
Duquesne University
Duquesne Scholarship Collection

Electronic Theses and Dissertations

Summer 2004

A Proposed Algorithm Toward Uniform-
distribution Monotone DNF Learning
Wenzhu Bi

Follow this and additional works at: https://dsc.duq.edu/etd

This Immediate Access is brought to you for free and open access by Duquesne Scholarship Collection. It has been accepted for inclusion in Electronic
Theses and Dissertations by an authorized administrator of Duquesne Scholarship Collection. For more information, please contact
phillipsg@duq.edu.

Recommended Citation
Bi, W. (2004). A Proposed Algorithm Toward Uniform-distribution Monotone DNF Learning (Master's thesis, Duquesne
University). Retrieved from https://dsc.duq.edu/etd/312

https://dsc.duq.edu?utm_source=dsc.duq.edu%2Fetd%2F312&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dsc.duq.edu/etd?utm_source=dsc.duq.edu%2Fetd%2F312&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dsc.duq.edu/etd?utm_source=dsc.duq.edu%2Fetd%2F312&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dsc.duq.edu/etd/312?utm_source=dsc.duq.edu%2Fetd%2F312&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:phillipsg@duq.edu

A Proposed Algorithm Toward

Uniform-distribution Monotone DNF Learning

A Thesis

Presented to the Faculty

of the Mathematics and Computer Science Department

McAnulty College and Graduate School of Liberal Arts

Duquesne University

in partial fulfillment of

the requirements for the degree of

Master of Science in Computational Mathematics

by

Wenzhu Bi

07/30/2004

1

Wenzhu Bi

A Proposed Algorithm Toward Uniform-distribution Monotone

DNF Learning

Master of Science in Computational Mathematics

07/30/2004

APPROVED
Jeffrey Jackson, Ph.D., Associate Professor of Computer Science

APPROVED
Donald L. Simon, Ph.D., Associate Professor of Computer Science

APPROVED
Frank D’Amico, Ph.D., Professor of Mathematics

APPROVED
Kathleen Taylor, Ph.D., Graduate Director
Computational Mathematics Department

APPROVED
Constance D. Ramirez, Ph.D., Dean
McAnulty College and Graduate School of Liberal Arts

2

1 Introduction

1.1 Proposed Problem

In 1984 Valiant[1] introduced the distribution-independent model of Prob-
ably Approximately Correct (PAC) learning from random examples and
brought up the problem of whether polynomial-size DNF functions are PAC
learnable in polynomial time. It has been about twenty years that the DNF
learning problem has been widely regarded as one of the most important
—and challenging — open questions in Computational Learning Theory.

It is well known that learning monotone DNF in the distribution-independent
setting is equivalent to learning general DNF[2], so a lot of work has been
done in learning monotone DNF. Because of the difficulty of learning mono-
tone DNF in the distribution-independent setting, the simpler case — the
Monotone DNF with uniformly-distributed examples — is studied.

Here we develop an algorithm that learns a threshold function in polyno-
mial time from the truth table generated by a monotone DNF function.
We use the whole truth table instead of uniform-distributed examples. We
can calculate the Fourier coefficient by using the whole truth table; the
Fourier coefficients can also be estimated with high accuracy by using the
uniformly-distributed examples. So if our algorithm performs well by us-
ing the whole truth table, we may also get good test results by using the
uniformly-distributed examples. The reason that we use the whole truth ta-
ble is that we can eliminate the variability added by estimating the Fourier
coefficients.

The terminology used above will be explained in the following sections.

1.2 Definitions and Notations

For the purpose of easily understanding the definition of Disjunctive Normal
Form, we will talk about some basic conceptions in Boolean Logic.

Boolean Logic is a familiar mathematical notation for expressing compound
statements such as the following:

1. Either it is not raining now or the cane is not in the corner.
2. It is raining and the cane is not in the corner.

3

1.2.1 Literals

In Boolean Logic we use Boolean variables x1, x2, · · · to stand for the in-
dividual statements such as “it is raining now” or “the cane is in the cor-
ner”. Each variable denotes a statement that can in principle be true or
false independently of the truth value of the others. We then use Boolean
connectives, such as ∧ and ∨, to combine Boolean variables to form more
complicated Boolean formulae. Boolean variables are also called Literals.
Let X = {x1, x2, · · ·xn} be a finite set of Boolean variables, and let X =
{x1, x2, · · ·xn}, where the x1, x2, · · ·xn are new symbols standing for the
negations. We call the elements of X ∪X literals.

1.2.2 Conjunctions

Let p and q be literals. The formula “p and q”, denoted by p ∧ q or pq, is
true when both p and q are true and is false otherwise. The formula “p∧q”
is called the conjunction of p and q.

1.2.3 Disjunctions

Let p and q be literals. The formula “p or q”, denoted by p ∨ q or p + q,
is false when both p and q are false and is true otherwise. The formula
“p ∨ q” is called the disjunction of p and q.

1.2.4 Disjunctive Normal Form

A Disjunctive Normal Form (DNF) formula is a disjunction of conjunctions
of Boolean literals. Conjunctions in a DNF are called “terms”. The size of a
DNF formula to is defined as the number of terms that it has. For example,

f = x1x2x3 + x4x5x6

is a DNF function with size 2.

Then if we use x1 to denote “it is raining now” and use x2 to denote “the
cane is in the corner”, then

1. The negation of x2 — x2 denotes “ the cane is not in the corner”.
2. “Either it is not raining now or the cane is not in the corner” can be
expressed as “x1 ∨ x2”.
3. “It is raining and the cane is not in the corner” can be expressed as
“x1 ∧ x2”.

4

1.2.5 Monotone DNF

A monotone DNF is a DNF with no negated variables. For example,

g = x1 + x2x3 + x4x5 + x6x7x8

f is a monotone DNF function with size 4.

1.3 PAC-Learning in DNF-Learning problem

Before defining the PAC-Learning, we will define the supporting concept
example oracle. An example oracle EX(f,D) for a target function f
with respect to D(EX(f,D)) is an oracle that on request draws an instance
x at random according to probability distribution D and returns the exam-
ple 〈x, f(x)〉.

