, Ala-173, Ile-172, Ser-336, and Ser-438. These results 

were not in agreement with the earlier predictions (1) that the inhibitor binds completely 

in the S2 site and (2) that it was oriented with the indole group bound deep into the S1 

site while the chlorobenzene group was oriented towards the extracellular side [48]. None 

of these poses were binding completely in the S2 site and their orientation was not similar 

to the earlier prediction. For further studies, we generated a pose of DJLDU-3-79 similar 
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to poses 1 and 3 of SSA-426 using MOE induced fit docking protocol ( since AADS 

failed to predict this orientation). 

 

 

 
 

Figure 4.8. Docking poses of DJLDU-3-76 considered for this study.  

A, B, and C are poses 4, 5, and M of DJLDU-3-76, respectively. All 

the poses are highlighted as yellow balls and sticks. The extracellular 

gate (represented as green sticks) acts as a barrier between the S1 and 

S2 sites.  
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4.3.2.2. Molecular dynamics simulations of poses of DJLDU-3-79 and 

SSA-426 

We performed MD simulations of pose-1 of SSA-426, poses 4, 5 and M of DJLDU-3-79 

with hSERT to test their stability in the binding pocket and to investigate the residues 

playing a key role in the inhibitor binding in hSERT. We simulated each complex for 

50ns and collected data for analysis. During the course of MD simulation, pose-1 of SSA-

426, which was binding between the S1 and S2 sites, drifted after the first few ns into the 

S1 site for the most part. The ligand RMSD stabilized after 3ns and remained in the same 

conformation for another 24ns. After 27ns, RMSD of the ligand significantly changed 

(from 3 to 4.5Å) and remained stable for the remaining part of the simulation (Fig. 4.9A). 

The average structure of SSA-426 from the MD simulation was shown in Figure 4.10. 

The protein backbone RMSD fluctuated significantly for the first 25ns and stabilized 

around 6Å for the rest of the simulation (Fig. 4.9B). Pose-1 was passing through 

hydrophobic gate (Tyr-176 and Phe-335) into the S1 site. The 2-methyl quinolone was 

partially binding in the S2 site, while the rest of the molecule was binding in the S1 site. 

It was binding between the TM helices 1, 3, 6, 8, and 10 in the S1 site. The 

tetrahydropyridine was stuck between Tyr-176 and Phe-335, and its protonated nitrogen 

was interacting with the gated residues Glu-493 and Tyr-175 through a water molecule. 

There were studies indicating that Ser-438 plays a key role in the binding of 

antidepressants S-citalopram and TCAs [20]. Asp-98, although binding close to the 

protonated nitrogen, did not interact directly. The tetrahydropyridine was also interacting 



  169 

with Tyr-176 through a hydrogen-pi interaction. The indole moiety was stacked between 

Ser-438 and Phe-341, and interacted with them through a hydrogen-pi interaction. 

  

  

  

  
 

Figure 4.9. Ligand and protein RMSD changes vs. time in MD simulations. 

The left and right columns represent the ligand and protein RMSD changes, 

respectively. The first row (A and B) is pose-1 of SSA-426, the second row (C and D) 

is pose-M of DJLDU-3-79, the third row (E and F) is pose-5 of DJLDU-3-79, and the 

fourth row (G and H) is pose-4 of DJLDU-3-79. All non-hydrogen atoms of the 

ligand, and backbone atoms of the protein, were considered for RMSD calculation. 

The docking pose was used as a reference for calculating the protein and ligand 

RMSDs. 
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Figure 4.10. Snapshot of pose-1 of SSA-426 from MD simulations.  

The ligand is depicted as ball and stick (yellow) and the pocket 

residues are represented as lines (orange). Oxygens of the water 

molecules are displayed as spheres (cyan). Blue and green dotted 

lines represent hydrogen bonds and hydrogen-pi interactions, 

respectively. 

 

The pyrrole ring of the indole was also interacting with Phe-335 through a hydrogen 

bond. In another study, Tyr-95 and Ile-175 were proved to be critical for the binding of 

antidepressants [22]. MD simulation results strongly support S1 as the most probable 

binding site of SSA-426 in hSERT, and not S2. Similar to pose-1 of SSA-426, pose-M of 

DJLDU-3-79 also migrated into the S1 site after the first few ns of the simulation. The 

ligand was stabilized at an RMSD of 4.5Å between 5-20ns. Around 20ns, the RMSD of 

the ligand jumped to 5.5Å and remained stable from 22-50ns (Fig. 4.9C). The protein 

backbone RMSD increased until 30ns and stabilized at 4.8Å for the rest of the simulation 

(Fig. 4.9D). 
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The representative snapshot of the ligand from the MD simulations was shown in 

Figure 4.11. The salt bridge (Glu-493 and Arg-104) separating the S1 and S2 sites was 

moved apart and was not interacting directly, but rather through a water molecule. This 

was in contrast to SSA-426 pose-1, where the salt bridge was still intact and did not fall 

apart during the course of the simulation. The chlorobenzene moiety slightly protruded 

into the S2 site and bound in the vicinity of the halogen-binding region, which was 

comprised of residues Leu-99, Gly-100, Trp-103, Arg-104, Tyr-176, Ile-179 and Phe-

335. The halogen-binding region was identified as key for the binding and the selectivity 

of SSRIs in hSERT [39]. The hydroxyl group of pose-M was interacting with the gated 

charged residue Glu-493 through a hydrogen bond. The indole group on both sides was 

interacting with the Ser-438 and Ile-172 through a hydrogen-pi interaction. Although 

Phe-341 was in the vicinity, unlike in the case of SSA-426, indole was interacting 

directly with Ile-172 rather than Phe-341. Similar to pose-1 of SSA-426, the protonated 

nitrogen of tetrahydropyridine was binding near the Asp-98, but not interacting with it 

directly. The conformations of pose-1 of SSA-426 and pose-M of DJLDU-3-79 that 

resulted from MD simulations were compared in Figure 4.12. They oriented similarly in 

the S1 pocket and also overlapped to the maximum extent. In particular, the orientation of 

indole groups of both the inhibitors in the pocket was exact. Also, similar residues of the 

TM helices 1, 3, 6, 8 and 10 were interacting with both the poses. 

Pose-5 of DJLDU-3-79, which was binding in the opposite orientation of pose-M 

and binding between the S2 and S1 sites, moved completely into the S2 site during the 

first 10ns of the simulation. This was in contrast to pose-M of DJLDU-3-79 and pose-1 of 

SSA-426, where they migrated to the S1 site. The ligand RMSD attained a maximum of 
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5.9Å at 10ns, fluctuated between 4 and 5.9Å for the next 30ns, and stabilized at 4.3Å in 

the last 10ns simulation (Fig. 4.9E). The protein backbone stabilized at an RMSD of 4.5Å 

between 7-22ns, increased from 22-37ns, and stabilized at 6Å for the rest of the 13ns 

simulation. 

 

 
 

Figure 4.11. Average structure of pose-M of DJLDU-3-79 from MD simulations. 

The ligand is colored yellow and depicted as ball and stick, and the pocket 

residues are depicted as pink colored lines. 

 

The ligand snapshot from the last 10ns of the simulation was shown in Figure 

4.13. During the entire simulation, the protonated nitrogen of the tetrahydropyridine was 

interacting with the gated residue Glu-493 through a salt bridge (Fig. 4.14). Also, the 

chlorobenzene moiety that was binding earlier in the S1 site moved completely into the 

S2 site and accommodated in the halogen-binding site (Fig. 4.14). Earlier it was proved 
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with X-ray crystallographic studies that the SSRIs R-fluoxetine, S-fluoxetine and 

sertraline bind in the S2 site of LeuT and their halogens bind in the halogen-binding site. 

Along the same lines, it was also speculated through comparative modeling and 

mutagenesis experiments that halogens of SSRIs bind in the halogen-binding site, which 

was key for their affinity and selectivity for hSERT [39]. The indole group was pointing 

towards the extracellular side and exposed to the solvent. 

 

 
 

Figure 4.12. MD snapshots of pose-M of DJLDU-3-79 and pose-1of SSA-426.  

Pose-M (yellow) and pose-1 (blue) are depicted as balls and sticks and their 

corresponding protein TM helices are represented as white and peach colored 

ribbons, respectively. 

  

Now we were left with two poses of DJLDU-3-79 (poses 5 and M) that are stable 

in the MD simulations. These two poses are binding in two different sites (pose-M in the 

S1 site and pose-5 in the S2 site) in opposite orientations. Since our ultimate goal was to 

identify the binding site and binding mode of these inhibitors in hSERT, we resolved the 

ambiguity between these two poses (M and 5) through ABFE calculations. 
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Figure 4.13. Snapshot of pose-5 of DJLDU-3-79 from MD simulations.  

The ligand is depicted as ball and stick (yellow), and pocket residues 

are depicted as pink lines. 

 

 
 

Figure 4.14. Docking vs. MD snapshot of pose-5 of DJLDU-3-79.  

The residues of halogen-binding site are depicted as sticks (yellow). 

The docking (red) and MD snapshots (cyan) of the ligand are 

depicted as balls and sticks. 
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Figure 4.15. Docking pose and MD snapshot of pose-4 of DJLDU-3-79.  

