
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2016, VOL. 62,  NO. 4, PP. 401-408  

Manuscript received April 19, 2016; revised November, 2016.                               DOI: 10.1515/eletel-2016-0055 

 

 

Abstract— The main aim of this paper is to propose Cubic Spline-

Quantum Neural Network (CS-QNN) model for analysis and 

classification of Electroencephalogram (EEG) signals. 

Experimental data used here were taken from seven different 

electrodes. The work has been done in three stages, normalization 

of the signals, extracting the features by Cubic Spline Technique 

(CST) and classification using Quantum Neural Network (QNN).  

The simulation results showed that five types of EEG signals were 

classified with an average accuracy for seven electrodes that is 

94.3% when training 70% of the features while with an average 

accuracy of 92.84% when training 50% of the features. 

 
Keywords—EEG Signals, ERP Signals, Cubic Spline, Neural 

Networks,    Quantum Neural Networks 

I. INTRODUCTION 

HE biomedical engineering interested dramatically in the 

automatic classification of Electroencephalogram (EEG) 

signals. Because the biomedical signals, inherently unstable and 

randomly change over time depending on the change and mental 

health conditions and situations of tension for the same person, 

and one of these signals is brain signal that varies according to 

the psychological state of the person himself and changed 

depending on the circumstances, all of this has paid great 

attention to the analysis of brain signals. The EEG is the 

registration of electrical activity on the scalp. Current flow due 

to firing of nerve cells in the brain results in a voltage wiggle 

that measured as EEG [1]. Measuring the brain's response to a 

stimulus is called event-related potential (ERP). The stimulus 

can be motor, sensory, or cognitive naturally. Human ERPs are 

usually recorded from electrodes placed on the human scalp.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. The placement of electrodes on the scalp according to the 
international (10-20) standard. 
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The placement of electrodes on the scalp according to the 

international (10-20) standard is shown in fig. 1 [2]. The popular 

way of analyzing event-related EEG signals is the computation 

of ERPs. This can be done by repeating an event of interest such 

as a visual stimulus of a computer screen and analyzing a small 

fraction of the EEG activity that is evoked by this event [3]. The 

feature extraction technique of EEG signals provides an 

accurate features in which would to classify between any event-

related potentials of the brain using QNN. Five types of EEG 

signals are used. Each type of these signals is a mental task 

assigned to a particular person to perform it. These tasks are 

(baseline, multiplication, letter composing, rotation, counting). 

II. FEATURE EXTRACTION AND SELECTION 

A feature is a distinct or characteristic measurement, change, 

basic component that can extract from a slice of a signal. The 

features used to represent the signals without losing the 

important information about these signals. The feature 

extraction process is the determination of the feature or the 

feature vector from the signal. So as to make signal processing 

problems can be solved, need to convert signals to features 

which will become abbreviated representations of the signals, 

which only contain important information for the signal. The 

aim of this section is to identify convenient input feature vectors 

which would discriminate between the event-related potentials 

of the brain. In this work, EEG signal analysis is divided into 

five parts: normalization, knot extraction, knot selection, feature 

extraction and classifier. 

A. Normalization 

The normalization is a process of removing, the difference in 

the amplitude between the signals in each kind or category. In 

order to make the data has a zero mean; the computed mean of 

data will be subtracted from the raw EEG signal. Normalization 

steps can be summarized as follows: 

1. For EEG signals, mean value of data is stable to zero 

value. Thus, the offset will be removed from the signal. 

2. Subtract the mean value from the raw EEG signal. 

3. After subtraction, the mean value of the original EEG 

signal, must be zero or nearby zero. 

B. Knot extraction  

The accurate analyses of the EEG signal have special 

importance in this system. Where extract the features of the 

EEG signal depends firstly and dramatically on determining 

characteristic points sites, whenever these sites were accurate, 
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the extracted features of the signals were accurate too. A 

technique that is used to find the knots largely depended on the 

shape of the EEG signal. These knots which are a part of the 

data can found by sorting data in ascending order after the data 

is divided into many parts and then to find the upper and lower 

values in every part of the data parts. This process will be 

repeated multiple times and in every time the number of the 

extracted knots will be increasing and will be saved in a matrix 

and will remove the duplicate points meaning that knots 

formerly extracted will be removed in order to prevent 

repetition. 

C. Knot Selection 

The extracted knots may not represent significant changes in 

the signal, or may be convergent between values, so that, in 

order to solve this problem, each extracted knots will be 

considered as a new data and will insert into the same technique 

previously used and thus will get only the distinctive knots that 

represent significant changes of the signal and will delete excess 

of the knots (the last knots) without losing the basic information 

of the signal. 

