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ABSTRACT

AN ANALYSIS OF DNF MAXIMUM ENTROPY

By

Belinda Hasanaj

December 2014

Thesis supervised by Karl Wimmer, Ph.D., Assistant Professor

This study focuses on the entropy of functions computed by monotone DNF formulas.

Entropy, which is a measure of uncertainty, information, and choice, has been long studied

in the field of mathematics and computer science. We will be considering spectral entropy

and focus on the conjecture that for each fixed number of terms t, the maximum entropy of

a function computed by a t-term DNF is achieved by a function computable by a read-once

DNF. A Python program was written to first express the t-term DNF Boolean functions

as multilinear polynomials and then to compute their spectral entropy. This was done for

the cases t = 1, 2, 3, 4. Our results agree with the conjecture and show that the maximum

entropy occurs for functions with a small number of literals.
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Chapter 1

Introduction

Since first introduced by Fourier and Chebyshev, the approximation of functions by algebraic

and trigonometric polynomials has been an important topic of mathematical studies. Also, it

has provided powerful mathematical tools to other application areas like data representation,

signal processing, numerical analysis, and solution of differential equations. The need for an

approximation form, especially in theoretical computer science, arises from the idea that even

though in principle one could calculate the function value for any given set of arguments, it is

actually computationally expensive to do so. Therefore, rather than computing the function

exactly, sometimes it is much easier to approximate it by a simpler function. The class of

polynomials is possibly the simplest mathematical class of functions, since they require only

multiplications and additions for their evaluation.

Consider two Boolean functions f and g. We say that f approximates g if the fraction

of inputs in {0, 1}n on which f and g disagree is at most ε: Pr{f(x) 6= g(x)} ≤ ε. All

probabilities in this thesis are with respect to the uniform distribution unless otherwise

specified. Many applications are encouraging for the study of the approximation degree as

a complexity measure.

The study of the approximate degree of Boolean functions began first in 1969, presented
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by the work of Minsky and Papert [19], which proved that the parity function in n variables

can not be approximated by a polynomial of degree less than n. It is also used to solve

problems in complexity theory and algorithm design. Recently, in computational learning

theory, it has been shown to be useful in obtaining the best known algorithms for PAC

(Probably Approximate Correct) learning DNF formulas, read-once formulas [1, 15, 24] and

for agnostically learning disjunctions [12]. A great amount of work has been done in the last

twenty years on developing algorithms that find polynomials p such that: Ex∈{0,1}n [(p(x) −

f(x))2] ≤ ε for a given function f . The first progress was made by Linial et al. [16] , who

proved that for any function computed by a t-term DNF formula f , there exists a polynomial

p : {0, 1}n → {0, 1} of degree O(log(t/ε)2) for which Ex∈{0,1}n [(p(x)− f(x))2] ≤ ε. In [16], it

was shown that this approximation implies a quasipolynomial-time algorithm for the PAC-

learning DNF formulas with respect to the uniform distribution. Furthermore, it was noticed

that in fact this implies a stronger result, a sub-exponential time agnostic algorithm for

learning disjunctions under any distribution [12].

In 1995, Mansour [18] proved that for any DNF formula with t terms, there exists a

polynomial p with sparsity (number of nonzero coefficients of p) tO(log log t log(1/ε)), that ap-

proximates f to error ε. This implied a nearly polynomial-time query algorithm for PAC

learning DNF formulas under the uniform distribution. Then, he conjectured that this bound

can be improved to tO(log1/ε) (known as Mansour Conjecture) [17], which means that most

of the fourier coefficients are concentrated only on polynomial number of coefficients in t for

constant ε. The importance of the conjecture relies on the fact that if it is true, it would

imply a polynomial-time query algorithm for learning DNF formulas with respect to the

uniform distribution. It was proven by Dr. Jackson [10] that such an algorithm exists, but

this was done using the “Harmonic Sieve” algorithm and without proving the Mansour Con-

jecture. Also, another implication of the Mansour Conjecture is that the query algorithm of

Gopalan et al. [7, 8] would agnostically learn DNF formulas under the uniform distribution,
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to within any constant accuracy, in polynomial time. Therefore, proving this result is a

major open question in computational learning theory.

Major progress towards proving Mansour Conjecture was made in 2010, by Klivians et

al. [14]. They showed that the conjecture is true for almost all DNF formulas and read-k

DNF formulas.

Another important open problem related to the Mansour Conjecture is the Fourier

Entropy-Influence Conjecture (FEI) made by Friedgut and Kalai in 1996 [6, 13]. This con-

jecture, which states that H[f ] ≤ C · Inf [f ], relates two important measures of Boolean

function complexity, the total influence and the spectral entropy. The conjecture was first

initiated by a study of threshold phenomena in random graphs [6]. (In this introduction, we

use many technical terms that we will formally define later in the thesis.)

