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 This Ph.D. dissertation is centered on approximating the interfacial 

adhesion energies of a thermal barrier coating (TBC) within a density functional 

theory (DFT) framework.  The strategy is to develop and validate a computational 

protocol to study systems which enhance the interfacial adhesion of the thermally 

grown oxide (TGO) to the Ni (100) substrate.  The open source DFT code known 

as DACAPO, supported through the Technical University of Denmark, was used 

in this study.   The investigation begins with reproducing the model system 

(SiO2/Ni Complex) energetic values in the DACAPO DFT platform.  These 

results are compared to earlier work which was carried out using the VASP 

(Vienna AB Initio Simulation Package) platform.   The variables investigated in 

this study included: TGO thickness (since this species grows over time in the 
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field), TGO phase (alpha and beta), lattice mis-match, and thermal expansion 

stressors.   The results from this study highlight a potentially new TGO base 

material which does not exhibit the shift in electron density (as seen in currently 

used Al2O3) and provides a more stable TGO network within the thermal barrier 

coating (TBC).  Finally, the protocol mapped out in this investigation can be 

applied quickly to screen alternative materials in the design of a new TBC system.   
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Chapter 1 

 

Introduction 

 Managing thermal transfer in industry is a never ending challenge.  In 

combustion driven devices (i.e. engines) minimizing the amount of heat that is 

introduced in the supporting and/or adjacent substrates is highly desired.  Any 

reduction of heat in the combustion chamber typically impacts the efficiency of 

the device.  As the desire to reduce weight to increase overall efficiency 

continues, the sensitivity to extreme heat baths on a substrate is magnified.   If the 

thickness of the walls in the chamber are reduced while the original structural 

integrity is required, then reducing the thermal input on the material will help 

maintain the structural integrity.  Lower density alloys (i.e. metal blends) are 

more sensitive to elevated temperatures, therefore lower thermal exposure is 

needed to maintain structural integrity.  A prime example is the environment 
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present in gas turbine engines used in the aerospace industry.   Of all industrial 

combustion engines, there is no other area that is more sensitive to weight and 

efficiency than jet turbine engines.  Recognizing that the industry has identified 

optimum super alloys (i.e. Rene’ 5N from GE), the emphasis now is on increasing 

efficiency of the turbine chamber.  One significant effort is to enable higher 

temperature combustion environments1.   

 

 

1.1     Thermal Barrier Coatings 

1.1.1     Purpose in Industry 

 Gas turbine engines utilize super alloys which possess a melting range of 

1230°C to 1315°C.  This super alloy operates (is in contact with) in a combustion 

chamber where the ambient temperature can reach 1370°C or more, noticeably 

above the melting point of the super alloy.  To avoid structural failure by 

softening and/or melting, the airfoils (turbine blades made from Ni super alloy) 

are made hollow and discharged air is circulated through them to remove any heat 

that is transferred into the material (cooled) from the back side of the air foil and 

support wall.  The industry has, and continues, to find more innovative ways (i.e. 

alternative geometries, cooling holes, etc.) to provide maximum cooling with 

minimal air consumption since any discharge air used for cooling takes away 

from the efficiency (i.e. thrust) of the turbine engine2.   

 A second source of thermal protection for the super alloy substrate is the 

use of a thermal barrier coating (TBC) on the surface that is exposed to the 
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combustion chamber.  The use of thermal barrier coatings on the air foil surface 

provides heat reduction to the air foil with minimal impact on weight and 

unnecessary consumption of discharged air (both which negatively effect 

efficiency).   The insulative nature of the TBC can reduce the turbine airfoil 

temperature by as much as 167°C, improving the efficiency by more than 1 

percent3.  A secondary advantage TBC provides is enhanced component 

durability (due to reducing corrosion by acting as a high temperature oxygen 

barrier to the super alloy).1 

 

 

1.1.2     Material Construction 

 A TBC consists of three primary layers that cover the combustion engine 

super alloy which is exposed to the combustion chamber and subsequent high 

temperature discharge regions.  The primary layer is a yttrium stabilized 

zirconium topcoat (YSZ) which provides the thermal protection, followed by a 

thermally grown oxide (TGO) layer to minimize corrosion, and a metal alloy 

bond coat to provide adhesion to the alloy4 as shown in Figure 1.   
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[Figure 1]   Thermal Barrier Coating Layering 

 

 

The structure of the zirconium topcoat [zirconium oxide (ZrO2)] when heated 

above 1000°C changes from monoclinic to tetragonal; the accompanying 4 – 6% 

volume increase can result in severe spalling (delamination) of the ceramic layer.  

Therefore, the zirconium oxide is partially stabilized with   6 – 8% by wt. of 

Y2O3, to prevent the expansion5.  The TGO is formed from the growth of Alumina 

(Al2O3) on the bond coat due to the presence of oxygen at elevated temperatures 

during application and use. 

It is important to note that the TGO layer will continue to grow over time during 

the use of the turbine engine, which is a critical point for the efforts of this thesis.  

Finally, the bond coat layer comprises of a blend of Ni with Al added for TGO 

growth, Cr added for corrosion resistance and a trace amount of Y added to form 

Yttria-Stabilized-Zirconium Topcoat (250–500 � m) 
 
Thermally Grown Oxide (10-25 � m) 
Bond Coat (100 – 150 � m) 
 
Nickel Super Alloy (Rene’ N5 from GE) 
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a dense, well adhered, protective layer which enhances adhesion to the above 

layers throughout the heat cycling of the engine6.    

 

 

 

 

1.1.3     Failure Modes and Mechanisms 

 There are many failure modes of high temperature structural materials 

(super alloys) used in gas turbine engines, see Table 1 for the top examples7.   The 

dominant failure mode experienced in the industry is spallation of the TBC from 

the alloy.   Spallation is when two different layers of material are in stable contact 

(i.e. adhesion) with each other, separate at the boundary layer.  

 

Failure Mode 
 

Definition 

Solid State Diffusion 
 

Reduction of the aluminum content of the coating because of 
interdiffusion with the base metal 
 

Spallation 
 

Loss of protective oxide layer at the coating/alloy interface 

Hot Corrosion 
 

Electrochemical reaction between metal and molten salts in the 
presence of Oxygen at elevated temperatures 
 

High Cycle Fatigue 
 

Microstructural damage that results from small stress amplitude 
cyclic loading 

Creep 
 

Time dependent, thermally activated inelastic deformation of 
material.  The rate of Creep increases as the temperature increases 
for constant stress 
 

 

[Table 1]  Failure Modes of Thermal Barrier Coatings 
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Once the TBC layer is compromised (e.g. complete removal, fracture in coating, 

or weak region), the corrosion of the alloy is accelerated, expediting the failure of 

the turbine engine.  It is important to understand the mechanisms of spallation 

within a typical TBC. 

 It is known when the Al2O3 (TGO) layer grows over time, the internal 

stress increase due to the thermal expansion coefficient being lower than that of 

YSZ.  But, the spallation failure interface experienced in the industry is at the 

Ni/Al2O3 boundary4.  This prompted additional studies into the characteristics of 

Al2O3 as it grows over time.  Carter et al found (via density functional theory 

simulations) that the Al2O3 interfacial adhesion energy decreased by an order of 

magnitude from 2 layers to 3 layers, see Table 2.  The adhesion value for 

Ni/Al2O3 interface is far below the ideal cleavage energies and considered fairly 

weak for ceramic/metal systems4.  In addition, they observed a shift in electron 

density from the interface atoms in Al2O3 to the interior bulk atoms.   

 

Substrate + coating 
 

One layer coating 
mJ/m2  

 

Two layer coating 
mJ/m2 
 

Three layer coating 
mJ/m2 
 

 
Al2O3 + ZrO2 
 

 
1,142 

 
1,256 

 
1,189 

 
Ni + ZrO2 
 

 
2,011 

 
1,308 

 
995 

 
Ni + Al2O3 
 

 
618 

 
943 

 
456 

 

[Table 2]   Interfacial Adhesion Energies (Wad) 
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This shift in electron density clearly compromised the interfacial adhesion energy 

at the Ni/Al2O3 interface, promoting spallation of the coating (see Figure 2).   

 

 

 

 

 

 

[Figure 2]   Electron Density for 0.5, 1.0, 2.0 layers of Al2O3 on Ni.   Courtesy of Emily Carter 
and HPC and National Security, March/April 2002 

 

 

 

In this case, the weakening interfacial adhesion trends can be explained largely by 

the strength of nickel-aluminum interactions.  As additional layers of Al2O3 are 

deposited on itself during the TGO growth process, the Al2O3 monolayer at the Ni 

surface rearranges favoring the aluminum-oxygen interactions.  This electron 
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density shift weakens the nickel-aluminum bonds, decreasing the interfacial 

adhesion energy4.   

Numerous attempts at reducing the growth of the Al2O3 layer over time 

have not much success.   A radical approach could be the replacement of the 

Al2O3 with an alternative oxide which does not exhibit the shift in electron 

density from the interface atoms to the interior bulk, which is a key weakness of 

Al2O3 as the TGO.   It is known that Alumina is a highly ionic, closed shell 

species and does not possess enough covalent content.  A more covalent oxide 

product might exhibit enhanced interfacial adhesion through more covalent 

bonding4.  SiO2 (silicon dioxide or quartz) is a more covalent species compared to 

Al2O3.  Preliminary DFT investigations show that SiO2 may demonstrate 

increased adhesion energies independent of thickness. (see Table 3)  

 

 

 
SiO2 thickness on 
Ni  
 
 

 
1 layer (5 Å) 

 
2 layer (10 Å) 

 
3 layer (15 Å) 

 
Interfacial Adhesion 
Energy (Wad) 
 
(mJ/ m2) 
 

 
 
1,292 

 
 
1,374 

 
 
1,342 

 

[Table 3]   Interfacial Adhesion Energy (Wad) of Ni/SiO2 Complex 
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This investigation was not exhaustive and many factors were not considered.  

However, the data is encouraging. 

 

 

1.2     Objective of Thesis 

 We have clearly reviewed the deficiencies of Al2O3 TGO within thermal 

barrier coatings with respect to spallation tendencies.  The weakening of the 

interface bonds between the Al and Ni are a systemic issue within the complex.  

Attempts to minimize the growth of the TGO have not resolved the problem to the 

satisfaction of the aerospace industry.  Therefore, since the reduction of interfacial 

adhesion energy is at the atomic level in the boundary between Ni and Al atoms 

of the super alloy and TGO respectfully, a realistic solution can only be obtained 

using quantum chemical methods. 

  

The thesis is centered on 2 main aspects: 

1)  Using the existing literature work on Ni/SiO2 complex as a reference point,  

develop a density functional theory simulation protocol using the open source 

code of DACAPO from CAMP (Center for Atomic-scale Materials Physics).8 

This will allow any researcher to impose specific orientations, environments, 

element and/or material options, etc. to the system and determine any energetic 

changes.  These energetic measurements can then be used to calculate the 

cohesive, surface free, and interfacial adhesion energies of the complex, all which 

play key roles in the spallation.   
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2)  Determine if SiO2 is a viable replacement TGO material for Al2O3.  This 

investigation will center on the beta phase of SiO2 since it is the predominant 

phase present at the combustion temperatures in the gas turbine engines.  The 

previous literature study on SiO2 only considered the alpha phase, which is only 

stable up to 847 °K (574 °C).  The combustion temperature range for a gas turbine 

engine reaches > 1300 °C, where the beta phase is dominant.  Also, the present 

study will understand the influence, if any, of the alpha – beta phase transition 

which will occur during use, since the TGO will be at an ambient temperature 

when not in use and an elevated temperature (1300 °C) when fired.   To 

accomplish this, we will study the potential energy surface (PES) of the alpha 

phase as it approaches the inversion point (during heat cycle) and after, where the 

� phase is predominant.   The energy values will be used to determine cohesive, 

surface free, and interfacial adhesion energies.  Finally, we ensure that reasonable 

lattice mis-match from either different coefficient of thermal expansions or 

deposition conditions, do not generate elevated internal stress at the boundary 

layer, compromising the adhesion of the Ni/SiO2 interface. 
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Chapter 2 

 

Electronic Structure Background 

 Electronic structure methods use the postulates of quantum mechanics as 

the basis of their development.  Quantum mechanics states that the energy of an 

atom or molecule can be obtained by solving the Schrödinger equation [1], 

 

�� EH =                                                    [1]   

 

where H is the Hamiltonian operator, � is the wave function, and E is the total 

energy.1 
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The only atomic system which can be solved analytically is a single proton and 

one electron system.  As a result, mathematical approximations are used to 

determine a solution.  There are 3 primary classes of electronic structure methods:  

 

1) Semi-empirical, simplifies the solution to the Schrödinger equation 

by replacing some terms with experimental values.2   

 

2)  Density functional theory (DFT) solves an “idealized” many-

electron problem as opposed to the full N-electron wave function 

problem as does the Hartree-Fock ab initio approach.  As a result, 

the many-electron effects (i.e. electron correlation) are taken into 

account explicitly.  The central idea within DFT is that there is a 

relationship between the total electronic energy and the overall 

electronic density.3   Practically, DFT only attempts to calculate 

the total electronic energy and the overall electronic density 

distribution. This will be discussed in greater detail later. 

 

3) Ab initio methods, unlike semi-empirical and DFT above, use no 

experimental parameters in their computations.  Instead, these 

computations are primarily based on the postulates of quantum 

mechanics as well as the Born-Oppenheimer approximation and an 

independent electron approximation.2 
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2.1     The Schrödinger Equation 

 Quantum mechanics begins with the full, time dependent Schrödinger 

equation [2].   

       

( ) ( )
t

i ttV
m ∂

∂=
��

�
�

�

��

�
�

� ′′+∇− ,,2
2

2 r�r� ��
                             [2] 

 

 

Where �  is the wave function, m is the mass of the particle, �  is Planck’s 

constant, V is the potential in which the particle is moving, and ∇ 2 is the partial 

differentiation with respect to x, y, and z components known as “del-squared”.   