D. Feature extraction using Cubic Spline Technique 

Cubic spline interpolation is a useful technique to interpolate 

between known data points due to its stable and smooth 

characteristics [4]. The objective of the cubic spline 

interpolation is to get an interpolation formula, which is 

continuous in both first and second derivatives, both inside the 

intervals and at the interpolating knots. This will give function 

interpolation more smoothly. Generally, if the function to be 

approximate was smooth, then the cubic splines will do what is 

better than the piecewise linear interpolation [5]. 

The function S that consists of n-1 cubic polynomial pieces 

will be constructed as: 

𝑆(𝑥) = {

𝑠1(𝑥)

𝑠2(𝑥)

𝑠𝑛−1(𝑥)

𝑖𝑓
𝑖𝑓
⋮

𝑖𝑓

𝑥1
𝑥2

𝑥𝑛−1

≤
≤

≤

𝑥
𝑥

𝑥

<
<

<

𝑥2

𝑥3

𝑥𝑛−1

            (1)      

Where Sᵢ is a third degree polynomial defined by: 

𝑆ᵢ(𝑥) = 𝑎ᵢ(𝑥 − 𝑥ᵢ)3 + 𝑏ᵢ(𝑥 − 𝑥ᵢ)2 − 𝑐ᵢ(𝑥 − 𝑥ᵢ) + 𝑑ᵢ         (2)   

Where n is the number of extracted knots. The cubic spline will 

need to conform to the following stipulations [6]: 

1. The piecewise function 𝑆(𝑥) will interpolate all knots. 

2. 𝑆(𝑥) will be continually on the interval [x₁ ,xn ]. 

3. 𝑆′(𝑥) will be continually on the interval [x₁ ,xn ]. 

4. 𝑆′′(𝑥) will be continually on the interval [x₁ ,xn ]. 
As the piecewise function  𝑆(𝑥) will interpolate all of the knots, 

we can conclude that [7]: 

𝑆(𝑥ᵢ) = 𝑦ᵢ                                                                     (3)                                                                     

For i = 1, 2, ..., n-1. Since  𝑥ᵢ 𝜖 [𝑥ᵢ, 𝑥ᵢ₊₁] 
𝑆(𝑥ᵢ) = 𝑠ᵢ(𝑥ᵢ)               (4)                                                                

The mathematical expression for Natural Cubic Spline (NCS) 

condition is: 

𝑆′′(𝑥₁) = 𝑆′′(𝑥 n )              (5)                                                          

Two additional conditions are needed to determine the natural 

cubic splines which they are  𝑒₁ = 𝑒𝑛 = 0 for every subinterval 

[xi, xi+1] and the other values of 𝑒ᵢ  were not yet known. Then the 

curvatures are linear in an interval and denoting values at the 

points 𝑥ᵢ as: 

𝑒𝑖 = 𝑠ᵢ′′(𝑥ᵢ),       𝑖 = 1,2, … , 𝑛.            (6)                                      

They comprise a linear spline for the data set (𝑥ᵢ , 𝑒ᵢ , 𝑖 =
1,2, … , 𝑛) therefore: 

𝑠 (𝑥) = 𝑒𝑖+1
𝑥−𝑥𝑖

𝑥𝑖+1−𝑥𝑖
+ 𝑒𝑖𝑖

′′ 𝑥𝑖+1−𝑥

𝑥𝑖+1−𝑥𝑖
, 𝑖 = 1,2, … . , 𝑛 − 1          (7) 

By integrating over x twice, will get: 

𝑠𝑖(𝑥) =
𝑒𝑖+1

6ℎ𝑖
(𝑥 − 𝑥𝑖)3 +

𝑒𝑖

6ℎ𝑖
(𝑥𝑖+1 − 𝑥)3 + 𝑐(𝑥 − 𝑥𝑖) +

𝑑(𝑥𝑖+1 − 𝑥)              (8)                                                                                                     

Where 

ℎ𝑖 = 𝑥𝑖−1 − 𝑥𝑖.               (9) 

And c and d are constants of integration. The terms of 

interpolation 𝑠𝑖(𝑥𝑖) = 𝑦𝑖  And  𝑠𝑖+1(𝑥𝑖+1) = 𝑦𝑖+1 
𝑒𝑖

6ℎ𝑖
(𝑥𝑖+1 − 𝑥)3 + 𝑑(𝑥𝑖+1 − 𝑥) = 𝑦𝑖           (10)                                                                                 

And   
𝑒𝑖+1

6ℎ𝑖
(𝑥𝑖+1 − 𝑥)3 + 𝑐(𝑥𝑖+1 − 𝑥) = 𝑦𝑖+1         (11)                                                                       

Applying the C0 conditions, will get: 

𝑐 =
𝑦𝑖+1

ℎ𝑖
−

𝑒𝑖+1ℎ𝑖

6
;    𝑑 =

𝑦𝑖

ℎ𝑖
−

𝑒𝑖ℎ𝑖

6
           (12)                                                                                            