Even though the interest shown in the FEI Conjecture over the past years has been

large, the FEI conjecture has been proven to be true only for a few classes of Boolean

functions. From direct calculations with the Fourier coefficient, it is easy to check that FEI

Conjecture is true for the usual Boolean functions: AND, OR, Majority and Tribes. Also,

the conjecture holds for the family of symmetric functions (C = 12.04), d-part symmetric

functions (C = 12.04+log2 d) and read-once DNF(C = 4.88) [5]. Beside those, there is a large

but non-explicit family of functions that satisfies the Fourier Entropy Influence Conjecture

[3]. It is already known that if f is computable by a t term DNF, then the total influence

is bounded by O(log(t)) [2]. For this reason, Mansours Conjecture is implied by the FEI

Conjecture.

In this thesis, we study the maximum entropy of functions computed by t−term DNF

formulas (t = 1, 2, 3, 4), and try to relate our results with the Fourier Entropy-Influence

Conjecture and Mansour Conjecture. Entropy seems to be different than other complexity

measures since it might be tricky to use with current techniques. A conjecture by Dr.

Wimmer (unpublished) states that for each fixed number of terms t, the maximum entropy
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of a function computed by a t term DNF formula is achieved by a function computable by a

read-once DNF. The work done in this thesis mostly focuses on the above conjecture, which

seems not to have been studied before.

The remainder of the thesis is laid out as follows. Chapter 2 presents background infor-

mation on the field of analysis of Boolean functions. This chapter also includes definitions

about entropy and DNF formulas. In the third chapter we consider the main theorems and

conjectures to which our research is closely related. We conclude the thesis by discussing

the results of the experiments performed, and different ideas for related future work.
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Chapter 2

Background

2.1 Fourier Transform of Boolean Functions

Fourier transforms are often used in mathematics, computer science and engineering. When

studying Boolean functions with n variables, the Fourier transform is a linear map of the

values of the function into the set of coefficients and it is considered over the Abelian group

Zn2 . This is widely known as Fourier analysis over the Boolean cube, and has become one of

the most important techniques for theoretical computer science and applied mathematics.

By analysis of Boolean functions, we aim to obtain information and study the structural

properties of Boolean functions using their Fourier expansion. For a wide overview in the

area see the book [4].

We consider Boolean functions, which map length-n binary vectors, or strings, into a

single binary value or bit. The bits can be represented as True and False, 1 and 0, -1 and 1

( where -1 represents True). Mostly, throughout the thesis we will use the convention {-1,

1} and the Boolean function will be:

f : {−1, 1}n → {−1, 1}. (2.1)
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Definition 2.1.1. For functions f, g : {−1, 1}n → {−1, 1}, the inner product is

< f, g >=
1

2n

∑
x∈{−1,1}n

f(x)g(x) = Ex∼{−1,1}n [f(x)g(x)]

where the sum
∑
f(x)g(x) is the correlation between f, g and it is a measure of how often f

and g agree.

Let χS : {−1, 1}n → {−1, 1} be the parity function, which is defined as χS =
∏

i∈S xi.

Theorem 2.1.2. The 2n parity functions χS : {−1, 1}n → {−1, 1} form an orthonormal

basis for the vector space V of functions:

< χS, χT >=


1 ifS = T

0 ifS 6= T

Proof. If S = T , < χS, χS >= 1
2n

∑
x∈{−1,1}n χS(x)2 = 1.

If S 6= T , then

< χS, χT >= Ex∼{−1,1}n [χS · χT ] = Ex∼{−1,1}n [χS4T ]

Since S 6= T , then S4T 6= 0. Therefore Ex∼{−1,1}n [χS4T ] = 0. Hence, the parity

functions form an orthonormal basis.

We can now define another function f̂ : {−1, 1} → R by f̂(S) = 〈f, χS〉 = Ex∼{−1,1}n [f(x)χS(x)].

These are known as the Fourier Coefficients, which measure the correlation between the

function f and a specific parity function χS under the uniform distribution. The function

F : f 7→ f̂ is called the Fourier Transform and is an invertible linear mapping of the values

of the function onto a set of coefficients.

Let’s now present the Fourier expansion theorem:
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Theorem 2.1.3. Every function f : {−1, 1}n → R can be uniquely expressed as a multilinear

polynomial

f =
∑
S

f̂(S)χS

The above expression represents the Fourier expansion of f , while the real numbers f̂(S) are

the Fourier coefficient of f on S.

