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ABSTRACT 

 

FRAGILE X MENTAL RETARDATION PROTEIN: SELF-REGULATION AND 

miRNA PATHWAY INVOLVEMENT 

 

 

 

By 

Anna Blice-Baum 

August 2013 

 

Dissertation supervised by Dr. Mihaela-Rita Mihailescu 

 Fragile X syndrome, the most common form of inherited mental impairment in 

humans, affects 1 of 4000 males and 1 of 8000 females.  It is caused by the absence of 

the fragile X mental retardation protein (FMRP), resulting from a CGG trinucleotide 

repeat expansion in the 5’-untranslated region (UTR) of the fragile x mental retardation-

1 (FMR1) gene, and subsequent translational silencing of FMRP.   FMRP, a proposed 

translational regulator of neuronal messenger RNA (mRNA) targets, has three RNA 

binding domains: two K-homology domains (KH1 and KH2) and one arginine-glycine-

glycine (RGG) box domain.  FMRP RGG box has been shown to bind with high affinity 

to G-quadruplex forming mRNAs.  G-quadruplexes are formed by stacked G-quartets 

bonded by Hoogsteen base pairing and stabilized by monocations.  FMRP undergoes 

alternative splicing, including the alternative splice site at exon 15, giving rise to FMRP 
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minor isoforms, truncated within close proximity of the RGG box domain.  The binding 

of FMRP to a proposed G quadruplex structure in the coding region of its own mRNA 

named FBS has been proposed to affect mRNA splicing events for FMRP minor 

isoforms. In this study we used biophysical methods to directly demonstrate the folding 

of FMR1 FBS into two specific G-quadruplexes and analyze its binding by the FMRP 

isoforms.  Additionally, we analyzed the binding of an FMRP mutant in which Ser500 

was replaced with Asp500 (ISOP), mimicking FMRP phosphorylation.  We showed that 

the minor splice isoforms bind more tightly to the FBS mRNA, suggesting a negative 

feedback loop of FMRP binding to its mRNA to regulate alternate splicing.  

 FMRP associates directly with the Ago1 protein, a key component in the 

microRNA (miRNA) pathway.  Interestingly, one of the FMRP mRNA targets, the 

microtubule associated protein 1B (MAP1B) mRNA, has a G-quadruplex structure in its 

5’-UTR shown to be bound by the FMRP RGG box, and a potential binding site for the 

miRNA let-7b in its 3’-UTR.  In this study we investigated the binding of the let-7b 

miRNA to this sequence within MAP1B mRNA by using biophysical methods.  Dr. Yue 

Feng at Emory University confirmed the translation regulation of let7b miRNA on 

MAP1B mRNA. 
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CHAPTER 1: INTRODUCTION 

 

1.1   Fragile X Syndrome: Background 

 In 1943, J. Purdon Martin and Julia Bell discovered a form of mental disability 

that was associated with the X chromosome (1).  In 1969 and 1970, Herbert Lubs and 

Frederick Hecht located the irregular chromosome structure responsible for the mental 

retardation on the X chromosome and named it the “fragile site” (2).  Over two decades 

later, the specific gene defect found on the fragile X mental retardation gene (FMR1) was 

discovered in patients with fragile X syndrome (FXS) (3).  FXS is the most common 

form of inherited mental retardation in humans, affecting approximately one in 3000 

males and one in 5000 females (4).  Diagnosed individuals display impaired mental 

function, hyperactivity, and a 30% chance of autism, as well as physical abnormalities, 

such as elongated face and hands, large ears, and macroorchidism in males (5).  

 

1.2   Gene mutation of Fragile X Syndrome 

 In the vast majority of cases, the phenotype of FXS described above is caused by 

the absence of a single protein required for normal neuronal function, named the fragile 

X mental retardation protein (FMRP) (6, 7).  Transcriptional silencing of FMRP is caused 

by the expansion of a region of cytosine-guanine-guanine (CGG) repeats in the 5-

untranslated region (5’-UTR) of the FMR1 gene by an unknown mechanism.  When this 

region expands to over 200 repeats, the cytosines become hypermethylated (7).  In 

normal X chromosome gene regulation, methylation of cytosine causes inactivation of 

transcription.  Thus, the unnatural hypermethylation of the CGG repeat expansion region 
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in FXS patients is thought to block normal transcription factors, causing the 

transcriptional silence of the FMR1 gene.   There have been extensive studies of FMRP 

given that the loss of the protein has been implicated in FXS (8, 9), but its role in normal 

brain function has not yet been fully explained, and the exact mechanism of how its loss 

leads to mental retardation is not known.   

 

1.3   Fragile X Mental Retardation Protein 

 FMRP is an RNA binding protein expressed in most tissues, but found 

predominantly in the dendritic spines of neurons and the testes (6).  The protein contains 

two different types of RNA binding domains: two K-homology domains and one 

arginine-glycine-glycine (RGG) box domain, as well as a nuclear localization signal 

(NLS) and a nuclear export signal (NES), which allow the protein to shuttle between the  

 

 

Figure 1.1 A schematic representation of the full-length FMRP, which shows the nuclear 

localization signal (NLS), the two K-homology domains (KH1 and KH2), the nuclear 

export signal (NES), the site of phosphorylation (P) and the RGG box (RGG).  Isoforms 

1 – 3, resulting from the alternative splicing at exon 15 of FMR1 mRNA are also 

illustrated.  The phosphorylation of serine 500 (red) has been shown to be biologically 

relevant.  Adapted from (10).   
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Figure 1.2 A proposed mechanism of FMRP function in neuronal cells.  FMRP is 

transported into the nucleus of a neuronal cell by way of its NLS (1), wherein it 

associates with cellular mRNAs and proteins forming larger ribonucleoprotein (RNP) 

complexes (2). that are  transported out of the nucleus into the cytoplasm via the NES (3).  

Once in the cytoplasm, FMRP can either transport its bound mRNA to ribosomes (4) for 

protein production (5) in response to mGluR stimulation and then transport the protein 

products to neurites (6, 7), or it can transport mRNAs to dendrites (8) and then allow for 

protein production of its own message or its mRNA targets (9) in response to mGluR 

stimulation (10). (6) Reprinted with permission from the publisher. 
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nucleus and cytoplasm of a cell (6, 11, 12).  A schematic of the full-length FMRP as well 

as the splice variants of ISO1, ISO2, and ISO3 produced by alternative splicing at exon 

15 are shown in figure 1.1 (10).  In addition, FMRP has been shown to undergo the 

posttranslational modifications of phosphorylation and arginine methylation (13, 14).  

Since it binds to mRNAs as part of large ribonucleoprotein (mRNP) complexes, FMRP is 

postulated to be involved in regulating the translation of specific neuronal messenger 

RNA (mRNA) targets in response to synaptic output, although the mechanism of this is 

not well understood (15).  The proposed mechanism of FMRP function as an RNA 

binding protein begins with FMRP being transported into the nucleus of a neuronal cell 

by way of its NLS, wherein it associates with cellular mRNAs and proteins in order to 

form larger ribonucleoprotein (RNP) complexes (figure 1.2).  These RNPs are then 

transported out of the nucleus into the cytoplasm where FMRP can either transport its 

bound mRNA to ribosomes for protein production in response to mGluR stimulation and 

then transport the protein products to neurites, or it can transport mRNAs to neurites and 

then allow for protein production in response to mGluR stimulation (6).  FMRP is known 

to bind to about 4% of all neuronal messages, although the detailed mechanisms by 

which it recognizes its targets are not fully understood (16).   

 Several FMRP isoforms can be produced through alternative splicing events that 

involve the inclusion/skipping of exons 12 and 14, as well as three acceptor sites at exon 

15 and two at exon 17 (17, 18).  Figure 1.3 is a schematic of the splicing patterns that are 

possible due to alternative splicing in the FMR1 gene (18).  In mouse models of the 

FMR1 gene, it was found that although mRNA transcripts of isoforms 1 – 12 vary in 

concentration by as much as two orders of magnitude, all of the transcripts were 
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associated with polyribosomes, which is consistent with the translation of the FMR1 

mRNA transcripts.  The distribution of the isoforms of FMR1 is consistent with the 

different developmental stages of the cells investigated, emphasizing the implications of 

losing all isoforms in FXS.  The three isoforms investigated in this study are FMRP 

isoforms 1, 2, and 3 (ISO1 – ISO3), which are created using the three acceptor sites at 

exon 15 and inclusive of exons 12 and 14 (figure 1.3).  All three isoforms contain the KH 

domains as well as the RGG box domain, which has been shown to bind to G-quadruplex 

forming mRNA targets (figure 1.1).   

 

 
Figure 1.3 Schematic representation of the alternate splicing of FMR1 mRNA into 

isoforms 1 through 12: adapted from (18). 
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1.4 G-quadruplex structures 

 G-quadruplexes were first discovered in 1962 when Gellert and colleagues 

assembled X-ray diffraction data on a tetrameric helical structure formed by guanylic 

acid (19), after which it was revealed that similarly structured poly-guanosine oligomers 

adopted the same structure in DNA and RNA (20, 21).  The best characterized DNA 

sequences that have been shown to form G-quadruplex structures are the intramolecular 

telomeric sequences, which are found at the ends of eukaryotic chromosomes (22-24) and 

whose purpose is to block telomere elongation by cancer-associated telomerase (25, 26).  

The role of G-quadruplex formation in genes seems to be mainly in gene regulation as 

they are predominantly found in promoter regions of genes at the transcriptional level 

(26).  G-quadruplexes may be more prevalent in RNA than in DNA because RNA is 

single-stranded more often than DNA, allowing for the formation of G-quadruplex 

structures due to the availability of bases that are not involved in Watson-Crick base 

pairing (26, 27).  Almost 3000 mRNAs have regions in their 5’-UTR that potentially 

form G-quadruplex structures, leading to the belief that the presence of this secondary 

structure is important in gene expression at the translational level (26, 28).  G-rich RNA 

and DNA sequences have also been implicated in the alternative splicing of several genes 

(29).  G-quadruplex structures are characterized by two or more stacks of planar G-

quartets that are held together by Hoogsteen base pairing and stabilized by monocations, 

the potassium ion (K
+
) providing the most thermodynamic stability (figure 1.4 A) (30, 

31).  Depending on the direction of each strand of RNA involved in the interaction, G-

quadruplex structures can be described as parallel or antiparallel (figure 1.4 B).  An 

intramolecular G-quadruplex may form from one strand of DNA or RNA folding in on 
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itself, while an intermolecular G-quadruplex may form when more than one strand of 

DNA or RNA interacts with each other.  Intramolecular G-quadruplex RNA sequences 

are described as containing four distinct runs of two or more guanine bases that can form 

stable G-quadruplex structures by themselves from a single strand of RNA (32).   

 

 
Figure 1.4 A structure of a G-quartet with Hoogsteen hydrogen bonding between 

guanines stabilized by K
+
 ions.  These quartets stack on top of one another to form a G-

quadruplex RNA structure further stabilized by K
+ 

ions (A). Parallel versus antiparallel 

G-quadruplex structures (B). 

 

 Several biophysical methods have been used to characterize G-quadruplex 

formation in DNA and RNA.  Some of these methods include nuclear magnetic 

resonance (NMR) spectroscopy, circular dichroism (CD) spectroscopy, gel 

electrophoresis, and x-ray crystallography.  The imino protons involved in the 

characteristic Hoogsteen base-pairing in G-quadruplex formation resonate in the range 10 

– 12 ppm in the 
1
H-NMR spectrum in contrast to the range 12 – 15 ppm for imino 

protons involved in Watson-Crick base pairing (33).  CD spectroscopy is used to 

characterize G-quadruplexes as parallel or antiparallel (Figure 1.4 B).  Parallel G-

quadruplexes possess a positive band at 265 nm and a negative band at 240 nm (34, 35) 
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while antiparallel G-quadruplexes typically possess two positive bands, one at 290 nm 

and one at 245 nm, and one negative band at 265 nm (36) (Figure 1.5).  Interestingly, A-

form RNA  

 

 
Figure 1.5 Example of CD spectra from parallel G-quadruplex formation with a positive 

band at 265 nm and a negative band at 240 nm and antiparallel G-quadruplex formation 

with positive bands at 290 nm and 245 nm and a negative band at 265 nm.   
 

 

has a positive band at 260 nm, and B-DNA has a negative band at 245 nm and a positive 

band at 275 nm (37), both of which are in close proximity of the bands seen for Parallel 

G-quadruplex RNA formation.  However, if CD spectroscopy experiments are performed 

in conjunction with 
1
H-NMR spectroscopy showing characteristic peaks for G-

quadruplex imino protons rather than Watson-Crick base-paired imino protons, then the 

CD spectra can be interpreted as characterizing parallel G-quadruplexes rather than any 

other secondary structure of RNA.   
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1.5 FMRP recognition of its mRNA targets 

 The RGG box domain of FMRP is characterized by two arginine-glycine-glycine 

repeats within close proximity of each other within the FMRP amino acid sequence (38).  