From the C1 continuity condition, the other values of 𝑒𝑖 can be 

found and by differentiating equation (8) after compensating c 

& d, will get: 

𝑠𝑖
′(𝑥) =

𝑒𝑖+1

2ℎ𝑖
(𝑥 − 𝑥𝑖)

2 −
𝑒𝑖

2ℎ𝑖
(𝑥𝑖+1 − 𝑥)2 + (

𝑦𝑖+1

ℎ𝑖
−

𝑒𝑖+1ℎ𝑖

6
) −

(
𝑦𝑖

ℎ𝑖
−

𝑒𝑖ℎ𝑖

6
)            (13)                                                                                                     

And  

𝑠𝑖
′(𝑥𝑖) = −

𝑒𝑖

2ℎ𝑖
ℎ𝑖

2 + (
𝑦𝑖+1

ℎ𝑖
−

𝑒𝑖+1ℎ𝑖

6
) − (

𝑦𝑖

ℎ𝑖
−

𝑒𝑖ℎ𝑖

6
)        (14)       

𝑠𝑖
′(𝑥𝑖) = −

𝑒𝑖+1ℎ𝑖

6
−

𝑒𝑖ℎ𝑖

3
+ 𝑏𝑖          (15)                                                                                                      

Where  

𝑏𝑖 =
𝑦𝑖+1−𝑦𝑖

ℎ𝑖
 , 𝑖 = 1,2, … , 𝑛 − 1           (16)                                                                                                     

Also 

𝑠𝑖−1
′ (𝑥𝑖) =

𝑒𝑖

2ℎ𝑖−1
ℎ𝑖−1

2 + (
𝑦𝑖

ℎ𝑖−1
−

𝑒𝑖ℎ𝑖−1

6
) − (

𝑦𝑖−1

ℎ𝑖−1
−

𝑒𝑖−1ℎ𝑖−1

6
) =

𝑒𝑖−1ℎ𝑖−1

6
+

𝑒𝑖ℎ𝑖−1

3
+ 𝑏𝑖−1            (17)                                                                                                                                                                                              

𝑠𝑖−1
′ (𝑥𝑖) = 𝑠𝑖

′(𝑥𝑖)            (18)                                                                                     

By setting equation (18) at all interior points, will obtain: 

ℎ𝑖−1𝑒𝑖−1 + 2(ℎ𝑖−1 + ℎ𝑖)𝑒𝑖 + ℎ𝑖𝑒𝑖+1 = 6(𝑏𝑖 − 𝑏𝑖−1)          (19)   

 

Which is a tridiagonal system of equations in terms of the 

unknowns  𝑒𝑖 's. There are 𝑛 unknowns and 𝑛 − 2 equations. 

These equations can be rearranged as: 

𝑒1 = 0 

ℎ𝑖−1𝑒𝑖−1 + 𝑢𝑖𝑒𝑖 + ℎ𝑖𝑒𝑖+1 = 𝑣𝑖      𝑖 = 2,3, … , 𝑛 − 1          (20)   

𝑒𝑛 = 0 

 

Where 

𝑢𝑖 = 2(ℎ𝑖−1 + ℎ𝑖)           (21)                                                      

 

𝑣𝑖 = 6(𝑏𝑖 − 𝑏𝑖−1),      𝑖 = 2,3, … , 𝑛 − 1         (22)                      

 

By using the tridiagonal solver, the values of (𝑒2, 𝑒3, … 𝑒𝑛) 

can be obtained. These values in addition to 𝑒1 = 𝑒𝑛 = 0 can 

then be used to find out the splines by the compensation in 

equation (8). Figure 2 shows the flowchart of cubic spline 

technique. 

The cubic spline technique approach has many steps can be 

described as follows: 

1. The extracted knot for each signal of EEG signals is 

considered as interpolation points of the cubic spline. 
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Fig. 2. Flowchart of CST approach. 

2. Forty coefficients are extracted for each beat and these 

coefficients are rotated to represent one column.  

3. Between each neighboring two knots, four coefficients 

(features) are extracted representing the coefficients of 

the third degree equation. 

 

III. EEG SIGNAL CLASSIFICATION SYSTEM 

PROPOSED 

The main goal of the proposed system is to analyze the EEG 

signals depending on the cubic spline as a different way to 

extract the features of the signals and use QNN for 

classification. Figure 3 shows the general schematic diagram of 

the proposed system. Every one signal of EEG signals is formed 

by 2500 samples, which represents a vector pattern. These 

vectors in the data set will be normalized. After normalization, 

knots are extracted and then select the best knot, that is 

represents the basic characteristics of EEG signal form and its 

distinctive points. By cubic spline algorithm, the features have 

been extracted based on these knots. And then after forming the 

feature vectors, they will be applied to the QNN for 

classification or training purposes. A three layers (L) QNN used 

as a classifier for EEG signal, which is use the extracted features 

obtained by CST for training and testing purposes. The training 

process was conducted until reached a maximum iteration. QNN 

contains (5) output neurons (no) in the output layer, (40) input 

neurons (ni) in the input layer. 

