
335

1　Introduction

Outsourcing, as an alternative choice, becomes more and more important in lots of field, because of
high speed change of environment or demands, limits of production capacities, concentrating resourses
on more competing productions and services. Motivated by these, outsourcing is added to classic lot-
sizing model with constant production capacity, dynamic programming algorithm （［9, 11, 8］） and greedy
algorithm（［10］） were also proposed. A possible application of expensive products related to lot-sizing
model with outsourcing is mentioned in ［2］, a wide range of algorithms to solve lot-sizing models are
summarized also there.

Lot-sizing problems as typical mixed-integer programming, the reformulation as compact linear form
is a challenge. In last decade, various reformulations of single item lot-sizing sets have been successful
achieved（［6, 5, 4, 3］）．

The basic form of single-item lot-sizing model with outsourcing （XLS− C−O） is formulated as:

Algorithms for unbounded and varied capacitated

lot-sizing problems with outsourcing

Ping Zhan ＊

Abstract

Lot-sizing problems have been extensively researched for more than half century（［1］）．There are relative small
number of papers on lot-sizing models with outsourcing, despite its important applications in operations research.
Recently several papers related to out-sourcing models are published（［11, 2, 9, 10, 8］）．When there is no bound on
production capacity, linear algorithm （totally square） is possible. Period varying capacitated lot-sizing model is known
as NP-hard even outsourcing is not allowed. In this manuscript, we treat these two extreme cases, we give a efficient
algorithm for former case, and propose a pseudo-polynomial scheme for period varying production capacities.

Keywords： Unbounded and period varying capacitated lot-sizing models, Outsourcing, Dynamic programming

2015 年 11 月 30 日受付
＊ 江戸川大学 情報文化学科准教授　数理計画

13_Zhan.indd 335 16.2.25 8:37:25 PM

Algorithms for unbounded and varied capacitated lot-sizing problems with outsourcing336

 （1）
 （2）

where, qt is production set up cost, p t́, ht́ （including h 0́）and g t́ are unit production, holding and
outsourcing costs respect ively, dt is demand and ct is the product ion capaci ty in period
t（1tn）. The variables are production xt, stock st（including s0）, outsourcing zt and setup yt
respectively in period t（1tn）. If production capacity is constant, i.e., ct = C for all t, we denote such
p r o b l e m a s （XLS − CC−O）. A n d i f p r o d u c t i o n c a p a c i t y i s u n b o u n d e d , w e e x p r e s s i t a s

（XLS− U−O）.
Since the algorithms related to（XLS− CC−O） and its variation has been researched in ［9, 10, 11, 8］,

we treat two other cases, （XLS− U−O） and（XLS−C−O） here.

2　Unbounded Production Capacity

We begin with simple case. Production capacity is larger than cumulative demands, or unbounded,
i.e., XLS− U−O. The structure of extreme solutions is shown in Figure 1.

Figure 1. Extreme solution of XLS－ U－ O

Note the structure of solutions is the result of minimum cost flow problems（［6］）, more precisely,
demand at any period is not met partial by stock, partial by production or outsourcing. The similar
property is a base for many algorithms related to lot-sizing problems.

We are now ready for DP（Dynamic Programming）. Note, by the flow balance equalities in constraint,
stock variables, or production variables can be canceled（or omitted）（［9］）.

Let G（t） be the minimum cost of solving the problem over the first t periods, and let φ（k, t）be the
minimum cost of solving the problem over the first t periods subject to the additional condition that the
last production period is k for some kt. From the denition we have:

By extreme optimal solution structure shown in Figure 1, no edge between nodes k − 1 and k exists

（sk−1 = 0）, hence separation principle of DP is satised and φ（k, t） can be calculated as

lated as:

min

n
t=1

(ptxt + gtzt + htst + qtyt) + h0s0

st−1 + xt + zt = dt + st for 1 ≤ t ≤ n (1)

xt ≤ ctyt for 1 ≤ t ≤ n (2)

xt, st, zt ∈ R+, yt ∈ {0, 1} for 1 ≤ t ≤ n,

where, qt is production set up cost, pt, h

t (including h0) and gt are unit production, holding

and outsourcing costs respectively, dt is demand and ct is the production capacity in period
t (1 ≤ t ≤ n). The variables are production xt, stock st (including s0), outsourcing zt
and setup yt respectively in period t (1 ≤ t ≤ n). If production capacity is constant, i.e.,
ct = C for all t, we denote such problem as (XLS−CC−O). And if production capacity is
unbounded, we express it as (XLS−U−O).

Since the algorithms related to (XLS−CC−O) and its variation has been researched in
[9, 10, 11, 8], we treat two other cases, (XLS−U−O) and (XLS−C−O) here.

2 Unbounded Production Capacity

We begin with simple case. Production capacity is larger than cumulative demands,
or unbounded, i.e., XLS−U−O. The structure of extreme solutions is shown in Figure 1.

