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ABSTRACT 
 
 

ENGINEERING THE MOSQUITO SYMBIONT PANTOEA AGGLOMERANS 
 

 TO SECRETE PLASMODIUM INHIBITORY PROTEINS 
 
 
 
 
 
 
 

By 
 

Dawn C. Bisi 
 
 

August 2009 
 
 

Dissertation Supervised by Dr. David J. Lampe 
 
 The disease malaria originates from the transmission of the parasite Plasmodium 

to humans by female anopheline mosquitoes.   Estimates put the number of deaths at 1-3 

million people annually and this number will increase without the establishment of new 

control strategies.  There is currently no vaccine and the effectiveness of insecticides and 

drugs are thwarted by the gain of resistances for both the insect and parasite.  An 

alternative genetic engineering approach to combating malaria is presented here.  The 

bacterial mosquito symbiont Pantoea agglomerans, which resides in the mosquito gut, 

was chosen to express anti-Plasmodium effector gene products that are known to inhibit 

Plasmodium development.  A caveat is finding an appropriate protein secretion signal for 

export of the effectors from the cell.  A two-pronged approach to finding a secretion 

signal involved identifying and testing a native secreted protein signal in  
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P. agglomerans, and also testing heterologous secretion signals shown to work 

previously in related species.  Proteomic analysis of native secreted proteins in spent 

growth medium followed by the identification of the corresponding genes revealed the 

best native candidate for trials was the secreted protein FliC/Flagellin.  Various 

constructs involving the fliC 5’ UTR and the fliC ORF were used for secretion of a test 

protein (an anti-BSA scFv) in P. agglomerans and found to not be a sufficient secretion 

signal.  The heterologous PelB (from Erwinia carotovora), and OmpA, TolB, and HlyA 

(all from E. coli) signals were also used in secretion trials with the anti-BSA scFv.  The 

PelB and HlyA signals were shown to secrete the scFv in P. agglomerans, however it 

was only active in the case of PelB-induced secretion.  In addition, four anti-Plasmodium 

effector proteins (SM1, Anti-Pbs21, PLA2, and CEL-III) were available for testing in 

constructs containing the heterologous secretion signals.  Varying success was observed 

with the different combinations of signals and effector genes.  The OmpA and TolB 

signals were not functional in P. agglomerans.  P. agglomerans was able to secrete Anti-

Pbs21-HlyA and PLA2 H67N-HlyA fusions and these strains are now available for 

testing inside malaria-infected anophelines for the inhibition of Plasmodium 

development. 
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CHAPTER 1 
 
 
INTRODUCTION 
 
 
1.1 Malaria: The Disease and Its Insect Vector 

 Malaria is a mosquito-vectored disease caused by protozoan parasites of the genus 

Plasmodium.  It is a very serious and often fatal disease and is a major worldwide health 

concern.  Around 41% of the human population is at high risk for malaria due to their 

residence in the subtropical and tropical areas on Earth.  The majority of cases occur in 

sub-Saharan Africa, but the disease is also present in parts of South Asia, the Middle 

East, and regions of Central and South America.  Estimates put the current number of 

cases of malaria at approximately 500 million and the number of annual deaths at 1-3 

million (BREMAN et al. 2001; SNOW et al. 2005).  The Centers for Disease Control and 

Prevention estimates that as many as 2.7 million lives are lost to malaria each year (CDC 

2006).  Most of these deaths occur in African children under the age of five.  It cannot be 

underestimated that successful efforts to curb the spread of this disease are desperately 

needed. 

 The mosquito vector for malaria, females of the genus Anopheles, thrives in the 

hot and humid climate of subtropical and tropical regions.  The females bite humans in 

order to obtain blood necessary for egg production.  If this mosquito is infected with 

Plasmodium, it can transmit the parasite to the human while taking a blood meal.  Also, a 
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naïve mosquito can obtain Plasmodium by feeding on an infected human.  This exchange 

between human and mosquito is required for a successful Plasmodium life cycle. 

 Anopheline mosquitoes go through four life cycle stages: egg, larva, pupa, and 

adult (or imago).  Environmental conditions such as ambient temperature and humidity 

will determine the lifespan of an adult mosquito as well as the successful transmission of 

malaria.  An infected female mosquito must be alive for 9-21 days in order for 

Plasmodium to complete the extrinsic phase of its growth cycle.  The cycle will be 

shorter if ambient temperatures are above 25°C, thus increasing the chance of 

transmission to humans who live in the warmer regions on Earth.  

 There are 400 identified species of Anopheles, and 30-40 of these species have the 

capacity to transmit malaria in the wild.  An. gambiae and An. funestus are the most 

successful malarial vectors in Africa due to their anthropophilic feeding behavior; they 

strongly prefer to feed on humans rather than on other mammals.   Another species,  

An. stephensi, can transmit a malarial parasite called Plasmodium berghei that affects 

rodents and is often used as a model research system. 

 Mosquitoes carrying malaria incur fitness costs from loss of fecundity to 

decreased flight distance.  As a result, there is significant selective pressure for species 

like An. gambiae to carry refractory alleles to Plasmodium.  There exists a wide range of 

refractoriness across different Anopheles species and the molecular explanation for this 

phenomenon is not completely understood.  Specific loci that confer resistance to  

P. falciparum infection have been identified in W. African mosquito populations (NIARE 

et al. 2002).  Some An. gambiae strains do not have vectorial capacity because they can 

trigger a complement-like immune response against midgut stages of Plasmodium, while 
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other strains undergo melanotic encapsulation of the oocyst stage parasites (BLANDIN et 

al. 2004; GHOSH et al. 2000).  Melanotic encapsulation is an immune response in certain 

insects, where foreign objects are encapsulated and targeted for destruction.  Even with 

these immune defenses against Plasmodium, most anopheline mosquitoes are still 

successful malarial vectors, contributing to the rising number of newly infected humans 

every year. 

 1.2 The Parasite Plasmodium causes Malaria 

 Malaria is caused by parasites within the genus Plasmodium.  Depending upon the 

species of Plasmodium, malaria can affect many different animals from birds to reptiles 

to some mammals.  Four species of malarial parasites can infect humans:  P. falciparum, 

P. vivax, P. ovale, and P. malariae.  P. falciparum and P. vivax are responsible for the 

most infections throughout the world with the former causing the most severe and 

potentially fatal form of the disease.  P. ovale or P. malariae infections can result in 

dormant liver stage parasites, which can relapse and cause malaria several months to 

years after the initial infection.  In the case of P. malariae, long-lasting chronic infections 

occur, and, if left untreated, can persist asymptomatically throughout the lifetime of the 

host.   

 The Plasmodium parasite has a complicated life cycle involving six distinct 

developmental forms: female and male gametes, zygote, ookinete, oocyst, and sporozoite, 

as well as fertilization and invasion of several different types of host tissue (GHOSH et al. 

2000).  A completed life cycle and a successful spread of the parasite require both the 

insect and human hosts (Figure 1.1). 
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 Plasmodium reproduces sexually when inside the gut of the mosquito and must 

surpass sequential developmental bottlenecks along the way (Cycle C in Figure 1.1).  The 

Plasmodium gametocyte (Step 8 in Figure 1.1), first encounters the mosquito midgut 

environment and displays proteins on its surface, such as Pbs21 found on P. berghei, that 

are used as targets by researchers for blocking development.  A small percentage of 

gametocytes develop into ookinetes and not much is known about this developmental 

transition (Step 10). 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.1:  The life cycle of Plasmodium.  Plasmodium needs the human and mosquito hosts for a 
successful life cycle.  Stages A and B are the nonsexual stages of Plasmodium that occur in the human host.  
Upon transmission to a naïve human by an infected mosquito, Plasmodium will first infect liver cells and 
eventually invade the bloodstream.  When a naïve mosquito takes a blood meal from the infected person, 
Plasmodium can be transmitted and will then undergo Stage C, which entails the sexual stages of 
development.  These occur inside the mosquito gut and eventually the salivary glands.  See text for more 
details.  (Figure from Centers for Disease Control and Prevention website:  
http://www.cdc.gov/malaria/biology/life_cycle.htm)  
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 Within 24 hours, the ookinete makes a difficult journey in traversing both the 

peritrophic matrix, a chitin-rich inner lining of the gut, and the midgut epithelium in order 

to implant between the midgut epithelium and basal lamina for further differentiation into 

oocysts (Step 11).  The successful differentiation from ookinete to oocyst can take 

anywhere from 10-24 days depending on the Plasmodium species.  Oocysts burst to 

release thousands of sporozoites that have the ability to invade numerous organs and cell 

types, but they will only travel through a second epithelial layer, to the salivary glands 

(Step 12). 

 From the salivary glands, the sporozoites will soon enter the secretory cavity and 

will remain there for the life of the mosquito.  When the insect takes a blood meal the 

sporozoites are transferred to the mammalian host in the insect’s saliva and will migrate 

to the liver cells to continue their maturation.   

 Liver-stage parasites are called schizonts and over the course of a few days they 

rapidly divide to form merozoites (Cycle A, Step 2).  Merozoites are eventually released 

from the parenchymal cells of the liver into the bloodstream where they invade 

erythrocytes.  Depending on the species, Plasmodium can remain dormant in the liver and 

cause a relapse in an infected individual by invading the bloodstream after weeks or even 

years.  Once present in the blood cells, the parasites reproduce asexually into the 

trophozoite stage and go on to produce daughter merozoite-stage parasites that will 

invade more red blood cells (Cycle B).  It is these blood stage parasites that cause the 

clinical manifestations of malaria. 
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1.3 The Manifestations of Malaria in Humans 

 Individuals with malaria can display symptoms that range from nonexistent to 

fatal.  For this reason, malaria is classified as being either uncomplicated or 

complicated/severe.  Fortunately, if malaria is diagnosed early and treated properly, it is a 

curable disease.  With uncomplicated malaria, a patient may present any combination of 

flu-like symptoms ranging from nausea and vomiting to body aches and fever.  Proper 

diagnosis comes only after observing a blood smear under a microscope for the presence 

of the parasite.   

 Complicated malaria involves organ failure and drastic changes in the patient’s 

bloodstream and metabolism.  This may include hemoglobinuria (hemoglobin in the 

urine), pulmonary edema (fluid buildup in the lungs), or cardiovascular collapse and 

shock.  These extreme cases are seen in individuals with no immunity to malaria, 

especially those who reside in areas of low to no malarial transmission.  Aggressive 

treatment and an urgent response is needed for complicated malaria to attempt to save the 

infected individual’s life. 

1.4 Past Treatments and Preventive Measures  

 Prevention and control of malaria thus far has relied primarily on either drug 

treatments or insect vector control.  Plant-derived anti-malarial drugs such as quinine and 

artemisinin have been used for the past several decades to treat malaria.  Quinine is 

currently only used for treating severe infections with P. falciparum due to its horrible 

side effects like temporary deafness, ringing in the ears, and dizziness.  Artemisinin can 

be administered to patients orally or through intravenous infusion and will target the 

parasites present in the bloodstream.  Artemisinin acts 10 times faster on Plasmodium 
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compared to quinine (WHITTY et al. 2006).  By destroying the gametocytes in the 

bloodstream, transmission to a feeding mosquito is somewhat reduced.  Over time, 

however, the effects of artemisinin are reduced because Plasmodium evolves resistance.  

In recent years, the drug chloroquine has become ineffective against resistant strains of  

P. falciparum, but it is still effective against P. vivax, P. ovale, and P. malariae.  

Chloroquine resistance in P. falciparum has been linked to mutations in genes that 

encode proteins involved in uptake to the parasite vacuole (LE BRAS and DURAND 2003). 

 Destruction of mosquito larval breeding grounds and the use of physical barriers 

like insecticide-treated bed nets in high-risk locations can help in minimizing mosquito 

populations and their interactions with humans.  Nets impregnated with pyrethroid 

permethrin have an increased effectiveness because this insecticide produces a halo that 

extends beyond the surface of the net.  However, the nets can be expensive, are not 

widely available, and have to be replenished with insecticide twice a year.  It is estimated 

that less than 5% of nets in use are re-treated sufficiently. 

 Neither method of drug treatment or vector control is completely successful in 

inhibiting malaria transmission.  Most importantly, both Plasmodium and Anopheles 

species have evolved resistances to many of the drugs and insecticides in use.  

Destruction of natural habitats also comes as a price of insecticide use.  As a result, there 

are a decreasing number of effective and inexpensive means of controlling this disease.   

 Additional measures must be developed to combat the spread of malaria.  There 

are some estimates that the number of malaria cases will double in the next 20 years if no 

new preventative measures are put into place (BREMAN et al. 2001).  To circumvent the 

inevitable resistance of the mosquito or parasite to any environmental controls and to 



 8

minimize the destruction of natural habitats, alternative genetic approaches have been 

initiated and appear promising.   

1.5 Combating Insect-Vectored Diseases with Genetic Approaches 

 There have been numerous attempts to control malaria by genetically altering the 

mosquito in a way that would turn it into an ineffective malarial vector (ALPHEY et al. 

2002; MOREIRA et al. 2002a).  Using this strategy, the insect is modified to prevent the 

parasite from traveling from the gut to the salivary glands or from the insect to the 

human, resulting in a reduction of malarial transmission.  The idea of genetic control of 

vector-borne diseases has origins nearly 40 years old, but it was after the advancements 

in molecular experiments in the germline of Drosophila melanogaster in the 1980s that a 

reevaluation of the idea emerged (ALPHEY et al. 2002; CURTIS 1968).  A committee of 

the World Health Organization's Special Program for Research and Training in Tropical 

Diseases (WHO/TDR) members in Geneva in 1991 established three parameters to be 

met before field-testing of any genetically modified mosquitoes (GMMs) could begin.  

First, the genetic engineering tools for use with malaria vectors had to be established; 

second, effector genes that would block parasite transmission should be determined and 

characterized; and lastly, effective methods of dispersing and fixating these effector 

genes in a wild population must be realized.  An effector gene can function by either 

interfering with parasite development or eradicating them completely inside their host.  

Added to these parameters is the fact that any modification cannot pose a significant 

fitness load such that the GMMs would not survive as well as wild mosquitoes in a 

natural setting. 
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 The last decade has shown considerable progress in the genetic manipulations of 

anopheline mosquitoes.  The P. falciparum and An. gambiae genomes were both 

completed in 2002 (GARDNER et al. 2002; HOLT et al. 2002) and effector genes whose 

products can hinder parasite development in the mosquito are continually being 

identified.  Because the parasite has to cross two different epithelial layers, it has been 

suggested that specific interactions exist between Plasmodium surface proteins and 

different molecules on the surfaces of the epithelial layers.  Blocking these interactions 

could result in effective reduction of malarial transmission. 

 Certain effector proteins have been shown to inhibit parasite development in the 

mosquito gut (ITO et al. 2002; MOREIRA et al. 2002b; MOREIRA et al. 2004).  A 

dodecapeptide named SM1 (Salivary gland and Midgut peptide 1) was identified through 

a phage display library designed for phages that bind to both the midgut and salivary 

gland epithelia (GHOSH et al. 2001).  An. stephensi carrying transgenic E. coli that both 

display SM1 on the surface of their outer membranes and secrete the peptide into the 

midgut lumen have been shown to reduce P. berghei invasion by 41% (RIEHLE et al. 

2007).  Until recently, the mechanism by which SM1 inhibits Plasmodium sporozoite 

invasion of the salivary glands was not known.  It has now been shown that SM1 is a 

conformational analog to the Plasmodium protein TRAP (thrombospondin-related 

anonymous protein) and it competes with TRAP in binding to the salivary gland protein, 

saglin (GHOSH et al. 2009).  Sporozoites of all Plasmodium species express TRAP and 

this protein is needed for sporozoite gliding and invasion of mosquito host cells (SULTAN 

et al. 1997).  Ghosh et al. (2009) have shown that the SM1 peptide and the A-domain of 
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TRAP both bind to saglin, a protein expressed in the salivary gland distal lobes, which is 

precisely the site of sporozoite invasion (BRENNAN et al. 2000). 

 Another effector protein identified was a phospholipase isolated from both 

honeybee and snake venoms called PLA2 (ABRAHAM et al. 2005; MOREIRA et al. 2002b; 

ZIELER et al. 2001).  PLA2 purified from the venom of the eastern diamondback 

rattlesnake (Crotalus adamanteus) was shown to inhibit oocyst formation in both avian 

and human malarial parasites (P. gallinaceum and P. falciparum, respectively) when 

administered to Aedes aegypti, An. stephensi, and An. gambiae mosquitoes following an 

infectious blood meal (ZIELER et al. 2001).  Honeybee venom PLA2 was expressed by 

An. stephensi and detected in the midgut epithelia 8-24 h after a blood meal.  Importantly, 

PLA2 was shown to inhibit P. berghei oocyst formation by 87% and greatly reduce 

transmission of the parasite to uninfected mice (MOREIRA et al. 2002b).  E. coli 

expressing honeybee PLA2 inside the mosquito gut also caused a 23% reduction in  

P. berghei development (RIEHLE et al. 2007).  It is hypothesized that phospholipases of 

this class block a specific receptor in the midgut epithelial lining and hamper the 

parasite’s mobility through this layer. 

 Pbs21 is a 21 kDa protein found on the surface of the ookinete stage of the rodent 

malarial parasite P. berghei.  Mouse monoclonal antibodies have been made against this 

protein and shown to prevent development from gametocytes to oocysts (YOSHIDA et al. 

1999).  Yoshida et al. constructed a gene for a single-chain antibody (scFv) by cloning 

the genes encoding the variable light and heavy chains of the antibody and assembling 

them into one open reading frame.  This Anti-Pbs21 scFv was shown to bind to the 

surface of P. berghei ookinetes and blocked oocyst formation in the mosquito gut by 93% 
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(YOSHIDA et al. 1999).  In place of genetically engineered anophelines, E. coli expressing 

the Anti-Pbs21 scFv were introduced into the gut of An. stephensi mosquitoes by 

membrane feeding.  The overall number of infected mosquitoes and their oocyst densities 

were lowered when the mosquitoes were allowed to feed on P. berghei-infected mice 

(YOSHIDA et al. 2001).  These experiments helped to support the idea of utilizing 

genetically engineered bacteria in the mosquito gut to fight Plasmodium development and 

transmission. 

 Another example of an anti-Plasmodium effector protein is the CEL-III lectin 

isolated from the body fluid of the sea cucumber, Cucumaria echinata, has hemolytic and 

cytotoxic activity against human and rat erythrocytes.  This protein rapidly creates holes 

in the erythrocyte cell membrane (HATAKEYAMA et al. 1995).  It is thought that CEL-III 

is part of the innate defense system of the sea cucumber.  Yoshida et al. (2007) 

hypothesized that with CEL-III present in the mosquito gut during a blood meal, rapid 

hemolysis would occur and thus the gut environmental conditions would be altered in a 

way that would inhibit Plasmodium development.  In addition, it was discovered that 

CEL-III could bind to ookinetes and thus prevent sporogonic development.  Experiments 

revealed a severe impairment of the rodent malarial parasite P. berghei and a moderate 

blockage of the human parasite P. falciparum (YOSHIDA et al. 2007).   

 Experiments involving GMMs appear promising in the laboratory setting, but the 

fitness and fecundity of these insects will have to equal or exceed that of wild mosquito 

populations if they are to be fixed successfully in the wild.  In five independent 

laboratory experiments, transgenic mosquitoes expressing PLA2 showed 77-99% 

inhibition of oocyst formation (MOREIRA et al. 2004).  As compared to nontransgenic 
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mosquitoes, the PLA2 transgenics consistently showed lower numbers of sporozoites in 

salivary glands. Additionally, PLA2 transgenics showed a significantly lower fecundity 

and ingested 10-50% less blood than nontransgenics (MOREIRA et al. 2004).  Through a 

series of cage experiments whereby transgenics and nontransgenics coexisted in the same 

enclosure and were maintained blindly over five generations, it has been shown that 

transgenics expressing SM1 showed no significant reduction in fitness as compared to 

nontransgenics (ABRAHAM et al. 2005; MOREIRA et al. 2004).  Further studies on SM1-

expressing mosquitoes fed on P. berghei-infected blood revealed that the transgenics 

actually had a greater fitness over nontransgenics.  Over time the transgenics 

outcompeted nontransgenics and were more fit in terms of fecundity and mortality rates 

(MARRELLI et al. 2007).  What these combined experiments suggest is that the influence 

on fitness of transgenics will be dependent upon the protein product of the particular 

effector gene analyzed (JACOBS-LORENA 2003). 

 Before transgenic mosquitoes or bacteria are released into the wild, it is 

imperative that attempts are made to understand the effects these organisms may have on 

native mosquito populations.  One study used two geographically isolated An. gambiae 

strains (Mbita from western Kenya and Ifakara from Tanzania) to compare hybrid fitness 

to that of the founder populations (MENGE et al. 2005).  This study was done in the 

laboratory with the intent of mimicking the introduction of an exotic transgenic 

anopheline strain to that of a wild population.  These scenarios introduce new alleles into 

a population in addition to parasite-inhibiting genes.  The authors measured traits found 

to be important in determining an insect vector’s transmission capabilities: fecundity, 

body size, blood meal size, and adult longevity.  It was observed that all traits showed 
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heterosis (increased fitness in the hybrid strain) over each of the founder populations up 

to the 20th generation.  Results such as this suggest that transgenic strains introduced to 

the wild could become a nuisance by living longer and biting more frequently than 

indigenous mosquitoes.  Also, greater hybrid fitness could lead to stabilizing selection 

that would make it difficult for refractory genes to become fixed in the population.  The 

authors stress that anopheline strains used to carry transgenes should have very similar 

genetic makeup to native populations to curb or eliminate the likelihood of increased 

hybrid fitness in the wild. 

 A major obstacle in utilizing this technology is determining how to effectively 

establish the GMMs in the field (RIEHLE and JACOBS-LORENA 2005; RIEHLE et al. 2003).  

One method would be to significantly reduce the numbers of endemic mosquito 

populations (perhaps through the use of insecticides), and then release of the GMMs on a 

large scale.  The main problem with using genetically modified mosquitoes is that 

generating enough mosquitoes to replace entire populations on a country or continent-

wide scale is nearly impossible.  Alternatively, through the use of transposable elements 

as a genetic drive mechanism, a transgenic population could replace a wild population. 

However, the effectiveness of this method is not known.  Transposable elements could 

also pose a significant fitness load on the insects because of the frequency and location of 

transposition events resulting in the disruption of genomic organizations and increase in 

mutation rates.  There is also the possibility that after a certain number of generations, the 

insects become refractory to transposition, perhaps due to selection of a repressor protein.  

This would be similar to the P (refractory) cytotype in Drosophila melanogaster where 
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the accumulation of a repressor protein inhibits transposition and slows the mobility of 

the P element (CRAIG 2002). 

1.6 Paratransgenesis as a Means to Fight Diseases 

 There is an alternative to creating expensive and time-consuming genetically 

modified mosquitoes in the fight against Plasmodium transmission.  The past few years 

have seen an increased interest in and application of paratransgenesis, which is the use of 

genetically modified bacteria to treat many different diseases and conditions.  For 

example, paratransgenesis has been effective in a laboratory setting in inhibiting 

development of the parasite that causes Chagas disease, which is vectored to humans by 

blood-feeding insects (DURVASULA et al. 1997).  Paratransgenesis involves genetically 

modifying a bacterial species that normally resides in the gut of an insect to produce 

functional molecules that will inhibit the development of the parasite vectored by the 

insect (ALPHEY et al. 2002; BEARD et al. 1998; BEXTINE et al. 2004).  In addition to 

inhibiting insect-borne diseases, there are also examples of this approach being used to 

reduce HIV infectivity in mammalian cells (CHANG et al. 2003; RAO et al. 2005). 

 Paratransgenic approaches to limiting the spread of the insect-vectored Chagas 

disease have yielded encouraging results.  Chagas disease is a parasitic disease in humans 

that affects people living in most of Central and South America.  It is caused by the 

parasite Trypanosoma cruzi, which is vectored by the blood-feeding insect, Rhodnius 

prolixus, commonly called the kissing bug.  These insects colonize thatched homes that 

are common structures in tropical regions and can transmit Trypanosoma to humans who 

come in contact with insect feces.  Contact can occur when the insect is taking a blood 

meal from a human and deposits a fecal droplet on the skin or even when a person 
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unknowingly touches their eyes, mouth, or open cuts, with hands contaminated with 

Rhodnius fecal matter.  Between 12-15 million cases of Chagas are estimated to occur 

annually, and approximately 10-30% of cases will progress into a chronic and life-

threatening illness of the cardiac and gastrointestinal systems.  Chagas disease causes 

about 50,000 deaths each year in tropical America, making it a leading cause of mortality 

in these regions (BEARD et al. 2002; BEARD et al. 2001). 

 The first example of the disruption of insect vector capabilities via the genetic 

alteration of endosymbiotic bacteria came in 1997 when an endosymbiont of Rhodnius 

prolixus, the actinomycete Rhodococcus rhodnii, was engineered to express cecropin A, a 

peptide that is lethal to Trypanosoma (DURVASULA et al. 1997).  The recombinant 

bacterium was fed to Rhodnius insects and a significant reduction in Trypanosoma 

survival inside the insect was observed.  R. rhodnii was a prime choice for genetic 

modification because it resides in close proximity to Trypanosoma when inside the 

insect’s gut.  Cecropin A is a small insect immune peptide that creates holes in the 

membrane of T. cruzi.  Other optimistic observations in this study included the absence of 

toxicity to insect tissues due to the presence of the recombinant symbionts and the spread 

of these symbionts through a colony due to insect coprophagic (the eating of feces) 

behaviors.  These researchers have even developed a paste called CRUZIGARD that 

contains GM R. rhodnii and mimics Rhodnius fecal matter in composition, which newly 

hatched insects will eat and ingest these bacteria early in their development.  This gives 

the GM bacteria ample time to colonize the insect (BEARD et al. 2002). 

