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Characterizing The SINR in Poisson Network Using
Factorial Moment

Moubachir Madani Fadoul, Razali Ngah, and Alireza Moradi

Abstract—Usually, cellular networks are modeled by placing
each tier (e.g macro, pico and relay nodes) deterministically on a
grid. When calculating the metric performances such as coverage
probability, these networks are idealized for not considering
the interference. Overcoming such limitation by realistic models
is much appreciated. This paper considered two- tier two-
hop cellular network, each tier is consisting of two-hop relay
transmission, relay nodes are relaying the message to the users
that are in the cell edge. In addition, the locations of the relays,
base stations (BSs), and users nodes are modeled as a point
process on the plane to study the two hop downlink performance.
Then, we obtain a tractable model for the k-coverage probability
for the heterogeneous network consisting of the two-tier network.
Stochastic geometry and point process theory have deployed to
investigate the proposed two-hop scheme. The obtained results
demonstrate the effectiveness and analytical tractability to study
the heterogeneous performance.

Keywords—Heterogeneous network, stochastic geometry, fac-
torial moment, coverage probability

I. INTRODUCTION

AS a variety of infrastructure is being deployed including
pico, macro and femto BSs [1], as well as xed relay

stations [2], the deployment of the cellular network is taking
on a massively heterogeneous network (HetNet) character.
Interference management is the main challenge in deploy-
ing heterogeneous cellular networks. Some challenges have
occurred in high dense network such as less coverage, cost,
co-channel, and intercell interference due to an increase in
the number of connected devices [3]. Hence, the resulting
interference is also becoming more complicated.

The denser nature of cellular networks makes them in-
creasingly irregular [4]. This depicts small cells that oppor-
tunistically deployed in hot-spots, and hence highly irregular.
As a result in current and future deployments, the popular
deterministic grid model (see Fig. 1) is increasingly anachro-
nistic. Even for single-tier networks, the grid model is quite
idealized and a perturbed grid model is sometimes used for
macrocell locations [2], [5]. A random spatial model will often
be a more appropriate model than the deterministic one in
characterizing the HetNet. Among the random spacial models
that modeling the BS locations by a two-dimensional point
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process, the Poisson Point Process (PPP) is being the simplest
model [6], [7].

However, cellular networks are modeled the BSs usually by
arranging them on a line or circle as in the Wyner model or
placing them on a grid (with a regular shape), with the user
and relay are either randomly or deterministically distributed
across the network to calculate the signal-to-interference-and-
noise ratio (SINR). The resulting SINR consists of multiple
random complex variables. Thus, this did not capture the
randomness in the the inter-cell interference [8] and cellular
network distribution. These models are not tractable because
they are highly idealized, thus to evaluate the outage/success
probability and ergodic capacity, complex system level sim-
ulation is used. SINR closed-form using stochastic geometry
were derived, to reduce the dependence on simulations [2],
[9].

It is obvious that, the Wyner and grid models are not
practicable for characterizing the SINR, stochastic geometry
has risen as a powerful tool to quantify and model the
success probability and interference in cellular networks which
approximates the actual networks [6]. To provide insight-
fullness into the operation of the network in the form of
scaling laws, Poisson point processes (PPP) model is applied.
The sign of PPP model is constituted of BS, relay and
user parameters (e.g. transmit power and path-loss exponent).
Under a homogeneity condition, it recently shown that, the
BS positions are agnostic to the radio propagation waves,
this mimics the BSs PPP distribution [10], [11]. Some metric
performance computation such as the coverage probability [7],
[12], with its lower and upper bound derivations [7], [13].
Reference [14], [15] study the effect of for two-tier networks
with the effect of channel uncertainty. In two tier network, [16]
compares single and multiuser performance. A comprehensive
analysis of the performance metrics like coverage probability
is computed by averaging over all cell sizes and scenarios [6]
while the extension to multi-tier is studied in [17]. However,
the challenge in previous work is incorporating heterogeneous
infrastructure like fixed relays into the system model.