0

x1(y1), z1





xk(yx), zk

1 
s1

2 k-1 k n


d1


d2


dk−1


dk


dn

Figure 1. Extreme solution of XLS−U−O

Note the structure of solutions is the result of minimum cost flow problems ([6]), more
precisely, demand at any period is not met partial by stock, partial by production or
outsourcing. The similar property is a base for many algorithms related to lot-sizing
problems.

We are now ready for DP (Dynamic Programming). Note, by the flow balance equal-
ities in constraint, stock variables, or production variables can be canceled (or omitted)
([9]).

Let G(t) be the minimum cost of solving the problem over the first t periods, and
let φ(k, t) be the minimum cost of solving the problem over the first t periods subject to
the additional condition that the last production period is k for some k ≤ t. From the
definition we have:

G(t) = min
k:k≤t

φ(k, t).

By extreme optimal solution structure shown in Figure 1, no edge between nodes k − 1
and k exists (sk−1 = 0), hence separation principle of DP is satisfied and φ(k, t) can be
calculated as

φ(k, t) = G(k − 1) + min[qk + pkdkt, gkdkt],

2

lated as:

min

n
t=1

(ptxt + gtzt + htst + qtyt) + h0s0

st−1 + xt + zt = dt + st for 1 ≤ t ≤ n (1)

xt ≤ ctyt for 1 ≤ t ≤ n (2)

xt, st, zt ∈ R+, yt ∈ {0, 1} for 1 ≤ t ≤ n,

where, qt is production set up cost, pt, h

t (including h0) and gt are unit production, holding

and outsourcing costs respectively, dt is demand and ct is the production capacity in period
t (1 ≤ t ≤ n). The variables are production xt, stock st (including s0), outsourcing zt
and setup yt respectively in period t (1 ≤ t ≤ n). If production capacity is constant, i.e.,
ct = C for all t, we denote such problem as (XLS−CC−O). And if production capacity is
unbounded, we express it as (XLS−U−O).

Since the algorithms related to (XLS−CC−O) and its variation has been researched in
[9, 10, 11, 8], we treat two other cases, (XLS−U−O) and (XLS−C−O) here.

2 Unbounded Production Capacity

We begin with simple case. Production capacity is larger than cumulative demands,
or unbounded, i.e., XLS−U−O. The structure of extreme solutions is shown in Figure 1.

0

x1(y1), z1





xk(yx), zk

1 
s1

2 k-1 k n


d1


d2


dk−1


dk


dn

Figure 1. Extreme solution of XLS−U−O

Note the structure of solutions is the result of minimum cost flow problems ([6]), more
precisely, demand at any period is not met partial by stock, partial by production or
outsourcing. The similar property is a base for many algorithms related to lot-sizing
problems.

We are now ready for DP (Dynamic Programming). Note, by the flow balance equal-
ities in constraint, stock variables, or production variables can be canceled (or omitted)
([9]).

Let G(t) be the minimum cost of solving the problem over the first t periods, and
let φ(k, t) be the minimum cost of solving the problem over the first t periods subject to
the additional condition that the last production period is k for some k ≤ t. From the
definition we have:

G(t) = min
k:k≤t

φ(k, t).

By extreme optimal solution structure shown in Figure 1, no edge between nodes k − 1
and k exists (sk−1 = 0), hence separation principle of DP is satisfied and φ(k, t) can be
calculated as

φ(k, t) = G(k − 1) + min[qk + pkdkt, gkdkt],

2

lated as:

min

n
t=1

(ptxt + gtzt + htst + qtyt) + h0s0

st−1 + xt + zt = dt + st for 1 ≤ t ≤ n (1)

xt ≤ ctyt for 1 ≤ t ≤ n (2)

xt, st, zt ∈ R+, yt ∈ {0, 1} for 1 ≤ t ≤ n,

where, qt is production set up cost, pt, h

t (including h0) and gt are unit production, holding

and outsourcing costs respectively, dt is demand and ct is the production capacity in period
t (1 ≤ t ≤ n). The variables are production xt, stock st (including s0), outsourcing zt
and setup yt respectively in period t (1 ≤ t ≤ n). If production capacity is constant, i.e.,
ct = C for all t, we denote such problem as (XLS−CC−O). And if production capacity is
unbounded, we express it as (XLS−U−O).

Since the algorithms related to (XLS−CC−O) and its variation has been researched in
[9, 10, 11, 8], we treat two other cases, (XLS−U−O) and (XLS−C−O) here.

2 Unbounded Production Capacity

We begin with simple case. Production capacity is larger than cumulative demands,
or unbounded, i.e., XLS−U−O. The structure of extreme solutions is shown in Figure 1.