 Pierce’s disease, a devastating disease that affects grapevines in Southern 

California and other parts of the world, which is caused by the pathogenic bacterium, 
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Xylella fastidiosa, is another target for paratransgenic therapies.  The glassy-winged 

sharpshooter (GWSS), Homalodisca coagulata, is the vector for this bacterium.   

X. fastidiosa is transferred to the xylem of grape plants while the GWSS feeds on the 

leaves.  The plants succumb to this pathogen and as a result, the wineries in these regions 

can suffer great economic loss.  An artificial feeding system can introduce the non-

pathogenic bacterium Alcaligenes xylosoxidans denitrificans to the insect through a liquid 

medium (BEXTINE et al. 2004).  This bacterium was chosen from among other culturable 

bacterial species because it was found to be associated with the xylem of plants.  It also 

resides in close proximity to X. fastidiosa in the foregut of the insect, making it an 

optimum candidate for expression of anti-Xylella effector molecules. Successful delivery 

and colonization of A. xylosoxidans denitrificans in the foregut of the GWSS suggests 

that a paratransgenic approach to combating Pierce’s disease is within reach. 

 Paratransgenesis is also being used to combat diseases that do not need an insect 

vector to infect humans, but the concept of engineering symbiotic bacterial species to 

express inhibitory molecules remains the same.  Human Immunodeficieny Virus, or HIV, 

is a global health epidemic that demands immediate preventative measures.  Women are 

more at risk for infection due to a greater efficiency of transmission from male to female 

(ROYCE et al. 1997).  Alternative methods of virus inhibition include engineering bacteria 

normally found in the gastrointestinal or cervicovaginal mucosa of mammals to express 

anti-HIV inhibitor proteins (CHANG et al. 2003; RAO et al. 2005).   

 Chang et al. (2003) engineered a natural human vaginal isolate, Lactobacillus 

jensenii, to express a secreted form of the HIV-binding protein, CD4.  In vitro results 

show that the CD4 produced by these cells was able to inhibit HIV-1 entry into target 
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cells.  The authors believe that these engineered lactobacilli may survive on vaginal 

mucosa in vivo for days to weeks at a time, allowing for intermittent administrations of 

the bacteria to females at high risk for HIV infection.  

 Rao et al. (2005) engineered a strain of E. coli called Nissle 1917 to secrete an 

anti-HIV fusion peptide.  The inhibitor peptide was a 52 amino acid sequence derived 

from the C-terminal region of gp41, a transmembrane subunit of the HIV envelope that 

works in the mechanism of membrane fusion.  The authors observed peptide secretion at 

inhibitory concentrations and also observed the ability of the bacterium to 

nonpathogenically colonize the gastrointestinal and cervicovaginal tracts of mice for 

periods of weeks to months.  This genetically modified bacterium proves promising as a 

potential treatment for HIV infection in humans. 

  A proof-of-concept experiment for paratransgenic malaria control involving the 

rodent malaria parasite P. berghei, showed its development in An. stephensi mosquitoes 

was inhibited 90-95% in the presence of E. coli expressing an Anti-Pbs21 scFv (YOSHIDA 

et al. 2001).  The Anti-Pbs21 scFv binds to a 21 kDa surface protein on P. berghei 

ookinetes, which occur in the mosquito midgut (YOSHIDA et al. 1999).  Interestingly, the 

control for this experiment, administering E. coli expressing a non-specific scFv to  

P. berghei-infected mosquitoes, also resulted in a significant reduction of P. berghei 

development (YOSHIDA et al. 2001).  There may be an indirect negative effect upon 

Plasmodium due to the presence of the E. coli or the presence of an scFv (regardless of its 

specificity).  However, because E. coli are not naturally found in mosquito guts, and 

therefore not adapted to this environment, the use of this bacterium may not be efficient 

in a field setting. 
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 There are many advantages to using paratransgenesis to counter insect vector 

competence.  If the transgene-carrying bacterium colonizes the same areas inside the 

insect as the targeted parasite, the transgene product affecting the parasite is in close 

proximity and its effect is increased.  Introduction of bacteria into insect populations may 

be much easier than transgenes alone.  Most bacteria can be transformed with DNA quite 

easily and immense quantities of bacteria can be produced with minimal costs.  Also, 

multiple effector genes can be added to one species simultaneously and if one gene 

should lose effect over time, it should be relatively easy to introduce an alternate effector 

gene.  

  The most important factor in using a paratransgenic approach to fight a disease is 

the choice of bacterium.  Optimally, the chosen bacterial species should be able to be 

cultured and genetically manipulated in the laboratory setting.  This species must also be 

adapted to or indigenous to the environment that the disease of interest occupies.  It is 

important that the GM bacterium is able to survive, undergo normal cellular operations, 

and hopefully even replicate in the environment, otherwise, the GM population will have 

to be continually replenished.  Replenishment of the GM bacteria may be a difficult task 

depending on the disease and its host environment. 

1.7 Bacterial Candidates for Paratransgenesis 

 Certain characteristics of the obligate, intracellular, Gram-negative bacteria called 

Wolbachia suggest it could be a powerful drive mechanism for spreading effector genes 

through an insect population.  This is because these bacteria inhabit the reproductive 

systems of arthropods and are maternally inherited.  Wolbachia also cause cytoplasmic 

incompatibility, which means that females who do not harbor Wolbachia will not produce 
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offspring (SINKINS 2004).  It has been observed that Wolbachia spread through a 

Drosophila simulans population in California at the rate of 100 km per year (TURELLI and 

HOFFMANN 1991).   

 The devastating disease dengue fever, vectored by the mosquito Aedes aegypti, 

may one day be curbed by infecting Aedes mosquitoes with strains of Wolbachia that 

shorten the life-span of the mosquito (MCMENIMAN et al. 2009).  Parasites like 

Plasmodium and the dengue flavivirus require a particular length of time inside their 

insect host for proper development before they are infective and can be transmitted to a 

human.  This length of time is about 2 weeks for both dengue fever and malaria.  For this 

reason, older mosquitoes are of a higher epidemiological importance.  The Wolbachia 

wMelPop strain was previously shown to limit the life span of adult Drosophila 

melanogaster and McMeniman et al. tested to see if a similar effect would be observed in 

Aedes mosquitoes (MCMENIMAN et al. 2009; MIN and BENZER 1997).  These authors 

report Aedes populations were reduced by half with the presence of the life-shortening 

Wolbachia wMelPop strain.  With further studies under seminatural conditions, the 

validity of using Wolbachia to reduce the life span, and thus the infectivity, of Aedes 

mosquitoes that carry dengue fever can be assessed. 

 In the case of malaria, as a cruel twist of fate, Wolbachia is not an option for 

mosquito control.  Wolbachia has not been observed in anopheline mosquitoes.  

Additionally, Wolbachia colonizes the reproductive structures of insects, which is not in 

proximity to the gut where Plasmodium undergoes development.  Therefore, transgenic 

Wolbachia would not be effective in a mosquito control scenario that targets 

Plasmodium, as mentioned above. 
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Engineering a bacterium that naturally colonizes the gut of the mosquito to 

express effective anti-malarial genes would greatly increase the likelihood of inhibiting 

the Plasmodium parasite.  Plasmodium is most vulnerable within the insect midgut.  

Mosquitoes can ingest 103 gametocytes with a blood meal, but less than 10 ookinetes will 

successfully traverse the midgut epithelium and form oocysts.  Parasite numbers increase 

dramatically only after each oocyst produces thousands of sporozoites (GHOSH et al. 

2000; RIEHLE and JACOBS-LORENA 2005).  Therefore, targeting ookinetes could interfere 

dramatically with malarial transmission.  Additionally, another advantage of this 

paratransgenic approach is that, unlike with the use of insecticides, the condition of the 

natural habitat is left intact and the biological niche is filled with mosquitoes that are 

incapable of transmitting the malarial parasite. 

 Adult, blood-fed, female An. stephensi mosquito colonies in the Jacobs-Lorena 

laboratory at Johns Hopkins University served as the source for an initial screen for 

bacterial species that are both well adapted to the gut environment and that are able to be 

cultured in the lab.  Isolates were characterized for Gram staining and cellular 

morphology, 16S ribosomal DNA sequencing, and resistance to any drug markers (if 

any).  From this screen, Gram-negative Enterobacter spp., Klebsiella sp., Serratia sp., 

and gram-positive Bacillus spp. were identified (RIEHLE et al. 2007).    

 Pantoea (= Enterobacter) agglomerans was chosen as a candidate for 

downstream applications presented in this dissertation due to its persistence in the 

mosquito gut environment, its ability to be cultured in the lab, and because it does not 

pose a pathogenic threat to healthy humans.  P. agglomerans can also be successively 

passed through female mosquito guts to obtain strains that will persist in the gut for 
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weeks at a time and who increase their numbers following a blood meal (RIEHLE et al. 

2007).  Previous studies have shown that P. agglomerans is commonly isolated from wild 

mosquito populations and this suggests the insects can readily obtain these 

microorganisms from the environment (RIEHLE and JACOBS-LORENA 2005).   

 P. agglomerans is a rod-shaped Gram-negative γ-proteobacterium that is isolated 

from diverse environments, including soil, plants, insects, and humans.  Classification of 

this species has primarily relied upon sequence comparison of 16S ribosomal DNA and a 

handful of protein coding genes (HAUBEN et al. 1998; NAUM et al. 2008; YOUNG and 

PARK 2007).  Because of the limited phylogenetic analysis, P. agglomerans was 

previously designated as Erwinia herbicola or Enterobacter agglomerans until 

identification methods became discriminating enough to discern differences in these 

species (GAVINI 1989).  Classification of this species is quite difficult because the genus 

is so diverse, and for this reason careful phylogenetic analysis of as many strains as 

possible at one time is important for proper identification.  Fluorescence amplified 

fragment length polymorphism (FAFLP) has been used to type different strains (BRADY 

et al. 2007).  This procedure involves a single PCR reaction that amplified DNA to a 

concentration that is detectable and sizeable by the laser of an automated sequencer.  This 

technique is somewhat limiting because the source DNA must be in a pure state and that 

is not always possible when analyzing environmental isolates (MORTIMER and ARNOLD 

2001).  Multilocus sequence analysis (MLSA) has also been used to classify 

P. agglomerans strains (BRADY et al. 2008; DELETOILE et al. 2008).  This technique 

allows for genotyping of a more diverse group of prokaryotes and uses several single-
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copy protein coding genes in its comparison.  As these sophisticated genotyping methods 

are more routinely used, proper identification of P. agglomerans strains will continue. 

 Another newly identified candidate for malarial paratransgenesis is the α-

proteobacterium, Asaia bogorensis (YAMADA et al. 2000).  This species can be cultured 

in acidic medium, genetically manipulated, and is associated with the larval and adults 

stages of anopheline mosquitoes. Additionally, A. bogorensis has been reported to be 

vertically transmitted to offspring, which makes it possible to spread transgenic forms 

across mosquito populations (FAVIA et al. 2008).  A gfp-expressing strain of  

A. bogorensis was shown to colonize the female gut and salivary glands of An. stephensi 

(FAVIA et al. 2007).  These are the exact locations of Plasmodium development and if  

A. bogorensis can be genetically engineered to produce anti-Plasmodium effector 

proteins in these locations, a reduction in transmission could be realized. 

1.8 Protein Secretion Systems in Gram-negative Bacteria 

 One caveat of a paratransgenic approach to fight insect-vectored diseases is the 

need to deliver the anti-Plasmodium effector product to the exterior of the bacterial cell.  

The effector product must be in proximity to its target (i.e. Plasmodium in the mosquito 

gut environment) in order to have a negative effect upon its development.  By fusing a 

DNA sequence encoding a bacterial secretion signal to the effector gene, the gene 

product could be exported from the cell upon translation.  Currently, there are seven 

recognized and characterized secretion system types across all bacterial species, but this 

section will focus primarily on the systems utilized in Gram-negative species like the 

malarial paratransgenesis candidate, P. agglomerans.   
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 Gram-negative bacteria have a large and varied arsenal of protein secretion 

systems at their disposal.  Bacteria export proteins to the extracellular environment in 

order to participate in processes like pathogenicity, cell movement or cell-cell 

communication, and each secreted protein is linked to a particular secretion apparatus.  

Export from the Gram-negative cell involves transport across both the inner membrane 

(IM) and the outer membrane (OM) and the different pathways involved in traversing 

these membranes can be divided into two categories: Sec-dependent and Sec-independent 

(KOSTAKIOTI et al. 2005).  Sec refers to the secretion (Sec) translocase, a collection of 

proteins that comprise the IM secretion apparatus common to all Sec-dependent secretion 

systems (MORI and ITO 2001). 

 Sec-dependent secretion pathways utilize the Sec translocase for transport across 

the IM and different machinery for transport across the OM.  Examples of Sec-dependent 

secretion systems include Type II secretion systems (T2SS), Type V or autotransporter 

secretion systems (T5SS), two-partner secretion (TPS), and the chaperone/usher secretion 

system (CU) (KOSTAKIOTI et al. 2005).  The Type IV secretion system (T4SS) is 

sometimes Sec dependent but is mostly considered Sec-independent (DING et al. 2003). 

 The T2SS exports proteins in a two-step process.  Proteins are first sent across the 

IM via the Sec translocase to the periplasmic space, the site of most extracellular protein 

folding.  Transport across the OM involves several proteins, only one of which is an 

integral membrane protein.  This protein, Protein D is a secretin and is thought to form 

the translocation channel (KOSTAKIOTI et al. 2005).  Studies on examples of Type II 

secretion in Aeromonas species and of PulA (pullulanase) secretion in Klebsiella oxytoca 

have led to the suggestion that the IM and OM constituents make contact with one 
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another transiently in the periplasmic space to form a secretion apparatus that spans the 

entire cell envelope (LETELLIER et al. 1997; POSSOT et al. 1997).  This is believed to be 

the case because transport across the OM relies on the proton motive force created in the 

IM.  Proteins to be secreted by T2SS contain N-terminal secretion signal sequences that 

direct them to Sec-dependent translocation across the IM to the periplasmic space.  The 

signal sequence is removed and the protein is properly folded and further modifications 

like subunit assembly can be performed.  Finally, the protein is secreted across the OM 

by the T2SS secretion apparatus (SANDKVIST 2001).  Examples of T2SS include PulA 

(pullulanase) secretion in Klebsiella oxytoca and type IV pili formation in Pseudomonas 

aeruginosa (NOUWEN et al. 1999; PEABODY et al. 2003).  The Out system identified in 

Erwinia chrysanthemi is a T2SS that secretes plant cell wall-degrading enzymes, 

including PelB (LINDEBERG and COLLMER 1992).  This same signal sequence isolated 

from Erwinia carotovora has been shown to secrete heterologous proteins in E. coli 

(LINDEBERG and COLLMER 1992; THIE et al. 2008; WINTER et al. 1994). 

 Autotransporter or T5SS is one of the most widely distributed secretion systems 

among Gram-negative bacteria and is mostly used to deliver virulence factors that play a 

role in pathogenesis.  Characteristic of the T5SS is the fact that protein substrates can 

mediate their own transport across the OM.  Proteins targeted for secretion using this 

pathway contain the Sec-dependent N-terminal signal sequence that aids in transport 

across the IM as well as a C-terminal β-domain that will insert itself into the OM, 

directing export of the internal passenger domain (α-domain) to the cell exterior (JACOB-

DUBUISSON et al. 2004).  Representatives of virulence factors secreted by autotransporter 
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include the IgA1 protease of Neisseria gonorrhoeae and the Hap protease of 

Haemophilus influenzae (KOSTAKIOTI et al. 2005). 

 Two-partner secretion (TPS) is very similar to autotransporter secretion and is 

found across many different Gram-negative bacterial species.  The main distinguishing 

component of the TPS system is its accessory protein involved in translocation of the 

exoprotein across the OM (JACOB-DUBUISSON et al. 2004).  Proteins secreted by this 

system are referred to as TpsA proteins and contain both the Sec-dependent N-terminal 

signal sequence and a 110-residue N-terminal “TPS domain” that is needed for secretion 

across the OM through an integral OM channel-forming protein called TpsB.  The TpsA 

protein can remain noncovalently bound to the cell surface or released to the extracellular 

environment (JACOB-DUBUISSON et al. 2004; KOSTAKIOTI et al. 2005).   TPS secretion is 

commonly used for the secretion of large virulent proteins including the ShlA cytolysin 

of Serratia marcescens and the HMW1A adhesin of Haemophilus influenzae (JACOB-

DUBUISSON et al. 2004; ST GEME and GRASS 1998). 

 CU secretion is reserved for the assembly of a superfamily of virulence-associated 

surface structures.  These include structures involved in adhesion to host cells like P pili 

and type I pili of uropathogenic E. coli as well as fimbriae and capsule structures.  CU 

secretion relies on two proteins that work cooperatively, a periplasmic chaperone and an 

outer membrane usher protein (KOSTAKIOTI et al. 2005).  As with all other Sec-dependent 

substrates, nascent polypeptides are directed to the periplasmic space where they must 

interact with a chaperone protein.  This chaperone aids in proper folding while preventing 

subunit-subunit interactions from occurring prematurely.  Chaperone-subunit complexes 

interact with the OM usher, and chaperone-subunit complexes are gradually exchanged 
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for subunit-subunit complexes, which aids in fiber assembly and secretion to the cell 

surface (SAUER et al. 1999).  

 Sec-independent pathways can export a protein directly from the cytoplasm to the 

extracellular space without a stop in the periplasmic space because the translocation 

channel spans both the IM and OM.  Type I (T1SS) and Type III (T3SS) secretion 

systems are categorized as Sec-independent.  As mentioned previously, Type IV 

secretion systems (T4SS) are usually considered to act in a Sec-independent fashion. 

 T1SS are used by Gram-negative bacteria to secrete proteins such as pore-forming 

toxins, proteases, and lipases directly from the cytoplasm to the extracellular space 

without periplasmic intermediates (GENTSCHEV et al. 2002; KOSTAKIOTI et al. 2005).  

The mechanism of T1SS is best characterized by the α-hemolysin (HlyA) system of 

pathogenic E. coli.  Proteins targeted for secretion by a T1SS contain a noncleavable C-

terminal signal sequence that sends them to the secretion apparatus.  In the case of HlyA, 

the C-terminus of the protein acts as the secretion signal.  Three proteins form a secretion 

apparatus that spans the IM and OM.  The IM translocase is comprised of a member of 

the ATP-binding cassette (ABC) superfamily (HlyB) and a member of the membrane 

fusion protein family (HlyD).  An integral OM protein forms a β-barrel with a central 

hydrophilic core (TolC).  In the HlyA system in E. coli the last 60 amino acids of HlyA 

are needed for interaction with the IM translocase, and after this interaction takes place 

TolC is recruited via HlyD to form a continuous channel through the cell envelope 

(KORONAKIS et al. 1992; WANDERSMAN and DELEPELAIRE 1990). 

 T3SS utilize an “injectisome” which is comprised of an envelope-spanning 

channel and a needle-like projection from the bacterial cell that can make contact with 
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and inject virulence factors directly into host cells (CORNELIS 2006). These systems were 

first characterized for the Yop proteins of Yersinia pestis and are genetically, structurally, 

and functionally related to bacterial flagella. The main component of the bacterial 

flagellum, FliC/flagellin, is secreted through the flagellar export apparatus in an identical 

fashion to a T3SS (YOUNG et al. 1999).   

 The T3SS system consists of three types of proteins, proteins that make up the 

needle-like projection, the secreted proteins, and regulatory proteins that control the 

expression of structural and secreted proteins.  Approximately 20 proteins make up the 

needle structure and allow for secretion upon contact with the target host cell.  For this 

reason, T3SS is often referred to as a “contact-dependent pathway” (KOSTAKIOTI et al. 

2005).  It is not exactly certain what signals are involved in targeting a protein for T3SS-

mediated secretion.  Evidence exists for three different secretion signals.  N-terminal 

amino acid signal sequences target proteins to be secreted via a T3SS.  Additionally, the 

signal can also be located in the 5’ of the mRNA molecule for the secreted protein.  

Finally, it is possible that a chaperone protein can bind the substrate and direct its 

secretion (ALDRIDGE and HUGHES 2001).  An mRNA-mediated secretion would result in 

a coupling of translation and protein secretion and it is thought that ribosomes in the 

process of translating secreted proteins are placed in close proximity with the cytoplasmic 

surface of the secretion apparatus.  An N-terminal signal sequence would trigger 

secretion similar to Sec-dependent secretion pathways, however, the signal is not cleaved 

from the mature protein, as it does not make a stop in the periplasmic space.  Finally, 

chaperone-mediated secretion requires the chaperone to communicate with the secretion 
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apparatus.  Any substrate that cannot bind to a chaperone will not be secreted (ALDRIDGE 

and HUGHES 2001; CHENG and SCHNEEWIND 2000). 

  It is interesting that different species would evolve the use of different signals to 

secrete the same protein.  More than one type of secretion signal for the FliC/Flagellin 

protein has been characterized in E. coli and Salmonella species.  In E. coli, the 5’ UTR 

(untranslated region) of the fliC mRNA functions as a protein secretion signal, while the 

secretion signal in Salmonella was identified as 22 residues in the N-terminus of the FliC 

protein (GAL et al. 2006; MAJANDER et al. 2005; VEGH et al. 2006).  Additional and 

somewhat conflicting evidence for FliC secretion in E. coli identifies the first 183 

residues in the FliC N-terminus as the secretion signal (KUWAJIMA et al. 1989; 

MAJANDER et al. 2005). 

 T4SS are thought to have evolved from bacterial conjugation machinery and have 

the capacity to secrete both proteins and single-stranded-DNA-protein complexes directly 

into host cells (CASCALES and CHRISTIE 2003).  Secretion is carried out through the use 

of trans-envelope structures that span the IM and OM and end in a pilus structure at the 

surface of the bacterial cell.  They are generally considered Sec-independent, but 

exceptions like the Sec-dependent secretion of the B. pertussis PT toxin fall under the 

category of T4SS (CASCALES and CHRISTIE 2003; KOSTAKIOTI et al. 2005).  Most of 

what is known about T4SS comes from the T-DNA transfer system of Agrobacterium 

tumefaciens.  This Gram-negative soil bacterium causes crown gall tumor disease in 

plants.  It transfers a portion of a plasmid (T-DNA) to the plant cell nucleus, where it is 

incorporated into the plant chromosome.  Protein localization experiments confirm that 

several of the Agrobacterium VirB proteins colocalize with both the inner and outer cell 
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membranes and contain periplasmic domains, which suggests that these proteins form an 

envelope-spanning channel (CHRISTIE 1997).  In addition to the trans-envelope structure, 

the secretion system contains a conjugative T pilus structure for delivery of the effector to 

the host cell.  There are two models for secretion using this pilus structure.  The “channel 

model” suggests that substrates traverse the OM through the lumen of a pilus-like 

structure.  The “piston model” proposes a retractile pilus that extends from the cell and 

pushes the substrate through the OM pore (CASCALES and CHRISTIE 2003) 

 Additional Gram-negative secretion systems are continually being discovered.  

The Type VI secretion system (T6SS) was identified after researchers reviewed the 

organization of gene clusters that encode T4SS-like systems.  The original name for these 

clusters was IAHP (IcmF-associated-homologous-proteins) because they contained a 

gene for an IcmF-like component. IcmF (intracellular multiplication protein F) is an IM 

protein that is a known participant in T4SSs (FILLOUX et al. 2008).  However, all of the 

other genes in the IAHP gene cluster were not homologous to other T4SS genes, leading 

researchers to think that a novel secretion system gene cluster had been found (CASCALES 

2008; FILLOUX et al. 2008).  

 The speculative structural model of a T6SS shows the proteins involved forming a 

channel that spans both the IM and OM.  A protein called VgrG is associated with the 

lumen side of the OM and is thought to play a dual role in delivery of the secreted 

protein.  VgrG may create a puncture in a host cell for injection of the secreted protein 

and VgrG may also behave like an autotransporter and carry the secreted protein through 

the puncturing device into the host cell (FILLOUX et al. 2008). 
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 T6SS have been identified in species like E. coli, Salmonella enterica subspecies, 

Vibrio cholerae, and usually play a role in virulence and invasion of eukaryotic cells.  

Burkholderia mallei, which has four T6SS gene clusters, suggests a redundancy in 

virulence or specific systems for use in particular hosts (FILLOUX et al. 2008). 

 The Gram-positive bacterium, Mycobacterium has revealed a seventh secretion 

system (T7SS).  Originally called the ESX-1 system, this T7SS is involved in secretion of 

virulence factors and conjugation, depending on the Mycobacterium strain (ABDALLAH et 

al. 2007).  In particular, Mycobacterium tuberculosis encodes five T7SSs.  There is no 

sequence homology between the components of a T7SS and other secretion systems, 

which suggests that this is a novel system.  The T7SS is mechanistically unique because 

it appears that all of the secreted proteins are co-dependent upon one another for 

secretion.  Structural data is lacking, but it is thought that a multiprotein complex spans 

the Mycobacterium cell envelope similar to type I-IV secretion systems.    