Let f : {−1, 1}n → {−1, 1} be a Boolean function. We will show through an example,

how to express it in the multilinear polynomial form. We need to find a polynomial which

interpolates the 2n values that f assigns to the points {−1, 1}n ⊂ Rn. Define the indicator

polynomial to be:

1{a}(x) = (
1 + a1x1

2
)(

1 + a2x2
2

) · · · (1 + anxn
2

) (2.2)

It will take value 1 when x = a and value 0 when x ∈ {−1, 1}n \ {a}. Therefore, the

polynomial representation of f is

f(x) =
∑

a∈{−1,1}n
f(a)1{a}(x) (2.3)

For instance, consider the AND function on 2 variable. We know that

AND(+1,+1) = +1, AND(+1,−1) = +1, AND(−1,+1) = +1, AND(−1,−1) = −1,

therefore

AND(x1, x2) = (+1)

(
1 + x1

2

)(
1 + x2

2

)
+ (+1)

(
1 + x1

2

)(
1− x2

2

)
+ (+1)

(
1− x1

2

)(
1 + x2

2

)
+ (−1)

(
1− x1

2

)(
1− x2

2

)
After finishing the calculations, the AND function written as a multilinear polynomial is

AND(x1, x2) = 1
2

+ 1
2
x1 + 1

2
x2 − 1

2
x1x2.

One of the important properties of the Fourier transform is the following theorem.
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Theorem 2.1.4. (Plancherel Theorem) Given two functions f, g : {−1, 1}n → R,

〈f, g〉 = Ex∼{−1,1}n [f(x)g(x)] =
∑
S⊆[n]

f̂(S)ĝ(S). (2.4)

This theorem is saying that since the functions χS form an orthonormal basis, the inner

product of 2 vectors equals the sum of the products of the corresponding coefficients.

In the special case when f, g are the same function we get the Parseval Identity:

Theorem 2.1.5. (Parseval Identity) For any f : {−1, 1}n → R

〈f, f〉 = Ex∼{−1,1}n [f(x)2] =
∑
S⊆[n]

f̂(S)2. (2.5)

In particular, if f : {−1, 1}n → {−1, 1} is Boolean-valued then

∑
S⊆[n]

f̂(S)2 = 1 (2.6)

The fact that the squared coefficients sum to 1, is important and it will be used later

when defining the entropy.

We will now introduce two important learning models in computational learning theory.

The Probably Approximate Correct (PAC) model [25] belongs to that class of learning models

which is characterized by learning from examples.

Definition 2.1.6. Let C be a class of Boolean functions f : {−1, 1}n → {−1, 1}. We say that

C is PAC-learnable if there exists an algorithm L such that: for every f ∈ C, any probability

distribution D, any ε such that 0 ≤ ε < 1/2, and any δ such that 0 ≤ δ < 1, the algorithm

L will, with probability at least (1 - δ), output a hypothesis h ∈ C such that error(h, f) ≤ ε,

in time that is polynomial in 1/ε, 1/δ, n and size(c).

In Agnostic learning model, no assumptions are made about the function that labels the
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examples, which means the learning model has no prior beliefs about the target function.

The goal of agnostic learning algorithm for a concept class C is to produce a hypothesis h ∈ C

whose error on the target concept is close to the best possible by a concept from C.

Definition 2.1.7. An algorithm L agnostically learns a class of Boolean functions C if for

every ε > 0, Boolean function f , and distribution D over {−1, 1}n, L outputs with probability

at least 1/2, a hypothesis h ∈ C such that Pr[f 6= h] < infh∈C Pr[f 6= h] + ε.

If a Boolean function is learnable in the Agnostic model, then it is also learnable in the

PAC model.

2.2 DNF Formulas

One of the simplest ways to represent Boolean functions is by a disjunctive normal form

(DNF) expression, which is a logical formula consisting of a disjunction of terms. For ex-

ample, the expression (x1 ∧ x2 ∧ x3) ∨ (x2 ∧ x4) is a DNF formula. Before that we formally

define the DNF expressions, we need to define the AND and OR functions.

Definition 2.2.1. The logical AND ( ∧ ) indicates a conjunction between two statements.

A conjunction is true if and only if both of the components are true.

The logical OR ( ∨ ) indicates a disjunction between two statements. A disjunction is false

if and only if both of the components are false.

The formal definition of DNF formula is presented below [4]:

Definition 2.2.2. A Disjunctive Normal Form (DNF) formula over Boolean variables x1, · · · , xn

is defined as the logical OR of terms T1 ∨ · · · ∨ Tt, where each of the terms Ti is a logical

AND of n literals. A literal is either a variable xi or its logical negation xi.

We define the size of a DNF formula to be its number of terms and the width the maximal

number of literals in any term. A function is monotone if it satisfies the monotonicity
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condition: for any x, y ∈ {−1, 1}n if x ≤ y coordinate wise, then f(x) ≤ f(y). In other

words: replacing -1 with 1 in x will only increase the value of f(x). In this thesis we focus

on monotone disjunctive normal form formulas, which are DNF formulas with no negated

literals in them. Monotone DNF formulas are one of the most widely used representations

of monotone functions. A read-once DNF formula is a DNF formula in which the number of

occurrences of each variable is at most one. We mostly focus on the read-once DNF formula.