44 human RNA binding proteins have been found to contain an RGG box (39), but there 

is no consensus sequence of the RNA binding domain.  Several studies have shown that 

the RGG box domain of FMRP binds with high affinity to mRNA targets that form G-

quadruplex structures (15, 40, 41). 

 It is thought that the RGG box domain is dynamic in nature, becoming structured 

upon binding with G-quadruplex forming mRNA.  Recently, a solution structure of the 

RGG box domain peptide binding with a 36 nucleotide (nt) sequence sc1 RNA, a G-

quadruplex model system, was solved by NMR spectroscopy (42).  The NMR 

spectroscopy solution structure confirmed that the RGG box indeed becomes structured 

upon binding to the G-quadruplex formed by the RNA sequence and revealed that the 

RGG box binds to a junction between the G-quadruplex and a stem formed by the RNA 

(10, 42).  However, since this is the only RGG box-RNA structure available, it is not 

clear if this mode of binding is unique to the synthetic sc1 RNA or a general mode of 

RNA recognition by the RGG box.  Several specific neuronal gene targets of FMRP have 

been shown directly by biophysical methods to adopt G-quadruplex structures in their 

mRNA sequences and to be bound with high affinity and specificity by the isolated 

FMRP RGG box or the full-length FMRP isoforms (10, 43-45).  These include the 

mRNAs that encode for the microtubule associated protein 1B (MAP1B), post synaptic 

density protein 95 (PSD95), and semaphorin 3F (S3F) (43, 45-49).  MAP1B is a protein 

that is involved in controlling microtubule dynamics and synapse formation (43, 50-52).  
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PSD95 is a protein component of the postsynapse that controls synapse strength and 

stabilizes dendritic spines (47, 53, 54).  S3F is involved in the maturation of neurons as 

well as the induction of growth cone collapse (55, 56).  All of the protein products of 

these mRNA targets of FMRP are essential for the formation and maintenance of 

neuronal cells, and the misregulation of these proteins due to the lack of FMRP 

translation regulation in FXS patients may have implications in the development of 

mental disability.  Interestingly, it has been shown that the FMRP RGG box binds with 

high affinity and specificity to a semaphorin 3F mRNA sequence that forms a G-

quadruplex but does not include a stem structure (45).  This finding suggests that the 

FMRP RGG box might have different modes of recognition of its mRNA G-quadruplex 

structures, considering that in the case of sc1 RNA the binding occurred at the junction 

between a G-quadruplex and stem structure. 

 In addition to the RGG box RNA binding domain, FMRP contains two KH 

domains (figure 1.1).  KH domains were first discovered in the heterogeneous nuclear 

ribonucleoprotein K in 1994 and have since been identified in many RNA binding 

proteins to perform a multitude of cellular functions (57).  The KH domain recognizes 

RNA and single-stranded DNA sequences to perform its function, and two or more KH 

domains are commonly found within the same protein.  The KH domains of FMRP have 

been shown to bind to RNAs that form kissing-complexes (58), however, no consensus 

sequence was determined, and no FMRP mRNA targets that harbor kissing complexes 

have been identified.  A kissing complex in RNA is formed by Watson-Crick base 

pairing between the loops of two RNA hairpin structures.  An FXS patient was found to 
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harbor a missense mutation (I304N) within the second KH domain of FMRP, suggesting 

that the KH domain is relevant for the protein function (58, 59).   

 Additionally, a patient recently diagnosed with FXS was found to have normal 

levels of FMRP (unpublished data, Dr. Bassem Hassan, Katholieke Universiteit Leuven).  

However, the analysis of the FMR1 gene revealed a frameshift mutation that essentially 

abolishes the RGG box domain, truncates the C-terminus of the protein by creating a 

premature stop codon, and changes the identity of the remaining residues after the 

mutation position.  The elimination of the RGG box domain in this patient who expresses 

normal levels of FMRP illustrates the importance of this RNA binding domain in the 

normal function of FMRP.   

 

1.6 FMRP and the miRNA pathway 

 Recent lines of evidence connect FMRP directly with the microRNA pathway (7, 

60-65). The miRNA pathway is shown in figure 1.6 (66, 67).  miRNAs are short, 

noncoding RNA sequences encoded by the genome of a cell, with over 1,400 miRNAs 

being identified in humans (68).  miRNAs are 20 to 25 nucleotide single stranded RNAs 

that have as a precursor longer strand RNAs processed and cleaved by the RNases 

Drosha and Dicer (66).  Primary miRNAs (pri-miRNAs) are initially transcribed by RNA 

polymerase II and cleaved in the nucleus by the Drosha-DGCR8 complex to form pre-

miRNAs, which are approximately 70 nucleotides in length.  After the pre-miRNA is 

exported from the nucleus by the Exp5-Ran complex, Dicer further cleaves the pre-

miRNA in the cytoplasm to produce a miRNA duplex and finally the single miRNA 

strand, which is incorporated into the RNA-induced silencing complex (RISC), a multi- 



12 
 

protein complex that involves the Argonaut class of proteins (7, 66, 69, 70).  miRNAs 

exert their translation regulation function by identifying and binding to target mRNA 

sequences (66, 67, 71).  The evidence of FMRP association with the RISC suggests that 

the miRNA pathway may be involved in the exertion of the translation regulator function  

 

Figure 1.6 Schematic representation of the miRNA pathway. In the nucleus, the miRNA 

gene is transcribed into pri-miRNA, which is cleaved by the Dicer-Drosha complex into 

pre-miRNA.  Pre-miRNA is transported into the cytoplasm by Exp5-Ran complex, is 

further cleaved by Dicer and bound by an Argonaut protein (Ago) in the RNA induced 

silencing complex (RISC) to be used in either gene silencing (partial complementarity) or 

mRNA cleavage (perfect or near perfect complementarity). Adapted and reprinted with 

permission from the publisher from (67). 
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of FMRP (7).  Given this connection, it is reasonable to inquire if the translation 

regulation function of FMRP is mediated by the miRNA pathway.  Interestingly, one of 

the FMRP mRNA targets, the microtubule associated protein 1B (MAP1B) mRNA has in 

its 5’-untranslated region (5’-UTR) a G-quadruplex structure that has been shown to be 

bound with high affinity by the FMRP RGG box and in its 3’-UTR has a potential 

binding site for the miRNA let-7b.  In collaboration with Dr. Yue Feng from Emory 

University, we investigated the in vitro binding of let-7b miRNA to the sequence within 

the 3’-UTR of MAP1B mRNA (MAP1B seq1 RNA) by biophysical methods (Chapter 5).  

The in vivo interactions between let-7b and the MAP1B 3’-UTR were also analyzed by 

complementary experiments in normal and FMRP knockout (KO) mice, performed in our 

collaborator’s, Dr. Yue Feng, laboratory at Emory University. 

  

1.7 The FMRP binding sequence of FMR1 mRNA 

 FMRP has also been shown to interact with its own mRNA by binding to a 100 

nucleotide G-rich region named the FMRP binding sequence (FBS), which was proposed 

to fold into two distinct G-quadruplex structures (41, 72, 73).  This finding prompted the 

hypothesis that FMRP might use an autoregulatory loop to regulate its own translation 

(41).  However, in a subsequent study, it was shown that the FMRP interactions with FBS 

do not affect the FMR1 mRNA stability and translation.  The purine rich FBS region has 

been found instead to be a potent exonic splicing enhancer whose function is dependent 

on the presence of the G-rich region (72, 73).  FBS is located in the proximity of the three 

different acceptor sites at exon 15, and FMRP binding to FBS has been found to control 

the splicing events at exon 15.  Thus, an overexpression of FMRP ISO1 decreased the 
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usage of the exon 15 first acceptor site, concomitant with an increased usage of the exon 

15 second and third acceptor sites (72).  This direct involvement of FMRP in regulating 

the production of its minor isoforms created by the usage of exon 15 acceptor sites 2 and 

3, which include ISO2 and ISO3, could add a new layer of regulation to the FMRP 

translation regulator function, as these minor isoforms lack the major phosphorylation 

site at position 500 (figure 1.1, red).  The FMRP phosphorylation/dephosphorylation 

events have been shown to play a major role in the association of FMRP with the miRNA 

pathway, which might assist the protein in exerting its translation regulator function at 

least for a subset of its mRNA targets that contain miRNA binding sites.  Phosphorylated 

FMRP has been found associated with the RNA induced silencing complex (RISC), the 

microRNA miR-125a, and the postsynaptic density 95 (PSD95) mRNA, whereas its 

dephosphorylation triggered by synaptic input leads to the dissociation of the RISC 

complex from PSD95 mRNA, allowing for the translation of the PSD95 protein (47).  

The fact that FMRP isoforms ISO2 and ISO3 lack the major site of phosphorylation 

raises the possibility that these minor isoforms might control the timing and duration of 

the “on” state for the translation of specific mRNA targets.  Thus, their production has to 

be tightly regulated, and this may be achieved by a feedback mechanism involving the 

FBS exonic splicing enhancer.      

 It is of great interest to directly characterize the presence of a G-quadruplex 

structure within the FBS sequence of FMR1 mRNA by biophysical methods to show that 

FMRP indeed binds to its own mRNA in a G-quadruplex dependent manner, and this was 

accomplished in the first part of this study (chapter 3).  Furthermore, it is also relevant to 

quantify the binding of major and minor isoforms of FMRP to this sequence by 
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biophysical methods as it has been shown in vivo that the major isoform binding to this 

sequence influences the production of the minor splice variants of the protein.  This was 

accomplished in the second part of this study, the results being summarized in chapter 4.    

 

 

1.8 Specific Aims of the research 

 Specific Aim I: Direct characterization by biophysical methods of G-quadruplex 

 forming mRNA sequence(s) located in the RGG box coding region of FMR1 

 mRNA.   

 

 Specific Aim II: Characterization of the binding between several FMRP isoforms 

 and the G-quadruplex formed by FMR1 mRNA by biophysical methods. 

 

Specific Aim III: Characterization of the binding of let7b miRNA to the 3’-UTR 

of a known FMRP mRNA target, MAP1B mRNA. 

 

1.9 Relevance of the research 

 The research performed in this project will increase our understanding of the role 

played by FMRP in controlling the alternate splicing of its own mRNA.  It is important to 

directly prove that the G-rich FBS sequence of FMR1 mRNA forms a G-quadruplex to 

which FMRP binds with high affinity.  The fact that FMRP binds to its own mRNA in 

order to regulate the alternate splicing into major and minor isoforms may have 

implications in other regulatory processes modulated by FMRP as the minor splice 
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isoforms lack the site of phosphorylation in exon 15.  Although the phosphorylation of 

FMRP ISO1 has not been shown to affect its binding to the FBS sequence of FMR1 

mRNA in this study, it has been shown and proposed to have importance in other aspects 

of protein function.  We have shown that the minor FMRP isoforms, ISO2 and ISO3, 

bind more tightly to the FBS sequence of FMR1 mRNA, indicating that neuronal cells 

utilize the negative feedback loop of FMRP binding to its own mRNA to regulate the 

alternate splicing into minor isoforms.   

 Furthermore, the role of FMRP as a translational regulator is not fully understood, 

and the results of the second part of this study could help elucidate how FMRP functions 

in the presence of target mRNAs that contain both G-quadruplex structures and 

complementary binding sequences for miRNAs.  This research could be relevant beyond 

the scope of fragile X syndrome to investigate how other proteins exhibit their 

translational regulatory functions in the presence of miRNA. 
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CHAPTER 2: MATERIALS AND METHODS 

 

2.1 Synthesis of RNA in vitro 

 Unlabeled FBS_67 RNA, FBSsh RNA, FBS_Q1 RNA and FBS_Q2 RNA (table 

2.1) oligonucleotides were synthesized in vitro off synthetic DNA templates (Trilink 

Biotechnologies, Inc.) using T7 RNA polymerase produced in-house (74).  

Oligonucleotides were purified by 15% or 20% 8 M urea denaturing polyacrylamide gel  

 

Table 2.1 Unlabeled RNA sequences 

 

 

 

electrophoresis (PAGE), eluted from the gel pieces using electrophoretic elution, and 

extensively dialyzed against 10 mM cacodylic acid, pH 6.5 (74).  A fluorescent 

oligonucleotide was designed for FBSsh in which the highly fluorescent adenine analog 

2-aminopurine (2AP) replaced the adenine at position 14 of FBSsh RNA to construct 

FBSsh_14AP (Dharmacon, Inc.).  Two unlabeled RNA sequences, MAP1B seq1 RNA 

and let-7b miRNA, were synthesized by Dharmacon, Inc. as well since the sequences do 

not begin with two guanines, a requirement for in vitro T7 RNA polymerase 
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transcription.  Samples of FBS_67, Q1, and Q2 RNA sequences were annealed by 

heating at 95 °C in the presence or absence of KCl and slow cooling to 25 °C for 30 

minutes.  All samples of FBSsh and FBSsh_14AP RNA were prepared by incubation in 

the presence or absence of KCl at 25 °C for 20 minutes.   