 T7SS appear to only be utilized in Gram-positive bacteria and have been found in 

pathogenic and non-pathogenic species from Corynebacterium and Staphylococcus to 

Streptomyces spp.  Lots of questions are still being answered regarding the structure and 

function of this latest secretion system (ABDALLAH et al. 2007). 

 Bacteria also use alternate trafficking pathways for shuttling proteins to the IM as 

well as the extracellular space that act independent of the Sec machinery.  E. coli uses  a 

SRP (signal recognition particle) pathway that targets specific proteins to the IM, which 

is homologous to the eukaryotic SRP pathway that translocates proteins to the 

endoplasmic reticulum (DE GIER et al. 1997; VALENT 2001).  The prokaryotic SRP is a 

ribonucleoprotein complex comprised of a 4.5S RNA and a protein called P48.  P48 
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binds to the hydrophobic signal sequence in a membrane-bound protein in a co-

translational fashion and targets the nascent protein to a translocon in the IM through its 

interaction with a receptor protein FtsY (VALENT 2001).  And finally, the Tat pathway 

(twin-arginine translocation) is a translocon for sending folded proteins across the IM and 

it recognizes a twin-arginine motif at the end of the N-terminal region of the protein 

(WEINER et al. 1998).  Integral membrane proteins TatA, TatB, and TatC use the proton 

motive force across the IM to acquire the energy needed to translocate the protein.  It is 

TatB or TatC that recognizes the twin-arginine motif in the Tat substrate (PALMER et al. 

2005).  It was initially thought that the Tat pathway was used mainly to export folded 

proteins that bind to cofactors in the cytoplasm, but it has been shown to play a broader 

role in delivering virulence factors in several bacterial pathogens (BERKS et al. 2003; 

PALMER et al. 2005).  Because of its role in virulence, and because there are no 

homologues in mammalian cells, the Tat pathway could be a target for antimicrobial 

compounds (DE BUCK et al. 2008). 

1.9 Applying Secretion Systems to Deliver Heterologous Proteins 

 Several protein secretion systems have been adapted to deliver heterologous gene 

products from the bacterial cell.  Frequently, these secretion systems have been shown to 

work in E. coli, but other species like Salmonella spp. have also proven to be successful 

at secreting heterologous proteins (GEORGIOU and SEGATORI 2005; MERGULHAO et al. 

2005).  Genetically engineering a bacterium to produce heterologous proteins is much 

easier than modifying a eukaryote and it is also more economically viable to produce 

large volumes of bacterial cells rather than generate numerous modified eukaryotic 

organisms.  This section will focus on Sec-dependent (T2SS) and Sec-independent 
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(T1SS, T3SS, and SRP) signals that have been used to secrete heterologous proteins from 

Gram-negative bacteria. 

 One of the long-standing technologies for producing large volumes of protein in a 

bacterium like E. coli is antibody phage display (CLACKSON et al. 1991).  Recombinant 

antibodies are valuable tools in biomedical research and therapy.  These are often 

secreted post-translationally via a Sec-dependent pathway because the antibodies are only 

folded correctly when passed through the periplasm.  An appropriate leader peptide is 

added to the N-terminus of the antibody in order for Sec-dependent secretion to occur.  

 The most frequently used leader peptide is PelB, from the pectate lyase protein of 

Erwinia carotovora (LINDEBERG and COLLMER 1992).  It is appealing and convenient to 

use this leader peptide because the secretion signal is cleaved from the recombinant 

protein in the periplasm and is not part of the finished product.  This leader is used in the 

human antibody Tomlinson I+J library developed in Greg Winter’s laboratory at the 

MRC Laboratory of Molecular Biology and the MRC Centre for Protein Engineering 

(Cambridge, UK), as well as in industrial scale production of human proteins with 

medical importance in E. coli (DE WILDT et al. 2000; SLETTA et al. 2004; SLETTA et al. 

2007).  Commonly, the IPTG-inducible lac promoter drives the expression of the PelB-

fused passenger protein. 

 Another frequently used leader peptide is OmpA, from outer membrane protein A 

of E. coli (SMITH et al. 2007).  This protein is a major component of the outer membrane 

and is also secreted in a Sec-dependent fashion.  OmpA was tested alongside PelB in the 

industrial scale production of human proteins, and was used as the secretion signal in 
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phage display constructs (BARBAS et al. 2001; HAIDARIS et al. 2001; SLETTA et al. 2004; 

SLETTA et al. 2007). 

 The E. coli hemolysin system, the prototype of a T1SS, has long been used as a 

delivery system for exogenous proteins (FERNANDEZ et al. 2000; HOLLAND et al. 1990b; 

TZSCHASCHEL et al. 1996).  This system provides genes for the IM channel proteins, 

HlyB and HlyD, and a multiple cloning site to accept the exogenous gene upstream of the 

coding sequence for the C-terminus (approximately the last 50 amino acids or 23 kDa) of 

HlyA.  HlyA is the secreted protein in the hemolysin system. The OM-associated protein, 

TolC, is usually provided in trans in commonly-tested Gram-negative species (SPRENG et 

al. 1999).  E. coli has been engineered to secrete at least 400 proteins, from both 

prokaryotic and eukaryotic origins, using this pathway and there appears to be no 

limitations on the size or origin of the secreted protein (GENTSCHEV et al. 2002). 

 A Shiga-like toxin was successfully secreted from an attenuated Salmonella 

typhimurium vaccine strain using the E. coli hemolysin system (TZSCHASCHEL et al. 

1996).  In this example, one plasmid provides the hlyB and hlyD genes as well as the 

cloning site for fusion to the 3’-end of hlyA (‘hlyA).  The IPTG-inducible lac promoter 

drives expression of these genes.  The authors note that this plasmid is replicated using a 

low-copy number ori to eliminate the degradation of the secreted protein as well as to 

maintain the stability of the recombinant S. typhimurium clones, but they make no 

attempt to prove that the recombinant toxin is functional. 

 A two-plasmid hemolysin system was shown to work efficiently in E. coli in the 

secretion of functional single-chain antibodies (scFvs) (FERNANDEZ et al. 2000; 

TZSCHASCHEL et al. 1996).  One plasmid carries hlyB and hlyD and the second carries a 
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multiple cloning site and the ‘hlyA gene sequence.  The IPTG-inducible lac promoter is 

also used in these constructs.  The reasons the authors give for using the hemolysin 

system for production of scFvs over the more widely used N-terminal signal peptide and 

Sec-dependent secretion methods are the possible toxic accumulation of scFvs in the 

periplasmic space leading to the lysis of cells, as well as clogging of the Sec pathway or 

greater outer membrane permeability.  The hemolysin system seems like an ideal 

alternative to these problems because the product is exported directly to the cell exterior 

without a periplasmic intermediate.  Fernandez et al. (2000) compared the activity of 

scFvs with affinity for transmissible gastroenteritis virus that were secreted by either the 

hemolysin system or exported in a Sec-dependent fashion in an ELISA assay.  The 

authors found that the scFvs had the same binding activity.  It is important to note that 

active proteins were secreted using the hemolysin system even though there was no stop 

in the periplasm, where it is thought that most proteins are correctly folded. 

 The E. coli flagellar export pathway, which closely resembles a prototypical 

T3SS, has been shown to secrete heterologous proteins in E. coli (MAJANDER et al. 2005).  

The E. coli flagellar apparatus is a multisubunit protein complex that spans both the OM 

and IM of the Gram-negative bacterium with a whip-like flagellum that extends from the 

surface of the cell that can propel the cell through its aqueous environment.  The exterior 

flagellum is made of 14 different proteins and can contain up to 20,000 subunits of the 

protein FliC (flagellin) (CHEVANCE and HUGHES 2008).  In order to evade host defense 

mechanisms, FliC proteins can display antigenic variation by altering the sequence of its 

central domain, which is exposed on the filament surface.  The N-terminal and C-
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terminal regions are highly conserved so that the FliC monomers can recognize one 

another and polymerize to form the flagellum (YONEKURA et al. 2003). 

 In the case of E. coli FliC secretion, two different signals have been characterized. 

The N-terminus (the first 183 amino acids of the protein) of FliC and the fliC 5’ UTR 

were characterized as secretion signals and were used for the secretion of several 

different heterologous proteins in E. coli (MAJANDER et al. 2005).  The latter is an 

important finding because the resultant secreted product is not fused to an endogenous 

protein.   

 Majander et al. (2005) observed the secretion of three different heterologous 

proteins (ranging in size from 115-434 residues) under the control of the fliC 5’UTR as 

well as an N-terminal FliC fusion with the eukaryotic green fluorescent protein (238 

residues).  These proteins were secreted in a ΔfliC and ΔfliD (encodes FliD, the flagellum 

capping protein) E. coli strain.  The yield of secreted product was reported at the mg/L 

level, which greatly exceeds yields seen with the hemolysin system (μg/L) (CHOI and LEE 

2004). 

 The SRP (signal recognition pathway) mode of secretion in Gram-negative 

bacteria has not been tested extensively for secretion of heterologous proteins.  In this 

pathway, proteins are secreted co-translationally to the IM and then transported across the 

IM to the periplasmic space (VALENT 2001).  The N-terminal leader peptides from three 

different proteins secreted by the SRP pathway (DsbA (periplasmic protein disulphide 

isomerase I), TorT (regulatory protein of TorCAD), and TolB (a periplasmic protein 

involved in the TonB-independent uptake of group A colicins) were fused to the coding 
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sequence for a soluble antibody fragment and shown to successfully secrete an active 

antibody (THIE et al. 2008). 

 Finally, it is the common perception that laboratory bacterial strains, like E. coli 

K12, do not secrete proteins when grown under routine conditions.  However, it was 

reported that E. coli K12 secretes a small (10.8 kDa) protein called YebF when grown in 

the laboratory (ZHANG et al. 2006).  The function of YebF and the pathway that secretes 

it were unknown upon its discovery in the growth medium, nonetheless the authors saw 

this protein as a potential tool for secretion of exogenous proteins.  N-terminal amino 

acid sequence analysis revealed a 21 residue Sec leader sequence and cellular 

fractionation revealed localization of YebF in the periplasm, which altogether suggest a 

Sec-dependent secretion pathway (ZHANG et al. 2006).   

 Three different passenger proteins were fused to the C-terminal end of YebF and 

were successfully secreted in an active state.  The passengers:  human interleukin-2 (15 

kDa), α-amylase (48 kDa), and alkaline phosphatase (94 kDa), differ in their sizes and 

hydrophobicities, which suggests that YebF-coupled secretion is adaptable to different 

proteins (ZHANG et al. 2006).  Recently, Athena Environmental Science, Inc. (Baltimore, 

MD) patented a YebF secretion kit for use in E. coli indicating the potentially broad 

application of this protein in the production of heterologous proteins 

(http://www.athenaes.com).   
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CHAPTER 2 
 
 
IDENTIFYING AND APPLYING NATIVE SECRETED 
PROTEINS FOR USE IN SECRETION IN PANTOEA 
AGGLOMERANS 
 
 
ABSTRACT 

 Pantoea agglomerans is a candidate for the paratransgenic control of malaria 

because it is routinely isolated from the gut of the anopheline mosquito that transmits this 

disease.  Malaria is a serious and often fatal disease that affects millions of people around 

the world.  The genetic manipulation of bacteria to fight diseases is a reasonable 

alternative to drug therapies and the genetic modification of eukaryotic disease carriers.  

One caveat of this approach is the need to secrete the anti-Plasmodium effector gene 

product from the bacterial cell to the mosquito gut environment.  It was hypothesized that 

the coding sequence of a native secreted protein could serve as the secretion signal.  A 

search for native secreted proteins was performed using MALDI-TOF to identify 2D-

PAGE spots isolated from spent growth medium.  The corresponding genes were isolated 

using a genome walking PCR technique and identified based on homology to sequenced 

bacterial species.  The best candidate from this search was FliC/Flagellin, which is the 

major component of the bacterial flagellum and is known to be secreted from the cell in a 

Type III secretion system-like manner.  Constructs were made using the P. agglomerans 

fliC 5’UTR and the fliC 5’UTR and complete fliC ORF each as the upstream signal for 
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secretion of a test protein (an anti-BSA single-chain antibody).  These constructs were 

based on previously published results showing the fliC 5’ UTR and the N-terminus of 

FliC function as sufficient signals for heterologous secretion in E. coli.  Attempts to 

delete the endogenous fliC gene from the P. agglomerans chromosome using Lambda 

Red recombination failed multiple times, which could suggest that this deletion is fatal to 

the cell or that the recombination system is non-functional in this species.  Overall, these 

constructs were not successful in the expression or secretion of the test protein.  Reasons 

may include the presence of the endogenous fliC gene, or it may simply be that the 

flagellar export system in P. agglomerans is not suitable for the secretion of exogenous 

proteins. 

INTRODUCTION 

 The number of annual deaths as a result of the anopheline mosquito-transmitted 

disease malaria is estimated at 1-3 million people.  This is more than the number of 

deaths as a result of HIV and tuberculosis combined (BREMAN et al. 2001).  The majority 

of these cases are young African children.  Preventive measures have changed little over 

the years: the main strategies are still vector eradication through the use of insecticides 

and drugs to combat the parasite in infected people.  Both the mosquitoes and the 

Plasmodium parasite have evolved resistances to the chemicals, clearly showing that 

current strategies are not completely successful (LE BRAS and DURAND 2003).  New 

approaches to limiting the spread of this disease are desperately needed. 

 An alternate approach is to render the mosquito an ineffective vector by 

genetically engineering it to express anti-Plasmodium proteins.  Several effector proteins 

that inhibit Plasmodium development in the mosquito have already been characterized 
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(ITO et al. 2002; MOREIRA et al. 2002b; MOREIRA et al. 2004; YOSHIDA et al. 2007).  

Translating these effectors into practical control reagents, however, has been challenging.  

Anti-Plasmodium transgenic mosquitoes have been engineered and shown to hinder 

Plasmodium development, but it was a costly endeavor and the tools to drive such genes 

into entire wild populations are lacking (GHOSH et al. 2001; MOREIRA et al. 2004; 

YOSHIDA et al. 2001; YOSHIDA et al. 2007).   

 To circumvent the hurdles involved with engineering an insect to express anti-

Plasmodium effector proteins, a bacterial symbiont of mosquitoes could be engineered to 

manufacture the proteins.  A prime candidate would be a bacterium well adapted to the 

mosquito gut environment, where the gametocyte and ookinete developmental stages of 

the Plasmodium life cycle take place.  These forms of Plasmodium are key targets for 

inhibition of development.  The transgenic bacterium could be introduced into a mosquito 

population and express the anti-Plasmodium genes while circulating in the gut 

environment.  

 This paratransgenic approach, engineering a bacterial symbiont to produce 

antagonistic proteins, could prove to be an efficient tool against the spread of malaria to 

humans (RIEHLE and JACOBS-LORENA 2005).  This approach has already been shown to 

be successful in a laboratory setting in reducing the spread of Chagas disease.  This 

disease is caused by Trypanosoma cruzi, which is vectored by Rhodnius prolixus 

(“kissing bugs”) in parts of Central and South America.  Because of the copraphagic 

(eating of feces) behavior of these insects, researchers have been able to introduce 

genetically modified bacteria to the insects in a paste that mimics adult R. prolixus fecal 

matter (BEARD et al. 2002; BEARD et al. 2001). 
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 In this study, the Gram-negative γ-proteobacterium P. agglomerans, a species 

routinely found in anopheline mosquitoes, is a paratransgenic candidate (RIEHLE and 

JACOBS-LORENA 2005; RIEHLE et al. 2007; STRAIF et al. 1998).  P. agglomerans is 

established in the gut microbiota of tephritid flies and locusts and observations suggest a 

“moderately mutualistic” relationship (DILLON et al. 2000; DILLON et al. 2002; PELOQUIN 

et al. 2002).  P. agglomerans has been isolated from diverse environments from plant 

material to soil to food preparations, and is not a pathogen in healthy humans (LOIRET et 

al. 2004; SCHEIRLINCK et al. 2008).  Currently there is no completed genome sequence 

for this bacterium, but it is related to E. coli and Salmonella spp. and can be cultured and 

manipulated in the laboratory using common molecular biology cloning techniques. 

 In order to properly target Plasmodium development in the mosquito gut, the 

effector protein must be secreted from the bacterial cell.  I hypothesized that a native  

P. agglomerans secreted protein could act as the secretion signal in an anti-Plasmodium 

construct.  The proteins secreted by P. agglomerans were precipitated from spent growth 

medium by methods similar to those previously published and identified using 2D-PAGE 

and MALDI-TOF analysis (CHITLARU et al. 2006; KAZEMI-POUR et al. 2004).  Because 

of the lack of genome sequence data for P. agglomerans, analysis of the protein profile in 

spent growth medium and the subsequent isolation of the corresponding genes was 

dependent upon sequence homology to related species whose genomic information is 

present in the GenBank database.  A genome walking PCR using degenerate primers was 

utilized to isolate the secreted protein genes from the P. agglomerans chromosome (GUO 

and XIONG 2006). 
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 In this study, the best P. agglomerans secretion candidate (fliC which encodes 

FliC/Flagellin, the main component of the bacterial flagellum) was cloned into vectors 

along with the gene for a test protein (a singe chain antibody (scFv) with anti-BSA 

activity).  Because it was previously reported that the 5’ UTR (untranslated region) of  

E. coli fliC was a sufficient signal for secretion, the P. agglomerans fliC 5’ UTR was also 

included in some of the test constructs (MAJANDER et al. 2005).   

 P. agglomerans was unable to express or secrete the anti-BSA scFv test protein 

under the control of the fliC 5’UTR or as a fliC-scFv fusion.  It should be noted that these 

experiments were done in the presence of the endogenous fliC gene because attempts to 

delete endogenous fliC from the P. agglomerans chromosome were unsuccessful, which 

may indicate that this gene is necessary for viability, or that the Lambda Red 

recombination machinery used to delete this gene was nonfunctional in Pantoea species 

(KATASHKINA et al. 2009)  In conclusion, fliC was not able to be used as a secretion 

signal and now further attempts are being made to find an appropriate secretion signal for 

use in this paratransgenic candidate. 

MATERIALS AND METHODS 

Media and Antibiotics E. coli and P. agglomerans were grown in Luria-Bertani broth or 

agar (LB).  S. cerevisiae cells were grown on YPD agar plates (20 g tryptone, 10 g yeast 

extract, 20 g dextrose, 20 g agar per liter) or Minimal Drop-Out Media excluding uracil 

(2% glucose) when selecting for yeast recombinants (Sigma Y1501).  Final 

concentrations of antibiotics (Sigma or Fisher Scientific) were as follows:  ampicillin 

(Ap), 150 µg/ml; apramycin (Apr) 80 µg/ml; chloramphenicol (Cam), 30 µg/ml; 

gentamycin (Gent), 30 µg/ml; streptomycin sulfate (Str), 100 µg/ml; tetracycline (Tc), 15 
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µg/ml.  Antibiotic stocks were filter-sterilized through a 0.2 µM filter syringe and stored 

at -20°C. 

Storage of bacterial cells, DNA stocks.  All bacterial cell stocks were stored in LB broth 

+7% DMSO in 1 ml screw-cap tubes at -80°C.  All DNA stocks (plasmid or genomic) 

were kept on ice during usage and stored at -20°C when not in use. 

Growth of cells in preparation for bulk protein precipitation.  A freshly streaked  

P. agglomerans colony was used to inoculate 50 ml of LB broth and was grown 

overnight (16h) at 250 rpm, 30°C.  Thirty milliliters of this culture was used to inoculate 

3 L of LB and was grown to late-log phase (approximately 8 h, see Appendix 2 for 

growth curve of wild-type P. agglomerans).  The cells were removed by two sequential 

centrifugation steps at 10,000 x g, 4°C for 15 min.  The spent medium was carefully 

transferred to a clean flask and trichloroacetic acid was added to a final concentration of 

10%.  The flask was set on a slow rocking platform and incubated overnight at 4°C.  

After centrifugation (12,000 rpm, 4°C, 30 min), the protein precipitate was washed with 

copious amounts of very cold 95% ethanol and allowed to dry for several minutes on the 

benchtop.  The precipitate was collected directly in approximately 200 μl of isoelectric 

focusing buffer (8M urea, 2% CHAPS, 50 mM dithiothreitol, 0.2% (w/v) Bio-Lyte® 3/10 

ampholytes, trace bromophenol blue (BioRad)) using vigorous pipetting and stored at -

20°C (CHITLARU et al. 2006). 

Isoelectric focusing and 2D-PAGE.  Isoelectric focusing was performed using the 

BioRad Protean® IEF cell.  Briefly, 11 cm pH 3-10 strips were passively rehydrated with 

185 μl of precipitated protein (volume = full capacity of the strip) overnight at room 

temperature.  The focusing program contained three steps:  250 V for 20 min with a 
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linear ramp; 8,000 V for 2.5 h with a linear ramp; and finally 8,000 V for 20,000 V-hr 

with a rapid ramp.  Total running time was approximately 5.3 hr or 30,000 V-hr.  The 

strip was equilibrated for 2D-PAGE with a 10 min incubation in 6 M urea, 2% SDS, 

0.375 M Tris-HCl (pH 8.8), 20% glycerol, 2% dithiothreitol and a 10 min incubation in  

6 M urea, 2% SDS, 0.375 M Tris-HCl (pH 8.8), 20% glycerol and then placed across the 

top of a 10% acrylamide Tris-Glycine gel and subjected to 200 V for approximately 2 h.  

If IEF strips were not used immediately for 2D-PAGE they were stored at -80°C.   

MALDI-TOF analysis.  2D-PAGE gels were visualized by silver stain (Pierce 24612, 

SilverSNAP Stain Kit II).  Spots were cored from the gel using sterile wide-bore pipette 

tips and stored in deionized H2O at 4°C until they could be shipped overnight to the 

MALDI-TOF facility.  In order to increase the amount of protein for each sample to be 

analyzed, parallel gels were run and identical spots were combined into one tube 

(Appendix 3).  MALDI-TOF analysis was done at the Taplin MS Facility at Harvard 

Medical School (http://gygi.med.harvard.edu/taplin/).  This facility performs in-gel 

trypsin digestion of the gel spots, microcapillary LC/MS/MS analysis, and searching of 

the NCBI Enterobacteriaceae protein database.  When results were obtained from a 

sample they were reported in a web-based format that includes the identity of the spot 

along with the sequence of the peptide fragments and where they align to a known 

protein in the NCBI Enterobacteriaceae protein database (Figure 2.3). 

Genome walking PCR.  Degenerate PCR primers based on the potential codons for the 

peptide fragments identified with MALDI-TOF were used to amplify a small portion of 

the corresponding gene from the P. agglomerans chromosome.  The PCR products were 

cloned using TOPO technology (Invitrogen), sequenced (Big Dye, ABI 3101), and 
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additional primers were designed for a nested “genome walking” PCR as described in 

Guo and Xiong (2006).  A gene-specific primer was paired with each of four arbitrary 

primers in a PCR reaction to acquire flanking sequences (Table 2.3).  The arbitrary 

primers, designed by Guo and Xiang (2006) were designed to have enough degeneracy in 

them as to allow the primer to anneal somewhere in the flanking DNA of the sequence of 

interest.  The initial PCR reaction was carried out in a 100 μl volume containing 20 ng 

chromosomal DNA as template, 1 μM each of the specific primer and arbitrary primer, 

250 μM dNTPs, Taq polymerase, and 1X buffer (10 mM Tris-HCl (pH 8.8), 50 mM KCl, 

1.5 mM MgCl2).  The cycling conditions were comprised of two stages:  In stage 1, an 

initial 95°C for 3 min was followed by denaturation at 95°C for 45 sec, annealing at a 

range from 60°C to 47.5°C for 45 sec with a stepwise decreasing gradient of 0.5°C per 

cycle, and elongation at 72°C for 2 min for 25 cycles.  Stage 2 consisted of 95°C for 45 

sec, 50°C for 45 sec, and 72°C for 2 min for 35 cycles.  One microliter from the first PCR 

was used in a second 50 μl volume reaction with 1 μM of a specific nested primer and of 

the same arbitrary primer.  Cycling conditions were 95°C for 3 min followed by 35 

cycles of 95°C for 45 min, 50°C for 45 sec, and 72°C for 2 min and a final 7 min 

elongation step at 72°C.  PCR products were resolved on a 1% agarose gel, gel-purified 

(Zymoclean), and cloned into pCR®2.1-TOPO using the TOPO system (Invitrogen).  

Approximately 300 ng of the recombinant TOPO plasmid and 0.1 μg of the M13 Forward 

(-20) or M13 Reverse primer were used in a fluorescent dye-labeled dideoxynucleotide 

sequencing reaction (BigDye, ABI 3101).  This process was repeated, generating new 

specific primers as more gene sequence was identified until the characterized sequence 
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encompassed the entire ORF and intergenic sequence up to and including the neighboring 

genes. 

“Recombineering” to delete the P. agglomerans fliC gene from the chromosome.  In 

order to remove the fliC ORF, 60-mer oligos (Ent deltaFliC Left and Ent deltaFliC Right, 

Table 2.3) with 40 bp of homology to the DNA sequence directly flanking the ORF were 

designed to amplify the KanR cassette from pKD4 (DATSENKO and WANNER 2000).  

