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ABSTRACT 
Diabetes is a multifactorial disease, characterized by hyperglycemia and insulin resistance. Diabetic microvascular 
end points such as retinopathy, cardiomyopathy and nephropathy; and macrovascular complications such as 
myocardial infarction and stroke are causing premature death in diabetic populations. Despite strong familial 
clustering is associated with diabetes, the essential role of epigenetic component in the development of diabetes 
and its complications is inevitable. Several clinical trials and experimental animal studies show the persistence 
of diabetic vascular complications even after the normalization of glucose in diabetic patients, indicating the role 
of epigenetic or metabolic memory. Although previous researches on diabetes implicated the role of reactive 
oxygen species in the pathogenesis and development of diabetic complications, lifestyle factors including diet and 
exercise and environmental factors are strongly associated in inducing epigenetic changes related to diabetic 
risk. 
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Introduction 
Epigenetics represents all heritable or non-

heritable changes in gene function that occur without 
a change in the sequence of nucleotide. Methylation of 
DNA, modifications of histones, and interference of 
RNA are the main epigenetic control over the 
alteration of gene function.1 Epigenetic changes are 
specific to tissues and crucial for the development and 
differentiation of the various cell types in an organism. 
Epigenetic changes, such as alteration in DNA and 
chromatin structures can be inherited through mitosis 
(transferred from one cell division to another) or 
meiosis (passed to the next generation of the species).1 

Methylation of DNA mostly occurs at the 
cytosine nucleotide present in the genomic region 
called CpG islands, where cytosine is adjacent to 
guanine and they are rich in cytosine and guanine 
nucleotides. Nearly 40 % of the mammalian gene 
promoters contain CpG islands, which are about 300–
3,000 base pairs in length. The enzyme DNA 
methyltransferase (DNMT) adds a methyl group at the 
fifth position of cytosine nucleotides using s-adenosyl 
methionine as the methyl donor. The methylation of 
cytosine nucleotides in the CpG island results in 
silencing of the genes possibly through restricting the 
binding of transcriptional factors at promoter region 

whereas, the hypomethylation of CpG islands results 
in enhanced gene transcription.2,3 

Histone modification is another epigenetic 
modification regulating the expression of genes. 
Eukaryotic DNA is tightly packed with the help of 
histones to a fundamental unit called nucleosomes. A 
nucleosome consists of 146 base pairs of DNA 
wrapped around an octamer of histones, containing 
two copies each of the histones H2A, H2B, H3 and 
H4. The histones present in the nucleosome can 
undergo many types of reversible modifications, such 
as methylation, acetylation, phosphorylation, and 
ubiquitination. The acetylation and deacetylation of 
histones occurs at a specific lysine residue present in 
the histones. The acetylation of histones is carried out 
by the enzymes histone acetyltransferases (HAT) that 
results in the change of allosteric interactions in the 
nucleosome that ease the binding of transcriptional 
factors to the DNA. The deacetylation of histones is 
carried out by the enzymes histone deacetylases 
(HDAC), resulting in producing a heterochromatin 
that leads to the inhibition of gene transcription.4,5 The 
methylation of histone is carried out by the enzymes 
histone methyltransferases using s-adenosyl 
methionine as a methyl donor.  Only, lysine (K) and 
arginine (R) residues (both contain amino groups) 
present in the histones H3 and H4 are found to be 
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methylated.  The methylation at H3K4, H3K48, and 
H3K79 are associated with gene activation. Whereas, 
the methylation at H3K9 and H3K27 are associated 
with gene inactivation.4 

Epigenetic regulation of gene expression is 
attained at the post-transcriptional level by 
microRNAs (miRNA), which are 21–25 nucleotide 
long, single-stranded non-coding RNAs. The miRNAs 
binds to messenger RNA (mRNA) and destroys it 
through forming RNA-induced silencing complexes 
(RISC). miRNAs plays a major role in the regulation 
of cellular differentiation, proliferation and 
apoptosis.6,7  
 

Metabolic memory in diabetes 
The persistence of diabetic vascular 

complications even after the normalization of glucose 
in diabetic patients is referred as “metabolic memory”. 
Large-scale clinical trials such as Diabetes Control and 
Complications Trial (DCCT)8 and the Epidemiology 
of Diabetes Intervention and Complications (EDIC) 
follow-up observational study9 show in diabetic 
patients that despite improved glycemic control, the 
patients develop complications as a result of prior 
poor glycemic control. However, recent investigations 
revealed that subjects who received continuous 
intensive treatment throughout the trials were at 
significantly lower risk of macrovascular complications 
including atherosclerosis cardiovascular disease and 
stroke.10-12 Experiments in diabetic dogs13 and in 
diabetic rats14 showed that the improved glycemic 
control failed to prevent the progression to diabetic 
retinopathy. Similarly, in-vitro studies in aortic 
endothelial cells from mice and in primary human 
endothelial cells prove that the activation of pro-
inflammatory genes were continued for several days 
after the normalization of glucose concentration.15 