The energy and many other properties of a particle (e.g. electron, proton, etc.) can 

be obtained by solving [2] for � .  The many different wave functions which are 

solutions to [2], correspond to the different stationary states of the system.2  If  V  

is not a function of time, the Schrödinger equation can be simplified using 

separation of variables and is reduced to the form  

 

 

 ( ) ( )rErH ′=′ ��                                           [3] 
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Where E is the eigenenergy of the particle and H is the Hamiltonian operator, 

equal to: 

 

 

V
m

H +∇−= 2
2

2
�

                                         [4]    

                   
 

 

Note that equation [3] is an eigenvalue equation in which the operator acting on a 

function produces the identical wave function and an eigenvalue associated with 

it.2 

 

 

2.2     Born-Oppenheimer Equation 

 The Schrödinger equation can further be simplified if one takes advantage 

of the significant difference in size between the proton and electron in an atomic 

species.  The mass of a proton is approximately 1800 times more massive than the 

corresponding electron.  For example, the nucleus of carbon is 20,000 times larger 

than the electrons.4  Born-Oppenheimer used this fact to assume that (from an 

extreme point of view) the electrons move in a field of fixed nuclei.  It is this 

assumption that lends to the famous Born-Oppenheimer approximation.  As a 

result, since the nuclei are fixed in space, their kinetic energy is zero and the 

potential energy due to nucleus-nucleus repulsion becomes a constant.  This 
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approximation is used to separate the Hamiltonian and wave function into nuclear 

and electronic terms. The total Hamiltonian of an atomic species of M nuclei and 

N electrons4 is 
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Where Z is nuclear charge, RAB is distance between nuclei, and ria is distance 

between nuclei and electrons.  [5] can then be reduced to the electronic 

Hamiltonian 
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The solution of the Schrödinger equation using elecH , is the electronic wave 

function elec� , and the total electronic eigenenergy elecE , and the equation takes 

the form4 

 

            elecelec EH �� =                                               [7] 
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It is critical to realize that the wave function itself is not observable.  A physical 

interpretation can only be associated with the square of the wave function where 

 

 

  ( ) nn dxdxdxxxx ,.......,,......, 21
2

21�                                 [8]            

 

 

is the probability that electrons 1,2,…n are found simultaneously in the volume 

elements dx1,dx2,…..dxn.4  The probability interpretation of the wave function is 

the integral of [8] over the full range of variables and is equal to one.  In other 

words, the probability of finding n electrons anywhere in space must be unity 

 

 

( )	
∞

∞−

=1,......,,....., 21
2

21 nn dxdxdxxxx�                                 [9] 

 

 

 

and the wave function that satisfies [9] is said to be normalized.4 
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2.3     Density Functional Theory 

 Density functional theory (DFT) was established by the efforts of 

Hohenberg and Kohn5 and Kohn and Sham6 in the sixties and has become one of 

the most successful electronic structure methods for condensed matter physics.  

DFT is based on the observation that the ground state electronic properties of a 

system are functionals of the ground state electron density.  Also, Kohn and Sham 

demonstrated that the minimization of the total energy functional can be reduced 

to a set of single particle Schrödinger-like equations with all the many body 

effects captured in the exchange correlation term.7 

 

 

 2.3.1     Hohenberg and Kohn Theorems 

 Hohenberg and Kohn theorems form the basis of DFT.  They consider a 

system of N electrons in an external potential Vext(r) where there is a universal 

functional F{n(r)} of electron density n(r).  The ground state electron density is 

minimized to form 

 

 

                          ( ){ } ( ) ( ) ( ){ }rrrrr nFnVdnE ext += 	                                  [10] 
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where 

 

                  ( ) Nnd =	 rr                                                   [11] 

 

 

and the minimum of E{n(r)} gives the ground  state total energy.7  Unfortunately, 

the form of F{n(r)} is unknown and the Hohenberg and Kohn theorems by 

themselves are not enough for any practical application.5  Therefore, reasonable 

approximations, as the ones developed by Kohn-Sham5, are necessary. 

 

 

 2.3.2     Kohn-Sham Equations 

 The unknown functional F{n(r)} in equation [10] includes the 

contributions from the kinetic energy and the electron-electron interactions.  

Kohn-Sham represented the total energy functional in the following manner. 

 

 

  ( ){ } ( ){ } ( ) ( ) ( ){ } ( ) ( ) ( ){ }rrrrr�rrrr nEVndnFndnTnE xcrext ++++= 		2
1

0    [12] 
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Where T0 is the kinetic energy functional with density n(r), followed by the 

classical electrostatic energy, with �(r) being the coulomb potential for electrons 

and is represented by 

 

 

           ( ) ( )
′−′

′′= 	
rr

rrr�
n

d                                         [13] 

                                                                     
 

 

 

The last term in [12], Exc{n(r)}, is the exchange-correlation energy functional.6  

Kohn-Sham showed that the density that minimizes [12] can be represented by 

 

 

     

                      ( ) ( )�
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=
N

i
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1
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where � i(r) are solutions of the Schrödinger equation for a system of N electrons 

and can be represented by the famous Kohn-Sham expression [15], which is 

constructed along the lines of the classic Schrödinger equation. 
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1

                                  [15] 

 

 

where Veff is the effective single electron potential defined as 

 

 

  ( ) ( ) ( ) ( )rr�r xcexteff VVV ++=r                                   [16] 

 

 

and Vxc(r) is the exchange correlation functional, which is further defined in the 

next section.  A set of single-electron Kohn-Sham equations in [15] are orders of 

magnitude easier to solve than the original many body expression [12].  The final 

step required is an approximation for the exchange correlation functional Vxc(r).7 

 

  

2.3.3     Exchange Correlation Approximations 

 The simplest approximation for the exchange-correlation functional is the 

local density approximation (LDA).  In LDA it is assumed that the contribution to 

the exchange correlation energy from each point r with the local electron density 

n(r) is the same as in the uniform electron gas with the corresponding electron 

density n(r).8 The exchange correlation functional takes the form 
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                                   [ ] ( ) ( )[ ]	= rrr nndnE unif
xc

LDA
xc ε                            [17] 

 

 

where �xc
unif[n(r)] is the exchange correlation energy per electron (r) in a 

homogeneous electron gas, with the density n.    It must be recognized that there 

are many situations where the LDA leads to unacceptably large over estimates of 

the bonding strength in most transition metals, leading to inaccurate ground state 

structure and energies due to the fact that the electron density is anything but 

uniform.10  This can be improved by mapping out the density gradients in the 

approximation, which is done within the generalized gradient approximation 

(GGA).  The GGA gradient expansion is represented by the following generalized 

functionals of density gradients11 

 

 

             [ ] ( ) [ ]	 ∇= n
GGA
xc

GGA
xc nndnE ,εrr                                     [18] 

 

 

Where k
z

j
y

i
x nnn

ˆˆˆ
∂
∂+

∂
∂+

∂
∂=∇ .  The most popular GGA used in DFT is that of 

Perdew and Wang 1991 (i.e. PW91-GGA) which has been shown to correct the 

serious deficiencies of LDA for transition metals, providing accurate descriptions 



 23 
 
 

of their structural and cohesive properties.12 This thesis utilizes the proven PW91-

GGA, exclusively. 

 

 

2.4     Applications to Solids 

 One can apply the Kohn-Sham equation [15] to a periodic system (solids) 

by utilizing Bloch’s Theorem13 which states that the solutions of [15] can be 

written in the form 

 

 

        ( ) ( ) ( )rrkr� kui ⋅= exp                                           [19] 

 

 

where uk(r) has the periodicity of the system with respect to the k vector for 

electron r.  Substituting [19] into [15] leads to the following expression for uk(r). 

 

 

           ( ) ( ) ( ) ( )rrrk kkkeff uuVi ε=
�

�
�

� ++∇− 2

2
1

                          [20] 

 

 

Using Bloch’s theorem one only needs to consider the unit cell in solving 

equation [20].  Finally, the electron density n(r) takes the form of 
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  ( ) ( ) ( )�	 −= 22 rkr ikFik ufdn εε                                 [21] 

 

 

where i is the band index (energy levels) for the different eigenstates,  to yield the 

corresponding eigenvalues, �ik .13 

 

 

2.5 Summary 

 Density functional theory was established when Kohn-Sham identified the 

link between ground state electronic energy and the ground state electron density.  

Considering this postulate, one could work within electron density (applicable to 

large, solid systems) and approximate the electronic energy of a solid system with 

confidence.   Using a generalized gradient approximation to represent the 

exchange correlation functional in a non-homogeneous electron density was 

critical in accurately approximating transition metal complexes.   
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Chapter 3 

 

Computational Method 

 The density functional theory discussed in Chapter 2 has become a much 

desired (and appreciated) tool in the quantum mechanical investigation of 

electronic properties in a condensed matter system.  DFT nicely distills down to 

solving a set (very large at times) of coupled single particle Kohn-Sham equations 

[15] and [16].  It must be recognized that the solutions to the Kohn-Sham 

equations still require a sizable computational effort and for many years the 

practical application of the first principles DFT were somewhat limited to the size 

of the system that could be undertaken in a reasonable amount of time.  This 

section describes the computational platform and key elements of its construction.   

Chapter 2 reviewed how DFT was discovered in the sixties by Hohenberg and 

Kohn, followed by the practical equations of Kohn-Sham.   This chapter will 

focus on the specific functions, planewaves, for basis sets and the use of 

pseudopotentials as a means to simplify the inclusion of core electrons.  A review 
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of DACAPO1, our computational platform, utilized in the investigation of thermal 

barrier coatings, is covered.   

 

 

3.1     Bravais Lattice and k-points 

 The quantum mechanical investigations of solids are different than those 

traditionally utilized for individual molecules or isolated complexes.  A 

crystalline system can be constructed by infinitely stacking copies of some 

repeating unit (unit cell) in a systematic fashion without gaps7.  The unit cell can 

be characterized by three lattice vectors a, b, c, and the angles between them �, �, 

�, shown in Figure 4.  The general vector r can be expressed by the fractional 

coordinates  

 

 

( )cbar γβα ,,=                                                 [22] 

 

 

There are fourteen different types of unit cells called Bravais Lattices2.  Common 

ones include cubic, body centered cubic, face centered cubic (nickel), and 

hexagonal (Silica).  Refer to Figure 5 for illustrations and additional examples. 
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 [Figure 3]   Lattice Vectors of a Unit Cell   
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(c) 

(a) (b) 

 

 

 

 

 
[Figure 4]    Typical Unit Cells “Bravais Lattice”.   (a) Simple Cubic, (b) Body Centered Cubic, 
(c) Face Centered Cubic.  Courtesy of Pearson Education Limited; Leach, A., Molecular 
Modeling, Principles and Applications, Prentice Hall, (2001) 

 

 

 

Another concept that is critical when working with lattice structures is the 

reciprocal lattice.  X-ray crystallographers use a reciprocal lattice defined by three 

vectors a*, b*, c*, where a* is perpendicular to b and c and is scaled so that the 



 31 
 
 

scalar product of a* and a equals 12, b* and c* are defined the same.  See equation 

[23] 

 

 

 

        
cba

cb
×⋅

×=*a      
cab

ca
×⋅

×=*b       
bac

ba
×⋅

×=*c                         [23] 

 

 

 

Recognizing that the denominator is equal to the volume of the unit cell, it forces 

a*, b*, and c*, to have units of 1/length.  This is the representation of reciprocal 

space and reciprocal lattice2.  An illustrative example of reciprocal space is that of 

2D square lattice where the vectors a and b are orthoganol and of length equal to 

lattice spacing, a.  Here a* and b* are directed along the same directions as a and 

b respectively and have a length 1/a. see Figure 6. 
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 [Figure 5]   2 Dimensional Reciprocal and Real Space Representation.    
 

 

 

 

This reciprocal lattice is known as the Brillouin zone and will be referred to as 

such, throughout the remainder of this thesis. 