After amplification of the cassette using Pfx polymerase (Invitrogen), residual plasmid 

template was digested by adding DpnI directly to the PCR reaction and incubating at 

37°C for 1 h.  The cassette was agarose gel-purified (Zymoclean) and eluted in 20 μl of 

deionized H2O. 

 P. agglomerans was electro-transformed with either 10 ng of pIJ790, pSIM5, 

pSIM7, or pSIM9 (Table 2.2) at 1.8 kV in a 0.1 mm cuvette.  Electro-transformed cells 

were grown in a shaking incubator (250 rpm) for 1 h at 30°C in 1 ml of LB broth and 

then plated on selective LB agar and incubated overnight at 30°C.  Before using these 

cells in a recombineering experiment, PCR was performed to ensure presence of the 

plasmid (a portion of the cat gene was amplified from the plasmid).  Fifty milliliter 

cultures of P. agglomerans cells expressing a Lambda Red plasmid were grown at 30°C 

in LB broth containing selective antibiotics and 10 mM L-arabinose until an OD600 of 0.6 

was reached.  The cells were removed from the media and washed twice in 50 ml of very 

cold 10% glycerol.  The remaining pellet of cells was resuspended in the drop of 

remaining 10% glycerol and 50 μl was transferred to a 0.1 mm cuvette and transformed 

at 1.8 kV with 100-300 ng of KanR cassette.  After incubating the cells in a shaking 
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incubator (250 rpm) for 1 h at 30°C, different amounts were plated on LB agar plates 

containing kanamycin and incubated 24-48 h at 30°C. 

 P. agglomerans that grew on LB Kan plates were picked and assessed for 

successful fliC deletion.  This was done using the different combinations of fliC and KanR 

primers that are listed in Table 2.3 and shown in Figure 2.7. 

Plasmid construction.  The plasmids in this study were constructed using a yeast gap 

repair method (SHANKS et al. 2006).  Briefly, the vector to be modified was digested with 

restriction enzymes and treated with calf intestinal phosphatase according to 

manufacturer’s directions (New England Biolabs).  DNA inserts were amplified with 

oligos that contained 40 bp of homology to the digested vector (up to 2000 bases from the 

digestion site).  Agarose gel-purified vector (~20-200 ng) and inserts (50-500 ng), along 

with herring sperm DNA (100 μg) were co-transformed into 8-10 large colonies of  

S. cerevisiae INVSc-1 (Invitrogen) cells, harvested directly from a YPD plate and 

resuspended in 500 μl of PLATE solution (50% PEG, 100 mM LiAc, 10 mM Tris, pH 

7.4, 1 mM EDTA).  The cells were incubated on the benchtop for ~2 d.  After heat shock 

at 42°C for 30 min, the yeast cells were resuspended in 150 μl of deionized H2O and 

plated on uracil drop-out medium (6.7 g/L yeast nitrogen base minus amino acids, 1.92 

g/L yeast synthetic drop-out media supplement without uracil, 2% glucose (w/v) and 20 

g/L bacteriological agar) and incubated at 30°C for up to 2 d.  Total yeast DNA was 

purified from the colonies using the “Yeast Smash and Grab DNA Miniprep” protocol 

(ROSE et al. 1990).  Fifty nanograms of total yeast DNA was transformed into an 

appropriate strain of E. coli and bacterial clones were verified for the resultant plasmid by 

restriction enzyme digestion and DNA sequencing. 
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 The yeast-replicating vector, pDB14, was built as follows.  pACYC184 was 

digested with XmnI for 1.5 h followed by treatment with calf intestinal phosphatase for 1 

h at 37°C.  The 2 μm ori and URA3 gene from the yeast cloning vector pMQ64 were 

amplified as a single PCR product with 60-mer oligos that contained 40 bp of homology 

to the site of insertion in pACYC184 (CHANG and COHEN 1978; SHANKS et al. 2006). 

 To make pDB19, pDB14 was digested with HindIII and EagI and the inserts (fliC 

5’UTR from P. agglomerans and the anti-BSA scFv ORF from pIT2-scFv) were 

amplified with 60-mer oligos that contained 40 bp of homology that targeted the 

amplicons to recombine with pDB14 near the restriction sites.  pDB19 allows for 

expression of the anti-BSA scFv under the control of the P. agglomerans fliC promoter. 

 Similarly, pDB20 was made using pDB14/HindIII-EagI as the vector and the fliC 

5’UTR and fliC ORF (as one amplicon from P. agglomerans genomic DNA), and the 

anti-BSA scFv gene from pIT2-scFv as the inserts.  pDB20 allows for expression of the 

fusion protein FliC-anti-BSA scFv under the control of the P. agglomerans fliC promoter. 

 pDB22 was made by digesting pDB19 within the fliC 5’ UTR using EcoNI and 

replacing the UTR with  the Ptac promoter from pMALTM-cRI (New England Biolabs) 

using yeast gap repair.  With this plasmid, the expression of anti-BSA scFv was under the 

control of the Ptac promoter and acted as a negative control for protein secretion. 

 pDB24 was made by digesting pDB14 with HindIII-EagI and recombining in the 

P. agglomerans fliC 5’UTR with an AscI site at the 3’ end, and the 6His and myc 

epitopes and stop codon from pIT2-scFv.  With pDB24, the unique AscI site allows for 

the cloning of genes downstream of the P. agglomerans fliC promoter.  Then, pDB27 

was constructed by digesting pDB24 with AscI and recombining in the malE and scFv 
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ORFs.  pDB27 allows for the expression of the fusion protein MalE-anti-BSA scFv under 

the control of the P. agglomerans fliC promoter.   

 Finally, the fliC 5’UTR in pDB27 was replaced by digesting the vector with 

EcoNI and recombining the Ptac promoter from pMALTM-cRI to make pDB28.  With 

pDB28, expression of the MalE-anti-BSA scFv fusion protein under the control of the 

Ptac promoter serves as a negative control for secretion. 

 Plasmid maps (Figure 2.6) were made using the free program XPlasMap available 

from http://www.iayork.com/XPlasMap/. 

Protein preparations and Western Blot analysis on P. agglomerans pellet and spent 

growth medium samples.  P. agglomerans was electro-transformed with 10 ng of a fliC 

secretion construct (1.8 kV, 0.1 mm cuvette) and incubated in a shaking incubator for 1 h 

at 30°C before plating on selective LB agar and incubating overnight at 30°C.  A fresh 

colony was used to inoculate a 5 ml overnight culture in selective LB broth.  Pellet and 

spent growth medium samples were harvested from the overnight cultures and separated 

using sodium dodecyl sulfate-polyacrylamide electrophoresis (SDS-PAGE).   

Specifically, 100 μl of overnight culture were centrifuged to pellet the cells 

(10,000 rpm, 30 sec).  Seventy-five microliters of the supernatant was transferred to a 

new tube containing 25 μl of 3X Laemmli sample buffer (BioRad 161-0737).  The 

remaining pellet was resuspended in 100 μl of 3X Laemmli sample buffer and all of the 

samples were boiled for 10 min before resolving on a 4% stacking and 10% separating 

acrylamide gel.  Proteins were transferred to polyvinylidene difluoride membrane 

(PVDF) in a standard Western Blot transfer apparatus (BioRad) with 10% methanol in 

the transfer buffer (95V, 350 mA, 75 min).  The membranes were blocked in Tris-
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buffered saline (1X TBS, 10 mM Tris, 150 mM NaCl, pH 7.4) containing 1% (w/v) 

bovine serum albumin (BSA) for 3 h at room temperature.  For immunodetection of myc-

tagged proteins, membranes were incubated overnight at 4°C with α-myc Ab (1 μg/10 ml 

or 1:10,000; Invitrogen 46-0603) diluted in the blocking buffer.  After four 15 min 

washings in 1X TBS/0.05% Tween-20, the membranes were incubated in stabilized goat 

anti-mouse HRP-conjugated secondary antibody (0.01 μg/100 ml or 1:100,000; Pierce 

1858413) for 1 h at room temperature.  The washing steps were repeated and the bound 

antibody-HRP conjugate was detected using a chemiluminescent reaction (SuperSignal 

West Femto Maximum Sensitivity Substrate; Pierce 34095) and autoradiographic film. 

Nickel column purification of 6XHis-tagged proteins from P. agglomerans cell 

lysates and clarified overnight supernatants.  To concentrate any 6XHis-tagged anti-

BSA antibodies present in the P. agglomerans cells or overnight supernatants, a small-

scale nickel column purification was performed using a kit from Pierce (B-PER® 6XHis 

Fusion Protein Spin Purification Kit 78300) and the eluates were assayed by either 

Western blot or ELISA as described. 

Enyzyme-linked immunosorbent assays (ELISAs) using spent growth medium from 

induced E. coli or P. agglomerans.  The activity of the secreted anti-BSA scFv was 

tested using an ELISA assay.  For each sample analyzed, duplicate MaxiSorp wells 

(Nunc) were coated with 100 μl of bovine serum albumin (2 mg/ml) along with two 

negative control wells, one coated with 100 μl of 1X PBS and one empty well.  The plate 

was stored at 4°C overnight (approx. 12 h).  Each well was washed three times with 200 

μl of 1X PBS before blocking for 2 h at room temperature with 2% dry milk in 1X PBS.  

The wells were washed three times with 200 μl of 1X PBS and 100 μl of clarified spent 
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growth medium from an overnight culture was added to each well and left to incubate for 

1 h at room temperature.  The wells were then washed eight times with 200 μl of 1X 

PBS/0.1% Tween-20.  A α-myc-HRP antibody diluted in blocking reagent (1:2000, 

Roche 11-814-15-0001) was added to the wells and left to incubate for 1 h at room 

temperature.  A second set of eight washes was performed before the α-myc-HRP 

antibody was detected using 50 μl/well of the chromogenic substrate 1-Step Ultra TMB 

(3,3’ 5,5’-tetramethyl benzidine, Pierce 34028).  When a sufficient blue-colored signal 

was reached (anywhere from 10-45 min), the reaction was stopped with the addition of 

50 μl of 2 M H2SO4 and the absorbance was read at 450 nm with the background 

subtracted at 650 nm in a BioRad 3550 plate reader. 

RESULTS 

2D-PAGE and MALDI-TOF analysis of P. agglomerans spent growth medium. 

 Large-scale cultures (3 L) of P. agglomerans were grown to late-log phase (OD600 

~ 0.8) and the cells were removed by centrifugation.  Any secreted proteins present in the 

medium at that time were precipitated using trichloroacetic acid and samples were 

resolved by 2D-PAGE and visualized using silver stain.  Figure 2.1 shows a 

representative silver-stained acrylamide gel with the secreted proteins present in a late-

log culture.  In order to have enough material per spot for MALDI-TOF, parallel gels 

were run and identical spots were combined to increase the amount of protein (Appendix 

3).  In total, sixteen spots were abundant enough for subsequent analysis. 

 The identity of the highlighted spots (Figure 2.1) was determined by MALDI-

TOF analysis and peptide sequence comparison to E. coli and other related species whose 

peptide sequence data was present in the GenBank Enterobacteriaceae protein database.  
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Table 2.4 shows the match for the sixteen spots tested.  Six of the spots did not have a 

significant match to any sequences present in the database.  The remaining spots that 

were identified matched to E. coli proteins, such as OmpA (outer membrane protein), 

periplasmic proteins, the intracellular protein Ssb (single-stranded DNA-binding protein), 

and various intracellular enzymes.  FliC/Flagellin was chosen as the prime secreted 

protein gene candidate.  Figures 2.2 and 2.3 show the FliC/Flagellin MALDI-TOF results 

from the Taplin Biological Mass Spec Facility.  FlgL and Ssb were also chosen as 

secondary candidates and the information regarding them is located in Appendix 1. 

Isolating secreted protein genes based on peptide sequence. 

 The fliC gene was isolated from the P. agglomerans chromosome using a genome 

walking PCR technique (GUO and XIONG 2006).  A schematic explaining this technique 

is given in Figure 2.5.  Figure 2.4A shows the P. agglomerans FliC peptide fragments 

that were identified and their relative placement in the E. coli FliC sequence (shown in 

green), as well as the site of degenerate PCR primer design (red arrows).  The primers 

were based on Gram-negative codon usage tables and allowed for as much degeneracy as 

possible to ensure a successful amplification of the corresponding DNA sequence 

(SAMBROOK and RUSSELL 2001).  The sequence of these primers and the series of 

universal “walking primers” are given in Table 2.3.  PCR products ranging in size from 

200-600 bp were cloned using TOPO technology (Invitrogen).  The DNA sequences from 

these PCR products were used to generate a P. agglomerans fliC contig from which 

additional specific primers could be designed and sequential rounds of genome walking 

PCR could be performed.  This procedure was repeated until the entire P. agglomerans 

fliC gene and the flanking DNA up to and including some of the neighboring genes was 
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isolated and sequenced (Figure 2.4B).  The P. agglomerans fliC gene is 1,287 bp long 

and is neighbored by the fliD and fliB genes.  There are 336 bases of intergenic DNA 

between the 5’ of fliC and the 5’ of the divergently transcribed fliD.  The intergenic 

region between the 3’ of fliC and the 5’ of fliB is 160 bp long.  The sequence was 

deposited as GenBank accession number GQ150763. 

Attempts to delete the P. agglomerans fliC gene. 

 The fliC gene was unable to be deleted from the P. agglomerans chromosome.  

Trials were performed using four different Lambda Red recombination plasmids in the 

hope that one of the host range origins of replication available would be compatible with 

this species.  When pIJ790 was the source of the Lambda Red genes (exo, bet, and gam), 

no P. agglomerans/pIJ790 colonies grew post-recombination with the KanR cassette.  

This was attempted twice, with the second trial using a higher concentration of cassette.  

Again, no colonies grew after this second attempt. 

 When the alternate Lambda Red plasmid pSIM5 or pSIM7 was used, there were 

also no colonies recovered.  When pSIM9 was used, which has 5-8 copies per cell and a 

broad host range ori, 3 colonies were recovered.  Each of these colonies were tested for 

the deletion of fliC using primers that amplify a portion of fliC, a portion of the KanR 

gene, and a fusion between the 5’ UTR of fliC and the KanR gene (Figure 2.7).  These 

results unambiguously show that the cassette recombined into another region of the 

chromosome because a portion of the fliC gene was amplified along with a portion of the 

KanR gene.  No 5’ UTR-KanR product was seen in any of the colonies tested.  This 

inability to recover P. agglomerans after recombineering is similar to the results seen in 
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Pantoea ananatis, where the Lambda Red system was shown to be toxic due to the 

simultaneous expression of the exo, bet, and gam genes (KATASHKINA et al. 2009) 

Testing for fliC-mediated secretion of a test protein in P. agglomerans. 

 P. agglomerans transformed with the various fliC secretion constructs were 

grown for approximately 16 h in LB broth containing antibiotics and tested for the 

presence of the scFv or MalE-scFv or FliC-scFv fusions, depending on the construct, in 

the bacterial pellet and/or clarified overnight supernatant by Western blot analysis.  

Additionally, clarified overnight supernatant was tested for the presence of an active scFv 

antibody against BSA in an ELISA assay.  Presence of the proteins in the supernatant 

would indicate fliC-mediated secretion. 

 The Western blot results can be summarized as follows.  Cells transformed with 

pDB19 (5’ UTR-scFv), pDB20 (5’ UTR-fliC-scFv), or pDB27 (5’ UTR-malE-scFv) 

(Figure 2.4) failed to show any protein in the pellet or supernatant samples by Western 

blot analysis followed by detection with α-myc antibodies (data not shown, blank film).  

A nickel column 6His purification of overnight cell lysates and clarified overnight 

supernatants followed by Western blot analysis and detection with α-myc antibodies also 

failed to show any proteins present in either sample (data not shown, blank film).  The 

constructs for negative control of secretion, pDB22 (Ptac-scFv) and pDB28 (Ptac-malE-

scFv), also failed to show expression of the proteins in the overnight pellet samples (data 

not shown, blank film). 

DISCUSSION 

 Malaria is a very serious disease that claims the lives of over 1 million people 

every year.  New strategies for curbing the spread of this disease from mosquitoes to 
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humans are desperately needed.  Proposed here is a paratransgenic approach whereby a 

bacterial symbiont of the mosquito vector is engineered to express anti-Plasmodium gene 

products.  To be effective, the product must be secreted from the bacterial cell so steps to 

find a native secreted protein for use as the secretion signal were taken.   

Secreted protein profile of P. agglomerans  

 P. agglomerans secreted sixteen proteins that were detectable with silver stain and 

reproducible across multiple protein preparations and gels while growing to late-log 

phase in standard laboratory culture conditions.  It was recommended by the Taplin 

Biological Mass Spec Facility that identical silver-stained spots be combined across 

multiple gels in order to increase the amount of protein available for MALDI-TOF.  And, 

if a spot (despite its abundance) was not reproduced across more than one gel, it was 

considered an artifact and not chosen for analysis.  Overall, there was not much variety in 

the types of proteins being secreted and in fact, multiple spots matched to the same 

protein in more than one instance.  MALDI-TOF analysis was successful in identifying 

10 of the spots based on their homology to E. coli.  The remaining spots may not have 

been abundant enough for peptide sequencing or perhaps they simply had no significant 

match to any protein sequence in the NCBI Enterobacteriaceae protein database.  These 

proteins may be unique to P. agglomerans and could be identified with additional protein 

identification techniques.  

    In the collection of identified proteins, several matched to intracellular or 

periplasmic proteins.  This could be due to misidentification of the peptide fragments or 

simply due to cell lysis during cell growth, or the collection of cells for protein 

precipitation from the spent growth medium.  Spots A and I (Figure 2.1) matched to a D-
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ribose binding periplasmic precursor and a D-ribose binding periplasmic protein, 

respectively (RbsB).  Noting the similar migration of these spots in the gel, it is fair to 

say that these spots may be isoforms of the same protein.  As its name implies, this 

protein localizes to the periplasm and is involved in sugar transport through the 

membrane and acts as the primary chemoreceptor for chemotaxis (GROARKE et al. 1983). 

 Spots B and K both matched to OmpA (outer membrane protein A). These two 

spots are very close to one another and migrated to the same molecular weight on the gel, 

which would suggest covalent modifications of OmpA resulting in different IEF values.  

OmpA is a major component of the outer membrane of E. coli and has several roles 

including stabilization of mating aggregates in conjugation and acting as a receptor for 

bacteriophages (KOEBNIK 1999). 

 Spot H matched to the intracellular protein Ssb (single-stranded DNA-binding 

protein), which is a DNA helix destabilizing protein that is involved in several DNA 

processes in the cell, including DNA replication, recombination, and repair (MEYER and 

LAINE 1990).  Appendix 1 provides information on the isolation of P. agglomerans ssb, 

but it was decided that this protein was not a viable candidate for secretion of the test 

protein. 

 Spots M and N were given the vague identities of “putative hydrogenase” and 

“short chain dehydrogenase,” respectively.  Although no specific gene names were 

assigned to them, proteins that fall under these categories are normally intracellular and 

are therefore not optimal secreted protein candidates.  Hydrogenases are thought to play a 

role in hydrogen cycling during fermentative growth while certain dehydrogenases 

participate in the metabolism of lipids and steroids (BLATTNER et al. 1997). 
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 Spots C and O matched to FlgL (flagellar hook-associated protein 3) and could be 

an example of degradation products of one protein because while both spots migrated to 

roughly the same isoelectric point, spot O is at a higher molecular weight than spot C.  

FlgL is a protein that is secreted via the flagellar export pathway and is a component of 

the flagellum hook structure (MINAMINO and NAMBA 2004).  As explained elsewhere 

(Appendix 1), P. agglomerans flgL was not able to be amplified and thus could not be 

used as secreted protein candidate. 

 Finally, spot P matched to FliC (Flagellin), which is the main subunit of the 

bacterial flagellum.  FliC monomers polymerize end-to-end to form the flagellum (WONG 

et al. 2007).  FliC is a bona fide secreted protein that is exported by the flagellar export 

pathway and was previously shown in E. coli to mediate secretion of passenger proteins 

(MAJANDER et al. 2005; MINAMINO and NAMBA 2004).  This makes FliC the most 

optimal candidate identified from the P. agglomerans secreted protein profile to mediate 

secretion of the test protein. 

 It has also been observed that the secreted proteins visible on a stained acrylamide 

gel of the Johns Hopkins mosquito isolate of P. agglomerans used in this study are highly 

similar to that of another P. agglomerans strain (“E325” isolated from plant matter) 

grown under the same laboratory conditions (PUSEY 2002).  The similar 2D-PAGE 

profiles infer that secreted protein gene candidates found in the mosquito isolate may 

work in the plant isolate to export proteins from the cell.  The Lampe laboratory is 

currently engineering E325 to produce proteins that will inhibit the spread of Pierce’s 

disease.  Pierce’s disease may also be controlled using paratransgenic methods.  Similar 

to malaria, Pierce’s disease is also an insect-vectored disease.  A pathogenic bacterium 
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called Xylella fastidiosa is transmitted to plant xylem by an insect called the glassy-

winged sharpshooter (Homalodisca vitripennis, formerly H. coagulata) (REDAK et al. 

2004).  This results in rapid damage to the grapevines in wineries in California, so there 

is an effort in place to control the spread of X. fastidiosa in order to save the wine 

industry in this region of the United States (www.piercesdisease.org). 

Isolating the P. agglomerans fliC gene sequence 

 The sequence for P. agglomerans fliC contig (Figure 2.4) was completed after 

several rounds of genome walking PCR.  The upstream gene is fliD and the downstream 

gene is fliB.  This is the same genomic organization as seen in E. coli (BLATTNER et al. 

1997).  In E. coli and Salmonella spp., fliD encodes the flagellum capping protein, FliD.  

This cap serves to prevent the FliC subunits from spilling out of the central channel of the 

flagellum instead of polymerizing at the flagellum distal end (CHEVANCE and HUGHES 

2008; MINAMINO and NAMBA 2004).  The gene fliB encodes a lysine methylase, which is 

involved in post-translational modification of the flagellum in related species (WONG et 

al. 2007).  With the complete P. agglomerans fliC sequence determined, secretion 

constructs were made to test for the secretion of the anti-BSA antibody. 

Failure to delete the endogenous fliC gene from the P. agglomerans chromosome. 

 A P. agglomerans ΔfliC strain was unable to be made despite the use of several 

different Lambda Red recombination plasmids (DATSENKO and WANNER 2000; DATTA et 

al. 2006; GUST et al. 2004).  Amplification of a portion of the cat gene in the Lambda 

Red plasmids (data not shown) confirmed the presence of each of the Lambda Red 

plasmids in P. agglomerans transformants.  With repeated attempts to electro-transform a 

Lambda Red-expressing P. agglomerans with increasing amounts of the Kan cassette and 
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still not obtaining transformants, it was hypothesized that a fliC deletion is fatal to the cell 

and cannot be recovered.   

 A recent paper reports that the simultaneous expression of the exo, bet, and gam 

genes in a related species, Pantoea ananatis, is highly toxic to the cells and they are not 

able to grow into normal-sized colonies on a plate (KATASHKINA et al. 2009).  In order to 

circumvent this problem and to attain the ability to perform rapid genomic modifications 

in this species, the authors screened 106 transformants for mutants that were resistant to 

the effects of the Lambda Red proteins.  These were colonies that grew to a normal size 

on a plate and that then had a similar growth rate in LB broth (before and after induction 

of the Lambda Red genes) as compared to Lambda Red control strains (KATASHKINA et 

al. 2009).  In the experiments reported here, it is uncertain if after induction of the 

Lambda Red genes with arabinose toxic levels of the proteins caused the P. agglomerans 

cells to die because the OD600 reading of the induced cultures continued to increase over 

the 6 h incubation in a fashion similar to a wild-type P. agglomerans culture.  Regardless, 

recombinant colonies were not recovered on LB agar plates post-recombination.  

 If this technique were to be tried again, it may be necessary to screen several 

Lambda Red P. agglomerans colonies for the ability to grow at a normal rate in broth and 

as colonies on a plate after induction of the recombineering genes.  If such a strain is 

recovered and recombineering is still unsuccessful, longer stretches of homology on the 

oligos used to amplify the Kan cassette may increase the chances of recombination 

occurring in the exact desired location.  Alternatively, instead of deleting the entire gene, 

recombination could be performed to insert a point mutation in the fliC coding sequence.  
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FliC would be made by the cell and may not result in the inability of the cell to grow, if 

indeed, that is the result of a complete fliC deletion. 

Testing for the fliC-mediated secretion of a test protein with anti-BSA activity. 

 The Western blot results obtained in this study do not show expression and/or 

secretion of the test protein with any of the constructs tested.  Therefore it cannot be 

concluded that the P. agglomerans fliC sequence is not a sufficient signal for secretion of 

heterologous proteins.  Several constructs were tested using the 5’ UTR region of fliC 

and the test protein, whether by itself, or as a fusion to FliC or MalE (Figure 2.6). In all 

cases, protein expression was not observed let alone protein secretion to the growth 

medium.  P. agglomerans expressing negative control constructs utilizing the Ptac 

promoter to drive expression of the test protein also failed to produce protein.   