0

x1(y1), z1





xk(yx), zk

1 
s1

2 k-1 k n


d1


d2


dk−1


dk


dn

Figure 1. Extreme solution of XLS−U−O

Note the structure of solutions is the result of minimum cost flow problems ([6]), more
precisely, demand at any period is not met partial by stock, partial by production or
outsourcing. The similar property is a base for many algorithms related to lot-sizing
problems.

We are now ready for DP (Dynamic Programming). Note, by the flow balance equal-
ities in constraint, stock variables, or production variables can be canceled (or omitted)
([9]).

Let G(t) be the minimum cost of solving the problem over the first t periods, and
let φ(k, t) be the minimum cost of solving the problem over the first t periods subject to
the additional condition that the last production period is k for some k ≤ t. From the
definition we have:

G(t) = min
k:k≤t

φ(k, t).

By extreme optimal solution structure shown in Figure 1, no edge between nodes k − 1
and k exists (sk−1 = 0), hence separation principle of DP is satisfied and φ(k, t) can be
calculated as

φ(k, t) = G(k − 1) + min[qk + pkdkt, gkdkt],

2

13_Zhan.indd 336 16.2.25 8:37:26 PM

Algorithms for unbounded and varied capacitated lot-sizing problems with outsourcing 337

where where dkt =
t

i=k di is accumulative demands from k to t (1 ≤ k ≤ t). Note, stock
variable is omitted here, pk = pk +

n
j=k h


j and gk = gk +

n
j=k h


j ([9]). Summarize

above discussion, we:

A forward DP recursion for XLS−U−O

G(0) = 0

G(t) = min
k:k≤t

[G(k − 1) + min[qk + pkdkt, gkdkt],

for t = 1, · · · , n.

Every recursion can be carried out in O(n), and total time complexity for XLS−U−O

is O(n2). The complexity is same as the one of unbounded lot-sizing problems without
outsourcing.

3 General Capacity Models

In this section, we treat the model XLS−C−O, i.e., general production capacity. It is
NP−hard even in some special cases ([6]). Therefore, a pseudo-polynomial complexity is
the best that one we can hope for. The algorithm proposed in this section is based on the
model without outsourcing XLS−C , and its extension with backlogging XLS−C−B in [7],
here production capacities ck and demands dk are non-negative integers.

For any period k and stock level s ∈ {0, 1, 2, · · · , dkn}, we denote Fk(s) as the minimum
cost incurred in period k to n, when the starting stock in period k is equal to s. Since
outsourcing is unbounded, the demands can always been satisfied. Therefore Fk(s) is
feasible.

By definition of Fk(s), we have the following backward recursive formulas:

Fk(s) = min{hk(s− dk) + Fk+1(s− dk),

min
1≤xk≤ck, zk≥0

{qk + pkxt + gkzk + hk(s− dk + xk + zk)

+Fk+1(s− dk + xk + zk)}} (3)

To simplify notation, let

Gk(s) = min
1≤xk≤ck, zk≥0

{qk + pkxt + gkzk + hk(s− dk + xk + zk) + Fk+1(s− dk + xk + zk)}

We can now specifically,

Fk(s) =





Gk(s), s = 0, 1, 2, · · · , dk − 1,

min{hk(s− dk) + Fk+1(s− dk), Gk(s)}, s = dk, dk + 1, · · · , Dk − 1,

hk(dkn) + Fk+1(dkn), s = Dk.

(4)

It is reasonable to make assumption

gk ≥ pk. (5)

Then outsourcing occurs if and only if no production or production at full capacities.

Gk(s) = min[




min
0≤zk

gkzk + hk(s− dk + zk) + Fk+1(s− dk + zk),

min
0≤xk≤ck

qk + pkxk + hk(s− dk + xk) + Fk+1(s− dk + xk),

min
0≤zk

qk + pkck + gkzk + hk(s− dk + ck + gk) + Fk+1(s− dk + ck + zk)].

(6)

3

is accumulative demands from k to t （1kt）. Note, stock variable is omitted

here,

where dkt =
t

i=k di is accumulative demands from k to t (1 ≤ k ≤ t). Note, stock
variable is omitted here, pk = pk +

n
j=k h


j and gk = gk +

n
j=k h


j ([9]). Summarize

above discussion, we:

A forward DP recursion for XLS−U−O

G(0) = 0

G(t) = min
k:k≤t

[G(k − 1) + min[qk + pkdkt, gkdkt],

for t = 1, · · · , n.

Every recursion can be carried out in O(n), and total time complexity for XLS−U−O

is O(n2). The complexity is same as the one of unbounded lot-sizing problems without
outsourcing.

3 General Capacity Models

In this section, we treat the model XLS−C−O, i.e., general production capacity. It is
NP−hard even in some special cases ([6]). Therefore, a pseudo-polynomial complexity is
the best that one we can hope for. The algorithm proposed in this section is based on the
model without outsourcing XLS−C , and its extension with backlogging XLS−C−B in [7],
here production capacities ck and demands dk are non-negative integers.