We say that the concept class DNF is PAC learnable if there exists an
algorithm L with the following property: for every DNF c, for every dis-
tribution D of the examples over the n–bit vector space {0, 1}n, and for all
0 < ε < 1/2 and 0 < δ < 1/2, L(EX(f,D), ε, δ) runs in time polynomial
in n, s (s is the number of terms in c), 1/ε and 1/δ to output a hypothesis
concept h satisfying Pr(h 6= c) ≤ ε.

The parameter δ is defined as the degree of the confidence of the algorithm.
This parameter is not used in our later work because our work is still in the
earlier stage to test some specific functions.

2 Present status of the proposed problem

Now let us go over the previous work in the field of learning monotone
DNF. Because of the lack of progress on learning monotone DNF in the
distribution-independent setting, instead of approaching this result directly,
many researchers study the restricted versions, such as learning monotone
DNF with uniformly-distributed examples. Hancock and Mansour [3] gave
a polynomial time algorithm for learning monotone read-k DNF (DNF in
which every variable appears at most k times in which k is a constant) under
constant-bounded product distributions. Then there is a series of research
work, done by Verbeurgt [4], Kucera [5], Sakai, Maruoka [6], Bshouty [7] and
Tamon [8], to improve monotone DNF learning. The latest best work is done
by Servedio [9] who proves that that the class of monotone 2O(

√
logn)-term

5

DNF formulae can be PAC learned in polynomial time under the uniform
distribution from random examples only.

3 Suggested methodology

3.1 The Proposed Algorithm

3.1.1 Concepts and Definitions used in the Algorithm

• The threshold function used in this algorithm is defined particularly
as

T (~x) = sign[F (~x)] =

{
+1 if F (~x) > 0
−1 if F (~x) < 0

We will guarantee that F (~x) is not equal to 0 in this algorithm.

• The parity function χ~a(~x) is defined as:

χ~a(~x) = (−1)~a·~x

That is, χ~a(~x) is the Boolean function that is 1 when the parity of the
number of 1′s in ~x indexed by ~a is even and is −1 otherwise. If the
number of 1′s in ~a is even, we call ~a “even”; otherwise, we call it “odd”.

The number of 1′s in the parity is also called degree of the parity.
Assume that we have two parity functions A and B, if the degree of
A is greater than the degree of B, we can say that A has a higher
degree than B or B has a lower degree than A. If the number of 1′s
is 0, we call the parity function constant parity.

• The threshold function that we used in the algorithm is defined as the
following:

T (~x) = sign[F (~x)]

in which
F (~x) =

∑
~a∈S

F̂ (~a)χ~a(~x)

where

1. S is a set of n-bit vectors and for each n-bit vector ~a ∈ S there is
one integral coefficient F̂ (~a).

6

2. sign[F̂ (~a)] = (−1)|χ~a|

It means that if the number of 1’s in ~a is even, the sign of the
Fourier coefficient of F̂ (~a) is positive; otherwise it is negative.

3. ∀~a′(except the vector 0n) such that ~a ⊆ ~a′, |F̂ (~a)| ≥ |F̂ (~a′)|
4. Each parity in the set S in the hypothesis should be a subset of

a term in the target function (Please notice that this subsets rule
is not programmed in the algorithm. But when we check the test
results, if this rule is broken, it may be a sign that the algorithm
will not work)

3.1.2 How the Hypothesis is Related to the Target Function

We suppose that if the value of a Boolean function is false, the function
has a value “-1” and if the value of a Boolean function is true, the function
has a value “1”. We know that a conjunction can be expressed as a sum of
some parity functions. In the following examples, suppose n = 4:

• x1x2 = −1
2χ0000 − 1

2χ0001 − 1
2χ0010 + 1

2χ0011

• x2x3x4 = −3
4χ0000 − 1

4χ0010 − 1
4χ0100 − 1

4χ1000 + 1
4χ0110 + 1

4χ1010 +
1
4χ1100 − 1

4χ1110

• x1x2x3x4 = −7
8χ0000 − 1

8χ0001 − 1
8χ0010 − 1

8χ0100 − 1
8χ1000 + 1

8χ0011 +
1
8χ0101+ 1

8χ0110+ 1
8χ1001+ 1

8χ1010+ 1
8χ1100− 1

8χ0111− 1
8χ1011− 1

8χ1110+
1
8χ1111

Notice that except for the constant parity, the odd degree parities all have
negative coefficients − 1

2l−1 (l is the number of literals in the conjunction)
while the even degree parities all have positive coefficients 1

2l−1 . Since the
denominators of the coefficients are all powers of 2, it is easy to convert the
coefficients to integers without changing sign.

We can add conjunctions up. For example:

f = x1x2 + x2x3x4

= (−1
2χ0000 − 1

2χ0001 − 1
2χ0010 + 1

2χ0011)
+ (−3

4χ0000− 1
4χ0010− 1

4χ0100− 1
4χ1000 + 1

4χ0110 + 1
4χ1010 + 1

4χ1100− 1
4χ1110)

= −5
4χ0000− 1

2χ0001− 3
4χ0010− 1

4χ0100− 1
4χ1000 + 1

2χ0011 + 1
4χ0110 + 1

4χ1010 +
1
4χ1100 − 1

4χ1110

7

Notice that the following property: Except for the constant parity, the odd
degree parities all have negative coefficients while the even degree parities
all have positive coefficients. All the denominators of the coefficients are
still powers of 2, so it is easy to convert the coefficients to integers. It can
also be noticed that the sum will produce larger magnitude coefficients on
lower degree parities.

A monotone DNF is an OR of AND’s, so for a monotone DNF with t terms
it is easy to see that:

1. If all the t terms are false, then all the terms (each term is a conjunc-
tion) have the value −1 and the sum of the terms has a value of −t.
The DNF function is false. If we add (t−1) to the sum of the terms,
it becomes −1. If we set that DNF = sign[(the sum of the terms)
+ (t− 1)], then when DNF is false, DNF has a value of −1.