Future Directions 

 In order for an anti-Plasmodium strain of P. agglomerans to be effective against 

the development of Plasmodium in the mosquito gut, the effector proteins that it produces 

need to be exported from the cell.  If a native secreted protein cannot be used as the 

signal for secretion, then perhaps a heterologous secretion signal that has been well 

characterized in related species like E. coli can be used in its stead.  Examples include the 

Sec-dependent PelB leader peptide from the Erwinia carotovora pectate lyase gene, and 

the HlyA (hemolysin A) system from pathogenic strains of E. coli, which is secreted from 

the cell by a Sec-independent Type 1 secretion system (HOLLAND et al. 1990a; 

KOSTAKIOTI et al. 2005).  Both of these signals have been used extensively in E. coli to 

produce active secreted protein products (GENTSCHEV et al. 2002; HOLLAND et al. 1990b; 

THIE et al. 2008).  Because P. agglomerans is a close relative to E. coli, these alternate 
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secretion signals should be tested for their efficacy in delivering anti-Plasmodium gene 

products to the cell exterior.
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TABLE 2.1  Strains Used in This Study 

 
Strain Relevant characteristicsa Source or Reference 

E. coli Top10 F- mcrA Δ(mrr-hsdRMS-mcrBC) ø80lacZΔM15 
ΔlacX74 recA1 araD139 Δ (ara-leu)7697 galU 
galK rpsL (StrR) endA1 nupG 

Invitrogen Corporation 

E. coli Top10 F’ Top 10 with F’[lacIq Tn10 (TcR)]  Invitrogen Corporation 
S. cerevisiae INVSc-1 Sc1: MATa his3D1 leu2 trp1-289 ura3-52 

MATα his3D1 leu2 trp1-289 ura3-52 
Invitrogen Corporation 

P. agglomerans Wild-type strain isolated from Johns Hopkins U. 
mosquitoes 

(RIEHLE et al. 2007) 

P. agglomerans/pIJ790 Johns Hopkins isolate carrying λ Red plasmid This study 
P. agglomerans/pSIM5 Johns Hopkins isolate carrying narrow host 

range λ Red plasmid 
This study 

P. agglomerans/pSIM7 Johns Hopkins isolate carrying broad host range 
λ Red plasmid 

This study 

P. agglomerans/pSIM9 Johns Hopkins isolate carrying broad host range 
λ Red plasmid 

This study 

E. coli BW25113 lacIq rrnB ΔlacZ hsdR514 ΔaraBAD ΔrhaBAD (DATSENKO and WANNER 
2000) 

    a StrR, streptomycin resistance; TcR, tetracycline resistance 
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TABLE 2.2  Plasmids Used in This Study 

 
Plasmid Relevant Characteristicsa Source or Reference 

pACYC184 CamR, TcR; cloning vector with p15A low copy ori (CHANG and COHEN 
1978) 

pMQ64 GentR; yeast recombination vector and source of yeast ori 
(2μm) and yeast URA3 gene 

(SHANKS et al. 2006) 
 

pMALTM-c2X ApR; source of malE (maltose binding protein) gene New England Biolabs 
pMALTM-cRI ApR; source of Ptac New England Biolabs 
pIT2-scFv ApR; source of anti BSA scFv with 6His and myc epitopes (WINTER et al. 1994) 
pDB14 CamR; pACYC184/2 μm ori and URA3 gene This study 
pDB19 CamR; pDB14/P. agg fliC 5’UTR-anti BSA scFv This study 
pDB20 CamR; pDB14/P. agg fliC 5’UTR-fliC ORF-anti BSA scFv This study 
pDB22 CamR; pDB14/ Ptac-anti BSA scFv This study 
pDB24 CamR; pDB14/P. agg fliC 5’UTR-AscI-6His-myc-STOP This study 
pDB27 CamR; pDB24/P. agg fliC 5’UTR-malE-anti BSA scFv This study 
pDB28 CamR; pDB14/Ptac-malE-anti-BSA scFv This study 
pIJ790 CamR; source of λ Red recombination genes (GUST et al. 2004) 
pIJ799 AprR; source of oriT-aac(3)IV recombination cassette (GUST et al. 2004) 
pKD4 KanR; source of FRT-aphII-FRT recombination cassette (DATSENKO and 

WANNER 2000) 
pSIM5 CamR; low copy pSC101 ori, narrow host range λ Red 

plasmid 
(DATTA et al. 2006) 

pSIM7 CamR; broad host range pBBR1 ori, λ Red plasmid (DATTA et al. 2006) 
pSIM9 CamR; broad host range RK2 ts ori, λ Red plasmid (DATTA et al. 2006) 

   a ApR, ampicillin resistance; CamR, chloramphenicol resistance; GentR, gentamycin resistance; KanR,  
  kanamycin resistance; TcR, tetracycline resistance; P. agg, P. agglomerans 
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Table 2.3:  Oligonucleotides Used in this Study 

 
Oligonucleotide Sequence 5’- 3’a Purpose 

16S Forward AGAGTTTGATCCTGGCTCAG To verify P. agg genomic 
DNA 

16S Reverse ACGGCTACCTTGTTACGACTT To verify P. agg genomic 
DNA 

M13 Forward (-20) GTAAAACGACGGCCAG Sequencing TOPO inserts 
M13 Reverse CAGGAAACAGCTATGAC Sequencing TOPO inserts 
Flagel38-53 For GCNAARGAYGAYGCNGCNGGNC Amplifying P. agg fliC 

fragment 
Flagel65-89 For AGRAAYGCNAAYGAYGGNAT Amplifying P. agg fliC 

fragment 
Flagel65-89 For 2 YTNGCNCARACNACNGARGG Amplifying P. agg fliC 

fragment 
Flagel126-140 Rev NCCRTTRAAYTGNGTYTGNCC Amplifying P. agg fliC 

fragment 
Flagel582-595 Rev NACYTGYTGNGGNACYTGRTTNGC Amplifying P. agg fliC 

fragment 
fliC walk to 3’1  TTCAGGCAGCGACAACTATG Gathering fliC flanking DNA 
fliC walk to 3’2 GATGATGCGACCGGTAAAGTTG Gathering fliC flanking DNA 
Semi-1 GCCAATTCCGGATNGAYKSNGGNTC Arbitrary walking primer 
Semi-2 GCCTTAAGGCCTANGARMSNCCNAG Arbitrary walking primer 
Semi-3 CGGTTAAGGCCTANYTCSKNGANGC Arbitrary walking primer 
Semi-4 GCCAATTCCGGATNSAGYMNCTNCG Arbitrary walking primer 
fliC L1 CAATTGCCAACCGTTTCAC Used with arb primers, ΔfliC 

check 
fliC L2 GTAACGCCAACGACGGTATC Used with arb primers 
fliC R1 AATCAGAGTTGGTGCCGTTC Used with arb primers, ΔfliC 

check 
fliC R2 ACAGTCAGCTCACGAACACG Used with arb primers 
fliC contig to 3’ 
gene1 

ATTACTGTTGTGGAACCGCTG Nested Genome Walking 
PCR 

fliC contig to 3’ 
gene2 

AGCGCTATCTGAAATCCTCAC Nested Genome Walking 
PCR 

fliC contig to 5’ 
gene1 

TTTTCTGCTTCAGCCTGTCACG Nested Genome Walking 
PCR 

fliC contig to 5’ 
gene2 

TGTAGCCGCTGAATTACCCTTC Nested Genome Walking 
PCR 

Ent deltaFliC Left ACACCTTAACCGAAAGACTTGATTAACAGGAAA… To delete P. agg fliC (70-
mer) 

Ent deltaFliC Right ACCCCGCCGAGGCGGGGTTTTGAATTTGCGTT… To delete P. agg fliC (70-
mer) 

fliC 5’ nest 1 GTTAATTCCTTTATAAGGTCG Check for deletion of fliC 
k1 CAGTCATAGCCGAATAGCCT Check for deletion of fliC 
k2 CGGTGCCCTGAATGAACTGC Check for deletion of fliC 
kt CGGCCACAGTCGATGAATCC Check for deletion of fliC 

  a R = A or G; Y = C or T; N = any nucleotide; K = G or T; M = A or C; S = G or C; P. agg, P. agglomerans 
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Figure 2.1:  A representative silver-stained 2D-PAGE showing the secreted protein 

profile of P. agglomerans.  Precipitated secreted proteins from a 3 L late-log culture of 

P. agglomerans were separated by IEF (isoelectric focusing) in a pH range of 3-10 in the 

first dimension.  The proteins were resolved in the second dimension on a 10% 

acrylamide gel and visualized using silver stain.  The spots circled in blue were analyzed 

using MALDI-TOF.  Table 2.4 lists the identities of the spots that could be identified.  

Appendix 3 shows the additional parallel gels that were generated in order to combine 

identical spots for MALDI-TOF. 
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TABLE 2.4: Identification of P. agglomerans secreted proteins by MALDI-TOF 

Spot Identitya 
A RbsB (D-ribose periplasmic protein) 
B OmpA 
C FlgL 
D No significant matches 
E No significant matches 
F No significant matches 
G No significant matches 
H Ssb 
I RbsB (D-ribose periplasmic protein) 
J No significant matches 
K OmpA 
L No significant matches 
M Putative hydrogenase 
N Short chain dehydrogenase 
O FlgL 
P FliC/Flagellin 

 a  Identifications of Spots C, H, and O (FlgL, Ssb, and FliC) are based on protein match  
 scores as determined by Taplin Biological Mass Spec Facility.  See Figures 2.2 (FliC),  
 A1.1 (FlgL), and A1.3 (Ssb) for scores. 
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Figure 2.2  FliC/Flagellin MALDI-TOF Results from Taplin Biological Mass Spec 

Facility.  Results from MALDI-TOF analysis of each individual spot are viewed by 

signing in to the Taplin Biological Mass Spec Facility website with a provided username 

and password.  In the lower left-hand corner is a menu of protein matches that shows the 

number of peptide fragments isolated for this particular spot (8 total).  The ID numbers 

are a link to an image that shows where each of the peptide fragments align to a known 

protein in the NCBI Enterobacteriaceae database.  In this case, the peptide fragments 

matched to E. coli FliC/Flagellin. 
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Figure 2.3:  Peptide fragment matches to E. coli FliC/Flagellin from Taplin 

Biological Mass Spec Facility.  In the case of the spot that matched to E. coli 

FliC/Flagellin, eight peptide fragments were generated upon tryptic digestion.  This 

figure shows where 5 of the 8 fragments matched to the E. coli flagellin protein sequence 

present in the NCBI Enterobacteriaceae protein database.  The amino acid positions are 

given as well as the amino acid sequence of the fragment. 
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Figure 2.4:  Identity and placement of sequenced P. agglomerans FliC peptide 

fragments in the E. coli FliC sequence and the P. agglomerans fliC contig assembled 

after genome walking PCR.  Eight P. agglomerans FliC peptide fragments were 

sequenced using MALDI-TOF and identified based on homology to the E. coli FliC 

sequence.  Figure 2.4A shows where the fragments (2 fragments are overlapping) match 

to the E. coli FliC sequence (residues in green).  The red arrows indicate where the 

degenerate primers were designed.  2.4B shows the resulting P. agglomerans fliC contig 

assembled after genome walking PCR.  The blue bracket roughly indicates the length of 

sequence obtained. 

 

 

 

 

 



 69

 

 

 

 

 

 

 

 

Figure 2.5:  Genome walking PCR protocol.  After a small fragment of DNA was 

identified using degenerate primers (top blue box), specific primers were designed on 

either end (blue arrows).  Flanking sequence could then be obtained by pairing the 

specific primers with arbitrary primers in a genome walking PCR reaction.  The TOPO-

cloned and sequenced PCR products can be compiled into a contig that can be made 

longer by repeating the process of creating specific primers on the ends of the known 

sequence and performing another round of PCR.  (Figure adapted from Guo and Xiong 

2006). 
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Figure 2.6:  fliC secretion constructs used in this study.  This figure shows the suite of 

constructs tested in P. agglomerans for the fliC-mediated secretion of a test protein (the 

scFv with anti-BSA activity).  These plasmids are yeast recombination vectors due to the 

presence of the 2 μm ori and URA3 gene and also contain a bacterial low-copy ori (p15A 

ori).  The antibody was expressed by itself (pDB19, pDB22), as a fusion to FliC 

(pDB20), or as a fusion to MalE (maltose-binding protein) (pDB27, pDB28).  Plasmids 

pDB22 and pDB28 served as negative controls for secretion because an antibody 

expressed under the control of the Ptac promoter would not be secreted from the bacterial 

cell.  (Plasmid maps were made using the free program XPlasMap available from 

http://www.iayork.com/XPlasMap/) 
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Figure 2.7:  Attempts to delete fliC from the P. agglomerans chromosome were 

unsuccessful.  A. If the fliC gene was replaced by the aphII gene (confers kanamycin 

resistance) using recombineering techniques, then a PCR product (from the primers 5’ 

nest1 and k1) comprising part of the fliC promoter and part of aphII would be generated.  

Concurrently, a portion of aphII would also be amplified (k2 and kt).  However, if fliC 

was not deleted, and aphII was recombined elsewhere in the chromosome, the only PCR 

products generated would be from an interior portion of the fliC gene (fliCL1 and R1) 

and a portion of aphII (k2 and kt).  B. An ethidium bromide stained agarose gel shows 

the results from a fliC recombineering attempt where the aphII gene did not recombine 

into the fliC gene as expected, but rather somewhere else in the chromosome.  Genomic 

DNA was isolated from three separate KanR P. agglomerans colonies post-

recombineering (ΔfliC 1-3) and used as the template in three different PCR reactions.  

The product from pKD4 serves as a positive control for the k2 + kt PCR reaction.  “Pa” 

indicates genomic DNA from cells not used in the recombineering experiments as a 

negative control template in the PCR reaction. 
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CHAPTER 3 
 
 
USING HETEROLOGOUS SECRETION SIGNALS FOR 
SECRETION OF A TEST PROTEIN AND ANTI-
PLASMODIUM EFFECTOR PROTEINS IN PANTOEA 
AGGLOMERANS 
 
 
ABSTRACT 

 Malaria originates from the transmission of the parasite Plasmodium to humans 

by female anopheline mosquitoes.   Estimates put the number of deaths at 1-2 million 

people annually and this number will increase without the establishment of new control 

strategies.  The effectiveness of insecticides and drugs are thwarted by the eventual gain 

of resistances for both the insect and parasite, therefore as an alternative, a genetic 

engineering approach is presented here. The bacterial mosquito symbiont Pantoea 

agglomerans was engineered to express effector gene products that are known to inhibit 

Plasmodium development.  A caveat of this approach is finding an appropriate protein 

secretion signal for export of the effectors from the cell.  N-terminal secretion signals 

(PelB from Erwinia carotovora, and OmpA and TolB from E. coli) and the C-terminal 

signal from E. coli hemolysin A (HlyA) were tested for secretion of a test protein (an 

anti-BSA scFv) in E. coli and P. agglomerans.  The scFv was secreted from both species 

using the PelB and HlyA signals, however it was only active in the case of PelB-induced 

secretion.  OmpA-induced secretion of the scFv was only seen in E. coli, and the 



 75

antibody was not active.  Subsequently, four anti-Plasmodium effector proteins (SM1, 

Anti-Pbs21 scFv, PLA2-H67N, and CEL-III) were chosen for secretion and there was 

varied expression and/or secretion of the different combinations of secretion signals and 

effector proteins in both species.  In particular, SM1 appeared to be somewhat toxic to  

P. agglomerans as those cultures grew poorly.  Additionally, CEL-III-containing 

plasmids recovered after cloning contained mutations in the pelB sequence that abolished 

transcription, which would suggest that a functional and secretable CEL-III is toxic to E. 

coli cells.  As a result, this effector was abandoned.  The TolB signal was not successful 

in secretion of any of the proteins tested in either species.  The anti-Plasmodium Anti-

Pbs21-HlyA and PLA2-H67N-HlyA fusions were successfully secreted from  

P. agglomerans and these strains are now available for testing inside malaria-infected 

anophelines for the inhibition of Plasmodium development. 

INTRODUCTION 

 Malaria is arguably the most prevalent insect-vectored disease on the planet.  It is 

estimated that 500-700 million people are diagnosed every year and approximately 1-3 

million of those will lose their lives to the disease (BREMAN et al. 2001).  To curb the 

spread and symptoms of this disease, insecticide-treated bed nets and plant-derived 

medications can be provided to those in need, but the effects are not a permanent 

solution.  Eventually, mosquitoes and Plasmodium species will evolve resistances to 

these methods.  Efforts have been made to genetically modify mosquitoes that can disrupt 

Plasmodium development in the gut, but this approach is time-consuming and fitness 

costs to the transgenic insect population are a concern (ITO et al. 2002; MENGE et al. 

2005).  A paratransgenic approach, engineering a bacterial resident of the mosquito gut to 
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produce proteins antagonistic to Plasmodium, could prove to be an efficient tool against 

the spread of malaria to humans during a blood meal (RIEHLE and JACOBS-LORENA 

2005). 

Established examples of paratransgenesis include the use of modified bacteria to 

fight Chagas disease, a parasitic disease vectored by kissing bugs (Rhodnius prolixus) 

that affects people mainly in Central and South America.  An actinomycete 

endosymbiont of R. prolixus, Rhodococcus rhodnii, was engineered to express cecropin 

A, a peptide that is lethal to the Chagas parasite Trypanosoma cruzi.  (BEARD et al. 

2001).  Methods are being developed to spread the transgenic bacteria through an insect 

population via a food source for newly hatched insects (DURVASULA et al. 1997).   

 In addition to insect-borne diseases, there are examples of paratransgenic 

strategies to reduce HIV infectivity in mammalian cells (CHANG et al. 2003; RAO et al. 

2005).  Lactobacillus jensenii, a bacterium normally found in the intestinal and 

reproductive mucosa of mammals was engineered to express a secreted form of CD4, an 

anti-HIV inhibitor protein.  In vitro results showed reduced HIV entry in cultured cells.  

Transgenic lactobacilli may survive on vaginal mucosa in vivo for days to weeks, so 

routine inoculation of patients at high risk for HIV infection is a possible form of 

preventive treatment (CHANG et al. 2003).  Additionally, an anti-HIV fusion peptide 

expressed by a strain of E. coli was able to colonize the gastrointestinal and 

cervicovaginal tracts of mice for prolonged periods and produce the peptide at inhibitory 

levels (RAO et al. 2005). 

 The bacterial candidate for malaria paratransgenesis is Pantoea agglomerans 

(formerly Enterobacter agglomerans), a Gram-negative, γ-proteobacterium that is closely 
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related to E. coli and Salmonella spp. (GAVINI 1989).  The isolate used in this study 

originated from adult bloodfed female Anopheles stephensi mosquitoes at Johns Hopkins 

University and has been passaged several times through the mosquito to select for 

bacteria that will survive for longer periods of time in the gut environment (RIEHLE et al. 

2007).   

 In order to deliver anti-Plasmodium effector proteins to the cell exterior, the 

effector gene must be fused to DNA coding for a protein secretion signal.  This could 

ensure export of the effector protein into the gut environment where it would interfere 

with Plasmodium development.  Several secretion signals have been used to secrete 

heterologous proteins in E. coli.  The coding sequences for the first ca. 20 amino acids of 

PelB (from the pectate lysase gene of Erwinia carotovora) or OmpA (from the outer 

membrane protein A of E. coli), which are secreted from the cell in a Type II-dependent 

manner, have been used for heterologous protein secretion in E. coli (LINDEBERG and 

COLLMER 1992; SLETTA et al. 2007; THIE et al. 2008; WINTER et al. 1994).  The first 20 

amino acids of a periplasmic protein involved in colicin uptake (TolB), secreted via the 

bacterial SRP pathway, were also used for E. coli protein production (DE GIER et al. 

1997; THIE et al. 2008; VALENT 2001).  With these secretion signals, the N-terminal 

sequence was cleaved from the final product when it was first sent to the periplasmic 

space.  Finally, the E. coli hemolysin A signal, mapped to the last 60 amino acids of the 

protein, has been used to secrete active scFv antibodies in a Type I-dependent manner 

(FERNANDEZ et al. 2000; GENTSCHEV et al. 2002; TZSCHASCHEL et al. 1996).  The C-

terminus of HlyA remains fused to the passenger protein upon secretion. 
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 The four secretion signals mentioned above were tested for the secretion of a test 

passenger protein (scFv with anti-BSA activity) followed by testing for the secretion of 

four different anti-Plasmodium effector proteins in E. coli and P. agglomerans.  These 

included the dodecapeptide SM1 (salivary and midgut peptide 1; PCQRAIFQSICN), 

which was discovered in a phage display library and is analogous to the Plasmodium 

TRAP protein that is used to invade the mosquito salivary glands and midgut epithelium 

(GHOSH et al. 2009; GHOSH et al. 2001).  Anti-Pbs21 is a 21 kDa single-chain antibody 

that binds to a surface protein of P. berghei and inhibits the developmental transition 

from gametocyte to ookinete (YOSHIDA et al. 1999).  Phospholipase A2 (PLA2 H67N) 

was isolated from honeybee venom, and while its exact anti-Plasmodium mechanism is 

unknown, it is believed that intercalation of PLA2 (20 kDa) into the mosquito midgut 

lining prevents Plasmodium from traversing this membrane on its migration to the 

salivary glands (MOREIRA et al. 2002b).  Finally, CEL-III, a lectin isolated from sea 

cucumber, was discovered to block the transition from ookinete to sporozoite in both  

P. berghei and P. falciparum (YOSHIDA et al. 2007).  Previously, E. coli expressing and 

displaying SM1, Anti-Pbs21 scFv, or PLA2 H67N on their outer membranes while inside 

the mosquito gut have resulted in the inhibition of Plasmodium development, but due to 

its inability to thrive for long periods of time in the gut environment, the alternate species 

P. agglomerans was chosen for experimentation (RIEHLE et al. 2007; YOSHIDA et al. 

2001). 

 Varying success was found with these secretion signals and effector proteins.  

PelB and HlyA directed secretion of the anti-BSA scFv in both species, however it was 

only active after PelB-induced secretion.  The fusion protein OmpA-Anti-BSA scFv was 
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only expressed and secreted in E. coli and it was not an active protein.  Of the anti-

Plasmodium effectors tested, the PelB-SM1 fusion was expressed but not secreted in both 

species.  Fusion proteins PelB-Anti-Pbs21 and OmpA-Anti-Pbs21 were expressed and 

secreted only by E. coli.  PelB-PLA2-H67N was expressed but not secreted by both 

species.  Finally, Anti-Pbs21-HlyA and PLA2-H67N-HlyA were secreted from both  

E. coli and P. agglomerans.  The CEL-III lectin gene could not be cloned without the 

introduction of mutations in the promoter sequence so it was abandoned as a candidate. 

 It would appear that the pairing of a secretion signal to a particular effector 

protein has to be determined empirically.  There are several factors to consider when 

attempting to secrete a heterologous protein, including proper protein folding, clogging of 

the bacterial membrane translocation machinery, and proteolytic degradation (GEORGIOU 

and SEGATORI 2005).  Some effector proteins may be produced at levels toxic to some 

bacterial species.  Other proteins may not be able to be exported via a certain secretion 

system due to its size or conformation.  Even with all of these factors to consider, the 

pursuit of an anti-Plasmodium paratransgenic bacterium should continue.  The need for 

new measures to fight the spread of malaria remains and a transgenic bacteria approach 

could be a cost-effective and efficient means of attack (RIEHLE and JACOBS-LORENA 

2005). 

MATERIALS AND METHODS 

Media  Bacteria were grown in Luria-Bertani broth or agar (LB).  S. cerevisiae cells were 

grown on YPD agar plates (20 g tryptone, 10 g yeast extract, 20 g dextrose, 20 g agar per 

liter) or Minimal Drop-Out Media excluding uracil (2% glucose) when selecting for yeast 

recombinants (Sigma Y1501).  Final concentrations of antibiotics (Sigma or Fisher 



 80

Scientific) were as follows: ampicillin (Amp), 150 µg/ml; apramycin (Apr), 80 µg/ml; 

chloramphenicol (Chl), 30 µg/ml; gentamycin (Gent), 10 µg/ml; nalidixic acid (Nal), 30 

µg/ml; rifampicin (Rif), 30 µg/ml; streptomycin sulfate (Str), 100 µg/ml; tetracycline 

(Tc) 15 µg/ml (unless otherwise indicated).  Antibiotic stocks were filter-sterilized 

through a 0.2 µM filter syringe and stored at -20°C. 

Storage of bacterial cells, DNA stocks.  All bacterial cell stocks were stored in LB broth 

+7% DMSO in 1 ml screw-cap tubes at -80°C.  All DNA stocks (plasmid or genomic) 

were kept on ice during usage and stored at -20°C when not in use. 