` 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 3. Structure of EEG Classification System. 

IV. QUANTUM  NEURAL  NETWORK 

Quantum  Neural  Network  (QNN)  is  an  energetic  science  

based on  the combination  of  quantum  computing  and  

artificial  neural  network.  It also combines the benefits of fuzzy 

theoretic principles and neural modelling. Are similar to 

classical neural networks, QNNs has an inherently fuzzy 

architecture that can degrade the sample information to discrete 

levels of certainty or uncertainty. The transfer functions of 

quantum neuron able to form graded sections instead of crisp 

linear sections of the feature space.  If  the  feature  vectors  lie  

at  the  boundary between  interlaced  classes, QNN  will  assign  

it  partly  to  all  related  classes.  If no certainty exists, QNN 

will assign it to the corresponding class [8]. 

The back-propagation algorithm used to modify the 

parameters for the desired output. The procedures of the 

algorithm are the error at the output layer which spread 

backward down to the input layer passing the hidden layer in the 

network in order to get the final desired outputs. The gradient 

descent method is utilized to calculate  the  phase  variable 𝜃𝑗
𝑠 

and  phase  controlled factor 𝑑𝑤𝑖
𝑘of  the  network  and  adjusts  

them  to  minimize the output error [9]. 

V. LEARNING  ALGORITHM FOR THE  QNN 

The gradient descent method is used to train the QNN of 

multi-layer excitation function. In each training cycle, the 

training algorithm revises both the connection weight  between 
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the different level neuron and quantum intervals of the hidden 

layer [10]. 

There are two steps to train the QNN. The first step is making 

the input sample data compatible with the relevant class spaces 

by updating the connecting weights.  The second step is 

embodying the uncertainty of data by updating the quantum 

intervals of quantum neurons in the hidden layer [11].   

A. Update the synaptic weights in QNN 

First  should train  the  weights  which  involve  presenting all 

the training  set  to  the  network  and  a  forward  pass  and  back  

propagation  like  a  normal  neural  network. Let 𝑑𝑘 =
[𝑑1

𝑘𝑑2
𝑘𝑑3

𝑘 … 𝑑𝑛𝑜
𝑘 ]𝑇 be the   desired   output vector for the   𝑥𝑘   

input feature vector 𝑥𝑘 = [𝑥1
𝑘 , 𝑥2

𝑘 , 𝑥3
𝑘, … , 𝑥𝑛𝑖

𝑘]𝑇. Let 𝑦𝑖
𝑘 =

[𝑦1
𝑘𝑦2

𝑘𝑦3
𝑘 … 𝑦𝑛𝑜

𝑘 ]𝑇 be the actual output [12]. A gradient descent 

based algorithm  for  learning the synaptic weights of the QNN 

can  be  derived  by  minimizing  the  quadratic  error  function 

sequentially for each  𝑘. 

𝐸𝑘 =
1

2
∑ (𝑑𝑖

𝑘𝑛𝑜
𝑖=1 − 𝑦𝑖

𝑘)2          𝑘 = 1,2, … , 𝑚        (23)                                             

Where E: mean square error functions, 𝑚 is the total number 

of the training pattern. The synaptic weights are adjusted so as 

to minimize this error. This can be accomplished by adjusting 

or changing each synaptic weight by an amount proportional to 

the gradient of 𝐸𝑘 with regard to this specific synaptic weight. 

The process of weights updating starting with the initial guess 

of the weight (which may be selected at random) and then a 

series of weights are generated using the following formulas: 

This update could be found via calculate the derivative of  E𝑘  

with respect to 𝑤𝑗𝑖   as: 

𝑤𝑗𝑖(𝑟 + 1) − 𝑤𝑗𝑖(𝑟) = −𝜂
∂E𝑘

𝜕𝑤𝑗𝑖
= 𝜂 ∑ (𝑑𝑖

𝑘𝑛𝑜
𝑖=1 − 𝑦𝑖

𝑘) 
∂y𝑖

𝑘

𝜕𝑤𝑗𝑖
    (24)                         

Where 𝑤𝑗𝑖(𝑟 + 1)𝑎𝑛𝑑  𝑤𝑗𝑖(𝑟) are the values representing a  𝑤𝑗𝑖 

after and before the modification for the 𝑘𝑡ℎ inputs and  𝜂 is a 

small positive number called the learning rate, 0 < 𝜂 < 1. 
∂y𝑖

𝑘

𝜕𝑤𝑗𝑖
= 𝑦𝑖

𝑘′
  �̌�𝑗

𝑘            (25)           

Where     

𝑦𝑖
𝑘′

= 𝛽𝑜𝑦𝑖
𝑘(1 − 𝑦𝑖

𝑘)   (26)                                                                              