 

2.2  RGG box peptide synthesis 

 The FMRP RGG box peptide with the sequence N-RRGDGRRRGGGG 

RGQGGRGRGGGFKGNDDHSR-C was chemically synthesized by the Peptide 

Synthesis Unit at the University of Pittsburgh Center for Biotechnology and 

Bioengineering.   

 

2.3 Expression of recombinant FMRP isoforms 

 The recombinant pET21a-FMRP plasmid encoding FMRP isoform 1 (ISO1) 

fused with a C-terminal 6X histidine tag was a kind gift from Dr. Bernhard Laggerbauer 

(Institut für Molekularbiologie und Tumorforschung, Philipps-Universität Marburg, 

Marburg, Germany).  The truncations of the FMR1 gene encoding for FMRP ISO1 to 

create the genes encoding for ISO2 and ISO3 were performed by GenScript USA, Inc. 

and confirmed by sequencing at the University of Pittsburgh Genomics and Proteomics 

Core.  In order to recombinantly express, purify, and dialyze ISO2 and ISO3, we used the 

previously developed protocol in our laboratory for the expression of FMRP ISO1 (75).  

In brief, plasmids were transformed into Rosetta2(DE3)pLysS E. coli cells.  All media 

used in the cell growth consisted of Luria-Bertani (LB, Fisher Scientific) media 

containing 200 µg/mL ampicillin (AMP, MP Biomedical) and 15 µg/mL 
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chloramphenicol (CHL, MP Biomedical).  Cells were incubated at 37 °C until the target 

absorbance at 600 nm of 0.8 – 1.0 was reached, and protein expression was induced by 

adding 1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) and incubating cells at 250 

rpm and 25 °C for 12 hours.  Cells were harvested, lysed, and purified using Ni-NTA 

Superflow resin (Qiagen) as described (75).  Purified proteins were concentrated using 

dialysis tubing filled with polyethylene glycol (PEG) 20,000 and dialyzed into a buffer 

devoid of K
+
, Na

+
, or imidazole.  Final protein buffer consisted of 5% glycerol, 1 mM 

EDTA, and 300 mM LiCl.  The concentration of FMRP isoforms was determined at A280 

by using the molar extinction coefficients of 46370 M
-1

cm
-1

 for ISO1 and ISO2 and 

40680 M
-1

cm
-1

 for ISO3 (76, 77).  The presence of the isoforms was analyzed using a 

10% tris-glycine sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-

PAGE) and visualized by Coomassie blue staining.   

 

2.4 Mass Spectrometry Analysis of FMRP ISO2 and ISO3 

 The identity of FMRP ISO2 and ISO3 was confirmed using peptide mass 

fingerprinting (Genomics and Proteomics Core Laboratories, University of Pittsburgh).  

FMRP ISO2 and ISO3 from a 10% SDS-PAGE gel was excised and trypsin digested 

followed by analysis via matrix-assisted laser desorption/ionization time-of-flight mass 

spectrometry (MALDI-TOF-MS).  Five MALDI-TOF-MS characterized amino acid 

sequences matched those found in FMRP isoforms, and the one sequence corresponding 

to exon 15 was truncated according to the splice variations of ISO2 and ISO3.   
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2.5 Design of the phosphomimetic FMRP isoform 1, ISOP 

 FMRP ISO1 has been shown to be phosphorylated at 3 serine sites in exon 15, 

serine 500 being shown to be biologically relevant (47, 78).  Sara Katrancha, an 

undergraduate in the Mihailescu lab, designed a phosphomimetic version of FMRP ISO1 

in which serine 500 was replaced by aspartic acid in order to mimic phosphorylation on 

serine 500 (79).  This phosphomimetic FMRP ISO1 (ISOP) mutation was performed by 

GenScript USA, Inc.  In order to recombinantly express, purify, and dialyze ISOP, the 

previously developed protocol (75) for the expression of FMRP ISO1 was used as 

described in section 2.4.  The concentration of FMRP ISOP was determined at A280 by 

using the molar extinction coefficients of 46370 M
-1

cm
-1 

(76).  The presence of FMRP 

ISOP was analyzed using a 10% tris-glycine sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis (SDS-PAGE) and visualized by Coomassie blue staining. 

 

2.6 UV spectroscopy 

 The melting curves of the RNA oligonucleotides were collected on a Varian Cary 

3E spectrophotometer outfitted with a Peltier temperature control cell holder.  

Experiments were carried out in a 10 mm path length 200 µL quartz cuvette (Starna 

Cells) using samples prepared as follows in 10 mM cacodylic acid, pH 6.5 up to a final 

volume of 200 µL.  FBS_67 RNA, FBS_Q1 RNA and FBS_Q2 RNA were all prepared 

by boiling the samples for 10 minutes and allowing them to cool to 25 °C for 30 minutes.  

FBSsh RNA was prepared and incubated at 25 °C.  Samples were heated from 25 °C to 

95 °C at a rate of 0.2 °C per minute with points recorded every 1 °C.  Samples and 

reference cells were covered with 200 µL of mineral oil to prevent evaporation of 
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aqueous solutions at high temperatures.  Spectral absorbencies were monitored at either 

295 nm or 305 nm, wavelengths that have been identified as being sensitive to G-

quadruplex dissociation, depending on the absorbance of the RNA at different 

concentrations (80).  All UV thermal denaturation experiments were performed in 

duplicate.  In order to determine the inter- or intramolecular conformation of the G-

quadruplex, melting temperatures of various concentrations of RNA between 3 and 50 

µM were recorded.  Duplex denaturation between MAP1B seq1 RNA and let-7b miRNA 

was monitored at 275 nm (81).   

 

2.7 Circular Dichroism Spectroscopy 

 CD experiments were performed on a J-810 spectrapolarimeter at 25 °C using a 

200 µL quartz cuvette with a 1 mm path length (Starna Cells).  Parallel G-quadruplex 

formation of the RNA oligonucleotides at 10 µM in 10 mM cacodylic acid, pH 6.5, was 

observed as KCl was titrated in increasing concentrations from a 2 M stock, by 

monitoring the change in molar ellipticity at 240 nm and 265 nm.  Changes in molar 

ellipticity at 240 nm and 265 nm were monitored for FBSsh RNA as RGG box peptide 

was titrated into the sample from a 500 µM stock.  Each spectrum was scanned 7 times 

from 200 to 350 nm with a one second response time and a 2 nm bandwidth. 

 

2.8 1D 
1
H-NMR spectroscopy 

 The one-dimensional (1D) 
1
H-NMR spectra of the RNA oligonucleotides were 

acquired at 25 °C on a 500 MHz Bruker AVANCE spectrometer.  Water suppression was 

carried out by using the Watergate pulse sequence (82).  Maximum concentrations of 
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RNA oligonucleotides (200 µM to 1 mM) were prepared in 10 mM cacodylic acid, pH 

6.5, in a 90:10 ratio of H2O:D2O.  G-quadruplex formation was observed by titrating 

increasing concentrations of KCl from a 2 M stock to each sample and allowing samples 

to equilibrate for 10 minutes at 25 °C.  Samples that were boiled were removed from the 

NMR tube prior to boiling and replaced after they were cooled to 25 °C.  The D2O 

exchange experiment was carried out by lyophilizing the FBS_Q2 RNA sample and re-

suspending it in 250 µL of pure D2O, with spectra measured in the interval 10 minutes to 

5 days at 25 °C. 

 The 1D 
1
H-NMR spectra of MAP1B seq1 RNA and let-7b miRNA duplex 

formation was observed on a Bruker 900 MHz US
2
 spectrometer equipped with a 

cryoprobe for increased sensitivity at the University of Pittsburgh NMR Core Facility.   

 

2.9 2D 
1
H-

1
H NOESY  

 Two-dimensional (2D) homonuclear NOESY experiments with mixing times of 

50 ms were recorded at 25 °C in 90%:10% H2O:D2O (82, 83).  Data sets were processed 

using XWIN-NMR (Bruker).   

 

2.10 Native polyacrylamide gel electrophoresis (native PAGE) 

 Non-denaturing PAGE experiments on all RNA oligonucleotides were performed 

using acrylamide from J.T. Baker and vertical gel apparatus from BioRad.  Gels (15 % 

for FBSsh and FBS_67 RNA and 20% for FBS_Q1 and FBS_Q2 RNA) were visualized 

by UV shadowing at 254 nm (84) or staining in ethidium bromide or SYBR gold and 

visualized on an AlphaImager (AlphaInnotech).  FBS_67 RNA, FBS_Q1 RNA, and 
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FBS_Q2 RNA were prepared by heating to 95 °C for 5 minutes and allowing samples to 

cool to 25 °C for 30 minutes.  Samples of FBSsh RNA were prepared by incubation at 25 

°C for 20 minutes.  Gels were run at 4 °C from 40 to 75 V for 4 to 6 hours.  FMRP RGG 

box binding experiments were performed by preparing the RNA sequences as described 

above and then incubating samples with RGG box peptide in different ratios at 25 °C for 

an additional 30 minutes.   Samples for native PAGE experiments on MAP1B seq1 RNA 

and let-7b miRNA duplex formation were mixed and allowed to incubate at 25 °C for 20 

minutes, loaded onto a 20% gel, and run at 75 V for 6 hours at 25 °C.   

 

2.11 Fluorescence spectroscopy 

 Steady-state fluorescence spectroscopy experiments of FBSsh_14AP were 

performed on a Horiba Jobin Yvon Fluoromax-3 and accompanying software fitted with 

a 150 W ozone-free xenon arc lamp.  Experiments were performed in a 150 µL sample 

volume, 3 mm path-length quartz cuvette (Starna Cells).  Excitation wavelength was set 

to 310 nm, the emission spectrum was recorded in the range of 330 – 450 nm, and the 

bandpass for excitation and emission monochromators were both set to 3 nm.  For 

binding experiments, the temperature was set to 25 °C, and increasing concentrations of 

FMRP isoforms (ISO1, ISO2, ISO3, and ISOP) were titrated in 15 nM increments to a 

fixed RNA concentration of 150 nM.  A ratio of 5:1 BSA:RNA was added to the RNA 

sample before titration began.  Emission values were corrected for free protein emission 

of both BSA and FMRP isoforms, and the data was normalized to free RNA fluorescence 

intensity monitored at 371 nm.  Experiments were performed in triplicate, and the Kd of 

each individual experiment was calculated by fitting the data to equation 2.1 and 
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averaged with the other two with the error representing the standard deviation of the 

average Kd.  Data shown is representative of individual experimental data with the 

average Kd shown.  IF and IB represent steady-state fluorescence intensities of free and 

bound RNA, respectively, [RNA]t is the total fixed RNA concentration, and [P]t is the 

total FMRP isoform concentration.  The protein-RNA complex dissociation constant, Kd, 

was determined for each experiment by fitting the binding curve with equation 2.1.  

Reported errors are standard uncertainties of the averaged data from the best-fit 

theoretical curves.  

 

 
2.1 
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CHAPTER 3: CHARACTERIZATION OF FBS RNA G-QUADRUPLEX 

STRUCTURE(S) 

 

3.1  Characterization of FBS_67 RNA 

 FMRP has been shown to interact with its own mRNA by binding to a 100 

nucleotide G-rich region named the FMRP binding sequence (FBS), which was proposed 

to fold into two distinct G-quadruplex structures (41, 72, 73) based on potassium-

dependent stops of reverse-transcriptase that disappeared when mutations were 

introduced to FBS RNA.  The purine rich FBS region has been found instead to be a 

potent exonic splicing enhancer whose function is dependent on the presence of the G-

rich secondary structures (72, 73).  The FBS region of FMR1 mRNA is located near the 

three acceptor sites of exon 15, and FMRP binding to this region has been shown to 

control splicing events at exon 15.  This direct involvement of FMRP in regulating the 

production of its minor isoforms created by the usage of exon 15 acceptor sites 2 and 3, 

which include ISO2 and ISO3, could add a new layer of regulation to the FMRP 

translation regulator function, as these isoforms lack the major phosphorylation site at 

amino acid position 500.  It is of great interest to directly characterize the presence of (a) 

G-quadruplex structure(s) within the FBS sequence of FMR1 mRNA by biophysical 

methods to determine if FMRP indeed binds to its own mRNA in a G-quadruplex 

dependent manner.  Moreover, it is important to quantify the binding of major and minor 

isoforms of FMRP to this sequence by biophysical methods, as it has been shown in vivo 

that the major isoform binding to this sequence influences the production of the minor 

splice variants of the protein (72).   
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 In this study, biophysical methods were employed to directly confirm the 

existence and characterize the fold of the G-quadruplex structures in FMR1 mRNA.  