The TM helices 1, 3, 6, 8, 9, 10, and 12 are colored orange, green, red, 

blue, pink, cyan, and yellow, respectively. Ligands colored yellow and 

pink represent dynamics and docking poses, respectively. 

 

Pose-4 of DJLDU-3-79 binding originally in the S1 site was not stable (Fig. 4.9G) 

in the entire 50ns simulation. It tried to escape from the pocket through the TMs 3, 9, and 

12 (Fig. 4.15), and in that process it tried to destabilize the protein as well. Although the 

ligand RMSD was stabilized at 3.5Å between 3-20ns, it drastically increased to 7.5Å 

between 20-35ns. For a brief period (35-42ns) it was stable at 7.5Å and dropped to 5.5Å 

in the last 8ns simulation. In Figure 4.15, we compared the initial and the final snapshots 

of the ligand from the MD simulation. The protein backbone RMSD did not reach a 

plateau in the entire 50ns simulation. The protein and ligand RMSDs indicate that pose-4 

was not the right conformation of DJLDU-3-79 in the S1 site of hSERT. Through MD 

simulations, we ruled out pose-4 as the bioactive conformation of DJLDU-3-79 in 

hSERT. 
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4.3.2.3. Role of electrostatics in drifting of ligands in MD simulations 

Electrostatics played a major role in the migration of ligands either completely into the 

S1 or S2 sites in MD simulations. Pose-5 of DJLDU-3-79, initially binding between the 

S1 and S2 sites, shifted into the S2 site in MD simulations. The pocket environment was 

electrostatically unfavorable for the docking pose. As shown in Figure 4.16C, the 

chlorine atom was binding in the strong electronegative region. This repulsion might be a 

major reason for the ligand moving completely into the S2 site. Also, the protonated 

nitrogen of tetrahydropyridine was binding in the partially electropositive/electronegative 

region of the protein, and the region around the indole ring was not totally favorable 

either. In the MD snapshot (Fig. 4.16B) the chlorine atom was binding in the halogen-

binding site that was partially electropositive and the protonated nitrogen of 

tetrahydropyridine was binding in the strong electronegative region of the protein. The 

indole nitrogen was exposed to the electronegative region and the hydroxyl oxygen was 

exposed to the strong electropositive region of the pocket. These observations indicate 

that the S2 site was electrostatically more favorable for pose-5 of DJLDU-3-79. The other 

possible reason for shifting might be the interaction of indole nitrogen with water on the 

extracellular side. 

Pose-M of DJLDU-3-79 binding initially between the S1 and S2 sites migrated 

into the S1 site in the MD simulation. In the docking pose (Fig. 4.16E), the protonated 

nitrogen of tetrahydropyridine was binding in the partially electronegative/positive 

region. Although the indole nitrogen was near the strong electronegative region, it was 

not perfectly accommodated. Similarly, the hydroxyl and ester oxygens were also not 
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favorably accommodated. In the dynamics snapshot (Fig. 4.16F), both the nitrogens of 

indole and tetrahydropyridine groups, and the oxygens of hydroxyl and ester groups were 

binding in the strong electronegative and electropositive regions of the protein. The 

chlorine atom was binding close to the halogen-binding region. These factors 

demonstrate that S1 site is the right place for the inhibitor to bind in hSERT (Fig. 4.16F).  

Similar to pose-M of DJLDU-3-79, pose-1 of SSA-426, which was initially 

binding between the S1 and S2 sites, migrated into the S1 site. The nitrogen atoms were 

binding in the electronegative regions in the docking pose (Fig. 4.16A). However, the 

indole nitrogen was not adequately accommodated near the electronegative region, and 

the protonated nitrogen of tetrahydropyridine was binding in the partially electronegative 

region. The rest of the ligand was binding in the S2 site, and this region was more 

electropositive. In the dynamics snapshot, both the nitrogens were binding in the strong 

electronegative region of the S1 site, and the other part of the ligand was binding in the 

partial electronegative/positive region of the S1 site (Fig. 4.16B). Also, the aromatic 

quinolone might not prefer to stay in the S2 site because of the repulsion for water. 

Therefore, it is the electrostatics and repulsion of the aromatic region of the ligand for 

water that guided the drifting of the ligand into the S1 site in the MD simulations. 
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Figure 4.16. Electrostatic potential surfaces of binding sites of docking poses (left 

column) and MD (right column) snapshots of SSA-426 and DJLDU-3-79 in hSERT. 

A, C, and E are the electrostatic potential surfaces of docking structures of pose-1 of 

SSA-426, poses 5 and M of DJLDU-3-79; B, D, and F are the electrostatic potential 

surfaces of their respective structures resulting from the MD simulations. The red and 

blue surfaces represent the electronegative and electropositive regions of the protein, 

respectively. Ligands are depicted in a ball and stick model. The electrostatic potential 

surfaces were generated using MOE. 
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4.3.2.4. Estimation of absolute binding energies through FEP method 

We calculated the ABEs of poses M and 5 of DJLDU-3-79 and pose-1 of SSA-

426 in hSERT using the FEP method. We did not consider pose-4 of DJLDU-3-79 for 

FEP calculations since it was not stable in the MD simulations. Before applying to 

hSERT, we validated the FEP method on LeuBAT:Clomipramine crystal complex 

(PDBID: 4MMA). Annihilation of the ligand in the solvent and in the protein was carried 

bidirectionally to monitor hysteresis in the free energy estimation. Data from the forward 

and backward simulations were combined to estimate the free energy change using the 

BAR method. In estimating ΔG1, restraints were imposed on the ligand in the pocket to 

prevent it from wandering while turning off the non-bonded interactions. The restraints 

were also used to speed up the convergence of the free energy calculation. As shown in 

Table 4.2, the calculated binding energy of clomipramine with LeuBAT (-7.69 ± 0.34 

kcal/mol) was within 1 kcal/mol of the experimental value (-8.25 ± 0.05 kcal/mol), and 

this validates the FEP method. However, there was a huge hysteresis between the forward 

and backward simulations in estimating ΔG1 (Table 4.2 and Fig. 4.17B), which might be 

due to inadequate sampling of the configurational space. However, the forward and 

backward simulations in estimating ΔG2 were perfectly overlapped and the hysteresis was 

minimal (Table 4.2 and Fig. 4.17A), which indicates adequate sampling. 

Further, we calculated the ABEs of poses M and 5 of DJLDU-3-79 and pose-1 of 

SSA-426 at hSERT. For this purpose, final snapshots of the protein-ligand complexes 

from the MD simulations (Fig. 4.12, 4.13 and 4.15) were considered. The computed 

binding energy of pose-1 of SSA-426 in the S1 site (-12.4 ± 0.47 kcal/mol) was within 
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the error margin of the experimental binding energy (-12.39 ± 0.17 kcal/mol) (Table 4.3). 

Surprisingly, the hysteresis between the forward and backward simulations was minimal 

both in the solvent (Fig. 4.18A) and in the protein (Fig. 4.18B). FEP results support the 

MD simulation data and confirm (1) S1 as the site of SSA-426 and (2) pose-1 as the right 

orientation of SSA-426 in hSERT.  

The calculated binding energies of poses M and 5 of DJLDU-3-79 were -9.93 ± 

0.39 kcal/mol and -4.9 ± 0.4 kcal/mol, respectively (Table 4.4). The experimental binding 

energy of DJLDU-3-79 with hSERT was -10.70 ± 0.07 kcal/mol. Since the calculated 

binding energy of pose-M correlates well with the experimental value, we conclude pose-

M as the probable bioactive conformation of DJLDU-3-79 in hSERT, rather than pose-5. 

Binding energy calculations clear the ambiguity in MD simulation data. Rather 

interestingly, the hysteresis was huge between the forward and backward simulations in 

the bulk solvent (Fig. 19A) unlike in the protein (Fig. 19B,C) even after 15.6ns 

simulation, indicating inadequate sampling. ABFE calculations clearly indicate that SSA-

426 and DJLDU-3-79 bind in the S1 site of hSERT in a similar orientation. 

These results demonstrate the usefulness of explicit binding free energy 

calculations in identifying a near-native conformation of a ligand in a protein. 
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Table 4.2. Validation of absolute FEP method with the LeuBAT:Clomipramine crystal complex. 

 

ΔG2  ΔG1 ΔGRest ΔGAbs ΔGExpt 

For Back BAR  For Back BAR    

33.41 -33.46 32.97 ± 0.11  41.4 -44.6 41.85 ± 0.23 1.19 -7.69 ± 0.34 -8.25 ± 0.05a 

All energies are in kcal/mol. ΔGRest, ΔGAbs and ΔGExpt
 are the restraint free energy, the calculated ABFE, and the experimental 

binding energy, respectively. aThe experimental binding affinity of clomipramine with LeuBAT [80]. The error bars associated 

with the calculated binding energies represent the statistical error, which was estimated through the BAR estimator. 
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Table 4.3. Calculated binding affinity of pose-1 of SSA-426 with hSERT. 

 

ΔG2  ΔG1 ΔGRest ΔGAbs ΔGExpt 

For Back BAR  For Back BAR    

42.05 -41.72 40.12 ± 0.28  55.42 -56.83 55.19 ± 0.19 2.67 -12.4 ± 0.47 -12.39 ± 0.17a 

All energies are in kcal/mol. aThe experimental binding affinity of SSA-426 [65]. 
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Figure 4.17. Validation of free energy perturbation method with the LeuBAT:Clomipramine complex.  