Plasmid construction.  The secretion signal plasmids in this study (with the exception of 

pDB36 and the HlyA group, Table 3.2) were constructed using a yeast gap repair method 

(SHANKS et al. 2006).  Briefly, the vector to be modified was digested with restriction 

enzymes and treated with calf intestinal phosphatase according to manufacturer’s 

directions (New England Biolabs).  DNA inserts were amplified with 60-mer oligos that 

contained 40 bp of homology to the digested vector (up to 2000 bases from the digestion 

site).  Agarose gel-purified vector (~20-200 ng) and inserts (50-500 ng), along with 

herring sperm DNA (100 μg) were co-transformed into 8-10 large colonies of S. 

cerevisiae INVSc-1 (Invitrogen) cells, harvested directly from a YPD plate and 

resuspended in 500 μl of PLATE solution (50% PEG, 100 mM LiAc, 10 mM Tris, pH 

7.4, 1 mM EDTA).  The cells were incubated on the benchtop for ~2 d.  After heat shock 

at 42°C for 30 min, the yeast cells were resuspended in 150 μl of deionized H2O and 

plated on uracil drop-out medium (6.7 g/L yeast nitrogen base minus amino acids, 1.92 

g/L yeast synthetic drop-out media supplement without uracil, 2% glucose (w/v) and 20 

g/L bacteriological agar) and incubated at 30°C for up to 2 d.  Total yeast DNA was 
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purified from the colonies using the “Yeast Smash and Grab DNA Miniprep” protocol 

(ROSE et al. 1990).  Fifty nanograms of total yeast DNA was transformed into an 

appropriate strain of E. coli and bacterial clones were verified for the resultant plasmid by 

restriction enzyme digestion and DNA sequencing. 

PelB plasmid construction.  Replacing the bla gene in pIT2-scFv with the aac(3)IV 

gene using “recombineering” techniques resulted in pDB36 (DATSENKO and WANNER 

2000; GUST et al. 2004).  This plasmid allows for the cloning of genes in frame with the 

pelB secretion signal and 6His/myc epitope tag sequence in an apramycin resistance 

background.   Briefly, E. coli BW25113 replicating the Lambda Red plasmid pIJ790 and 

pIT2-scFv was grown at 30°C in LB broth containing selective antibiotics and 10 mM L-

arabinose until an OD600 of 0.6 was reached.  The cells were pelleted and washed twice in 

50 ml of ice cold 10% glycerol.  The cells were resuspended in the drop of remaining 

10% glycerol and 50 μl was transformed  (1.8 kV, 0.1 mm cuvette) with 500 ng of the 

aac(3)IV-oriT cassette from pIJ799.  The aac(3)IV gene is flanked by sequence 

homologous to the bla gene.  After incubating in 1 ml of LB broth in a shaking incubator 

(250 rpm) for 1 h at 30°C, different amounts were plated on LB agar plates containing 

apramycin and incubated overnight at 30°C.   

 BW25113/pDB36 transformants were also AmpR (due to pIT2-scFv background) 

so a conjugation step was performed to transfer pDB36 into the E. coli recipient LL308.  

Plasmid DNA was purified from BW25113/pDB36 and used to transform the donor 

strain E. coli ET12567/pUZ8002.  An overnight culture of ET12567/pUZ8002 and of 

recipient strain E. coli LL308 were grown at 37°C in selective LB broth.  On the next 

day, 3 ml LB cultures were inoculated with 1/100 dilutions of the overnights and 
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incubated until an OD600 reading of 0.4-0.5 was reached (1-2 h).  Five hundred microliter 

aliquots of the donor and recipient strains were resuspended in fresh LB broth without 

antibiotics, combined, and incubated for 20 min at 37°C at a low shaking speed.  Then, 

the shaking speed was increased and incubation was continued for an additional 1 h.  

Varying amounts of the conjugation mixture were plated on LB agar containing nalidixic 

acid and apramycin and incubated overnight at 37°C.  The resultant colonies were grown 

on LB plates containing apramycin or ampicillin to ensure loss of the pIT2-scFv plasmid. 

 pDB48 contains the pelB secretion signal and the 6His and myc affinity tags 

along with a unique AscI site for cloning effector genes in frame between the signal and 

tags.  The lac promoter drives expression of the resultant protein.  To make pDB48, 

pMQ64 was digested with HindIII and the entire MCS was replaced with pelB-AscI-

6His-myc-STOP by yeast recombination.  This was accomplished with two inserts, one 

containing pelB and the other containing the epitope tags.  Both inserts were amplified 

from pIT2-scFv using 60-mer oligos that contained 40 bp of homology to the pMQ64 site 

of insertion. The left-hand primer for the epitope tags insert contained the AscI 

recognition sequence.  pDB51 through pDB54 were made by digesting pDB48 with AscI 

and cloning in each effector gene as one insert (encoding Anti-BSA scFv, SM1, Anti-

Pbs21, or PLA2 H67N, respectively) using yeast recombination with 60-mer oligos 

containing 40 bp of homology to the site of insertion. 

OmpA plasmid construction.  pDB67 contains the ompA secretion signal and the 6His 

and myc affinity tags along with a unique AscI site for cloning effector genes in frame 

between the signal and tags.  The lac promoter drives expression of the resultant protein.  

To make pDB67, pMQ64 was digested with HindIII and the entire MCS was replaced 
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with ompA-AscI-6His-myc-STOP by yeast recombination.  This was accomplished with 

two inserts, one containing ompA (amplified from E. coli genomic DNA) and the other 

containing the epitope tags (amplified from pIT2-scfv).  Both inserts were amplified 

using 60-mer oligos that contained 40 bp of homology to the pMQ64 site of insertion.  

The left-hand primer for the epitope tags insert provided the AscI recognition sequence. 

pDB69 and pDB71 through pDB73 were made by digesting pDB67 with AscI and 

cloning in each effector gene as one insert (encoding Anti-BSA scFv, SM1, Anti-Pbs21, 

or PLA2 H67N, respectively) using yeast recombination with 60-mer oligos containing 

40 bp of homology to the site of insertion. 

TolB plasmid construction.  pDB68 contains the tolB secretion signal and the 6His and 

myc affinity tags along with a unique AscI site for cloning effector genes in frame 

between the signal and tags.  The lac promoter drives expression of the resultant protein.  

To make pDB68, pMQ64 was digested with HindIII and the entire MCS was replaced 

with tolB-AscI-6His-myc-STOP by yeast recombination.  This was accomplished with 

two inserts, one containing tolB (amplified from E. coli genomic DNA) and the other 

containing the epitope tags coding sequence.  Both inserts were amplified with 60-mer 

oligos that contained 40 bp of homology to the pMQ64 site of insertion.  pDB70 and 

pDB75 through pDB77 were made by digesting pDB68 with AscI and cloning in each 

effector gene as one insert (encoding Anti-BSA scFv, SM1, Anti-Pbs21, or PLA2 H67N, 

respectively) using yeast recombination with 60-mer oligos containing 40 bp of 

homology to the site of insertion. 

HlyA plasmid construction.  Replacing the bla gene in pEHLYA2-SD with the 

aac(3)IV gene resulted in pDB47.  This plasmid allows for the cloning of genes upstream 
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of the coding sequence for the C-terminus of HlyA and E-tag epitope in an apramycin 

resistance background.  To construct pDB47, “recombineering” techniques followed by a 

conjugation to eliminate the original plasmid were performed identical to the construction 

of pDB36.  

 To make pDB49, pDB50, and pDB58-60, the vector pDB47 was digested with 

NheI/XmaI and treated with a calf intestinal phosphatase according to the manufacturer’s 

instructions (New England Biolabs).  Each insert (encoding Anti-BSA scFv, MalE-Anti 

BSA scFv, SM1, Anti-Pbs21, or PLA2 H67N, respectively) was amplified with 20-mer 

oligos that incorporated NheI and XmaI recognition sites on the 5’ and 3’ ends of the 

amplicons, respectively.  The vector and inserts were agarose gel-purified (Zymoclean) 

and eluted in deionized H2O.  Ligation reactions containing ~150 ng of vector, varying 

amounts of insert (~300-800 ng), and T4 DNA ligase (New England Biolabs) were 

incubated overnight (~16h) at 16°C.  The reactions were stopped with the addition of 20 

μl of deionized H2O and heat inactivation at 65°C for 20 min.  One microliter of the 

ligation reaction was used to transform the E. coli Top10 recipient strain (1.8 kV, 0.1 mm 

cuvette).  The cells were incubated at 37°C for 1 h in LB broth and then aliquots were 

plated on selective LB agar and incubated overnight at 37°C. 

Induction conditions for secretion constructs in E. coli and P. agglomerans.  

Individual colonies were used to inoculate 5 ml of LB broth containing antibiotics and 

1% glucose (glucose is only needed for E. coli as P. agglomerans is Lac-) and grown at 

30°C overnight (12-16 h).  On the next day, a fresh 5 ml LB culture containing antibiotics 

and glucose was inoculated with 50 μl of the overnight culture and grown to an OD600 of 
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0.5.  The bacteria were harvested by centrifugation and resuspended in the same amount 

of LB broth containing 1 mM IPTG and incubated further at 30°C overnight (12-16 h). 

Protein preparations and Western Blot analysis on bacterial pellet and spent growth 

medium samples.  A 100 μl aliquot from an induced overnight culture of either E. coli or 

P. agglomerans was centrifuged to pellet the cells (10,000 rpm, 30 sec).  Seventy-five 

microliters of the supernatant was transferred to a new tube containing 25 μl of 3X 

Laemmli sample buffer (BioRad 161-0737).  The remaining pellet was resuspended in 

100 μl of 3X Laemmli sample buffer and all of the samples were boiled for 10 min before 

resolving on a 4% stacking and 10% separating acrylamide gel.  Proteins were transferred 

to polyvinylidene difluoride membrane (PVDF) in a standard Western Blot transfer 

apparatus (BioRad) with 10% methanol in the transfer buffer (25 mM Tris, 150 mM 

glycine, 20% methanol, pH 8.3; 95V, 350 mA, 75 min).  The membranes were blocked in 

1X Tris-buffered saline + 0.05% Tween-20 (1X TBS: 10 mM Tris, 150 mM NaCl, pH 

7.4) containing 1% (w/v) bovine serum albumin (BSA) for 3 h at room temperature.  For 

immunodetection of myc-tagged proteins, membranes were incubated overnight at 4°C 

with an α-myc Ab (1 μg/ml or 1:10,000; Invitrogen 46-0603) diluted in the blocking 

buffer.  After four 15 min washings in 1X TBS/0.05% Tween-20, the membranes were 

incubated in stabilized goat anti-mouse HRP-conjugated secondary antibody (0.01 

μg/100 ml or 1:100,000; Pierce 1858413) for 1 h at room temperature.  The washing 

steps were repeated and the bound antibody-HRP conjugate was detected using a 

chemiluminescent reaction (SuperSignal West Femto Maximum Sensitivity Substrate; 

Pierce 34095) and autoradiographic film. 
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Enzyme-linked immunosorbent assays (ELISAs) using spent growth medium from 

induced E. coli or P. agglomerans.  The activity of the secreted anti-BSA scFv was 

tested using an ELISA assay.  For each sample analyzed, duplicate MaxiSorp wells 

(Nunc) were coated with 100 μl of bovine serum albumin (2 mg/ml) along with two 

negative control wells, one coated with 100 μl of 1X PBS and one empty well.  The plate 

was stored at 4°C overnight (ca. 12 h).  Each well was washed three times with 200 μl of 

1X PBS before blocking for 2 h at room temperature with 2% dry milk in 1X PBS.  The 

wells were washed three times with 200 μl of 1X PBS and 100 μl of clarified spent 

growth medium from an overnight culture was added to each well and left to incubate for 

1 h at room temperature.  The wells were then washed eight times with 200 μl of 1X 

PBS/0.1% Tween-20.  An α-myc-HRP antibody (1:2000, Roche 11-814-15-0001) diluted 

in blocking reagent was added to the wells and left to incubate for 1 h at room 

temperature.  A second set of eight washes was performed before the α-myc-HRP 

antibody was detected using 50 μl/well of the chromogenic substrate 1-Step Ultra TMB 

(3,3’ 5,5’-tetramethyl benzidine, Pierce 34028).  When a sufficient blue-colored signal 

was reached (anywhere from 10-45 min), the reaction was stopped with the addition of 

50 μl of 2 M H2SO4 and the absorbance was read at 450 nm with the background 

subtracted at 650 nm in a BioRad 3550 plate reader. 

RESULTS 

The secretion constructs 

 Figure 3.1A shows the organization of the Type II secretion-based constructs 

(PelB, OmpA, and TolB) created for this study.  Effector genes were cloned in to a 

unique AscI site between the secretion signal and epitope tags.  The N-terminal secretion 
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signal is directly upstream of the effector gene.  The effector protein is tagged with 6His 

and myc epitope tags at its C-terminus.  The lac promoter drives expression of the ORF.  

The plasmid replicates using the broad-host range colE1 origin and confers resistance to 

apramycin (aac(3)IV). 

 Figure 3.1B shows the hemolysin secretion-based construct used in this study.  

The effector gene, tagged with 6His and myc at its C-terminus, was cloned by restriction 

digestion (NheI/XmaI) between the lac promoter and the 3’ end of hlyA (‘hlyA).  There is 

also the E-tag epitope available for immunodetection purposes.  This plasmid also 

replicates using the colE1 origin and confers resistance to apramycin.  It must be co-

expressed with pVDL9.3, which provides the membrane channel proteins HlyB and 

HlyD. 

Expression and secretion using the PelB leader 
 
 The PelB leader allowed for the expression and secretion of an active anti-BSA 

scFv in both E. coli HB2151 and P. agglomerans as shown by Western blot analysis and 

ELISA assay (Figure 3.2A and C).  The anti-BSA scFv secreted by E. coli is three times 

more active than the scFv secreted by P. agglomerans as shown by ELISA assay (Figure 

3.2B).  The P. agglomerans E325 strain was also able to secrete an active anti-BSA scFv, 

although at an even lower level compared to the other strains tested (Figure 3.2A). 

 Of the three anti-Plasmodium effectors tested for secretion under the PelB leader, 

PelB-Anti-Pbs21 was secreted, but only by E. coli HB2151 (Figure 3.2C).  PelB-SM1 

was expressed by both species, but was not visualized in the spent growth medium 

(Figure 3.2C).  Finally, PelB-PLA2-H67N was neither expressed nor secreted in either 
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species.  All of these strains grew at a normal rate before sample collection as compared 

to wild-type E. coli HB2151 and P. agglomerans strains. 

Expression and secretion using the OmpA leader 

 The OmpA leader allowed for the secretion of an inactive anti-BSA scFv, but 

only in E. coli HB2151 (Figure 3.3).  OmpA-Anti-Pbs21 was expressed and secreted in 

E. coli, but not in P. agglomerans (Figure 3.3C).  OmpA-PLA2-H67N was expressed in 

both species, but did not secrete (Figure 3.3C).  Finally, OmpA-SM1 was neither 

expressed nor secreted in either species.  The P. agglomerans OmpA-SM1 strains grew at 

a very slow rate compared to the other OmpA strains, so it may be that the OmpA-

induced secretion of the SM1 protein was preventing normal growth of the cultures. 

Expression and secretion using the TolB leader 
 
 The TolB constructs were not successful in the expression or secretion of the 

majority of the proteins tested.  The only strain to express a protein (anti-BSA scFv) was 

E. coli HB2151 carrying the pDB70 plasmid.  The anti-BSA scFv protein was made, but 

was not visible in the spent growth medium (Figure 3.4C).  Despite the inability to detect 

the anti-BSA scFv protein via Western blot, a slight amount of activity was detected for 

this protein in an ELISA assay, however, the level of activity was not statistically 

significant when compared to background levels (Figure 3.4A and B).  The  

P. agglomerans TolB strains grew extremely poorly and at a very slow rate, however the 

E. coli TolB strains grew at a normal rate.   

Expression and secretion using the C-terminus of HlyA 
 
 The anti-BSA scFv-HlyA construct pDB49 was expressed in E. coli HB2151 and 

P. agglomerans.  Both species were able to secrete the protein at high levels (Figure 
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3.5C), however, neither antibody was active in an ELISA assay (Figure 3.5A).  A MalE-

anti-BSA scFv fusion was made (pDB50) in the hopes that antibody activity would be 

restored, but this fusion protein was only expressed in E. coli and was not secreted 

(Figure 3.5C). 

 The anti-Plasmodium effectors Anti-Pbs21 and PLA2-H67N were both expressed 

and secreted in high levels as HlyA fusions in E. coli and P. agglomerans (Figure 3.5C).  

SM1-HlyA was not expressed or secreted in either species (Figure 3.5C).  This does not 

seem to be the result of poor growth of the cells, as the cultures grew at a normal rate as 

compared to wild-type E. coli HB2151 and P. agglomerans strains. 

Difficulties in cloning the anti-Plasmodium effector gene CEL-III 
 
 The CEL-III lectin gene from sea cucumber was chosen for expression and 

secretion in E. coli and P. agglomerans (YOSHIDA et al. 2007).  The CEL-III ORF (1.2 

kb) was amplified from pAgCP-CEL-III (Table 3.3) using 60-mer oligos that contained 

40 bp of homology for yeast recombination to create pDB55.  The yeast strain in which 

the recombination took place and the subsequent culture of transformed E. coli Top10 

grew similar to other yeast cloning experiments and it was expected that the cloning was 

successful.  Five E. coli Top10 colonies were checked by restriction digest for the 

presence of the recombinant plasmid.  All 5 clones contained the recircularized vector.  A 

second trial of pDB55 yeast cloning was performed and much higher amounts of CEL-III 

insert were added to the reaction and the length of yeast incubation time in PLATE 

solution was increased to three days.  Eight recombinant E. coli colonies were chosen for 

restriction digestion and PCR reactions to ensure presence of the CEL-III ORF.  Only one 

recombinant contained the CEL-III ORF in the resultant plasmid, however, after DNA 
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sequencing, it was revealed that a deletion mutation in the secretion signal abolished 

transcription of a pelB-CEL-III fusion.  Therefore, a functional CEL-III protein would not 

be translated nor secreted.  Because of this difficulty in cloning and recovering the pelB-

CEL-III construct, it was abandoned as a candidate for secretion using the other 

heterologous signals.  

DISCUSSION 

 The disease malaria claims the lives of millions of people each year.  Without the 

advent of new and effective preventative strategies this number will certainly rise.  The 

introduction of a bacterial symbiont expressing anti-Plasmodium gene products into the 

mosquito vector could be a targeted method of inhibiting Plasmodium development prior 

to transfer to a human host.  In order to be effective, the gene product must be delivered 

to the cell exterior.  Steps to find a suitable secreted protein signal from E. coli for 

secretion of anti-Plasmodium effector proteins in the paratransgenesis candidate  

P. agglomerans were undertaken in this study. 

The suite of anti-Plasmodium effector genes 

 Four anti-Plasmodium effector genes were available for secretion tests in E. coli 

and P. agglomerans.  Previously, three of these effectors (SM1, Anti-Pbs21, and PLA2 

H67N) were expressed and/or surface-displayed by E. coli while inside the mosquito gut 

(RIEHLE et al. 2007; YOSHIDA et al. 2001).  Impaired Plasmodium development has been 

seen with transgenic mosquitoes expressing CEL-III (YOSHIDA et al. 2007).  E. coli has 

been used to express fragments of CEL-III for characterization of its functional domains 

(KOUZUMA et al. 2003).  Expression of the full-length CEL-III gene in E. coli has proven 

difficult; the fusion to proteins like thioredoxin are needed to increase yield and 
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solubility, and even then the amount of functional and soluble protein made is very small 

(Y. Kouzuma, personal correspondence).   

 With this prior knowledge, it was hypothesized that E. coli and  

P. agglomerans could manufacture the SM1, Anti-Pbs21, and PLA2 H67N effector 

proteins (8 kDa, 21 kDa, and 20 kDa, respectively, as estimated on a protein gel) without 

difficulty.  It was hypothesized that the CEL-III protein (47 kDa) might pose a problem 

for prokaryotic protein expression and secretion.  As will be explained in each of the 

following sections, not all of the effector proteins were expressed and/or secreted by  

E. coli or by P. agglomerans. 

The PelB leader 

 The PelB leader, isolated from the pectate lyase gene of Erwinia carotovora, is 

frequently used as a signal for heterologous protein secretion in E. coli (LINDEBERG and 

COLLMER 1992; THIE et al. 2008; WINTER et al. 1994).  It was encouraging when E. coli 

and P. agglomerans secreted a functional anti-BSA scFv (Figure 3.2), and it was 

hypothesized that the anti-Plasmodium effector proteins would behave in a similar 

fashion when using this secretion signal.  However, the only effector to be secreted, and 

only by E. coli, was Anti-Pbs21.  SM1 was expressed by both species, but not detected in 

the spent growth medium.  Encouragingly, there may be explanations for these mixed 

results and additional methods that may improve the expression and yield of these 

recombinant proteins. 

 Proteins that are tagged with the PelB leader are secreted from the cell via a Type 

II secretion system, which involves passage through the periplasmic space before export 

via the Sec translocation machinery present in the outer membrane (OM) (SANDKVIST 
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2001).  Proteins are folded into their final conformation and the PelB leader is removed in 

the periplasmic space (CHOI and LEE 2004).  SM1 was detected in the cell pellet but not 

in the spent growth medium, so it may have encountered a problem in the periplasm.  

This could include periplasmic inclusion bodies, errors in folding or disulfide bond 

formation, or degradation (KOLAJ et al. 2009; SCHLAPSCHY et al. 2006).  In the case of 

Anti-Pbs21, this protein may be toxic or misfolded when made by P. agglomerans, 

although this does not seem to be likely because Anti-Pbs21 is an scFv similar to the anti-

BSA scFv and this protein was secreted by P. agglomerans without any difficulty.   

 When dealing with difficult proteins destined for the periplasm and beyond, a 

group of chaperones that prevent misfolding in the E. coli periplasm, including seventeen 

kiloDalton protein (Skp), have been used to improve production, yield, and activity of 

scFvs (HAYHURST and HARRIS 1999; MAVRANGELOS et al. 2001).  Co-expression of Skp 

and an scFv against the herbicide atrazine, whether under the same promoter or on 

separate plasmids, increased the amount of soluble and active scFv made by E. coli 

(HAYHURST and HARRIS 1999).  The yield and activity of two anti-mouse granulocyte 

scFvs was improved when the scFv was expressed on a plasmid that also contained skp 

(MAVRANGELOS et al. 2001).  Mavrangelos et al. (2001) also employed an alternate 

Shine-Delgarno sequence upstream of the scFv that resulted in tighter ribosome binding 

and enhanced expression. 

 The oxidizing environment of the periplasm is also the site of disulfide bond 

formation, which is carried out by the Dsb (disulfide bond formation) family of proteins 

(NAKAMOTO and BARDWELL 2004).  DsbA transfers a disulfide bond to the target protein 

and is reoxidized by the membrane-bound DsbB.  The isomerization of incorrect 
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disulfide pairs is carried out by DsbC, which is maintained in an active state by the 

membrane-bound DsbD (KOLAJ et al. 2009).  Considerable success has been achieved 

with the co-expression of DsbABCD and recombinant proteins (JOLY et al. 1998; LEE et 

al. 2004; WULFING and RAPPUOLI 1997).  This also includes the co-production of Dsb 

proteins and glutamate racemase, which has no disulfide bridges in its secondary 

structure (KOHDA et al. 2002).  As with all of these modifiers, the optimal combination 

for each recombinant protein had to be determined empirically. 

 A helper plasmid containing genes for DsbAC and FkpA and SurA was utilized 

for the improvement of secretion of two recombinant secreted proteins in E. coli 

(SCHLAPSCHY et al. 2006).  These proteins are PPIases, peptidyl-prolyl cis/trans 

isomerases that aids in the cis-trans isomerization of petidyl-prolyl bonds in newly 

translated polypeptides.  This combination of disulfide bond formation proteins and 

isomerases could be tested for the improved expression and secretion of all of the effector 

proteins used in this study. 

 It is curious why PLA2 H67N was not expressed by either species, as previous 

studies showed expression of this protein in E. coli without incident (RIEHLE et al. 2007).  

Because PLA2 H67N was not detected in either species in this study, it may be too 

complex of a protein to be expressed in this particular type of construct and then secreted 

in a Type II-dependent fashion.  Perhaps changing the plasmid origin of replication to a 

lower copy ori would help in the production of PelB-PLA2 H67N.  It is also worth co-

expressing PLA2 H67N with cytoplasmic folding chaperones like DnaK, periplasmic 

chaperones like Skp, FkpA, and/or a DsbAC protein to determine if a bottleneck is 

reached pre- or post-translocation into the periplasmic space. 
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 Finally, the addition of thioredoxin, a small 12 kDa protein that participates in 

disulfide bond formation, has been shown to improve production of some difficult 

proteins that were normally found in inclusion bodies (GARCIA-ORTEGA et al. 2000; 

YUAN et al. 2004).  Whether as a separate entity or as a fusion to the recombinant protein 

(this option is available in a Novagen vector, EMD North America), thioredoxin could 

improve production of an effector like SM1, PLA2 H67N, or as mentioned in the 

previous section, CEL-III. 

The OmpA leader 

 The OmpA leader has been used to secrete and/or surface display heterologous 

proteins from E. coli (EARHART 2000; LANG 2000; SLETTA et al. 2007; THIE et al. 2008).  

It was expected that this leader would be useful in secreting the anti-BSA scFv as well as 

some of the effector proteins.  The opposite was observed.  Only E. coli secreted an 

inactive OmpA-anti-BSA scFv (Figure 3.3).  The Anti-Pbs21 protein was expressed and 

secreted by E. coli, as was seen in the case of PelB- and HlyA-induced secretion of this 

protein (Figures 3.2 and 3.5), however P. agglomerans was only able to secrete an Anti- 

Pbs21-HlyA protein.  PLA2 H67N was expressed in both species, but was not detected in 

the spent growth medium (Figure 3.3C).  As was seen with the previous signals tested, 

SM1 was not detected in the cell pellet or spent growth medium.   