∂E𝑘

𝜕𝑤𝑗𝑖
= 𝛽𝑜𝑒𝑖

𝑘𝑦𝑖
𝑘(1 − 𝑦𝑖

𝑘)  �̌�𝑗
𝑘                                                (27)                 

Substituting equation (27) into equation (24), the update 

equation is obtained as: 

𝑤𝑗𝑖(𝑟 + 1) − 𝑤𝑗𝑖(𝑟) = 𝜂𝛽𝑜𝑒𝑖
𝑘𝑦𝑖

𝑘(1 − 𝑦𝑖
𝑘)  �̌�𝑗

𝑘        (28)                                         

Since 

𝑤𝑗𝑖(𝑟 + 1) = 𝑤𝑗𝑖(𝑟) − 𝜂𝑑𝑤𝑖
𝑘 ∗   �̌�𝑗

𝑘         (29)                                                         

Where 

𝑑𝑤𝑖
𝑘 = 𝛽𝑜𝑒𝑖

𝑘𝑦𝑖
𝑘(1 − 𝑦𝑖

𝑘)  , 𝑒𝑖
𝑘=𝑑𝑖

𝑘 − 𝑦𝑖
𝑘 ,  �̌�𝑗

𝑘 is the output of 

the 𝔧𝑡ℎ hidden neuron. 

For synaptic weight v𝑙𝑗 that connecting between the 𝑗𝑡ℎ hidden 

unit and the 𝑘𝑡ℎ input unit,   the update equation will be derived: 

v𝑙𝑗(𝑟 + 1) − v𝑙𝑗(𝑟) = −𝜂 
∂E𝑘

𝜕𝑣𝑙𝑗
= 𝜂 ∑ (𝑑𝑖

𝑘𝑛𝑜
𝑖=1 − 𝑦𝑖

𝑘) 
∂y𝑖

𝑘

𝜕𝑣𝑗𝑖
 (30)                         

Where v𝑙𝑗(𝑟 + 1) and v𝑙𝑗(𝑟) are the values of  v𝑙𝑗 before and 

after the adaptation.  

∂y𝑖
𝑘

𝜕𝑣𝑗𝑖
= 𝑦𝑖

𝑘′
∑ 𝑤𝑗𝑖

𝑛𝑜
𝑖=1

 �̌�𝑗
𝑘

𝜕𝑣𝑗𝑖
                                                      (31)                    

 With  𝑦𝑖
𝑘′

 as defined in equation (26), the definition of   �̌�𝑗
𝑘  

is: 
 �̌�𝑗

𝑘

𝜕𝑣𝑗𝑖
= 𝛽ℎ

1

𝑛𝑠
∑ ℎ𝑗

𝑠,𝑘𝑛𝑠
𝑠=1 (1 − ℎ𝑗

𝑠,𝑘)𝑥𝑙  
𝑘                                   (32)                    

Substituting equation (31) and equation (32) in equation (30), 

the update equation becomes: 

∂E𝑘

𝜕𝑣𝑙𝑗
= 𝛽ℎ𝛽𝑜 ∑ 𝑒𝑖

𝑘𝑦𝑖
𝑘(1 − 𝑦𝑖

𝑘)
𝑛𝑜
𝑖=1 𝑤𝑗𝑖

1

𝑛𝑠
∑ ℎ𝑗

𝑠,𝑘𝑛𝑠
𝑠=1 (1 − ℎ𝑗

𝑠,𝑘)𝑥𝑙
𝑘

             (33)  

Result: 

v𝑙𝑗(𝑟 + 1) − v𝑙𝑗(𝑟) = 𝜂 ∑ 𝑑𝑤𝑖
𝑘𝑛𝑜

𝑖=1 𝑤𝑗𝑖
1

𝑛𝑠
∑ ℎ𝑗

𝑠,𝑘𝑛𝑠
𝑠=1 (1 −

ℎ𝑗
𝑠,𝑘) ∗ 𝛽ℎ 𝑥𝑙

𝑘              (34)            

  Since  

v𝑙𝑗(𝑟 + 1) − v𝑙𝑗(𝑟) = 𝜂𝑑𝑣𝑖
𝑘 ∗ 𝛽ℎ 𝑥𝑙

𝑘            (35)                                                       

Where                                                                   

𝑑𝑣𝑖
𝑘 = ∑ 𝑑𝑤𝑖

𝑘𝑛𝑜
𝑖=1 𝑤𝑗𝑖

1

𝑛𝑠
∑ ℎ𝑗

𝑠,𝑘𝑛𝑠
𝑠=1 (1 − ℎ𝑗

𝑠,𝑘)          (36)                                            

B. Updating the quantum intervals 

First, QNN must be trained in order to recognize transitions 

occurring between classes. The synaptic weights of the QNN 

must be updated to enable the network to learn the class 

boundaries of the feature space. After that training the quantum 

intervals 𝜃𝑗
𝑠, before the jump-positions are updated, the training 

set is presented to the network. Once again to calculate <Ĥ𝑗
𝑐𝑖> 

(It's the sum of outputs of hidden neurons for all the inputs that 

belong to class 𝑐𝑖 divided by the number of samples in that 

class). This is seemed as a kind of forward pass, then 𝜃𝑗
𝑠is 

updated [13]. 