This paper, however, characterizes the randomly distributed
performance of two-tier network by using a stochastic geome-
try tool to derive bounds for the coverage probability. Finally,
numerical results include grid model as baseline scheme to
validates the analytical findings.

Next, Section II, depicts the system model along with the
SINR characterization by using the factorial moment to derive
the coverage probability for single-tier and multi-tier network.
In Subsection III-A the coverage probability is derived. Section
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Fig. 1. The grid cellular network topology, where every Voronoi cell
represents tier’s coverage area - distributed as PPP where the black circle
represents tier-1, blue dot represents tier-2 and the black circle represents
tier-3

IV offers the numerical results, and Section V offers the
conclusion.

II. HETEROGENEOUS CELLULAR NETWORK MODEL

In multi-tier heterogeneous assisted relay network, consider
multiple independent dual-hop relaying system Fig. 2.
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Fig. 2. Cellular relay network, in which three-tier network consisting of
macro, pico and femtocells network with intended signal and interferences
across tiers are shown. Solid lines depict the desired signal, and the dashed
lines depict interference
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Fig. 3. The Voronoi multi-tier topology, where each Voronoi cell is the
coverage area of a tier - distributed as PPP where the blue plus sign represent
tier-1, red star represents tier-2 and the blue dot represent the tier-3

The BSs constitute a Voronoi tessellation of the plane (see
Fig. 3). The communication between user and BS occurs
through the relay in the Voronoi cell. To examine what the
network perceives, the BSs are located at the origin. On R3, the
BSs, and relays are modeled with a stationary Poisson point
process or homogeneous Φ1 = {X1} with density λ1, and
Φ2 = {X2} with density λ2 respectively. The deterministic
pathloss function for SR and RD hops is defined by

Each BSs-tier differs for each user in the target SIR βk,
number of antennas Mk, the deployment density λk, and
the transmitted power Pk. These BS-tiers are modeled by an
independent and homogeneous Poisson Point Process (PPP)
Φk with density λk. Such claim under sufficient channel ran-
domness by theoretical arguments and empirical observations
[18] is validated to be accurate for the multi-tiers network.
To simplify the analysis, we ignore the thermal noise in some
scenarios as cellular networks are proven to be interference-
limited [19].

A. Channel Model

A typical single-antenna relay/user located at the origin and
associated with the closest BS in the downlink. According to
Silvnyak’s theorem [20], users in the Voronoi cell of a BS are
associated with it, resulting in a coverage areas that comprise
a Voronoi tesselation on the plane, as depicted in Fig. 3. A
traditional grid model uniformly places the BSs at the center
of the hexagonal model as shown in Fig. 1, and it is evaluated
via simulations because it does not lead to a tractable model.

Let us define the deterministic path-loss function for SR and
RD hops as follows

` (| x |) = (K | x |)β , (1)

where β > 2 denotes the path-loss exponent and the path-
loss constant K > 0. Let SX denotes the propagation effects
such as shadowing with mean E[Sx] = 1 from the origin to X .
The PX is representing the signal power that emitting from the
BS at X , let {(SX , PX)}X∈Φ ⊂ R+ is equal distribution to
(S, P ) be independent positive random vectors that constitute



CHARACTERIZING THE SINR IN POISSON NETWORK USING FACTORIAL MOMENT 613

X .
Modifying references [21] [22] and [23] to suit our system
model, we consider the propagation loss of the Poisson process
on R+ for SR hop and RD hop respectively given as

Θu = Yu =

{
`u | Xu |
PXuSXu

, Xu ∈ Φu

}
, (2)

Θk = Yk =

{
`k | Xk |
PXkSXk

, Xk ∈ Φk

}
, (3)

Lemma1 : from the random location of nodes and the
randomness of fading as in [19] and applying the mapping
theorem [24]. The effect of propagation loss Y is considered
as a non-homogeneous Poisson point process on R+ with
intensity measure Λ([0, t)) = atβ/2, where the propagation
constant is

a =
λπE

[
(PS)

2
β

]
K2

(4)

Despite the distribution of S being arbitrary, we assume that
E
[
S

2
β

]
<∞1.

