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Effects of Macromolecular Crowding on Ferredoxin and Ferredoxin – NADP+ Kinetics 

Danielle Bautista | Bayer School of Natural and Environment Sciences | Faculty Advisor: 

David W. Seybert, Ph. D. 

 

Introduction 

High concentrations of macromolecules may modify protein – protein interactions through a 

phenomenon known as macromolecular crowding.  Literature studies have suggested that crowding 

affects a variety of biochemical functions, including conformational protein folding1, diffusion rates2,3, 

RNA conformations4, and enzymatic reaction rates5-7. Our studies focus on understanding the effects of 

macromolecular crowding on electron transfer reactions between protein complexes in vitro. 

 

Background  

Cellular interiors contain macromolecules that range up to 20 to 30% by weight percent1, and 

these concentrations may vary depending upon the intracellular location. For example, chloroplast 

thylakoids membranes may contain up to 70 to 80% proteins by weight percent2. Naturally, cells are 

crowded, which is why it is important to perform studies considering these conditions. The term 

macromolecule encompasses a variety of constituents, including: proteins, carbohydrates, nucleic acids, 

and lipids. Of these, proteins and nucleic acids are the most prevalent macromolecules within the 

intracellular matrix of the cell. 

For the past fifty to seventy years, scientists have studied enzymes and proteins in extremely 

dilute solutions1. In the absence of added macromolecules, dilute solutions provide a matrix that allows 

the kinetics of biological reactions to be measureable. In the cell, these redox reactions occur on the 

timescale of nanoseconds, which is extremely fast. These dilute solutions do not represent the true nature 

of cellular interiors. Therefore, it is essential to study these systems under crowded conditions. Literature 

studies have demonstrated the wide range effects on biochemical functions1-7. Therefore, by modeling a 



crowded environment, scientists can more accurately simulate the physiological conditions within the 

cell8. These studies may lead to a new approach in the methodology for understanding protein systems. 

Macromolecular crowding can be conceptualized through the excluded volume theory9. The 

volume occupied by macromolecules is large considered substantial in comparison to the rest of the 

volume the cell. When considering excluded volume there is less available room for interactions to occur 

due to the presence of larger macromolecules. Steric repulsion is the major source of interaction between 

macromolecules, when considering the excluded volume theory9. Theoretically, macromolecular 

crowding predicts two outcomes depending on the nature of the reaction. These two reactions types are 

dependent on their kinetic and thermodynamic properties10.   

It is important to determine the effects of viscosity because macromolecule crowding may lead to 

viscous solutions. As the concentration of macromolecules increases there also tends to be an increase in 

the viscosity. Viscous solutions have more internal friction, which in turn, decreases the ability of solutes 

to move on fast timescales in solution11. This is because macromolecular crowding can give rise to 

viscous solutions. Also, macromolecular crowding is strongly influenced by the size and shape of the 

macromolecule11. Studies using polymers such as Ficolls and dextrans have vastly different results in 

comparison to studies with globular proteins11. Therefore it is important to understand the effects of 

differing types of macromolecular crowding agents. 

To model macromolecular crowding we chose bovine serum albumin (BSA). In past studies, 

Ficoll and dextran were used as crowding agents. Although these two matrix modifiers are commonly 

used, the cellular interior has a larger concentration of proteins in comparison to polysaccharides. BSA is 

globular in nature and is speculated to be inert in regard to our system.  

Ferredoxin (Fdx) and ferredoxin – nicotinamide adenine dinucleotide phosphate (NADP+) 

reductase (FNR) were utilized as our model electron transfer system. Physiologically, they are found in 

the photosynthetic electron transport chain. During electron transfer Fdx transfers one electron from its 

iron sulfur center (Fe2S2)12. FNR, in turn, accepts two electrons from two Fdx via flavin adenine 

dinucleotide (FAD) prosthetic group12. The Fdx structure is considerably smaller in comparison to its 



reductase counterpart weighing approximately 11,000 Daltons13. FNR is larger compared to the Fdx 

protein, with the molecular weight approximately 32,000 Daltons13. Figure 1 illustrates the two proteins 

prior to association.  