For any period k and stock level s ∈ {0, 1, 2, · · · , dkn}, we denote Fk(s) as the minimum
cost incurred in period k to n, when the starting stock in period k is equal to s. Since
outsourcing is unbounded, the demands can always been satisfied. Therefore Fk(s) is
feasible.

By definition of Fk(s), we have the following backward recursive formulas:

Fk(s) = min{hk(s− dk) + Fk+1(s− dk),

min
1≤xk≤ck, zk≥0

{qk + pkxt + gkzk + hk(s− dk + xk + zk)

+Fk+1(s− dk + xk + zk)}} (3)

To simplify notation, let

Gk(s) = min
1≤xk≤ck, zk≥0

{qk + pkxt + gkzk + hk(s− dk + xk + zk) + Fk+1(s− dk + xk + zk)}

We can now specifically,

Fk(s) =




Gk(s), s = 0, 1, 2, · · · , dk − 1,

min{hk(s− dk) + Fk+1(s− dk), Gk(s)}, s = dk, dk + 1, · · · , Dk − 1,

hk(dkn) + Fk+1(dkn), s = Dk.

(4)

It is reasonable to make assumption

gk ≥ pk. (5)

Then outsourcing occurs if and only if no production or production at full capacities.

Gk(s) = min[





min
0≤zk

gkzk + hk(s− dk + zk) + Fk+1(s− dk + zk),

min
0≤xk≤ck

qk + pkxk + hk(s− dk + xk) + Fk+1(s− dk + xk),

min
0≤zk

qk + pkck + gkzk + hk(s− dk + ck + gk) + Fk+1(s− dk + ck + zk)].

(6)

3

and

where dkt =
t

i=k di is accumulative demands from k to t (1 ≤ k ≤ t). Note, stock
variable is omitted here, pk = pk +

n
j=k h


j and gk = gk +

n
j=k h


j ([9]). Summarize

above discussion, we:

A forward DP recursion for XLS−U−O

G(0) = 0

G(t) = min
k:k≤t

[G(k − 1) + min[qk + pkdkt, gkdkt],

for t = 1, · · · , n.

Every recursion can be carried out in O(n), and total time complexity for XLS−U−O

is O(n2). The complexity is same as the one of unbounded lot-sizing problems without
outsourcing.

3 General Capacity Models

In this section, we treat the model XLS−C−O, i.e., general production capacity. It is
NP−hard even in some special cases ([6]). Therefore, a pseudo-polynomial complexity is
the best that one we can hope for. The algorithm proposed in this section is based on the
model without outsourcing XLS−C , and its extension with backlogging XLS−C−B in [7],
here production capacities ck and demands dk are non-negative integers.

For any period k and stock level s ∈ {0, 1, 2, · · · , dkn}, we denote Fk(s) as the minimum
cost incurred in period k to n, when the starting stock in period k is equal to s. Since
outsourcing is unbounded, the demands can always been satisfied. Therefore Fk(s) is
feasible.

By definition of Fk(s), we have the following backward recursive formulas:

Fk(s) = min{hk(s− dk) + Fk+1(s− dk),

min
1≤xk≤ck, zk≥0

{qk + pkxt + gkzk + hk(s− dk + xk + zk)

+Fk+1(s− dk + xk + zk)}} (3)

To simplify notation, let

Gk(s) = min
1≤xk≤ck, zk≥0

{qk + pkxt + gkzk + hk(s− dk + xk + zk) + Fk+1(s− dk + xk + zk)}

We can now specifically,

Fk(s) =




Gk(s), s = 0, 1, 2, · · · , dk − 1,

min{hk(s− dk) + Fk+1(s− dk), Gk(s)}, s = dk, dk + 1, · · · , Dk − 1,

hk(dkn) + Fk+1(dkn), s = Dk.

(4)

It is reasonable to make assumption

gk ≥ pk. (5)

Then outsourcing occurs if and only if no production or production at full capacities.

Gk(s) = min[





min
0≤zk

gkzk + hk(s− dk + zk) + Fk+1(s− dk + zk),

min
0≤xk≤ck

qk + pkxk + hk(s− dk + xk) + Fk+1(s− dk + xk),

min
0≤zk

qk + pkck + gkzk + hk(s− dk + ck + gk) + Fk+1(s− dk + ck + zk)].

(6)

3

 （［9］）. Summarize above discussion, we
have:

A forward DP recursion for XLS－ U－O

Every recursion can be carried out in O（n）, and total time complexity for XLS− U−O is O（n
2）. The

complexity is same as the one of unbounded lot-sizing problem without outsourcing.