Free energy changes as a function of  for perturbing clomipramine to dummy in the solvent (ΔG2) and 

in the protein (ΔG1) are shown in A and B, respectively. Forward, backward, and BAR estimations are 

shown in black, red, and blue, respectively. 
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Figure 4.18. Estimation of absolute binding energy of pose-1 of SSA-426 with hSERT using FEP method. 

Free energy change versus  for annihilation of SSA-426 in (A) water (ΔG2) and in (B) hSERT (ΔG1). 
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Figure 4.19. Calculating absolute binding energies of poses M and 5 of DJLDU-3-79 with hSERT.  

A is free energy change vs. in perturbing DJLDU-3-79 in water (ΔG2); B and C are changes in 

free energies vs.  for perturbing poses M and 5 of DJLDU-3-79 in hSERT (ΔG1). 
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Table 4.4. Absolute binding energies of poses 5 and M of DJLDU-3-79 with hSERT. 

 

 
ΔG2  ΔG1  ΔGRest ΔGAbs ΔGExpt 

For Back BAR  For Back BAR   

Pose-5     35.12 36.68 35.24 ± 0.1  2.67 -4.9 ± 0.4  

 29.8 -27.3 27.67 ± 0.3        -10.70 ± 0.07a 

Pose-M     40.36 -41.65 40.27 ± 0.09  2.67 -9.93 ± 0.39  

Pose-M was generated using MOE. Pose-5 was from the AADS webserver. All energies are in kcal/mol. aThe experimental binding 

affinity of DJLDU-3-79 with hSERT[48]. 
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4.4. Discussion and Conclusions 

The present study was aimed at determining the binding modes and the binding sites of a 

dual SERT/5HT-1A antagonist SSA-426 and a selective hSERT blocker DJLDU-3-79 in 

hSERT. For this purpose, we adopted a computational protocol that incorporates active 

site detection, docking, scoring, MD simulations, and ABFE calculations. For binding 

site identification, docking and scoring purposes, we used an automated web server called 

AADS. For computing ABEs, we used FEP method. To our knowledge, these are the first 

explicit free energy calculations ever carried on hSERT. Before applying to hSERT, we 

tested AADS on five different LeuT crystal structures for its active site identification and 

ligand’s near-native conformation retrieval capabilities. AADS performed extremely well 

in identifying the active sites; in all five cases active site was among the top ten cavities 

identified, irrespective of the conformation of the protein and location of the binding site. 

However, AADS performed better in identifying the S2 site rather than S1 because the S1 

site is located deep in the protein and occluded conformation of the protein makes AADS 

difficult to access from both the ends. In contrast, S2 site is located on the extracellular 

side, and because of its size it is readily accessible to the ligands, making it the highest 

ranked site in all the crystal structures. With regards to the retrieval of the bioactive 

conformation of the ligand, AADS performed reasonably well. At least one among the 

top ten AADS poses was close to the bioactive conformation of the ligand in all five 

cases. The RMSD of the closest AADS pose to the bioactive conformation was less than 

3.75Å in all 5 cases. As in the case of active site detection, AADS was more accurate in 

identifying the bioactive conformation in the S2 pocket than in the S1 pocket for similar 
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reasons as mentioned before. Overall, the docking and scoring protocol in AADS 

performed better than the active site finder. We also validated the FEP method on 

LeuBAT:Clomipramine crystal complex. The calculated binding affinity (-7.69 ± 0.34 

kcal/mol) was in reasonable agreement with the experimental value (-8.25 ± 0.05 

kcal/mol). 

Finally, we explored the binding sites and binding modes of SSA-426 and 

DJLDU-3-79 in hSERT. The hSERT homology model developed using the crystal 

structure of LeuT was used for this purpose. Nolan et al. proposed that both these 

inhibitors would (1) bind in the S2 site and (2) orient similarly in the binding site. 

According to Nolan et al. the indole groups of both the ligands bind deep into the S2 site 

and remaining parts of the ligands face the extracellular side in a similar fashion. Initially 

we used AADS to generate the poses of DJLDU-3-79 and SSA-426 in hSERT. Either in 

the case of SSA-426 or DJLDU-3-79, none of the AADS poses bound exclusively in the 

S2 site with similar orientation as proposed by Nolan et al. In the case of SSA-426, 

orientation of poses 1 and 3 was similar to what was proposed by Nolan et al.; however, 

they were binding between the S1 and S2 sites. In the case of DJLDU, pose-5 was 

binding between the S1 and S2 sites similar to poses 1 and 3 of SSA-426, but in reverse 

orientation. Pose-4 was binding completely in the S1 site. We generated a pose of 

DJLDU-3-79 (Pose-M) with a similar orientation as poses 1 and 3 of SSA-426 using 

MOE for further studies; its orientation was exactly opposite of pose-5 of DJLDU-3-79. 

We performed MD simulations to test the stability of the poses in the protein and 

to understand the factors impacting the binding of these ligands. Pose-1 of SSA-426 

drifted into the S1 site for the most part, and this partially ruled out the possibility of S2 
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being the binding site of SSA-426. Pose-M of DJLDU-3-79 migrated into the S1 site 

similar to pose-1 of SSA-426. Also, they oriented similarly with indole bound deep in the 

S1 site and remaining parts of the ligands extended towards the extracellular gate 

separating the S1 and S2 sites. This is in agreement with the earlier hypothesis by Nolan 

et al. with regards to the orientation, but not with the binding site. Pose-5 of DJLDU-3-79 

moved completely into the S2 site. The halogen atom was accommodated in the halogen-

binding site and the protonated nitrogen of tetrahydropyridine was interacting with Glu-

493. It is worth mentioning here that these two features are characteristic of SSRIs 

binding in LeuT. However, TM helices on the extracellular side have to come closer to 

accommodate the ligand in the S2 site. Pose-4 was not stable in the entire 50ns 

simulation. Therefore, it might not be the bioactive conformation of the ligand in hSERT. 

So, we were left with two different poses of DJLDU-3-79 binding in two different 

pockets (Pose-M in the S1 site and Pose-5 in the S2 site) in two different orientations.  

To clear this ambiguity, we performed FEP calculations to compute the ABFE 

and compared against the experimental binding affinity. Free energy simulations favor 

the S1 site rather than S2. Pose-M of DJDLU-3-79 in the S1 site binds stronger (-9.93 ± 

0.39 kcal/mol) and correlates well with the experimental binding affinity (-10.70 ± 0.07 

kcal/mol) than pose-5 (-4.9 ± 0.4 kcal/mol) in the S2 site. We believe that pose-5 might 

be a less energetically favorable metastable state for DJLDU-3-79 in the S2 site. We also 

calculated the binding affinity of pose-1 of SSA-426 in the S1 site, which was in 

excellent agreement with the experimental value (-12.4 ± 0.47 VS -12.39 ± 0.17 kcal/mol). 

MD simulations and ABFE calculations clearly favor the S1 site in the case of SSA-426. 

Our results demonstrate that we need a full computational protocol (site finder, 
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docking, MD simulations and free energy calculations) to clearly elucidate the binding 

site and orientation of ligands in the protein. Although AADS placed the poses between 

the S1 and S2 sites, MD simulations pushed them either into the S1 or S2 sites 

completely. We think this was partially because AADS used a rigid docking protocol, 

and one needs multiple protein conformations (especially with the homology models) to 

accurately predict the binding site and orientation of the ligand. For example, in the case 

of LeuT, AADS was highly successful either in the binding site or pose prediction. This 

was because we used the right conformations of the protein, i.e., conformations of the 

protein that were determined in the presence of the same ligands that were docked in the 

protein (self-docking). This was not surprising and most docking programs performed 

reasonably well in self-docking, but they failed miserably when they were cross-docked 

into alternate conformations of the proteins [81, 82]. Also, AADS does not handle ions. 

However, several studies established the importance of ions (sodium and chlorine) in the 

binding of inhibitors/antidepressants in hSERT. In the MD simulations, we incorporated 

flexibility to the protein and also added sodium and chloride ions at appropriate places in 

the protein; these factors might contribute to the drifting of ligands into S1 or S2 sites 

completely during MD simulations. Already we have established the role of electrostatics 

in ligand migration in MD simulations. Another important factor was water; multiple 

studies suggested the role of water in the binding of ligands to protein pockets, and we 

incorporated water explicitly both in the MD simulations and the ABFE calculations. Our 

results show that one cannot completely depend on docking and scoring algorithms in 

identifying a native pose of ligands in proteins. Even though computationally expensive, 

MD simulations and ABFE calculations are more reliable in discriminating binders from 
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non-binders. 