A special case of DNF formulas are Tribes, which are read-once and monotone DNF. If

we partition the n variables into n/w disjoint blocks, we get a tribe of width w. Tribesn is

the OR of the n/w AND’s of the w variables inside each block.

Definition 2.2.3. The tribes function Tribesw,s : {−1, 1}sw → {−1, 1} is defined as

Tribesw,s(x1, · · · , xsw) = (x1 ∧ · · · ∧ xw) ∨ · · · ∨ (x(s−1)w+1 ∧ · · · xsw) (2.7)

where xi ∈ {−1, 1}w

It is easy to see that this function will get the True value only if at least one of the blocks

is unanimously True. Also, the following statement holds:

Prx[Tribesw,s(x) = −1] = 1− (1− 2−w)s (2.8)

2.3 Entropy

Entropy, which is a measure of information, choice and uncertainty, was first introduced

by Shannon in 1948 [22]. In his fundamental paper “A Mathematical Theory of Communi-

cation” he built the foundations for contemporary information and communication theory

by developing a mathematical model for communication systems and a set of theoretical

tools for analysing these systems. Given a discrete random variable X with probability
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distribution PX the entropy is defined as:

H(X) = −
∑

PX(x) logPX(x)

In other words, it is the minimum number of bits required on average to describe the value

x of the random variable X.

Despite the fact that there are several ways to introduce the notion of entropy, we will

define it in terms of its Fourier coefficients. This is possible, since from the Parseval Identity

(2.1.5) we know that the squared coefficients sum to one, therefore we can treat them as a

probability distribution on the subsets of [n]. Hence, for a Boolean function, the spectral

entropy (called differently, the Fourier Entropy) is defined as:

H(f) =
∑
S⊆[n]

f̂ 2(S) log
1

f̂ 2(S)
(2.9)

It should be noted that the value of entropy ranges from 0 to the number of literals n and it

is larger when the spectrum of f is in someway smeared out. The entropy is zero when the

function f is just a monomial and it is maximized if all of the Fourier coefficients have the

same magnitude. There are cases when the entropy will be close to n with high probability,

for example in the case of randomly selected functions.

We now introduce some measures of complexity, like Sensitivity and Influence.

Definition 2.3.1. Let f be a Boolean function over n variables.

• The sensitivity of a function f : {−1, 1}n → {−1, 1} on input x is the number of

locations i for which f(x) 6= f(x⊕i) (sx(f) = |{i|f(x) 6= f(x⊕i)}|).

• The average sensitivity of f is the expected sensitivity of f at a random assignment:

s(f) = 1
2n

∑
x∈{0,1}n sx(f) = E[sx(f)].

Notation: x⊕i denotes the input with the ith coordinate flipped.
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Definition 2.3.2. For a Boolean function, the influence of the ith variable is the probability

that flipping the ith coordinate changes the value of f .

Infi = Pr[f(x) 6= f(x⊕i)] (2.10)

The total influence of the function is the sum of the individual influences:

If =
n∑
i=1

Infi

which in the case of a monotone function will be If =
∑n

i=1 f̂(i). Also, the average influence

is defined as:

E [f ] = avgi∈[n]{Infi[f ]}

Which is the expected number of inputs bits that, when flipped, change the value of the

function.

By linearity of expectation, average sensitivity equals the total influence: s(f) =
∑n

i=1 Infi(f).

Also, the average influence equals the expected fraction of sensitive bits in a randomly-

selected input. Notice that for the AND function, every variable has a small influence of

21−n.
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Chapter 3

Thesis Work

3.1 Conjectures

The central research question of this study is related to the entropy of the functions computed

by monotone DNF formulas. Over time, many studies have been done to calculate the

entropy. We will be considering the Spectral Entropy of functions computed by t− term DNF

formulas. By fixing the number of terms, (t), we consider each case, (t = 1, 2, 3, 4), separately

for the following questions: What is the maximum entropy for a function computed by a

monotone DNF with a fixed number of terms? What is the form of the monotone DNF

which seems to have the largest entropy? Does this occur over a function computed by a

read-once DNF formula? How many literals does the DNF with the largest entropy contain?

Before giving the detailed explanation of the experiments done in order to answer the above

questions, we first state the main theorems and conjectures with which our research is closely

related.

In 1998, Boppana was the first to prove that k-term DNF’s have low average sensitivity

[2] and that their influence is bounded by log(k).

Theorem 3.1.1. Let f : {−1, 1}n → {−1, 1} be computed by a k-term DNF formula. Then

13



If ≤ O(log k)

Two of the most important open problems in the field of Fourier analysis of Boolean

functions are the Fourier Entropy Influence Conjecture and Mansour’s Conjecture, which

are closely related to each other.

The initial motivation for Mansour’s Conjecture was learning Boolean functions in poly-

nomial time. Mansour conjectured that most of the Fourier coefficients are concentrated on

only a polynomial number of coefficients.