3　General Capacity Models

In this section, we treat the model XLS− C−O, i.e., general production capacity. It is NP-hard even in
some special cases （［6］）. Therefore, a pseudo-polynomial complexity is the best that one we can hope
for. The algorithm proposed in this section is based on the model without outsourcing XLS− C, and its
extension with backlogging XLS−C−B in［7］, here production capacities ck and demands dk are non-
negative integers.

For any period k and stock level s∈{0, 1, 2, ・・・, dkn}, we denote Fk（s） as the minimum cost
incurred in period k to n, when the star ting stock in period k is equal to s. Since outsourcing is
unbounded, the demands can always been satised. Therefore Fk（s） is feasible.

By denition of Fk（s）, we have the following backward recursive formulas:

 （3）
To simplify notation, let

We can now specifically give,

（4）

It is reasonable to make assumption

　　　　　　　　　　　　　　　　　gk  pk. （5）

lated as:

min

n
t=1

(ptxt + gtzt + htst + qtyt) + h0s0

st−1 + xt + zt = dt + st for 1 ≤ t ≤ n (1)

xt ≤ ctyt for 1 ≤ t ≤ n (2)

xt, st, zt ∈ R+, yt ∈ {0, 1} for 1 ≤ t ≤ n,

where, qt is production set up cost, pt, h

t (including h0) and gt are unit production, holding

and outsourcing costs respectively, dt is demand and ct is the production capacity in period
t (1 ≤ t ≤ n). The variables are production xt, stock st (including s0), outsourcing zt
and setup yt respectively in period t (1 ≤ t ≤ n). If production capacity is constant, i.e.,
ct = C for all t, we denote such problem as (XLS−CC−O). And if production capacity is
unbounded, we express it as (XLS−U−O).

Since the algorithms related to (XLS−CC−O) and its variation has been researched in
[9, 10, 11, 8], we treat two other cases, (XLS−U−O) and (XLS−C−O) here.

2 Unbounded Production Capacity

We begin with simple case. Production capacity is larger than cumulative demands,
or unbounded, i.e., XLS−U−O. The structure of extreme solutions is shown in Figure 1.

0










x1(y1), z1





xk(yx), zk

1 
s1

2 k-1 k n


d1


d2


dk−1


dk


dn

Figure 1. Extreme solution of XLS−U−O

Note the structure of solutions is the result of minimum cost flow problems ([6]), more
precisely, demand at any period is not met partial by stock, partial by production or
outsourcing. The similar property is a base for many algorithms related to lot-sizing
problems.

We are now ready for DP (Dynamic Programming). Note, by the flow balance equal-
ities in constraint, stock variables, or production variables can be canceled (or omitted)
([9]).

Let G(t) be the minimum cost of solving the problem over the first t periods, and
let φ(k, t) be the minimum cost of solving the problem over the first t periods subject to
the additional condition that the last production period is k for some k ≤ t. From the
definition we have:

G(t) = min
k:k≤t

φ(k, t).

By extreme optimal solution structure shown in Figure 1, no edge between nodes k − 1
and k exists (sk−1 = 0), hence separation principle of DP is satisfied and φ(k, t) can be
calculated as

φ(k, t) = G(k − 1) + min[qk + pkdkt, gkdkt],

2

where dkt =
t

i=k di is accumulative demands from k to t (1 ≤ k ≤ t). Note, stock
variable is omitted here, pk = pk +

n
j=k h


j and gk = gk +

n
j=k h


j ([9]). Summarize

above discussion, we:

A forward DP recursion for XLS−U−O

G(0) = 0

G(t) = min
k:k≤t

[G(k − 1) + min[qk + pkdkt, gkdkt],

for t = 1, · · · , n.

Every recursion can be carried out in O(n), and total time complexity for XLS−U−O

is O(n2). The complexity is same as the one of unbounded lot-sizing problems without
outsourcing.

3 General Capacity Models

In this section, we treat the model XLS−C−O, i.e., general production capacity. It is
NP−hard even in some special cases ([6]). Therefore, a pseudo-polynomial complexity is
the best that one we can hope for. The algorithm proposed in this section is based on the
model without outsourcing XLS−C , and its extension with backlogging XLS−C−B in [7],
here production capacities ck and demands dk are non-negative integers.

For any period k and stock level s ∈ {0, 1, 2, · · · , dkn}, we denote Fk(s) as the minimum
cost incurred in period k to n, when the starting stock in period k is equal to s. Since
outsourcing is unbounded, the demands can always been satisfied. Therefore Fk(s) is
feasible.