2. If at least one term is true, then the DNF function is true and the
sum of terms may have a value in the array with t elements {−t +
2,−t+4, · · · , t}. If we add (t−1) to the sum of the terms, the possible
values of the sum all become positive. If we set that DNF = sign[(the
sum of the terms) + (t − 1)], then when DNF is true, DNF has a
value of +1.

Following the above analysis, it is not hard to see that we can assume that
DNF = sign[(the sum of the terms) + (t − 1)]. This is the reason why
we developed the algorithm to find the threshold function hypothesis(the
variable of the threshold function is a sum of some parity functions).

3.1.3 How the proposed algorithm works

Let the monotone DNF function f : {0, 1}n → {+1,−1} be the function
which we are trying to learn. f is also called the target function. For
example, f = x1x2x3 can be a monotone DNF function which we are trying
to learn. We are allowed to see the whole truth table of the target function.

For example, if the target function is f = x1x2x3, the truth table is as the
following:

8

index bitvector(x3x2x1) x3 x2 x1 f-value
0 000 0 0 0 -1
1 001 0 0 1 -1
2 010 0 1 0 -1
3 011 0 1 1 -1
4 100 1 0 0 -1
5 101 1 0 1 -1
6 110 1 1 0 -1
7 111 1 1 1 1

Our goal is to learn a threshold function T (~x) from the truth table such that
this threshold function T (~x) approximates f(~x) with a high probability over
all the examples in the truth table. It can be expressed like this:

Pr[f(~x) 6= T (~x)] ≤ ε

in which
T (~x) = sign[F (~x)]

and
F (~x) =

∑
~a∈S

F̂ (~a)χ~a(~x)

where S is a set of n-bit vectors and for each n-bit vector ~a ∈ S there is one
integral coefficient F̂ (~a).

For example, by running the program we get the following threshold function
for the target function f = x1x2x3,

T (~x) = sign[1χ000 − 2χ001 − 2χ010 + 2χ011 − 2χ100 + 2χ101 + 2χ110 − 2χ111]

At first, before we start explaining the algorithm, we may need to explain
the method measuring how well a threshold function approximates the tar-
get function f(~x). For easier understanding, suppose that somehow we have
found a perfect F (~x) — that is, have found a set S and weights {F̂ (~a)}~a∈S

— such that for all n-bit vectors ~x, f(~x) = sign[F (~x)].

Then we will calculate the expected value of |F (~x)| over all n-bit vectors ~x.
Because f(~x) = sign[F (~x)], we have

E~x[|F (~x)|] = E~x[f(~x)F (~x)]

9

By a Fourier theorem called Parseval’s Identity, it follows that

E~x[f(~x)F (~x)] =
∑

~a∈{0,1}n

f̂(~a)F̂ (~a)

And because F̂ (~a)=0 for all ~a /∈ S,∑
~a∈{0,1}n

f̂(~a)F̂ (~a) =
∑
~a∈S

f̂(~a)F̂ (~a)

Then finally we reach a result for the perfect threshold function F (~x):

E~x[|F (~x)|] =
∑
~a∈S

f̂(~a)F̂ (~a)

On the other hand, if we have a function F ′ such that there are many ~x′s
such that f(~x) 6= sign(F ′(~x)), then f(~x)F ′(~x) will be negative (assuming F ′

is nonzero, which is guaranteed in the algorithm) for these ~x′s, so

E~x[|F ′(~x)|] > E~x[f(~x)F ′(~x)] =
∑
~a∈S′

f̂(~a)F̂ ′(~a)

Since we know for any fixed n-bit vector ~a,

f̂(~a) =
1
2n

∑
~x

f(~x)χ~a(~x)

where the sum is over all possible 2n n-bit vectors ~x. We can calculate how
much larger E~x[|F ′(~x)|] is than

∑
~a∈S′ f̂(~a)F̂ ′(~a). The smaller the difference,

the better the threshold function F approximates the target function f . Our
goal is to find an F for which this difference is very small.

Here is how the proposed algorithm works:

Step 1. The initialized set S0 is {~0} and F̂ (~0) is 1. Then the function is:

F0 = 1

Then we check over the truth table if

Pr[f(~x) 6= sign[F (~x)] ≤ ε.

If it is, the algorithm ends here and the best hypothesis is

T [~x] = sign[F (~x)] = 1;

10

Otherwise, the algorithm will continue to execute next step.

Step 2. Suppose currently we have a function Fi−1(The initial value of
i is 1), and we would like to modify it to obtain a new function Fi that is
closer to the F we are seeking. We will take the following steps:

Step 2.a Create a set N which includes all of the “neighbors” of Si−1.
Si−1 is the set of parity functions used to define Fi−1. (An n-bit vector ~b
is a neighbor of an n-bit vector ~a if ~a and ~b differ in only one bit. The
Immediate down neighbor of ~a is a neighbor of ~a in which the number of
1′s is just one fewer than the number of 1′s in ~a.) Then for every vector ~a,
check if all of its immediate down neighbors are already included in the set
Si−1: if so, keep it in the set N ; otherwise delete it from the set N .

Step 2.b For each n-bit vector ~aj in the union of N and Si−1, create a
new function F j

i−1 by starting with a copy of Fi−1 and modifying this copy
as following:

Step 2.b.1 If ~aj ∈ Si−1, if ~aj is “odd”, subtract 2 from the weight
F̂ j

i−1(~aj); if ~aj is “even”, add 2 to the weight F̂ j
i−1(~aj).

Then to guarantee

∀a′ such that a ⊆ a′, |F̂ (~a)| ≥ |F̂ (~a′)|,

we need to check if all the absolute values of the weights
of all the down neighbors of ~aj are greater than or equal
to the absolute value of the newly increased weight of ~aj .
If they are, add F j

i−1 to the pool of the potential hypothe-
ses; if not, F j

i−1 is not a potential hypothesis.
Step 2.b.2 If ~aj /∈ Si−1 but ~aj ∈ N , add ~aj to Sj

i−1 and set the value
of F̂ j

i−1(~aj) to 2 if ~aj is “even”; otherwise if ~aj is “odd”,
set the value of F̂ j

i−1(~aj) to −2.