 In the case of the P. agglomerans OmpA-SM1 cultures, the growth rate was 

significantly affected by the presence of this construct.  Explanations for the loss of 

detection of SM1 such as improper folding may not apply in this instance.  The fact that 

the cultures grew so poorly suggests that the accumulation of SM1 in the cells may have 

been too toxic for P. agglomerans to maintain growing.  Perhaps the OmpA leader 
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resulted in a jamming of the translocation machinery and the cultures ceased to grow at a 

normal rate. 

 Because recombinant proteins tagged with either the OmpA or PelB leader 

peptide are secreted in a similar fashion, the result suggested modifiers in the PelB 

section above would apply here.  The lack of expression of the anti-BSA scFv, SM1, and 

Anti-Pbs21 in P. agglomerans (Figure 3.3C) could be reversed with the introduction of 

any of the cytoplasmic chaperones or periplasmic modifiers mentioned above.  The lack 

of secretion of PLA2 H67N from E. coli and P. agglomerans may be reversed with the 

co-expression of the helper plasmid developed by Schlapschy et al. (2006).  Again, each 

of these options would have to be tested for their efficacy. 

The TolB leader 

 An overall pattern of failure was seen with TolB; it was the least successful in 

expression and secretion and also negatively affected the growth of P. agglomerans 

(Figure 3.4).  TolB, an E. coli periplasmic protein involved in colicin uptake, is secreted 

via the bacterial SRP (signal recognition particle) pathway, which translocates proteins in 

a co-translational fashion (DE GIER et al. 1997; VALENT 2001).  This transport involves 

interaction with a ribonucleoprotein complex that shuttles the passenger protein to the IM 

Sec translocon and into the periplasmic space before secretion via an OM SRP translocon 

(VALENT 2001). 

 With the exception of detecting the anti-BSA scFv in the E. coli cell pellet, none 

of the other proteins were visualized by Western blot in either species.  There was a very 

faint reaction in the E. coli TolB-anti-BSA scFv ELISA assay, however, the signal 
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detected was not statistically significant compared to background readings and was likely 

due to technical error during the procedure. 

 To date, there are few examples of successful SRP-mediated secretion or surface 

display of heterologous proteins in the literature (STEINER et al. 2006; THIE et al. 2008).  

The SRP pathway may be too esoteric for optimizing secretion of each unique effector 

protein, or it may be that a different SRP signal (ex. DsbA or TorT) would be more 

successful (STEINER et al. 2006; THIE et al. 2008).  Each signal along with each effector 

protein would have to be tested empirically. 

 The E. coli TolB leader may not be recognized by P. agglomerans as a secretion 

signal.  Conversely, failure to detect expression or secretion may be due to clogging of 

the SRP secretion machinery.  If so, precursors or altered forms of the proteins would 

accumulate and could be detected.  This could explain why the cultures grew poorly; 

accumulation of aggregated heterologous proteins or the formation of inclusion bodies 

would cause the cells to become sick (HOFFMANN and RINAS 2004).  Because SRP-

mediated secretion occurs co-translationally, it is hard to know if the co-expression of 

cytoplasmic chaperones and folding catalysts like trigger factor (TF, a PPIase) and heat 

shock proteins in the Hsp60 and Hsp70 families (such as the Hsp70 trio DnaJ-DnaK-

GrpE or the Hsp60 proteins GroEL and GroES, which all act upon newly translated 

polypeptides) would improve the yield and delivery of passenger proteins (KOLAJ et al. 

2009). 

The HlyA secretion signal 

 Although the anti-BSA scFv test protein fused to the C-terminus of HlyA was 

secreted in high levels in both species, neither was active in an ELISA assay (Figure 3.5).  
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This could be because fusion to the 30 kDa C-terminus of HlyA abolished function of the 

scFv.  However, this was not the case for other researchers who secreted functional scFvs 

fused to the HlyA C-terminus (FERNANDEZ et al. 2000).   

 Regardless, HlyA was the most successful of the four signals tested in terms of 

delivery of anti-Plasmodium effector proteins to the extracellular space.  Both Anti-Pbs21 

and PLA2 H67N were expressed and secreted as HlyA fusions by P. agglomerans 

(Figure 3.5C).  The efficacy of these strains in inhibition of Plasmodium development has 

yet to be tested, but in the case of PLA2 H67N (20 kDa), a functional phospholipase is 

not needed for inhibition to occur (MOREIRA et al. 2002b).  Anti-Pbs21 is a 21 kDa 

antibody that binds to a P. berghei surface protein; so proper folding of the protein is 

necessary for function (YOSHIDA et al. 1999).  It will be interesting to see whether this 

scFv can function after being secreted in one step to the cell exterior via this Type I 

secretion system and remaining as a fusion to the HlyA C-terminus.  As with the N-

terminal signals, SM1 (8 kDa) was not detected in the spent growth medium.  The fact 

that it was not detected in the cell pellet indicates a problem with expression of this 

effector protein under these conditions.  

 The co-expression of a cocktail of cytoplasmic chaperones with PPIase activity 

and/or folding properties have shown improvement in the yield, activity, and secretion of 

some recombinant proteins in E. coli (DE MARCO 2007; DE MARCO et al. 2007; 

NISHIHARA et al. 2000).  Trigger factor (TF), a member of the superfamily of cytoplasmic 

PPIases and the first chaperone to bind a polypeptide upon its exit from the ribosome, 

aids in the cis-trans isomerization of petidyl-prolyl bonds (KOLAJ et al. 2009).  This 

isomerization is often a rate-limiting step in the folding process and overexpression of TF 
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can sometimes improve production of a protein (NISHIHARA et al. 2000).  Hsp60s and 

Hsp70s are ubiquitous proteins with the ability to aid in folding and trafficking of 

polypeptides (KOLAJ et al. 2009).  The overexpression of different combinations of 

DnaK-DnaJ-GrpE (Hsp70s), GroESL (Hsp60s) and other accessory proteins gave a 

considerable boost in the production of soluble heterologous proteins in E. coli (DE 

MARCO 2007; DE MARCO et al. 2007). 

 Activity and solubility of various scFvs were improved after coexpression of 

DnaK-DnaJ-GrpE (CHOI et al. 2004; HU et al. 2007).  Some of these researchers also 

reported a reduced solubility of the scFv after co-overproduction of GroESL, which 

provides a warning that certain additives may end up hindering production (HU et al. 

2007).  It is important to note that in each of these studies different combinations of 

modulators worked best for each of the recombinant proteins tested; it is unlikely that a 

universal “repair kit” for recombinant production exists (KOLAJ et al. 2009). 

 Finally, if the HlyA C-terminus fusion reveals itself as a problem, a linker 

containing the outer membrane protease OmpT cleavage sequence could be cloned in 

between the effector gene and the ‘hlyA sequence (HANKE et al. 1992).  Upon secretion, 

the effector protein, unencumbered by HlyA, may behave more as expected and go on to 

successfully inhibit Plasmodium in the mosquito gut. 

Summary 

 Table 3.4 summarizes the results obtained using the four secretion signals and 

four passenger proteins.  Overall, the results were mixed and no apparent pattern of 

success for one signal or one passenger was seen.  Across the board, SM1 was not 

secreted using any of the signals and the ompA-SM1 constructs appeared to make  
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P. agglomerans cells sick.  Anti-Pbs21 was secreted with most of the signals, but only in 

E. coli.  A protein similar in structure to Anti-Pbs21, the anti-BSA scFv, was secreted as 

an active protein in both species, but only under the PelB signal.  PLA2 H67N was only 

secreted using the HlyA signal, which may indicate something inherent in this protein 

that makes it easiest to secrete in one step (Type I secretion).  TolB was the least 

successful signal tested, with the majority of proteins neither expressed nor secreted. 

Future Directions 

 Realistically, as new effector genes are discovered or created, a case-by-case 

empirical testing to obtain a functional and secretable effector product will be needed.  

This study shows that there is no predicted response for how a secretion signal or effector 

protein will behave in P. agglomerans, let alone the most-studied bacterium in the world, 

E. coli.  It is just as probable that an effector protein would require no modifiers as it 

would need a unique series of modifiers in order to see it expressed and/or secreted from 

the cell. 

 Luckily, there are methods that are continually being developed for improving the 

yield and activity of a secreted protein.  With the co-expression of chaperone proteins 

that act in the cytoplasm or periplasm to aid in folding and processing of nascent 

polypeptides, the yield of soluble and secreted protein could increase dramatically 

(KOLAJ et al. 2009).  These chaperone proteins could first be provided on helper plasmids 

to see if their presence improves production and secretion.   

 Because there are concerns regarding paratransgenic bacterium carrying multiple 

plasmids in the wild, there are ways to limit the amount of extraneous DNA carried by 

the bacterium.  As a first test, the chaperone protein genes and effector protein genes 
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could be combined on one plasmid, possibly under control of the same promoter 

(HAYHURST and HARRIS 1999).  Organizing these genes in an operon would ensure 

simultaneous production of the effector protein and the chaperones that it needs (Figure 

3.6).  Secondly, this operon could be cloned into a transposable element that would 

incorporate into the chromosome.  As long as a single-copy version of this operon 

showed promise as an effective means of Plasmodium inhibition, this would reduce the 

already rare chance of horizontal gene transfer.  This organization may also improve the 

expression of some of the effector proteins that may be too toxic to the cell if they are 

translated from a multicopy plasmid. 
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TABLE 3.1:  N-terminal Secretion Signal Sequences 

Signal Sequencea Reference 
PelB MKYLLPTAAAGLLLLAAQPAMA⇓EV… (WINTER et al. 1994) 

OmpA MKKTAIAIAVALAGFATVAQA⇓MAEV… (THIE et al. 2008) 
TolB MKQALRVAFGFLILWASVLHA⇓AQPAMAEV… (THIE et al. 2008) 

 

a The ⇓ indicates the predicted cleavage site.  The residues in italics represent the amino terminus of a 
secreted protein.  Additional amino acids not belonging to the signal sequence are underlined.
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TABLE 3.2  Strains Used in This Study 
 

Strain Relevant characteristicsa Source or Reference 
E. coli Top10 F- mcrA Δ(mrr-hsdRMS-mcrBC) ø80lacZΔM15 

ΔlacX74 recA1 araD139 Δ (ara-leu)7697 galU galK 
rpsL (StrR) endA1 nupG 

Invitrogen Corporation 

E. coli Top10 F’ Top 10 with F’[lacIq Tn10 (TcR)]  Invitrogen Corporation 
S. cerevisiae INVSc-1 Sc1: MATa his3D1 leu2 trp1-289 ura3-52  

MATα his3D1 leu2 trp1-289 ura3-52 
Invitrogen Corporation 

E. coli BW25113 lacIq rrnB ΔlacZ hsdR514 ΔaraBAD ΔrhaBAD (DATSENKO and 
WANNER 2000) 

E. coli ET12567 dam-13::Tn9 dcm-6 hsdM hsdR recF143 
zjj201::Tn10 galK2 galT22 ara-14 lacY1 xyl-5 leuB6 
thi-1 tonA31 rpsL136 hisG4 tsx-78 mtl-1 glnV44 F- 

(MACNEIL et al. 1992) 

E. coli LL308 Δ(pro-lac) recA nalA supE thi/F’ pro+lacIq 
lacZΔM15 

(ZENGEL et al. 1980) 

E. coli HB2151 Δlac-pro ara nalA  thi F’ (proAB lacIq lacZΔM15) (WINTER et al. 1994) 
P. agglomerans Wild-type strain isolated from Johns Hopkins U. 

mosquitoes 
(RIEHLE et al. 2007) 

P. agglomerans E325 Commercial strain isolated from plant matter; RifR (PUSEY 2002) 
a StrR, streptomycin resistance; TcR, tetracycline resistance; NalR, nalidixic acid resistance; RifR, rifampicin  

  resistance 
 



 103

TABLE 3.3  Plasmids Used in This Study 
 

Plasmid Relevant Characteristicsa Source or Reference 
pIJ790 CamR; λ Red (gam, bet, exo) araC rep101ts (GUST et al. 2004) 
pIJ799 AprR; source of aac(3)IV-oriT cassette with bla homology (GUST et al. 2004) 
pUZ8002 KanR; RK2 derivative, nontransmissible plasmid in E. coli  (PAGET et al. 1999) 
pMQ64 GentR; yeast recombination vector containing colE1 ori  (SHANKS et al. 2006) 
pDB27 CamR; source of malE-anti BSA scFv Bisi, D.C., unpublished 
pHA-2-5-1 source of SM1 effector gene (encodes 2 tandem copies) (GHOSH et al. 2001) 
pDL200.3 source of Anti-Pbs21 effector gene Lampe, D.J., unpublished 
pTOPO-PLA2-H67N source of PLA2-H67N effector gene (MOREIRA et al. 2002b) 
pAgCP-CEL-III source of CEL-III effector gene (YOSHIDA et al. 2007) 
PelB   
pIT2-scFv ApR; pIT2 with α-BSA scFv between pelB and epitope tags (WINTER et al. 1994) 
pDB36 AprR; pIT2-scFv with bla gene replaced with aac(3)IV This study 
pDB48 GentR; pelB-AscI-6His-myc-STOP cloned in pMQ64 MCS This study 
pDB51 GentR; pDB48/Anti-BSA scFv This study 
pDB52 GentR; pDB48/2-SM1 This study 
pDB53 GentR; pDB48/Pbs21 This study 
pDB54 GentR; pDB48/PLA2-H67N This study 
OmpA   
pDB67 GentR; ompA-AscI-6His-myc-STOP cloned in pMQ64 MCS This study 
pDB69 GentR; pDB67/α-BSA scFv This study 
pDB71 GentR; pDB67/2-SM1 This study 
pDB72 GentR; pDB67/Pbs21 This study 
pDB73 GentR; pDB67/PLA2 H67N This study 
TolB   
pDB68 GentR; tolB-AscI-6His-myc-STOP cloned in pMQ64 MCS This study 
pDB70 GentR; pDB68/α-BSA scFv This study 
pDB75 GentR; pDB68/2-SM1 This study 
pDB76 GentR; pDB68/Pbs21 This study 
pDB77 GentR; pDB68/PLA2 H67N This study 
HlyA   
pVDL9.3 CamR; production of HlyB and HlyD transporters (TZSCHASCHEL et al. 1996) 
pEHLYA2-SD ApR; polylinker for cloning ORFs in frame with E-tagged 

‘hlyA (23-kDa C-terminal domain of HlyA) 
(FERNANDEZ et al. 2000) 

pDB47 AprR; pEHLYA2-SD with bla gene replaced with aac(3)IV This study 
pDB49 AprR; pDB47/ α-BSA scFv This study 
pDB50 AprR; pDB47malE-α-BSA scFv This study 
pDB58 AprR; pDB47/SM1 This study 
pDB59 AprR; pDB47/Pbs21 This study 
pDB60 AprR; pDB47/PLA2-H67N This study 

   a ApR, ampicillin resistance; AprR, apramycin resistance; CamR, chloramphenicol resistance; GentR,  
  gentamycin resistance; MCS, multiple cloning site 
 



 104

 
 
 

 
 
 

 
 
 

 
 
 

Figure 3.1:  Secretion constructs used in this study.  The Type II secretion-based 

construct (PelB, OmpA, and TolB) is shown in Figure 3.1A.  The lac promoter drives 

expression of the effector gene, which was tagged with an N-terminal secretion signal 

(T2SS) and C-terminal epitope tags (6His myc).  The plasmid carries the colE1 origin of 

replication and the aac(3)IV gene (apramycin resistance).  Figure 3.1B shows the 

hemolysin (‘hlyA) secretion-based construct.  Again, the lac promoter drives expression 

of the effector gene, which is tagged at its C-terminal end with the 6His and myc epitopes 

(Tags), as well as the E-tag (E).  The effector is fused to the 3’ end of hemolysin A 

(‘hlyA).  The hemolysin construct must be co-expressed with pVDL9.3, which provides 

the membrane channel proteins HlyB and HlyD.  (RBS = ribosome binding site)
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Figure 3.2:  Secretion of proteins using PelB in E. coli and P. agglomerans.  Figure 3.2A 

shows an ELISA analysis of overnight supernatants from E. coli, P. agglomerans, and the 

commercial P. agglomerans strain E325 expressing pDB36 (pelB-anti-BSA scFv). The 

negative controls are P. agglomerans and Eh325 with no plasmid (N.C.).  Figure 3.2B 

compares the averaged signal from the BSA-coated wells for each strain.  Figure 3.2C shows 

the presence or absence of various proteins in the cell pellet (P) or spent growth medium 

supernatant (S) collected from overnight cultures of E. coli and P. agglomerans.  The anti-

BSA scFv antibody is secreted in both species.  The anti-Plasmodium effector SM1 is 

expressed in both species both not secreted, and Anti-Pbs21 is expressed and secreted in  

E. coli only.  P. agglomerans without a plasmid served as a negative control for the Western 

blot analysis (N.C.).  The proteins were detected using a α-myc antibody.
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Figure 3.3:  Secretion of proteins using OmpA in E. coli and P. agglomerans.  Figure 

3.3A shows an ELISA analysis of overnight supernatants from E. coli and P. agglomerans 

carrying pDB69 (ompA-anti-BSA scFv).  The proteins were not active in either species.   

The positive control is HB2151 transformed with pDB36 and a negative control is  

P. agglomerans with no plasmid (N.C.).  The averaged signal from the BSA-coated wells for 

each strain is shown in Figure 3.3B.  Figure 3.3C shows the presence or absence of various 

proteins in the cell pellet (P) or spent growth medium supernatant (S) collected from 

overnight cultures of E. coli and P. agglomerans.  The anti-BSA scFv antibody is expressed 

and secreted only in E. coli.  The anti-Plasmodium effector Anti-Pbs21 was expressed and 

secreted by E. coli, and PLA2 H67N were expressed, but not secreted, by both species.   

P. agglomerans with no plasmid is the negative control for Western analysis (N.C.). 

The proteins were detected using a α-myc antibody.
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Figure 3.4: Secretion of proteins using TolB in E. coli and P. agglomerans.  Figure 3.4A 

shows an ELISA analysis of overnight supernatants from E. coli and P. agglomerans 

carrying pDB70 (tolB-anti-BSA scFv).  The proteins were not active in either species.   

The positive control is HB2151 transformed with pDB36 and a negative control is  

P. agglomerans with no plasmid (N.C.).  Figure 3.4B shows the averaged signal from the 

BSA-coated wells for each strain.  Figure 3.4C shows the presence or absence of various 

proteins in the cell pellet (P) or spent growth medium supernatant (S) collected from 

overnight cultures of E. coli and P. agglomerans.  The anti-BSA scFv antibody is expressed, 

but not secreted in E. coli.  None of the anti-Plasmodium effectors tested (SM1, Anti-Pbs21, 

or PLA2 H67N) were expressed or secreted in either species.  P. agglomerans with no 

plasmid is the negative control for Western analysis (N.C.).  The proteins were detected 

using a α-myc antibody.
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Figure 3.5:  Secretion of proteins using HlyA in E. coli and P. agglomerans.  Figure 3.5A 

shows an ELISA analysis of overnight supernatants from E. coli and P. agglomerans 

carrying pDB49 (Anti-BSA scFv-‘hlyA) or pDB50 (malE-Anti-BSA scFv-‘hlyA).  The 

proteins were not active in either species.  The positive control is HB2151 transformed with 

pDB36 and a negative control is P. agglomerans with no plasmid (N.C.).  The averaged 

signal from the BSA-coated wells for each strain is shown in Figure 3.5B.  Figure 3.5C 

shows the presence or absence of various proteins in the cell pellet (P) or spent growth 

medium supernatant (S) collected from overnight cultures of E. coli and P. agglomerans.  

The Anti-BSA scFv antibody is secreted in both species, but the MalE-Anti-BSA scFv fusion 

is only expressed in E. coli.  The anti-Plasmodium effectors Anti-Pbs21 and PLA2 H67N 

were secreted as HlyA fusions by both species.  P. agglomerans with no plasmid is the 

negative control for Western analysis (N.C.).  The proteins were detected using a α-myc 

antibody.
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TABLE 3.4:  Summary of Expression and Secretion Results Using all Signals and Effector 
Proteins in E. coli and P. agglomerans 

 
  PelB  HlyA  OmpA  TolB  
 Protein Exp.a Secr.b Exp. Secr. Exp. Secr. Exp. Secr. 

E. coli Anti-BSA Y Y Y Y Y Y Y N 
P. agg  Y Y Y Y N N N N 
E. coli SM1 Y N N N N N N N 
P. agg  Y N N N N N N N 
E. coli Pbs21 Y Y Y Y Y Y N N 
P. agg  N N Y Y N N N N 
E. coli PLA2-H67N N N Y Y Y N N N 
P. agg  N N Y Y Y N N N 

 a Expression of the protein as visualized by Western Blot; b Secretion of the protein as visualized by 
 Western Blot 
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Figure 3.6:  Proposed polycistronic effector and chaperone construct.  This figure 

presents a hypothetical operon for expression of a secreted effector protein and its necessary 

chaperones for optimal secretion and activity.  The lac promoter would drive expression of 

the effector gene as well as the chaperones dsbA, dsbC, fkpA, and surA (SCHLAPSCHY et al. 

2006).  The proteins would all be translated at the same time, thus increasing the likelihood 

of the chaperone proteins interacting with the effector protein and optimizing its potential for 

secretion and inhibition of Plasmodium.
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CHAPTER 4 
 
 
SUMMARY AND FUTURE DIRECTIONS 
 
 
 The research presented in this dissertation is part of a paratransgenic approach to 

combating the spread of malaria.  Malaria is caused by the protist Plasmodium and is 

vectored to humans by female anopheline mosquitoes.  A bacterial symbiont of the mosquito 

gut environment, Pantoea agglomerans, is a candidate for expression and delivery of anti-

Plasmodium effector products.  An important caveat of this approach is that the effector 

product must be secreted from the bacterial cell in order to be effective against Plasmodium.  

This research focused on characterizing and utilizing secretion signals for use in this 

bacterium. 

 P. agglomerans was tested, along with the more-characterized species E. coli, for the 

expression and secretion of various anti-Plasmodium effector products using several protein 

secretion signals.  These included a native P. agglomerans signal within the FliC/Flagellin 

protein that was characterized after a search for native secreted proteins was performed using 

spent growth medium.  Also, a collection of secretion signals (PelB from Erwinia 

carotovora; OmpA, TolB, and HlyA from E. coli) was assessed for their ability to mediate 

secretion in P. agglomerans.  The FliC/Flagellin sequences did not work as a secretion signal 

in P. agglomerans.  And ultimately, there was no predictable pattern of success when pairing 

a secretion signal with an effector gene. The results were mixed within each signal used, each 
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effector gene tested, and even within the behavior of E. coli or P. agglomerans expressing a 

particular construct.  However, P. agglomerans was able to secrete the effectors Anti-Pbs21 

and PLA2 H67N as fusions to the HlyA C-terminal secretion signal, and these strains have 

been sent to Johns Hopkins University.  Trials are currently underway there to determine the 

efficacy of these strains in inhibiting Plasmodium development in Plasmodium-infected 

mosquitoes. 

Native Secretion Signals 

 Chapter two summarizes the search for native P. agglomerans secreted proteins and their 

corresponding genes.  It was hypothesized that the secretion signal within these genes could 

be used for secretion of a passenger anti-Plasmodium protein.  Most signals used for 

secretion of heterologous proteins come from well-characterized proteins in E. coli, and it 

was expected that a secreted protein from a bacterium like P. agglomerans (an environmental 

isolate with no completed genome sequence) may not behave in the same fashion or perform 

at all.   

 The native secreted protein search did not provide a great variety of secreted proteins.  

Despite the detection of 16 secreted proteins by 2D-PAGE, only 10 could be identified based 

on sequence homology to protein sequences in the NCBI Enterobacteriaceae database.  

Within these 10, three pairs of spots matched to the same protein, indicating that isoforms of 

one protein were being treated as unique proteins.  Moreover, most identities matched to 

putative intracellular proteins with vague descriptors like “hydrogenase” or “periplasmic 

protein” (Table 2.4).  Finally, one protein, FliC/Flagellin, was identified as a bona fide 

secreted protein (ALDRIDGE and HUGHES 2001; CHEVANCE and HUGHES 2008; MINAMINO 

and NAMBA 2004).  Previously published data shows FliC/Flagellin functions as a signal for 
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recombinant protein secretion in E. coli and Salmonella typhimurium (MAJANDER et al. 2005; 

VEGH et al. 2006; YOUNG et al. 1999). 

 The P. agglomerans fliC 5’UTR and fliC ORF were tested for their ability to mediate 

secretion of an anti-BSA scFv in P. agglomerans cells that still had the intact fliC gene.  

There was a complete inability to detect expression of the test protein in the pellet, as well as 

secretion into the growth medium.  The fliC gene was abandoned as a secretion signal for 

mediating heterologous secretion.   

 As the sequencing of bacterial genomes and proteomes becomes more routine, and 

databases are updated, the results generated in this study can be re-evaluated.  The identity of 

the remaining unknown proteins (Figure 2.1 and Table 2.4) may be revealed after a search 

through a more current database.  Also, the treatment performed at the Taplin facility, 

namely trypsin digestion followed by LC-MS/MS (liquid chromatography-tandem-mass-

spectrometry), which generates mass fingerprinting and provides users with tryptic peptide 

masses in a mass spectrum that can be matched to calculated tryptic peptide masses in a 

database, is sometimes not enough to identify an unknown protein (STEEN and MANN 2004).  