By definition of Fk(s), we have the following backward recursive formulas:

Fk(s) = min{hk(s− dk) + Fk+1(s− dk),

min
1≤xk≤ck, zk≥0

{qk + pkxt + gkzk + hk(s− dk + xk + zk)

+Fk+1(s− dk + xk + zk)}} (3)

To simplify notation, let

Gk(s) = min
1≤xk≤ck, zk≥0

{qk + pkxt + gkzk + hk(s− dk + xk + zk) + Fk+1(s− dk + xk + zk)}

We can now specifically,

Fk(s) =





Gk(s), s = 0, 1, 2, · · · , dk − 1,

min{hk(s− dk) + Fk+1(s− dk), Gk(s)}, s = dk, dk + 1, · · · , Dk − 1,

hk(dkn) + Fk+1(dkn), s = Dk.

(4)

It is reasonable to make assumption

gk ≥ pk. (5)

Then outsourcing occurs if and only if no production or production at full capacities.

Gk(s) = min[




min
0≤zk

gkzk + hk(s− dk + zk) + Fk+1(s− dk + zk),

min
0≤xk≤ck

qk + pkxk + hk(s− dk + xk) + Fk+1(s− dk + xk),

min
0≤zk

qk + pkck + gkzk + hk(s− dk + ck + gk) + Fk+1(s− dk + ck + zk)].

(6)

3

where dkt =
t

i=k di is accumulative demands from k to t (1 ≤ k ≤ t). Note, stock
variable is omitted here, pk = pk +

n
j=k h


j and gk = gk +

n
j=k h


j ([9]). Summarize

above discussion, we:

A forward DP recursion for XLS−U−O

G(0) = 0

G(t) = min
k:k≤t

[G(k − 1) + min[qk + pkdkt, gkdkt],

for t = 1, · · · , n.

Every recursion can be carried out in O(n), and total time complexity for XLS−U−O

is O(n2). The complexity is same as the one of unbounded lot-sizing problems without
outsourcing.

3 General Capacity Models

In this section, we treat the model XLS−C−O, i.e., general production capacity. It is
NP−hard even in some special cases ([6]). Therefore, a pseudo-polynomial complexity is
the best that one we can hope for. The algorithm proposed in this section is based on the
model without outsourcing XLS−C , and its extension with backlogging XLS−C−B in [7],
here production capacities ck and demands dk are non-negative integers.

For any period k and stock level s ∈ {0, 1, 2, · · · , dkn}, we denote Fk(s) as the minimum
cost incurred in period k to n, when the starting stock in period k is equal to s. Since
outsourcing is unbounded, the demands can always been satisfied. Therefore Fk(s) is
feasible.

By definition of Fk(s), we have the following backward recursive formulas:

Fk(s) = min{hk(s− dk) + Fk+1(s− dk),

min
1≤xk≤ck, zk≥0

{qk + pkxt + gkzk + hk(s− dk + xk + zk)

+Fk+1(s− dk + xk + zk)}} (3)

To simplify notation, let

Gk(s) = min
1≤xk≤ck, zk≥0

{qk + pkxt + gkzk + hk(s− dk + xk + zk) + Fk+1(s− dk + xk + zk)}

We can now specifically,

Fk(s) =




Gk(s), s = 0, 1, 2, · · · , dk − 1,

min{hk(s− dk) + Fk+1(s− dk), Gk(s)}, s = dk, dk + 1, · · · , Dk − 1,

hk(dkn) + Fk+1(dkn), s = Dk.

(4)

It is reasonable to make assumption

gk ≥ pk. (5)

Then outsourcing occurs if and only if no production or production at full capacities.

Gk(s) = min[





min
0≤zk

gkzk + hk(s− dk + zk) + Fk+1(s− dk + zk),

min
0≤xk≤ck

qk + pkxk + hk(s− dk + xk) + Fk+1(s− dk + xk),

min
0≤zk

qk + pkck + gkzk + hk(s− dk + ck + gk) + Fk+1(s− dk + ck + zk)].

(6)

3

where dkt =
t

i=k di is accumulative demands from k to t (1 ≤ k ≤ t). Note, stock
variable is omitted here, pk = pk +

n
j=k h


j and gk = gk +

n
j=k h


j ([9]). Summarize

above discussion, we:

A forward DP recursion for XLS−U−O

G(0) = 0

G(t) = min
k:k≤t

[G(k − 1) + min[qk + pkdkt, gkdkt],

for t = 1, · · · , n.

Every recursion can be carried out in O(n), and total time complexity for XLS−U−O

is O(n2). The complexity is same as the one of unbounded lot-sizing problems without
outsourcing.

3 General Capacity Models

In this section, we treat the model XLS−C−O, i.e., general production capacity. It is
NP−hard even in some special cases ([6]). Therefore, a pseudo-polynomial complexity is
the best that one we can hope for. The algorithm proposed in this section is based on the
model without outsourcing XLS−C , and its extension with backlogging XLS−C−B in [7],
here production capacities ck and demands dk are non-negative integers.

For any period k and stock level s ∈ {0, 1, 2, · · · , dkn}, we denote Fk(s) as the minimum
cost incurred in period k to n, when the starting stock in period k is equal to s. Since
outsourcing is unbounded, the demands can always been satisfied. Therefore Fk(s) is
feasible.