Step 2.c Define Fi to be the function F j
i−1 which minimizes the difference

between Ex[|F j
i−1|] and

∑
~a∈Sj

i−1
f̂(~a)F̂ j

i−1(~a).

Step 2.d Check over the truth table if

Pr[f(~x) 6= sign[Fi(~x)] ≤ ε.

If it is, then the algorithm ends here; otherwise, continue to Step 3.

11

Step 3. By repeating the procedure in Step 2, we will finally approach a
threshold function F which satisfies the required accuracy.

3.2 Performed Tests and Results

3.2.1 Some Explanation for the Performed Tests

We will explain some concepts before we talk about the test results:

1. When the algorithm is tested, for most of the cases the ε value is set
to be 0.05 so that the final best hypothesis F (~x) will satisfy

Pr[f(~x) 6= sign[F (~x)] ≤ 0.05.

We also set ε to be 0.01 for some cases to test if the algorithm will find
a more accurate hypothesis. The result is that the algorithm performs
well to find the more accurate hypothesis for several cases.

2. The minimum error is the minimum value of Pr[f(~x) 6= sign[F (~x)]
so far when the algorithm is running;

3. The difference value is the difference between Ex[|F j
i−1|] and∑

~a∈Sj
i−1

f̂(~a)F̂ j
i−1(~a);

4. The number of loops is the number of times of the Step 2 has been
run.

5. To get valuable test results, we need to choose the test cases. We
prefer to choose the target function with a probability of about 0.5 to
be +1 and a probability of about 0.5 to be −1. If a target function
satisfies the probabilities requirements, it is balanced; otherwise, it is
biased. Suppose the variable β is the probability that the target func-
tion yields −1, then the more skewed the target function, the larger
the β value is from 0.5.

When the algorithm is running, if the target function is biased, for
example, if it has a β value of 0.8, then when modifying the hypoth-
esis, it will be easier to achieve the minimum error 0.05. But target
function which is balanced or almost balanced is hard to learn. When
the target function satisfies this requirement, it may need more time
to learn. So if the algorithm works on the more balanced functions,
the algorithm is more successful.

12

3.2.2 How to Analyze the Results

When analyzing the results, there are the following things that we need to
check:

• Each parity in the hypothesis should be a subset of the terms in the
target function. If some parity is not a subset of any term in the
target function, this will be a sign to break the algorithm; otherwise,
it is working as we expect.

• Check if the error values keep decreasing. The error values may bounce
up and down. But the minimum error values are expected to be de-
creasing. When the minimum error is smaller than ε, the algorithm
stops and finds the final best hypothesis.

If the result of some case satisfies the above requirements, we say that the
algorithm performs well on this case.

3.2.3 Performed Tests and Results with Different Cases

1. The following cases do not necessarily have a β value close to 0.5.
They are only some simple cases which we used to test the algorithm.
They are listed here for reference purpose.

• f = x1x2x3

• f = x1x2 + x3

• f = x1x2 + x3x4

• f = x1x2 + x3x5 + x4x1 + x2x3

• f = x1x2x3x4 + x5x6x7x8

• f = x1x2x3 + x4x5x6 + x7x8x9

• f = x1x2x3 + x4x5x6 + x7x8x9 + x10x11x12

• f = x1x2x3 + x4x5x6 + x7x8x9 + x10x11x12 + x13x14x15

• f = x1x2x3x4 + x6x5x7x8 + x9x10x11x12 + x13x14x15x16

• f = x15x2x3x4 + x6x5x7x8 + x9x10x11x12 + x13x14x1x16

• f = x1x2x3x4 + x5x6x7x8 + x9x10x11x12 + x13x14x15 + x16x17x18

• f = x1x2x3x4+x5x6x7x8+x9x10x11x12+x13x14x15+x16x17x18x19

• f = x1x2x3x4+x5x6x7x8+x9x10x11x12+x13x14x15x16+x17x18x19x20

13

For the case f = x1x2x3x4 + x6x5x7x8 + x9x10x11x12 + x13x14x15x16,
the algorithm found the best hypothesis with error 0 as the following:

F = 1χ0000000000000000 − 2χ0000000000000001 − 2χ0000000000000010+
2χ0000000000000011−2χ0000000000000100+2χ0000000000000101+2χ0000000000000110−
2χ0000000000000111−2χ0000000000001000+2χ0000000000001001+2χ0000000000001010−
2χ0000000000001011+2χ0000000000001100−2χ0000000000001101−2χ0000000000001110+
2χ0000000000001111−2χ0000000000010000−2χ0000000000100000−2χ0000000001000000−
2χ0000000010000000−2χ0000000100000000−2χ0000001000000000−2χ0000010000000000−
2χ0000100000000000−2χ0001000000000000−2χ0010000000000000−2χ0100000000000000−
2χ1000000000000000+2χ0000000000110000+2χ0000000001010000+2χ0000000010010000+
2χ0000000001100000−2χ0000000001110000+2χ0000000010100000−2χ0000000010110000+
2χ0000000011000000−2χ0000000011010000−2χ0000000011100000+2χ0000000011110000+
2χ0000001100000000+2χ0000010100000000+2χ0000100100000000+2χ0000011000000000+
2χ0000101000000000−2χ0000011100000000−2χ0000101100000000+2χ0000110000000000−
2χ0000110100000000 − 2χ0000111000000000 + 2χ0000111100000000

2. The case is the read-once monotone DNF, which has u terms and each
term with log(u) distinct variables. For example, when u = 4, there is
a read-once monotone DNF as

x1x2 + x3x4 + x5x7 + x6x8

This case finished with the expected hypothesis.