Proof : for given Φu and Φk, apply the displacement theorem
for Poisson point process [25]-Theorem 1.3.9, Θu and Θk

constitute a non homogeneous point process on R+ = [0,∞)
of intensity measure Λ as follows

Λ([0, s]) = E[Θ([0, s])]

= λ

∫
R2

Pr{`(| z |)/S ≤ s}dz

= 2πλ

∫ ∞
0

xPr{`(| z |)/S ≤ s}dx

= 2πλ

∫ ∞
0

xE[1{`(| z |)/S ≤ s}dx

= 2πλE

[∫ (sS)1/β/K

0

xdx

]

=
λπs2/β

K2
E
[
S2/β

]
.

B. SINR Charaterization

The signal-to-interference-plus-noise ratio (SINR) for the
SR hop and RD hop is formulated, which allows us to analyze
the coverage probability.

The SR hop’s SINR of the positive R+ for a relay defined
as

SINRk(X) ,
FxkY−1

k

σk + Ik −Y−1
k Fxk

, Ik =
∑

Yk∈Θk

Y−1
k Fxk

, (5)

with an additive white noise power σk ≥ 0 and Ik is
the power received from other nodes, {F}X∈Φ denotes the
Rayleigh fading for the two hops with E[Fx] = 1. The term
(Ik −Y−1

k Fxk) captures the interference that the relay node

1Note that 2/β < 1 and using E[S] = 1 <∞, thus the propagation effect
is bounded
experienced. While the RD hop’s SINR of a user with an
additive white noise power σu ≥ 0 given as

SINRu(X) ,
Y−1

u Fxu

σu + Iu −Y−1
u Fxu

, Iu =
∑

Yu∈Θu

Y−1
u Fxu , (6)

where Iu is the power received from other nodes. The
term (Iu −Y−1

u Fxu
) is the interference that the user node

experienced2.
Further, the distribution of {Y −1} is an inhomogeneous

Poisson point process with intensity (2a/β)t−1−2/βdt.

III. SINR CHARACTERIZATION BY USING FACTORIAL
MOMENT MEASURES

Two useful integrals are presented here for x ≥ 0, the first
one is the multi-coverage characteristics introduced without
considering the effect of fading in [23]

In,β(x) =
2n
∫∞

0
u2n−1e−u

2−uβxΓ(1−2/β)−β/2du

βn−1(C̄(β))n(n− 1)!
, (7)

where

C̄(β) =
2π

βsin(2π/β)
= Γ(1− 2/β)Γ(1 + 2/β). (8)

For simplification

In,β(0) =
2n−1

βn−1(C̄(β))n
. (9)

while the second one is integral over hyper-cube which is
the generalization as shown by 10

Jn,β(x1, ..., xn) =
(1 +

∑n
j=1 xj)

n

∫
[0,1]n−1

∏n−1
i=1 v

i(2/β+1)−1
i (1− vi)2/β∏n
i=1(xi + ηi)

dv1...dvn−1, (10)

where

2A similar approach for Nakagami-m fading and Rician fading is proposed
in [26]


η1 = v1v2...vn−1

η2 = (1− v1)v2...vn−1

η3 = (1− v2)v3...vn−1

· · ·
ηn = 1− vn−1.

(11)
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For further simplification, refer to Appendix.