By definition of Fk(s), we have the following backward recursive formulas:

Fk(s) = min{hk(s− dk) + Fk+1(s− dk),

min
1≤xk≤ck, zk≥0

{qk + pkxt + gkzk + hk(s− dk + xk + zk)

+Fk+1(s− dk + xk + zk)}} (3)

To simplify notation, let

Gk(s) = min
1≤xk≤ck, zk≥0

{qk + pkxt + gkzk + hk(s− dk + xk + zk) + Fk+1(s− dk + xk + zk)}

We can now specifically,

Fk(s) =




Gk(s), s = 0, 1, 2, · · · , dk − 1,

min{hk(s− dk) + Fk+1(s− dk), Gk(s)}, s = dk, dk + 1, · · · , Dk − 1,

hk(dkn) + Fk+1(dkn), s = Dk.

(4)

It is reasonable to make assumption

gk ≥ pk. (5)

Then outsourcing occurs if and only if no production or production at full capacities.

Gk(s) = min[





min
0≤zk

gkzk + hk(s− dk + zk) + Fk+1(s− dk + zk),

min
0≤xk≤ck

qk + pkxk + hk(s− dk + xk) + Fk+1(s− dk + xk),

min
0≤zk

qk + pkck + gkzk + hk(s− dk + ck + gk) + Fk+1(s− dk + ck + zk)].

(6)

3
13_Zhan.indd 337 16.2.25 8:37:28 PM

Algorithms for unbounded and varied capacitated lot-sizing problems with outsourcing338

Then outsourcing occurs if and only if no production or production at full capacities.

 （6）

In（6）, production xk varies from 1 to min{ck, dkn}−s, and outsourcing zk varies from 0 to dkn−s or from
ck to dkn−s. While s varies from 0 to dkn. Hence, the total time complexity for Gk（・） is O（d

2
kn）.

Since no special property for diflerent values in each iteration, some calculations are repeated in other
ones, the above complexity can been improved by keeping minimum values in Queue/Stack. See details
in［7］ for similar discussions. Although more two cases are needed to be treated in lot-sizing model
including outsourcing, while the complexity order is also O（nd1n）.

Proposition 3.1 There is an O(nd1n) algorithm for XLT− C−O.

We should point out that the DP suggested for XLT−C−O here is based on the fact that products are
discrete parts, not continuous variable as something like liquid are included.

References
［1］N. Brahimi, S. Dauzere-Peres, N.M. Najid, and A. Nordli. Single item lot sizing problems. European Journal of

Operational Research, （166）:1-16, 2006.
［2］C. Chu, F. Chu, J. Zhong, and S. Yang. A polynomial algorithm for a lot-sizing problem with backlogging, outsourcing

and limited inventory. Computer & Industrial Engineering, （64）:200-210, 2013.
［3］M. Conforti, M Di. Summa, and L.A. Wolsey. The intersection of continuous mixing set polyhedra and the continuous

mixing polyhedron with ows. 352-366, 2007.
［4］M. Conforti, M Di. Summa, and L.A. Wolsey. The mixing set with ows. SIAM Journal on Discrete Mathematics, （21（2））:

396-407, 2007.
［5］V. Pochet and L.A. Wolsey. Polyhedra for lot-sizing with wagner-whitein costs. Mathematical Programming, （67）:

297-323, 1994.
［6］V. Pochet and L.A. Wolsey. Production planning by mixed integer programming. 2006.
［7］ D.X. Shaw and A.P. Wagelmans. An algorithm for single-item capacitated economic lot sizing with piecewise linear

production costed and general holding costs. Man-agement Science, （44）:474-486, 1998.
［8］P. Zhan. An improved algorithm for a capacitated lot-sizing problem with outsourc-ing. Submitted.
［9］P. Zhan. A dynamic programming algorithm for lot-sizing problem with outsourcing. Progress in Informatics, （9）:31-

34, 2012.
［10］P. Zhan. Lot-sizing problem with outsourcing: Greedy algorithm and reformulation. Information, （17）:2479-2486,

2014.
［11］M. Zhang. Capacitated lot-sizing problem with outsourcing. Operations Research Letters, （43）:479-483, 2015.

where dkt =
t

i=k di is accumulative demands from k to t (1 ≤ k ≤ t). Note, stock
variable is omitted here, pk = pk +

n
j=k h


j and gk = gk +

n
j=k h


j ([9]). Summarize

above discussion, we:

A forward DP recursion for XLS−U−O

G(0) = 0

G(t) = min
k:k≤t

[G(k − 1) + min[qk + pkdkt, gkdkt],

for t = 1, · · · , n.

Every recursion can be carried out in O(n), and total time complexity for XLS−U−O

is O(n2). The complexity is same as the one of unbounded lot-sizing problems without
outsourcing.