Conjecture 3.1.2. (Mansour’s Conjecture) Let f : {−1, 1}n → {−1, 1} be any function

computable by a t-term DNF formula. Then there exists a polynomial p : {−1, 1}n → R with

tO(log 1/ε) terms such that E[(f − p)2] ≤ ε.

The Fourier Entropy Influence Conjecture was first posed in the setting of the random

graphs and its motivation was to understand the influences under symmetry [6]. The con-

jecture is saying that the entropy is at most a constant times the influence of the function.

Conjecture 3.1.3 (FEI Conjecture). For every Boolean function f : {−1, 1}n → {−1, 1}:

H(f) ≤ C · I(f) ∑
S⊆[n]

f̂(S)2 log2

1

f̂(S)2
≤ C ·

∑
S⊆[n]

f̂(S)2|S| (3.1)

for some universal constant C > 0.

As a consequence of Theorem 3.1.1, Mansour’s Conjecture will follow from the Fourier

Entropy Influence Conjecture. This is considered one of the most important consequences

of the FEI Conjecture, if it would be proven to be true.

Another interesting property is noticeable if we define the inequality 3.1 in terms of the

function f and not the Fourier Coefficients (think of the equation “without the hat”). In

other words, consider the entropy of the squared values of the function by itself, in place of
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the squared values of the Fourier Coefficients of the function. In this case, it is true that

H(f) ≤ 2 · I(f), which is in fact the Logarithmic-Sobolev Inequality on {−1, 1}n [9].

The Mansour’s Conjecture was recently proved to be true for read-once DNF [14]. We

will formally state this theorem and give an outline of the proof.

Theorem 3.1.4. Let f be any read-once DNF formula with t terms. Then there is a poly-

nomial pf,d with ‖pf,d‖= tO(log 1/ε) and E[(f − pf,d)2] ≤ ε for all ε > 0.

The norm used in the above Theorem is the Fourier l1− norm (called differently the

spectral norm) of f and is defined to be ‖ f ‖1:=
∑

S|f̂(S)|.

The method used to prove Theorem 3.1.4 is polynomial interpolation. In other words, it

is by constructing a polynomial p in order to approximate a t− term DNF.

Let f = T1 ∨ · · · ∨ Tt be a DNF formula. Let Ti(x) = 1 if x satisfies the term Ti, and 0

otherwise. Define yf : {0, 1}n → {0, · · · , t} be a function that outputs the number of terms

of f satisfied by x, and let Pd be the univariate polynomial which interpolates the values of

f on inputs {x : yf (x) ≤ d}.

It is shown than the l1-norm of pf,d is polynomial in t and exponential in d and it will

be a good approximation for any DNF formula f . Also, in the case of a read-once DNF

formula, the probability that a term is satisfied is independent of the fact that any of the

other terms are satisfied.

Our research is focused in the following conjecture, which to the best of our knowledge

has not been studied before.

Conjecture 3.1.5 (Wimmer, unpublished). Let f be a function computed by a t-term DNF

formula. For each fixed number of terms t, the maximum entropy of f is achieved by a

function computed by a read-once DNF formula.

Intuitively, the conjecture asserts that for a fixed number of terms, the function which

has the largest entropy can be expressed as a read-once DNF. This is because in a read-
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once DNF the literals appear only once, while in a non read-once DNF they appear more

than once. Therefore, by the way spectral entropy is defined, we would expect some of the

coefficients of a non read-once monotone DNF of the same literal to cancel out with each

other. That will result in a decrease of the value of the entropy. We believe that for a fixed

number of terms the maximum entropy should occur with a small number of literals, and

eventually the maximum entropy decreases as the number of literals n increases. Also, we

think that the entropy is unbounded when the number of terms increases.

The consequences would be really interesting, if the above conjecture would be proven

to be true. Since the Fourier Entropy-Influence Conjecture is true for read-once DNF [5],

the entropy of a t-term DNF is O(log t) if the maximizer is a read-once DNF. Hence, the

entropy of a t-term DNF being at most O(log t) implies Mansour’s Conjecture. Therefore,

the above conjecture would imply Mansour’s Conjecture.

In the following section we explain the experiments that we run with the purpose of

checking the value of the entropy. Throughout the thesis we will consider monotone DNF

formulas and check the Conjecture 3.1.5 for the monotone case.

3.2 Experimental Results

To study the value of the entropy for a fixed number of terms, we wrote a program to gen-

erate a considerable number of monotone DNFs and calculated their spectral entropy. We

considered the DNF by fixing the number of terms (t= 1, 2, 3, 4) and the number of literals

( n ) and worked on each case separately.