In summary, we have proposed that S1 is the binding site for SSA-426 and 

DJLDU-3-79, and not S2 as predicted earlier by Nolan et al. With regards to the 

orientation, both the inhibitors overlap and share a similar orientation, and this is in 

agreement with the Nolan et al. hypothesis. Our calculated free energy results are within 

0.8kcal/mol of the experimental values. 
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5. CHAPTER 5 

 

BINDING OF R-FLUOXETINE IN hSERT 

 

5.1. Introduction 

Fluoxetine, popularly known as Prozac, is a widely used drug to treat depression. It was 

first developed by Eli Lilly and approved by the FDA in 1987 to treat major depression 

[1]. Even today, it ranks third among the antidepressant sales in the United States. Also, it 

was the first selective serotonin reuptake inhibitor (SSRI) discovered [1]. Fluoxetine is a 

racemic mixture of R- and S- enantiomers, and both are equally active pharmacologically 

[2]. They are known to exert their function by blocking the hSERT. Several aspects of 

fluoxetine were well established through various studies; however, its mechanism of 

action, binding region, and binding mode in hSERT are still debated [3]. 

hSERT is a membrane protein that controls the levels of serotonin in the synaptic 

cleft, thereby maintaining homeostasis in the body. hSERT is the primary target for 

several antidepressants [4]. SSRIs are the most effective and highly prescribed 

antidepressants to date and act by selectively inhibiting hSERT [5]. However, the 

molecular basis for their selectivity, efficacy, location and structure of the binding 

regions is unknown and highly debated [3]. For example, it was proposed based on 

several studies that antidepressants bind in the S1 site of hSERT [6-10] and inhibit the 

protein in a competitive manner [11-15]. There were studies supporting a second  

hypothesis that antidepressants bind in the S2 site of hSERT and inhibit the protein in a 

noncompetitive manner [16, 17]. According to the third hypothesis, drugs bind in both 
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the sites and inhibit the protein through allosterism [18-21].  

In this study, we explored the binding pocket and the binding mode of R-

fluoxetine (Fig. 5.1) in hSERT using a novel computational protocol described in chapter 

four. Binding pockets are key for the rational design of novel therapeutics in structure-

based drug design. Through this protocol, we demonstrated that R-fluoxetine binds in the 

S2 site of hSERT with a pose similar to that of R-fluoxetine in LeuT. 

 

 
 

Figure 5.1. Chemical structure of R-fluoxetine. 

 

5.2. Materials and Methods 

5.2.1. Computational protocol 

The computational protocol employed in chapter four was adopted for this study as well. 

Please refer to chapter four for complete details. 
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5.2.1.1. System preparation and MD simulation details 

A strategy similar to what was described in chapter four was followed. Each pose was 

simulated at least for 50ns in periodic boundary conditions prior to ABFE calculations. 

The CHARMM force field for protein, water, and ions [22, 23], and the CGenFF [24] 

parameters for R-fluoxetine were used. 

 

5.2.1.2. Absolute binding energy calculations 

A method similar to what was described in chapter four was used. Please see chapter four 

for details. calculating , a 10ns simulation in each direction was performed, 

and the entire simulation was divided into 150 windows. A 1fs time step was employed. 

In the case of  1 calculation, a 1ns simulation in each direction was carried, and the 

entire simulation was split into 146 windows. A 1fs time step was utilized. While 

calculating  1, positional restraints (force constant = 0.5 kcal/mol.Å2) were imposed on 

the ligand to prevent it from escaping from the pocket. The positional restraints were 

described in detail in chapter 4. The protocol was identical for all four poses of R-

fluoxetine. 

 

5.2.1.3. Relative binding energy calculations 

The RBFE change (G) in mutating the protein was calculated based on the 

thermodynamic cycle shown in Figure 5.2 and uses equation 1. 

                                                                         - Equation  1                                                                                 

All the terms in equation 1 were explained in Figure 5.2. 

DDG =DG4 -DG3 =DG2 -DG1
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Figure 5.2. Thermodynamic cycle for estimating the impact of mutation in a protein. 

P and P1 are the wild type and mutated proteins, and L is a ligand. G1 and G2 are 

the ABEs of L-P and L-P1 complexes. G3 and G4 are the free energy changes of 

mutating P to P1 in the water box and in the presence of L. 

 

G4 calculation, in each direction a 20ns simulation was performed, and the entire 

simulation was split into 146 windows. For calculatingG3, a 23ns simulation in either 

direction was performed, and 166 windows were used. A 1fs time step was used. 

imental RBFE (GExp) was estimated using equation 2. 

                                                                                  - Equation 2 

 and  are the half maximal inhibitory concentrations of ligand L with the 

wild type and mutated proteins. 
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5.3. Results and Discussion 

5.3.1. AADS results 

After exploring the binding pockets of hSERT through AADS [25], we docked R-

fluoxetine in the top 10 pockets of hSERT using AADS docking and scoring protocol. 

We analyzed the top 10 AADS poses of R-fluoxetine, and eight poses were binding in the 

regions of interest. Seven of the eight poses were binding in the S2 pocket of hSERT 

(Fig. 5.3), and one pose ended in the S1 site. Of the seven poses binding in the S2 site, 

four poses were binding deep in the S2 site and the other three poses were binding 

towards the extracellular side. The four poses (ranked 3, 4, 5, and 6) binding deep in the 

S2 pocket were binding closer to the extracellular hydrophobic gate. This is similar to R-

fluoxetine binding in the LeuT crystal structure, where the drug binds deep in the S2 

pocket of LeuT [16]. The trifluoromethyl groups of the four deep binding poses were 

binding in the HBP (circled in red in Fig. 5.3), although the orientation of the other two 

moieties in the poses varies. The trifluoromethyl moiety was identified as key for the 

specificity of R-fluoxetine at hSERT by Zhou et al. [16] The HBP is formed by residues 

Leu-99, Gly-100, Trp-103, Arg-104, Tyr-176, Ile-179, and Phe-335. Pose-4 was 

strikingly similar to R-fluoxetine orientation in LeuT (Fig. 5.4); the amine group was 

pointed towards the extracellular gated residues Arg-104 and Glu-493, the phenyl moiety 

was oriented towards the extracellular side, and the trifluoromethyl group was pointed 

into the HBP (Fig. 5.4). This observation was interesting, particularly when the residues 

in the HBP are highly conserved between LeuT and hSERT. Only one residue differs 

between hSERT and LeuT in the HBP; position-29 was occupied by leucine in LeuT, and 

the corresponding position was occupied by tryptophan (Trp-103) in hSERT. The amine 



  206 

nitrogen was interacting with E493, which is important for the higher affinity of R-

fluoxetine with hSERT [16].  

 

 
 

Figure 5.3. Seven AADS poses of R-fluoxetine in the S2 pocket. 

The trifluoromethyl moieties of four poses binding deep into the 

pocket are circled in red. The gated residues are represented as 

red balls and sticks. 

 

 
 

 

Figure 5.4. Pose-4 (A) of R-fluoxetine in hSERT vs. R-fluoxetine in LeuT (B). 

The R-fluoxetine is represented as a yellow ball and stick and the gated residue 

E493 is represented as a red stick. The HBP is represented as a multicolored surface 

in both hSERT and LeuT, with green and pink colors representing the hydrophobic 

and hydrophilic areas of the pocket, respectively. The trifluoromethyl group of R-

fluoxetine is pointed into the HBP in both LeuT (B) and hSERT (A), whereas the 

amine nitrogen of pose-4 is interacting directly with E493 of hSERT (A). 
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It is worth mentioning that residues Glu-493 and Ile-179 in the S2 pocket were identified 

as key for the binding of R-fluoxetine in hSERT through site-directed mutagenesis and 

pharmacological binding assays [16]. The pose that binds closer to the S1 pocket did not 

interact with any residues. 

To further test the validity of these results, we calculated ABEs using the FEP 

approach. We chose four different poses from the S2 site (poses 1, 2, 4, and 10 (Fig. 5.6)) 

for ABFE calculations. Prior to ABFE calculations, we performed MD simulations to test 

the stability of poses 1, 2, 4, and 10 in the pocket. Pose-4 in the MD simulations moved 

up and slightly reoriented in the S2 site with its trifluoromethyl group binding deep into 

the HBP, the phenyl moiety tilted 45 degrees and oriented towards the extracellular side, 

and the protonated amine remained interacting with the Glu-493 (Fig. 5.5). 

 

 
 

Figure 5.5. Docking pose vs. MD snapshot of Pose-4 of R-fluoxetine. 

The docking pose and the MD snapshot are represented as yellow and 

red colored sticks. The HBP is represented as a multicolored surface. 
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5.3.2. Absolute binding energy calculations 

 

 
 

Figure 5.6. The four poses considered for MD simulations and FEP calculations. 

Poses 1, 2, 4, and 10 are represented as blue, brown, cyan, and yellow colored 

sticks, respectively. The gated residues are represented as red colored ball and 

sticks. 

 

Next, we calculated the ABEs of poses 1, 2, 4, and 10. The calculated binding affinity of 

pose-4 was in good correlation with the experimental value (Table 5.1). Poses 1 and 10 

were not at all favorable for binding, whereas pose-2 has minimal affinity for hSERT 

(Fig. 5.1).  



  

2
0
9
 

 

 

 

                                                                                               

Table 5.1. Absolute binding energies of poses 1, 2, 4, and 10 with hSERT. 

 

Pose    1 GRest GAbs 

 

 

    

1 

28.07 -28.87 26.70 ± 0.1 

26.95 -30.66 27.33 ± 0.20 

2.67 

2.04 ± 0.30 

2 32.00 -34.31 32.00 ± 0.18 -2.63 ± 0.28 

4 43.30 -43.78 42.53 ± 0.13 -13.16 ± 0.23 

10 29.80 -27.52 27.10 ± 0.19 2.27 ± 0.29 

The experimental binding energies (GExpt) from various sources are -12.71 ± 0.05 kcal/mol [26], -11.90 ± 0.10 kcal/mol [2], 

and -11.65 ± 0.08 kcal/mol [27], respectively. All energies are in kcal/mol. 
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Table 5.2. Mutation of E493-to-Q. 