Initially, we truncated FBS RNA to a 67 nt fragment (position 1590 – 1657 within the 

FMR1 gene), named FBS_67 RNA, which retained the G-rich region proposed to fold 

into two G-quadruplex structures.  We chose this 67 nt sequence because it retained the 

two proposed G-quadruplexes plus flanking nucleotides from the original 100 nt RNA 

and because a shorter 67 nt RNA sequence had a higher chance of being successfully 

transcribed in vitro compared to the original 100 nt sequence.  FBS_67 RNA was  

 

 
Figure 3.1 The 

1
H-NMR spectra of FBS_67 RNA confirms the formation of a G-

quadruplex in the presence of increasing concentrations of KCl as seen by the increasing 

of the intensity of the resonances between 10 and 12 ppm.  Canonical base pairing, as 

seen by resonances between 11.5 and 15 ppm, are also consistently present even as the G-

quadruplex resonance intensities increase.   
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produced by in vitro transcription reactions off a synthetic DNA template, and 1D 
1
H-

NMR spectroscopy was employed to analyze G-quadruplex formation in this sequence in 

the absence and presence of KCl.  A group of imino proton resonances centered around 

11 ppm, which correspond to guanine imino protons involved in G-quartet formation, 

were observed even in the absence of K
+
 ions (Figure 3.1, bottom spectrum).  Imino 

proton resonances were also observed in the region 12 – 15 ppm, corresponding to 

guanine and uracil imino protons involved in Watson-Crick base pair formation (85), 

indicating also the presence of a duplex and potentially multiple conformations in the 

structure of FBS_67 RNA.  As the KCl concentration was increased in the range 0 – 100 

mM, the resonances corresponding to the imino protons involved in G-quadruplex 

formation increased in intensity and became somewhat more well-defined while the 

resonances corresponding to canonical base pairing remained constant.  These results 

indicate unambiguously that one or more G-quadruplex structures that are stabilized by 

K
+
 ions are present in FBS_67 RNA.   

 Circular dichroism (CD) spectroscopy was employed next to gain information 

about the G-quadruplex fold of FBS_67 RNA.  A positive band whose intensity increased 

upon KCl titration at 265 nm and a negative band at 240 nm were observed, signatures of 

parallel-type G-quadruplex structures (figure 3.2) (34, 35).   

 Next, we performed non-denaturing polyacrylamide gel electrophoresis (native 

PAGE) in the presence of increasing KCl concentrations and at different FBS_67 RNA 

concentrations in order to determine if this sequence formed multiple conformations that 

migrated at different rates throughout the gel.  Several bands were observed for FBS_67 

RNA at all KCl concentrations investigated in the range 0 – 100 mM and at all RNA  
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Figure 3.2 Circular dichroism (CD) spectra of FBS_67 RNA upon addition of KCl up to 

75 mM.  The presence of the positive peak at 265 nm and of the negative peak at 240 nm 

indicates the formation of a parallel G-quadruplex in the presence of K
+
 ions.   

 

 

concentrations investigated in the range 5 – 20 µM (figure 3.3), confirming that FBS_67 

RNA adopts multiple conformations as suggested by the 1D 
1
H-NMR spectra.  The 

formation of alternate G-quadruplex structures is not uncommon when working with 

isolated RNA sequences, and in an attempt to solve this problem, two shorter fragments, 

FBS_Q1 RNA (15 nt, position 1602 – 1616 within the FMR1 gene) and FBS_Q2 RNA 

(19 nt, position 1617 – 1635 within the FMR1 gene), whose sequences were predicted to 

adopt G- quadruplex structures, were produced by in vitro transcription reactions (table 

2.1).   
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Figure 3.3 (A) Native polyacrylamide gel electrophoresis (PAGE) of FBS_67 RNA at 

different RNA concentrations in a fixed concentration of 50 mM KCl. Several 

conformations exist at each concentration of RNA. (B) Native PAGE of FBS_67 RNA at 

a fixed concentration of 20 µM in the presence of increasing concentrations of KCl.  

Several conformations exist in the gel at all KCl concentrations.     

 

 

3.2  Characterization of FBS_Q1 RNA and FBS_Q2 RNA 

 Once again, 1D 
1
H-NMR was employed to investigate G-quadruplex formation 

within each of the two short RNA sequences, FBS_Q1 RNA and FBS_Q2 RNA.  As seen 

in figure 3.4, even in the absence of KCl, resonances are present in the region 10 – 12 

ppm, corresponding to imino protons of guanines involved in G-quartet formation, 

indicating the presence of a G-quadruplex structure in FBS_Q1 RNA.  Upon the titration 

of KCl up to 25 mM, these imino proton resonances become sharper, indicating that the 

FBS_Q1 G-quadruplex is stabilized by K
+
 ions.  Since the annealing of this sample 

results in even sharper resonances (figure 3.4, top spectrum), all further experiments were 

performed with annealed FBS_Q1 RNA samples.  No imino proton resonances 

corresponding to Watson-Crick base pairs were present in the region 12 – 15 ppm, 

indicating the absence of alternate duplex conformation, which was expected as the  
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Figure 3.4 1D 

1
H-NMR spectra of FBS_Q1 RNA in the presence of increasing KCl 

concentrations.  The G-quadruplex (10 – 12 ppm) forms in 0 mM KCl, but the imino 

proton resonances increase in intensity and sharpness upon the addition of KCl.  Amino 

proton resonances are also present between 8.6 and 10 ppm, and all resonances become 

sharper once the sample is boiled for 5 minutes and annealed.   

 

 

sequence is made up entirely of guanines and adenines, which are incapable of forming 

Watson-Crick base pairs.  It is interesting to note the presence of two unusually sharp and 

downfield guanine amino resonances at 9.9 ppm and 10.0 ppm.  Sharp and downfield 

shifted guanine amino proton resonances observed in G-quadruplex forming sequences 

containing 5’-GGAGG-3’ stretches have been attributed to the presence of an 

A:(G:G:G:G):A hexad in the structure in which two guanines have both of their amino 

protons hydrogen bonded, one to a neighboring guanine in the G-quartet and the second 

to the N7 of the adenine to form a hexad (figure 3.5) (86-90).  A second set of sharp and  
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Figure 3.5 An RNA hexad is formed by two adenines that are in the plane with the G-

quartet. The formation of a hexad stabilizes the amino protons that are involved in 

Hoogsteen base pairing within the G-quartet.   

 

 

downfield shifted amino protons were observed at 8.60 ppm and 8.80 ppm, and a broader 

one at 8.73 ppm.  2D 
1
H-

1
H homonuclear Overhauser enhancement NMR spectroscopy 

(NOESY) experiments revealed strong NOE cross peaks between the two hydrogen 

bonded amino protons in each of the two guanines involved in the formation of the 

hexad: for the first guanine (10.0 ppm; 8.8 ppm), (11.5 ppm; 10.0 ppm) and (11.5 ppm; 

8.8 ppm) and for the second guanine (9.9 ppm; 8.6 ppm), (11.4 ppm; 9.9 ppm) and (11.4 

ppm; 8.6 ppm) (figure 3.6).  These results are consistent with the presence of a hexad 

structure in which both amino protons of two guanines are involved in hydrogen bonding.  

Furthermore, proton-deuterium exchange experiments revealed that the same set of imino 

protons (at 11.5 ppm and 11.3 ppm) and amino proton pairs (at 10.0 ppm, 8.8 ppm and 

9.9 ppm, 8.6 ppm, respectively) for which strong NOE cross peaks were observed in the 

NOESY experiments exchange very slowly (hours or days) as compared to the rest of the 

imino protons present in the spectrum (seconds or minutes) (figure 3.7).  This exchange  
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Figure 3.6 2D 
1
H-

1
H-NOESY of FBS_Q1 RNA in the presence of 25 mM KCl.  The 

dotted lines show the relationship between the NOEs and the 1D 
1
H-NMR spectrum of 

FBS_Q1 RNA.   

 

 

with the solvent, which requires the base pairs to open transiently, is slowed down 

considerably when both amino protons of some of the guanines are involved in hydrogen 

bonding, as predicted in the hexad structure (figure 3.5).  Taken together the 1D 
1
H-NMR 

spectra, the 2D 
1
H-

1
H NOESY spectrum, and the1D deuterium exchange NMR spectra 

strongly suggest that the FBS_Q1 RNA sequence adopts a G-quadruplex structure that 

contains an A:(G:G:G:G):A hexad.   
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Figure 3.7 1D 

1
H-NMR spectra of FBS_Q1 RNA, which was lyophilized and re-

suspended in deuterium oxide (D2O).   

 

 

 When FBS_Q2 was analyzed by 1D 
1
H-NMR spectroscopy, a set of resonances 

corresponding to the imino protons of guanines and uracils involved in Watson-Crick 

base pairs were observed in the region 12 – 14 ppm at all KCl concentrations 

investigated, whereas the characteristic G-quadruplex imino proton resonances centered 

around 11 ppm were not observed until 25 mm KCl had been titrated into the sample 

(figure 3.8).  The G-quadruplex imino proton resonances increased in intensity as more 

KCl was titrated up to 60 mM KCl in FBS_Q2 RNA, but this titration did not affect the 

intensity of the Watson-Crick base pairs, suggesting that FBS_Q2 RNA adopts alternate 

conformations involving Watson-Crick base pairing independent of the G-quadruplex 

structure forming upon the addition of KCl.   
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Figure 3.8 1D 

1
H-NMR spectra of FBS_Q2 RNA at varying concentrations of KCl.  The 

G-quadruplex region of the spectra between 10 and 12 ppm appears and increases upon 

increasing concentrations of KCl up to 60 mM.  Watson-Crick base pairing can be seen 

as imino proton resonances between 12 and 14 ppm that do not change upon KCl 

titration. 

 

 

  To investigate if each of the two sequences, FBS_Q1 RNA and FBS_Q2 RNA, 

exists in a single conformation at various KCl concentrations, native PAGE was 

employed.  FBS_Q1 RNA was observed to form a single band on the native PAGE at 25 

mM KCl and 50 mM KCl while it was observed to form two distinct conformations at 0 

mM KCl as well as at KCl concentrations in the range 75 – 150 mM (figure 3.9 A).  At 

25 mM KCl, FBS_Q1 RNA was observed to form a single conformation by native PAGE 

at various concentrations of RNA in the range 10 – 40 µM (figure 3.9 B).  The secondary 

band at higher concentrations of KCl seen in figure 3.9 (A) could represent secondary 
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Figure 3.9 (A) Native PAGE of FBS_Q1 RNA in the presence of increasing KCl 

concentrations.  The sequence forms more than one conformation at KCl concentrations 

above 50 mM, but it appears to form only one conformation in the presence of 25 mM 

KCl and 50 mM KCl. (B) Increasing concentrations of FBS_Q1 RNA forming one 

conformation in 25 mM KCl.     

 

 

structure in which the hexad formed by FBS_Q1 RNA stacks upon another hexad in 

order to form a dimer upon increasing KCl concentrations, a phenomenon commonly 

observed in hexad forming sequences (86).   

 Although the 
1
H-NMR spectroscopy results suggested that the sequence of 

FBS_Q2 RNA formed more than one conformation, one of which involved Watson-Crick 

base pairing, this RNA migrates as a single band in native PAGE experiments at all KCl  
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Figure 3.10 (A) Native PAGE of FBS_Q2 RNA in the presence of increasing KCl 

concentrations and (B) increasing concentrations of RNA at a fixed concentration of 25 

mM KCl.  The sequence forms only one conformation at KCl concentrations in the range 

0 mM to 150 mM and RNA concentrations in the range 10 – 40 µM.   

 

 

concentrations in the range 0 – 150 mM (figure 3.10).  Thus, it is possible that the 

alternate conformations adopted by FBS_Q2 RNA cannot be distinguished based on their 

migration pattern through native PAGE experiments.   

 To gain information about the G-quadruplex fold of FBS_Q1 RNA and FBS_Q2 

RNA, CD spectroscopy was once again utilized (figure 3.11).  As expected from the 
1
H-

NMR data that showed a G-quadruplex forming in the absence of KCl, FBS_Q1 RNA 

has the signature positive band at 265 nm and a negative band at 240 nm of a parallel G- 

quadruplex structure in the absence of KCl.  Even upon the titration of increasing KCl 

concentrations, the signature bands of parallel G-quadruplex formation remain constant 

(figure 3.11 A).  The 
1
H-NMR spectra of FBS_Q2 RNA showed the absence of 

resonances in the G-quadruplex region in the absence of KCl and the increase in G-

quadruplex character upon the titration of KCl into the sequence.  Similarly, the CD 

spectrum of FBS_Q2 RNA indicates that a parallel G-quadruplex is forming only upon 

the titration of KCl up to 25 mM with a positive band at 265 nm and a negative band at 

240 nm (figure 3.11 B).  In the absence of KCl, the positive band is centered at 270 nm, a  
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Figure 3.11 Circular dichroism (CD) spectra of FBS_Q1 RNA and FBS_Q2 RNA. (A) 

FBS_Q1 RNA upon titration of 25 mM KCl shows the positive band at 265 nm and the 

negative band at 240 nm, indicating the formation of a parallel G-quadruplex in the 

absence and presence of K
+
 ions.  (B) CD spectra of FBS_Q2 RNA upon the titration of 

25 mM KCl shows a positive peak at 265 nm and a negative band at 240 nm, indicating 

that FBS_Q2 RNA forms a G-quadruplex upon the addition of K
+
 ions.  At 0 mM KCl, 

the positive band is observed at 270 nm, a signature of A-form duplex formation. 
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signature of A-form duplex formation within RNA (91), consistent with the 
1
H-NMR 

data in figure 3.8.  