Real space 

b 

a 

b* 

a* 

Reciprocoal space 
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After successfully defining the Brillouin zone (unit cell and reciprocal 

space), it is important to understand where we sample (points) the space to 

produce a realistic approximation of the bulk properties.  Recognizing that it is 

not practical to sample every point in the Brillouin zone (BZ), we need to 

determine a representative sampling matrix we can trust.   Many calculations in 

crystals involve the averaging of a set of points (k) over the BZ.  These special k-

points were developed by Chadi-Cohen2 and avoid the use of interpolation in the 

calculation of averages3,as opposed to Monkhorst and Pack.  If one considers a 

face centered cubic Bravais lattice (Nickel) a good starting point for k = (kx, ky, 

kz) is k1 = ( ½,  ½,  ½ ) with units of 2�/a, where a is the lattice constant.3  2� is an 

expansion constant conveniently used in crystallographic investigations.2   An 

example of a k-point series (not comprehensive) is represented in Figure 6. 
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k1 = (7/8, 3/8, 1/8) 
 

 
�1 = 3/16 

 
k2 = (7/8, 1/8, 1/8) 

 
�2 = 3/32 

 
k3 = (5/8, 5/8, 1/8) 
 

 
�3 = 3/32 

 
k4 = (5/8, 3/8, 3/8) 

 
�4 = 3/32 

 
k5 = (5/8, 3/8, 1/8) 
 

 
�5 = 3/16 

 
k6 = (5/8, 1/8, 1/8) 

 
�6 = 3/32 

 
k7 = (3/8, 3/8, 3/8) 
 

 
�7 = 1/32 

 
k8 = (3/8, 3/8, 1/8) 

 
�8 = 3/32 

 
k9 = (3/8, 1/8, 1/8) 
 

 
�9 = 3/32 

 
k10 = (1/8, 1/8, 1/8) 

 
�10 = 1/32 

 

   [Figure 6]   Face-Centered-Cubic Bravais Lattice 

 

 

 

3.2     Pseudopotentials 

 A major problem in DFT calculations based on planewave basis sets is the 

description of the core electrons in the atom.  This is because the wave functions 

of these core electrons are rapidly oscillating in space.  To accurately represent all 

these oscillations would require a prohibitively large set of planewaves, quickly 

becoming impractical.  This problem is solved within the pseudopotential 

approximation.4    
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 In atomic level interactions, the valence electrons of the atom are of most 

interest since they are largely responsible for bonding and electronic properties.2  

The core electron contributions are minimized from the overwhelming 

electrostatic potential the protons have on the electrons, cancelling out their 

kinetic energy2 [(refer back to the Born-Oppenheimer Approximation in Section 

2.2)].  Attempting to represent the core electrons with planewaves, capturing all 

the rapid oscillations that are present in this region, is a formidable task described 

earlier.  Also, transition metal systems which possess many core electrons, instill 

an even greater computational demand.  To deal with this, the true potential of the 

core electrons is replaced with a much weaker potential called a pseudopotential.2  

A pseudopotential is a potential function that gives the exact behavior of the 

electron outside the core region, beyond the core radius, smoothing out the core 

region with minimal nodes, illustrated in Figure 7.  This has an effect of reducing 

the number of terms required for the plane wave expansion of the wave function, 

which drastically reduces the computational demand of the calculation.     
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 [Figure 7]   Schematic of Pseudopotential Wave Function.   Courtesy of Pearson Education 
Limited; Leach, A., Molecular Modeling, Principles and Applications, Prentice Hall, (2001)  
 

 

 

 

Pseudopotentials are constructed from a nearly all electron atomic calculations 

with the valence electrons being represented exactly to reproduce the behavior 

and properties of the valence electrons.2  Therefore, the pseudopotentials are the 

wave functions in which the core electron terms are represented with a simplified 

term and the valence electrons are explicitly represented to reduce the complexity 

of calculations. 
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3.3     Exchange Correlation Functional:  GGA 

 One of the critical differences in DFT calculations is the exchange 

correlation functional, discussed earlier.   Originally, the functional was based on 

a hypothetical assumption of a uniform electron gas (i.e. density).  This is a 

system where the electrons move on a positive background charge distribution 

and is electrically neutral.5 This assumption is reasonable with small, tightly 

bound electron densities but is unrealistic with larger atoms (especially transition 

metals) due to the rapidly varying densities.  Kohn-Sham provided the most 

complete correlation functional based on non uniform electron densities (section 

2.3.3)5 and were widely accepted when investigating transition metal complexes.  

Within that, the simplest approximation for Exc was the local density 

approximation (LDA)  

 

 

                                [ ] ( ) ( )[ ]	= rrr nndnE unif
xc

LDA
xc ε                                      [24]   

 

 

which has a strong tendency to over estimate ground state energies.  This was 

correct by utilizing the generalized gradient approximation for the exchange 

correlation functional that captures the density gradients within the cloud.     
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                      [ ] ( ) [ ]	 ∇= n
GGA
xc

GGA
xc nndnE ,εrr                                     [25] 

 

 

This approximation favors density inhomogeneity more than LDA does.  Perdew-

Wang 1991 provides an analytical fit to this numerical GGA5 and is exclusively 

used in the first principle electronic investigations (DACAPO) in this thesis. 

 

 

 

3.4     Planewaves as Basis Set 

 Density functional theory method represents the Kohn-Sham wave 

functions as discrete sets of numbers through expanding the wave functions in 

some basis set within a finite number of terms, based on the system of choice.  

The choice of basis functions is critical to the accuracy and efficiency of the 

approximation.6  There are many choices available within DFT like:  linearized-

muffin-tin-orbitals7 (LMTO), full potential linearized augmented plane wave8 

(FLAPW), and the plane wave psuedopotential9 (PWPP) method.  This thesis 

utilized the PWPP method exclusively, which is explained later in section 3.2.   
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Planewaves are based on the fundamental wave function 

 

 

 ( ) [ ]rkr ⋅=Φ ipw exp                                               [26] 

 

 

where k is a lattice vector.4  An important condition on the expansion of the wave 

function [26] is the periodicity of the system and the ability to generate a finite set 

of points that can represent the infinite (bulk) system.  Since, our system is 

periodic in nature we can utilize Bloch’s Theorem [19], discussed in section 2.4.  

Bloch’s Theorem, for periodic systems, allows one to represent the wave 

functions in terms of uk that retain the periodicity of the system.  Whilst, enabling 

us to generate an approximation of the electronic properties of the bulk, infinite 

system of choice. 

 Expanding the functions uk [19] in the plane wave basis set [26], one can 

represent the wave functions for each k-point (i.e. designated points in unit cell 

which in total represents the complete cell) as 

 

 

                                         
                   ( ) ( ) ( )[ ]� +=

G
nknk ic rGkGr� exp                               [27]  

                                                          
 

 



 40 
 
 

where the summation is over all reciprocal-space vectors G, and cnk(G) are the 

expansion coefficients.  Reciprocal space is introduced here to to completely fill 

the space without overlapping and without any gaps.6  DFT and DACAPO take 

advantage of the fact that not all planewave contribute significantly to the total 

energy.  In other words, there is a point where the kinetic energy of the 

planewaves plateau, minimizing the contribution to the total electronic energy.  

This allows DFT to employ a planewave cutoff Ec condition where the 

approximation only utilize planewaves that have energies less than the designated 

cutoff (Ec).   

 

           cE<
+
2

2Gk
                                             [28] 

                                                                
 

 

Ec is typically determined by running a ladder of values, plotting the 

corresponding energies, and determining the value.  This allows for a more 

efficient calculation, without compromising the accuracy of the approximated 

electronic energy. 

 

 

 

 



 41 
 
 

3.5     DACAPO 

 DACAPO density functional theory code was developed at the Center for 

Atomic-scale Materials Physics (CAMP) at the Technical University of Denmark 

to describe atomic system structure and dynamics.10   Using quantum mechanical 

descriptions of electronic motion, DACAPO generates the electronic energy and 

forces for a system of interest.   The quantum mechanical postulates that govern 

electronic behavior are the same for all atomic systems, allowing DACAPO to 

cover a broad spectrum ranging from molecular dynamics and/or structural 

relaxation simulations involving reactivity and diffusion on metal surfaces, 

surface energies, cohesive energies, and overall electronic energies.11  DACAPO 

uses planewaves for the valence electrons and describes the core electron 

interactions with  pseudopotentials.  The program performs self-consistent 

calculations for both LDA and GGA exchange correlations potentials (reviewed 

in 2.3.3), using state of the art algorithms.12   

The DACAPO code originated in the 1980’s and was written in Fortran 

77.  CAMP researchers have implemented several iteration schemes and they 

continue to improve and update the code.13  DACAPO requires a large number of 

input parameters to effectively approximate the electronic energies and behaviors 

of a many body atomic system.  These include:  unit cell shape and size, atomic 

positions and species, planewave cutoff (described earlier), k-point sampling, 

exchange correlation functional, and minimization scheme1.    
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3.6     Electronic Minimization via Block Davidson 
Algorithm 
  

 First principles quantum mechanical ground state electronic energy 

calculations require large minimization sequences for convergence.   DACAPO 

utilizes an efficient method (iterative Davidson algorithm) to determine self 

consistent field (SCF) solution of large eigenvalue problems.14  It has been found 

that the best efficiency occurs when one employs small block size iterations, 

allowing the algorithm to be less demanding on memory,14 speeding up the 

calculation.   This approach is the Block Davidson Algorithm exclusively 

employed by DACAPO. 

 In Density Functional Theory the ground state total energy E0 can be 

obtained as the global minimum of the energy functional E[�]. 

 

 

        [ ] [ ] ( ) ( )	 +++= ewaldextcc dVTE γυρρρ rrr                         [29] 

 

 

Where r is the position vector in space, �(r) is the charge density of electrons 

satisfying 

 

                     ( )	 = Ndrrρ                                                  [30] 
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with N representing the number of electrons in the system.14  �ext(r) is the external 

potential function acting on the electrons from the nuclei.  The kinetic energy T[�] 

and the electron-electron interaction energy Vcc[�] are functionals of the density � 

and �Ewald  is the electrostatic repulsion energy between the nuclei.14   

 Kohn-Sham proved that the charge density �(r) can be represented by  
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=
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i
i

1

2r�rρ                                             [31]     

 

 

 

where �i(r) are discrete quantum mechanical wave functions of the electrons.  

The kinetic energy functional Ts of the system is represented as 
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Allowing equation [29] to be re-written as 
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   [ ] [ ] [ ] [ ] ( ) ( )	 ++++= ewaldextxcHartree dEETE γυρρρρρ rrr                [33]               

 

 

Where EHartree[�] is the classical electrostatic energy of the electrons and Exc[�] is 

the exchange correlation energy functional.14  The Kohn-Sham equation takes on 

the form of 

 

 

                  ( ) ( ) ( )r�rr� ieffiH 
�

�
�

� +∇−= υ2

2
1

                                [34] 

                                                                 
 

 

where H is the Hamiltonian operator and the effective potential �eff (r) is the sum 

of the external, Hartree (electrostatic), and exchange correlation potentials14 and is 

represented by 
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One can see that the effective potential, �eff (r), depends on the charge density 

�(r) defined in equation [31] as the sum of the squared wavefunctions that are 

determined as eigensolutions of [34].14    

 To more clearly understand the flow of iterative calculations to generate 

the self-consistent solutions of the equations above, one starts with a guess 

(estimate) of the charge density �(r) 

 

 

           ( ) ( )�
=

=
N

i
i

1

2r�rρ                                           [36]     

 

 

and determine the effective potential �eff (r) using external potential (�ext (r)) and 

the exchange correlation approximation (�xc(r)). 
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To determine the new wave function �i(r) it is necessary to calculate the Kohn-

Sham eigenvalue equation using  �eff (r) from [37]. 
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Once the new wave function �i(r) is determined, the new charge density �(r) 
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and kinetic energy Ts[�] 
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can be calculated.    Using the above terms the ground state total energy 

functional E[�] can be solved.14 
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E[�] is minimized by repeating the sequence above starting at equation [36] 

through [41] until the lowest value is determined.    

 

 

 

3.7     Sample Input File 
 
DACAPO utilizes an input file to assemble all the parameters to perform 

an approximation of the electronic energy.   It is important to review a basic input 

file to show how DACAPO receives all the  input values to generate a total 

energy output, including relaxation dynamics to further optimize the geometric 

configuration of the complex.   The system investigated in this thesis is far more 

complex than the CO dimer example in this section.  But, the CO example will be 

sufficient to illustrate the fundamental framework of an input file.   A more 

comprehensive review of DACAPO is found in Appendix I. 

One of the simplest calculations is the total energy of a CO molecule.  The 

minimal specifications that must be provided are a unit cell, geometry, planewave 

energy cutoff, and the number of electronic bands.  Below is an example script 

from DACAPO of such a calculation followed by an explanation for each step.15 

 

 

 

1 #!/usr/bin/env python 
2  
3 ################################## 
4 #                                                                 # 
5 #          CO dimer in a box                         # 
6 #                                                                 # 
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7 ################################### 
8  
9 from Simulations.Dacapo import * 
10  
11 sim=Simulation() 
12  
13 sc_latt=BravaisLattice([[1.0,   0.0,   0.0], 
14                                        [0.0,   1.0,   0.0], 
15                                        [0.0,   0.0,    1.0]]) 
16  
17 sim.atoms=ListOfAtoms([Atom(type=C, position=Vector([4,    4,    4])), 
18                                            Atom(type=O, position=Vector([5.1, 4,    4]))], 
19                                            unitcell=8.0*sc_latt 
20  
21 sim.plancut = PlaneWaveCutoff(350)  #  in eV 
22 sim.eband = ElectronicBands(10) 
23  
24 sim.Execute(outfile=”CO_in_a_box.nc”, ascii=CO_in_a_box.txt”) 

 

 

 

Line 1 enables the user to run python as a shell language anywhere.  Other than 

the first line, the “#” tells the system to the rest of the line is a comment enabling 

the user to place comments after statements, as shown in line 21.  Line 9 calls out 

the functions from ‘Simulations.Dacapo’.  Line 11 creates a python object ‘sim’ 

of data type Simulation.  Line 13 is similar and the data type ‘Bravais Lattice’ 

represents a Bravais lattice.  The initial value given to the Bravais Lattice is the 

unit matrix [[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]].  The default units are Å 

for length and fs for time.  Line 17 sets up the atoms and their respective 

coordinates.  Line 19 sets up the periodic boundary conditions, in the example 

above we apply a factor of 8 to the simple cubic.  Another technique is setting the 

Bravais lattice dimensions (line 13) to [[8.0, 0.0, 0.0], [0.0, 8.0, 0.0], [0.0, 0.0, 

8.0]].  Line 21 sets the plane wave basis kinetic energy cut off at 300 eV and line 
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22 sets the number of electronic valance bands in the calculation.  Finally, line 24 

is a function call, acting on the variable ‘sim’, that first causes all the attached 

variables to ‘sim’ to be written to an input file.  The output file names called out 

in line 24 are of 2 types.  The first is a binary netCDF formatted file (.nc) 

containing all important physical data (energies, forces, charge density, magnetic 

moments, etc.) and the second output file is an ASCII formatted readable log file 

(.txt) describing the course of the just performed calculation15.   

Typically, an investigator is interested in the total energy of the optimized 

geometry of a system.  This can be done in DACAPO by adding a single line of 

code, as illustrated below by DACAPO in line 48. 