 

G4 G3 GCalc GExpt 

For   For   

89.86 -83.08 82.65 ± 0.12 82.18 -82.53 81.94 ± 

0.13 

0.71 ± 

0.25 

0.75 ± 0.29 [16] 

All energies are in kcal/mol. 
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5.3.3. Mutation of glutamic acid 493 to glutamine 

To validate the orientation of pose-4 in the S2 site, we mutated the gated residue Glu-493 

to glutamine. Since Glu-493 interacts with the protonated amine through a salt bridge 

(Fig. 5.7), mutation of this residue to neutral glutamine should impact the binding of R-

fluoxetine in the S2 site. Zhou et al. showed through experimental mutagenesis that this 

mutation was unfavorable for the binding of R-fluoxetine in hSERT. 

We calculated the RBFE change for this mutation using the FEP method. The 

calculated G was in good correlation with the experimental value (Table 5.2). The 

positive value of G indicates that this mutation was not favorable for the binding of R-

fluoxetine in hSERT. This shows that Glu-493 is crucial for the binding of R-fluoxetine 

in the S2 site and also confirmed pose-4 as the right orientation of R-fluoxetine in 

hSERT. 

 
 

Figure 5.7. Pose-4 in the S2 site interacting with the gated residue E493. 

Pose-4 is represented as yellow balls and sticks and the gated residues 

are represented as green sticks. 
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Figure 5.8. G vs. 

-  

Red and black curves represent G4 and G3. 

 

Overall, our results agree with Zhao et al. that R-fluoxetine binds in the S2 pocket of 

hSERT [16]. 

 

5.4. Conclusions 

In this study, we explored the binding site and binding mode of R-fluoxetine using a 

novel computational protocol. We chose four different AADS poses of R-fluoxetine in 

the S2 site, performed MD simulations and finally calculated the ABEs of all four poses 

using FEP approach. The calculated binding energy of Pose-4 was in good agreement 

with the experimental value; the other three poses did not show appreciable affinity for 

the S2 site. In MD simulations, pose-4, slightly reoriented with its trifluoromethyl 

moiety, nicely accommodated into the halogen-binding pocket and the amine interacting 

with the charged extracellular gated residue E493. This pose resembles the R-fluoxetine 
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binding mode in LeuT crystal structure. To further validate the orientation of pose-4 in 

hSERT, we mutated E493-to-Q in the presence of pose-4 using FEP method. Mutation 

studies suggested that this change was unfavorable and confirmed pose-4 as the right 

orientation. Based on our findings, we conclude that R-fluoxetine binds in the S2 site of 

hSERT with similar orientation as in LeuT. However, recent literature reports support the 

alternate hypothesis that R-fluoxetine binds in the S1 site of hSERT [28-30]. Therefore, 

further studies are needed to clear this ambiguity regarding the binding site and 

orientation of R-fluoxetine in hSERT. One possible strategy is to dock the ligand in the 

S1 site, retrieve the poses proposed in the literature, calculate the ABEs of these poses 

and compare them against the experimental binding affinity. Also, S-fluoxetine can be 

included in this study since the experimental binding affinity is available; earlier studies 

suggested that it binds in the same site as R-fluoxetine. 
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FUTURE WORK 

 

Future work includes  

A. Validating the CGenFF parameters of the drugs through calculation of solvation 

energies or pKa’s and comparing them against the experimental numbers. 

B. Competitive binding assays are to be performed to determine the mode of inhibition of 

DJLDU-3-79 and SSA-426. Also, the proposed binding modes of these two compounds 

need to be validated by site directed mutagenesis experiments. 

C. Since the binding site of R-fluoxetine in hSERT is still debated, its binding in the S1 

site can be clarified by generating various poses (in the S1 site) proposed in the literature 

though docking, performing MD simulations to test their stability in the site, and finally 

calculating the ABEs and comparing them to the experimental values. Also, the binding 

site of S-fluoxetine in hSERT can be elucidated using a similar approach. 
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APPENDIX 

 

6. A REVIEW OF NEW DESIGN STRATEGIES FOR 

ANTIDEPRESSANT DRUGS  

Partially reproduced with permission from Kalyan Immadisetty, Laura M. Geffert, 

Christopher K. Surratt & Jeffry D. Madura. Expert Opin Drug Discov, 2013. 8(11): p. 

1399-414. 

 

6.1. Introduction 

Depression is a chronic illness affecting millions of individuals and imposing staggering 

economic costs [1]. Only in the last half-century has a serious effort been made to 

develop pharmaceuticals specifically for this disease state; for thousands of years, natural 

product extracts containing plant alkaloids have been used to treat depression. Such 

extracts contain hundreds of chemical compounds, however, with some likely to cause 

unintended effects. As an example, the antidepressant properties of St. John’s wort are 

generally ascribed to inhibition of the monoamine transporter (MAT) proteins, but 

additional compounds in the extract are responsible for adverse effects associated with 

altering metabolism (e.g., decreasing contraceptive efficiency) [2]. Isolating the active 

compound(s) was the logical solution in improving on the natural product. 

 

6.1.1. First-generation antidepressant drugs 

The era of antidepressant medications development began in the 1950s with 

iproniazid. A monoamine oxidase inhibitor (MAOI) initially developed to treat 

tuberculosis, iproniazid was serendipitously found to have mood enhancing properties 
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[3]. Later in the decade, the antidepressant actions of imipramine, the first of the tricyclic 

antidepressant (TCA) drug class, was also discovered through clinical practice (Fig. 6.3) 

[3, 4]. MAOIs extend the lifespan of the monoamine neurotransmitters serotonin (5-HT), 

norepinephrine (NE) and dopamine (DA) by interfering with their metabolism. TCAs 

extend the extraneuronal lifespan of 5-HT and NE by inhibiting their cognate 

neurotransmitter uptake transporter proteins. Unfortunately, these two drug classes are 

associated with often-intolerable adverse effects due to additional actions at cholinergic, 

histaminergic and adrenergic receptors. To retain the antidepressant benefits of increased 

monoamine levels, a new generation of antidepressant drugs was designed to inhibit 

either or both of the MAT proteins responsible for serotonin or norepinephrine uptake 

[5].   

 

6.1.2. Second-generation antidepressant drugs 

Which antidepressant drugs belong in the first-, second- or even a possible third-

generation category is somewhat dependent on the literature source. The second 

generation is typically viewed as beginning with drugs that selectively inhibit one or 

more MATs (with minimal or no binding at monoaminergic receptors). Structurally 

diverse drugs and medications followed over the next 50 years that can be classified as 

selective serotonin reuptake inhibitors (SSRIs), serotonin-norepinephrine reuptake 

inhibitors (SNRIs) or norepinephrine reuptake inhibitors (NRIs) (Table 6.1). Although 

probably not included in the second generation, triple-reuptake inhibitors (TRIs) are now 

a focus and moving toward FDA approval, due to recognition that dopamine also 

possesses antidepressant properties, especially in treating states involving anhedonia [6]. 
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Table 6.1. Common classes of known antidepressants 

 

Class Structure Example 

Generic 

Name 

Trade 

Name 

MAOI 

 

Moclobemide Aurorix 

TCA 

 

Imipramine Tofranil 

SSRI 

 

Fluoxetine Prozac 

SNRI 

 

Venlafaxine Effexor 

SARI 

 

Trazodone Desyrel 

NRI 

 

Atomoxetine Strattera 

MAOI, monoamine oxidase inhibitor; TCA, tricyclic antidepressant; SSRI, selective serotonin 

reuptake inhibitor; SNRI, serotonin-norepinephrine reuptake inhibitor; SARI, serotonin antagonist 

and reuptake inhibitor; NRI, norepinephrine reuptake inhibitor. 
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Serotonin is the brain’s chief mood regulator. This, coupled with the observations 

that 1) victims of violent suicides registered low CNS serotonin at autopsy [7, 8], and 2) 

serotonin biosynthesis precursors augmented MAOI antidepressant effects [9-11], drew 

the antidepressant focus to modulation of this neurotransmitter. Toward creating an 

antidepressant drug with TCA-like efficacy but without the cardiovascular effects that 

accompany anticholinergic or norepinephrine transporter (NET) inhibitors, Eli Lilly 

Corporation developed a new drug class in the 1970s: the SSRIs [12].   

 

6.1.3. Rational design of an antidepressant drug: fluoxetine (ProzacTM) 

 Despite its sedating effect, the histamine receptor antagonist diphenhydramine 

(BenadrylTM) was chosen as a starting point for antidepressant rational drug design 

because of its enhancement of the pressor response to norepinephrine [13] (Fig. 6.1). The 

drug was also known to inhibit synaptic neurotransmitter uptake by at least one of the 

three plasma membrane MATs: hNET, hDAT and hSERT [14, 15]. To select for these 

properties while excluding anticholinergics lacking MAT inhibition, a diphenhydramine 

structure-activity series was synthesized and screened for the ability to block 

apomorphine-induced hypothermia in mice [13]. Compounds that activate norepinephrine 

or dopamine pathways block the hypothermia response; those that stimulate serotonin 

activity or antagonize acetylcholine do not affect the response [16, 17]. From this 

diphenhydramine series, the phenoxyphenylpropylamine (PPPA) compound LY86032 

was found to block hypothermia, leading to identification of the highly NET-selective 

inhibitor (NRI) nisoxetine. The original diphenhydramine analogs that did not reverse the 

hypothermia were also tested for inhibition of one or more MATs, yielding the hSERT 
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inhibitor fluoxetine (ProzacTM), the first SSRI FDA-approved (1987) for major 

depressive disorder.   