3 General Capacity Models

In this section, we treat the model XLS−C−O, i.e., general production capacity. It is
NP−hard even in some special cases ([6]). Therefore, a pseudo-polynomial complexity is
the best that one we can hope for. The algorithm proposed in this section is based on the
model without outsourcing XLS−C , and its extension with backlogging XLS−C−B in [7],
here production capacities ck and demands dk are non-negative integers.

For any period k and stock level s ∈ {0, 1, 2, · · · , dkn}, we denote Fk(s) as the minimum
cost incurred in period k to n, when the starting stock in period k is equal to s. Since
outsourcing is unbounded, the demands can always been satisfied. Therefore Fk(s) is
feasible.

By definition of Fk(s), we have the following backward recursive formulas:

Fk(s) = min{hk(s− dk) + Fk+1(s− dk),

min
1≤xk≤ck, zk≥0

{qk + pkxt + gkzk + hk(s− dk + xk + zk)

+Fk+1(s− dk + xk + zk)}} (3)

To simplify notation, let

Gk(s) = min
1≤xk≤ck, zk≥0

{qk + pkxt + gkzk + hk(s− dk + xk + zk) + Fk+1(s− dk + xk + zk)}

We can now specifically,

Fk(s) =




Gk(s), s = 0, 1, 2, · · · , dk − 1,

min{hk(s− dk) + Fk+1(s− dk), Gk(s)}, s = dk, dk + 1, · · · , Dk − 1,

hk(dkn) + Fk+1(dkn), s = Dk.

(4)

It is reasonable to make assumption

gk ≥ pk. (5)

Then outsourcing occurs if and only if no production or production at full capacities.

Gk(s) = min[




min
0≤zk

gkzk + hk(s− dk + zk) + Fk+1(s− dk + zk),

min
0≤xk≤ck

qk + pkxk + hk(s− dk + xk) + Fk+1(s− dk + xk),

min
0≤zk

qk + pkck + gkzk + hk(s− dk + ck + gk) + Fk+1(s− dk + ck + zk)].

(6)

3

where dkt =
t

i=k di is accumulative demands from k to t (1 ≤ k ≤ t). Note, stock
variable is omitted here, pk = pk +

n
j=k h


j and gk = gk +

n
j=k h


j ([9]). Summarize

above discussion, we:

A forward DP recursion for XLS−U−O

G(0) = 0

G(t) = min
k:k≤t

[G(k − 1) + min[qk + pkdkt, gkdkt],

for t = 1, · · · , n.

Every recursion can be carried out in O(n), and total time complexity for XLS−U−O

is O(n2). The complexity is same as the one of unbounded lot-sizing problems without
outsourcing.

3 General Capacity Models

In this section, we treat the model XLS−C−O, i.e., general production capacity. It is
NP−hard even in some special cases ([6]). Therefore, a pseudo-polynomial complexity is
the best that one we can hope for. The algorithm proposed in this section is based on the
model without outsourcing XLS−C , and its extension with backlogging XLS−C−B in [7],
here production capacities ck and demands dk are non-negative integers.

For any period k and stock level s ∈ {0, 1, 2, · · · , dkn}, we denote Fk(s) as the minimum
cost incurred in period k to n, when the starting stock in period k is equal to s. Since
outsourcing is unbounded, the demands can always been satisfied. Therefore Fk(s) is
feasible.

By definition of Fk(s), we have the following backward recursive formulas:

Fk(s) = min{hk(s− dk) + Fk+1(s− dk),

min
1≤xk≤ck, zk≥0

{qk + pkxt + gkzk + hk(s− dk + xk + zk)

+Fk+1(s− dk + xk + zk)}} (3)

To simplify notation, let

Gk(s) = min
1≤xk≤ck, zk≥0

{qk + pkxt + gkzk + hk(s− dk + xk + zk) + Fk+1(s− dk + xk + zk)}

We can now specifically,

Fk(s) =




Gk(s), s = 0, 1, 2, · · · , dk − 1,

min{hk(s− dk) + Fk+1(s− dk), Gk(s)}, s = dk, dk + 1, · · · , Dk − 1,

hk(dkn) + Fk+1(dkn), s = Dk.

(4)

It is reasonable to make assumption

gk ≥ pk. (5)

Then outsourcing occurs if and only if no production or production at full capacities.

Gk(s) = min[




min
0≤zk

gkzk + hk(s− dk + zk) + Fk+1(s− dk + zk),

min
0≤xk≤ck

qk + pkxk + hk(s− dk + xk) + Fk+1(s− dk + xk),

min
0≤zk

qk + pkck + gkzk + hk(s− dk + ck + gk) + Fk+1(s− dk + ck + zk)].

(6)

3

13_Zhan.indd 338 16.2.25 8:37:29 PM