The idea of adjustments to quantum intervals is to achieve the 

minimum output miscellaneous of hidden layer neuron 

depending on the same class of sample data, basically, it’s also 

depends on the negative gradient algorithm, and the samples at 

the vague boundary that do not belong to the same class can be 

assigned to different classes by this algorithm. 

The variance of the output of the 𝑗𝑡ℎ hidden nodes for 𝑖𝑡ℎ class 

is 

𝜎𝑗,𝑖
2 = ∑ (< Ĥ𝑗

𝑐𝑖 >𝑥𝑘𝜖𝑐𝑖
− Ĥ𝑗

𝑘)2                                          (37)                          

Where  < Ĥ𝑗
𝑐𝑖 > =

1

𝐶𝑖
∑ Ĥ𝑗

𝑘
𝑥𝑘𝜖𝑐𝑖

   is the cardinal number of  𝐶𝑖 

, i is the class number of patterns. 

The amendment of quantum intervals 𝜃𝑗
𝑠 will be achieved by 

minimizing the objective function G. 

𝐺 =
1

2
∑ ∑ 𝜎𝑗,𝑖

2𝑛𝑜
𝑖=1

𝑛ℎ
𝑗=1 =

1

2
∑ ∑ ∑ (< Ĥ𝑗

𝑐𝑖 >𝑥𝑘𝜖𝑐𝑖
− Ĥ𝑗

𝑘)2𝑛𝑜
𝑖=1

𝑛ℎ
𝑗=1  

             (38)                    

The update equation for 𝜃𝑗
𝑠 can be obtained by setting the 

change in 𝜃𝑗
𝑠, say ∆𝜃𝑗

𝑠 proportional to the gradient of G with 

respect to 𝜃𝑗
𝑠 as: 

∆𝜃𝑗
𝑠 = −𝜂𝜃

𝜕𝐺

𝜕𝜃𝑗
𝑠  = ∑ ∑  (< Ĥ𝑗

𝑐𝑖 >𝑥𝑘𝜖𝑐𝑖
− Ĥ𝑗

𝑘) [ 
𝜕<Ĥ

𝑗

𝑐𝑖>

𝜕𝜃𝑗
𝑠 −

𝑛𝑜
𝑖=1

 
 Ĥ𝑗

𝑘

𝜕𝜃𝑗
𝑠]                         (39) 

Where  𝜂𝜃 is the learning rate, 0 < 𝜂𝜃 < 1. 

The derivative of Equation (37) gives: 

𝜕<Ĥ
𝑗

𝑐𝑖>

𝜕𝜃𝑗
𝑠 =  

1

𝐶𝑖
∑

𝜕Ĥ𝑗
𝑘

𝜕𝜃𝑗
𝑠𝑥𝑘𝜖𝑐𝑖
                                                       (40) 
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𝜕Ĥ𝑗
𝑘

𝜕𝜃𝑗
𝑠 =

−𝛽ℎ

𝑛𝑠
∑ ℎ𝑗

𝑠,𝑘(1 − ℎ𝑗
𝑠,𝑘) =

𝑛𝑠
𝑠=1

−𝛽ℎ

𝑛𝑠
∑ 𝑣𝑗

𝑠,𝑘𝑛𝑠
𝑠=1                 (41) 

Where  𝑣𝑗
𝑠,𝑘 = ℎ𝑗

𝑠,𝑘(1 − ℎ𝑗
𝑠,𝑘)    , < 𝑣𝑗

𝑠,𝑐𝑖 > =
1

𝐶𝑖
∑ 𝑣𝑗

𝑠,𝑘
𝑥𝑘𝜖𝑐𝑖

  

Substituting equation (40) and equation (41) into equation 

(39) gives the update equation as: 

∆𝜃𝑗
𝑠 = 𝜂𝜃

𝛽ℎ

𝑛𝑠
∑ ∑ (< Ĥ𝑗

𝑐𝑖 >𝑥𝑘𝜖𝑐𝑖
− Ĥ𝑗

𝑘)
𝑛𝑜
𝑖=1  (< 𝑣𝑗

𝑠,𝑐𝑖 > −𝑣𝑗
𝑠,𝑘

 

             (42) 

The quantum interval can be obtained by: 

𝜃𝑗
𝑠(𝑟 + 1) = 𝜃𝑗

𝑠(𝑟) + ∆𝜃𝑗
𝑠                                                 (43)                                                                          