 

 
 

Figure 6.1. Structure-activity relationship (SAR)-based drug discovery 

leading to fluoxetine (ProzacTM), the first SSRI. 
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6.1.4. SSRI effects on systems served by 5-HT receptor subtypes 

 The advent of fluoxetine and other FDA-approved SSRIs was hailed as a 

profound advance in antidepressant brain receptor selectivity. Ironically, selective SERT 

inhibition leads to widespread side and adverse effects precisely because of nonselective 

serotonin actions. SSRI-induced increases in extracellular serotonin result in 

indiscriminant activation of all 14 discrete 5-HT receptor types; these mediate pathways 

in the brain, gut and other peripheral regions responsible for GI transit, sexual function, 

and various homeostatic functions including vascular tone, sleep/wakefulness and 

hunger. Thus, SSRIs are linked to cardiovascular problems, insomnia or hypersomnia, 

weight gain, GI distress and sexual dysfunction. The adverse effect may be severe 

enough to cause discontinuance of the SSRI [18]. This issue has prompted the goal of 

developing SSRIs or SNRIs (selective norepinephrine reuptake inhibitors) that modulate 

depression-relevant 5-HT receptor subtypes in a way that minimizes or eliminates the 

antidepressant’s adverse effect. In fact, SSRI treatment-resistant outcomes may be due to 

excessive negative feedback on serotonin release via presynaptic 5HT1A receptors [19, 

20]. To address this, vilazodone (ViibrydTM), the first FDA-approved SSRI/5HT1AR 

partial agonist, was designed to boost extraneuronal serotonin levels [21]. Similarly, 

presynaptic 5HT1B antagonists enhance SSRI activity [22]. While presynaptic 5HT1 

antagonists alone have yielded antidepressant effects in animal models [23], efficacies are 

inferior to those seen with SSRIs [20]. 

Other serotonin receptor types hold promise as antidepressant drug targets. The 5-

HT2 and 5-HT3 receptors are best characterized with respect to SSRI adverse effects. 

Activation of 5-HT2A receptors is associated with hallucinations (LSD is an agonist at 
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this receptor); 5-HT2C mediates the vasoconstriction linked to cardiovascular and sexual 

dysfunction. Antagonism of these receptor subtypes would be expected to mitigate the 

adverse effects; the 5-HT2A antagonist ritanserin was observed to augment SSRI 

antidepressant and anxiolytic effects [24-26]. Nausea and prokinetic GI effects may 

accompany the 5-HT3R activation via SSRIs. Ondansetron and other antagonists at this 

receptor have long been used as antiemetics for chemotherapy, and this drug class may 

have anxiolytic and antidepressant properties [20, 27, 28]. The 5-HT4 receptor also 

mediates GI activity; however, this receptor subtype is distinct in that antidepressant 

effects are elicited by agonists, not antagonists [29]. The remaining serotonin receptor 

types are less well characterized, but 5-HT7R antagonists are reported to possess 

antidepressant and anxiolytic activity [30, 31]. Mirtazepine (RemeronTM) is touted as the 

only monoamine-based antidepressant on the market that does not have MAT inhibitor 

properties; however, many monoamine receptors are modulated, resulting in a plethora of 

adverse effects [32]. 

MAT inhibition is still desirable in an antidepressant in order to boost 

extracellular levels of the monoamine. Drugs lacking this capability are more likely to be 

used to augment a classic MAT inhibitor therapeutic [20]. The next evolution of 

monoamine-based antidepressant drugs will be to retain the monoamine transporter 

inhibition and add serotonin receptor-selective agonism or antagonism, as appropriate. 

Consistent with this goal, the drug vorioxetine currently in clinical trials is an SSRI and a 

full agonist at 5-HT1A, partial agonist at 5-HT1B, and antagonist at 5-HT1D, 5-HT3 and 5-

HT7 receptors [33]. This is not to imply that efficacies with respect to each receptor are 
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optimized in this drug. It is possible that the drug’s intrinsic activity will need to be fine-

tuned at each receptor, via structure-activity series.  

 

6.1.5. Landmark achievements toward elucidating SERT and 5-HT receptor 

three-dimensional structures 

Until relatively recently, a major obstacle for the design and development of new 

antidepressants was the limited knowledge of MAT protein structure and function. 

Lacking an x-ray crystal structure that could serve as a template, MAT structure had been 

inferential, relying on biophysical, pharmacological and molecular biological studies 

(e.g., characterization of MAT protein site-directed mutants). Such techniques elucidated 

the general protein topology in the plasma membrane and indicated two or three probable 

substrate binding site residues, but offered little toward which transmembrane domains 

were juxtaposed, how substrates were translocated, or the size and shape of ligand 

binding pockets. In fact, the eventual availability of a credible 3D MAT computational 

model template revealed surprising and unforeseeable structural and functional features 

[34].   

This SERT template was provided by the crystallization of the LeuT leucine 

transporter [34], a bacterial homolog of SERT. The LeuT and SERT proteins belong to 

the NSS family, sharing a 12 transmembrane domain structural architecture and Na+-

driven electrogenic transport of the neurotransmitter substrate. The proteins are 

hypothesized to have similar alternating access mechanisms [34, 35]. Similar to LeuT, 

hSERT is proposed to have at least two ligand binding pockets. The S1 (primary 

substrate) pocket is located midway through the protein and lipid bilayer. To the 
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extracellular side of S1 lies the S2 (secondary substrate) pocket (Fig. 6.2). Evidence 

supports a mechanism of the neurotransmitter substrate first binding in S2 before 

relocating to S1; as the S2 site is occupied by a second substrate molecule, the S1 ligand 

releases into the neuron [36-39]. Both pockets appear to accommodate inhibitors as well 

as substrates [36-40]. It should be noted, however, that the existence of the S2 site is not 

universally accepted [41, 42]. Several MAT protein computational models have been 

built based on the LeuT x-ray structure [43]. LeuT-based computational modeling is 

rapidly advancing the understanding of SERT ligand binding [44-52] as well as the large 

conformational changes that take place during substrate translocation [48, 53-57].   

Our knowledge of monoamine G protein-coupled receptor (GPCR) structures has 

experienced a similar breakthrough. 1-adrenergic, dopamine 

D3, 5-HT1B and 5-HT2B receptors have been reported in the last five years [58-60]. The 

antagonist eticlopride was co-crystallized with the D3 receptor, providing a map for small 

molecule antagonist ligand binding within the seven transmembrane barrel of canonical 

GPCRs. The 5-HT receptor crystals included ergotamine analogs in the orthosteric 

agonist binding site. Thus, creation of useful monoamine receptor computational models 

is possible, even straightforward. 
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Figure 6.2. Primary (S1) and secondary (S2) substrate binding pockets of the SERT.   

LeuT and SERT studies support a primary substrate binding pocket (S1, pink) 

midway through the lipid bilayer. A secondary substrate pocket (S2, yellow) in the 

extracellular vestibule, to the extracellular side of S1, appears to serve as a staging 

area before substrate progression to S1. The pockets are separated by an 

extracellular gate consisting of a TM 1 (Arg104) – TM 10 (Glu493) salt bridge (red) 

and a TM 3 (Tyr176) – TM 8 (Phe335) aromatic (green) interaction. SERT 

inhibitors have been mapped to both pockets; accordingly, each SERT ligand pocket 

has been utilized for VS. SERT TM domains 1 (yellow), 3 (green), 6 (cyan) and 8 

(red) are highlighted. 

 

6.1.6. Antidepressant mechanisms beyond the MATs 

The boost in extraneuronal monoamine neurotransmitter levels afforded by 

monoamine-based antidepressant drugs accounts for only a portion of their therapeutic 

benefit. An intriguing linkage between therapeutic antidepressant activity and 

hippocampal neurogenesis has been established over the last decade [61-65]. Screening 

for neurogenic and/or neuroprotective compounds is a new focus of the field; 
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interestingly, certain FDA-approved antidepressants (e.g., fluoxetine) already have such 

properties [66-68]. The search for new antidepressant drugs extends beyond the biogenic 

amines. Ketamine and other NMDA glutamate receptor antagonists elicit an 

antidepressant response within hours, as opposed to the weeks required of monoamine-

based drugs [69]. Peripheral administration of brain-derived neurotrophic factor (BDNF) 

displays antidepressant properties in vivo [70]. While these approaches are an important 

part of the future of antidepressant research, this review centers on development of 

therapeutics that manipulate the activity of the serotonin transporter and selected 

serotonin receptors. 

 

6.2. Methods for Antidepressant Discovery and Design 

In the 1970s, antidepressant discovery efforts began to include a rational 

(computer-aided) design strategy. Several techniques have evolved and advanced the 

drug discovery process, and can be broadly classified as experimental, knowledge-based, 

and computational methods (Fig. 6.3).  
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Figure 6.3. Different methods for antidepressant discovery/design.  

