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ABSTRACT

COMPRESSIVE SENSING

By

Joshua Dennis Booth

August 2010

Thesis Supervised by Dr. Carl Toews

This work is an expository overview of certain key elements in the area of

compressive sensing. As a sub-discipline of signal processing, compressive sensing is

concerned with both sampling and reconstruction techniques. In this expository,

sampling will center on random matrices and expander graphs, while reconstruction

will use multiple numerical optimization techniques. Although theoretical

performance bounds for these techniques can be found scattered throughout the

published literature, there are few practical rules for concrete problems. This thesis

helps fill this gap by experimenting on the asymptotic bounds of the number of

measurements needed to guarantee perfect reconstruction. These numerical

experiments help to identify specific sensing regimes in which performance begin to

break down.
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Preface

This thesis explores an area of mathematics called compressive sensing. The work

has two aims: one is to provide an expository overview of some of the key results in

the field, uniting and connecting ideas that at present are scattered throughout the

research literature. The other is to investigate the practical limits of certain theorems

and algorithms by comparing their performance on a test suite of model problems.

Together, these goals are designed to produce a work which will serve as a useful

reference for future researchers in the field, especially those who are approaching it

for the first time, and will provide a body of performance benchmarks against which

their results can be judged.
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Chapter 1

Introduction

Compressive sensing is a recently developed subset of digital signal processing.

The processes of sampling, compression, and reconstruction of digital signal

processing are the principle processes composing compressive sensing. The term

sampling is generally related to the reduction of a continuous signal, such as a

sinusoid wave, to a discrete or digital signal, such as a binary vector [Str07].

Sampling can be done in multiple ways, one of which is simple discretization. The

reduction of data that represents a discrete signal is compression. The opposite for

both sampling and compression is reconstruction. In reconstruction, the goal is to

successfully reproduce the original signal from a smaller set of data [Don06].

In the past, the golden rule for sampling was the Nyquist-Shannon Sampling

Theorem. This theorem has been the principal sufficient condition for reconstruction

for over forty years. In general terms, the theorem states that a continuous

bandlimited 1 signal must be sampled at least twice that of the frequency in order for

the sample points to provide enough information for perfect reconstruction [GW08].

Compressive sensing takes a different approach than standard sampling and, by

doing so, can take fewer samples than can the Nyquist-Shannon’s Sampling Theorem,

1A bandlimited signal is a signal whose Fourier Transformation is zero above a certain finite
frequency.
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and it still can produce a result that can be reconstructed. Compressive sensing

starts with a discrete signal that it assumes is sparse, i.e., a discrete signal that has

predominantly zero valued entries. It then takes a number of inner products of these

discrete signals, x ∈ R
N , where the number of inner products, n, is less than N . The

reconstruction from these n inner products to the original N dimensional signal is

probabilistic. The probabilistic reconstruction means that with high probability the

original signal can be reconstructed if the original signal was sparse enough and the

set of vectors used to take the inner produces conform to certain properties [Don06].

The purpose of this document is to amalgamate current publications and produce

a more coherent introductory manual on compressive sensing. This objective will be

fulfilled in the following chapters that will outline current construction methods of a

matrix whose row vectors are used in the inner products, reconstruction methods,

and numerical results of current application.

1.1 Notation and Background

The underlining model of compressive sensing and its inner products can be

simplified to a simple linear equation in the sensing direction, i.e.,

y = Φx + τ. (1.1)

In this model, x is the original signal represented by a vector with dimension N ,

and y is the signal after a linear transformation with the sensing matrix Φ ∈ R
n×N .

The goal of Compressed Sensing is to have N ≫ n while still being able to recover x.

This model allows for some additive noise in transfer, τ , with dimension n. An

additional constraint on the model is that x exhibits some level of sparsity. Formally,

Definition 1.1.0.1. k-Sparsity
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A vector x ∈ R
N is k-Sparse if the cardinality of its elements {xi 6= 0 } is less than or

equal to k.

Some models exist where the signal, x, is not assumed to be sparse [BDB07].

These models are best represented with two matrices Φ and Ψ, where Ψ ∈ R
N×N and

y = ΦΨx. (1.2)

The role of this representation is used to study the relationship between the

sparsity-inducting basis {ψi} and {φi}. In particular, the condition know as

incoherence of the two bases is required for recovery [BDB07]. However, only the first

model will be studied in length, since the second model adds unnecessary

complication.

The inverse, or reconstruction, of this seemingly easy linear transformation can

take many shapes. Since, n < N , an inverse of Φ cannot be found, though

reconstruction can be achieved in compressive sensing if the original signal is sparse

enough and the sensing matrix has certain properties. A common setup for

reconstruction in compressive sensing is to solve the optimization problem,

min||Φx̃− y||1 + λ||x̃||1. (1.3)

The recovered signal is represented by x̃, and the use of ℓ1 norm will be discussed in

detail in the chapter concerning recovery.

1.2 Past Work

To provide a background for the remaining chapters, a brief history of past work

in compressive sensing is given.

Sampling at a rate lower than required by the Nyquist-Shannon Theorem has been

3



in existence for over four decades [XH07]. However, the real eruption of this field did

not occur until around 2004, with the first discoveries by Emmanuel Candes. After

Cande’s work in magnetic resonance imaging, the first publications dealing with

compressive sensing were done in relationship to statistical analysis of the use of

random matrices to obtain linear measurements. However, the results of the

measurements could not be verified without a recovery method [CRT06].

Since compressive sensing is an application that exploits the redundancy of

structure in a sparse signal, a metric must be chosen to represent the concept of

sparsity in recovery. The typical metric, l0
2, would be a logical choice. Though l0

may be a logical choice, computations with this metric can be troublesome. The

trouble of using this matric is it lacks the properties of being strictly convex, smooth,

and differentiable [Tro04, TG07, CT05]. However, other metrics have been found to

work well with certain subsets of sensing matrices that have defining attributes. By

using these other metrics, theorems can be stated for recovery that are necessary but

may not be sufficient [Don06].

The first large set of publications on compressed sensing was done by David L.

Donoho at Stanford University in 2004. In his work [Don06], Donoho outlines in

detail the concept of transformation, measurements, and their interactions to form

sensing matrices. The analysis is done from a geometric point of view, and the work

addresses the relationship between l0 and l1 reconstruction. Though articles using l1

based recovery on l0 type recovery problems had already been published, this was one

of the first articles that gave proofs relating to its use in compressive sensing.

However, Donoho did not give a tangible description on the type of sensing matrices

[Don06].

Many of the first works published on compressive sensing centered on the

geometric analysis of recovery using a very broad set of matrices. Professionals in the

2The l0 norm is a finite norm which counts the number of nonzero elements in a given vector.
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fields of applied statistics and electrical engineering soon started to publish numerical

results and construction algorithms. For nearly four years, these two fields used the

holographic texts of Donoho and Candes to review linear measurements generated by

random matrices and redundant dictionaries [BGI+08].

Recently, the field of electrical engineering has moved away from dense matrices

based on geometric analysis to more sparse matrices to obtain linear measurements.

One such form has a connection between compressive sensing and error correction

codes [JXHC08]. Chapter two will look at sensing matrices generated based on

geometric and graph analysis are outlined to show the formation of two general

sensing matrices from current publication. The third chapter will look at

reconstruction methods, and the fourth chapter on numerical results of sensing

matrices and reconstruction techniques will be given.

5



Chapter 2

Sensing Matrices

In this chapter, two forms of sensing matrices that can be used for compressive

sensing will be examined. The first of these matrices uses a construction based on the

geometric analysis of embedding in a linear space, while the second uses graphs. The

two forms of construction, though different, can be examined in a similar way by the

use of spectrum analysis of the adjacency and Laplacian matrices of a graph.

However, the connection would not provide a reader with a better understanding of

current research in compressive sensing, since no publications exist in this area at this

time.

2.1 Geometric and Probabilistic Design

The goal of compression is to exploit properties of the signal so that it can be

described with less information. However, some attributes of a signal, such as the

dimension of the space in which a signal is contained, gives little indication of how it

should be compressed. A related real world example of this would be finding a

building. The detailed instructions to 1600 Pennsylvania Avenue North West,

Washington, D.C. from a general starting point, the origin, can be very long.

However, knowing the area around the White House removes a large amount of

6



information about location that is needed. In place of holding a world map, one can

replace it with a much smaller map. This example demonstrates the need to classify

and generate more information about the original signal to help narrow down the

information needed.

In an adaptive compression algorithm, the signal could be examined before

deciding the best method for compression. In the example, the address is known

before a trip to the map store. The information gives a reasonable idea of the maps

that will be needed. When a sparse signal is given, an adaptive method would

examine and locate the largest coefficients. These coefficients would best represent

the signal since they dominate the total information of the signal [Don06].