Where 𝜂𝜃 ∈ (0,1) is the learning rate of  𝜃𝑗
𝑠 , 𝑛𝑜 is the number 

of nodes in the output layer, and represents the total number of 

classes, 𝑛𝑠 represents the quantum interval of layers, 𝑥𝑘:  𝑥𝑘𝜖𝑐𝑖  

this means from all samples belong to the class  𝑐𝑖 . < Ĥ𝑗
𝑐𝑖 >  Is 

the sum of outputs of hidden neurons for all the inputs that 

belong to class ci divided by the number of samples in that 

class, to the 𝑘𝑡ℎ feature vectors  𝑥𝑘,  �̌�𝑗
𝑘  the response of the 𝑗𝑡ℎ 

multi-level hidden unit. 

VI. DATA DESCRIPTION 

In this work, the raw EEG signals that have been used 

consisting of 2500 samples within 10 seconds, which is about 

five categories (baseline, multiplication, letter composing, 

rotation, counting) and each category contains 7 signals for 

seven persons [14]. 

 

VII. SIMULATION RESULTS 

A. Knot Extraction Result 

After normalization, knot extraction achieved depending on 

the shape of each signal from EEG signals. Firstly, all 

intersection points will found and then find the maximum and 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

minimum values by sort the data on the signal in ascending 

hence these totally points will represent the sections of data.  

Then, repeat the process of extracting knots of each part of the 

signal. After extracting all the knots will reduce these knots 

using the same technique, and these extracted knots will be 

considered as original or new data and by the same technique, 

most change points will extract, without losing the basic 

information of the signal. Figure 4 to figure 8 shows the knot 

extracting for five categories before and after reduction.    
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A 

B 

Fig.4. Knots in EEG signal for Baseline task before and 
after reduction A. Before reduction, B. After reduction 

 

 
 

 

A 

B 

Fig.5. Knots in EEG signal for Multiplication task before and 
after reduction A. Before reduction,  B. After reduction 

 

 

A 

B 

Fig.6. Knots in EEG signal for Letter Composing task before and 
after reduction A. Before reduction,  B. After reduction 
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B. Feature Extraction Result 

In each signal of EEG signals, 11 knots were extracted. In 

CST, between each two neighboring knots, there are four 

coefficients, thus for each one signal of EEG there will be 40 

coefficients. These coefficients represent the basic features of 

the EEG signal. Work has been achieved for each class. So the 

number of extracted features will be 40 columns and 35 rows. 

Figures 9 to 10 show the results of feature extraction for five 

classes.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig.9. Feature extracted No.1 for five classes. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig.10. Feature extracted No.6 for five classes. 

 

C. Classification Results of EEG Signals 

The proposed system used five types of EEG signals. Each 

type of these signals is a mental task assigned to a particular 

person to perform it. These tasks are (baseline, multiplication, 

letter composing, rotation, counting). The number of   the  

extracted  features  for  each  signal are 40 features, means  that  

the  entries  that  will  enter  the  classification network is a 

matrix within 40 rows and 35 columns for five classes (in each 

case of the seven electrodes). 

The extracted features were divided into two parts, training 

part and testing part. Each part consists of a set of features 

extracted. Randomly, 70% of samples were selected as training 

samples and 30% of samples for testing. Again, 50% of samples 

were selected as training samples and 50% of samples for 

testing. 

In this work, all the graphics and results were generated by M-

file MATLAB software program (Version 8.3, R2014a). In 

order to find out the performance of the classification network 

that is carried out by this software program, in each case, the 

classification accuracy evaluated by using the equation below: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓  𝑠𝑎𝑚𝑝𝑙𝑒𝑠
∗ 100%                    

The accuracy of classification of five classes of EEG signals due 

to the selection of 70% training and 30% testing data for seven 

electrodes with different iterations  according to best iteration 

that gives the highest accuracy of  classification is shown in  

table I and figure 11. 

 

 

A 

B 

Fig.7. Knots in EEG signal for Rotation task before and 

after reduction A. Before reduction,  B. After reduction 
 

 

Fig.8. Knots in EEG signal for Counting task before and 
after reduction A. Before reduction, B. After reduction 
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Fig.11. Classification of (QNN) for five classes with training (70% randomly) 

of data for the 1st  electrode. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig.12. Classification of (QNN) for five classes with training (50% randomly) 

of data for the 1st  electrode. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig.13. Classification of QNN with different quantum intervals (ns). 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig.14. Classification of QNN with different number of nodes in the hidden 

layer (nh). 

 

 

 

 

 

The accuracy of classification of five classes of EEG signals due 

to te selection of 50% training and 50% testing data for seven  

electrodes with different iterations according to best iteration 

that gives the highest accuracy of classification is shown in table 

II  and figure 12. 