3. The random monotone DNF. This case of monotone DNF will be
generated by the following method: Every variable of each term is
randomly drawn from all the variables without replacements. For ex-
ample, at first we draw x1 and put it into the first term. The second
variable will be drawn randomly from all the variables except x1, for
example x3. Then the third variable will be drawn randomly from all
the other variables except x1 and x3. After the first term is drawn, the
second term will be drawn by the same method as we draw the first
term: the first variable of the second term is randomly drawn from all
the variables, so on and so forth. Here is an example of the case of
monotone DNF,

x1x3x7 + x2x5x12 + x4x8x9 + · · ·

Drs. Jackson and Servedio recently gave the proof that the n-term ran-
dom monotone DNF with log2 n literals in each term is learnable in

14

polynomial time from uniform random examples with high probability,
so this is an interesting case with which to test the algorithm. Further-
more, we need to test for the case of the n2-term random monotone
DNF with 2log(n) literals in each term because Jackson and Servedio’s
result does not extend to this case.

We have tried to test 2 cases with n = 8 and n = 16:

• The random monotone DNF with 8 variables, 64 terms and 6
literals in each term. This case was finished with expected re-
sults. This result is really encouraging since this random mono-
tone DNF is really a big function. The following is the target
function we have tried to learn.

f = x1x6x3x5x7x2+x8x6x7x4x1x5+x4x2x8x6x5x7+x6x4x5x3x7x1+
x4x1x2x3x5x8 +x8x3x5x6x7x2 +x1x3x6x5x2x8 +x1x4x8x6x7x3 +
x4x7x5x2x6x1 +x3x2x6x1x8x5 +x8x2x3x5x1x4 +x2x8x7x4x3x1 +
x4x2x6x5x8x1 +x6x1x8x7x2x3 +x1x4x6x3x8x7 +x2x1x4x3x7x5 +
x8x3x5x2x7x4 +x1x5x3x4x7x8 +x3x1x4x5x8x2 +x1x3x4x2x7x5 +
x3x6x5x4x8x2 +x3x5x2x6x1x7 +x3x7x5x2x6x8 +x5x6x7x3x2x8 +
x2x6x3x5x8x1 +x1x4x5x2x3x8 +x1x7x4x2x6x3 +x2x6x1x4x8x7 +
x8x7x3x5x4x1 +x5x4x2x1x3x8 +x1x8x6x7x2x5 +x6x3x2x5x8x1 +
x7x1x3x8x6x5 +x8x3x6x5x2x1 +x3x6x7x8x4x1 +x7x5x1x2x3x4 +
x8x3x1x5x6x4 +x8x5x1x4x7x3 +x5x7x2x4x6x8 +x3x4x5x8x2x7 +
x2x4x6x3x5x7 +x5x6x8x3x4x7 +x4x7x2x8x3x5 +x5x8x1x2x4x6 +
x4x8x5x3x6x1 +x6x5x2x8x3x4 +x8x5x2x3x4x7 +x6x7x3x4x5x1 +
x5x4x1x2x7x8 +x8x5x1x6x3x2 +x5x6x3x1x4x8 +x4x6x1x3x5x7 +
x4x1x6x2x5x8 +x8x4x1x6x5x3 +x8x3x4x5x7x6 +x2x4x8x3x1x5 +
x4x8x7x2x1x3 +x4x2x3x8x6x7 +x3x7x5x4x2x6 +x3x2x6x1x7x4 +
x3x7x4x1x5x6 + x2x6x7x5x8x4 + x4x5x3x2x8x6 + x6x8x2x7x5x3

The final best hypothesis approximates the target function with
an error value 0.046875. The hypothesis is:

F = 1χ00000000−6χ01000000−6χ00001000+6χ01001000−6χ00010000+
6χ00011000 + 6χ01010000 − 6χ01011000 − 6χ00100000 + 6χ01100000 +
6χ00110000 − 6χ01110000 + 4χ00101000 − 4χ01101000 − 4χ00111000 +
4χ01111000 − 6χ10000000 − 4χ00000001 − 4χ00000010 − 4χ00000100 +
4χ01000001 + 4χ01000010 + 4χ01000100 + 6χ11000000 + 6χ10001000 −

15

4χ11001000 + 2χ00001001 − 2χ01001001 + 2χ00001010 − 2χ01001010 +
2χ00001100 − 2χ01001100 + 6χ10010000 − 4χ10011000 − 6χ11010000 +
4χ11011000 + 6χ10100000 − 4χ11100000 − 4χ10101000 + 4χ11101000 −
4χ10110000 + 2χ10111000 + 4χ11110000 − 2χ11111000 + 2χ00010001 +
2χ00100001 + 2χ10000001 + 2χ00010010 + 2χ00100010 + 2χ10000010 +
2χ00010100 + 2χ00100100 + 2χ10000100 − 2χ01100001 − 2χ01100010 −
2χ01100100 − 2χ01010001 − 2χ01010010 − 2χ01010100 − 2χ11000001 −
2χ11000010 − 2χ11000100

• The random monotone DNF with 16 variables, 256 terms and 8
literals in each term. This case was not finished. The result so
far we have is that: the minimum error is 0.111252 in Loop 2349
with a difference value 6.38239. Before that, the minimum error
stayed 0.112366 from Loop 1363 to Loop 2238 and then it was
changed to 0.112183, then to 0.111252. Since the difference value
is still small and the minimum value is still getting smaller, it
might be reasonable to say that for this case it may be finished
with expected results. (This case had run for several days and
then was stopped because the computer was restarted by other
people. We will try to test this case again if we have time.)

4. The monotone DNF in which there is significant sharing of variables
between terms. We have tested a case like this: Whenever x1 is selected
for a term, x2 and x3 will also be in the term with probability 0.5 each.
That is, whenever x1 is selected for a term, there is a probability 0.25
that both x2 and x3 will be in the term, a probability 0.25 that only
x2 will be in the term, a probability 0.25 that only x3 will be in the
term and a probability 0.25 that neither x2 nor x3 will be in the term.
This means that x2 and x3 have the equal probability appearing in the
function. This might confuse the algorithm when facing the problem
of whether x2 or x3 should be chosen.

