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1　Introduction

Outsourcing, as an alternative choice, becomes more and more important in lots of field, because of 
high speed change of environment or demands, limits of production capacities, concentrating resourses 
on more competing productions and services. Motivated by these, outsourcing is added to classic lot-
sizing model with constant production capacity, dynamic programming algorithm （［9, 11, 8］） and greedy 
algorithm（［10］） were also proposed. A possible application of expensive products related to lot-sizing 
model with outsourcing is mentioned in ［2］, a wide range of algorithms to solve lot-sizing models are 
summarized also there.

Lot-sizing problems as typical mixed-integer programming, the reformulation as compact linear form 
is a challenge. In last decade, various reformulations of single item lot-sizing sets have been successful 
achieved（［6, 5, 4, 3］）．

The basic form of single-item lot-sizing model with outsourcing （XLS− C−O） is formulated as:
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 （1）
 （2）

where, qt is production set up cost, p t́, ht́ （including h 0́）and g t́  are unit production, holding and 
outsourcing costs respect ively, dt is demand and ct is the product ion capaci ty in period  
t（1tn）. The variables are production xt, stock st（including s0）, outsourcing zt and setup yt 
respectively in period t（1tn）. If production capacity is constant, i.e., ct = C for all t, we denote such 
p r o b l e m a s （XLS − CC−O）. A n d i f p r o d u c t i o n c a p a c i t y i s u n b o u n d e d , w e e x p r e s s i t a s 

（XLS− U−O）.
Since the algorithms related to（XLS− CC−O） and its variation has been researched in ［9, 10, 11, 8］, 

we treat two other cases, （XLS− U−O） and（XLS−C−O） here.

2　Unbounded Production Capacity

We begin with simple case. Production capacity is larger than cumulative demands, or unbounded, 
i.e., XLS− U−O. The structure of extreme solutions is shown in Figure 1.

Figure 1. Extreme solution of XLS－ U－ O

Note the structure of solutions is the result of minimum cost flow problems（［6］）, more precisely, 
demand at any period is not met partial by stock, partial by production or outsourcing. The similar 
property is a base for many algorithms related to lot-sizing problems.

We are now ready for DP（Dynamic Programming）. Note, by the flow balance equalities in constraint, 
stock variables, or production variables can be canceled（or omitted）（［9］）.

Let G（t） be the minimum cost of solving the problem over the first t periods, and let φ（k, t）be the 
minimum cost of solving the problem over the first t periods subject to the additional condition that the 
last production period is k for some kt. From the denition we have:

By extreme optimal solution structure shown in Figure 1, no edge between nodes k − 1 and k exists 

（sk−1 = 0）, hence separation principle of DP is satised and φ（k, t） can be calculated as

lated as:

min

n
t=1

(ptxt + gtzt + htst + qtyt) + h0s0

st−1 + xt + zt = dt + st for 1 ≤ t ≤ n (1)

xt ≤ ctyt for 1 ≤ t ≤ n (2)

xt, st, zt ∈ R+, yt ∈ {0, 1} for 1 ≤ t ≤ n,

where, qt is production set up cost, pt, h

t (including h0) and gt are unit production, holding

and outsourcing costs respectively, dt is demand and ct is the production capacity in period
t (1 ≤ t ≤ n). The variables are production xt, stock st (including s0), outsourcing zt
and setup yt respectively in period t (1 ≤ t ≤ n). If production capacity is constant, i.e.,
ct = C for all t, we denote such problem as (XLS−CC−O). And if production capacity is
unbounded, we express it as (XLS−U−O).

Since the algorithms related to (XLS−CC−O) and its variation has been researched in
[9, 10, 11, 8], we treat two other cases, (XLS−U−O) and (XLS−C−O) here.
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We begin with simple case. Production capacity is larger than cumulative demands,
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Note the structure of solutions is the result of minimum cost flow problems ([6]), more
precisely, demand at any period is not met partial by stock, partial by production or
outsourcing. The similar property is a base for many algorithms related to lot-sizing
problems.

We are now ready for DP (Dynamic Programming). Note, by the flow balance equal-
ities in constraint, stock variables, or production variables can be canceled (or omitted)
([9]).