Antidepressant discovery/design methods can be classified as 

experimental (combinatorial chemistry and high-throughput 

screening), knowledge-based (SAR and molecular hybridization), or 

computational (structural, ligand, and hybrid (structure/ligand).   

There are also cases of antidepressant discovery via serendipity or 

clinical practices. SAR, structure activity relationship; HTS, high-

throughput screening; VS, virtual screening. References: a[2], b,c[3], 
d[71], e[72], f[73], g[74], h[75], i[76], j[77]. 

 

6.2.1. Experimental methods 

Experimental methods include the popular techniques of combinatorial chemistry 

and high-throughput screening (HTS). These two methods revolutionized the lead 

compound discovery process in the late 1980s and early 1990s, shifting the bottleneck of 

the drug discovery process from lead identification to lead optimization. Combinatorial 

chemistry involves rapidly synthesizing a large library of structurally diverse compounds.  
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Advantages of combinatorial chemistry over systematic synthesis of individual 

compounds include rapid lead generation, structural diversity (essential for novel lead 

discovery), and cost effectiveness. Disadvantages of the method include low “hit” rate 

(sometimes precisely because of the increased diversity), complexity of structures, the 

presence of structurally impure compounds, occasional lack of drug-like features in a 

compound, and limited options for chemical modification [78-80]. The combinatorial 

approach has been used to identify a novel sulfonamide lead compound (designated 

“J20”) with high binding affinity for the 5-HT7 receptor (IC50 = 39 nM). J20 displayed 

significant antidepressant activity in the mouse Porsolt swimming and tail suspension 

tests relative to imipramine and fluoxetine [72].  

HTS involves the rapid in vitro pharmacologic screening of a large chemical 

library for activity at a battery of classic drug receptor targets. HTS is the predominant 

process for lead compound identification. The chances of HTS yielding compounds 

active at one or more targets are very good, assuming that the concentration range is 

appropriate. The chief advantage of HTS is that large numbers of compounds can be 

reliably screened using an array of receptor targets. HTS limitations include the possibly 

prohibitive cost for an academic laboratory, the time required for large-scale screens, and 

that some active compounds identified may not be suitable for further drug development.  

Regarding antidepressant lead compounds, HTS successfully identified an entity with 

low nanomolar 5-HT1AR affinity and high nanomolar SERT affinity. After SAR 

optimization, a derivative compound displayed increased affinity and selectivity for these 

targets, the desired intrinsic activity (0.2) for 5-HT1AR agonists, and good oral 

bioavailability and blood-brain barrier penetration in the rat [71]. 
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6.2.2. Knowledge-based methods 

 Structure-activity relationship (SAR) studies and the technique of molecular 

hybridization comprise the knowledge-based methods. These methods make use of 

information on already available chemical entities, endogenous substrates and 

biostructural data. SAR studies are widely used to optimize the activity of a hit or lead 

compound toward a specific target through generation of structural analogs, as few as 10 

or as many as 1000. In this way, the combination of functional groups necessary for 

optimal drug activity is ascertained. As described above, fluoxetine (ProzacTM) arose 

from diphenhydramine SAR studies [12]. Molecular hybridization involves generating a 

superior, chimeric bioactive compound by combining features from two or more 

bioactive compounds [81]. This relatively new rational drug design strategy may be used 

to improve receptor selectivity or create agents that can simultaneously act at multiple 

targets. Starting with a hDAT VS hit compound, molecular hybridization was recently 

used to create a high affinity SSRI lead compound [74]. The VS hit was combined with a 

portion of the dual SERT/5-HT1A inhibitor SSA-426 [82] to yield DJLDU-3-79, a 

compound with hSERT:hDAT and hSERT:hNET selectivity ratios of 50 and > 200, 

respectively [74]. Thus, molecular hybridization can be thought of as a type of directed 

SAR during the lead optimization stage of drug design. A common limitation of the 

knowledge-based methods is that, while effective in generating analogs of existing 

compounds, novel drug scaffolds are typically not suggested, or an outcome. 
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6.2.3. Computational methods 

 Computers are increasingly employed as an integral tool in the drug discovery 

process, and this trend will only accelerate as the level of drug receptor resolution 

increases. Because computational methods are expected to assume the forefront of drug 

discovery efforts, this approach is expanded upon here. High-throughput virtual screening 

(HTVS, or VS) is the in silico alternative to HTS. A computational screening technique, 

VS allows a database containing perhaps millions of virtual chemical structures to be 

scored and ranked based on predicted affinity for a specific protein or other drug target 

[83]. VS filters and removes obviously undesirable compounds, decreasing the burden of 

synthesizing trivial analogs. The use of large chemical libraries containing millions of 

small molecule compounds promotes structural diversity in the resultant hit compounds. 

The VS methods can be divided into ligand-based, structure-based, hybrid 

(ligand/structure) and fragment-based approaches (Fig. 6.4).  

 

6.2.3.1. Ligand-based VS 

 The ligand-based VS methods are based on a similarity property principle [84]; 

virtual molecules are scored based on their relative similarity to a “model” ligand [85].  

In the ligand-based pharmacophore approach, protein-ligand interactions are predicted 

based on the structures of established ligands, without knowledge of the target protein’s 

structure. A pharmacophore is the spatial orientation of ligand features necessary for its 

biological activity [86, 87]. Each feature is represented as a sphere (e.g., F1 - F5 in Fig. 

2). The pharmacophore can be developed based on one or several ligands with the same 

biological activity. The ligand-based pharmacophore approach is a viable alternative for 
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obtaining structural information on binding sites in the absence of x-ray crystallographic 

structures of the drug target (e.g., SERT) [88-90]. VS hit compounds that satisfy the 

pharmacophore filter are next confirmed as ligands via in vitro pharmacologic testing.   

 Knowledge of the bioactive conformation of at least one ligand is needed for the 

successful retrieval of novel scaffolds [91]. Enrichment can be improved by designing the 

reference ligand model based on a diverse ligand set [92]. This method has been 

successfully applied to discover NET [77, 93, 94], SERT [77, 93] and 5-HT2C [95] 

inhibitors. In summary, advantages of ligand-based VS are that the method is 

computationally less intensive compared to structure-based VS, and no knowledge of the 

target structure is required. Limitations include the reduced likelihood of finding a novel 

scaffold, performance largely depends on the initial reference ligand, and the requirement 

for at least one bioactive ligand conformation. 

 

6.2.3.2. Structure-based VS 

When structural information on the target protein is available, structure-based VS 

is the preferred computational drug discovery method. Structure-based VS relies on 

ligand docking to the target. Docking is a computational technique that assists in 

predicting the binding modes of ligands within the target protein pocket [96]. When 

crystal structures of the drug target are unavailable, as in the case of the MATs, 

homology models are substituted [97-99]. Homology modeling is used to generate high 

resolution 3D models of proteins with unknown structures, based primarily on alignment 

with one or more proteins of known 3D structure (templates) evolutionarily related to the 

target [100]. In the absence of an experimentally determined structure, a comparative 
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model can provide not only a starting point for experimentally validated research, but an 

evolving representation of the target [101, 102]. Generation of a reliable computational 

model is critical for the accuracy of the predictions to be made from the model. 

Compounds from the virtual database are docked in the target protein site of 

interest and ranked via a scoring function; usually a force field-based measure of how 

well a ligand interacts with the protein. This constitutes a liability in the method, 

however. Currently available force fields for drug-like molecules are of limited accuracy, 

such that one has to rely on visual inspection for selecting the compounds for in vitro 

screening. Docking and subsequent scoring are the most important factors that determine 

the efficiency of any structure-based VS effort. A representative example is the discovery 

of lead compound PRX-93009 through structure-based VS using a 5-HT1A receptor 3D 

model [76]. This compound displayed high affinity binding at the 5-HT1A receptor (Ki = 1 

nM), 65% efficacy, and a pharmacokinetic profile in rats comparable to buspirone, the 

only FDA approved 5-HT1A receptor agonist. Overall, the structure-based VS approach 

provides a reasonable estimate of both the ligand orientation within the receptor and the 

approximate binding affinity of the candidate ligand. Limitations of the method may 

include the absence of a target protein crystal structure, poor knowledge of the binding 

site, inaccuracies in the force field-based scoring functions, and variability as a function 

of the target protein conformation used in the docking studies [103]. Ensemble docking, 

which employs multiple conformations of the target protein, is suggested to improve 

enrichment in the structure-based VS studies [104]. 
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6.2.3.3. Hybrid (structure/ligand) VS 

 In this conjugation of ligand- and structure-based VS, a pharmacophore is created 

within the ligand-binding pocket of the target structure. The small molecule database is 

screened for novel scaffolds, first using the ligand-based approach and next with the 

structure-based approach (Fig. 6.4). Although there are only two publications describing 

the application of this method to the MATs, novel hNET or hSERT inhibitors were 

reported [75, 105]. This method is further discussed below in the context of a specific 

multi-target antidepressant discovery strategy. 
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Figure 6.4. Structure- and ligand-based VS methods for discovery of novel ligands.  

A library of thousands to millions of compounds is mined for potential SERT 

ligands using as screening tools a computational SERT model (structure-based), a 

SERT inhibitor pharmacophore (ligand-based), or a combination of both. Features 

F1 – F5 of the pharmacophore indicate a requirement for ionic, hydrogen bonding, 

aromatic or otherwise hydrophobic interactions with SERT side chains. 