However, compressive sensing is a non-adaptive compression, or sampling,

algorithm. One way to counteract not being able to adapt to the signal is to build an

algorithm that can efficiently compress a limited set of signals. The problem occurs

that a signal would still need to be examined to know if it belongs to this limited set.

However, signals coming from the same device or application tend to have similar

properties, and by knowing these properties, the algorithm can be selected without

examining every signal. As in the above example, limiting plays a key role. If it was

known before going to the map store that the destination is in the United States,

there would be no need to carry an international map. However, if one knew that the

only destinations possible lies in the United States, many characteristics would

already be known as to how to find the location. The knowledge of points that may

be near or similar to the original signal would generate characteristic data that can

be used to locate the signal.

One way to measure the distance between signals is with a metric. Metrics have

many forms. However, a set of natural metrics arises from norms. A set of norms

exists known as p− norms [Sut75]. They are defined as,

7



Definition 2.1.0.2. p− norm

||x||p ≡ (
∑

i |xi|p)
1
p with p ≥ 1.

These p− norms all generate a metric, distance(x,y) = ||x− y||p. Once a way of

measuring and a general point that represents the limited set is picked, the area

around the signal can be examined. The subspace around this point at a certain

distance defined by the metric is termed the ℓp − ball centered at that point [Sut75].

As addressed in chapter one, compressive sensing wants to take advantage of

sparsity, a large percent of zero entries. Signals can be grouped into classes by

sparsity using the concept of distance. Sparsity is naturally represented by the

ℓ0 − norm. However, the ℓ0 − norm is difficult to work with since it is not a

p− norm. A reasonable solution to this problem is to replace the ℓ0 − norm by the

ℓ1 − norm [CT05]. This substitution can be done on certain subsets of sparse signals,

and it allows the modeling to be done on ℓp − balls that are convex. All ℓp − balls

with p ≥ 1 form convex sets, but these sets are not convex when 0 < p < 1. The

property of being a convex set is important in reconstruction with optimization

because it allows for the existence of a local minimum [CT05].

A restriction on which signals can be placed into a class, X, would be based on the

size or potential information contained in the signal [Don06]. Therefore, X would

contain x that satisfies

||x||p ≡ (
∑

i

|xi|p)
1
p ≤ R (2.1)

and where p ∈ (0, 2) and R > 0.

Once a class of signals is defined, the goal of embedding x ∈ X in a smaller

subspace, or describing it with a smaller amount of information, can be related to

Gel’fand n-width.

8



Definition 2.1.0.3. [Gelfand n-width] [Don06]

The Gel’fand n-width of X with respect to ℓ2 − norm in R
N is defined as

dn(X; ℓ2) = inf
Vn

sup{||x||2 : x ∈ V ⊥
n ∩X} (2.2)

where the infimum is over n-dimensional linear subspaces of R
N , and V ⊥

n denotes the

ortho-complement of Vn with respect to the standard Euclidean inner product.

Gelfand n-width is the subspace V ⊥
n with the property that the norm of the

projected signal is as small as possible [Don06]. However, it is important to measure

not only the size of the projection, but the error in recovery to judge the efficiency of

the compression.

Let Φ be a non-adapted function that maps the original signal, x ∈ R
N to R

n.

Also, let Ψ be an unspecified, possibly nonlinear reconstruction operator, or

algorithm. An approximation of error for a signal can be given by

En(X) = inf
Φn,Ψn

sup
x∈X

||x−Ψn(Φn(x))||2 (2.3)

where n represents some pair of algorithms based in R
n[Don06].

It was shown by Donoho that there exists a strong relationship between Gel’fand

n-widths and the error of recovery for non-adaptive methods given by

Theorem 2.1.0.1. [Don06]

dn(X; ℓp) ≤ En(X) ≤ 2
1
p
−1 · dn(X; ℓp) (2.4)

where X is a class containing element in R
N defined by 0 < p ≤ 1 and R > 0 and dn

is the Gelfand n-width.

From the given theorem, the Gelfand n-width gives the exact value of optimal

information when p = 1, and gives a good approximation for p < 1. In addition,

9



subspace dimensionality can also be studied using Kolmogorov n-widths [Don06]. In

Kolmogorov n-widths, dn measures the quality of approximation of X possible by Vn,

and these n-widths have a duality relationship with Gel’fand n-widths when p = 1.

Definition 2.1.0.4. [Kolmogorov n-width] [Don06]

Let X ⊂ R
N be a bounded set. The Kolmogorov n-width of X with respect to the

ℓ2 − norm in R
N is defined as

dn(X; ℓ2) = inf
Vn

sup
x∈X

inf
y∈Vn

||x− y||2 (2.5)

where the infimum is over n-dimensional linear subspaces of R
N .

In addition, Gel’fand and Kolmogorov n-widths can be used to prove:

Theorem 2.1.0.2. Let (n,Nn) be a sequence of problem size with n < Nn, n→∞,

and Nn ∼ Ψnγ, γ > 1, Ψ > 0. Then for 0 < p ≤ 1, there is Cp = Cp(Ψ, γ) > 0 so that

En((X)) ≤ Cp ·R · (n/log(Nn))
1
2
− 1

p , n→∞. (2.6)

This theorem states that the amount of information lost is less than or equal to the

product of the radius restriction, R, defining the class X and the proportion of n to

the log(Nn) for a non-adaptive method [Don06].

A similar expression can be generated for an adaptive method using the same

method as above. In an adaptive method that takes L of the largest coefficients, the

error of the original and approximation, xL would yield the expression:

||x− xL||2 ≤ ξ2,p · ||x||p · (L+ 1)
1
2
− 1

p , for L = 0, 1, 2, ..., (2.7)

with the constant ξ2,p depending only on p ∈ (0, 2) [Don06].

In comparing these two equations, a relationship can be made between the number

of non-adaptive measurements needed to achieve results similar to the adaptive

10



method. Similar results can be achieved by letting n ≈ L · log(N) [Don06]. The result

allows a method of compression to work for a class of signal with only needing to

adjust the number of measurements by a factor of log(N). In addition, the slow

growing nature of the log function means the number of measurements will grow at a

rate that is sublinear to the signal when the signal is large.

The errors of En(X) and EAdapt
n (X), where

EAdapt
n ((X)) = inf

Ψn,ΦA
n

sup
x∈X

||x−Ψn(Φ
A
n (x))||2, (2.8)

can be combined to give the following theorem.

Theorem 2.1.0.3. [Don06]

For 0 < p ≤ 1 and Cp > 0,

En(X) ≤ 2
1
p · EAdapt

n (X). (2.9)

The case with the smallest non-adaptive error is generated when p = 1. In this

case, the error of the non-adaptive method is at most twice the error of the adaptive

method. These results merit the need for tangible non-adaptive compression

algorithm, Φ. However, the existence of Φ is not enough to design a sufficient

algorithm. In addition, the existence of a Φ to be used for compression is not unique.

Testing that a given Φ is a compressive sensing matrix can be time consuming

[BDDW07]. In addition, a way of classifying the compression algorithms that would

minimize En(X) would be beneficial in testing suitable algorithms.

11



2.1.1 Introduction to The Restricted Isometry Property

(RIP)

The reconstruction problem of finding a sparse solution to an underdetermined

systems of linear equations is NP-hard [CT05]. Verifying a viable Φ that can be used

for compressive sensing with a sufficient condition of reconstruction can be a

daunting task. However, the work of Emmanuel Cades and Terence Tao introduced

the Restricted Isometry Property which provides a condition for matrices that will be

sufficient for recovery with little to no error [CT05].

Theorem 2.1.1.1. [Restricted Isometry Property (RIP)] [CT05]

A given matrix Φ ∈ R
n×N satisfies the Restricted Isometry Property, RIP, of order

k if there exists a δk ∈ (0, 1) such that

(1− δk) · ||xT ||2ℓ2 ≤ ||ΦTxT ||2ℓ2 ≤ (1 + δk) · ||xT ||2ℓ2 (2.10)

holds for all sets T of column vectors of Φ with |T | ≤ k such that ΦT ∈ R
n×|T | and xT

is the vector obtained by retaining only the entries of x corresponding to the column

indices T .

The RIP is a way of quantifying the degree Φ holds to the property deemed

restrictedly almost orthonormal systems, which is a collection of vectors which

behaves like an orthonormal system but only for sparse linear combinations [CT05].

A square matrix Φ̂ ∈ R
N×N that is orthonormal and produces the samples, ŷ = Φ̂x,

can easily recover x using basic linear algebra. Since the signal is sparse, only a

subset of k column vectors of Φ will be used to calculate each linear measurement.

Therefore, only subsets of column vectors with cardinality less than or equal to k need

to be examined. Matrices, ΦT , can be constructed from these subsets. The amount

that each matrix, ΦT , varies from being orthonormal can then be estimated [CT05].