We tested the case with 2 examples:

(a) One example has 8 variables, 64 terms and 6 literals in each term;
(b) The other example has 10 variables, 64 terms and 6 literals in

each term.

These two cases both performed well and got the expected results.

5. The monotone DNF that we can get by making an AND-OR tree of
depth 2loglog(n), i.e. a binary tree where odd layers all have AND and

16

even layers all have OR. This case was suggested by Dr. Rocco Serve-
dio. This function has log2(n) many relevant variables, and has both
monotone DNFs and CNFs of polynomial size(which is polynomial re-
spect to n). The function is actually a polynomial size monotone CNF.

We tried to test a case like this:

(((x1 ∧ x2) ∨ (x3 ∧ x4)) ∧ ((x5 ∧ x6) ∨ (x7 ∧ x8)))
∨(((x9 ∧ x10) ∨ (x11 ∧ x12)) ∧ ((x13 ∧ x14) ∨ (x15 ∧ x16)))

Which can be also expressed as:

(x1x2 + x3x4)(x5x6 + x7x8) + (x9x10 + x11x12)(x13x14 + x15x16)

If it is converted to a Monotone DNF function, it becomes:

x1x2x5x6 + x1x2x7x8 + x3x4x5x6 + x3x4x7x8+
+x9x10x13x14 + x9x10x15x16 + x11x12x13x14 + x11x12x15x16

For this case the algorithm didn’t finish with the expected results.
The result is: the minimum error was 0.134216, which began from
Loop 135. And this minimum error stayed 0.134216 until Loop 2681.
The difference values are not getting large, staying around 1 and 2.
For Loop 2681, the ratio is 1.28302. Since it required so many loops
without reaching a smaller error value and some parity functions are
not subsets of the terms in the target function, it appears that the
algorithm will not work out for this case.

Since a DNF expression can also be represented by a CNF, it is not
guaranteed that the algorithm will find the terms in the DNF instead
of the clauses in the CNF. It was expected that this case of monotone
DNF may be hard to learn since the algorithm may find the parities
which are the clauses in the CNF.

6. The monotone DNF with dependent terms. Assume there is a vari-
able α(0 ≤ α ≤ 1), which is used to indicate the level of dependency
between the terms in the target function. The larger the value of α,
the more terms are dependent. The target function is generated in the

17

following way:

Suppose the target function has t terms, with a total n variables and l
literals in each term. Then all the literals in the first term are chosen
randomly without replacement(the same way that we used to gener-
ate each term in Case 3). Then for the literals in all the other t − 1
terms, each literal has the probability α of choosing the literal which
appears at the same place in the last term and the probability 1 − α
of choosing randomly from all the remaining variables except the vari-
ables that have already appeared in this term.

For example, if we want to generate a function with 8 variables, 8
terms, and 3 literals in each term with α = 0.3, the first term can be
generated as x1x7x4. Then the first variable in the second term will
have probability 0.3 to be x1 again and probability 0.7 to be chosen
from all the remaining literals, x2, x3, x4, x5, x6, x7, and x8. Each lit-
eral has equal probability 1

7 to be chosen. Suppose we end up choosing
x2 here. Then for the second literal in the second term, it will have
probability 0.3 to be x7 again and probability 0.7 to be chosen from
all the remaining literals except x2 and x7, that is chosen randomly
from x1, x3, x4, x5, x6, and x8. Each literal has equal probability 1

6 to
be chosen. Suppose we happen to still choose x7 to be the second lit-
eral in the second term. Then until now we have x2 and x7 to be the
first and the second literal respectively in the second term. We still
need the third literal to be generated. Then for the third literal in the
second term, it will have probability 0.3 to be x4 again and probability
0.7 to be chosen from all the remaining literals except x2, x7 and x4,
that is chosen randomly from x1, x3, x5, x6, and x8. Each literal has
equal probability 1

5 to be chosen. Suppose we get x5 to be the third
literal in the second term. Then we get the second term as x2x7x5.
Then starting from the second term, we may need to find the third
term in the same way. For example, for the first literal in the third
term, it has probability 0.3 to be x2 again and probability 0.7 to be
chosen from all the remaining literals except x2 and x7, that is, chosen
randomly from x1, x3, x4, x5, x6, and x8. Then by the similar way we
will generate the other literals in the second term and the other terms.

For this case, the value of α can be changed continuously from 0 to 1.
If it is 0, it means that all the terms are generated independently of

18

each other; if it is a value greater than 0 but smaller than 1, it means
that the terms in the target function are dependent with a coefficient
α. The larger the α is, the more dependent the terms in the target
function are on each other.

To get valuable test results, we tested the algorithm with some more
balanced target functions. As we said earlier, we prefer to choose the
target function with a probability of about 0.5 to be +1 and a prob-
ability of about 0.5 to be −1. If a target function satisfies with the
probabilities requirements, it is balanced; otherwise, it is biased. Sup-
pose the variable β is the probability of the target function to be −1,
then the more skewed the target function, the larger the β value is
away from 0.5.

Since we may want to have α continuously changing in the interval
from 0 to 1, we hope that when α is 0, β is about 0.45, which is close
to 0.5 but a little less than it; when α is 0.95, β is around 0.65.

We tried to vary the number of terms, the number of literals in each
term and the number of variables in the target function to get valuable
test cases. Then we found a series of test cases: each function has 16
variables, 20 terms and 4 literals in each term. The cases are:

(a) Case 1. When α = 0, β = 0.465515;

(b) Case 2. When α = 0.25, β = 0.462097;

(c) Case 3. When α = 0.50, β = 0.516663;

(d) Case 4. When α = 0.75, β = 0.648193;

(e) Case 5. When α = 0.95, β = 0.875(Notice that the β value is
0.875 instead of 0.65. It is because that in fact it is hard to find
the idea series to satisfy: when α is 0.95, β is around 0.65. This
is the best series of test cases that I have found to test.)