Compounds that align well with the pharmacophore and dock favorably within the 

binding pocket are next characterized with respect to in vitro SERT pharmacology. 
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6.2.3.4. Fragment-based drug discovery 

Perhaps the newest computational drug design strategy is fragment-based drug 

discovery (FBDD) [106], a powerful alternative to classic VS methods. Contrasting with 

the traditional approach of screening libraries of intact compounds, FBDD employs a 

large chemical fragment library. Fragment combinations are covalently linked within the 

receptor’s ligand-binding pocket to create new entities, often of unique scaffold 

compared to the existing ligands of the target receptor [107]. Advantages of FBDD over 

classic VS include the ability to cover a large chemical space while offering greater 

chemical diversity and hit rates. FBDD also can offer smaller ligand sizes, more ligand-

receptor interactions, and favorable pharmacokinetic properties [108, 109]. On the other 

hand, FBDD software is still in its infancy [110, 111], and FBDD hits are not always 

easily synthesizable [109]. 

 

6.2.4. Summary of VS comparison with HTS 

To summarize the comparison of VS and HTS methods, VS is superior with 

respect to filtering the large chemical space, providing larger screening libraries, saving 

time and money, and allowing testing of theoretical compounds, perhaps containing 

novel scaffolds. Limitations of VS relative to HTS are overall reliability (considering the 

virtual nature of its elements), the considerable computational resources needed to search 

for 3D conformations of all molecules in the chemical library, and that compound 

synthesis and in vitro testing of VS hits are still required. 
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6.3. A Hybrid VS Strategy for Discovery of Novel SERT Inhibitors / 5-HT 

Receptor Modulators  

The use of computational methods for antidepressant drug discovery is not only 

warranted but essential now that credible monoamine transporter and receptor models are 

finally available. Our group has undertaken a hybrid VS strategy involving the SERT and 

selected key 5-HTRs in the search for novel antidepressant leads (Fig. 6.5). To identify 

novel human SERT inhibitors, one million compounds from the ZINC structural database 

[112] were initially screened using the S2 pocket of our hSERT computational model 

(Fig. 6.2). As a first step, a structure-based pharmacophore filter developed using several 

established antidepressants was employed, resulting in approximately 4000 hit 

compounds. These hits were next allowed to dock with the hSERT model and assessed 

via Affinity dG scores and visual inspection. Visual inspection, a final, crucial step in the 

VS process, manually identifies hit compounds that display especially favorable 

intermolecular interactions with receptor pocket residues. Our visual inspection is based 

on five criteria: 1) the type and number of intermolecular interactions, 2) the binding 

pose, i.e. orientation and conformation, of the ligand, 3) key pocket residues are involved 

in the binding, 4) steric clashes, and 5) structural novelty of the VS hit.  From the 68 hits 

obtained, the 15 most structurally diverse compounds were acquired for in vitro 

pharmacology. Two compounds, structurally distinct from current antidepressant 

medications, displayed low micromolar SERT binding affinities and substrate uptake 

inhibition potencies, and no detectable activity at the hNET or hDAT [75]. Micromolar 

affinities for VS hit compounds are not uncommon when homology models are employed 
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[113-119], especially given the low sequence identity (<30%) between LeuT and hSERT.  

Similarly, the first reported VS efforts based on a LeuT-directed hDAT homology model 

yielded hit compounds with low micromolar hDAT affinity [105] and slightly better 

(high nanomolar) SERT affinity [74]. More recently, the hybrid VS procedure described 

above has been conducted using the S1 SERT pocket. Several novel, in vitro-verified, VS 

hits of high nanomolar SERT affinity were obtained (unpublished data). 

 Compounds identified as novel SERT ligands can next be subjected to VS at 5-

HT receptors relevant to the depressive state or responsible for the classic adverse effects; 

these include 5-HT1A, 5HT2A and 5-HT3 (Fig. 6.5). The resulting hit compounds would be 

tested for in vitro activity. Promising lead compounds are next optimized for target 

affinity and selectivity via SAR and computational FEP calculations, with the new 

analogs characterized in vitro, using animal models of depression, and hopefully one day 

in human clinical trials. Multi-site drugs (e.g., hSERT/5-HT1A/5-HT2A/5-HT3 ligands) 

developed through this approach are expected to serve as a new line of antidepressant 

medications carrying a more favorable side/adverse effect profile. 
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Figure 6.5. Multi-VS scheme toward discovery of antidepressant lead compounds.   

Using the structure/ligand-based hybrid approach, VS hits are pharmacologically 

characterized in vitro. Compounds that display specific binding to the SERT are 

next subjected to hybrid VS at 5-HT receptors associated with SSRI adverse 

effects. Resultant 5-HT receptor VS hits are tested in vitro for function (agonism 

or antagonism) as well as affinity, with promising compounds optimized via SAR 

and further tested in animal depression/anxiety models, and finally human clinical 

trials. 
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6.4. Conclusion 

 The development of antidepressants over the generations from monoamine 

oxidase inhibitors to selective serotonin reuptake inhibitors and beyond was discussed.  

Various drug design strategies were covered, with the major focus on computational VS 

approaches. The success of any drug discovery effort largely depends on the initial design 

strategy chosen. For decades, antidepressant discovery has benefited from combinatorial 

chemistry, HTS and SAR studies. These traditional methods must be augmented or 

improved upon to reduce the now-prohibitive cost of drug discovery. VS evolved as a 

powerful adjunct/alternative to in vitro HTS, and is evermore essential to the modern 

drug discovery project. Although there is not a single marketed antidepressant developed 

completely based on computer based drug design approaches, optimal use of computers, 

especially in lead identification, will enormously benefit drug discovery in terms of 

money, time, and novelty of the lead compounds. Finally, with the availability of reliable 

computer models of MATs and monoamine receptors, the use of computational strategies 

should enhance and facilitate the antidepressant drug discovery process. 

 

6.5. Expert Opinion 

Due in part to the many adverse effects associated with monoamine 

neurotransmitter-based antidepressant drugs, new therapeutics are in demand. In view of 

the astronomical cost to bring a successful drug to market, a new drug development 

approach is needed. Developing innovative approaches to assist in the development of 

novel and effective therapies to depression is a demanding research area. Searching for 
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therapies that will help reduce adverse effects with improved response time makes this a 

complex and challenging task. We are developing a novel computational and 

experimental approach at Duquesne University in Pittsburgh to meet the complex and 

challenging task. The novel approach is to derive new lead compounds by starting with 

VS of serotonin transporters and receptors, leading to pharmacological testing and 

synthesis, and ending with animal behavioral studies. This group is currently applying its 

workflow specifically to the serotonin transporters and receptors, with plans to extend it 

to other neurotransmitter transporter/receptor combinations (e.g., glutamate). 

VS of small molecule databases using computational drug and drug target models 

is a feasible, rapid and inexpensive alternative to the prevailing in vitro high-throughput 

screening approaches. Computational methodologies remain a predictive tool, but a tool 

that will inexorably dominate the drug discovery landscape as improvements are effected 

regarding specific issues such as incorporating target protein flexibility, refining water 

molecule placement, and improving scoring functions. The computational approach is 

further supplemented by pharmacological testing in order to support the computational 

results as well as assist in improving the computational models. Once a series of potential 

compounds [74, 75, 105] has been identified, two parallel approaches are undertaken.  

The first is the synthesis of analogs to improve affinity and selectivity [74], or to create a 

molecular probe by adding functional groups that can covalently attach to the transporter 

or receptor upon binding [120-122]. The second is to identify the specific binding site 

and important residues in the binding pocket using mass spectrometry methods. The final 

step is to test the effectiveness of the best compounds in animal models. In the authors’ 

view, this joint computational and experimental effort in the development of future 
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antidepressants will hinge on close collaboration of different scientific disciplines.  

Finally, optimal use of the new research tools (e.g., VS, FEP methods) offer greater 

predictive power and efficiency than the traditional reliance on serendipity and a 

structure-activity series. We see this team of academic scientists from diverse disciplines 

working on a common problem as the emerging approach for discovery of novel lead 

compounds. This method of drug discovery is similar to the idea behind small biotech 

companies that develop lead compounds and contract with large pharmaceutical 

companies to license their compounds. 

There are several challenges that will impact the success or failure of the drug 

discovery process. One challenge is that a more complete and detailed understanding of 

the complex biochemical interactions and pathways is needed. Some of this will come as 

the field of systems biology develops. A second challenge is in the improvement of the 

computational tools. As an example, VS is heavily dependent on the filtering mechanism, 

comprised of a pharmacophore model and a scoring function. A ligand-based 

pharmacophore model depends on the alignment of substrates in three-dimensional space 

as well as accurate activity data. A structure-based pharmacophore model depends on the 

conformational state of the transporter, which at this time is not accurately known. 

Scoring functions are dependent on the terms used to define the scoring function as well 

as the data set used to train (i.e., develop) the scoring function. One last challenge is 

mapping the transport mechanism. In this case long-time simulations with enhanced 

sampling methods to test the hypotheses of a one or two substrate transport mechanism. 

These challenges are presented because they are pursued by numerous academic [123, 

124] and industrial [125-127] research groups.   
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Exciting developments on the drug discovery horizon include crowd computing 

(e.g., Docking@Home [128]), cloud computing (e.g., Amazon cloud [129]), and virtual 

collaborative organizations/research teams [130]. 
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