By changing the value of basic parameters, several tests have 

been conducted on the classification network. Such as changing 

the number of quantum intervals (ns), and the other test was 

implemented by changing the number of nodes in the hidden 

TABLE I 

 THE ACCURACY OF CLASSIFICATION OF FIVE CLASSES OF EEG SIGNALS WITH 

TRAINING (70% RANDOMLY) OF DATA, FOR SEVEN ELECTRODES 

Electrode Iterations 

 

MSE for 

Training 

 

MSE for 

testing 

 

Accuracy       

(%) 

1st elec. 700 0.0674 0.9817 96% 

2nd elec. 700 0.0873 0.9852 92% 
3rd elec. 500 0.1081 1.1277 96% 

4th elec. 700 0.0998 0.9500 92% 

5th elec. 500 0.0793 1.1310 92% 
6th elec. 500 0.1240 1.3059 96% 

7th elec. 500 0.0746 1.1878 96% 

Average 586 0.0915 1.095 94.3% 

 

TABLE II 
 THE ACCURACY OF CLASSIFICATION OF FIVE CLASSES OF EEG SIGNALS WITH 

TRAINING (50% RANDOMLY) OF DATA, FOR SEVEN ELECTRODES 

Electrode Iterations 

 

MSE for 

Training 

 

MSE for 
testing 

 

Accuracy       

(%) 

1st elec. 800 0.1005 1.22 94.4% 
2nd elec. 600 0.0794 1.227 88.88% 
3rd elec. 500 0.1058 1.246 88.88% 
4th elec. 500 0.0831 1.0708 94.4% 
5th elec. 700 0.0459 1.2511 94.44% 
6th elec. 700 0.177 1.1367 88.88% 
7th elec. 700 0.0432 0.0909 100% 
Average 643 0.0907 1.034 92.84% 

 

TABLE III 

 THE CLASSIFICATION RESULTS OF QNN WITH DIFFERENT QUANTUM 

INTERVALS 

No. of  ns 

 

Iterations 

 

MSE for 

Training 

 

MSE for 

testing 

 

Accuracy       

(%) 

ns=3  500 0.1584 1.0749 80% 

ns=4  500 0.1210 1.5730 92% 

ns=6  700 0.1225 1.0839 88% 

 

TABLE IV 

 THE CLASSIFICATION RESULTS OF QNN WITH DIFFERENT NUMBER OF NODES 

IN THE HIDDEN LAYER 

No. of  nh Iterations 

 

MSE for 

Training 

 

MSE for 

testing 

 

Accuracy       

(%) 

nh= ni/2 600 0.1876 1.1287 76% 

nh=2ni 500 0.556 1.542 52% 
nh=3ni 600 1.357 2.79 20% 
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layer (nh). Table III and fig.13 show the classification results of 

QNN with different quantum intervals (ns). 

Table IV and figure 14 shows the classification results of QNN 

with different numbers of nodes in the hidden layer. 

VIII. DISCUSSION 

The proposed system used five types of EEG signals. All the 

graphics and results were generated by M-file MATLAB 

software program (Version 8.3, R2014a). Feature extraction 

accuracy depends on knot extraction accuracy. The extracted 

features for the signals in each class differ from each other and 

from the extracted features in other classes, as shown in figures 

9 to 10. 

In case of selecting 50% of data for training the network, 

classification results and MSE differ from each electrode to 

another and according to maximum iterations that gives highest 

accuracy and differs from the results obtained in case of 

selecting 70% of data for training, by comparing tables I and II, 

the results illustrate that the accuracy of classification which 

obtained in case of using 70% of data for training is higher than 

the accuracy of classification which obtained in case of using 

50% of data for training. Except one case, that is when training 

50% randomly of data from the 7th electrode, the accuracy 

obtained is 100% and MSE is 0.0432 which is the highest 

accuracy and fewer MSE obtained. 

Changing the number of quantum intervals (ns) for ns=5 

Whether to increasing or decreasing will decrease the accuracy 

as well as increase the MSE as shown in table III and the same 

result obtained when changing the number of the nodes in the 

hidden layer (nh) from nh=ni  as shown in table IV. 

IX. CONCLUSION 

CST used for the first time to extract the features for five types 

of EEG signals. The proposed system largely depended on the 

shape of the signal so it is very important to normalize the EEG 

signal in order to reduce the effects on it. The technique that 

used to extract the knots was very precise and has many benefits 

that are; reducing the features by selecting the best knots without 

need to reduce the features after extraction, and the process of,  

 

extracting and selecting the knots has been implemented by the 

same technique. CST, which is based on the extracted knots  

proved effective in extracting the features accurately. The 

accuracy of classification was obtained as an average from the 

seven electrodes which are 94.3% with 0.0915 MSE when 

training 70% of features and 92.84% with 0.0907 MSE when 

training 50% of the features. The number of iterations that gives 

the best accuracy was different from electrode to another, thus 

the number of iterations was not fixed. 
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