A. K-coverage probability by using Factorial Moment Mea-
sures

At the SINR level T, the distribution of the coverage number
of the user, is defined as the number of either BSs and relays
that the user can connect to, namely

N (T ) =
∑

(Z,T )∈Ψ̃

1[Z > T]. (12)

The probability that a relay is connecting to at least one of
BSs in the network is known as the K-coverage probability,
as below

P(k) = P{N ≥ k}. (13)

The probability that a relay is connecting to at least one of
BSs in the network is known as the K-coverage probability,
as below

P(k) = P{N ≥ k}. (14)

for any n ≥ 1 and given T, the nth symmetric sum can be
given by

Sn(T) = E

 ∑
x1,...,xn∈Ψ̃

1(Zi) > Ti, i = 1, ..., n | Φ}

 ,
(15)

where for a given Φ, the conditional probability is denoted
by P{... | Φ}. Use S0(T) = 1, and for a given N (T) BSs,
the expected number of ways that the relay can choose from n
BSs to connect with for SINR > T, is denoted by Sn(T). The
following Lemma is related to the famous inclusion-exclusion
principle [27].

Lemma2 : for K ≥ 1 we obtain

P(k)(T) =
∑∞

n=k
(−1)n−k

(
n− 1
k − 1

)
Sn(T), (16)

P{N (T) = k} =
∑∞

n=k
(−1)n−k

(
n
k

)
Sn(T), (17)

E[zN (T)] =
∑∞

n=k
(z−1)nSn(T), z ∈ [0, 1],E[N (T)] = S1(T).

(18)
The right-hand side of the above equation, contains our

quantities of interest, which will be evaluated later. Before
that, in the following section we evaluate the symmetric sums
Sn(T), and observes that the infinite summations in the above

expressions reduce to finite sums under reasonable conditions
(Sn(T) = 0 for n large enough).
B. Multi-tier network by using Factorial Moment Measures

In a heterogeneous network, we examine the multi-tier
network for K-coverage probability and the SINR threshold
T which depends only on the BS tier which could be the BS
or relay. For a given m-tier of BSs/relays that independently
homogeneous Poisson point process {Φj} with densities {λj}
we have

Φ̃j = {(Xj , (SXj , PXj , τj))}. (19)

The propagation effect and the BS’s power depends on the
tier, and the SINR threshold is changed to non-random such
that

E[(PjSj)
2/β ] <∞, j = 1, ...,m. (20)

for j 6= k , the path-loss parameters β and K for the network
given that

λ∗j = λjE[(PjSj)
2/β ]. (21)

For the m-tier network Φ̃ =
⋃m
j=1 Φ̃j .

Corollary 2 : for single tier network Φ̃∗ with path-loss
constant K = 1 and path-loss exponent α, such that P ∗ =
1, S∗ = 1 and the BS/relay density

λ∗λ∗ =
∑m

j=1
λ∗j , (22)

given that T ∗ is distributed by

P (T ∗ = τj) =
λ∗j
λ∗
, j = 1, ...,m. (23)

Proof : for each j tier Φ̃j , there is Φ̃∗j as an equivalent tier,
setting Pj = 1, Sj = 1 and density λ∗j . From Corollary 1,
applying the superposition theorem [28] we end this proof.

C. Single-tier network by using Factorial Moment Measures

For a single-tier with stationary Poisson point Φ = {X}
and density λ, given a SINR threshold τ , the K-coverage
probability is derived in [23]. Where by the case (τ ≥ 1)
is considered as a special case of [7]-Theorem 1.

Corollary 3 : for single tier network, the condition
E[(PS)2/β ] <∞ hold, then

Sn = Sn(τ) = τ−2n/β
n In,β((σ/γ)a−β/2)Jn,β(τn), (24)

for Sn = 0 and 0 < τ < 1/(n − 1), where a is shown in
(4) and τn is given by

τn = τn(τ) =
τ

1− (n− 1)τ
, (25)