12



The approximate amount that each ΦT varies from being orthonormal can be

expressed by substituting several properties of norms: For any given matrix A and

vector x, ||Ax||B ≤ ||A||AB · ||x||A, and ||A||2 =
√

λmax of (A∗A) [Str07]. In the case

of the RIP, each ΦT is desired to be close to orthonormal. In addition, orthonormal

matrices have the properties of having all eigenvalues having magnitude equal to one

and having its adjoint equivalent to its inverse, i.e., Φ∗
T ΦT = ΦT Φ∗

T = I where I is the

identity matrix. Therefore, ||ΦT ||2 can be estimated to be close to the value 1.

In verifying that the RIP achieves the desired result, the Johnson-Lindenstrauss

Lemma can be used. The original formulation of Johnson and Lindenstrauss is as

follows:

Lemma 2.1.1.1. [Johnson-Lindenstrauss] [BDDW07]

Let ǫ ∈ (0, 1) be given. For every set Q of #(Q) points in R
N , if n is a positive

integer such that n > n0 = O(ln(#(Q))/ǫ2), there exists a Lipschitz mapping

f : R
N → R

n such that

(1− ǫ) · ||u− v||ℓ2 ≤ ||f(u)− f(v)||ℓ2 ≤ (1 + ǫ) · ||u− v||ℓ2 (2.11)

for all u, v ∈ Q.

The Lipschitz mapping 1, f , can be taken as a linear mapping represented by an

n×N matrix Φ under certain conditions. In particular, Φ is normally taken as a

matrix whose entries are randomly drawn from certain probability distributions in

many proofs of the Johnson-Lindenstrauss Lemma [BDDW07].

The randomly drawn values can be represented by a probability measure space,

(Ω, ρ). In the probability measure space, (Ω, ρ), the independent observed values of a

random variable on Ω can be used to generate random matrices Φ(ι), ι ∈ ΩnN

[BDDW07]. Given any set of points in Q, the matrix f = Φ(ι) will satisfy the

1A function is said to be a Lipschitz mapping, if there exists a constant C ∈ R
+ such that for all

x and y in the domain of f , |f(x)− f(y)| ≤ C · |x− y| [Sut75].
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Johnson-Lindenstrauss Lemma with high probability provided n satisfies the

condition of Johnson-Lindenstrauss Lemma, i.e., n is a positive integer such that

n > n0 = O(ln(#(Q))/ǫ2) . The exact probability can be proven by first limiting the

set of Φ(ι) such that for any x ∈ R
N the random variable ||Φ(ι)x||2ℓ2 has the expected

value ||x||2ℓ2, i.e.,

E(||Φ(ι)x||ℓ22) = ||x||2ℓ2. (2.12)

The random matrix generated from this probability space can be shown to have

the property that the

Pr(||Φ(ι)x||ℓ22 − ||x||
2
ℓ2
≥ ǫ||x||2ℓ2) ≤ 2e−nc0(ǫ), 0 < ǫ < 1, (2.13)

where the probability is taken over all n×N matrices Φ(ι) and c0(ǫ) is a constant

depending only on ǫ such that for all ǫ ∈ (0, 1), c0(ǫ) > 0. This equation based on the

moment condition allows one to show the probability that a random matrix will

satisfy the Johnson-Lindenstrauss Lemma [BDDW07].

Lemma 2.1.1.2. [Probability of Random Matrix Satisfying JL-Lemma] [BDDW07]

Let Φ(ι), ι ∈ ΩnN be a random matrix of size n×N drawn according to any

distribution that satisfies the above inequality. Then for any set T with #(T ) = k < n

and any 0 < δ < 1, we have

(1− δ) · ||x||ℓ2 ≤ ||Φ(ι)x||ℓ2 ≤ (1 + δ) · ||x||ℓ2, for all x ∈ XT (2.14)

with the probability

≥ 1− 2(
12

δ
)ke−c0(

δ
2
)n (2.15)

Once the probability that Φ(ι) will fail is known for each k dimensional space of

X, they can be combined to find the total probability of failure. There are
(

N
k

)

subspaces for a given k and N [BDDW07]. Noting that
(

N
k

)

≤ (eN/k)k, the RIP will
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fail to hold with probability

≤ 2(eN/k)k(12/δ)ke−c0(δ/2)n = exp(−c0(δ/2)n+ k(log (en/k) + log (12/δ)) + log (2)).

(2.16)

Therefore the probability of a random matrix satisfying the RIP can be summarized

as follows:

Theorem 2.1.1.2. [BDDW07]

Suppose that n, N , and 0 < δ < 1 are given. If the probability distribution

generating the n×N matrices Φ(ι), ι ∈ ΩnN , satisfies the above inequality, then there

exist constants c1, c2 > 0 depending only on δ such that the RIP holds for Φ(ι) with

the prescribed δ and any k ≤ c1n/ log (N/k) with the probability ≥ 1− exp (−c2n).

2.1.2 A Deeper Look at RIP

A sensing matrix that satisfies the RIP has the property of being close to an

orthonormal matrix for sparse signals. The degree that the matrix, Φ, and its

sub-matrices vary from orthonormal is quantified with the parameter δk. The smaller

the value of δk, the closer the sub-matrices are to forming an ideal orthonormal

system [CT05]. The question of how small δk has to be to achieve desired

characteristics, such as the recovery of a unique signal, is the nature question.

However, one cannot construct a random matrix based on δk that will guarantee the

desirable characteristic. A solution to the problem is to build a stronger requirement

based on increasing the size of k. Therefore, one would want to satisfy the RIP for a

larger set, such as 2k, so that the matrix would have the desired property. A random

matrix can then be tested to have this property by examining the value of δk.

One of the first desirable properties in recovery would be the existence of a unique

solution [CT05]. The ability to recover a unique solution after using one of these
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sensing matrices was first outlined by Candes and Tao [CT05]. It is stated that:

Lemma 2.1.2.1. [CT05]

Suppose that k ≥ 1 is such that δ2k < 1, and |T | ≤ k. Let y := ΦTxT for some

arbitrary |T |-dimensional vector x. Then the set T and the coefficients of xT can be

reconstructed uniquely from the knowledge of y and all the column vectors of Φ.

In addition, the norm error of the recovered signal, x̃, can be reduced by limiting the

size of δ for a larger set k [CT05]. In particular, if Φ satisfies the RIP with δ3k < 1, it

can be shown that:

Lemma 2.1.2.2.

||x− x̃||ℓ2 ≤
C · ||x− xk||ℓ2

k1/2
(2.17)

for C depending only on δ3k.

In combining the results of the two above lemmas, a new result of an exact solution

can be formed [CRT06].

Lemma 2.1.2.3. For a given Φ that satisfies the RIP condition such that

δ2k + δ3k < 1, then the solution to

min
x̃∈RN

||x̃||ℓ1 subject to Φx̃ = y (2.18)

is exact.

These conditions are many times rolled up with a third condition known as stable

recovery. In stable recovery, linear measurements y are perturbed by some noise

before reconstruction is considered. If y = Φx + e with ||e||ℓ2 < ǫ, then the recovery of

min
˜̂x∈RN

||x̂||ℓ1 subject to ||y− Φx̂||ℓ2 ≤ ǫ (2.19)
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then for any x ∈ R
N

||x− x̃||ℓ2 ≤
C1 · ||x− xk||ℓ2

k1/2
+ C2 · ǫ. (2.20)

The three properties related to the size of δ are normally termed: Tractable

Recovery, Robustful Recovery, and Stable Recovery. Tractable recovery ensures that

all k − sparse signals are perfectly recovered via ℓ1 minimization [CT05]. Robustful

Recovery is the property that is achieved in (2.17) and stable recovery as defined

above. Empirical results have shown that all three of these properties can be achieved

when δ2k < .4 [CT05].

Despite only having to verify up to δ2k, testing a given matrix can be troublesome.

The test requires checking eigenvalues of each submatrix, ΦT . As a result, a set of well

studied matrices with known properties are normally used in compressive sensing.

2.1.3 RIP Matrices

In many cases, random matrices are used in relationship to RIP. As stated earlier,

the probability that a random matrix satisfies the RIP can be calculated using the

Johnson-Lindenstrauss Lemma.

The Gaussian random matrix, ΦG, is one of the best behaving and well studied

random matrices for compressive sensing. The matrix draws entries as independent

observed random variables of the distribution having mean value 0 and variance of 1
n
.

The parameter, c0(ǫ), that defines the probability that the matrix from the given

distribution satisfies the expected value condition is c0(ǫ) = ǫ2/4− ǫ3/6 [BDDW07].