Using alternate peptide sequencing techniques like de novo peptide sequencing may also 

identify more secreted proteins for testing in secretion trials.  

 De novo peptide sequencing takes the mass spectrometry output data and uses that to 

directly determine the primary amino-acid sequence, and the success of identification 

depends greatly on the quality of data.  However, experts warn that the mass accuracy and 

resolution of the instrument can skew interpretations (STEEN and MANN 2004).   

 In summary, a native secretion protein from a species like P. agglomerans may never 

work as a signal for recombinant protein production.  Additional secreted proteins could be 
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identified and tested as with fliC, however, it may be more time-saving and successful to 

optimize a heterologous secretion signal for use in this species (Chapter 3). 

Heterologous Secretion Signals 

 Four secretion signals, known to work in E. coli, were tested in E. coli and  

P. agglomerans for secretion of four different proteins (Anti-BSA scFv, and the anti-

Plasmodium effectors SM1, Anti-Pbs21 scFv, and PLA2 H67N).  PelB and OmpA are N-

terminal signal sequences that result in Type II-mediated secretion.  TolB is a signal used by 

the bacterial SRP secretion pathway.  When the C-terminus of HlyA is fused to a passenger 

protein, it is exported from the cell in a Type I secretion pathway.  The results from Chapter 

3 reveal no clear pattern of successful secretion with one signal or effector protein.  It is 

unpredictable whether the pairing of a signal and effector protein will result in a functional, 

secreted protein.  Fortunately, there are additional tools to test in conjunction with the 

secretion constructs made in this study that could aid in secretion and restore function and/or 

folding of the effector protein. 

 It may be that asking an environmental isolate like P. agglomerans to express and secrete 

heterologous proteins is too tall an order.  The data presented in Chapter 3 shows that it often 

is too much to ask even of a long-domesticated laboratory strain like E. coli!  It may be 

possible to take advantage of the considerable efforts by the biotechnology industry to devise 

ways to improve secretion.  For example, the co-expression of a number of folding and/or 

protein modifying chaperones can greatly improve the yield, solubility, or activity of the 

desired protein product (KOLAJ et al. 2009).  One major difficulty is that improvement cannot 

be predicted and it takes time to determine the correct “cocktail” of chaperones needed for a 

particular recombinant protein.    
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 As a starting point, the Lampe laboratory has received a helper plasmid called pTUM4 

that encodes four periplasmic molecular chaperones, DsbA, DsbC, FkpA, and SurA 

(SCHLAPSCHY et al. 2006).  The chloramphenicol resistance gene is compatible with  

P. agglomerans.  The co-expression of pTUM4 with each of the anti-Plasmodium effector 

constructs (Table 3.2) should be tested.  Perhaps these chaperones will aid in the periplasmic 

folding (disulfide bond formation and cis/trans isomerization) of the effector proteins and 

they will be more efficiently processed and secreted.  In addition to the proteins provided on 

pTUM4, there are several other chaperones that could improve expression or secretion for 

each particular signal/effector protein pair, and these are presented in the discussion section 

of Chapter 3.   

 If a “magic bullet” is found that improves secretion and processing of an effector protein, 

it would be most efficient to organize the corresponding gene(s) along with the secretion 

signal and effector gene in a polycistronic operon (Figure 3.6).  If one promoter drove 

expression of the secretable effector gene and corresponding chaperones, this would greatly 

ensure the co-production of these proteins and enhance the chaperone’s availability to the 

effector protein directly upon translation. 

 What is most important to note is that P. agglomerans is capable of secreting an active 

single-chain antibody (the anti-BSA scFv) using the PelB signal (Figure 3.2).  This is an 

important finding because, in principle, the anti-BSA scFv in the pDB36 construct can be 

replaced with anti-Plasmodium scFvs and tested for secretion and activity against 

Plasmodium parasites present in infected mosquito guts.   

 It is encouraging that P. agglomerans is able to secrete an active scFv via the pDB36 

construct, because there are several anti-Plasmodium mouse monoclonal antibodies known to 
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block Plasmodium transmission that can be converted to scFv form and tested in pDB36 and 

the other secretion constructs made in this study (BARR et al. 1991; LI et al. 2005; QUAKYI et 

al. 1987; RENER et al. 1983). Pfs25 is expressed on the surface of zygote and ookinete forms 

of P. falciparum and monoclonal antibodies against this antigen have resulted in the 

complete failure of the parasite to transition to the oocyst stage inside the mosquito gut 

(BARR et al. 1991).  The Pfs48/45 antigens are found on the surface of P. falciparum 

gametocytes and monoclonal antibodies have reduced the infectivity of this parasitic stage by 

preventing fertilization of gametes taken up during a blood meal (RENER et al. 1983).  The 

Pfs230 monoclonal antibody is also active against gametocyte and zygote stages of P. 

falciparum and interferes with the infectivity of the parasite (QUAKYI et al. 1987).  Finally, 

an anti-chitinase monoclonal antibody (PfCHT1) has already been converted to an scFv form 

and been shown to reduce the transmission of P. falciparum and P. gallinaceum (avian 

malarial parasite) to mosquitoes (LI et al. 2005).  The three Pfs antibodies can be converted 

to scFv using standard procedures and primers designed for mouse Vl, Vk, and VH genes 

(TOLEIKIS et al. 2004). 
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APPENDIX 1 
 
 
Isolation of Secondary Secreted Protein Candidates:   
P. agglomerans flgL and ssb 
 
 
Objective and Summary 

 In order for a paratransgenic strain of P. agglomerans to effectively target 

Plasmodium development in the mosquito gut, the effector proteins that it expresses must 

be secreted from the bacterial cell.  To this end, a search for native secreted proteins was 

performed using spent growth medium, 2D-PAGE resolution of the proteins present, and 

MALDI-TOF analysis to identify the proteins.  The primary secreted protein candidate 

found in this search was FliC/Flagellin and information regarding the isolation of the fliC 

gene and its utilization are found in Chapter 2.  Among the remaining proteins identified 

were FlgL (flagellar hook-associated protein 3) and Ssb (single-stranded DNA-binding 

protein).  Experimental steps similar to those in Chapter 2 were taken to isolate the genes 

for these secondary secreted protein candidates.  These steps involved genome walking 

PCR using degenerate primers designed from the peptide fragments identified with 

MALDI-TOF.  In the case of flgL, the gene that was isolated was believed to be E. coli 

contamination because the sequence similarity to E. coli flgL was 99.7%.  This 

contamination must have arisen at some point in the preparation of the genomic DNA 

template.  As a result, the flgL gene that was isolated was not used for the creation of any 
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secretion constructs.  The P. agglomerans ssb gene was successfully isolated and 

sequenced, and as a result, two secretion constructs were made using the ssb ORF.  

Ultimately, it is doubtful that Ssb is a true secreted protein as it is mainly involved in 

intracellular DNA processes.  Ssb most likely appeared in the secreted protein profile due 

to cell lysis during growth of the culture or collection of the cells prior to protein 

precipitation. 

Materials and Methods 

MALDI-TOF analysis.  This analysis is explained in Ch. 2 Materials and Methods. 

Genome Walking PCR.  This PCR technique is explained in Ch. 2 Materials and 

Methods. 

Plasmid construction. The plasmids in this study were constructed using the yeast gap 

repair method as previously described by Shanks et al (SHANKS et al. 2006).  Briefly, the 

vector to be modified was digested with restriction enzymes and treated with a 

phosphatase.  DNA inserts were amplified with oligos that contained 40 bp of homology 

to the digested vector (up to 2000 bases from the digestion site).  Agarose gel-purified 

vector (~20-200 ng) and inserts (50-500 ng), along with herring sperm DNA (100 μg) 

were co-transformed into 8-10 colonies of S. cerevisiae INVSc-1 cells (Invitrogen) 

resuspended in 500 μl of PLATE solution (50% PEG, 100 mM LiAc, 10 mM Tris, pH 

7.4, 1 mM EDTA).  The cells were incubated on the benchtop for ~2 d.  After heat shock 

at 42°C for 30 min, the yeast cells were resuspended in 150 μl of deionized H2O and 

plated on uracil drop-out medium (6.7 g/L yeast nitrogen base minus amino acids, 1.92 

g/L yeast synthetic drop-out media supplement without uracil, 2% glucose (w/v) and 20 

g/L bacteriological agar) and incubated at 30°C for up to 2 d.  Total yeast DNA was 
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purified from the colonies using the “Yeast Smash and Grab DNA Miniprep” protocol 

(ROSE et al. 1990).  Fifty nanograms of total yeast DNA was transformed into an 

appropriate strain of E. coli and bacterial clones were verified for the resultant plasmid by 

restriction enzyme digestion and DNA sequencing. 

 The yeast-replicating vector, pDB14, was built as follows.  pACYC184 (New 

England Biolabs) was digested with XmnI for 1.5 h followed by treatment with calf 

intestinal phosphatase for 1 h at 37°C.  The 2 μm ori and URA3 gene from the yeast 

cloning vector pMQ64 were amplified as a single PCR product with 40 bp of homology 

to pACYC184 and recombined into the XmnI cut site.  

 pDB24 was made by digesting pDB14 with HindIII-EagI and recombining in the 

P. agglomerans fliC 5’UTR (amplified from the P. agglomerans chromosome) with an 

AscI site at the 3’ end, and the 6His and myc epitope sequences and stop codon from 

pIT2-scFv.  Then, pDB27 was constructed by digesting pDB24 with AscI and 

recombining in the malE gene from pMALTM-c2X and scFv gene from pIT2-scFv (see 

Table A1.2).  pDB27 allows for the expression of the fusion protein MalE-Anti-BSA 

scFv under the control of the P. agglomerans fliC promoter.  Finally, the fliC 5’UTR in 

pDB27 was replaced by digesting the vector with EcoNI and recombining the Ptac 

promoter from pMALTM-cRI to make pDB28.   

 To make pDB29, pDB28 was digested with BglI and the P. agglomerans ssb ORF 

(amplified from the P. agglomerans chromosome) was recombined in frame behind the 

anti-BSA scFv ORF by yeast recombination.  To make pDB31, pDB27 was digested with 

EcoNI and the P. agglomerans ssb ORF was recombined in frame after the Ptac promoter 

and before the malE ORF using yeast recombination. 
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Results 

Isolating flgL and ssb based on peptide sequence. 

 The flgL and ssb genes were isolated from the P. agglomerans chromosome using 

a genome walking PCR technique (GUO and XIONG 2006).  Figure A1.5 and A1.6 show 

the P. agglomerans FlgL and Ssb peptide fragments that were identified and their relative 

placement in the E. coli flgL and ssb sequences (shown in green), as well as the site of 

degenerate PCR primer design (red arrows).  The primers were based on Gram-negative 

codon usage tables and allowed for as much degeneracy as possible to ensure a successful 

amplification of the corresponding DNA sequence (SAMBROOK and RUSSELL 2001).  The 

sequence of these primers and the series of universal “walking primers” are given in 

Table A1.3.  PCR products ranging in size from 200-600 bp were cloned using TOPO 

technology (Invitrogen Corporation).  The DNA sequence from these PCR products was 

used to generate a P. agglomerans flgL or ssb contig from which additional specific 

primers could be designed and sequential rounds of genome walking PCR could be 

performed.  This procedure was repeated until the entire P. agglomerans gene and the 

flanking DNA up to and including some of the neighboring genes was isolated and 

sequenced (Figures A1.5 and A1.6). 
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TABLE A1.1  Strains Used in This Study 

Strain Relevant characteristicsa Source or Reference 
E. coli Top10 F- mcrA Δ(mrr-hsdRMS-mcrBC) ø80lacZΔM15 

ΔlacX74 recA1 araΔ139 D(ara-leu)7697 galU galK 
rpsL (StrR) endA1 nupG 

Invitrogen Corporation 

E. coli Top10 F’ Top 10 with F’[lacIq Tn10 (TcR)]  Invitrogen Corporation 
S. cerevisiae 
INVSc-1 

Sc1: MATa his3D1 leu2 trp1-289 ura3-52  
MATα his3D1 leu2 trp1-289 ura3-52 

Invitrogen Corporation 

a StrR, streptomycin resistance; TcR, tetracycline resistance; NalR, nalidixic acid resistance 
 

 

 

TABLE A1.2  Plasmids Used in This Study 
 

Plasmid Relevant Characteristicsa Source or Reference 
pACYC184 CamR, TcR; cloning vector with p15A low copy ori (CHANG and COHEN 1978) 
pMQ64 GentR; yeast recombination vector and source of yeast 

ori (2μm) and yeast URA3 gene 
(SHANKS et al. 2006) 
 

pMALTM-c2X ApR; source of malE (maltose binding protein) gene New England Biolabs 
pMALTM-cRI ApR; source of Ptac New England Biolabs 
pIT2-scFv ApR; source of anti BSA scFv gene with 6His and myc 

epitopes 
(DE WILDT et al. 2000) 

pDB14 CamR; pACYC184/2μm ori and URA3 gene This study 
pDB24 CamR; pDB14/P. agg fliC 5’UTR-AscI-6His-myc-

STOP 
This study 

pDB27 CamR; pDB24/P. agg fliC 5’UTR-malE-anti BSA scFv This study 
pDB28 CamR; pDB14/Ptac-malE-anti-BSA scFv This study 
pDB29 CamR; pDB28/Ptac-malE-anti-BSA scFv-ssb This study 
pDB31 CamR; pDB27/ Ptac-ssb-malE-anti BSA scFv This study 

   a ApR, ampicillin resistance; CamR, chloramphenicol resistance; GentR, gentamycin resistance; TcR,  
  tetracycline resistance 
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Table A1.3:  Oligonucleotides used in this Study 
 

Oligonucleotide Sequence 5’- 3’a Purpose 
M13 Forward (-20) GTAAAACGACGGCCAG Sequencing TOPO inserts 
M13 Reverse CAGGAAACAGCTATGAC Sequencing TOPO inserts 
Semi-1 GCCAATTCCGGATNGAYKSNGGNTC Arbitrary walking primer 
Semi-2 GCCTTAAGGCCTANGARMSNCCNAG Arbitrary walking primer 
Semi-3 CGGTTAAGGCCTANYTCSKNGANGC Arbitrary walking primer 
Semi-4 GCCAATTCCGGATNSAGYMNCTNCG Arbitrary walking primer 
FlgL134-140 For TAYATYTTYGCNGGNTAYAAR Genome Walking PCR 
FlgL203-212 Rev1 NGTYTTNARNGCNGCRATNGC Genome Walking PCR 
FlgL236-247 Rev2 NACNGTNARNACRTTRTTNA Genome Walking PCR 
flgL-nest1-Left ATGCGCWTWAGYACTMRMATGATG Nested Genome Walking 

PCR 
flgL-nest2-Left TACCAGCAAAAYATGCRWGGGARYAYT G Nested Genome Walking 

PCR 
flgL-nest1-Right CTGGAAMAGMGACATTCCCTGC Nested Genome Walking 

PCR 
flgL-nest2-Right ATCGCTRAAYGCTTTATASGAWGCSTG Nested Genome Walking 

PCR 
flgL check Left AATGGCACCTTGAGTGACGATG Verify P. agg flgL gene 
flgL check Right GTGCAATGCCGTTTGCTGCATG Verify P. agg flgL gene 
Ssb5-22 For GGNGTNAAYAARGTNATYYTNG Genome Walking PCR 
Ssb74-85 Rev1 YTGNCCYTCRATRTANACYTG Genome Walking PCR 
Ssb98-116 Rev2 CATYTGCATNGTNCCNCCNACRTTNAC Genome Walking PCR 
ssb-nest1-Left ATGGCCAGCAGAGGCGTWAAYAARG Nested Genome Walking 

PCR 
ssb-nest2-Left ATTCTYGTYGGKAATCTGGGYCARG Nested Genome Walking 

PCR 
ssb-nest1-Right GAAMGGAATRTCGTCRTCRAARTCCATYGG Nested Genome Walking 

PCR 
ssb-nest2-Right CATYGGSGGYTCGTTAGACGG Nested Genome Walking 

PCR 
a R = A or G; Y = C or T; N = any nucleotide; K = G or T; M = A or C; S = G or C; P. agg, P. agglomerans 
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Figure A1.1  FlgL MALDI-TOF Results from Taplin Biological Mass Spec Facility.  

Results from MALDI-TOF analysis of each individual spot are viewed by signing in to 

the Taplin Biological Mass Spec Facility website with a provided username and 

password.  In the lower left-hand corner is a menu of protein matches that shows the 

number of peptide fragments isolated for this particular spot (5 total).  Each ID number 

takes the user to a screen that shows where each of the peptide fragments align to a 

known protein in the NCBI Enterobacteriaceae database.  In this case, the peptide 

fragments matched to E. coli FlgL. 
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Figure A1.2:  Peptide fragment matches to E. coli FlgL from Taplin Biological Mass 

Spec Facility.  In the case of the spot that matched to E. coli FlgL, five peptide fragments 

were generated upon tryptic digestion.  This screenshot shows where 4 of the 5 fragments 

matched to the E. coli FlgL protein sequence present in the NCBI Enterobacteriaceae 

protein database (2 fragments are overlapping).  The amino acid positions are given as 

well as the amino acid sequence of the fragment. 
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Figure A1.3:  Ssb MALDI-TOF Results from Taplin Biological Mass Spec Facility.  

Results from MALDI-TOF analysis of each individual spot are viewed by signing in to 

the Taplin Biological Mass Spec Facility website with a provided username and 

password.  In the lower left-hand corner is a menu of protein matches that shows the 

number of peptide fragments isolated for this particular spot (4 total).  Each ID number 

takes the user to a screen that shows where each of the peptide fragments align to a 

known protein in the NCBI Enterobacteriaceae database.  In this case, the peptide 

fragments matched to E. coli Ssb. 
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Figure A1.4:  Peptide fragment matches to E. coli Ssb from Taplin Biological Mass 

Spec Facility.  In the case of the spot that matched to E. coli Ssb, four peptide fragments 

were generated upon tryptic digestion.  This screenshot shows where the four fragments 

(2 were overlapping) matched to the E. coli Ssb protein sequence present in the NCBI 

Enterobacteriaceae protein database.  The amino acid positions are given as well as the 

amino acid sequence of the fragment. 
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  1 mrfstqmmyq qnmrgitnsq aewmkygeqm stgkrvvnps ddpiaasqav vlsqaqaqns
 61 qytlartfat qkvsleesvl sqvttaiqna qekivyasng tlsdddrasl atdiqglrdq
121 llnlanttdg ngryifagyk tetapfseek gkyvggaesi kqqvdasrsm vightgdkif
181 dsitsnavae pdgsasetnl fa mldsaiaa lktpvadsea dketaaaald ktnrg lknsl
241 nnvltvrael gtqlnelesl dslgsdralg qtqqmsdlvd vdwnatissy imqqtalqas
301 ykaftdmqgl slfqlsk

flgLflgK RNase E

~1.5 kb

A.

B.

 

 

 

 

 

 

 

Figure A1.5:  Identity and placement of sequenced P. agglomerans FlgL peptide 

fragments in the E. coli FlgL sequence and the P. agglomerans flgL contig assembled 

after genome walking PCR.  Five P. agglomerans FlgL peptide fragments were 

sequenced using MALDI-TOF and identified based on homology to the E. coli FlgL 

sequence.  A1.5A shows where the fragments (2 fragments are overlapping) match to the 

E. coli FlgL sequence (residues in green).  The red arrows indicate where the degenerate 

primers were designed (Table A1.3).  A1.5B shows the resulting P. agglomerans flgL 

contig assembled after genome walking PCR.  The blue bracket roughly indicates the 

length of sequence obtained. 
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  1 masrgvnkvi lvgnlgqdpe vrympnggav anitlatses wrdkatgemk eqtewhrvvl
 61 fgklaevase ylrkgsqvyi egqlrtrkwt dqsgqdrytt evvvnvggtm qmlggrqggg
121 apaggniggg qpqggwgqpq qpqggnqfsg gaqsrpqqsa paapsneppm dfdddipf

???
ssbexoA

~2 kb

A.

B.

 

 

 

 

 

 

Figure A1.6:  Identity and placement of sequenced P. agglomerans Ssb peptide 

fragments in the E. coli Ssb sequence and the P. agglomerans ssb contig assembled 

after genome walking PCR.  Four P. agglomerans Ssb peptide fragments were 

sequenced using MALDI-TOF and identified based on homology to the E. coli Ssb 

sequence.  A1.6A shows where the fragments (2 fragments are overlapping) match to the 

E. coli Ssb sequence (residues in green).  The red arrows indicate where the degenerate 

primers were designed (Table A1.3).  A1.6B shows the resulting P. agglomerans ssb 

contig assembled after genome walking PCR.  The blue bracket roughly indicates the 

length of sequence obtained.  Because a downstream ORF was not found, it is likely 

additional “walking” is needed in order to find the next gene. 
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scFv TAGSmalEssbP tac

scFv TAGSmalEP tac ssb
pDB29

pDB31

 

 

 

 

 

Figure A1.7:  Secretion constructs using P. agglomerans ssb ORF.  Two constructs 

were made using the P. agglomerans ssb ORF as the secretion signal for export of the 

MalE-anti-BSA scFv fusion protein (malE-scFv).    These plasmids were made using 

yeast recombination.  When expressed, the Ssb protein is fused to the C-terminal end of 

the passenger protein in pDB29, and also fused to the N-terminal end of the passenger 

protein in pDB31.  The Ptac promoter is driving the expression of the genes.  The coding 

sequence for these proteins contains the 6His and myc epitope tags (“TAGS”). 
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APPENDIX 2 
 
 
Growth Curve of Wild-type P. agglomerans  
 
 
Objective and Summary 

 A growth curve of wild-type P. agglomerans cells grown in Luria-Bertani (LB) 

broth was constructed.  The objective was to collect spent medium for 2D-PAGE during 

late-log phase, which would allow for the highest concentration of secreted protein and 

the lowest concentration of lysed cells in the culture. 

 A 5 ml overnight culture of P. agglomerans in LB broth was grown at 30°C in a 

shaking incubator set to 250 rpm.  On the next day, a 20 ml LB culture was established 

using a 1/100 dilution of the overnight culture.  Incubation continued at 30°C in the 

shaking incubator and a 1 ml aliquot was removed every hour for an OD600 reading in a 

Perkin Elmer MBA 2000 spectrophotometer.  Deionized water was used as a blank.  

After four hours, a 1/10 dilution of the 1 ml aliquot of the culture was used to obtain a 

reading that was still within range of the spectrophotometer. 
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Figure A2.1:  Growth curve of Wild-type P. agglomerans in LB Broth.  This graph 

shows the logarithmic growth of wild-type P. agglomerans cells in LB broth.  Samples 

were collected every hour for a total of 8 hours and the OD600 reading was plotted on the 

y-axis. 
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APPENDIX 3 
 
 
Parallel 2D-PAGE preparations for MALDI-TOF 
analysis of secreted P. agglomerans proteins 
 
 
Objective and Summary 

 The Taplin Biological Mass Spec Facility at Harvard Medical School encourages 

researchers submitting samples for MALDI-TOF analysis to only send samples that are 

detectable at the Coomassie stain level.  Because the majority of spots on the 2D-PAGE 

gels of secreted P. agglomerans proteins were detectable with the more sensitive reagent 

silver stain, in order to increase the amount of protein per spot, parallel gels were run and 

identical spots were cored from the gel and combined in a single tube prior to sending to 

the facility.  The gel shown in Figure 2.1 and the six gels shown here in Appendix 3 

(Figures A3.1 and A3.2) represent the source of all of the spots sent for identification at 

the Taplin Facility.  The spots (labeled A-O) were chosen for identification based on 

reproducibility of the same spot from gel to gel and the relative intensity compared to 

more faint spots on the gels. 
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Figure A3.1:  Parallel gels of late-log protein preparations of P. agglomerans 

secreted proteins.  In order to increase the amount of protein per sample (spot) sent for 

identification, parallel 2D-PAGE gels were generated.  Proteins were separated by 

isoelectric focusing on a pH gradient of 3-10 in the first dimension.  Proteins were then 

separated by molecular weight on a 10% acrylamide gel in the second dimension.  

Proteins were visualized with silver stain and identical protein spots were cored from the 

gel and combined in a single tube.  The letter labeling system corresponds to the labels in 

Figure 2.1.
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Figure A3.2:  Additional parallel gels of late-log protein preparations of P. 

agglomerans secreted proteins.  In order to increase the amount of protein per sample 

(spot) sent for identification, parallel 2D-PAGE gels were generated.  Proteins were 

separated by isoelectric focusing on a pH gradient of 3-10 in the first dimension.  Proteins 

were then separated by molecular weight on a 10% acrylamide gel in the second 

dimension.  Proteins were visualized with silver stain and identical protein spots were 

cored from the gel and combined in a single tube.  The letter labeling system corresponds 

to the labels in Figure 2.1. 


	Duquesne University
	Duquesne Scholarship Collection
	Fall 2009

	Engineering the Mosquito Symbiont Pantoea agglomerans to secrete Anti-Plasmodium Inhibitory Proteins
	Dawn C. Bisi
	Recommended Citation


	Microsoft Word - DawnCBisiDissCorrected.doc