 

Epigenetic regulation in diabetes   
DNA methylation of long interspersed 

nucleotide element 1 (LINE-1) sequences measured in 
the peripheral blood of diabetic patients was 
significantly associated with a higher risk for metabolic 
worsening, and these results highlight the important 
role for epigenetic biomarkers as predictors of type 2 
diabetes mellitus risk.16 Lymphocytes from patients 
with type 1 diabetes mellitus showed an altered 
methylation at lysine 9 of histone H3 (H3K9) and 
which is correlated with the expression of genes 
involving autoimmune and inflammatory pathways.17 
A decreased methylation at H3K9 and enhanced 
methylation at H3K4 were observed at the promoters 
of inflammatory genes such as MCP-1 and IL-6 in 

smooth muscle cells obtained from diabetic db/db 
mice.18,19 Moreover, the smooth muscle cells from the 
db/db mice retained the inflammatory phenotype up 
to eight weeks in ex vivo cell culture, indicating the 
metabolic memory.19 High glucose concentration in 
monocytes causes interaction between NFκB and 
HATs that leads to hyperacetylation and 
transcriptional activation of genes related to 
inflammatory cytokines.20,21  

The Set7 lysine methyltransferase may operate 
as a sensor for hyperglycemic insult and in mediating 
the metabolic memory in human endothelial cells.22 
High glucose in human vascular endothelial cells 
induces the nuclear translocation of Set7, resulted in 
enhanced methylation at H3K4 and a decreased 
methylation at H3K9 of the RELA promoter leading 
to the activation of NFκB-p65-dependent genes.22 In 
retinal endothelial cells, hyperglycemia induced 
trimethylation of H4K20 at the regulatory regions of 
SOD2 leading to a decreased expression of SOD2 
even after restoring the normal glucose values.23   
Moreover, the expression of UCP1 in brown adipose 
cells is decreased after Jhdm2a demethylase binds to 
the UCP1 promoter leading to the formation of 
transcriptionally repressive methylation at H3K9.24 
Helsinki Birth Cohort and other clinical findings show 
a strong correlation between low birth weight and later 
incidence of the diabetes.25,26 Hypermethylation at the 
promoter of peroxisome proliferator-activated 
receptor-γ coactivator 1α (PPARGC1A) was 
associated with the transcriptional repression in 
pancreatic islets isolated from patients with type 2 
diabetes mellitus.27,28 In experimental animal models, 
hypermethylation-induced suppression of pancreatic 
and duodenal homeobox 1 (PDX1)29, and hepatic 
insulin growth factor-1 (IGF-1)30 have been observed. 
 

Concluding remarks  
Type 1 diabetes mellitus is caused by 

autoimmune destruction of pancreatic β-cells; whereas 
type 2 diabetes mellitus is mainly caused by the 
improper control of blood glucose and its utilization. 
Despite strong familial clustering is associated with 
type 2 diabetes mellitus, the essential role of epigenetic 
component in the development of type 2 diabetes 
mellitus is inevitable.31,32 Although previous research 
studies on diabetes essentially indicate the role of 
mitochondrial reactive oxygen species in the 
pathogenesis and development of diabetic 
complications.33, emerging studies pointing towards 
the indispensable role of epigenetic or metabolic 
memory caused by the prior existence of 
hyperglycemia in diabetic patients.5 Recent studies in 
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humans show that short term high fat overfeeding 
introduced widespread DNA methylation changes 
affecting over 6,500 genes in human skeletal muscle34, 
and genome-wide DNA methylation analysis identified 
several candidate genes influencing insulin secretion in 
human pancreatic islets from type 2 diabetic patients.35  
Treatment with epigenetic modulators, which can have 
the potential to erase the epigenetic or metabolic 
memory associated with the prior existence of 
hyperglycemia, and can postpone the development of 
diabetic complications. Recently, inhibition of 
HDAC3 has been suggested for type 1 and type 2 
diabetes; however, diabetic treatments with epigenetic 
modulators are still at an infancy stage.36,37 Overall, in 
evaluating the risks for diabetes, the epigenetic 
changes induced from the lifestyle factors including 
diet and exercise in adults and in children and 
environmental factors should be strongly considered. 
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