The algorithm performs very well in finding the hypothesis on Case
1, Case 4 and Case 5 with ε = 0.05. But it seems that it may fail for
Case 2 and Case 3. The following is the data we got in the results:

(a) For alpha=0.25, from Loop 82 to Loop 5451, the minimum er-
ror stays 0.269104; The difference values keep getting larger and
become 409.171 in Loop 5451.

19

(b) For alpha=0.5, from Loop 51 to Loop 7046, the minimum er-
ror stays 0.209656; The difference values keep getting larger and
become 360.967 in Loop 7046.

For these two cases, the difference values are getting so large without
reaching a smaller error value. Since the goal of our algorithm is to
find an F for which this difference is nearly 0, the difference values
getting so large is not reasonable: If it they are getting so large, then
it is hard to guarantee that the selected hypothesis is getting closer
to the perfect hypothesis we are seeking. So we begin to think that
maybe the current algorithm does not work correctly for some of the
monotone DNF functions with dependent terms. We will talk later
in the section Future Work about some modifications to the current
algorithm to make it work for these cases.

Another series of the similar target functions are: each function has
16 variables, 256 terms and 6 literals in each term. The cases are:

(a) Case 1. When α = 0, β = 0.45665;

(b) Case 2. When α = 0.1, β = 0.454147;

(c) Case 3. When α = 0.2, β = 0.457825;

(d) Case 4. When α = 0.3, β = 0.45816;

(e) Case 5. When α = 0.4, β = 0.460587;

(f) Case 6. When α = 0.5, β = 0.460587;

(g) Case 7. When α = 0.6, β = 0.472488;

(h) Case 8. When α = 0.7, β = 0.497726;

(i) Case 9. When α = 0.8, β = 0.520004;

(j) Case 10. When α = 0.85, β = 0.551468;

(k) Case 11. When α = 0.9, β = 0.62793;

(l) Case 12. When α = 0.95, β = 0.719345.

The results and some analysis of the results are explained in the fol-
lowing:

(a) Case 1. When α = 0, β = 0.45665; The algorithm reaches a min-
imum error 0.144882 in Loop 33 and keeps this minimum error
until Loop 5185. From the result file, we can see that there are
no new parities added in the hypothesis after Loop 47. Without

20

adding in new parities, the weights of the old parities are added
up. In Loop 5185, the selected hypothesis is:

F = 651χ0000000000000000−316χ0000000000001000−314χ0100000000000000

+2χ0100000000001000 − 314χ0000000100000000 + 2χ0000000100001000

+2χ0100000100000000 − 2χ0100000100001000 − 326χ0000001000000000

−650χ0000000010000000 + 326χ0000001010000000 − 326χ0000100000000000

−326χ0000010000000000 − 326χ0000000000000010 − 324χ0000000000000100

−324χ0000000000000001 − 16χ0001000000000000 − 324χ0000000000100000

−324χ0000000000010000 − 324χ0010000000000000 − 322χ1000000000000000

−322χ0000000001000000 + 2χ0101000000000000 + 2χ0001000000001000

+2χ0001000100000000 − 2χ0101000100000000 − 2χ0101000000001000

−2χ0001000100001000 + 2χ0101000100001000 + 312χ0000000110000000

+324χ0000000010000001 + 324χ0010000010000000 + 324χ0000000010010000

+312χ0100000010000000 + 14χ0001000010000000 + 314χ0000000010001000

+322χ1000000010000000 + 326χ0000000010000010 + 326χ0000100010000000

+326χ0000010010000000 + 324χ0000000010100000 + 322χ0000000011000000

+324χ0000000010000100

The difference value for this selected hypothesis is 99.7091.
For this case, since α = 0, the terms are supposed to be inde-
pendent of each other. That is, it is a random monotone DNF
function. But given the above results, the algorithm may fail to
find the expected hypothesis. As for now, we suppose that al-
though we thought it was random Monotone DNF, the terms in
the function might be somehow dependent each other. We still
need to do some analysis on this case.

(b) Case 2. When α = 0.1, β = 0.454147; The minimum error is
0.129028 until Loop 9409. Since some files were deleted, I can
not find in which loop this minimum error value was reached. It
was known from my notes that it was already reached by Loop
6866. In Loop 8117, the selected hypothesis has the difference
value 38.94 and in Loop 9409, it has the difference value 44.5602.
We also know that after Loop 320, there is no new parity added
to the hypothesis.

(c) Case 3. When α = 0.2, β = 0.457825. In Loop 632, this mini-
mum error value 0.129044 was reached. Then this value stayed
until Loop 7627. In Loop 6675, the selected hypothesis has the
difference value 31.3 and in Loop 7627, it has the difference value

21

35.2173. We also know that after Loop 808, there is no new parity
added to the hypothesis.

(d) Case 4. When α = 0.3, β = 0.45816. The minimum error is
0.12883 until Loop 6078. Since some files were deleted, I can not
find in which loop this minimum error value was reached. It was
known from my notes that it was already reached by Loop 4543.
In Loop 5370, the selected hypothesis has the difference value
36.8 and in Loop 6078, it has the difference value 41.387. We
also know that after Loop 5928, there is no new parity added to
the hypothesis.

(e) Case 5. When α = 0.4, β = 0.460587. The minimum error is
0.13089 until Loop 5068. Since some files were deleted, I can not
find in which loop this minimum error value was reached. It was
known from my notes that it was already reached by Loop 2968.
In Loop 4130, the selected hypothesis has the difference value
42.3 and in Loop 5068, it has the difference value 52.0493.

(f) Case 6. When α = 0.5, β = 0.460587. The minimum error
0.129639 was reached in Loop 1976. Then it stayed until Loop
7764. In Loop 6892, the selected hypothesis has the difference
value 70 and in Loop 7764, it has the difference value 80.692. We
also know that there are new parities added into the hypothesis
in Loop 4360, Loop 5577 and Loop 5578.