 

 

 

 

 

25 #!/usr/bin/env python 
26  
27 ################################## 
28 #                                                                 # 
29 #          CO dimer in a box                         # 
30 #                                                                 # 
31 ################################### 
32  
33 from Simulations.Dacapo import * 
34  
35 sim=Simulation() 
36  
37 sc_latt=BravaisLattice([[1.0,   0.0,   0.0], 
38                                        [0.0,   1.0,   0.0], 
39                                        [0.0,   0.0,    1.0]]) 
40  
41 sim.atoms=ListOfAtoms([Atom(type=C, position=Vector([4,    4,    4])), 
42                                            Atom(type=O, position=Vector([5.1, 4,    4]))], 
43                                            unitcell=8.0*sc_latt 
44  
45 sim.plancut  = PlaneWaveCutoff(350)  #  in eV 
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46 sim.eband    = ElectronicBands(10) 
47  
48 sim.dyn        = Dynamics() 
49  
50 sim.Execute(outfile=”CO_relaxed.nc”) 

 

 

 

Line 48 introduced the subroutine molecular dynamics which is employed to 

search for the minimum total energy configuration of the complex.  Refer to 

Appendix I for more examples. 
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Chapter 4 

 

Approximating Interfacial Adhesion Energies 

 The DACAPO platform, which performs spin-polarized density functional 

theory calculations and expands the valence electron density using a planewave 

basis set1, can be used to estimate the total electronic energy and corresponding 

cohesive properties.  Generalized Gradient Approximation is used for the 

exchange correlation functional to best capture any changes in electron density.   

This is especially important, recognizing that we are studying transition metals 

and large oxides, which have a tendency to possess variations in electron density.  

First principles DFT calculations are ideal to characterize the atomic level 

behaviors of a metallic/oxide interface of a specific system.2 DFT enables the 

inclusion many transition metals in the approximation by focusing on valence 

electrons only.  This type of investigation can lead to understanding the atomic 
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level causes of spallation at the nickel-oxide boundary layer.  Since the exact 

structure of the interface is not well characterized experimentally,2 an ideal 

approach will be very useful in identifying key elements that can enhance and/or 

weaken the interfacial adhesion energy between the Ni/TGO in the thermal barrier 

coating system.    

 

  The interfacial adhesion energy calculations consist of three steps:   

1) Bulk material calculations to approximate the bulk electronic 

energy and generate the cohesive energy.1  This is a critical step, as all further 

calculations build on the bulk electronic energy used to predict the cohesive 

energy.  Also, the cohesive energy will be the reference value (experimentally and 

first principles) used to validate the computational protocol.  The final protocol 

will be validated by comparing the interfacial adhesion energies experimentally 

known against the ones determined in this investigation (at the end of this 

section).   

2)  Surface energy calculations, which use the bulk electronic energies 

from cohesive energy2.   Surface free energy is a primary input parameter in the 

determination of the interfacial adhesion energy and uses the bulk electronic 

energy (validated in the cohesive energy calculation in step 1) in it’s generation. 

3) Interfacial adhesion energy produced from the surface free energy 

and bulk energy.1  This is illustrated in flow chart in Figure 8.     
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[Figure 8]   Development Strategy Computational Protocol 
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4.1     Cohesive Energy 

 It is clear density functional theory has progressed beyond the qualitative 

method and into the quantitative method with the introduction of gradient 

corrections to the local density approximation.3  Perdew and Wang showed that 

the Generalized Gradient Approximation affords an accuracy average of < 4.0 

kcal/mol with hydrocarbon and/or transition metal species.3  This provides sound 

encouragement in accurately estimating the cohesive energies of Ni (Nickel) and 

� SiO2 (Silica) and the complex thereof.    

 The cohesive energy is the first fundamental value reproduced, prior to 

moving on to surface free and interfacial adhesion energy calculations.  

Exhaustive effort/iterations went into approximating the cohesive energy of Ni, � 

SiO2, and Ni/� SiO2 complex.  The general formula for cohesive energy3 (Ecoh) is 

captured in equation [42]  

 

 

�
�

�
�
�

� −−=
N

E
EE bulk

molatomcoh /                                         [42] 

 

 

Where Eatom/mol is the total energy of one free atom or molecule, depending on 

how the system is structured.  Silica (SiO2) possesses 2 repeating units within a 



 57 
 
 

unit cell and allows the formula to be broken up within that framework.  Ebulk is 

the total electronic energy of the complex and N is the number of 

atoms/molecules in our system.3  Final cohesive results are shown in Table 4 

below.   

 

 

 

 

 Cohesive Energy 
 

(+/- 0.20 eV) 

Cohesive Energy 
 

Literature (eV) 
 

� SiO2 
 

 
26.93 

 

 
22.42a 

 
Ni 
 

 
4.07 

 
4.52b 

           
             
 

[Table 4]   Cohesive Energy Approximation  (0.20 eV variance established from intentional 
bond length fluctuations)  a = reference 4; b = reference 5   

 

 

 

The cohesive energies are within 15% of literature values, consistent with 

findings of Carter et al.1 This was very encouraging and initially supports the 

computational framework used in DACAPO.  In addition, the cohesive values 

provide confidence in the bulk electronic energy, critical for the surface free 

energy.   
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4.2    Surface Free Energy 

 Typically, surface free energy (�) of a solid surface is determined 

experimentally from the contact angle of dispersive and non dispersive liquids 

 

 

                          dispersivenondispersive −+= γγγ                                [43] 

 

 

where γ  is the surface energy derived from the contact angle of the respective 

liquids. This widely accepted technique is somewhat empirical in nature, though 

proven very reliable.1   To understand what type of atomic level contributions 

influence the surface free energy, one must resort to a first principles 

investigation.  Surface free energy3 (Esurf) can be defined as 
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where Eslab is the bulk electronic energy of the slab (validated in the cohesive 

energy study in the previous section), N is the number of atoms/molecule, Efcc is 

the pure electronic energy of the atom/molecule, and Area is the square of the 

Nickel lattice constant for the Ni (100) surface.   Notice the factor of 2 in the 

denominator, this is present because when DFT calculates the bulk energy, it is 

representing the top and bottom surfaces.  There is only one surface that comes in 

contact at the boundary layer for each material.  Therefore, the area is divided by 

a factor of 2.  Table 5 contains the result of � SiO2 and Ni. 

 

 

 

 

 Esurf  
Surface Free Energy 

 
(+/- 15 mJ/m2) 

Esurf 
Surface Free Energy 

 
Literature (mJ/m2) 

 
� SiO2 

 

 
176 

 

 
179 - 191a 

 
Ni 
 

 
1360 

 
2066b 

           
             
 

 

[Table 5]   Surface Free Energy  (0.20 eV variance established from intentional bond length 
fluctuations)  a = reference 15; b = reference 16 
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There is good agreement with � SiO2 and slightly less with Ni.  Experimentally 

measuring a pure, perfect Ni surface is very difficult due to the oxidation 

tendency of Ni.  The next step is to move on to estimating the interfacial adhesion 

energy of the complex and validating against literature work done by Carter et al.1  

 

 

4.3    Interfacial Adhesion Energy 

 The energetics of the physical interactions of two materials can be 

described by the work of adhesion, given by the Dupré equation 

 

 

cmmcadW γγγ −+=                                               [45]         

 

 

where cγ , mγ  are the surface free energies of the ceramic (i.e. SiO2) and metal 

(i.e. Ni) and cmγ  is the combined total energy of the complex.  Applying this 

equation to a Ni/SiO2 system results in: 
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where ENi:surf and ESiO2:surf are the surface free energies of Ni and � SiO2 

respectively, ENI/SiO2 is the bulk electronic energy of the total system, and Area is 

the lattice constant squared.1  An additional two layers of SiO2 was added to 

further test the computational protocol, see Table 6.  

 

 

 

 

 1 layer SiO2 
 

(+/- 15 mJ/m2) 

2 layers SiO2 
 

(+/- 15 mJ/m2) 
 

Ni/� SiO2 
 

(This Study) 

 
1220 

 
1413 

 
Ni/� SiO2 

 
(Carter et al) 

 
1292a 

 
1374a 

                  
 

 

[Table 6]   Interfacial Adhesion Energy  (0.20 eV variance established from intentional bond 
length fluctuations) a = reference 1 
 
 

 

 

The data is consistent with the literature values generated through previous first 

principle investigations using DFT and GGA platform of VASP.  These results 

provided confidence, especially when adding a second layer of � SiO2 on the first 
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layer was compatible with the established protocol.  The next steps to consider are 

the different thermal expansions and � to � transition.  
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Chapter 5 

 

Ni/TGO Interfacial Adhesion Energy  

 The previous section established a first principles density functional 

theory protocol and initially validated by reproducing the literature values of Ni/� 

SiO2 complex by Carter et al.1  It is important to study the electronic tendencies of 

the Ni/TGO complex in greater detail with respect to the existing TGO (Al2O3) 

and the potential replacement (SiO2).  Recall, the primary weakness with Al2O3 as 

the TGO occurs when multiple layers are present and the electron density shifts 

from the surface atoms to the interior, bulk atoms.2  As a result the interfacial 
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adhesion energy is substantially reduced, initiating spallation at the interface.  

This is illustrated in Figure 9.   

  

 

 

 

 

 

 

 

[Figure 9]   Electron Density for 0.5, 1.0, 2.0 layerss of Al2O3 on Ni.   Courtesy of Emily Carter 
and HPC and National Security, March/April 2002 
 

 

 

 

 

Alternatively, SiO2 interfacial adhesion energies remained unchanged from one to 

three layers, suggesting that it should not demonstrate the shift in electron density 

seen with Al2O3.1 Figure 10 supports the stability of the electron density.  
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 Represents the bonding region between Ni/SiO2 interface. Notice the 
additional electron density apparent in the Ni/Si region compared to Ni/O region. 
 

 
[Figure 10]   Electron Density Profile of 2 layers of SiO2 on Ni.   Courtesy of Emily Carter and 
HPC and National Security, March/April 2002 
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The above Figures 9 and 10 illustrate the fundamental weakness in Al2O3 and an 

encouraging signal for the use of � SiO2 as the thermally grown oxide (TGO).   

 

5.1    Ni/TGO Complex 

 The system (Ni/SiO2) studied focused on � SiO2 and was somewhat 

flawed from the presence of the � phase of SiO2 present.  The target system of 

choice is � SiO2 on Ni surface, illustrated in Figure 11 below. 

 

 

 

[Figure 11]   2 layers of SiO2 on Ni(100) Surface  Atoms:  Red: Oxygen; Yellow: Silicon;    
Blue: Ni 
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This complex is slightly different than the system investigated by Carter et al, 

covered earlier in the introduction, and is considered the model system to 

investigate due to the predominate phase present during fuel combustion and 

operation.  

 

 

5.2    Al2O3 vs. SiO2 

 It is important to study the energetic properties of the three TGO’s in this 

study.  Comparing the interfacial adhesion energies, it is clearly evident that � and 

� SiO2 are electronically more stable than Al2O3 in a multi-layer complex, shown 

in Table 7. 

 

 

 1st layer 
 

(+/- 15 mJ/m2) 

2nd layer 
 

(+/- 15 mJ/m2) 
 

Ni/Al2O3 
 

934 
 

 
456 

 
Ni/� SiO2 

 
1220 

 

 
1413 

 
Ni/� SiO2 

 
1041 

 

 
1316 

 

 

[Table 7]   Interfacial Adhesion Energy    (variance of 15 mJ/m2 was determined by intentional 
bond length changes) 
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It is important to consider additional factors which can impact the TGO when in 

operation.  These include the phase change between �, � SiO2 and thermal 

expansion.  Both can impact the electronic properties of the complex, influencing 

the interfacial adhesion energy.   

 

 

5.3    SiO2 Concerns 

 SiO2 and the Ni/SiO2 interface possess some unique characteristics which 

include: geometric inversion between the alpha and beta phases,3 lattice mis-

match influence, and thermal expansion.  These three factors must be studied to 

properly access the viability of utilizing SiO2 as the TGO.   

  

 

5.3.1     � – � Transition      

 One of the key issues to consider in SiO2 is the phase change that occurs 

within the TGO due to the elevated temperatures present in the gas turbine engine.  

The TGO (i.e. SiO2) will be subjected to temperatures ranging from 25 to 1300 

°C, forcing the SiO2 to transition from � to � phase.  It is understood that the 

inversion point of the phase change (“hop point”) is relatively unknown and 
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poorly characterized due to the instantaneous solid phase change.3  Understanding 

the impact of the bond length change of Si – O in SiO2 complex as it approach’s 

the “hop point” is critical for mimicking the behavior.  Also, understanding the 

electronic tendencies of � phase SiO2 at elevated temperatures is just as important.   

Figure 12 illustrates the bond length changes with respect to temperature for alpha 

and beta SiO2.    
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[Figure 12]   Si – O Bond Length Change  data provided by reference 3. 
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The Si – O bond length in � SiO2 possesses a gradual decrease in length as the 

temperature approaches the “hop point”.  Conversely, the beta phase bond length 

is relatively unchanged.  Therefore, studying the change experienced in the alpha 

phase to the “hop point” and the behavior of beta SiO2, should provide a good 

understanding of any influences which can impact the interfacial adhesion energy 

through the phase transition.   

 

 

 5.3.2     Thermal Expansion 

 Thermal expansion is a factor to seriously consider.  This is accomplished 

by expanding the complex identical to the bond length changes experienced with 

increasing temperature (illustrated in figure 12) and plotting the potential energy 

surface (PES).  From the potential energy surface, the cohesive, surface free, and 

interfacial adhesion energies can be determined.  Investigation into the thermal 

expansion coefficients showed less difference between the Ni and SiO2 compared 

to Al2O3, shown in Table 8.     
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 500 °C 
 

(10-6, °C-1) 

1000 °C 
 

(10-6, °C-1) 
 

Ni 
 

 
16.3a 

 
17.5a 

 
Al2O3 

 

 
9.2c 

 
10.2a 

 
� SiO2 

 

 
19.4b 

 
NA 

 
� SiO2 

 

 
NA 

 
14.6b 

 

[Table 8]   Thermal Expansion Coefficient  a,=reference 4, b=reference 5   

 

 

 

If two adjacent layers possess different coefficients of thermal expansion, the 

interface between the layers can be subjected to increased stress, potentially 

reducing the interfacial adhesion energy.2   
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Chapter 6 

 

Interfacial Adhesion Energy of Model Ni/SiO2  

 The model TGO system, comprising of �, � SiO2 on Ni (100) surface, is 

investigated using the protocol outlined in section 4 including the thought map to 

further refine the computational platform and parameters to ensure all atomic 

combinations are compatible.  Within the protocol, the cohesive energy is 

approximated to establish a sound fundamental base for all energetic calculations, 

leading up to interfacial adhesion energy.1    This section also captures the 

computational elements which are critical to generating valid, applicable 

electronic energies.2    
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6.1    Computational Protocol 

 To determine the finalized computational platform for our energetic 

calculations, which will include alternative geometric orientations, multi-layer 

oxide layer complexes, and expanded systems, a computational protocol is 

required.  Figure 13 illustrates the computational protocol utilized for the model 

system of �, � SiO2 on Ni (100) surface. 
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[Figure 13]  Development Strategy Computational Protocol 
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6.1.1    Results  

 The interfacial adhesion energies of multi layer complexes of � SiO2 were 

successfully approximated using the protocol outline in the previous section. See 

appendix II for the specific input files. � SiO2 was calculated to validate the 

changes to the computational framework (i.e. input file).  The energetic data 

provided confidence in the computational construction, displayed in Table 9.   