Therefore, the k-coverage probability is given by 26

P(k) = P(k)(τ) =
∑d1/τe

n=k
(−1)n−k

(
n− 1
k − 1

)
τ−2n/β
n × In,β((σ)a−β/2)Jn,β(τn), (26)
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For T ≥ 1 and k = 1 the above expression reduces to a
single-tier network [7]-eq. (2), when d1/(τ)e = 1 and τ ≥ 1
the above expression simplifies to

P(1)(τ) =
2(τ)−2/β

Γ(1 + 2
β )

∫ ∞
0

ue−u
2Γ(1−2/β)−σa−β/2uβdu. (27)

IV. NUMERICAL RESULTS

The simulation and the theoretical procedure for the pro-
posed system analysis are validated in this section as similar
to [7] [29]. The K independent PPPs are generated with the
given densities. The serving user is assumed to lie in the origin
with βk = 0 dB. A user is said to be in coverage if the target
SIR from the BS is greater than the target.

In an interference-limited scenario (σ = 0), we set K = 1,
PS = 1, unlike the multi-tier network where λ and P will
be specified. To validate our analytical result, we generate our
network simulation based on a circular region of radius 10
length units, and 105 as the number of network simulation.
The path-loss exponent is assumed to be β = 3 and 5. The
shadowing is modeled by a log-normal random variable with
expectation 1 and 10 dB logarithmic standard deviation. If a
user is able to connect to at least one BS with SINR above its
threshold, the user is declared to be in coverage. Precisely, the
coverage probability is the complementary cumulative function
(CCDF) of the effective SINR, when SINR threshold is equal
across all the tiers.
For a single tier-network, the K-coverage probability P(k)(τ)
for K = 1, 2, 3 with β = 3 and β = 5, as in Fig. (4) and
(5) respectively. This reminds us that, the kth strongest signal
is related to the coverage probability by the tail distribution
function of the SINR.
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Fig. 4. For a single-tier network, k-coverage probability P (k)(τ) for β = 3

Fig.6 shows the single-tier coverage probability [23] ex-
tended to a two-tier coverage probability network, which leads
to SINR derivation for the heterogeneous network, where
each tier has the same SINR thresholds. Clearly, the single-
tier coverage probability is much smaller than the two-tier
coverage probability, mainly when the single-tier and two-tier
network are located nearby high power BSs. These results are
performance equivalent.
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Fig. 5. For a single-tier network, K-coverage probability P (k)(τ) for β = 5
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Fig. 6. For two-tier network, the 1-coverage probability P(1) as function of
τ1 with P1 = 100P2,τ2 = 1dB, λu = λk/2 for β = 3 compared to a
single-tier network

Fig. 7 shows that increasing τ , decreases the K-coverage
probability. It compares the random PPP model to the tradi-
tional grid model constituted by a Voronoi tessellation (see Fig.
1). The tier-1 distributed according to our PPP model, while
tier-2 according to grid model. The grid model provides high
coverage area across the whole SINR (upper bound). This is
because the interference is dominant for the PPP model (lower
bound). Since dense cellular networks are interference-limited
due to the effect of noise, a gab has been observed when
considering the SNR = 10 and SNR → ∞. This validates
the assumption that the noise can be ignored in interference-
limited scenario.

V. CONCLUSION

The past few years experienced the use of random spatial
models to investigate various aspects of heterogeneous net-
work, it is strongly observed that most of these works focus
on multi-tier or single-tier network. This paper studied the
heterogeneous network, in which a tractable model to analyze
the K-tier coverage probability. The coverage probability is
evaluated factorial moment measures of the point process
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Fig. 7. k- Coverage probability comparison between grid model and our
proposed PPP tier model with β = 4

formed by the SINR values perceived by the user. Where
each tier differs in-terms of number of antenna, target Signal-
to-Interference Ratio (SIR), transmitted power, and deploy-
ment density. To account for the fact that some transmission
techniques provides higher coverage, we derive a K-tier and
single-tier transmission; by assuming that the BSs are located
independently and to validate it’s accuracy with the traditional
grid model, an extensive comparison with the traditional grid
model via numerical simulations was carried out.