This parameter makes the Gaussian random matrix ideal due to the high probability

of being a suitable sensing matrix. In addition, the number of measurements, n,

needs to be only O(k log (N/2k) [CT05]. This is one of the largest reductions using

sensing matrices.
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Random matrices are not the only type of matrix used with RIP. Attempts have

been made to find deterministic matrices that fulfill the RIP. One such matrix was

constructed by Ronald DeVore [DeV07]. DeVore utilizes the cyclic nature of

polynomials on a prime finite field for his construction. In particular,

Theorem 2.1.3.1. [DeVore Construction] Let Φ0 be the n×N matrix with columns

vQ, Q ∈ Pr with these columns ordered lexicographically with respect to the coefficients

of the polynomials. Then, the matrix Φ := 1√
p
Φ0 satisfies the RIP with δ = (k − 1)r/p

for any k < p/r + 1.

This deterministic construction limits the choice of n := p2, N := pr+1, and k < p
r

+ 1

where p is a prime number and 0 < r < p. These limitations are far more constricting

than are most random matrices [DeV07].

A lower bound on the number of linear measurements needed for a deterministic

build that satisfies the RIP using only the values {0, 1} entries does exits and shows

the restriction relating to the number of measurements needed for recovery. If the

RIP condition were to be rephrased as the following:

Definition 2.1.3.1. [(k,D)-RIP]

Let Φ be an n×N matrix. Then, Φ satisfies (k,D)-RIP if there exists c > 0 such that

all k − sparse x ∈ R
N

||Φx||ℓ2 ≤ ||x||ℓ2 ≤ cD||Φx||ℓ2. (2.21)

The lower bound n depends on D, or in general O(δ), such that n ≥ min{k2

D
, N

D2}.

These bounds exist for matrices satisfying the RIP; however other sufficient

conditions may exist for other types of deterministic sensing matrices.
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2.2 Graph Construction

The geometric analysis used for the construction of sensing matrices in the

previous sections led to the development of the RIP and reconstruction guarantees.

Most sensing matrices that satisfy the RIP are non-sparse. In addition, there exists a

correlation between the degree of sparsity of an RIP sensing matrix and the decrease

of linear measurements [XH07]. The RIP-2 2 does provide a very large decrease in

dimensionality of the original signal. However, this large decrease comes at the price

of using dense matrices with polynomial time recovery methods [XH07].

Construction methods based on graphs and pseudo-random distributions offer a

different perspective than geometric analysis. Many of the sensing matrices generated

with this approach are sparse, some of which have deterministic construction. These

very sparse binary matrices can be constructed fast and stored with little memory. In

addition, the reconstruction process on several matrices can be performed in

sub-linear time [XH07]. Many of these matrices do suffer the requirement of more

linear measurements than do RIP-2 sensing matrices [BGI+08]. However, the increase

in linear measurements is not as substantial as the stated in the last section.

2.2.1 Expander Graph Construction

The best deterministic RIP-2 sensing matrix requires the number of linear

measurements be Ω(k2) [BGI+08]. However, it is possible to construct a sensing

matrix based on an unbalanced expander graph that can be used for compressive

sensing that has measurements O(k log (n)) [BGI+08]. Expander graphs can be

thought of as graphs that are sparse in edges but that are still well connected.

Expander Graphs have been used in the past by areas of information theory dealing

with the similar dual problem of low-density parity-check codes and superimposed

codes [BGI+08].

2The previous RIP will now be addressed as RIP-2 because it is based on ℓ2
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Definition 2.2.1.1. [Unbalanced Bipartite Expander Graph] [XH07]

An (αN, βd) unbalanced expander with regular left degree d is a bipartite simple graph

G = [A, B] with N left variable nodes, A, and n right parity check nodes, B, such

that for some 0 < α, β < 0 if for every subset, V ∈ A, with |V| ≤ αN ,

|N (V)| > βd|V|, where N (V) is the set of neighbors of V.

This type of graph construction can be written as an n×N adjacency matrix, Φ.

Each column of Φ would have exactly d ones. Non-regular degree expander graphs

can be used in substitution. However, non-regular expander graphs do not add any

special results, and they only tend to make analysis more complex. In particular, the

only parameter that has a detrimental effect of an expander graph being used as a

sensing matrix is β [JXHC08]. The parameter α has the ability to help determine the

type of recovery that can be used and normally follows from the selection of β.

However, the parameter d has little to do with the ability of an expander being a

good sensing matrix. In particular, it can be shown,

Theorem 2.2.1.1. [XH07]

Let 0 < β < 1 and the ratio r = n
N

be given. Then for large enough N there exists a

regular left degree d bipartite expander for some 0 < α < 1 and constant d that does

not grow with N .

Inversely, the probability that a random binary adjacency matrix with a constant

number of ones in a column is an expander graph does not depend directly on d.

Theorem 2.2.1.2. [BM01]

A left regular bipartite graph that is chosen by using vectors of random

combinations will be an (αN, βd) expander with probability 1− O(N)/N for any

β > 1− 1
d
.

In particular, the assumption that d ≥ 5 and β > 3/4 is made for most expanders.

This assumption does not always have to be the case, and these values are based on
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sub-linear recovery algorithms. However, these values provide ideal reconstruction

and deterministic construction of expanders produced using the zig-zag product

[JXHC08]. These requirements can be lessened when examining sensing matrices

based on graphs that wish to be recovered by optimization similar to RIP-2.

2.2.2 RIP-1

A similar property to RIP-2 can be constructed for a sensing matrix generated

from graphs. This property, RIP-1, is similar but not equivalent and cannot be

directly compared to RIP-2 using classical analysis. The definition of this more

relaxed property for any p is:

Definition 2.2.2.1. [RIP-p] [BGI+08]

An n×N matrix Φ is said to satisfy RIP-p, if for any k − sparse vector x, we have

||x||ℓp ≤ ||Φx||ℓp ≤ (1 + δ) · ||x||ℓp. (2.22)

This property can generate the same sufficient condition for recovery as the RIP-2 for

1 ≤ p ≤ 1 +O(1)/ log (N) if Φ is an adjacency matrix of a high-quality expander

graph. In particular, any n×N matrix adjacency matrix of an (k, 1− ǫ) left regular

expander with degree d, such that 1/ǫ and d are smaller than N would be a

high-quality expander. Then the scaled matrix, 1
d1/p Φ, satisfies the RIP-p for

1 ≤ p ≤ 1 +O(1)/ log (N) and δ = C · ǫ for some absolute constant C > 1. This

theorem allows almost all unbalanced left regular expander graphs to be used with

optimization based recovery similar to RIP-2 [BGI+08].

In parallel to the coefficients of δ2k and δ3k of RIP-2, the parameters of RIP-p can

be adjusted to provide a better understanding of recovery with optimization.

However, δ is a very general parameter that can be applied to a large set of matrices.

Since the only type of matrix that needs to be examined is that generated by
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expander graphs, the adjustment of a parameter to the individual expander graph

makes more analytic sense. In particular, if an (2k, 1− ǫ) expander graph satisfies the

RIP-p, then the optimization problem will recover a x̃ that satisfies Φx̃ = Φx where x

is the original signal. However, this property does not claim that the solution is

unique, x̃ = x [JXHC08]. A unique solution can be generated with the tightened

parameter on the expander graph. When the parameter αN = 3k, the recovery will

provide a unique solution under all the same constraints as the 2k case [JXHC08].

2.2.3 Remarks

Sensing matrices generated from graphs can provide properties that dense sensing

matrices cannot. These light weight matrices require little time to generate and very

little memory to store. In addition, sub-linear recovery methods for this type of

sensing matrix provide faster recovery with less resources. These will be explained in

the next chapter. The cost of these properties is that the number of linear

measurements will be higher than those of a dense random sensing matrix. However,

this cost may be worth the cost in portable devices that have limited memory and

processing power.

In the next chapter, recovery algorithms for both forms of sensing matrices will be

examined.
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Chapter 3

Reconstruction

The reconstruction of a sparse signal after compressive sensing can be interpreted

in many ways. The natural way of using sparsity would involve the use of the

ℓ0 − norm. The reconstruction problem with this norm can be written as the

optimization problem

x̃ = arg min
x∈RN

||x||0 subject to y = Φx. (3.1)

However, this problem written in this formation is NP-hard. Research on this form of

problem, along with its dual used for sparse error correction, predates the first

publications of compressive sensing [SWM08].

In the present research, reconstruction of the above equation can be classified into

several broad categories. The first category is termed pursuit models. Several types

of pursuit models exist, but they all share the theme of breaking the problem into

smaller problems depending on a dictionary,i.e., a collection of vectors that span the

entire space of R
N . In particular, problems that deal with sparse reconstruction have

over complete dictionaries [CDS98, Tro04]. There are many heuristic pursuit

methods, such as Matching Pursuit (MP), Orthogonal Matching Pursuit (OMP), and

m-Fold Matching Pursuit [CDS98], which can be used to recover a sparse signal. A
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heuristic method called Orthogonal Matching Pursuit will be examined in more detail

later in this chapter. In addition to the heuristic pursuit methods, several other

methods, such as Basis Pursuit, exist [CDS98]. The second category is based on

optimization. This second category is directly linked to and is a result of the

development of Basis Pursuit, in which the optimization problem is cast to a ℓ1

optimization problem. Many optimization techniques exist, and each technique

claims to have smaller errors, faster computational times, or use less active memory

[FNW07]. The third category that will be examined depends on graph based

construction of the sensing matrix. These methods resemble greedy based pursuit

methods. However, these methods model the problem using graph theory as opposed

to its associated linear algebra representation.