16



3.2.1 1-term DNF and 2-term DNF formulas

First, we expressed the 1-term DNF, which in this case is an AND function, as a multilinear

polynomial. This was done by using the symbolic library Sympy in Python [23]. Then, the

coefficients were extracted and used to compute the spectral entropy. Let’s see through an

example how we compute the entropy. Let x1 ∧ x2 ∧ x3 ∧ x4 ∧ x5 be a DNF formula. Using

equation 2.3 we find its multilinear polynomial representation to be: 1/16 ·x1 ·x2 ·x3 ·x4 ·x5−

1/16·x1 ·x2 ·x3 ·x4−1/16·x1 ·x2 ·x3 ·x5+1/16·x1 ·x2 ·x3−1/16·x1 ·x2 ·x4 ·x5+1/16·x1 ·x2 ·x4+

1/16 ·x1 ·x2 ·x5−1/16 ·x1 ·x2−1/16 ·x1 ·x3 ·x4 ·x5 +1/16 ·x1 ·x3 ·x4 +1/16 ·x1 ·x3 ·x5−1/16 ·

x1 ·x3+1/16 ·x1 ·x4 ·x5−1/16 ·x1 ·x4−1/16 ·x1 ·x5+1/16 ·x1−1/16 ·x2 ·x3 ·x4 ·x5+1/16 ·x2 ·

x3 ·x4+1/16 ·x2 ·x3 ·x5−1/16 ·x2 ·x3+1/16 ·x2 ·x4 ·x5−1/16 ·x2 ·x4−1/16 ·x2 ·x5+1/16 ·x2+

1/16·x3 ·x4 ·x5−1/16·x3 ·x4−1/16·x3 ·x5+1/16·x3−1/16·x4 ·x5+1/16·x4+1/16·x5+15/16.

Then, we extract the coefficients:

[1/16,−1/16,−1/16, 1/16,−1/16, 1/16, 1/16,−1/16,−1/16, 1/16, 1/16,

− 1/16, 1/16,−1/16,−1/16, 1/16,−1/16, 1/16, 1/16,−1/16, 1/16,−1/16,

− 1/16, 1/16, 1/16,−1/16,−1/16, 1/16,−1/16, 1/16, 1/16, 15/16]

and compute the spectral entropy, (2.9). In this case the value of entropy is: H = 1.1324.

We ran experiments for 2 till 15 literals for the 1-term DNF and the results are shown in

table 3.1. We noticed that after 3 literals, as the number of literals of the monotone DNF

increases, the entropy decreases. Based on the results, we conjectured that the entropy for

the 1-term DNF is maximized by the DNF with 3 literals x1 ∧ x2 ∧ x3.
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Number of literals 1-term DNF Entropy
2 x1 ∧ x2 2
3 x1 ∧ x2 ∧ x3 2.2169
4 x1 ∧ x2 ∧ x3 ∧ x4 1.7012
5 x1 ∧ · · · ∧ x5 1.1324
6 x1 ∧ · · · ∧ x6 0.7012
7 x1 ∧ · · · ∧ x7 0.4161
8 x1 ∧ · · · ∧ x8 0.2402
9 x1 ∧ · · · ∧ x9 0.1360
10 x1 ∧ · · · ∧ x10 0.0759
11 x1 ∧ · · · ∧ x11 0.0419
12 x1 ∧ · · · ∧ x12 0.0229
13 x1 ∧ · · · ∧ x13 0.0124
14 x1 ∧ · · · ∧ x14 0.0066
15 x1 ∧ · · · ∧ x15 0.0035

Table 3.1: Entropy values for the 1 term DNF

A 2-term DNF is a disjunction of exactly two AND functions. So that we could check the

value of entropy in this case we applied a brute force search throughout the search space of

the 2-term DNF formula for n fixed from 3 through 11. Then, following the same reasoning

as the 1-term DNF, we computed the spectral entropy.

The number of DNF formulas checked for each number of literals is displayed in the table

3.2, along with the DNF which has the largest entropy for the specified number of literals.

The results show that the 2-term monotone DNF with the largest entropy over the numbers

of literals tested is: (x1 ∧ x2 ∧ x3) ∨ (x4 ∧ x5 ∧ x6).

18



n | Search Space | 2-term DNF Maximum Entropy
3 3 (x1 ∧ x2) ∨ (x1 ∧ x3) 2.2169
4 5 (x1 ∧ x2) ∨ (x3 ∧ x4) 3.3253
5 8 (x1 ∧ x2 ∧ x3) ∨ (x1 ∧ x4 ∧ x5) 3.582
6 11 (x1 ∧ x2 ∧ x3) ∨ (x4 ∧ x5 ∧ x6) 3.9314
7 15 (x1 ∧ x2 ∧ x3) ∨ (x4 ∧ x5 ∧ x6 ∧ x7) 3.5904
8 19 (x1 ∧ x2 ∧ x3 ∧ x4)∨ (x5 ∧ x6 ∧ x7 ∧ x8) 3.2004
9 24 (x1∧x2∧x3)∨(x4∧x5∧x6∧x7∧x8∧x9) 2.8013
10 29 (x1 ∧x2 ∧x3)∨ (x4 ∧x5 ∧x6 ∧x7 ∧x8 ∧

x9 ∧ x10)
2.5663

11 35 (x1 ∧x2 ∧x3)∨ (x4 ∧x5 ∧x6 ∧x7 ∧x8 ∧
x9 ∧ x10 ∧ x11)