 

 1st layer 
 
(+/- 15 mJ/m2) 

2nd layer 
 
(+/- 15 mJ/m2) 
 

4th layer 
 
(+/- 15 mJ/m2) 

r 
(correlation 
coefficient) 

 
Ni/� SiO2 
 

 
1218 

 
1409 

 
1487 

 
0.9706 

 
Ni/� SiO2 
 

 
1040 

 
1314 

 
1388 

 
0.9482 

 

[Table 9]   Interfacial Adhesion Energy (variance of 15 mJ/m2 was determined by intentional 
bond length changes) 
 

 

 

The energy data is consistent with earlier results for the interfacial adhesion 

energy and a degree of stabilization progressing through the 4th layer of SiO2 on 

Ni.    The data above suggests that the electron density of � SiO2 does not shift 

from the interface atoms to the interior bulk atoms with multiple layers present, as 

opposed to the Al2O3 TGO.  Plotting the electron densities of the Ni/� SiO2 will 

allow for a more comprehensive evaluation of any change in electron density. 
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[Figure 14]   XZ-plane volume slice (0.40 offset) Top figures are 1 layer SiO2 on Nickel and 
bottom figures are 2 layers SiO2.  Right frames are slice orientation, left frames are density 
projection of plane slice.  Spheres:  Red – Oxygen; Yellow – Silicon; Blue - Nickel 
Density Color Scale:  0 = Red, 400 = Green, 800 = Blue 
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[Figure 15]   XZ-plane volume slice (0.25 offset) Top figures are 1 layer SiO2 on Nickel and 
bottom figures are 2 layers SiO2.  Right frames are slice orientation, left frames are density 
projection of plane slice.  Spheres:  Red – Oxygen; Yellow – Silicon; Blue - Nickel 
Density Color Scale:  0 = Red, 400 = Green, 800 = Blue 
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[Figure 16]   XZ-plane volume slice (0.18 offset) Top figures are 1 layer SiO2 on Nickel and 
bottom figures are 2 layers SiO2.  Right frames are slice orientation, left frames are density 
projection of plane slice.  Spheres:  Red – Oxygen; Yellow – Silicon; Blue - Nickel 
Density Color Scale:  0 = Red, 400 = Green, 800 = Blue 
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[Figure 17]   XZ-plane volume slice (0.00 offset) Top figures are 1 layer SiO2 on Nickel and 
bottom figures are 2 layers SiO2.  Right frames are slice orientation, left frames are density 
projection of plane slice.  Spheres:  Red – Oxygen; Yellow – Silicon; Blue - Nickel 
Density Color Scale:  0 = Red, 400 = Green, 800 = Blue 
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[Figure 18]   YZ-plane volume slice (0.40 offset) Top figures are 1 layer SiO2 on Nickel and 
bottom figures are 2 layers SiO2.  Right frames are slice orientation, left frames are density 
projection of plane slice.  Spheres:  Red – Oxygen; Yellow – Silicon; Blue - Nickel 
Density Color Scale:  0 = Red, 400 = Green, 800 = Blue 

  



 82 
 
 

Z 

Y 

X 

Y 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
[Figure 19]   YZ-plane volume slice (0.34 offset) Top figures are 1 layer SiO2 on Nickel and 
bottom figures are 2 layers SiO2.  Right frames are slice orientation, left frames are density 
projection of plane slice.  Spheres:  Red – Oxygen; Yellow – Silicon; Blue - Nickel 
Density Color Scale:  0 = Red, 400 = Green, 800 = Blue 
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The electron density plots in Figures 14 -19 were generated from DACAPO cube 

files which possessed the electron density of the unit cell.  The electron density 

distributions were illustrated using VMD (Visualization Molecular Dynamics) 

version 1.8.5 from the University of Illinois.  Figures 14 - 19, support the stability 

of the electron density in � SiO2, building more confidence in SiO2 as a potential 

replacement TGO.   Figure 14 shows the electron density in the XZ-plane slice at 

an offset of 0.4, which is positioned on the side surface of the face centered cube 

of Ni.  The slice intersects the 1st of the two lowest oxygen atoms directly above 

the nickel surface. The electron density overlap between the Ni and oxygen atoms 

is clearly visible and unchanged between the 1 and 2 layers of SiO2.  Figure 15, 

the XZ-plane slice is positioned at an offset of 0.28, where it intersects the lowest 

silicon atom.  Again, no appreciable change in electron density overlap from 1 to 

2 layers of SiO2 is apparent.  Figure 16, the 2nd lowest oxygen atom is intersected 

at an offset of 0.18 with significant density overlap between the Ni and oxygen 

atoms.  The last XZ-plane slice (Figure 17) is at the origin of the lattice (offset 

0.0) and showing no electron density interaction between the Ni surface and 

oxygen atom due to the increased distance (> 2.0 �) between the surface and 

oxygen atom.  Figures 18 and 19 are YZ-plane slice and show the interaction 

between the silicon and oxygen atoms within the SiO2 complex.   

The electron density stability of the complex is illustrated in all the figures 

above (Figures 14 – 19) showing little change from one and two layers of � SiO2 

at the Ni (100) interface.   
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6.2     Computational Construction Elements 

The finalized computational parameters used in determining the electron 

density plots were validated through the cohesive energy calculations and further 

supported with the surface free energy values.  The parameters established via the 

computational protocol can be used for additional studies in our system.  These 

elements include bravais lattice, planewave cutoff, k-points, pseudopotential, 

exchange-correlational functional, electronic minimization, electronic bands, and 

convergence control.  See Table 10.  
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Parameter 
 

Value 

Bravais Lattice 
 

10 – 20 X 8 X 8  Å       (+/- 1) 

Planewave Cutoff 
 

377 eV   (+/- 20) 

k-points 54   (+/- 9) 
Chadi – Cohen 
 

Pseudopotential 
 

Perdew Wang 1991 

Exchange-Correlation Functional PW91  
(Perdew Wang 1991 
 GGA-parameterization) 
 

Electronic Minimization  
(Eigen Solution) 
 

Block Davidson Algorithm 

Electronic Bands 10 – 20 greater than 50% of total 
electrons in system 
 

Convergence Control < 0.05  eV/atom 
 

 

[Table 10]   DACAPO Parameters 

 

 

The parameters in Table 10 were critical components in the energetic calculations 

of the cohesive, surface free, and interfacial adhesion energies.   
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6.3    Summary 

 It was successfully shown that the interfacial adhesion energy between the 

Ni(100) and �, � SiO2 are relatively unchanged from the 1st layer to the 4th layer, 

mimicking the growth of the SiO2 layer (TGO) over time.  Recall this was the 

fundamental flaw with Al2O3 at the TGO, catalyzing spallation (delamination) of 

the Oxide layer from the Ni alloy.   Furthermore, the electron density was stable 

at the interface atoms of the � SiO2/Ni complex in mono and bi-layers of SiO2, 

supporting the interfacial adhesion energy trends.  It is important to consider 

additional factors experienced in the thermal barrier coating system prior to any 

definitive conclusions on the viability of utilizing SiO2 as the TGO in a TBC.   

 

  

6.4     References 

 

(1)      Bahn, R., Jacobsen, K., An object-oriented scripting interface to a legacy 

electronic structure code, Computing in Science and Engineering, May/June, 

(2002) 



 87 
 
 

(2)   Bendtsen, C., Nielsen, O., Hansen, L., Solving large non-linear           

generalized eigenvalue problems from density functional theory calculations in 

parallel, Applied Numerical Mathematics, vol. 37, nos. 1-2, p. 189 (2001) 

 

 



 88 
 
 

 

 

 

 

 

 

 

 

Chapter 7 

 

Additional Factors to Consider 

 Chapter 6 produced evidence in supporting the use of silica (SiO2) as a 

TGO replacement to Al2O3.  Based upon electron density we showed the stability 

of the interface increased going from one to four layers of SiO2 on Ni (100) 

surface.  This data was an incomplete assessment of SiO2 considering the many 

scenarios which can impact the assembly/orientation of the interface atoms.  

These include the coefficient of thermal expansion (CTE) between the two 

adjacent materials (Ni/SiO2), � - � phase transition for SiO2, and lattice mis-

match.  Literature studies on thermal barrier coatings (Carter el al´) did not take 

these elements into consideration.1   

Thermal expansion can be studied by progressively calculating the cohesive, 

surface free, and interfacial adhesion energy along the known Si – O bond length 
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change.2   Using the data one can plot the potential energy surface (PES) of these 

values to see if there are any deleterious barriers or changes that can negatively 

affect the interfacial adhesion energy.  Understanding the impact of the �, � phase 

change is accomplished by studying the behavior of each phase before and after 

the “hop point”.2  Finally, understanding how the two materials (Ni/SiO2) match 

up at the boundary layer is accomplished by considering the lattice mis-match 

conditions and mapping out the PES.   

 

 

7.1    Protocol 

 The computational protocol/strategy is adjusted to study how thermal 

expansion, SiO2 phase change, and lattice mis-match influence the interfacial 

adhesion energy.   Figure 20 is a consolidated flow chart removing the 

redundancy from the previous flow charts (Figures 8 and 13). 

  



 90 
 
 

 

 

 

[Figure 20]   Additional Factors Development Strategy 

 

 

 

Additional Factors 

Development Strategy  

Simulate CTE via PES across Si – O 
bond length change with respect to 
temperature  

Approximate electronic energies 
and corresponding interfacial 
adhesion energy and plot PES 

Simulate lattice mis-match of � SiO2, 
in an X,Y quadrant on Ni (100) 
surface 

Move � SiO2 from the ideal 
anchor point 0.25 Å along X axis 
and calculate bulk energies 

Repeat, using last move 
as anchor point 

Move � SiO2 0.25 Å perpendicular  
to previous move, along y axis and 
calculate bulk energies 
 

Use Surface Free Energies and Bulk 
Energy, generate Interfacial 
Adhesion Energy and plot PES along 
mis-match gradient 
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7.2    Coefficient of Thermal Expansion  

 One technique that captures thermal expansion is the change in molar 

volume of a material.  Figure 21 shows the behavior of �, � SiO2 from 200 - 2000 

°C.  
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[Figure 21]   Expansion of �, � SiO2 (Quartz)  Literature data, reference 2  (Quartz in this figure 
is identical to SiO2 in this thesis) 
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The volume change in the � phase from 250 – 800 °C is substantial.  This equates 

to approximately a 7% unit volume change3 which must be considered in our 

thermal barrier coatings system.  Alternatively, the � SiO2 is relatively stable with 

respect to volume change from 800 – 1800 °C.   To accurately study the influence 

of this unit cell expansion, it is important to characterize the change in Si – O 

bond length with respect to temperature in the alpha configuration.   

 

 

7.2.1     PES along Si — O Bond Length Change  

 The Si – O bond length change in � SiO2 is practically linear with 

increasing temperature5 up to the � – � inversion point, shown in Figure 22.   To 

understand the PES it is necessary to calculate the electronic energies at each 

points along the progression of the bond length change as the temperature 

changes.  
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[Figure 22]   Si – O Bond Length Change  (Data plotted from reference 3, with a r of 0.97) 

 

 

 

Incorporating these bond lengths into the � SiO2 complex to generate the bulk 

electronic energies allows us to understand the electronic energy trend as the 

temperature is increased.  The unit cell was electronically minimized at each bond 

length to produce the PES.  Figure 23 shows that the highest energy is at the 

shortest bond length while the lowest energy is at the largest bond length.  

Suggesting the electronic properties of the system are changing with increasing 

temperature. 
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[Figure 23]   SiO2 Bulk Energy  (r = 0.98) 

 

 

 

The cohesive, surface free, and interfacial adhesion energies can be calculated and 

their relationship to temperature change and bond length can be analyzed.  Table 

11 shows the highest and lowest electronic energy for � SiO2 is at 1.585 Å and 

1.608 Å respectfully.  Recall, that the bond length for � SiO2 does not appreciably 

change from 800 to 1800 °C, therefore it is reasonable to use the control bond 

length (1.582 Å) to represent all temperatures in the beta phase.  Using the bulk 

energy values from Figure 19, the PES of cohesive, surface free, and interfacial 
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adhesion energies are produced to understand any influences the changing Si – O 

bond length has when the temperature is increased in the combustion chamber.  

Table 11 nicely illustrates the PES with respect to the bond length changes.    

The data shows the cohesive energy decreasing as the Si – O bond length 

reduces from 1.608 Å (control bond length) to 1.585 Å.  At 1.585 Å the � SiO2 

has a cohesive energy of -3.02 eV, very unstable, as a result the complex 

rearranges it’s atomic configuration to form the � SiO2.  At essentially the same 

bond length the beta configuration possesses a cohesive energy of -26.48 eV, 

many orders of magnitude higher than the alpha configuration.  Throughout all 

the bond length changes, the surface free and interfacial adhesion energies are 

minimally impacted, suggesting a stable interface boundary layer during the heat 

cycle of the system.   It is also important to note that the correlation coefficient of 

the data series was comfortably above 0.95.   