Let G(t) be the minimum cost of solving the problem over the first t periods, and
let φ(k, t) be the minimum cost of solving the problem over the first t periods subject to
the additional condition that the last production period is k for some k ≤ t. From the
definition we have:

G(t) = min
k:k≤t

φ(k, t).

By extreme optimal solution structure shown in Figure 1, no edge between nodes k − 1
and k exists (sk−1 = 0), hence separation principle of DP is satisfied and φ(k, t) can be
calculated as

φ(k, t) = G(k − 1) + min[qk + pkdkt, gkdkt],
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where where dkt =
t

i=k di is accumulative demands from k to t (1 ≤ k ≤ t). Note, stock
variable is omitted here, pk = pk +

n
j=k h


j and gk = gk +

n
j=k h


j ([9]). Summarize

above discussion, we:

A forward DP recursion for XLS−U−O

G(0) = 0

G(t) = min
k:k≤t

[G(k − 1) + min[qk + pkdkt, gkdkt],

for t = 1, · · · , n.

Every recursion can be carried out in O(n), and total time complexity for XLS−U−O

is O(n2). The complexity is same as the one of unbounded lot-sizing problems without
outsourcing.

3 General Capacity Models

In this section, we treat the model XLS−C−O, i.e., general production capacity. It is
NP−hard even in some special cases ([6]). Therefore, a pseudo-polynomial complexity is
the best that one we can hope for. The algorithm proposed in this section is based on the
model without outsourcing XLS−C , and its extension with backlogging XLS−C−B in [7],
here production capacities ck and demands dk are non-negative integers.

For any period k and stock level s ∈ {0, 1, 2, · · · , dkn}, we denote Fk(s) as the minimum
cost incurred in period k to n, when the starting stock in period k is equal to s. Since
outsourcing is unbounded, the demands can always been satisfied. Therefore Fk(s) is
feasible.

By definition of Fk(s), we have the following backward recursive formulas:

Fk(s) = min{hk(s− dk) + Fk+1(s− dk),

min
1≤xk≤ck, zk≥0

{qk + pkxt + gkzk + hk(s− dk + xk + zk)

+Fk+1(s− dk + xk + zk)}} (3)

To simplify notation, let

Gk(s) = min
1≤xk≤ck, zk≥0

{qk + pkxt + gkzk + hk(s− dk + xk + zk) + Fk+1(s− dk + xk + zk)}

We can now specifically,

Fk(s) =





Gk(s), s = 0, 1, 2, · · · , dk − 1,

min{hk(s− dk) + Fk+1(s− dk), Gk(s)}, s = dk, dk + 1, · · · , Dk − 1,

hk(dkn) + Fk+1(dkn), s = Dk.

(4)

It is reasonable to make assumption

gk ≥ pk. (5)

Then outsourcing occurs if and only if no production or production at full capacities.

Gk(s) = min[




min
0≤zk

gkzk + hk(s− dk + zk) + Fk+1(s− dk + zk),

min
0≤xk≤ck

qk + pkxk + hk(s− dk + xk) + Fk+1(s− dk + xk),

min
0≤zk

qk + pkck + gkzk + hk(s− dk + ck + gk) + Fk+1(s− dk + ck + zk)].

(6)

3
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Then outsourcing occurs if and only if no production or production at full capacities.

 （6）

In（6）, production xk varies from 1 to min{ck, dkn}−s, and outsourcing zk varies from 0 to dkn−s or from 
ck to dkn−s. While s varies from 0 to dkn. Hence, the total time complexity for Gk（・） is O（d

2
kn）.

Since no special property for diflerent values in each iteration, some calculations are repeated in other 
ones, the above complexity can been improved by keeping minimum values in Queue/Stack. See details 
in［7］ for similar discussions. Although more two cases are needed to be treated in lot-sizing model 
including outsourcing, while the complexity order is also O（nd1n）.

Proposition 3.1 There   is   an O(nd1n) algorithm for XLT− C−O.

We should point out that the DP suggested for XLT−C−O here is based on the fact that products are 
discrete parts, not continuous variable as something like liquid are included.
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