 To determine if the formation of parallel G-quadruplexes within the short 

sequences of FBS_Q1 RNA and FBS_Q2 RNA caused them to be targets of FMRP RGG 

box binding, native PAGE was once again employed (Figure 3.12).  The synthetic FMRP  

 

 

Figure 3.12 Native PAGE of (A) FBS_Q1 RNA and (B) FBS_Q2 RNA in the presence 

of increasing concentrations of RGG box in 25 mM KCl.   

 

 

RGG box peptide has been shown to have high binding affinity to G-quadruplex forming 

RNA sequences (43-45).  The binding between RNA and the FMRP RGG box is 
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observed as a disappearance of the free RNA band, as the RGG box peptide is positively 

charged, causing the RNA-peptide complex to migrate towards the cathode, and a distinct 

band representing the complex will not be observed.  When the FMRP RGG box is 

titrated into FBS_Q1 RNA up to a 2:1 ratio of peptide:RNA, the free RNA band 

disappears, indicating that the RGG box has high binding affinity for FBS_Q1 RNA 

(Figure 3.12 A).  However, when the RGG box peptide is titrated into FBS_Q2 RNA in 

the same ratios, the free RNA band remains at nearly the same intensity, indicating that 

the RGG box does not have high binding affinity for FBS_Q2 RNA alone (Figure 3.12 

B).  This could be explained by the fact that the 
1
H-NMR spectra of FBS_Q2 RNA 

suggested that multiple conformations existed in this sequence, but all possible 

conformations migrated at the same rate along the native PAGE.  One of these 

conformations may not have high binding affinity for the RGG box peptide, but it is not 

possible to distinguish between these conformations in the binding gel.   

  Although FBS_Q2 RNA did not have high binding affinity for the RGG box 

peptide, the G-quadruplex formed by both FBS_Q1 and FBS_Q2 are proposed to exist 

simultaneously and adjacent to one another within the FBS sequence of FMR1 mRNA.  

The short FBS_Q1 RNA was found to form a G-quadruplex that also contains an 

A:(G:G:G:G):A hexad. However, it is not clear if this hexad formation is induced by the 

short FBS_Q1 RNA sequence or if it is also present in a longer FBS stretch.  To test this, 

FBS_Q1 RNA and FBS_Q2 RNA were combined into a 42 nt sequence named FBSsh 

RNA, which retained both proposed G-quadruplexes but was shorter than the initial 

FBS_67 RNA, making it more likely that this sequence would form a single 

conformation (Table 2.1).   
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3.3  Characterization of FBSsh RNA 

 To investigate the formation of a G-quadruplex within the FBSsh RNA sequence, 

1D 
1
H-NMR was once again employed.  As seen in figure 3.13, even at 0 mM KCl, a 

broad resonance is present in the region centered at 11 ppm, corresponding to imino 

protons of guanines involved in G-quartet formation, whereas, upon the addition of KCl 

up to 25 mM, more defined resonances develop under this broad envelope, indicating that 

the G-quadruplex structures of FBSsh RNA are further stabilized in the presence of K
+
 

ions.  Nonetheless, at all KCl concentrations investigated, the G-quadruplex imino proton 

resonances remain broad, which could be due to the presence of multiple G-quadruplex 

structures in FBSsh RNA sequence.  This may be because the imino proton resonances 

from each of the proposed G-quadruplexes resonate in the same region of the 
1
H-NMR 

spectrum, and if two exist simultaneously, their resonances will overlap in the region 

centered at 11 ppm.  Interestingly, no sharp amino proton resonances, signatures of the 

A:(G:G:G:G):A hexad, were observed around 10 ppm, indicating that the hexad structure 

is not formed in FBSsh RNA, likely being induced in the isolated FBS_Q1 RNA by the 

short length of the sequence.  Additionally, in contrast with the 1D 
1
H-NMR spectra of 

FBS_Q2 RNA, no resonances appear in the Watson-Crick base pair region of the 
1
H-

NMR spectrum of FBSsh RNA, indicating that this sequence does not form any alternate 

conformations that do not involve G-quadruplexes.  This confirmed that FBS_Q1 and 

FBS_Q2 RNA sequences became more stable G-quadruplexes once incorporated into a 

longer sequence with each other.  Thus, all subsequent characterization experiments were 

performed with the 42 nt FBSsh RNA folded in the presence of 25 mM KCl.     
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Figure 3.13 1D 

1
H-NMR spectra of FBSsh RNA at varying concentrations of KCl.  

Resonances are present in the G-quadruplex imino proton region between 10 and 12 ppm 

even at 0 mM KCl, their intensity increasing with increasing KCl concentrations.  The 

resonances are broad in nature, indicating that this sequence is dynamic and may contain 

two distinct G-quadruplexes, FBS_Q1 RNA and FBS_Q2 RNA. 

 

 

 To confirm that the 42 nt sequence of FBSsh RNA exists in a single conformation 

native PAGE was employed once again (figure 3.14).  At 0 mM KCl, FBSsh RNA 

migrates in the gel as a single band, which changes position with increasing salt 

concentrations up to 150 mM KCl (figure 3.14 B), consistent with the 1D 
1
H-NMR 

spectra.  Similarly, a single band is present when several concentrations of FBSsh RNA 

in the range 5 – 30 µM were run on a native PAGE in a fixed concentration of 25 mM 

KCl (figure 3.14 A).     
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Figure 3.14 Native PAGE of FBSsh RNA in the presence of (A) varying concentrations 

of RNA and (B) varying concentrations of KCl. 

 

 

 
Figure 3.15 Circular dichroism (CD) spectra of FBSsh RNA upon addition of 25 mM 

KCl.  The increasing positive band at 265 nm and the negative band at 240 nm indicates 

the formation of (a) parallel G-quadruplex(es) in the presence of K
+
 ions.   
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 To gain additional information about the fold of the G-quadruplexes within 

FBSsh RNA, we used CD spectroscopy.  The CD spectrum of FBSsh RNA, shown in 

figure 3.15, shows a negative band at 240 nm and a positive band at 265 nm that increase 

in intensity upon the titration of KCl from 0 to 25 mM.  This result, which indicates that 

one or more parallel G-quadruplex structures are present in FBSsh RNA, is consistent 

with the 
1
H-NMR spectra of FBSsh RNA, which showed an increase in the intensities of 

the G-quartet imino proton resonances upon the titration of K
+
 ions.       

 Next, we employed thermodynamic methods to determine if FBSsh RNA folds 

into an intermolecular or intramolecular G-quadruplex structure.  Thus, UV thermal 

denaturation was used to determine the melting temperatures of the FBSsh G-quadruplex 

structures at various RNA concentrations in the presence of 25 mM KCl.  If a species 

contains n number of strands, its melting temperature, Tm, depends on the total RNA 

concentration, cT (92).  In the case of intermolecular G-quadruplex formation, the plot of 

1/Tm (°C-1) versus ln[RNA] is a straight line fitting equation 3.1, where R is the 

Boltzmann constant (1.986 cal K
-1

 mol
-1

) and ΔH°vH and ΔS°vH are the two Van’t Hoff 

free energy components enthalpy and entropy, respectively.   

 

 
3.1 

 

However, if a species is intramolecular, the Tm does not depend upon RNA 

concentration.  For intramolecular species, n = 1 strand, Tm is independent of cT, and the 

slope of the straight line resulting from plotting 1/Tm (°C
-1

) versus ln[RNA] is zero, 

simplifying equation 3.1 to equation 3.2. 
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3.2 

 

The Tm of each of the transitions in the UV thermal denaturation of FBSsh RNA at each 

RNA concentration was calculated by fitting the curves to equation 3.3 and rearranging 

the calculated ΔH°vH and ΔS°vH into equation 3.2 to determine Tm.     

 

 
3.3 

 

In equation 3.3, AU is the calculated absorbance of denatured RNA while AF is the 

calculated absorbance of folded RNA.  The experiments were recorded at 295 nm, the 

wavelength that has been shown to be sensitive to G-quadruplex denaturation (80).  The 

UV thermal denaturation of FBSsh RNA at 295 nm in the presence of 25 mM KCl 

revealed two distinct hypochromic transitions characteristic of the denaturing of a G-

quadruplex, the first with a Tm ~ 43 °C and the second with a Tm ~ 70 °C (figure 3.17 A).  

This result is consistent with the presence of two distinct G-quadruplex structures in 

FBSsh RNA, which was expected considering that the sequence of this RNA has the 

potential to form two separate G-quadruplexes.  Figure 3.16 shows a model of the most 

likely conformation of two individual parallel G-quadruplexes proposed to form by 

FBSsh RNA as the combination of FBS_Q1 RNA and FBS_Q2 RNA.   

 Increasing concentrations of FBSsh RNA in the range 3 to 30 µM were thermally 

denatured, monitoring the decrease in absorbance at 295 nm.  Each of the two transitions 

were fitted to equation 3.3 for each experiment at each concentration of RNA (figure 3.17  
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Figure 3.16 Model of FBSsh RNA as a combination of two G-quadruplexes formed by 

FBS_Q1 RNA and FBS_Q2 RNA.   

 

 

B and C).  The calculated melting points (equation 3.2) of each transition were plotted 

against the RNA concentration (figure 3.17 D) to show that each of the two melting 

points of FBSsh RNA were independent of the RNA concentration.  A plot of the inverse 

melting temperature versus lncT (figure 3.17 E) also yields two linear curves with a slope 

of 0, indicating that n = 1 for each transition and that FBSsh RNA forms two 

intramolecular G-quadruplexes.   
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Figure 3.17 A) UV thermal denaturation curve of several concentrations of FBSsh RNA 

from 3 to 30 µM in 10 mM cacodylic acid, pH 6.5, containing 25 mM KCl showing two 

hypochromic transitions.  The G-quadruplex transitions best fit to equation 3.3 for B) 

transition 1 and C) transition 2. D) The melting temperatures of both G-quadruplex 

structures of FBSsh RNA are independent of the RNA concentration, and E) the plot of 

1/Tm vs ln[FBSsh RNA] yield straight lines at each transition with a slope equal to zero.      
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 The thermodynamic parameters (standard enthalpy, entropy, and free energy), 

shown in table 3.1, for the formation of the FBSsh RNA G-quadruplex structures in 25 

mM KCl were determined by fitting the G-quadruplex dissociation transitions present in 

the UV melting curves to equation 3.3, which assumes a two-state model (figure 3.17 B 

and C) (35).     

 

Table 3.1 Thermodynamic Parameters for G-quartet Structure Formation 

 

 

 

 Based solely on the UV thermal denaturation experiments, it was not possible to 

assign the two hypochromic transitions to the FBS_Q1 and FBS_Q2 G-quadruplexes 

within FBSsh RNA.  To solve this problem, we constructed a fluorescently labeled RNA 

that reports only on the melting of the first quadruplex in the sequence, FBS_Q1 RNA, 

by replacing the adenine at position 14 of FBSsh RNA with 2-aminopurine (2AP) 

(FBSsh_14AP RNA), shown in red in figure 3.16.  2AP is a highly fluorescent analog of 

adenine, which is sensitive to changes in its microenvironment (93, 94).  Its substitution 

has also been shown not to perturb the formation of G-quadruplexes (10, 43).  In contrast 

to UV thermal denaturation in which the change in absorbance as a function of 

temperature has contributions from all bases in the sequence, thermal denaturation using 

fluorescence spectroscopy monitors only the changes in the steady-state fluorescence of 
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the 2AP reporter.  Because the 2AP fluorophore is located within FBS_Q1, the first G-

quadruplex of FBSsh RNA, in these experiments, only the melting of this G-quadruplex 

will be observed.  FBSsh_14AP RNA was melted in the presence of 25 mM KCl (figure 

3.18), and at each temperature point the steady-state fluorescence emission at 371 nm 

was corrected to account for the known dependence of the free 2AP emission at 371 nm 

upon temperature (section 2.11).  As expected, a single transition was 

 

 
Figure 3.18 Fluorescence spectroscopy thermal denaturation of FBSsh_14AP RNA in 

the presence of 25 mM KCl.  The transition seen here corresponds to transition 2 from 

the UV thermal denaturation of unlabeled FBSsh RNA. 

 

 

observed for FBSsh_14AP, and upon fitting it with equation 3.3, a melting point of 69.4 

± 0.3 °C was calculated (equation 3.2).  This result is in very good agreement with the Tm 
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value of 68.8 ± 1.0 °C determined for transition 2 by the UV thermal denaturation 

experiments.  Thus, we assign transition 2 to the melting of the FBS_Q1 G-quadruplex 

and transition 1 to the melting of the FBS_Q2 G-quadruplex within FBSsh RNA.  These 

results are consistent with our knowledge that the length of the loops connecting the G-

quartet planes affects the stability of the G-quadruplex structure, with shorter loops 

forming tighter, more thermodynamically stable structures (35).  Since each of the 

connecting loops in the FBS_Q1 have a single nucleotide, this structure was expected to 

be more thermodynamically stable and thus have a higher melting point than the second 

G-quadruplex, FBS_Q2, which has longer connecting loops on two sides of its structure 

(figure 3.16).   