3.1 Pursuit Methods

The most general way to define a pursuit method is an algorithm that holds onto

both action-valued estimates and action preferences, i.e., an estimate of what is

gained or lost taking a particular action and when this estimated value is high or low

enough to justify the action. This general definition can be related to a wide range of

algorithms that are used for signal recovery and many other fields, such as intelligent

agents. The pursuit methods that will be examined here base their actions on rules

that use information from a dictionary of vectors. Each vector in the dictionary is

normally called an atom, which is referenced by αi [Tro04].

The dictionary itself has several properties that determine if the rule the algorithm

implements will lead to an action-valued estimate that is close to the desired result.

One very rough property of a dictionary is termed coherence.

Definition 3.1.0.1. [Tro04]
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The coherence of a dictionary is equal to:

µ := max
j 6=k
|〈αj, αk〉|. (3.2)

The parameter µ of the dictionary gives a very blunt estimate of the amount that

atoms in the dictionary overlap, i.e., linear dependent. For example, the coherence

parameter of a set of atoms that are orthonormal would have µ = 0. However, the

addition of an identical atom would change µ = 1 [Tro04].

A dictionary is said to be incoherent if the coherent parameter is negligibly close

to zero. Therefore, an incoherent dictionary tends to behave like an orthonormal

dictionary. However, the single parameter of coherence can be misleading when

describing a dictionary [Tro04].

An additional property of the dictionary that would describe the relationship of

the atoms is the babel function.

Definition 3.1.0.2. [Tro04]

The babel function for a dictionary, D, with atoms, αi, that are indexed by the set Ω

is defined as

µ1(k) := max
|Λ|=k

max
φ

∑

|Λ|
|〈φ, αλ〉|, (3.3)

where the value of k is the sparsity of the vector the pursuit wishes to reconstruct and

φ ranges over the atoms indexed by Ω\Λ .

This definition can be summed up as a function that quantifies the maximum total

coherence between a fixed atom and a collection of k other atoms. For example,

µ1(1) = µ. It follows from algebra that a dictionary with coherence value µ would

have a babel function such that,

µ1(k) ≤ µ · k. (3.4)

25



When the growth of the babel function is slow, the dictionary is said informally to

be quasi-incoherent [Tro04]. This terminology can be interpreted by the same

concepts that generate the Restricted Isometry Property. In the RIP, the goal was to

have each sub-matrix close to orthonormal. If each sub-matrix of Φ was close to

orthonormal, then the dictionary for the sub-matrix would be considered incoherent,

where the cut off is based on (1± δT ). Thus, the babel function would look at nearly

identical information. The dictionary for a sensing matrix would be redundant with

high probability due to the dimensionality reduction. In addition, a k− sparse vector

would need to use only k atoms for each measurement [Tro04].

It is under the above assumptions that pursuit methods for reconstruction are

based. Tropp showed that a sufficient condition for exact recovery for OMP and Basis

Pursuit could be generated based on the above definition and use of the babel

function. However, the results require the fore-knowledge of the optimum set of

atoms for any given vector which makes the result less utilitarian than the RIP. This

sufficient condition based on Tropp is the same for both methods, and they have very

similar proofs [Tro04].

3.1.1 Orthogonal Matching Pursuit

The precursor to Orthogonal Matching Pursuit, matching pursuit, was first

introduced in detail by Mallet and Zhang in 1992. This greedy based algorithm

attacked the problem of sparsity head on. It was posed that the algorithm would

start with an approximation of the original signal having all zero elements with a

residual of y = Φx̃, where x̃ is the approximation. The algorithm would continue

step-wise for k steps identifying atoms from the dictionary with the largest

contribution and add them to the original approximation [CDS98]. At the i− th

stage, x̃i = x̃i−1 + 〈Ri−1, αi〉αi where Ri = y− x̃i. In general, this algorithm works

perfectly if the dictionary is orthogonal. However, the dictionary of a sensing matrix
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is only close to orthogonal [CDS98].

The Orthogonal Matching Pursuit, which was first outlined by the work of DeVore

and Temlyakov added an additional step to matching pursuit. This extra step of

orthogonalization at each of the k−steps requires that each new element added will

be orthogonal to all terms already in the model. The step of orthogonalization added

the need to solve a least square problem [CDS98], i.e.,

min
bi

||y−
k

∑

i=1

biαλi
||2. (3.5)

The resulting algorithm is outlined as:
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Algorithm 1 Orthogonal Matching Pursuit [TAG07]

INPUT:

• Φ ∈ R
n×N .

• y ∈ R
n.

• Sparsity level k.

OUTPUT:

• An estimation, x̃ ∈ R
N , for the original signal.

• A set, Λk, containing k elements.

• An residual vector R ∈ R
n.

PROCEDURE:

• Initialize R0 = y, the index set Λ0 = ∅, and the iteration counter t = 1.

• Find the index λt that solves the optimization problem
λt = arg maxj=1,...,N |〈Rt−1,Φj〉|.
If the maximum occurs for multiple indices, break the tie deterministically.

• Augment the index set Λt = Λt−1 ∪ {λt} and the matrix of chosen atoms Φ̃t =
[ ˜Φt−1Φλt ].

• Solve a least-squares problem to obtain a new signal estimate by computing
st = arg mins ||Φ̃ts− y||2.

• Calculate the new approximation of the data and residual:
at = Φ̃tst and Rt = y− at.

• Increment t.

• Continue to loop while t < k.

• x̃ has nonzero indices at the components listed in Λk. The value of the estimate
x̃ in component λj equals the component j − th component of st.

OMP is known for its fast reconstruction with known sparsity level. The algorithm

itself is very fast running since most computation goes into solving the small

optimization problems that are bounded in spaces smaller than k. However, the cost

of the speed for the OMP is being clairvoyant about the degree of sparsity. In

28



addition, empirical evidence shows a lower average error in reconstruction than Basis

Pursuit produces [TAG07].

3.1.2 Basis Pursuit

Basis Pursuit is designed to reconstruct a sparse signal from over complete

dictionaries using convex optimization. The development of Basis Pursuit is similar

in nature to all pursuit methods. However, the Basis Pursuit looks at trying to find a

global optimal, unlike greedy algorithms that look to find only the optimal move at

each step [CDS98]. Both greedy and non-greedy algorithms have benefits and

downfalls. In many cases, a greedy algorithms tend to be fast. An example of a

greedy algorithm is making change. In this algorithm, the largest moves are made

first, such as finding the largest number of quarters that can be given. However,

greedy algorithm may not always give a global optimal. If the set of currency used

changed to {25, 10, 6, 5, 1}, the greedy algorithm for giving change for 12 cents would

yield {10, 1, 1}, which is not the global optimal of {6, 6}.

The global optimization problem for Basis Pursuit can be modeled as:

min
x̃∈RN

||x̃||1 subject to Φx̃ = y. (3.6)

Though Basis Pursuit can be summed up to one equation, the total effort and

sophistication needed to solve a convex, nonquadratic optimization problem of the

above form is more than solving the smaller optimization problems of OMP [CDS98].

However, many forms of optimization used to solve the above equation use greedy

based algorithms somewhere. In comparison to OMP, the simplest implementation of

Basis Pursuit, such as simplex linear programming, works in an opposite way to

achieve sparsity. In OMP, the recovery estimate is assumed to be a zero vector and

then coefficients are added. However, Basis Pursuit solved using a simplex method
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assumes the whole model is already complete and swaps members to improve the

magnitude of the objective function [CDS98].

3.2 Optimization

The formation of the Basis Pursuit method is centered on using optimization to

solve the global problem of recovery. Though many optimization based

reconstructions exit, most hinge on the original work done with Basis Pursuit. The

problem,

min
x̃∈RN

||x̃||1 subject to Φx̃ = y.

can be interpreted as a linear programming (LP) problem. The general form of a

linear program is a constrained optimization problem with x ∈ R
N such that

min cTx subject to Ax = b, x ≥ 0. (3.7)

The equivalence of the two problems has been known since the 1950’s, and the

reformation is done by the transformation: x⇔ (u; v); c⇔ (1, 1); A⇔ (Φ,−Φ);

b⇔ y [CDS98].