2.4197

Table 3.2: 2-term DNF results

3.2.2 3-term DNF and 4-term DNF formulas

Since it would be hard to consider all the possible combinations of DNFs for the search

space of the 3-term and 4-term DNF instead of an exhaustive search in these cases, we apply

local search techniques to study the entropy. Local search methods are often used to tackle

combinatorial search and optimization problems. They are based on the iterative exploration

of a solution space; at each iteration, a local search algorithm steps from one solution to

one of its “neighbors”, or in other words, to solutions that are somehow close to the starting

one. One of the most well-known local search techniques is Hill Climbing[21]. To describe

the characteristics of it, we need to define these important concepts: the local move, the

neighborhood space, the cost function, and the stopping criteria.

We define the neighbourhood n(s) of a state s to be all the states that are reachable in

a single move from the state s, independent of the actual heuristic function used to choose

which state to move to. A local move from state s is a transition s→ s′, from s to s′ ∈ n(s).

When the algorithm makes a transition from one solution to another, it is said that the

corresponding move has been accepted. The selection of moves is based on the values of the
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cost function. The cost function, which is associated to each state s ∈ n(s), determines the

”best” possible local move s → s′ for the current state s and it is used to drive the search

toward good solutions for the optimization problem. Different stopping criteria can be used

for Hill Climbing procedures. One is based on the total number of iterations: the search

is stopped when a predetermined number of steps has been performed. Another stopping

criteria can be the number of iterations without improving the cost function value of the best

solution found so far. Also, the local search can terminate if the value of the cost function

passes a certain threshold value.

A drawback of the Hill Climbing technique is that it is non-exhaustive in the sense that

it is unable to guarantee detection of the global solution, but it searches non-systematically

until the stopping criteria is met.

Considering our problem, we apply the Hill Climbing algorithm to iterate through the

combinatorial space of solutions and give the local optimum for the 3-term and 4-term

monotone DNF formula. We are optimizing the value of the entropy of a function computed

by a DNF formula. In all the cases we start with a guess (more on this later) as the initial

DNF while using a Hill Climbing algorithm, and select the local move that leads to the

largest improvement of the current value of entropy. The Hill Climbing will terminate when

no local move could improve any further the value of entropy. Upon termination, the search

would have reached a local optimum of the entropy.

We need to define the neighbourhood space of the solution for the 3-term and 4-term

DNF formulas. There are only finitely many types of variables in a DNF. By type of variable,

we mean if the variable is contained in a specific term.

There are in total 7 distinct types of variables for the 3-term DNF:

• The variable is present in all the three terms.

• The variable is present in exactly two terms of the DNF formula. Here we distinguish
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(
3
2

)
= 3 subcases:

– The variable is present in the first and second term.

– The variable is present in the second and third term.

– The variable is present in the first and third term.

• The variable is present in the exactly one term of the DNF. Here we distinguish
(
3
1

)
= 3

subcases:

– The variable is present only in the first term.

– The variable is present only in the second term.

– The variable is present only in the third term.

For instance, the 3 term monotone DNF: (x1 ∧ x2 ∧ x3 ∧ x5)∨ (x1 ∧ x2 ∧ x4 ∧ x6)∨ (x1 ∧

x3 ∧ x4 ∧ x7) contains all the different types of variables. Following the same reasoning as

for the 3-term case, for the 4 -term DNF formula there are 15 different types of variables:

• The variable is present in all the four terms.

• The variable is present in exactly three terms of the DNF formula. Here we distinguish(
4
3

)
= 4 subcases.

• The variable is present in exactly two terms of the DNF formula. Here we distinguish(
4
2

)
= 6 subcases.

• The variable is present in just one term of the DNF formula. We distinguish
(
4
1

)
= 4

subcases.

In our program we define the local move to be: flipping a single variable from one type to

another. The neighborhood space will contain all the possible DNF that can be created by

one local move from the initial DNF. We tried to choose as initial DNF, one that contains

21



different types of variables. For each specific number of literals we chose a few different initial

DNFs and we display all the details in the Appendix. Considering the amount of computer

memory and time that the programs written for the 3 term and 4 term DNF require, we

performed the experiments in 2 different servers with 12 GB and 64 GB respectively. Also,

in order to save time the Parallel Python module [20] was used to parallelize the execution

of the experiments.

The first 3 columns of tables 3.3 and 3.4 ( 3-term DNF and 4-term DNF case separately

) show the number of literals considered, the cardinality of the neighborhood space for each

number of literals n and the number of iterations that Hill Climbing performs until it finds

the DNF with the largest value of entropy.