 Next, the number of K
+
 ions coordinated to each of the G-quadruplexes was 

determined by performing UV thermal denaturation at a fixed FBSsh RNA concentration 

of 10 µM and variable KCl concentrations in the range 5 – 150 mM.  To calculate ΔG° of 

each of the two transitions at each KCl concentration, the curves of each of the two 

transitions were again fitted to equation 3.3, and ΔG° was calculated using the Gibbs free 

energy equation where T was set to 298.15 K.  The resulting ΔG° at each KCl 

concentration and was plotted against log[KCl] according to equation 3.4 (figure 3.19 A 

and B). 

 

 
3.4 

 

The number of K
+
 ions coordinated to each G-quadruplex was calculated from the 

negative slope of the plots (figure 3.19 A and B) to be 3 K
+
 ions for each G-quadruplex in  
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Figure 3.19  Plots of ΔG° as a function of the logarithm of K
+
 ion concentration for (A) 

transition 1 and (B) transition 2 of FBSsh RNA.  The number, n, of K
+
 ion equivalents 

released upon the unfolding of FBSsh RNA G-quadruplexes was determined from the 

slope to be 3 K
+
 ions for each transition.  

 

FBSsh RNA.  One of each of these K
+
 ions could be assigned to being coordinated 

between the two planes formed by each of the G-quadruplexes.  The location of the other 

two ions may be interpreted in several different ways.  Three K
+
 ions are released upon 

the first transition of FBSsh RNA, which may indicate that one of these K
+
 ions is 

serving to stabilize stacking interactions between the two individual G-quadruplexes.  

Also, K
+
 ions may be coordinating above and below the two stacked G-quartet planes, 

serving to further stabilize the two G-quadruplexes.  The coordination of more than one 

K
+
 ion to an RNA sequence proposed to form a two layer G-quadruplex has been 

observed before (43).  Furthermore, a recent crystal structure of a G-quadruplex was 

elucidated in which the K
+
 ions were found to coordinate between the planes of the G-

quadruplex, and they were also shown to play a role in stabilizing the loops of the G-
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quadruplex (95).  Thus, it is possible that the two K
+
 ions that are not coordinating 

between the two planes formed by FBS_Q1 in the second transition are serving to help 

stabilize the short loops in the sequence or the longer strand that is no longer forming a 

G-quadruplex at the higher temperatures.  However, much higher concentrations of RNA 

would be needed to perform high resolution structural studies on FBSsh RNA in order to 

determine the actual location of the K
+
 ions coordinated to the two G-quadruplexes 

formed by the sequence.   

 Our direct characterization of the FBSsh RNA sequence to form two distinct 

parallel G-quadruplex structures supports the indirect evidence that Moine and colleagues 

collected indicating that two G-quadruplexes existed within the FBS region of the FMR1 

mRNA (72).  The formation of two G-quadruplexes within the FMR1 gene is important 

because the binding of FMRP to this region located close to the three acceptor sites in 

exon 15 directly affects the splicing of FMRP into its minor splice isoforms, including 

FMRP ISO2 and ISO3, which lack the major site of phosphorylation.  Considering that 

the phosphorylation/dephosphorylation of FMRP is tightly connected with its translation 

regulator function and that the minor splice isoforms ISO2 and ISO3 lack this 

phosphorylation site, it is essential to investigate the binding affinities of the different 

FMRP splice isoforms, ISO1, ISO2, ISO3, and ISOP, to the FBSsh sequence of the 

FMR1 gene (Chapter 4) to determine if the production of these isoforms is controlled by 

an auto-regulatory loop.      
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CHAPTER 4: CHARACTERIZATION OF THE BINDING OF FMRP 

ISOFORMS TO FBS RNA 

 

 In chapter 3, we demonstrated that FBSsh RNA forms two specific G-

quadruplexes in the presence of KCl: FBS_Q1 RNA and FBS_Q2 RNA.  Next, we 

analyzed the binding to FBSsh RNA of several FMRP isoforms, ISO1, ISO2, and ISO3 

and the phosphomimetic ISOP.  FMRP ISO1, ISO2, and ISO3 have been chosen because 

ISO1 is the longest isoform of FMRP, and ISO2 and ISO3 are alternatively spliced at 

exon 15 within close proximity of the RGG box domain (figure 1.1, chapter 1).  This 

proximity is important as the RGG box peptide binds with high affinity with G-

quadruplex forming RNAs, and the truncation close to the domain has been shown to 

affect the binding of FMRP to G-quadruplex forming target RNA sequences (10).  

Phosphorylation of FMRP occurs at serine 500 of FMRP ISO1, which is also within close 

proximity of the RGG box domain, this site being eliminated in FMRP ISO2 and ISO3.  

The phosphorylation of FMRP has been shown to be important in mediating its 

translation regulator function (47, 96), and the alternate splicing into minor isoforms of 

FMRP, ISO2 and ISO3, prevent FMRP from being re-phosphorylated, possibly 

remaining in a prolonged “on” state for translation of its mRNA targets. 

 

4.1  Interactions between FBSsh RNA and the FMRP RGG box peptide 

 It has been shown that the FMRP RGG box peptide binds with high affinity and 

specificity to G-quadruplex forming RNA sequences (42-45).  Furthermore, it has been 



53 
 

shown that super-stoichiometric concentrations of RGG box peptide unwind G-

quadruplex forming RNA sequences (43, 44).   

 To demonstrate that the RGG box peptide binds to the G-quadruplex forming 

FBSsh RNA, native PAGE was first utilized.  10 µM FBSsh RNA was incubated with 

varying concentrations of FMRP RGG box peptide in the range 2.5 – 20 µM at 25°C in 

the presence of 25 mM KCl, and 10 mM cacodylic acid, pH 6.5.  The samples were run 

on a 15% non-denaturing polyacrylamide gel, which contained 25 mM KCl in the gel as 

well as in the running buffer for 6 hours at 75 V (figure 4.1).  The RGG box peptide is 

 

 

Figure 4.1 Native PAGE of FBSsh RNA incubated with increasing ratios of the FMRP 

RGG box peptide.  Because the peptide is highly positively charged, the complex 

formation is quantified by the disappearance of the free RNA band.  The free RNA band 

disappears completely at a 2:1 ratio of RGG box peptide: RNA.   

 

 

positively charged and thus will not enter the gel as a free peptide.  Because of the 

positive nature of the RGG box peptide and since FBSsh RNA is only 42 nt, the complex 

formed upon the binding of the RGG box to FBSsh RNA has a less negative charge and 

will not be visible as a distinct tight band in the gel (figure 4.1).  The binding of the 

FMRP RGG box to FBSsh RNA is thus quantified as the disappearance of the free RNA 

band.  As seen in figure 4.1 lanes 2 – 9, the free FBSsh band decreases in intensity upon 
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increasing the concentration of the RGG box in the sample, indicating the formation of 

the FBSsh-FMRP RGG box complex.  A diffused band appears above the free RNA band 

in lanes 2 – 9 in the gel, and its intensity becomes higher as the RGG box concentration 

increases, indicating the formation of the RNA-RGG box complex, but the broadness of 

the band renders its intensity difficult to quantify.   

 It has been shown previously that excess RGG box peptide unwinds G-

quadruplex forming RNA sequences (43, 44).  To determine if excess FMRP RGG box 

peptide unwinds FBSsh RNA, increasing ratios of FMRP RGG box peptide were titrated 

into a fixed concentration of 10 µM FBSsh RNA, and the spectral changes were 

monitored through CD spectroscopy.  A shown in figure 4.2, no spectral changes  

 

 
Figure 4.2 Spectral changes in the CD spectrum of FBSsh RNA upon the addition of up 

to 8:1 RGG box:RNA ratios.     
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occurred when the FMRP RGG box was present in a 1:1 (not shown) or 1:2 ratio to 

FBSsh RNA.  However in ratios higher than 4:1, the RGG box unwinds the FBSsh G-

quadruplex structures. This result is similar to other reports in which the FMRP RGG box 

unwinds the G quadruplex structures of its mRNA targets (43, 44).  Because two G-

quadruplexes form within FBSsh RNA, it is not possible to distinguish between the 

unwinding of one quadruplex versus the other by CD spectroscopy.  Regardless of this 

impediment, the unwinding of FBSsh RNA by the FMRP RGG box may have important 

biological implications with regard to the alternative splicing at exon 15 of FMR1 mRNA 

in that unwinding of FMR1 mRNA by super-soichiometric amounts of FMRP isoforms 

may allow the sequence to be recognized by proteins that may facilitate the alternative 

splicing, such as hnRNP (97).   Furthermore, the FMRP RGG box is an unstructured 

RNA binding domain, and the FMRP RGG box peptide is unstructured as well, so we did 

not expect to see any contribution to the CD spectrum from the peptide alone.  If the 

peptide became structured upon binding to the G-quadruplexes formed in FBSsh RNA, 

we would still not expect for any contributions to interfere with the unwinding 

experiment as amino acid secondary structures are typically observed between 140 and 

190 nm in the CD spectrum, not within the range of parallel G-quadruplex formation.   

 

4.2  Interactions between FBSsh RNA and different full-length FMRP isoforms 

 To obtain quantitative information about the interactions between the different 

FMRP isoforms ISO1, ISO2, ISO3 and ISOP and FBSsh RNA, we employed 

fluorescence spectroscopy.  The FBSsh RNA used in the study, named FBSsh_14AP, 
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was constructed by replacing the adenine at position 14 located within the G-quadruplex 

formed by FBS_Q1 RNA by 2-aminopurine (2AP, figure 3.17).  UV thermal denaturation 

and CD spectroscopy of FBSsh_14AP were performed, ensuring that the insertion of 2-

AP does not affect the secondary structure and stability of the labeled RNA.  2-AP is an 

analog of adenine that is highly sensitive to changes in its microenvironment, and it can 

replace adenine without affecting the structure of DNA and RNA (93, 94).   

 Recombinant FMRP isoforms ISO1, ISO2, ISO3, and ISOP were expressed in E. 

coli cells and purified by nickel affinity column purification as described in chapter 2 

(75).  The identities of ISO1, ISO2, and ISO3 were confirmed by peptide mass 

fingerprinting (Genomics and Proteomics Core Laboratories, University of Pittsburgh) 

(10).  The phosphomimetic mutant, ISOP, in which serine 500 was mutated to aspartic  

 

 
Figure 4.3 Sodium dodecyl sulfate (SDS) PAGE showing the purity of FMRP isoforms 

ISO1 (A), ISO2 (B), ISO3 (C), and ISOP (D).  In all of the gels, lane 1 represents a 

protein ladder, and lanes 2 through 6 and 2 through 7 in (A) and (B) and (C) and(D), 

respectively, represent the eluate from the 500 mM imidazole elution step from the 

purification step in the protocol in chapter 2 (75).     
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acid, was designed by Sara Katrancha, an undergraduate in the Mihailescu laboratory, 

and it was expressed and purified using the same protocol for the other three FMRP 

isoforms.  The purity of each of the FMRP isoforms was verified by SDS PAGE (figure 

4.3).  As stated earlier, the phosphorylation of FMRP at serine 500, the major site of 

phosphorylation, has been shown to be biologically relevant to the translation regulator 

function of FMRP, and the mutation of a serine to aspartic acid or glutamic acid mimics 

the phosphorylation of proteins in recombinant proteins (79).   