REFERENCES

[1] V. Chandrasekhar, J. G. Andrews, and A. Gatherer, “Femtocell networks:
a survey,” vol. 46, no. 9, pp. 59–67, 2008.

[2] R. N. Romain Chevillon, Guillaume Andrieux and J.-F. Diouris, “Ef-
fects of directional antennas on outband d2d mmwave communications
in heterogeneous networks,” International Journal of Electronics and
Communications, vol. 96, pp. 58–65, 2018.

[3] T. S. Rappaport, R. W. Heath Jr, R. C. Daniels, and J. N. Murdock,
Millimeter wave wireless communications. Pearson Education, 2014.

[4] T. Shuminoski and T. Janevski, “5g terminals with multi-streaming
features for real-time mobile broadband applications,” Radioengineering,
vol. 26, no. 2, p. 471, 2017.

[5] P. Mitran and C. Rosenberg, “On fractional frequency reuse in imperfect
cellular grids,” in IEEE Wireless Commun. and Networking Conf.
(WCNC). IEEE, 2012, pp. 2967–2972.

[6] J. G. Andrews, F. Baccelli, and R. K. Ganti, “A tractable approach
to coverage and rate in cellular networks,” IEEE Trans. on Commun.,
vol. 59, no. 11, pp. 3122–3134, 2011.

[7] H. S. Dhillon, R. K. Ganti, F. Baccelli, and J. G. Andrews, “Modeling
and analysis of k-tier downlink heterogeneous cellular networks,” IEEE
Journal on Selected Areas in Communications, vol. 30, no. 3, pp. 550–
560, April 2012.

[8] R. Bhagavatula and R. W. Heath, “Adaptive bit partitioning for multicell
intercell interference nulling with delayed limited feedback,” vol. 59,
no. 8, pp. 3824–3836, 2011.

[9] M. Haenggi, Stochastic geometry for wireless networks. Cambridge
University Press, 2012.

[10] B. Błaszczyszyn, M. K. Karray, and H. P. Keeler, “Wireless networks
appear poissonian due to strong shadowing,” IEEE Trans. Wireless
Commun., vol. 14, no. 8, pp. 4379–4390, 2015.

[11] H. P. Keeler, N. Ross, and A. Xia, “When do wireless network signals
appear poisson?” arXiv preprint arXiv:1411.3757, 2014.

[12] H. S. Dhillon, R. K. Ganti, and J. G. Andrews, “A tractable framework
for coverage and outage in heterogeneous cellular networks,” in 2011
Information Theory and Applications Workshop. IEEE, 2011, pp. 1–6.

[13] H. S. Dhillon, M. Kountouris, and J. G. Andrews, “Downlink coverage
probability in mimo hetnets,” Conference Record of the Forty Sixth
Asilomar Conference on Signals, Systems and Computers, pp. 683–687,
2012.

[14] S. Park, W. Seo, Y. Kim, S. Lim, and D. Hong, “Beam subset selection
strategy for interference reduction in two-tier femtocell networks,” vol. 9,
no. 11, pp. 3440–3449, 2010.

[15] S. Park, W. Seo, S. Choi, and D. Hong, “A beamforming codebook
restriction for cross-tier interference coordination in two-tier femtocell
networks,” vol. 60, no. 4, pp. 1651–1663, 2011.

[16] V. Chandrasekhar, M. Kountouris, and J. G. Andrews, “Coverage
in multi-antenna two-tier networks,” IEEE Trans. Wireless Commun.,
vol. 8, no. 10, 2009.

[17] P. Madhusudhanan, J. G. Restrepo, Y. Liu, T. X. Brown, and K. R.
Baker, “Multi-tier network performance analysis using a shotgun cellular
system,” in Global Telecommun. Conf. (GLOBECOM 2011), 2011 IEEE.
IEEE, 2011, pp. 1–6.