Once the basis pursuit is transformed, there are multiple ways to solve the associated

LP. Two ways are the simplex and interior-point (IP) methods. Both methods, look

at feasible points of a convex polyhedron called a simplex. The simplex method walks

around the edge of the simplex moving to the next edge node if objective function

value, cTx, is improved. The interior-point method starts in the center of the simplex

and works its way out to the outermost nodes [CDS98]. The interior-point method

has become the predominant method used to solve LP. However, there are multiple

interior-point methods that can be used to solve the same problem. For example, one
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method of IP requires the explicit construction of ΦT Φ, but another does not

[FNW07]. The research on optimization can be categorized by the reformation of the

original optimization problem and solution methods that try to minimize memory

usage while producing faster results.

Several of the reformations that have been developed for the above problem are as

follows:

quadratically constrained linear program (QCLP),

min
x̃∈RN

||x̃||1 subject to ||y− Φx̃||2ℓ2 ≤ ǫ, (3.8)

quadratic program (QP),

min ||y− Φx̃||ℓ2 subject to ||x̃||1 ≤ t, (3.9)

and bound-constrained quadratic program (BCQP),

min
1

2
||y− Φx̃||2ℓ2 + τ ||x̃||1, (3.10)

for some nonnegative parameters τ, ǫ, and t [FNW07].

Each of these reformations has multiple algorithms that generate a solution. The

QCLP reformation can be reworked as a second order cone program, and QP can be

solved using a statistical method known as least absolute shrinkage and selection

operator (LASSO). However, each of these reformations can be shown to achieve the

same resulting x̃, though each have different limitations [FNW07].

The LASSO method is a homotopy algorithm 1 that finds the full path of

solutions. In homotopy methods, pivoting operations are performed involving

1Homotopy optimization algorithms are ones that impose a continuous homotopy function on the
original variables plus a homotopy variable. When the homotopy variable is active, the function
is equals the original function trying to be optimized or the function is homotopic to the original
function.
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sub-matrices of Φ and ΦT Φ. In sparse reconstruction, the method requires at least as

many pivoting operations as nonzero elements in the solution. The formation of ΦT Φ

and sub-matrices takes an enormous amount of memory for a large signal that may

have multiple nonzero elements. Therefore, homotopy methods tend to take as much

memory and computational time as LP methods [FNW07].

Reformations like QCLP and BCQP allow for a small amount of error in

reconstruction. This error can be interpreted as some noise. In particular, the

original work on Basis Pursuit proposed a Basis Pursuit De-Noising with a similar

optimization equation [FNW07]. In BCQP, τ works as a regularization parameter

that aids in producing a sparse signal in addition to denoising. One way of choosing τ

is to consider soft-thresholding in an orthonormal basis. If Φ was an orthogonal

matrix, then a solution ỹ = ΦT y would exist. In addition, the model can be

examined as an ill-posed inverse problem with Tikhonov regularization [KKLB07].

The problem modeled with this form of regularization can be shown to have finite

convergence to zero as τ →∞. In addition, τmax = ||ΦTy||∞. Therefore, the value of

τ should be taken as some fractional value of ||ΦTy||∞ based on the order of the noise

to achieve convergence to a sparse nonzero solution [KKLB07].

One such method for solving BCQP is known as Gradient Projection for Sparse

Signal Algorithm. This algorithm uses a gradient projection applied to a quadratic

program in which the search path for each iteration is obtained by projection onto

the feasible set in the negative gradient direction.
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Algorithm 2 Gradient Projection [FNW07]

Let x̃ = u− v, u ≥ 0, v ≥ 0. The BCQP can be rewritten as,

min
z

cTz +
1

2
zTBz := F (z), (3.11)

such that z ≥ 0, z =







u

v






, b = ΦT y,

c = τ12n +







−b

b






, and B =







ΦT Φ −ΦT Φ

−ΦT Φ ΦT Φ






.

PROCEDURE:

• Initialize: Given z0, choose parameters β ∈ (0, 1) and µ ∈ (0, 1/2); set k = 0.

• Compute: α0 = arg minα F (zk − αgk)

where gk =











(∇F (zk) if zk > 0 or (∇F (zk)) < 0

0 otherwise

and replace α0 by mid(αmin, α0, αmax).

• Backtracking Line Search:

Choose αk to be the first number in the sequence α0, , βα0, β
2α0, ... such that

F ((zk − αk∇F (zk)) ≤ F (zk)− µ∇F (zk)
T (zk − (zk − αk∇F (zk)))

and set zk+1 = (zk − αk∇F (zk)).

• Test: Perform convergence test and terminate with approximate solution zk+1 if

it is satisfied; otherwise, set k ← k + 1 and repeat.

The above algorithm, along with other forms of optimization recovery, are strong

tools for reconstruction. They have the advantage of smaller errors than greedy based

pursuit methods without the need to know the desired degree of sparsity. However,

the speed of computation of matching pursuit cannot be matched by optimization
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[Tro04]. However, the next section addresses a very fast sublinear method for

reconstructing when sampling using a graph based sensing matrix.

3.3 Bucket Recovery

Recovery based on the graph structure of the sensing matrix, Φ, is a greedy

algorithm that is based on the probability structure of the sensing matrix. This

algorithm can be generalized to the larger set of ǫ-expander graphs. However, by

restricting the set of graphs to be bipartite (αN, βd) expander graphs with β = 3
4

and

αN ≥ 2k, the probability element of reconstruction is dropped, since the probability

was based on the graph [JXHC08]. If the matrix, Φ, is an expander graph with the

above parameters, then the below algorithm will yield a x̃, such that Φx̃ = Φx where

x is the original vector.

Algorithm 3 Bucket Recovery [JXHC08]

• Initialize x̃ = 0N×1.

• Loop Until y = Φx̃.

– Find a variable, x̃j such that gi = yi −
∑N

j=1 Φijx̃j have at least d
2

have

identical values.

– x̃j = x̃j + g. of the d measurement

The figure, 3.1, shows a solution of a variable. The ability to find at least d
2

identical

gaps comes from the constants that are opposed on the expander graph.
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Figure 3.1: Figure demonstrating graph based recovery using buckets.

Theorem 3.3.0.1. [XH07]

When x̃ = 0, y 6= Φx̃ and k ≤ αN
2

, there always exists a variable node such that

d′ > d
2

of the measurement equations it participates in has identical nonzero gaps.

While the above condition does provide recovery, a stronger parameter must be

imposed for a unique recovery. This can be achieved by using an expander in which

αN ≥ 3k. In particular, the uniqueness is equivalent to the questioning if the

adjacency matrix has a null vector that is 3k sparse [JXHC08].

In addition, the run time of the algorithm is O(dk), which is much smaller than

most other recovery methods, since the recovery only grows with d and k, which are

smaller than N [JXHC08]. A modified version of this algorithm along with several

others from this chapter will be explored numerically in the next chapter and then

compared.
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Chapter 4

Numerical Results

In order to better understand the current research in compressive sensing,

numerical experiments were conducted. These numerical experiments are designed to

explore multiple sampling techniques based on several matrices forms, recovery

techniques, and signal types. In doing such experimentation, two goals exist. The

first goal was to provide empirical evidence of the findings reported in several articles.

The second is to have a better understanding of the constants related to the

asymptotic bounds of the number of required linear measurements. These two goals

are designed to investigate the very practical limits of the theorems and algorithms

covered in the expository overview.

The experimentation that demonstrates the results of current publications can be

broken into two separate sets based on the form of the original signal, x. The two

forms are a one dimensional discrete signal, or vector, i.e., x ∈ R
N , and signals

generated from a digital image.

The experimentation that tests the bounds on the minimum number of

measurements needed for reconstruction was performed on binary and Gaussian

random sensing matrices for multiple degrees of sparsity and original lengths. All

signal used in these test are discrete vectors with k spikes, such that −300 ≤ xi ≤ 300
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for i = π(1), π(2), π(3), ..., π(k). Recovery using linear programming and graph based

reconstruction techniques were done for experiments using binary graph based

sensing matrices, while the signals sampled using Gaussian random matrix were

recovered using only linear programming.

Technique Specification

All numerical experimentation was conducted using MATLAB R©(2008b,

MathWorks, Natick, Massachusetts). The machine the timing data was collected on

had a AMD ML-30 CPU running Windows XP SP2 with 2GB of DDR RAM. The

ML-30 had a maximum frequency of 1.6 GHZ, a 128KB L1 cache, and a 1MB L2

cache. The experimentation was run on a lower end machine for the time period.

However, the use of a single core machine is important when timing algorithms that

may want to be moved to hardware later, since MATLAB has started to use

multi-core threading into some function calls.

Bounding result data was collected on multiple systems due to the over 10,000

reconstructions needed to be computed. These system included CyberStar at The

Pennsylvania State University Institute for CyberScience, NSF Award Number

0821527, and Server3 at Duquesne University’s Department of Mathematics and

Computer Science.