 

 

 

 

 

 

 

 

 

 



 96 
 
 

Si – O Bond 
Length  
[Å] 
 

Cohesive  
Energy  
[-eV] 
 
 
 
(STDEV: 0.63) 
(Sig F: 0.024) 
(+/- 0.2) 

Surface Free 
Energy  
[-eV] 
 
 
 
(STDEV: 0.63) 
(Sig F: 0.004) 
(+/- 0.2)         

Interfacial 
Adhesion  
Energy  
[mj/m2] 
 
 
(STDEV: 5.5) 
(Sig F: 0.029) 
(+/- 15) 

 
1.608 (� *) 
 

 
26.9 

 
161.0 

 
1413 

 
1.605 (� ) 
 

 
26.4 

 
161.5 

 
1363 

 
1.600 (� ) 
 

 
13.5 

 
162.2 
 

 
1351 

 
1.595 (� ) 
 

 
5.1 

 
162.9 

 
1338 

 
1.585 (� ) 
 

 
3.0 

 
163.5 

 
1327 

 
r2 
 

 
0.86 

 
0.95 

 
0.84 

 
1.582 ( �*) 
 

 
26.48 

 
164.56 

 
1316 

* Ground state energy bond length 
 
 

 

[Table 11]   Interfacial Energies relative to Si – O bond length Change (r2 in table for each 
data array is with respect to bond length change, the standard deviation of fit 0.63, variance of +/- 
0.2, and a significance of 0.004 – 0.029) 
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7.3     Lattice Mis-Match  

 It is commonly known when two materials come together, the tendency to 

not position all interface atoms ideally is more common than not, especially when 

you have thermal expansion of one layer different than the other.5  Up until now, 

the electronic studies have been based on ideal positioning of � and � SiO2 on Ni 

surface.  Intentionally shifting the anchor point atoms that directly connect to the 

Ni surface can closer mimic the “real” interface.  This is accomplished by shifting 

the SiO2 complex along the X, Y, axis on the surface of Ni face, keeping the Z axis 

position constant.  Next, uniformly shifting the whole complex in 0.25 Å 

increments along the X axis followed by another 0.25 Å move 90 ° along the Y 

axis and repeating the sequence again should allow the PES to be mapped out.  

 

 

7.3.1     PES across Ni surface 

 Nickel crystal possesses a face center cubic orientation and the (100) 

surface possesses four symmetrical quadrants8, illustrated in Figure 20. 
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[Figure 24]   Face Centered Cubic Configuration 

 

 

 

Recognizing the symmetrical nature of the Ni surface (four identical quadrants), it 

is reasonable to reduce the electronic energy calculations to a single quadrant. 

Each quadrant has a size of 1.762 Å x 1.762 Å and using the pathagoreom 

theorem, the greatest distance from the center point to the corner of the quadrant 

to be 2.492 Å.  If we move our complex in 0.25 Å increments as illustrated in 

Figure 25, the complex will travel 0.707 Å linear distance toward the corner of the 

face, which is approximately 30% of the total diagonal length.     
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[Figure 25]   SiO2 Crystal Positions  

 

 

Figure 26 plots the interfacial adhesion energy (PES) and shows a relatively stable 

energy profile for most positions moving away from the idea anchor position 

(origin).  The last position (farthest away) shows a drop off in interfacial adhesion 

energy as expected, if the relaxed orientation is at a minimum well.   

 

SiO2 crystal positions from origin ‘O’ in 0.25 Å 
increments into the 3rd quadrant on face center 
cubic surface of Ni  
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[Figure 26]  Interfacial Adhesion Energy Across Ni Face  (data possessed variance of +/- 15 
mJ/m2 and a STDEV of 5.5) 
 

 

 

The 2nd layer of SiO2 was included to ensure the electronic energy trends are 

consistent in multi-layer complex.  The interfacial adhesion energies between the 

1st and 2nd layers are consistent, supporting a stable complex.   
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7.4    Summary 

 This chapter investigated the influence of thermal expansion, phase 

change inversion from � to �, and lattice mis-match between SiO2 and Ni in the 

thermal barrier coating complex.  The PES of the cohesive, surface free, and 

interfacial adhesion energy of � SiO2 on Ni clearly showed the surface free and 

interfacial adhesion energy of the complex are relatively unchanged up to, and 

after, the � – � SiO2 transition point.   

 The change in the cohesive energy with respect to the Si – O bond length 

change was found to be substantial in the � SiO2, driving the system to rearrange 

itself into the � SiO2 orientation.  

 Finally, the lattice mis-match investigation revealed the SiO2 crystal 

positions on Ni (100) surface are relatively stable out to 0.707 � from the origin.   

Suggesting the Ni/SiO2 thermal barrier system is tolerant of some degree of “non-

perfect” crystal positioning on the Ni substrate. 
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Chapter 8 

 

Conclusion 

 The primary objectives were outlind in the beginning of this thesis, 

comprising of a theoretical protocol and an alternative TGO material.  The first 

principles density functional theory protocol was identified to assess the 

electronic properties of a thermal barrier coating system. The DFT platform of 

DACAPO was used to successfully approximate the interfacial adhesion energy 

between the nickel and thermally grown oxide layers, where spallation occurs.  

Secondly, an alternative oxide layer (SiO2 as opposed to Al2O3) was identified to 

reduce the tendency of spallation, as the TGO grows over time.  Once it was 

established that SiO2 should be more stable than Al2O3, in a multi-layering 

scenario, the phase change which occurs with SiO2 (� – � @ 847 K) had to be 
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investigated to ensure that it was not detrimental to the interfacial adhesion 

energy.  Finally, the interface of the 2 layers (Ni/SiO2) will naturally possess 

some degree of lattice mis-match, driving the investigation into understanding the 

lattice mis-match relationship to the interfacial adhesion energy.   

 

 

8.1    Protocol 

  To accurately approximate the electronic energies, a density functional 

theory platform was developed in DACAPO.  This consisted of identifying the 

optimum bravais lattice, planewave cutoff, k-points, pseudopotential wave 

function, and exchange correlation functional.  The final protocol was capable of 

handling single and multi-layer complexes of SiO2 on Ni (100) surface and 

outlined in Table 10, Section 6.2.  This approach should allow any researcher to 

quickly impose changes to the complex and understand the influence on the 

electronic properties.  Also, one can insert alternative materials in the system to 

understand if they should be considered or avoided in subsequent research, 

potentially expediting the development of an improved system for industry by 

quickly providing atomic level insight into the target complex. 
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8.2   Ni/SiO2 Viability 

 It was demonstrated that � SiO2 remains electronically stable from the 

mono-layer to a multi-layer complex.  The approximations showed a minimal 

change of 250 mJ/m2 in interfacial adhesion energy from the 1st to the 4th layer.  

Also, the interfacial adhesion energy levels off after the 2nd layer, relatively 

unchanged from there.  This suggested that the growth of SiO2 (TGO), during the 

combustion cycle of the turbine engine, will not induce spallation as opposed to 

the current Al2O3 TGO system.   

 To understand the impact of the phase change for SiO2 at 847 K, the 

potential energy surface of the Si – O bond length change was plotte within the 

operating heat cycle.  The PES of interfacial adhesion energy showed the highest 

value at the control bond length and slight decrease, < 100 mJ/m2, at the inversion 

point to the beta phase.  It was very interesting (and expected) to witness the 

significant reduction in cohesive energy of � SiO2 at the Si – O bond length 

changed at elevated temperatures.  At a bond length of 1.585 Å, the cohesive 

energy was reduced from 26.9 eV to 3.0 eV.  At this point, SiO2 inverts to the � 

phase configuration with the identical Si – O bond length (1.582 Å) and the 

cohesive energy jumps to 26.5 eV, creating a cohesively stable network.  The beta 

phase possessed greater thermal stability with minimal Si – O bond length change 

from 847 to 2000 K.   This strongly supported the use of SiO2 as the TGO in the 

thermal barrier coating.  One last element investigated was the realistic presence 

of lattice mis-match between the Ni/TGO materials.  To understand the influences 
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of lattice mis-match on interfacial adhesion energy, the anchor point of SiO2 was 

intentionally shifted along the X and Y axis to create a series of mis-matches over 

the Ni (100) surface.  As a result, the interfacial adhesion energy remained 

unchanged until the farthest position, 0.707 Å from origin, further supporting the 

use of SiO2 as the TGO.   

 Considering all the constraints and stressors we imposed on the Ni/SiO2 

complex and the relatively stable interfacial adhesion energies, the study can 

confidently state that SiO2 should be considered a viable replacement candidate 

for Al2O3, from a first principles electronic energy approach.   

 

 

8.3   Future Considerations 

 This thesis mimicked the behavior of � SiO2 from ambient conditions up 

to 847 K and � SiO2 from 847 to 2000 K.   Unfortunately, the actual solid – solid 

phase transformation was not reproduced, due to the documented difficulty in 

simulating this solid state instantaneous inversion.1  Just recently, some literature 

surfaced on a potential first principles protocol to analyze the transition states and 

minimum energy paths for a solid – solid phase transformation.1  As knowledge in 

this area increases one might consider including this type of investigation for an 

even more thorough understanding.   
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Appendix  I 

 

DACAPO Tutorial 
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Installation 
 

The following installation instructions are centered on the proven version 

of Dacapo 2.7 on a Redhat Linux system.   There is a new version of software 

(upgrade) being developed by Campos called ASE2, these instructions are geared 

to the proven version of Dacapo 2.7. 

1)  Create directory:  /dacapo_rpm 
2)   Go to web site ftp://ftp.fysik.dtu.dk/pub/Campos/bin/Linux/  
3) Download the following rpm’s into /dacapo_rpm 

a. Campos-1.1-1.i386 
b. Dacapo_2.7.3.run 
c. Distutils-1.0.1-3.noarch.rpm 
d. f2c-19991109-2.i386.rpm 
e. fftw-2.1.3-1.i386.rpm 
f. netcdf-3.5b3-.i386.rpm 
g. numeric-17.3.0.tar.gz 
h. python-netcdf-1.03-1.i386.rpm 
i. python-numpy-1.11-2.i386.rpm 
j. ScientificPython-2.0-1.i386.rpm 
k. wxGTK-2.2.2-1mdk.i586.rpm 
l. wxGTK-gl-2.2.2-1mdk.i586.rpm 
m. wxPython-2.2.2-1-py15.i386.rpm 
n. Rasmol modules 

4) Open rpm’s c,d,e,f,I,k,l,m  (rpm –Uvh filename) 
5) Force open h   (rpm –Uvh --nodeps python-netcdf-1.03-1.i386.rpm) 
6) Open j  
7) Open a 
8) Expand Tar file g  (tar –xzvf numeric-17.3.0.tar.gz) 
9) Change mode for b  (chmod 777 dacapo-2.7.3.run) 
10) Change mode for n as done in step 9 
11) Break Shell 
12) Open New Shell 
13) Ready to go. 
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CO Molecule 
 

One of the simplest calculations is the total energy of a CO molecule.  The 

minimal specifications that must be provided are a unit cell, geometry, 

planewave energy cutoff, and the number of electronic bands.  Below is and 

example script of such a calculation followed by an explanation for each step5. 

 

51 #!/usr/bin/env python 
52  
53 ################################## 
54 #                                                                 # 
55 #          CO dimer in a box                         # 
56 #                                                                 # 
57 ################################### 
58  
59 from Simulations.Dacapo import * 
60  
61 sim=Simulation() 
62  
63 sc_latt=BravaisLattice([[1.0,   0.0,   0.0], 
64                                        [0.0,   1.0,   0.0], 
65                                        [0.0,   0.0,    1.0]]) 
66  
67 sim.atoms=ListOfAtoms([Atom(type=C, position=Vector([4,    4,    4])), 
68                                            Atom(type=O, position=Vector([5.1, 4,    4]))], 
69                                            unitcell=8.0*sc_latt 
70  
71 sim.plancut = PlaneWaveCutoff(300)  #  in eV 
72 sim.eband = ElectronicBands(10) 
73  
74 sim.Execute(outfile=”CO_in_a_box.nc”, ascii=CO_in_a_box.txt”) 

 

 

Line 1 enables the user to run python as a shell language anywhere.  Other than 

the first line, the “#” means that the rest of the line is a comment enabling the user 

to place comments after statements, as shown in line 21.  Line 9 is where you 

make function calls to Simulations.Dacapo possible. Line 11 allows you to create 

a python object sim of data type Simulation.  Line 13 is similar and the data type 
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BravaisLattice represents a Bravais lattice.  The initial value given to the Bravais 

Lattice is the unit matrix [[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]].  The 

default units are Å for length and fs for time.  Line 17 sets up the atoms and their 

respective coordinates.  Line 19 sets up the periodic boundary conditions.  In the 

example above we apply a factor of 8 to the simple cubic.  This can also be done 

by setting the Bravais lattice dimensions (line 13) to [[8.0, 0.0, 0.0], [0.0, 8.0, 

0.0], [0.0, 0.0, 8.0]].  Line 21 sets the plane wave basis kinetic energy cut off at 

300 eV and line 22 sets the number of electronic valance bands in the calculation.  

Finally, Line 24 is a function call, acting on the variable ‘sim’, that first causes all 

the attached variables to sim to be written to an input file.  The output file names 

called out in line 24 are of 2 types.  The first is a binary netCDF formatted file 

(.nc) containing all important physical data (energies, forces, charge density, 

magnetic moments, etc.) and the second output file is an ASCII formatted 

readable log file (.txt) describing the course of the just performed calculation2.   
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Geometric Optimization 
 

Typically, an investigator is interested in the total energy of the optimized 

geometry of a system.  This can be done in Dacapo by adding a single line of 

code, as illustrated below in line 48. 