 The binding of the FMRP isoforms to a fixed concentration of FBSsh_14AP RNA 

was measured by monitoring the 2-AP steady-state fluorescence intensity changes upon 

the titration of increasing amounts of each isoform, ISO1, ISO2, ISO3, and the 

phosphomimetic isoform, ISOP.  A decrease in the steady-state fluorescence of the 2-AP 

reporter was observed upon the addition of each FMRP isoform.  This change was 

observed previously in FMRP steady-state fluorescence binding experiments on 

S3Fsh_8AP RNA (10, 75), a fragment of the mRNA encoding the Semaphorin 3F 

protein, a known target of FMRP.  Each individual binding curve was fitted with equation 

2.1 (chapter 2), determining the dissociation constant, Kd, of each isoform binding to 

FBSsh_14AP RNA (figure 4.4).  These experiments were performed in triplicate for each 

isoform, and the reported errors represent the standard deviation of the average Kd of 

each curve fit of the data to the equation.  As seen in table 4.1, the Kd values for FMRP 

ISO1 and ISOP are within error of each other, indicating that the binding of FMRP ISO1 

to its own mRNA sequence is not affected by the mutation of Ser500 to aspartic acid, 

mimicking the posttranslational modification of phosphorylation.  The phosphorylation of 

Ser500 has been shown to be important in the exertion of the FMRP translation regulator 
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function on some of its target mRNAs (47, 96).  Although the mutation we have made on 

FMRP ISO1 has been shown to mimic phosphorylation in many instances, it would be 

interesting to see how in vitro phosphorylation of FMRP ISO1 would affect the binding  

 

 

Figure 4.4 FMRP isoforms ISO1, ISO2, ISO3, and ISOP were titrated into free 

FBSsh_14AP RNA in the presence of 750 nM BSA and 25 mM KCl.  (A) FMRP ISO1 

and (B) ISOP bind FBSsh_14AP RNA within error of each other, and (C) FMRP ISO2 

and (D) ISO3 bind FBSsh_14AP RNA within error of each other and more tightly than 

ISO1 and ISOP. Each plot represents one experimental data fit to the equation, and the 

reported Kd values represent the average of three Kd values and an error representing the 

standard deviation of the three values.   
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of the protein to FBSsh RNA.  The phosphomimetic protein did not show a distinctly 

different binding affinity for FBSsh RNA, but because the steady-state fluorescence 

binding assay is highly sensitive, there may be a difference between the mutated protein 

and the in vitro phosphorylated protein.  Because of the low yield of recombinant FMRP 

isoforms, however, in vitro phosphorylation on FMRP ISO1 has proven to be difficult to 

perform in our laboratory.  Based on our data, the phosphomimetic FMRP ISO1, ISOP, 

does not bind differently to FBSsh RNA than the dephosphorylated ISO1.  No other 

quantitative data is currently available about the binding of FMRP ISOP to other G-

quadruplex forming mRNA targets to determine if the phosphomimetic FMRP ISO1 

binds differently to other FMRP RNA targets than ISO1 or if the mutation does not affect 

the protein like in vitro phosphorylation would in the binding assays.  Thus, it remains to 

be seen if this trend is valid for mRNAs whose translation is regulated directly by FMRP.    

 

Table 4.1 Results of the fluorescence binding assays of FMRP isoforms 1, 2, and 

3 and ISOP to G-quadruplex forming FBSsh_14AP RNA  
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 The Kd values for FMRP ISO2 and ISO3 binding to FBSsh_14AP RNA were also 

within error of each other yet lower than the Kd values of ISO1 and ISOP binding to 

FBSsh_14AP RNA (table 4.1), indicating that the truncation of the protein in the 

proximity of the RGG box results in tighter binding to FMR1 mRNA.  The Kd values 

measured for each FMRP isoform binding to FBSsh_14AP RNA were in the nanomolar 

range, similar to values determined for their binding to the G-quadruplex forming 

S3Fsh_8AP RNA, another FMRP target mRNA (10).   

 We performed control experiments in which the steady-state fluorescence of a 

non-specific RNA, DLS_9AP RNA, was monitored as FMRP isoforms were added to a  

 

 
Figure 4.5 Steady state fluorescence spectroscopy emission changes at 371 nm of a 2-AP 

reporter located in the terminal loop of a 16 nt control hairpin as FMRP ISO1 - ISO3 or 

ISOP are titrated into a fixed concentration of the RNA (150 nm).  The sequence of 

DLS_9AP RNA is 5’- UCA CGG CG2AP GCU GUG A -3’.  
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fixed concentration of 150 nM RNA (figure 4.6).  The 2-AP is located in the terminal 

loop of the 16 nt DLS_9AP RNA.  The addition of the FMRP isoforms to the non-

specific RNA did not have an effect on the fluorescence intensity of the reporter up to 

triple the concentration, and even then FMRP ISO3 caused the emission of DLS_9AP 

RNA to increase slightly (10).    

 FMRP ISO1 binding to the G-rich region within FMR1 has been shown to 

influence the splicing events at exon 15 (72) by increasing the production of the isoforms 

ISO2 and ISO3, which lack the major phosphorylation site at position 500, and 

decreasing the production of FMRP ISO1.  It has been shown previously that FMR1 -/- 

knockout mice, which produce FMR1 mRNA but not any FMRP isoforms, do not 

produce FMR1 mRNA that has been alternatively spliced at exon 15 (72).  This is 

because FMRP is not available to bind to the FBS RNA sequence in order to control the 

alternative splicing into minor mRNA and protein isoforms.  Our findings that FMRP 

ISO2 and ISO3 isoforms bind FBSsh RNA more tightly than FMRP ISO1 suggests that 

the existence of a feedback auto-regulatory loop for the production of the FMRP ISO2 

and ISO3.  When sufficient amounts of FMRP ISO2 and ISO3 are produced by FMRP 

ISO1 binding to the FBS RNA sequence, they can compete with FMRP ISO1 to bind to 

the same sequence, shutting down their own production.   

 As discussed earlier, in its phosphorylated state, FMRP has been shown to be 

associated with stalled polyribosomes (96), and in the case of the PSD-95 mRNA target 

with the RISC complex (47), suggesting that in this state FMRP prevents the translation 

of its mRNA targets.  The FMRP dephosphorylation in response to synaptic input, has 
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been shown to rescue the PSD-95 mRNA translation (47).  The FMRP ISO2 and ISO3 

isoforms do not have the ability to be regulated by phosphorylation/dephosphorylation 

events.  Thus, our findings that they have higher affinity for G-quadruplex forming 

FMRP targets than FMRP ISO1 (10) suggests a mechanism by which FMRP ISO2 and/or 

FMRP ISO3 prolong the “on” state for translation of these mRNA targets by competing 

with FMRP ISO1, which can turn “off” translation by becoming re-phosphorylated.  The 

levels of the different FMRP isoforms have to be tightly regulated in the cell, as the 

expression of specific isoforms could control the timing of the translation of different 

FMRP mRNA targets.  Our results suggesting that the expression of FMRP ISO2 and 

ISO3 is controlled by feedback inhibition are significant, contributing to our 

understanding of this complex mechanism of regulation.   
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CHAPTER 5: LET-7B miRNA INTERACTIONS WITH MAP1B mRNA 

 

 MAP1B mRNA has been shown to form a G-quadruplex structure within its 5’-

UTR and is a known target of FMRP.  After sequence analysis of MAP1B mRNA, it was 

discovered that MAP1B mRNA also contained a sequence within its 3’-UTR that 

potentially had high binding affinity with the miRNA let-7b, one of the first discovered 

miRNAs.  Since miRNAs are known to regulate the translation of target mRNAs, it was 

of great interest to investigate the binding of let-7b with the proposed MAP1B mRNA 

sequence as FMRP may exert its translation repression function in conjunction with let-

7b miRNA.   

 

5.1  Let7b miRNA interactions with MAP1B sequence 1 

 The first step in the investigation of the translation regulation function of let-7b 

on MAP1B mRNA was to determine whether binding was occurring.  In the 3’-UTR of 

the MAP1B mRNA, a sequence was identified as a potential binding site for let-7b 

miRNA which was a promising discovery considering that miRNAs most commonly 

exert their translation repression function by binding to sequences within the 3’-UTR 

regions of target mRNAs.  The location of this binding sequence within a known FMRP 

mRNA target is interesting because FMRP has been shown to interact with the miRNA 

pathway.  To determine if let-7b miRNA has a translation repression function on the 

well-known FMRP target MAP1B mRNA, the potential interactions of let-7b miRNA 

and MAP1B mRNA have to be analyzed, and this was the goal of this study.  Thus, the 

interactions between let-7b miRNA and MAP1B sequence 1 (MAP1B seq1) RNA, shown 
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in figure 5.1, was characterized by using 1D 
1
H-NMR spectroscopy, UV thermal 

denaturation, and non-denaturing polyacrylamide gel electrophoresis (native PAGE).  

The RNA sequences of let-7b miRNA and MAP1B seq1 RNA were both synthesized by 

Dharmacon (Thermo Scientific).   

 

 

Figure 5.1 Proposed binding of let-7b miRNA to MAP1B seq1 RNA, located in the 3’-

UTR of MAP1B mRNA.   

 

 

 First, the binding between let7b miRNA and MAP1B seq1 RNA was 

characterized by using 1D 
1
H-NMR spectroscopy.  Figure 5.1 shows the proposed 

interactions between let7b miRNA and MAP1B seq1 RNA, consisting of Watson-Crick 

and guanine-uracil wobble base pairing, and these interactions have distinct signatures in 

1D 
1
H-NMR spectroscopy in the imino proton resonance region between 10 and 15 ppm 

(85).  If the imino protons of Gs and Us are not engaged in base pairing, their resonances 

will not be observed in the region 10 – 15 ppm due to their fast exchange with water 

protons.  Figure 5.2 shows that let-7b miRNA and MAP1B seq1 RNA do not form 

Watson-Crick base-paired homodimers as no resonances are present in the imino proton 

region of their 
1
H-NMR spectra.  This finding is consistent with the secondary structure 

predictions we obtained by using RNAStructure 4.0 software, which did not find any 

regions of self-complementarity in these RNA sequences.  In contrast, once let-7b and 

MAP1B seq1 were mixed in a 1:1 ratio at 25°C in 10 mM cacodylic acid, pH 6.5, the 
1
H-
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NMR spectrum reveals numerous resonances in the imino proton region, indicating that 

let-7b miRNA and MAP1B seq1 RNA bind by Watson-Crick (12 – 15 ppm and G-U 

wobble base pairing (10-12 ppm).   

 

 

Figure 5.2. 
1
H-NMR spectra of Let-7b miRNA (bottom green) and MAP1B seq1 RNA 

(middle red) alone as well as mixed in a 1:1 ratio (top blue).  

 

 

To confirm that let-7b was able to bind to MAP1B seq1 RNA, we performed 

concentration dependent native PAGE (figure 5.3). Lanes 1 and 6 in figure 5.3 contain 

free MAP1B seq1 RNA and let-7b miRNA, respectively, used as controls, whereas lanes 

2 – 5 contain mixtures of increasing concentrations of let-7b miRNA in a fixed 

concentration of MAP1B seq1 RNA in the following ratios: ¼:1 (lane 2), ½:1 (lane 3), 

¾:1 (lane 4), and 1:1 (lane 5).  MAP1B seq1 RNA migrates as a monomer (lane 1), but it 

is interesting to note that let-7b miRNA migrates through the gel as a larger molecular 

weight complex (lane 6).  The monomeric single-stranded let-7b miRNA, 22 nt, should 

appear as a band migrating at the same rate through the gel as free MAP1B seq1 RNA 

based on the difference of only one nucleotide in their sequence length. This result 

indicates that let-7b miRNA forms some secondary structure that does not involve the 
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formation of canonical Watson-Crick base pairs, as such pairing was not observed in the 

imino proton region of its 
1
H-NMR spectrum (figure 5.2, bottom spectrum).  As the 

concentration of let7b miRNA increased in the let-7b: MAP1B seq1 mixtures, the band 

 

 

Figure 5.3. 20% native gel mobility assay of let-7b miRNA titrated into MAP1B seq1 

RNA to a final ratio of one-to-one.   

 

 

 corresponding to the free MAP1B seq1 RNA decreased in intensity while the band 

corresponding to the let7b miRNA-MAP1B seq1 RNA duplex increased in intensity.  At 

a 1:1 ratio of miRNA:RNA (lane 5), the free MAP1B seq1 RNA band completely 

disappeared, indicating that the let7b miRNA bound to MAP1B seq1 RNA in a 1:1 ratio.     

 To determine the stability of the duplex formed between let-7b miRNA and 

MAP1B seq1 RNA characterized by 
1
H-NMR spectroscopy and native PAGE, UV 

thermal denaturation experiments were performed on the two individual sequences as 

well as on their complex formed by mixing them in a 1:1 ratio at 25 °C.  As expected, the 

absorbance observed at 275 nm of MAP1B seq1 RNA did not change as the temperature 

increased from 20 ºC to 95 ºC (figure 5.4, purple data points), indicating that this 
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sequence exists as a stable monomer, consistent with the results of the 
1
H-NMR 

spectroscopy and native PAGE experiments.  In contrast, the absorbance observed at 275 

nm of let-7b miRNA increased as the temperature increased from 20ºC to 95ºC, likely the 

result of the thermal denaturation of its secondary structure first suggested by the native 

PAGE experiment (figure 5.3, lane 6).  When let-7b miRNA and MAP1B seq1 mRNA  

 

 

Figure 5.4. UV thermal denaturation of let-7b miRNA, MAP1B seq1 RNA, and a 1:1 

mixture of let-7b miRNA and MAP1B seq1 RNA.   

 

 

were mixed in a 1:1 ratio, their thermal denaturation profile observed at 275 nm showed a 

clear hyperchromic transition at 39 °C, characteristic of the denaturation of the RNA 

duplex upon increasing the temperature.  This indicated that the duplex formed by let-7b 

miRNA and MAP1B seq1 RNA is stable up to physiological temperature, 37 °C.   
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 Taken together, the results of 1H-NMR spectroscopy, native PAGE and UV 

thermal denaturation prove unambiguously that let-7b miRNA interacts by canonical base 

pairing with a sequence located in the MAP1B 3’-UTR in vitro, raising the possibility 

that these interactions might also be relevant in vivo.  It is possible that FMRP, let-7b 

miRNA and the miRISC work together to regulate the translation of the protein product 

of MAP1B mRNA, as the interaction between FMRP and MAP1B mRNA (43) and the 

interaction between FMRP and the miRISC (61, 65) have been shown.   