The DNF formulas that are outputted by the Hill Climbing ( have the largest entropy for

a specific n ) along with the value of spectral entropy are displayed at the last two columns

of the respective tables.

n |n(s)| Iterations 3-term DNF Maximum Entropy
7 49 3 (x1∧x3∧x5)∨(x2∧x4∧x6)∨(x3∧x4∧x7) 4.7172
8 56 5 (x3∧x4∧x6)∨(x1∧x5∧x7)∨(x2∧x5∧x8) 4.9729
9 63 2 (x1∧x2∧x3)∨(x4∧x5∧x6)∨(x7∧x8∧x9) 5.2551
10 70 5 (x1∧x5∧x6)∨ (x2∧x3∧x7∧x8)∨ (x3∧

x9 ∧ x10)
5.0418

11 77 8 (x2∧x6∧x7∧x8)∨(x1∧x5∧x10∧x11)∨
(x3 ∧ x4 ∧ x9)

4.7986

Table 3.3: 3-term DNF results
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n |n(s)| Iterations 4-term DNF Maximum Entropy
7 105 5 (x3 ∧ x4 ∧ x7) ∨ (x2 ∧ x3 ∧ x5) ∨ (x1 ∧

x2 ∧ x6) ∨ (x1 ∧ x4 ∧ x7)
5.0628

8 120 3 (x2 ∧ x3 ∧ x5) ∨ (x1 ∧ x2 ∧ x6) ∨ (x1 ∧
x4 ∧ x7) ∨ (x3 ∧ x4 ∧ x8)

5.434

9 135 3 (x2 ∧ x3 ∧ x6) ∨ (x1 ∧ x5 ∧ x7) ∨ (x4 ∧
x5 ∧ x8) ∨ (x3 ∧ x4 ∧ x9)

5.6219

10 150 3 (x3 ∧ x5 ∧ x6) ∨ (x2 ∧ x7 ∧ x8) ∨ (x3 ∧
x4 ∧ x9) ∨ (x1 ∧ x4 ∧ x10)

5.8467

11 165 3 (x3 ∧ x4 ∧ x5) ∨ (x3 ∧ x6 ∧ x7) ∨ (x1 ∧
x8 ∧ x9) ∨ (x2 ∧ x10 ∧ x11)

6.0564

12 180 4 (x1 ∧ x6 ∧ x7) ∨ (x2 ∧ x5 ∧ x8) ∨ (x3 ∧
x9 ∧ x10) ∨ (x4 ∧ x11 ∧ x12)

6.2878

13 195 5 (x4∧x5∧x6∧x7)∨ (x3∧x8∧x9)∨ (x1∧
x10 ∧ x11) ∨ (x2 ∧ x12 ∧ x13)

6.1593

Table 3.4: 4-term DNF results

The results for the 3-term DNF show that the DNF with the largest entropy is (x1∧x2∧

x3) ∨ (x4 ∧ x5 ∧ x6) ∨ (x7 ∧ x8 ∧ x9) and for the 4-term DNF is (x1 ∧ x6 ∧ x7) ∨ (x2 ∧ x5 ∧

x8) ∨ (x3 ∧ x9 ∧ x10) ∨ (x4 ∧ x11 ∧ x12). Our results show that the value of entropy seems to

decrease after a certain number of literals, hence this leads us to believe that the maximizer

of the entropy for each term occurs on 3, 6, 9, 12 literals respectively for t=1, 2, 3, 4 terms.

This also agrees with the Conjecture 3.1.5 for the monotone case, since all these DNFs are

read-once. This increases our confidence in favor of the conjecture.
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Chapter 4

Discussion

In this thesis, we present an analysis of the entropy of functions computed by a monotone

DNF formula. We focused on the conjecture 3.1.5 and explored the question of whether the

maximum entropy of a monotone DNF formula exists for a fixed number of terms. Even

though the conjecture in general by itself seems hard to prove, from the experiments that we

performed, it appears that the maximizer of the entropy exists for a fixed number of terms

and it occurs on a small number of literals. Also, our results agree with the fact that the

maximizer of the entropy is a read-once DNF.

The programs written with the intention of studying the entropy of t-term DNF formulas

(t = 1, 2, 3, 4) can be further improved so the entropy of DNFs with higher terms can be

checked. This way if a counterexample exists, the probability for detecting it would be

higher. Also, another approach to the problem might be considering the entropy of Tribe

functions or of functions that are close to read-once.

Since one of the limitations of this study is that the local search technique used does not

guarantee finding the global optimum, we suggest that a more rigorous analysis should be

done. The study should be extended to the non-monotone case of DNF formula.
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Appendix A

Results

Here we display the results of all the experiments performed for the 3-term and 4-term DNFs.

For a specific number of literals we chose a few different initial DNFs and then applied the

Hill Climbing algorithm on each of them to find the DNF with the maximum entropy. The

tables show the initial DNF along with their entropy, the number of iterations that the Hill

Climbing performed and the DNF outputted with the respective entropy.
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