(g) Case 7. When α = 0.6, β = 0.472488. The minimum error
0.133835 was reached in Loop 1319. Then it stayed until Loop
9134. In Loop 8075, the selected hypothesis has the difference
value 86.93 and in Loop 9134, it has the difference value 98.3617.

(h) Case 8. When α = 0.7, β = 0.497726. The minimum error
0.137619 was reached in Loop 1386. They it stayed until Loop
4395. In Loop 2458, the selected hypothesis has the difference
value 35.7417 and in Loop 4395, it has the difference value 63.94.
We also know that after Loop 988, there is no new parity added
to the hypothesis.

(i) Case 9. When α = 0.8, β = 0.520004. The minimum er-
ror 0.140915 was reached in Loop 3457. Then it stayed until
Loop 8728. In Loop 7776, the selected hypothesis has the differ-
ence value 88.6011 and in Loop 8728, it has the difference value
99.9995. We also know that after Loop 3414, there is no new
parity added to the hypothesis. Before Loop 3414, the last few

22

added parities were added in Loop 2980, Loop 3413, Loop 3412,
Loop 3411, Loop 3348 and etc.

(j) Case 10. When α = 0.85, β = 0.551468. The minimum error
0.137848 was reached in Loop 1803. Then it stayed until Loop
8201. In Loop 8201, the selected hypothesis has the difference
value 99.9955. We also know that after Loop 2046, there is no
new parity added to the hypothesis. Before Loop 2046, the last
few added parities were added in Loop 2045, Loop 3413, Loop
3412, Loop 3411, Loop 3348 and etc.

(k) Case 11. When α = 0.9, β = 0.62793. The minimum error
0.128036 was reached in Loop 1630. Then it stayed until Loop
5510. In Loop 4907, the selected hypothesis has the difference
value 40.887 and in Loop 5510, it has the difference value 45.8142.
We also know that after Loop 3310, there is no new parity added
to the hypothesis. Before Loop 3310, the last few added parities
were added in Loop 2045, 2044, 2043, 1830, 1829, 1828, 1827,
1518, 1517, 1516, 1515, 1108, 1107, 1106, 1105, 814, 813, 708,
707, 704, 703, 702, 701, 700, 699, 698, 697, 696, 695, 640 and etc.

(l) Case 12. When α = 0.95, β = 0.719345. The algorithm works
well on this case. It reaches the minimum error 0.053772 in Loop
2357 with the difference value 2.09869.

The results of the above series are similar to the previous series of
cases, so we have another example to make us think that maybe the
current algorithm does not work correctly for some of the monotone
DNF functions with dependent terms.

3.3 Some Attempted Modifications to the Algorithm and the
Results

We once tried to use the ratio values instead of the difference values to
decide which hypothesis is the temporary best hypothesis from the potential
hypotheses pool. The ratio value is defined as the following:

ratio =
Ex[|F j

i−1|]−
∑

~a∈Sj
i−1

f̂(~a)F̂ j
i−1(~a)

Ex[|F j
i−1|]

.

It did not work well to get the expected results, so we switched back to the
difference values.

23

3.4 Future Work

• We start the algorithm by setting the coefficient of the constant parity
F̂ (~0) as 1. Although it has been proved by Dr. Jackson that “there is a
threshold function with a positive constant coefficient that represents
any monotone DNF”, it is only proved that a positive constant coeffi-
cient will work. We still do not have a proof why we can set the start
point as F̂ (~0) = 1. We are trying to use this value to make the algo-
rithm work. However, since we have got some test cases, which did not
perform well under the algorithm since the algorithm appears to keep
adding up the coefficients of constant parity and some lower degree
parities without getting a new hypothesis with the smaller minimum
error, we think that some changes to the constant parity coefficients
may help to make the algorithm work better.

• We may need to change the way how we choose the temporary best
hypothesis from the potential hypotheses pool if there are more than
one hypothesis minimizing difference value. Our current algorithm
chooses the first hypothesis in the ties. We want to try 2 ways in
future:

1. Try to choose randomly from the ties;

2. Try to choose the hypothesis with smallest weight after the parity
is added in the hypothesis or the weight of the current parity is
added up.

• We should try more cases, such as another case with dependent terms(x1

dependent on x2 and x3, x4 dependent on x5 and x6, · · · in the same
target function).

• We should use some different data structures programming the algo-
rithm to make the algorithm faster.

4 Bibliography

1. L.G.Valiant. A theory of the learnable, Comm. ACM 27(11)(1984),1134-
1142
2. M.Kearns, M.Li, L.Pitt, and L.Valiant. On the learnability of Boolean
formulae, in Proc. 19th Ann. ACM Symp. on Theory of Computing(1987),
285-295.
3.T. Hancock and Y. Mansour. Learning Monotone k−µ DNF formulas on

24

product distributions, in “Proc. 4th Ann. Workshop on Comp. Learning
Theory”(1991), 179-183.
4. K.Verbeurgt. Learning sub-classes of monotone DNF on the uniform
distribution , in Proc. 9th Conf. on Algorithmic Learning Theory(1998),
385-399
5. L.Kucera, A.Marchetti-Spaccamela and M.Protassi. On learning mono-
tone DNF formulae under uniform distributions, Inf. And Comput. 110(1994),
84-95.
6. Y.Sakai and A.Maruoka. Learning monotone log-term DNF formulas
under the uniform distribution, Theory Comput. Systems 33(2000),17-33.
A preliminary version appeared in Proc. Seventh Conf. on Comp. Learning
Theory(1994), 165-172.
7. N.Bshouty. Exact learning via the monotone theory. Information and
Computation 123(1) (1995), 146–153
8. N.Bshouty and C. Tamon. On the Fourier spectrum of monotone func-
tions, J. ACM 43(4) (1996),747–770
9. R.A.Servedio. On Learning Monotone DNF under Product Distributions.

25

	Duquesne University
	Duquesne Scholarship Collection
	Summer 2004

	A Proposed Algorithm Toward Uniform-distribution Monotone DNF Learning
	Wenzhu Bi
	Recommended Citation

	tmp.1521836294.pdf.9gZA_