To test the hypothesis that let-7b miRNA interacts with the 3’-UTR of MAP1B 

mRNA to repress its translation and that this interaction is affected by FXS, in vivo 

experiments were performed by the Feng group at Emory University in Atlanta, GA.   

 In those studies, the presence of let-7b miRNA and MAP1B mRNA in the murine 

neonatal hippocampus cells used in the study were detected, and it was shown that the 

levels of let-7 miRNA were dynamic.  Given the expectation that let-7b might act in vivo 

to suppress the translation of MAP1B mRNA, the levels of the MAP1B protein were 

measured and the levels of the MAP1B protein decreased while the let-7b miRNA levels 

increased, suggesting that let-7 miRNA may act to repress the translation of MAP1B 

mRNA.   

 Next the effect of the presence of FMRP on the production of let-7b in the murine 

neonatal hippocampus was tested by performing experiments on FMR1 knockout (KO) 

mice compared to wild-type (wt) mice. Let-7b miRNA production was shown to be 

reduced in the FMR1 KO mice compared to the wt mice compared to a control miRNA, 

miR-128, which was not proposed or shown to be affected by the presence or absence of 

FMRP.   
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 Finally, the direct or indirect association of FMRP with let-7b miRNA as well as 

the translation repression of MAP1B by let-7b was explored.  FMRP and let-7b miRNA 

were co-immunoprecipitated in wild-type and knock-out cells, and let-7b miRNA was 

shown to be pulled down with FMRP, indicating that FMRP and let-7b miRNA associate 

with each other, although the association could be indirect, mediated by the known 

association between FMRP and the miRNA pathway member, Ago2 (65).  The binding 

of let-7b miRNA to MAP1B mRNA was shown to repress its translation in cells.  

Furthermore, luciferase reporter assays were performed to show that let-7b binding to the 

3’-UTR of MAP1B mRNA added to the 3’-UTR of the luciferase gene indeed represses 

translation, consistent with the binding data shown in section 5.1.  When the MAP1B 3’-

UTR was absent from the luciferase gene, translation was not repressed as let-7b is not 

proposed to bind to or repress the translation of the luciferase gene.    

 We showed that let-7b miRNA binds to MAP1B seq1 in a 1:1 ratio, and FMRP 

has been shown to bind with high affinity to a G-quadruplex formed in the 5’-UTR of 

MAP1B mRNA, signifying that FMRP and the miRNA let-7b may work in conjunction 

to regulate the translation of MAP1B mRNA, being further supported by the interaction 

between FMRP and the Argonaut (Ago) protein, a key component of the miRNA 

pathway.  Dr. Yue Feng and colleagues showed that FMRP interacts with let-7b miRNA, 

but it was not clear whether this interaction was direct or indirect through another 

component of the miRNA pathway since FMRP has already been shown to interact with 

Ago2 (65).  Let-7b miRNA was expressed in lower quantities in FMRP KO mice, 

indicating that the presence of FMRP affects the overall production of this miRNA.  The 

lower quantities of let-7b miRNA in FMRP KO mice may contribute to overall 
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translation misregulation of MAP1B mRNA in combination with the absence of FMRP.  

In the future it may be of interest to monitor the translation repression of MAP1B mRNA 

in the presence of both FMRP and let-7b compared to the presence of each individually 

by creating a luciferase gene containing both the 5’-UTR and 3’-UTR of MAP1B mRNA.   
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CHAPTER 6: CONCLUSIONS 

 

6.1  Analysis of the formation of G-quadruplex structures within a G-rich 

 sequence of the FMR1 mRNA 

 A G-rich region of FMR1 mRNA that is bound by FMRP has been analyzed by 

various biophysical methods, and two distinct G-quadruplex structures were shown to 

form within its structure.  The initial sequence analyzed, FBS_67 RNA (67 nt), was 

shown to have a very dynamic structure, which involved the formation of several 

conformations as seen from its 
1
H-NMR spectra as well as native PAGE experiments.  

The presence of imino proton resonances in the region centered around 11 ppm of the 
1
H-

NMR spectrum indicated that this sequence formed a G-quadruplex, even in the absence 

of KCl.  However, imino proton resonances were also present in the region 12 – 15 ppm, 

corresponding to guanine and uracil involved in Watson-Crick base pairing, indicating 

the formation of an alternate stem-containing structure.   

 The long, dynamic FBS_67 RNA sequence was split into two short sequences, 

FBS_Q1 RNA (15 nt) and FBS_Q2 RNA (19 nt) (table 2.1), each postulated to form a G-

quadruplex structure.  FBS_Q1 RNA was found to adopt a G-quadruplex structure that 

also contained an A:(G:G:G:G):A hexad, a structure that has not been shown to occur 

naturally in RNA sequences but been shown to have some biological relevance as a 

secondary structure of an RNA aptamer against bovine prion protein (98).  However, 

once this short FBS_Q1 RNA sequence was incorporated into the longer 42 nt FBSsh 

RNA, the hexad formation was lost, indicating that the hexad was an artifact caused by 

the short length of the isolated FBS_Q1 RNA sequence.  Interestingly, even upon the 
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formation of the hexad in FBS_Q1 RNA, the FMRP RGG box peptide maintained high 

binding affinity to this RNA sequence.  FBS_Q2 RNA was characterized to form a G-

quadruplex only upon the addition of KCl, but its 
1
H-NMR spectrum also contained 

imino proton resonances that correspond to guanine and uracil involved in Watson-Crick 

base pairing, indicating that this sequence formed more than one conformation in vitro.  

Furthermore, this sequence was found to have low binding affinity with the FMRP RGG 

box peptide in native PAGE experiments.   

 Finally, the two short sequences of FBS_Q1 and FBS_Q2 RNA were combined to 

form the 42 nt FBSsh RNA, which was successfully shown to form two distinct G-

quadruplexes, which correspond to the individual FBS_Q1 RNA and FBS_Q2 RNA 

sequences as shown in figure 3.17, each of which released three K
+ 

ions upon thermal 

denaturation.  This is significant, as although the G-rich sequence within the coding 

region of FMR1 mRNA has been postulated to adopt G-quadruplex structures, their 

existence was never proved directly prior to these studies.  It was important to show that 

two G-quadruplexes form in the coding region of exon 15 of the FMR1 gene because it 

shows that FMRP controls the splicing of its own mRNA into its minor isoforms in a G-

quadruplex-dependent manner as this RNA sequence is located close to the three acceptor 

sites in exon 15.   

 

6.2 Analysis of the differences in binding activity of FMRP ISO1, ISO2, ISO3, 

 and ISOP to the G-quadruplex forming sequences within FMR1 mRNA 

 We have also obtained quantitative information about the binding of several 

FMRP isoforms to FBSsh RNA by fluorescence spectroscopy.  The two shorter splice 
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isoforms of FMRP, ISO2 and ISO3, have a higher binding affinity for the FBSsh RNA 

than the longest isoform, ISO1 and its phosphomimetic mutant, ISOP.  These results are 

consistent with the findings that a surplus of the major isoform FMRP ISO1 binding to its 

own mRNA switches the translation of FMRP from its major splice isoforms into its 

minor splice isoforms.  This is significant because it indicates that neuronal cells utilize 

the negative feedback loop of FMRP binding to its own mRNA to regulate the alternate 

splicing into minor isoforms.  Furthermore, the phosphomimetic mutant of FMRP, ISOP, 

was shown to bind with the same affinity as ISO1 to FBSsh RNA, indicating that the 

phosphorylation of serine 500 does not affect the mechanism of FMRP binding to its own 

mRNA and acting as an exonic splicing enhancer.  The increase in production of minor 

isoforms may have implications for the function of phosphorylated versus 

dephosphorylated FMRP since ISO2 and ISO3 do not have the site of phosphorylation 

and would thus be present in a “prolonged state” of dephosphorylation.  Although the 

phosphomimetic FMRP ISO1, ISOP, does not bind significantly differently to its own 

mRNA than unphosphorylated FMRP ISO1, the phosphorylation of FMRP is important 

in other aspects of FMRP translation regulator function, such as its interaction with the 

miRNA pathway with regard to PSD95 regulation (47).  Phosphorylated FMRP has also 

been shown to interact with stalled ribosomes while dephosphorylated FMRP has been 

shown to interact with actively translating ribosomes(96).  Our results that FMRP ISOP 

and ISO1 have similar binding affinity to its own mRNA, FMRP acting as an exonic 

splicing enhancer, support a model in which the phosphorylation of FMRP ISO1 is not 

important for its role as an exonic splicing enhancer even though it is important in its role 

as a translation regulator.  However, despite our findings, in vitro phosphorylation of 
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FMRP ISO1 and subsequent steady-state fluorescence binding experiments with FBSsh 

RNA would be beneficial in comparison to the phosphomimetic FMRP ISOP to make 

sure this mutant is a valid model for quantitative binding experiments.   

 

6.3 Analysis of the binding of let-7b miRNA with the 3’-UTR of MAP1B mRNA 

 We have shown that let-7b miRNA binds in a 1:1 ratio to a sequence in the 3’-

UTR of MAP1B mRNA (MAP1B seq1), a known target of FMRP.  FMRP has been 

shown to bind with high affinity to a G-quadruplex formed in the 5’-UTR of MAP1B 

mRNA.  Furthermore, it has been shown that FMRP interacts directly with components 

of the miRNA pathway, specifically the Argonaut (Ago) protein, thus linking MAP1B 

mRNA to let-7b miRNA as a translational regulator target.  It also suggests that let-7b 

miRNA is involved in the translation regulator function of FMRP on MAP1B mRNA, 

especially since let-7b miRNA appears to be produced in lower quantities in FMRP KO 

mice.  The work done at Emory University in the laboratory of Dr. Yue Feng showed that 

FMRP may interact directly with let-7b miRNA or indirectly as part of the miRISC since 

it was shown to associate with the Ago protein.   

 

6.4 Future Work 

 As mentioned previously, an important experiment to perform will be in vitro 

phosphorylation of FMRP ISO1 in order to compare binding affinities of the mutant 

FMRP ISOP with the in vitro phosphorylated FMRP ISO1.  A potential problem with this 

experiment will be the loss of FMRP ISO1 in the process of phosphorylating the protein, 

as the protein tends to precipitate out of solution, and the protein is present in very low 
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concentrations already.  It is possible that an in vitro phosphorylation assay may produce 

even lower yields of FMRP ISO1 or that the already low concentration of FMRP ISO1 

may prevent the experiment from occurring efficiently in the first place.  Furthermore, 

there has been some dispute over what kinase phosphorylates FMRP in vivo (13, 99), and 

choosing a kinase for in vitro phosphorylation of FMRP ISO1 may prove to be 

problematic in this aspect as well.   

 Another direction to take the future work of this project is the expression of other 

isoforms of FMRP since FMRP ISO1 – ISO3 are not the only isoforms expressed in 

human cells.  The levels of FMR1 mRNA transcripts in adult mouse brains have been 

identified, and the transcript levels of splice isoform 7 appear to be the highest, although 

the translation of each of these isoforms has not been directly shown (18).  It has been 

shown that these transcript isoforms interact directly with polyribosomes, suggesting that 

they are being actively translated in neuronal cells (18).  FMRP ISO7 lacks exon 12 but is 

inclusive of the site of phosphorylation.  Since this isoform is suggested to be a major 

splice isoform of FMRP, the binding of ISO7 to the G-quadruplex forming FBSsh RNA 

may have the effect of increasing the minor splice isoforms ISO8 and ISO9 as a result of 

increased concentrations of ISO7, and the binding activity of ISO7 to FBSsh RNA should 

be investigated.  The loss of exon 12 may have a major impact on the binding of FMRP 

to its mRNA targets, as the loss of the RNA binding domain KH1 may change the RNA 

binding properties of FMRP even if RNA binding is occurring through the RGG box 

domain.   

 Additionally, the gene analysis of the FMR1 gene of a FXS patient who still 

produced FMRP revealed a frame shift mutation that essentially changes the RGG box 



76 
 

domain.  I have been working on expressing and purifying this mutated FMRP, named 

FMRP G-insertion (FMRP G-ins), and I have worked on the development of the 

expression and purification of the protein.  Optimization of the expression and 

purification of FMRP G-ins must be accomplished to investigate the effect of the 

mutation on FMRP binding with G-quadruplex forming mRNA targets.  Binding studies 

have been done using the mutated FMRP RGG box peptide, and it is important to 

confirm similar results with the full-length FMRP G-ins.   

 Another interesting aspect of the association of FMRP and its target mRNAs with 

the miRNA pathway to investigate would be the association of both FMRP and let-7b 

miRNA with MAP1B mRNA.  This could be done by creating a luciferase gene that 

contains both the 5’-UTR and 3’-UTR of MAP1B, as the 5’-UTR contains the G-

quadruplex to which FMRP binds and the 3’-UTR contains the binding site for let-7b, 

which has been shown to repress MAP1B translation.   
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