 

 

 

 

 

 

 

 

Figure 1: The crystal structure of the Fdx-FNR complex in the early stages of association during electron 

transfer. The top (blue) depicts the FNR, whereas the bottom (red) depicts the Fdx14.  

 

Physiologically, the electron transfer of Fdx and FNR proceeds with the reduction of NADP+. 

Our reactions did not use this electron transfer system. Instead we utilized cytochrome c (cyt c) as a 

surrogate electron acceptor and NADPH as the reductant. Cyt c was chosen as a surrogate because PSI, 

the natural electron acceptor, is difficult to reconstitute in vitro. Although cyt c is not the physiological 

final acceptor, it enabled us to monitor the electron transfer between Fdx and FNR. Ultimately, reduction 

of cyt c can be measured through UV – Vis spectroscopy. 

 

Materials and Methods  

For electron transfer to occur numerous components are required. NADPH is created through a 

regenerating system consisting of glucose – 6 – phosphate (G6P), glucose –6 – phosphate dehydrogenase 

(G6PDH), and NADP+. G6P and G6PDH were purchased from Calbiochem, whereas NADP+ came from 

Sigma Aldrich. The FNR and Fdx proteins were extracted and purified from spinacia oleracea. Reduction 



of cytc is monitored through change in absorbance at the wavelength of 550 nanometers at 25 degrees 

Celsius. A 10 mM phosphate buffer at pH 7 was used for all kinetic assays. To simulate crowding, the 

macromolecular crowding agent, BSA was dissolved in the 10 mM phosphate buffer by w/w% at pH 7.  

Data was analyzed through the determination of two Michaelis – Menten constants, Km and Vmax. 

Our experiments follow hyperbolic kinetics as a function of Fdx concentration. Km and Vmax values were 

determined two ways. The first through a double reciprocal plot, otherwise known as a Lineweaver – 

Burk plot. Here the Km and Vmax values were calculated as the reciprocal of the x – intercept and y – 

intercept respectively. The second way to determine this was through nonlinear least squares analysis 

utilizing the software Prism.  

 

Hypothesis and Specific Aims  

Utilizing the Fdx-FNR we intend to mimic the enzymatic reaction occurring between the two 

complexes to understand how macromolecular crowding will impact the kinetics. Our hypothesis was to 

investigate whether or not macromolecular crowding will decrease the rate of electron transfer between 

ferredoxin and ferredoxin-NADP+ reductase.  

The first specific aim was to determine the Km and Vmax values in the presence of BSA. Through 

determination of these Michaelis - Menten constants we will have a deeper understanding of the effects of 

BSA on Fdx-FNR redox reactions.  These Km and Vmax values will then be compared in the absence and 

presence of BSA. Through other calculations we presented the relative activity within the reactions. We 

will be able to compare the BSA experiments to the control experiments (without the presence of 

macromolecular crowders) and determine if the rate of reaction is increasing or decreasing.  

The second specific aim was to determine if there was any effect of viscosity on the electron 

transfer reactions. It was important to verify that crowding, and not viscosity influenceed our 

experiments. Experiments utilizing viscous solutions suggest that electron transfer rates are altered due to 



the overall medium, whereas crowding should alter rates due to excluded volume. These viscosity assays 

used glycerol as a viscogen.  

 

Results and Discussion  

To investigate the first specific aim the Km and Vmax values of the Fdx-FNR system, assays were 

performed using 0%, 5%, 10%, 15% and 20% BSA. All of these experiments were compiled into an 

composite plot (Figure 2). From this double reciprocal plot we were able to determine the Km and Vmax 

values. Table 1 contains the Km and Vmax values with the corresponding concentration of BSA. These 

results suggest that there is a primary effect on the Vmax values, as the concentration of BSA increases. In 

these experiments the Km value did not display any significant trends. Therefore the major kinetic effect is 

postulated to be a Vmax effect and not a Km effect. Through other calculations we calculated the relative 

Vmax, or activity. These values are found in the far right column of Table 1.  