 

75 #!/usr/bin/env python 
76  
77 ################################## 
78 #                                                                 # 
79 #          CO dimer in a box                         # 
80 #                                                                 # 
81 ################################### 
82  
83 from Simulations.Dacapo import * 
84  
85 sim=Simulation() 
86  
87 sc_latt=BravaisLattice([[1.0,   0.0,   0.0], 
88                                        [0.0,   1.0,   0.0], 
89                                        [0.0,   0.0,    1.0]]) 
90  
91 sim.atoms=ListOfAtoms([Atom(type=C, position=Vector([4,    4,    4])), 
92                                            Atom(type=O, position=Vector([5.1, 4,    4]))], 
93                                            unitcell=8.0*sc_latt 
94  
95 sim.plancut  = PlaneWaveCutoff(300)  #  in eV 
96 sim.eband    = ElectronicBands(10) 
97  
98 sim.dyn        = Dynamics() 
99  
100 sim.Execute(outfile=”CO_relaxed.nc”) 
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Atom Projected DOS 
  

To produce a projection of Density of States (DOS), the following script is 

required. 

 

101 #!/usr/bin/env python 
102  
103 ################################## 
104 #                                                                 # 
105 #          CO dimer in a box                         # 
106 #                                                                 # 
107 ################################### 
108  
109 from Simulations.Dacapo import * 
110 from Simulations.Dacapo.AtomProjectedDOS  import AtomProjectedDOS 
111  
112 sim=Simulation() 
113  
114 sim.atoms    =  ListOfAtoms() 
115 sim.UpdateFromNetCDFFile(“CO_relaxed.nc”) 
116  
117 sim.plancut = PlaneWaveCutoff(300)  #  in eV 
118 sim.eband = ElectronicBands(10) 
119  
120 sim.ados    = AtomProjectedDOS() 
121  
122 sim.Execute(outfile=”CO_relaxed_ados.nc”) 

 

Line 60 loads the necessary DOS module in the working directory.  Line 65 

reloads the latest binary .nc file, which contains all atomic information of the 

complex.  Notice that it is the output of the previous calculation.   This is done 

intentionally to show how easily you can link one investigation with another.   

Line 70 is the key line in this, tagging the DOS to a specific name.  
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Visualizing Geometry, DOS, Potential Energy 
 

123 #!/usr/bin/env python 
124  
125 from Simulations.Dacapo import * 
126 from Simulations.Dacapo.EigenState  import EigenState 
127 from Simulations.Dacapo.ListOfEigenStates import ListOfEigenStates 
128  
129 sim   = Simulation() 
130 sim.atoms  = ListOfAtoms() 
131 sim.all  = ListOfEigenStates() 
132  
133 sc_latt=BravaisLattice([[1.0,   0.0,   0.0], 
134                                        [0.0,   1.0,   0.0], 
135                                        [0.0,   0.0,    1.0]]) 
136  
137 sim.atoms=ListOfAtoms([Atom(type=C, position=Vector([4,    4,    4])), 
138                                            Atom(type=O, position=Vector([5.1, 4,    4]))], 
139                                            unitcell=8.0*sc_latt 
140  
141 sim.plancut  = PlaneWaveCutoff(300)  #  in eV 
142 sim.eband    = ElectronicBands(10) 
143  
144 sim.dyn        = Dynamics() 
145  
146 sim.Execute(outfile=”CO_relaxed.nc”, ascii=”CO_relaxed.txt”) 
147  
148 sim.UpdateFromNetCDFFile(“CO_relaxed.nc”) 
149  
150 dosplot = sim.all.GetDOS(smoothfactor=0.2).GetPlot() 
151 raw_input (“press Enter to continue”) 
152 dosplot.SaveAsPS(“CO_relaxed_plot.ps”) 
153  
154 p=sim.atoms.GetPlot() 
155 raw_input (“press Enter to continue”) 
156  
157 print ‘The Energy is %2.4f eV’% sim.atoms.GetTotalPotentialEnergy() 

 

 

Lines 76, 77 load the EigenState Modules into the working directory.  Line 98 

reloads the latest binary .nc file into the working directory to extract all necessary 

data for visualization.  Lines 100 – 107 are the visualization commands.  

Imbedded in these lines are raw input commands to allow the researcher the 

ability to review the plot/display at their discretion.  The last line (107) prints the 

Total Potential Energy on the screen, within the shell.  In the upcoming examples, 
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we will demonstrate how Magnetic Moment, Bond Length, and Atomic Forces 

are displayed.   

 

 

 Combining all in 1 script 
 

      Applying all the 4 elements described above (Total Energy, Geometry 

Optimization, Atom Projected DOS, and Visualization) into 1 script can be done 

as follows.   

 

158 #!/usr/bin/env python 
159  
160 ################################## 
161 #                                                                 # 
162 #          CO dimer in a box                         # 
163 #                                                                 # 
164 ################################### 
165  
166 from Simulations.Dacapo import * 
167 from Simulations.Dacapo.AtomProjectedDOS  import AtomProjectedDOS 
168 from Simulations.Dacapo.EigenState  import EigenState 
169 from Simulations.Dacapo.ListOfEigenStates import ListOfEigenStates 
170  
171 sim   = Simulation() 
172 sim.all  = ListOfEigenStates() 
173  
174 sc_latt=BravaisLattice([[1.0,   0.0,   0.0], 
175                                        [0.0,   1.0,   0.0], 
176                                        [0.0,   0.0,    1.0]]) 
177  
178 sim.atoms=ListOfAtoms([Atom(type=C, position=Vector([4,    4,    4])), 
179                                            Atom(type=O, position=Vector([5.1, 4,    4]))], 
180                                            unitcell=8.0*sc_latt 
181  
182 sim.plancut = PlaneWaveCutoff(300)  #  in eV 
183 sim.eband   = ElectronicBands(10) 
184  
185 sim.ados     = AtomProjectedDOS() 
186 sim.dyn      =  Dynamics()  
187  
188 sim.Execute(outfile=”CO_relaxed.nc”, ascii=CO_in_a_box.txt”) 
189  
190 ############################################################### 
191  
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192 sim.UpdateFromNetCDFFile(“CO_relaxed.nc”) 
193  
194 dosplot = sim.all.GetDOS(smoothfactor=0.2).GetPlot() 
195 raw_input (“press Enter to continue”) 
196 dosplot.SaveAsPS(“CO_relaxed_plot.ps”) 
197  
198 p=sim.atoms.GetPlot() 
199 raw_input (“press Enter to continue”) 
200  
201 print sim.atoms.GetTypes() 
202  
203 postitions = sim.atoms.GetCartesianPositions() 
204 print positions 
205  
206 C_pos=positions[0] 
207 O_pos=positions[1] 
208  
209 print ‘Bondlength = ‘,(Vector(C_pos)-Vector(O_pos)).Length() 
210  
211 print ‘Forces: ‘ 
212 print sim.atoms.GetCartesianForces() 
213  
214 magneticmoment = sim.all.GetMagneticMoment() 
215 print ‘Magnetic Moment = ‘, magneticmoment 
216  
217 print ‘The Energy is %2.4f eV’% sim.atoms.GetTotalPotentialEnergy() 

 

 

Line 151 prints the atoms being studied.  Line 153 and 154 display the positions 

of each atom while line 156 and 157 label each atom of interest.  The Bond 

Length is then calculated in Line 159, which calls on the specific atoms of 

interest.  The Atomic Forces are printed in line 162 and the Magenetic Moment is 

shown in line 165. 
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Oxygen Example 

 

Below is a script designed to calculate the magnetic moment of Oxygen 

and print out the resulting approximation.  Included in the script is an alternative 

way to represent the Bravais Lattice. 

 

218 #!/usr/bin/env python 
219  
220 from Simulations.Dacapo import * 
221 from Simulations.Dacapo.AtomProjectedDOS  import AtomProjectedDOS 
222 from Simulations.Dacapo.EigenState  import EigenState 
223 from Simulations.Dacapo.ListOfEigenStates import ListOfEigenStates 
224  
225 sim   =Simulation() 
226 sim.all  =ListOfEigenStates() 
227  
228 #  Lattice Vector Definitions 
229 a1=[1.0,0.0,0.0] 
230 a2=[0.0,1.0,0.0] 
231 a3=[0.0,0.0,1.0] 
232  
233 ucell=10*BravaisLattice([a1,a2,a3]) 
234  
235 sim.loa=ListOfAtoms([Atom(type=O, position=Vector([4,    4,    4])), 
236                                            magneticmoment = 2.0)], 
237                                            unitcell=ucell) 
238  
239 sim.ExcFunc=ExcFunctional(’RPBE’) 
240  
241 sim.bands=ElectronicBands(10) 
242 sim.bands.OccupationStatistics_FermiTemperature=0.001 
243 sim.bands.SpinPolarization=2 
244  
245 sim.plancut = PlaneWaveCutoff(300)  #  in eV 
246  
247 sim.Execute(‘O.nc’, ‘O.txt’) 
248  
249 print ‘Forces: ‘ 
250 print sim.atoms.GetCartesianForces() 
251  
252 magneticmoment = sim.all.GetMagneticMoment() 
253 print ‘Magnetic Moment = ‘, magneticmoment 
254  
255 print ‘The Energy is %2.4f eV’% sim.atoms.GetTotalPotentialEnergy() 
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Line 186 is an initial guess at the magnetic moment and will serve as a starting 

point for all iterations.  This value directly impacts the Exchange/Correlation 

Functional in Line 189.  Fermi Temperature and Spin Polarization are set in Lines 

192, 193 respectfully.  The remaining lines are carried over from previous 

examples. 

An alternative way to retrieve the magnetic moment from the .txt file can 

be done by utilizing the “grep” command as follows:   

 

grep –A 2 MOM O.txt 

 

You will see many lines that look like. 

MOM    1.999999991  (4.000000000003  2.0000000000012) 

The first number (1.99999991 is the net magnetic moment of the atom.  The 

numbers in parentheses refer to the number of spin up and spin down electrons. 
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Oxygen Molecule 
 

let’s look at the O2 molecule and combine the elements in the O atom 

study in the previous section.  Also, we will allow the molecule to relax 

(dynamics) to an optimized configuration and then determine the magnetic 

moments and energies.   

 

256 #!/usr/bin/env python 
257  
258 from Simulations.Dacapo import * 
259 from Numeric import * 
260  
261 sim=Simulation() 
262  
263 #  Lattice Vector Definitions 
264 a1=[1.0,0.0,0.0] 
265 a2=[0.0,1.0,0.0] 
266 a3=[0.0,0.0,1.0] 
267  
268 ucell=10*BravaisLattice([a1,a2,a3]) 
269  
270 sim.loa=ListOfAtoms([ 
271        Atom(type=O, position=Vector([4.4, 5.0, 5.0]),magneticmoment=1.0), 
272        Atom(type=O, position=Vector([5.61, 5.0, 5.0]),magneticmoment=1.0)], 
273        unitcell=ucell) 
274  
275 NumberOfElectrons=(10)   
276  
277 sim.bands=ElectronicBands(NumberOfElectrons/2+5) 
278 sim.bands.OccupationStatistics_FermiTemperature = 0.001 
279 sim.bands.SpinPolarization = 2 
280  
281 sim.ExcFunc=NetCDF.Entry(‘ExcFunctional’ , ’RPBE’) 
282  
283 sym.dynamics=Dynamics() 
284  
285 sim.plancut = PlaneWaveCutoff(400)  
286  
287 sim.Execute(‘O2_relaxed.nc’, ‘O2_relaxed.txt’) 

 

  

Lines 225 and 227 work together to automatically determine the number of 

electronic bands.  This is a useful technique in determining the # of bands.  Line 
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225 determines the total number of valance electrons and Line 227 calls on this 

number and divides it by 2 and adds 5.  Dacapo has established the following 

working principle: 

 

# of Electronic Bands must be  > ½ the total # of Valence electrons 

 

You can see in Line 233 we invoke the dynamics step to allow the molecule to 

relax (converge) to the lowest energy state.   

 

 

Cadmium Sulfide (1 unit Cell)  

In this section we will calculate the bulk energy of a F43m CdS unit cell.  

We will add new elements to the input file.  These include more involved 

definition of Dynamics (relaxation), k-point sampling, and the importance of the 

Unit Cell size.   