4.1 Publication Comparison Results

Vector Experiments

In the vector based experiments, two forms of k − sparse vectors of length N were

examined. The first vector was a random binary vector with a maximum of k spikes

of height one. The second vector was a random vector with a maximum of k spikes

37



with heights that ranged randomly in the interval ±300, such that −300 ≤ xi ≤ 300

for i = π(1), π(2), π(3), ..., π(k).

Three sensing matrices were used for each signal. The first matrix used was a

Gaussian random matrix. The same Gaussian random matrix was used in all vector

based tests to ensure that the matrix had the Restricted Isometry Property.

A second matrix of pseudo-random nature was also used. This matrix used a

similar construction method based on bipartie expander graphs as defined in Efficient

Compressive Sensing with Deterministic Guarantees Using Expander Graphs [XH07].

This matrix was freshly constructed for each of the trails. It was the goal in

reconstructing this matrix to try to demonstrate two important characteristics of

expander graph based matrices. Firstly, the probability of constructing a matrix in

this fashion for sampling in which the original signal can be reconstructed from its

measurements using linear programming is high. Secondly, the probability of

constructing a matrix that can be recovered by methods that uses the graph

structure is lower than that of reconstruction with linear programming [JXHC08].

The third matrix that was used for sampling was based on a deterministic

construction using finite fields. This construction method was outlined by DeVore

[DeV07]. This matrix construction has been shown to have the best compression

ratio of a sparse deterministic construction containing only values of 0 and 1 can

achieve while satisfying RIP-2. However, the use of this matrix restricted the vector

size, N , and the number of measurements, n, to powers of a prime number [DeV07].

In these tests, the prime number 17 was used as the base, which resulted in N = 173

(4913) and n = 172 (289).

Two optimization based recovery method were used for all three matrices. The

first method was a simple linear programming optimization that implemented the

transformation that was introduced in the chapter on reconstruction and the built in

MATLAB function linprog. The medium-scaling algorithm of linprog was used due to
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the requirement that the matrix be sparse for large-scaling algorithm. Therefore, the

Gaussian random matrix limited the choice. The linprog function was tried using

both the normal simplex and projection method, which is based on simplex algorithm.

In general pretesting, the projection method performed better than the standard

simplex algorithm. Therefore, the measurements of the projection method are given.

The second optimization recovery method that was used in reconstruction was a

gradient projection method which was also outlined in the chapter on reconstruction.

In addition to optimization based recovery methods, an algorithm based on the

bipartite expander graph structure was used for tests that used a pseudo-random

sensing matrix. This method, as outlined in the chapter on recovery, is a bucket

based algorithm that tests combinations of elements in the measurement vector to

determine the best bucket, i.e., xi, to place the value.

Digital Image

The experimentation on digital images was conducted on a 64× 64 pixel square

gray scale image. The 2-Dimensional Daubechies Wavelet-4 of level 3 was first

applied to the image. After, the data was compressed using global thresholding. In

global theresholding, one value is selected, and all measurements that are smaller

than the threshold are replaced with the value zero. The global thresholding method

that was implemented picked a threshold so that the percentage of zero elements in

the coefficient vector was large enough for using compressive sensing techniques. A

very similar method is used to compress an image by JPEG200 5/3, which rounds

values of the Cohen-Daubechies-Freauveau Wavelets [GW08].

In particular, the compressive sensing techniques were implemented on the

coefficient of the wavelet transformation used a matrix built using expander graphs.

Linear programming and bucket based algorithms were used for reconstruction. The

reason for the use of this sensing matrix was to limit the memory size so that it could
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be stored in cache level memory. This would provide better timing because of latency

and transportation costs per calculation. In addition, DeVore’s construction was not

used because the sensing matrix limited the vectors used to those with a length that

are powers of prime numbers.

4.1.1 Vector Results

Three degrees of sparsity where used for both vector forms. The degrees of

sparsity were based on the the asymptotic bounds of the minimum number of

measurements given for each matrix. The minimum of the three bounds was

produced by DeVore’s construction, which was k ≤ C
√
n log(n)/ log(N

n
). If C = 1,

then k / 33 [DeV07]. Therefore, the values of k that were used were k = 15, 25, 35.

Each of these experiments was run for thirty trials.

The first row of the numerical results below states the recovery method used. The

second row defines the matrix that was used. These matrices were DeVore’s

construction, Random using a Gaussian random matrix, and Expander which used a

pseudo-random matrix built on expander graphs.
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Binary LP LP LP Gradient Gradient Gradient Bucket

K=15 DeVore Random Expander DeVore Random Expander Expander

Average MSE 3.18E-18 3.8E-18 .868E-18 2.81E-6 5.30E-6 2.4E-6 9.07E-4

Time (Seconds) 12.6 98.6 1.423 1.649 .79 1.544 14.37

Binary LP LP LP Gradient Gradient Gradient Bucket

K=25 DeVore Random Expander DeVore Random Expander Expander*

Average MSE 7.23E-19 7.23E-19 7.23E-19 6.73E-6 15.4E-6 19.49E-6 5.6E-3

Time (Seconds) 2.4 230 1.4 2.8 1.17 3.03 21.6839

Binary LP LP LP Gradient Gradient Gradient Bucket

K=35 DeVore* Random* Expander* DeVore* Random* Expander* Expander*

Average MSE 5.78E-19 8.67E-19 14.4E-19 1.66E-5 3.67E-5 3.46E-5 1.02E-2

Time (Seconds) 2.4 103 1.42 .77 1.966 5.35 35.9

Table 4.1:
The table contains the results of tests using signals with original size 173 and K randomly placed 1s that were compressed to the size 172.

The first row references the reconstruction method used as follows: LP: linear programming, Gradient:gradient projection method, and

Bucket:graph based reconstruction. The second row references the sensing matrix that was used in each test as: DeVore: deterministic

matrix based on finite fields, Random: Gaussian random matrix, and Expander: adjacency matrix of an expander graph. An asterisk,

*,identifies methods that failed to identify the location of all spikes in the signal.

Between ±300 LP LP LP Gradient Gradient Gradient Bucket

K=15 DeVore Random Expander DeVore Random Expander Expander

Average MSE 7.9E-14 0 0 1.266 .7713 .5832 7.9E-15

Time (Seconds) 8.18 98.84 1.49 1.6107 .56 1.27 10.31

Between ±300 LP LP LP Gradient Gradient Gradient Bucket

K=25 DeVore Random Expander DeVore Random Expander Expander

Average MSE 2.37E-14 2.37E-14 0 3.27 1.7714 2.5525 1.85E-14

Time (Seconds) 3.18 112.22 1.69 2.26 .8727 1.6351 18.31

Between ±300 LP LP LP Gradient Gradient Gradient Bucket

K=35 DeVore* Random* Expander* DeVore* Random* Expander* Expander*

Average MSE 3.55E-14 3.55E-14 2.37 6.5418 3.62 7.248 16.187

Time (Seconds) 3.59 127.52 1.93 2.623 1.21196 3.53 22.844

Table 4.2:
The table contains the results of tests using signals with original size 173 and K randomly placed spikes of values in the range of ±300

that were compressed to the size 172. The first row references the reconstruction method used as follows: LP: linear programming,

Gradient:gradient projection method, and Bucket:graph based reconstruction. The second row references the sensing matrix that was used

in each test as: DeVore: deterministic matrix based on finite fields, Random: Gaussian random matrix, and Expander: adjacency matrix

of an expander graph. An asterisk, *,identifies methods that failed to identify the location of all spikes in the signal.

As noted from the data, only several combinations failed. It is worthy to note that

when the number of measures, n, is increased from 289 to 512, all methods have
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perfect recovery. This would be the difference of only moving the compression ratio

from 5.9 to 10.4 percent. In addition, one can make the unique observation from the

data that when the range of values for the spikes are changed, the bucket recovery

methods works even with a smaller number of measurements. One reason for this

unexpected result is the distinction between values in the buckets and the number

that corresponds to the bucket placement. This error is related to using a linear

algorithm that is based on integers on a compact set. One solution to this problem is

to scale the error term in the algorithm. However, the scaling of the error term ǫ

would depend on N, n, k, and the interval, which would make it difficult to predict.

In addition, the original signal would have to be examined to find the heights of the

spikes. This would be undesirable, since compressive sensing is powerful because it

needs to know very little about the original signal.

The changes between the binary and the larger spikes also changed the general

average mean squares error, MSE. Even if the reconstruction identifies the spike, the

difference in the size of the two spikes can be much larger. This can be seen as the

average MSE has increased in all combinations except the one that used bucket

reconstruction for the larger spike tests. This scaling of error to spike size is one

reason that MSE is not the sole deciding factor of the performance. However, visual

assessment is not always a good measurement as well. The figure below, figure 4.1,

shows a failed reconstruction with the regularization parameter τ = .1. At first view,

the data seems to be correctly recovered. However, many of the smaller spikes are

missing or misplaced. The MSE of this figure was about 9 for both DeVore and

Expander matrices and 4 for the Random matrix.
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Figure 4.1: The above figure demonstrates the need to perform both a MSE measure-

ment and a visual assessment for reconstruction using a signal of original length 173

with 35 randomly placed spikes that were compressed to a length of 172 using three

different sensing matrices.