 

Figure 2: Effects of bovine serum albumin (BSA). Double reciprocal plots show a comparison of kinetic 

assays in the presence of 0%, 5%, 10%, 15%, and 20% BSA. Error bars represent a standard deviation. 
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BSA Concentration 

(%) 
Km (nM-1) 

Vmax 

(ΔAbs/min)-1 

Relative Vmax  

(ΔAbs /min)-1 

0 38 ± 1 0.23 ± 0.01     100 

5 27 ± 1 0.17 ± 0.01 85 ± 3 

10 29 ± 2 0.15 ± 0.03    64 ± 5 

15 31 ± 2 0.13 ± 0.02    50 ± 5 

20         30 ± 3 0.12 ± 0.01  45 ± 6 

 

Table 1: Km and Vmax values for Fdx as a function of BSA concentration. Error reported as a 95% 

confidence interval. 

 

The second specific aim was to determine if viscosity had any effect on the Fdx-FNR system. 

Therefore studies were conducted to determine whether viscosity is affecting the kinetics of the Fdx and 

FNR. Previous studies have demonstrated that viscosity has minimal effects on redox active enzymes3,5. 

Our studies included glycerol as the viscogen, because of its small size our expectation that it would be 

inert with respect to the Fdx – FNR system.  

Our data demonstrates that concentrations of glycerol up to 10% show no inhibition on the 

reaction rate. When the concentration is increased to 15% and 20% the electron transfer rate between the 

Fdx and FNR is reduced. Figure 3 represents the relative rate as a function of glycerol concentration. The 

data points in figure 4 show that between 0% and 10% glycerol the electron transfer rates remained 

essentially constant. When the concentration of glycerol was increased above 10% the electron transfer 

rate began to decrease. At 15% glycerol the rate decreased by about 16%. At 20% BSA the rate decreased 

by approximately 28%. These studies have decreased the reaction rate at higher concentrations of 

glycerol, therefore more experiments will be performed to compare the viscosity assays and BSA assays.  

 

 

 



Figure 3: Effects of glycerol on kinetics of cytochrome c reduction. Error bars represent a standard 

deviation. 

 

Our experiments thus far support our hypothesis. As the concentration of BSA increases, the rate 

of electron transfer between the Fdx and FNR complexes decreases. The primary affect is shown in Vmax, 

whereas Km stays essentially constant. Experiments focused on viscosity suggest that there is an effect on 

electron transfer at high concentrations of viscogens. These studies indicate that there may be an effect of 

both macromolecular crowding and viscosity. 

 

Future Directions 

To continue this project there several different ways to proceed. Our last assay was performed 

with BSA at 20%, but physiologically cellular conditions contain up to 20% and 30% of macromolecules 

by percent weight. Therefore, we will continue to increase the concentration of BSA to more closely 

mimic intracellular conditions. Also, limiting our crowding solutions to only one macromolecule does not 

entirely replicate intracellular conditions since cells are heterogeneous. Therefore we will attempt to 

create heterogeneous solutions of macromolecules. Experiments with heterogeneous solutions may have 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 0.05 0.1 0.15 0.2

v
 (

n
m

o
l 

o
f 

cy
tc

 r
e

d
/

m
in

)

Concentration of Glycerol (w/w%)

Effect of Glycerol on Electron Transfer Rates



synergistic effects on the electron transfer rates. We will also continue to perform studies on viscosity. 

We will determine Km and Vmax values using glycerol as the viscogen. These studies will then be 

compared with macromolecular crowding studies utilizing BSA.   

Another direction is to correlate the studies between the ferredoxin, a plant-type system and 

adrenodoxin, a mammalian system. We intend to implement a fluorescence assay and use the 

physiological electron acceptor, cytochrome P450. Studying both systems in conjunction will yield 

valuable complementary information. Preliminary results show that the Vmax of the Fdx-FNR system is 

affected, whereas the Km is affected in the adrenodoxin – adrenodoxin reductase system in the presence of 

macromolecular crowders.  
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