 

288 #!/usr/bin/env python 
289  
290 from Simulations.Dacapo import * 
291 from Numeric import * 
292  
293 sim=Simulation() 
294  
295 #  Lattice Vector Definitions 
296 a1=[1.0,0.0,0.0] 
297 a2=[0.0,1.0,0.0] 
298 a3=[0.0,0.0,1.0] 
299  
300 ucell=8*BravaisLattice([a1,a2,a3]) 
301  
302 sim.loa=ListOfAtoms([ 
303        Atom(type=Cd, position=Vector([5.832,    0.000,     5.832])), 
304        Atom(type=Cd, position=Vector([5.832,    0.000,     0.000])), 
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305        Atom(type=Cd, position=Vector([0.000,    0.000,     0.000])), 
306        Atom(type=Cd, position=Vector([0.000,    0.000,     5.832])), 
307        Atom(type=Cd, position=Vector([5.832,    5.832,     5.832])), 
308        Atom(type=Cd, position=Vector([0.000,    5.832,     5.832])), 
309        Atom(type=Cd, position=Vector([5.832,    5.832,     0.000])), 
310        Atom(type=Cd, position=Vector([0.000,    5.832,     0.000])), 
311        Atom(type=Cd, position=Vector([2.916,    0.000,     2.916])), 
312        Atom(type=Cd, position=Vector([2.916,    2.916,     5.832])), 
313        Atom(type=Cd, position=Vector([5.832,    2.916,     5.832])), 
314        Atom(type=Cd, position=Vector([2.916,    2.916,     0.000])), 
315        Atom(type=Cd, position=Vector([0.000,    2.916,     2.916])), 
316        Atom(type=Cd, position=Vector([2.916,    5.832,     2.916])), 
317        Atom(type=S, position=Vector([4.374,    1.458,     4.374])), 
318        Atom(type=S, position=Vector([1.458,    1.458,     1.458])), 
319        Atom(type=S, position=Vector([1.458,    4.374,     4.374])), 
320        Atom(type=S, position=Vector([4.374,    4.374,     4.374]))], 
321        unitcell=ucell) 
322  
323 NumberOfElectrons=(192) 
324  
325 sim.plancut = PlaneWaveCutoff(400) 
326  
327 sim.bands=ElectronicBands(NumberOfElectrons/2+5) 
328  
329 sim.dynamics= NetCDF.Entry(name=”Dynamics”, value=””); 
330 sim.dynamics.Type = “Relaxation” 
331 sim.dynamics.Method = “ConjugateGradient” 
332 sim.dynamics.Step = 1.2000 
333  
334 sim.eigensolver = NetCDF.Entry(name=”electonicMinimization”, value=””); 
335 sim.eigensolver.Method = “eigsolve” 
336 sim.eigensolver.DiagonalizationPerBand = 2 
337  
338 sim.conv = NetCDF.Entry(name=”ConvergenceControl”) 
339 sim.conv.MaxNumberOfSteps = 100000 
340  
341 sim.kpoints = NetCDF.Entry(name=”kpointSetup”, value=[15,15,15]) 
342  
343 sim.Execute(‘CdS_bulk.nc’, ‘CdS_bulk.txt’) 
344 sim.UpdateFromNetCDFFile(“CdS_bulk.nc) 

 

In the above script, we allow all atoms to relax in Line 279.  In subsequent lines 

we call out the specific Type, Method, and Step (Lines 280 – 282).  Our selections 

call the calculation to use a Complex Conjugate Algorithm with a 1.2 fs time 

integration for the ionic minimization.   In Line 284 and 286 we set up the 

electronic minimization subroutine (Method) as “eigsolve” which refers to the 

Block Davidson algorithm.  Line 260 outlines 2 diagonalizations per band.  This 
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applies to Method “resmin” (Power method, Lennart Bentson, and can only 

handle k-point parallelization).  Line 288 and 289 is a way to control the number 

on steps.  This may be valuable in the screening of a script or computational 

approach to minimize time.  Finally, Line 294 updates the binary .nc file 

automatically.  

 

It important to note when studying bulk species (and others) the number of 

planewaves used in the calculation is dependent on the size of the unit cell (ie. 

Bravais Lattice).  If one would like to know how many planewaves are being 

used.  Use the following command line in a shell.   

 

 grep –A 3 “# of PW” CdS_bulk.txt 

 ncdump –v NumberPlaneWavesKpoint CdS_bulk.nc 

 ncsum –d CdS_bulk.nc 

 

If your planewave cutoff is high enough, the influence of the Unit Cell 

dimensions is minimized.   

 

 

k-Point Determination 
 

There is no automated way to determine the optimum # of k-points for a 

given calculation.  Most individuals begin with an estimated amount of k-points, 

usually low, and run quick energy calculations.  They change the # of k-points in 
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a controlled fashion, usually increasing until the energy begins to converge.  At 

that point, the optimum k-points can be identified.  You can also measure the 

lattice constant of a relaxed complex if desired.  Both techniques work. 

 

 

Bulk Energy with Constraints on designated Atoms 

Below is the same script used in section 5.1 but we apply motion 

constraints on designated atoms and all others are allowed to relax. 

 

345 #!/usr/bin/env python 
346  
347 from Simulations.Dacapo import * 
348 from Numeric import * 
349  
350 sim=Simulation() 
351  
352 #  Lattice Vector Definitions 
353 a1=[1.0,0.0,0.0] 
354 a2=[0.0,1.0,0.0] 
355 a3=[0.0,0.0,1.0] 
356  
357 ucell=8*BravaisLattice([a1,a2,a3]) 
358  
359 sim.loa=ListOfAtoms([ 
360     Atom(type=Cd, position=Vector([5.832, 0.000, 5.832]), constraints=’123’), 
361     Atom(type=Cd, position=Vector([5.832, 0.000, 0.000]), constraints=’123’), 
362     Atom(type=Cd, position=Vector([0.000,    0.000,     0.000])), 
363     Atom(type=Cd, position=Vector([0.000,    0.000,     5.832])), 
364     Atom(type=Cd, position=Vector([5.832,    5.832,     5.832])), 
365     Atom(type=Cd, position=Vector([0.000,    5.832,     5.832])), 
366     Atom(type=Cd, position=Vector([5.832,    5.832,     0.000])), 
367     Atom(type=Cd, position=Vector([0.000,    5.832,     0.000])), 
368     Atom(type=Cd, position=Vector([2.916,    0.000,     2.916])), 
369     Atom(type=Cd, position=Vector([2.916,    2.916,     5.832])), 
370     Atom(type=Cd, position=Vector([5.832,    2.916,     5.832])), 
371     Atom(type=Cd, position=Vector([2.916,    2.916,     0.000])), 
372     Atom(type=Cd, position=Vector([0.000,    2.916,     2.916])), 
373     Atom(type=Cd, position=Vector([2.916,    5.832,     2.916])), 
374     Atom(type=S, position=Vector([4.374, 1.458, 4.374]), constraints=’123’), 
375     Atom(type=S, position=Vector([1.458, 1.458, 1.458]), constraints=’123’), 
376     Atom(type=S, position=Vector([1.458,    4.374,     4.374])), 
377     Atom(type=S, position=Vector([4.374,    4.374,     4.374]))], 
378     unitcell=ucell) 
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379  
380 NumberOfElectrons=(180) 
381  
382 sim.plancut = PlaneWaveCutoff(400) 
383  
384 sim.bands=ElectronicBands(NumberOfElectrons/2+5) 
385  
386 sim.dynamics= NetCDF.Entry(name=”Dynamics”, value=””); 
387 sim.dynamics.Type = “Relaxation” 
388 sim.dynamics.Method = “ConjugateGradient” 
389 sim.dynamics.Step = 1.2000 
390  
391 sim.eigensolver = NetCDF.Entry(name=”electonicMinimization”, value=””); 
392 sim.eigensolver.Method = “eigsolve” 
393 sim.eigensolver.DiagonalizationPerBand = 2 
394  
395 sim.conv = NetCDF.Entry(name=”ConvergenceControl”) 
396 sim.conv.MaxNumberOfSteps = 100000 
397  
398 sim.kpoints = NetCDF.Entry(name=”kpointSetup”, value=[15,15,15]) 
399  
400 sim.Execute(‘CdS_bulk_constraints.nc’, ‘CdS_bulk_constraints.txt’) 
401 sim.UpdateFromNetCDFFile(“CdS_bulk_constraints.nc) 

 

Constraints are applied to 2 Cd and 2 S atoms (Lines 310, 311 and 324, 325) in 

the complex.  This freezes the geometric position within the unit cell and allows 

all other atoms to move to a low energy position.  Some times it is desired to 

freeze a slab atoms position and allow a lone atomic species to find the lowest 

energy state on said slab surface.  This minimizes the computational demand, 

speeding up the calculation, and allows insight into the mechanics/electrical 

properties of the adsorbate on a frozen slab.  We will discuss this in more detail in 

the next section.  As illustrated in the previous examples, you can add the 

commands to display any information you want after line 351.  We did not 

include it here to minimize space.  
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Complex/Adsorbate on the surface of a CdS slab 

 

The script below utilizes an existing bulk Cadmium Sulfide, F43m space 

group (CdS_bulk.nc) file for the slab “list of atoms” position and illustrates how 

an adsorbate species can be added to the surface for electronic approximations.  

The adsorbate atoms will be allowed to relax through the dynamic parameters 

outlined in the input file.   

If  the .nc file does not exist, it must be created and placed in the working 

directory to execute the calculation.   Generating the lowest energy state (relaxed 

configuration) binary ‘.nc’ file was demonstrated many times throughout this 

tutorial.   

 

402 #!/usr/bin/env python 
403  
404 from Simulations.Dacapo import * 
405 from Numeric import * 
406 from RandomArray import random 
407  
408 cds_sim=Simulation() 
409 cds_sim.loa=ListOfAtoms() 
410 cds_sim.UpdateFromNetCDFFile(‘CdS_bulk.nc’) 
411  
412 for atom in CdS_bulk.nc:                 #  only required if constraints not present 
413             atom.SetConstraints(‘123’)  #  only required if constraints not present 
414  
415 cds_sim.loa.append(Atom(C,Vector([10,10,10]))) 
416 cds_sim.loa.append(Atom(H,Vector([10,11,10]))) 
417 cds_sim.loa.append(Atom(H,Vector([10,11,11]))) 
418 cds_sim.loa.append(Atom(H,Vector([10,12,11]))) 
419  
420 p=cds_sim.loa.GetPlot() 
421 raw_input (“press Enter to continue”) 
422  
423 NumberOfElectrons=(180) 
424  
425 sim.bands=ElectronicBands(NumberOfElectrons/2+5) 
426  
427 sim.kpoints = NetCDF.Entry(name=”kpointSetup”, value=[15,15,15]) 
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428  
429 sim.dip=NetCDF.Entry(‘DipoleCorrection’) 
430  
431 sim.ExcFunc=NetCDF.Entry(‘ExcFunctional’,’RPBE’) 
432  
433 sim.symmetry=NetCDF.Entry(name=”UseSymmetry”,value=”Maximum”) 
434  
435 sim.dynamics=NetCDF.Entry(“Dynamics”) 
436  
437 sim.Execute(‘CdS+ch3.nc’, ‘CdS+ch3.txt’) 
438 sim.UpdateFromNetCDFFile(‘CdS+ch3.nc’) 
 

 

In the beginning we load the necessary modules in Dacapo as done before.  Lines 

358, 359, and 360 load the required binary (.nc) file for the slab complex.  If the 

file resides in an alternative directory/location, then a route command must be 

used to direct the program to the right location to retrieve the file (or just make 

sure the file is in the working directory).  Lines 362, 363 are present to place 

constraints on the slab atoms.  This allows the adsorbate complex to relax to the 

lowest energy configuration in relation to the slab and will help expedite the 

calculation.  If your slab already possesses constraints in the ListOfAtoms (loa), 

then these commands are not required.  Lines 365 – 368 add the adsorbate atoms 

(species) on the slab through the “append” command.  We added visualization 

step in 370 & 371 to allow the researcher to verify the location of the newly added 

atoms (species).  This is critical in building an appropriate configuration.  A raw 

input command is installed after the species is viewed to allow the researcher the 

ability to abort the calculation and modify the configuration.   This new complex 

is used in the remaining electronic calculations as done in previous scripts.  

Notice that we have implemented Dynamics (Relaxation) on the complex and 

since we have introduced constraints on the slab atoms, only the adsorbate species 

will be manipulated to the lowest energy state in relation to a frozen slab.    
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ASCII Output File 

 

      The ASCII output can either be read through the ascii file with an editor, 

or you can use the grep command (grep keyword ASCIIoutfile) to search for lines 

containing a key word.  Below is a list of keywords in the ASCII output file from 

Dacapo. 

 

TOT and DFT 

The total energy for the different exchange-correlation functional is given for 

each iteration.  The headline tells you if the energy is self-consistent or calculated 

non-self-consistent for the given density. 

 

STEP 

For ionic relaxation, monitors ionic step length, residual forces on non-

constrained degreees of freedom and the total energy. 

 

MOM 

For spin polarization calculations, monitors the evolution of the magnetic moment 

for each electronic iteration. 

 

STRUCTURE 

This gives the unit cell and the atomic coordinates for the calculation.  Also the 

constraints on the atoms is given here. 
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SYM 

Gives information about the point group operations the symmetry module has 

found. 

 

KPT 

The KPT keyword gives information about the k-point given as input, either by 

specifying a predefined k-points set (Monkhorst-Pack/Chadi-Cohen) in the 

variable KpointSetup or directly in the variable BZKpoints.  The symmetry 

reduced set of k-points in the irreducible Brillouin zone is also listed.  There are 

many other key words and one can search the CAMPOS web site for further 

details6.  At the end of the ASCII file, there is a breakdown on the computational 

time required to complete a successful run. 
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Appendix  II 

 

Input Files and Unit Cell Configurations 

 This Appendix contains the DACAPO input files used to generate the bulk 

free energy of the Ni/SiO2 complexes, which involve one and two layers �, � SiO2 

on Ni complex.  These bulk energies were used to construct the cohesive, surface 

free, and interfacial adhesion energies.  The input files were further utilized to 

produce the Potential Energy Surface by reducing the Si – O bond length as 

described earlier.  Ni surface and complex remained unchanged in all studies in 

this thesis.  After each input file, the geometric configuration is illustrated for 

reference. 
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Ni/� SiO2 Complex input file 
2 layers of SiO2 
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Ni/� SiO2 Complex input file 

1 layer of SiO2 
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Ni/� SiO2 Complex input file 
2 layers of SiO2 
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Ni/� SiO2 Complex input file 

1 layer of SiO2 
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Appendix  III 

 

Input Files for Lattice Mis-Match 

 This appendix contains the significant input files for the lattice mis-match 

that simulated the presence of a non-ideal marriage of the Ni and SiO2 complex.  

In the beginning of the input file, the offset along the X and Z axis is called out. 

The geometric illustrations were left out due to the minimal differences between 

them with respect to the control configurations displayed in Appendix I. 
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Ni/� SiO2 Complex input file 
1 layer of SiO2 
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Ni/� SiO2 Complex input file 
2 layers of SiO2 
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1 layer of SiO2 

 

 

 



 157 
 
 

 

 

 

 

 

 



 158 
 
 

 

 

 

 

 

 



 159 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 160 
 
 

 

 

Ni/� SiO2 Complex input file 
2 layers of SiO2 
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2 layers of SiO2 

 

 

 

 



 169 
 
 

 

 

 

 

 



 170 
 
 

 

 

 

 

 



 171 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 172 
 
 

 

Ni/� SiO2 Complex input file 
1 layer of SiO2 

 

 

 

 



 173 
 
 

 

 

 

 

 



 174 
 
 

 

 

 

 

 

 



 175 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 176 
 
 

 

Ni/� SiO2 Complex input file 
2 layers of SiO2 
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