4.1.2 Digital Image Results

The image that was chosen for the experimentation was a gray scale shading

image. Since compressive sensing provides perfect reconstruction if the degree of

sparsity and number of measurements are met, the experimentation focused not on

clarity of the reconstruction but on the number of measurements needed. The 64× 64

pixel image resulted in a vector of 5782 coefficients after the 2D wavelet

transformation. Thresholding retained 85.73 percent of the original image by a global
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norm while producing a coefficient vector where 99.6 percent of the elements are

zeros. This led to a fixed sparsity, k, of 196 for the image experiments. The

experiment was done multiple times for a multitude of measurements, m. The results

showed a boundary around 1320 measurements that prevented the image from being

recovered.
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c.) Recovered using 1350 Measurements

20 40 60

20

40

60

20 40 60

20

40

60

d.) Recovered using 1300 Measurements

Figure 4.2: The figure depicts the use of compressive sensing on a 64× 64 pixel image.

a.) Depicts the image before using thresholding in the wavelet domain. b.) Depicts

the image after thresholding was performed in the wavelet domain. This image is the

one that is compressed. c.) Depicts a perfect reconstruction of the thresholded image,

b. d.) Depicts a failed reconstruction attempt of the thresholded image, b.

The time needed to recover the imaged was dependent on the number of

measurements. The cases that failed had very fast times, while the times for the

recovered image was between 23 seconds for n close to 1320 and up to 3 minutes for n
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around 2000. When the number of measurements was greater than the boundary of

1320 by around 150 but less than an increase of 500, the recovery time was less than

the the time of trials closer to the boundary and farther away from the boundary.

The surprise was how the slight increase from a vector size of 173 to 5782 was able to

scale and provided better data on the scaling.

4.2 Bounds

One of the main objectives of performing the above experimentation was to find

results on the implicit constants that are related to the asymptotic bounds for

minimum sketch length need for recovery. The below table summarizes the

publication data.

Sensing Matrix Recovery Method Sketch Length Cite

Binary LP O(k log (N
k
)) [JXHC08]

Binary Graph Based N.A. [JXHC08]

Gaussian Random LP O(k log (N)) [BDDW07]

Table 4.3: The above table displays the minimum sketch lengths for a signal using a

certain sensing matrix and recovery method.

The data was collected for each of the combinations in the table above. Each

experiment was performed thirty times, and the average is reported in the graphs

below. In figure 4.4, curves were fitted to each data set using the model

c · k · log (N
k
) + b, where c and b are constant parameters of the curve.
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Figure 4.3: The figure plots the minimum number of measurements needed to ensure

recovery when performing compressive sensing. Each line represents a different degree

of sparsity that is ploted along the domain of the original signal length.

The parameters for each fitted curve is tabulated below. From the data, the

constants in front of the dominate contributing factor, c, tend to be small. In

addition, c decreases as k increases. This relationship demonstrates the signal is more

influential in determining the minimum number of measures needed than any

constant factor.
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k c b R-Squared

15 1.37 -4.04 .99

35 1.30 2.90 1.00

50 1.30 5.08 .99

75 1.22 29.26 1.00

100 1.18 54.41 1.00

Table 4.4: The above is a table of the parameters of the fitted curve, c · k · log (N
k
) + b,

for a binary sensing matrix using LP recovery, where N is the original signal length

and k is the degree of sparsity. In addition, the r-squared value is recorded to give

some level of how well the curve fitted the data points.

The figure below, 4.4, plots the data for the experiments that were run with a

binary sensing matrix with graph based recovery. As seen in the graph, the number

of measurements does not increase as the size of the original signal increases. Though

the initial sketch size is larger than sensing recovered with linear programming,

sketch length does not have to be increased. However, there is a lack of data to

conclude that the sketch length is a constant related to only the sparsity of the

original vector. Indeed, other models, such as one that would use the log∗ function,

may provide a fitted curve for sketch length.
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Figure 4.4: The figure plots the minimum number of measurements needed to ensure

recovery when performing compressive sensing. Each symbol represents a different

degree of sparsity that is plotted along the domain of the original signal length.
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Figure 4.5: The figure plots the minimum number of measurements needed to ensure

recovery when performing compressive sensing. Each line represents a different degree

of sparsity that is plotted along the domain of the original signal length.

k c b R-Squared

15 1.32 -51.55 .99

35 .59 -59.39 .98

50 1.29 -250.6 1.00

75 1.24 -377.8 1.00

Table 4.5: The above is a table of the parameters of the fitted curve, c · k · log (N) + b,

for a Gaussian random sensing matrix using LP recovery where N is the original signal

length and k is the degree of sparsity. In addition, the r-squared value is recorded to

give some level of how well the curve fitted the data points.

In the last figure of these results, the data points and the fitted curves for the

Gaussian random sensing matrix with linear programming are displayed. These

49



results are similar to those of the binary sensing matrices when comparing the size of

the model parameter, c. However, the sketch size itself is much smaller than the

minimum sketch size needed for binary sensing matrices. This is a similar result

found in publication. The decrease in sketch length, though, comes at the high price

of storage and an increase in time needed to recover. For k = 50, the average recovery

time in MATLAB was about 100 times longer for sensing using Gaussian matrices.

4.3 Discussion

In the results above, empirical evidence was presented to demonstrate the

usefulness of compressive sensing and its performance. The vector data showed how

sensing matrix choice along with recovery may change the results and performance.

These demonstrate results in current publications. Also they demonstrate the

increase sketch size needed when using binary sensing matrices compared to the

sketch size needed for Gaussian random matrices. However, the storage problem of

using these large dense matrices, such as the Gaussian random matrix, and their

higher computational cost in terms of time is also noted. This was echoed in the

digital image section along with the section on bounds.

The data from all three sections demonstrates the play of constants and their

dependence over multiple variables, such as signal length, sparsity, and recovery

method. In particular, the constants that affect the number of measurements were

shown to be small. In the section on bounds, the constant, c, of the curve fitting

model of both binary and Gaussian random metrics was smaller than 2.
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Chapter 5

Conclusion and Future work

This work provides an overview of sensing matrices and recovery techniques used

in compressive sensing. The first chapter while providing some general introduction

and notation outlines core past publications in the area. These publications are used

in conjunction with several other publications to provide an expository overview of

sensing matrices in chapter two and recovery techniques in chapter three.

The overview of sensing matrices explores two different construction analysis

methods. The first uses a combination of geometric and probabilistic distributions to

show that a reduction in dimensions could be achieved on a discrete sparse signal by

taking a number of random linear projections. In addition, this analysis shows this

number of random linear projections could be used to reconstruct the original sparse

signal if the sensing matrix used for the projections satisfied the Restricted Isometry

Property. The second construction analysis uses expander graphs. This construction

technique generates sparse sensing matrices that are the adjacency matrices of

expander graphs. A theorem that is similar to but not equivalent to the Restricted

Isometry Property provides a guarantee for recovery. Both construction analysis

methods have advantages and disadvantages. Sensing matrices generated that satisfy

the Restricted Isometry Property tend to require less measurements to guarantee
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recovery. However, these matrices tend to be dense which makes storage and

reconstruction more difficult.

Multiple methods of reconstruction for both dense and sparse sensing matrices are

covered in chapter three. The chapter starts by laying out a family of pursuit

methods. The orthogonal matching pursuit method leads naturally to ℓ1 based

optimization. The section on optimization discusses linear programming and other

methods. These other methods all have a list of trade offs, including the ability to

tune the method to a given application or level of noise. The third recovery method

which can be used only on sensing matrices generated using graphs demonstrate a

fast recovery method. Several of the recovery methods are included in the numerical

results chapter.

The numerical results chapter provides constants relating to the asymptotic

bounds on the number of measurements needed for recovery along with multiple

examples of the use of compressive sensing on signals and images. Though the details

of the findings are related to the sensing matrix and reconstruction technique, the

findings report a constant of no more than 2 for standard combinations.

These chapters give a good starting point for further exploration into compressive

sensing and its multiple applications. Future work can be done in exploring and

following up on the odd results relating to the numerical bounds on expander graph

based sensing matrices recovered using the bucket method. Publications in the areas

of combinatorial analysis and group testing would provide some of the theory needed

for such an analysis [GSI08]. In addition, these chapters could be used to provide the

background necessary for such topics as multi-channel compressive sensing which is

related to active research in MRI and networks [WCA08].

As compressive sensing becomes a highly researched topic, these chapters will give

a good framework of the underlining ideas for any future work that may come from

compressive sensing.
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