[18] L. Zhou, F. Luan, S. Zhou, A. F. Molisch, and F. Tufvesson, “Geometry-
based stochastic channel model for high-speed railway communications,”
IEEE Transactions on Vehicular Technology, vol. 68, no. 5, pp. 4353–
4366, 2019.

[19] I. Trigui, S. Affes, and B. Liang, “Unified stochastic geometry modeling
and analysis of cellular networks in los/nlos and shadowed fading,” IEEE
Transactions on Communications, vol. 65, no. 12, pp. 5470–5486, 2017.

[20] S. N. Chiu, D. Stoyan, W. S. Kendall, and J. Mecke, Stochastic geometry
and its applications. John Wiley & Sons, 2013.

[21] Y. Liang and T. Li, “End-to-end throughput in multihop wireless
networks with random relay deployment,” IEEE Transactions on Signal
and Information Processing over Networks, vol. 4, no. 3, pp. 613–625,
2018.

[22] B. Blasczyszyn, M. K. Karray, and H. P. Keeler, “Using poisson
processes to model lattice cellular networks,” 2013 Proceedings IEEE
INFOCOM, pp. 773–781, 2013.

[23] H. P. Keeler, B. Blaszczyszyn, and M. K. Karray, “Sinr-based k-coverage
probability in cellular networks with arbitrary shadowing,” 2013 IEEE
International Symposium on Information Theory, pp. 1167–1171, 2013.

[24] M. Haenggi and R. K. Ganti, Interference in large wireless networks.
Now Publishers Inc, 2009.

[25] F. Baccelli and B. Blaszczyszyn, Stochastic geometry and wireless
networks. Now Publishers Inc, 2009, vol. 1.

[26] C. Liu and J. G. Andrews, “Multicast outage probability and transmis-
sion capacity of multihop wireless networks,” IEEE Trans. Inf. Theory,
vol. 57, no. 7, pp. 4344–4358, July 2011.

[27] H. U. Gerber, “Life insurance,” in Life Insurance Mathematics.
Springer, 1997, pp. 23–33.

[28] J. Kingman, “Poisson processes,” Oxford University Press, 1993.
[29] B. Blaszczyszyn and H. P. Keeler, “Equivalence and comparison of

heterogeneous cellular networks,” IEEE 24th International Symposium
on Personal, Indoor and Mobile Radio Communications (PIMRC Work-
shops), pp. 153–157, 2013.

[30] F. Olver, D. Lozier, R. Boisvert, and C. Clark, “Digital library of
mathematical functions, national institute of standards and technology,”
dlmf. nist. gov/(release date 2011-07-01), Washington, DC, 2010.

CONFLICT OF INTEREST

The author declares that they have no conflict of interest.

APPENDIX

Simplification on the integral Jn,β

We further simplify the integral Jn,β(x1, ..., xn) as shown
in (28). Use n = 1 the integral reduced to J1,β(x1) = 1 and
use n = 2 reduces the integral to (29). Further simplification
leads to closed-form solution in (30),

Jn,β(x1, ..., xn) =
1

n

∑n

j=1

∫
[0,1]n−1

∏n−1
i=1 v

i(2/β+1)−1
i (1− vi)2/β∏n
i=1(xi + ηi)

dv1...dvn−1, (28)



CHARACTERIZING THE SINR IN POISSON NETWORK USING FACTORIAL MOMENT 617

J2,β(x1, x2) =
1

2

∫ 1

0

v
2/β
1 (1− v1)2/β

[
1

(x1 + v1)
+

1

(x2 + 1− v2)

]
dv1. (29)

∫ 1

0

v2/β(1− v)2/β

x+ v
dv =

1

x
B(2/β + 1, 2/β + 1)2F1(1, 2/β + 1; 2(2/β + 1);−1/x), (30)

where 2F1 is the hyper-geometric function [30]-Eq.15.6.1.


