
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2016, VOL. 62, NO. 4, PP. 401-408

Manuscript received April 19, 2016; revised November, 2016. DOI: 10.1515/eletel-2016-0055

Abstract— The main aim of this paper is to propose Cubic Spline-

Quantum Neural Network (CS-QNN) model for analysis and

classification of Electroencephalogram (EEG) signals.

Experimental data used here were taken from seven different

electrodes. The work has been done in three stages, normalization

of the signals, extracting the features by Cubic Spline Technique

(CST) and classification using Quantum Neural Network (QNN).

The simulation results showed that five types of EEG signals were

classified with an average accuracy for seven electrodes that is

94.3% when training 70% of the features while with an average

accuracy of 92.84% when training 50% of the features.

Keywords—EEG Signals, ERP Signals, Cubic Spline, Neural

Networks, Quantum Neural Networks

I. INTRODUCTION

HE biomedical engineering interested dramatically in the

automatic classification of Electroencephalogram (EEG)

signals. Because the biomedical signals, inherently unstable and

randomly change over time depending on the change and mental

health conditions and situations of tension for the same person,

and one of these signals is brain signal that varies according to

the psychological state of the person himself and changed

depending on the circumstances, all of this has paid great

attention to the analysis of brain signals. The EEG is the

registration of electrical activity on the scalp. Current flow due

to firing of nerve cells in the brain results in a voltage wiggle

that measured as EEG [1]. Measuring the brain's response to a

stimulus is called event-related potential (ERP). The stimulus

can be motor, sensory, or cognitive naturally. Human ERPs are

usually recorded from electrodes placed on the human scalp.

Fig. 1. The placement of electrodes on the scalp according to the
international (10-20) standard.

Authors are with University of Babylon, College of Engineering, Electrical

Engineering Department, Iraq (email: {ehabalhialy; mariam.raheem}
@yahoo.com).

The placement of electrodes on the scalp according to the

international (10-20) standard is shown in fig. 1 [2]. The popular

way of analyzing event-related EEG signals is the computation

of ERPs. This can be done by repeating an event of interest such

as a visual stimulus of a computer screen and analyzing a small

fraction of the EEG activity that is evoked by this event [3]. The

feature extraction technique of EEG signals provides an

accurate features in which would to classify between any event-

related potentials of the brain using QNN. Five types of EEG

signals are used. Each type of these signals is a mental task

assigned to a particular person to perform it. These tasks are

(baseline, multiplication, letter composing, rotation, counting).

II. FEATURE EXTRACTION AND SELECTION

A feature is a distinct or characteristic measurement, change,

basic component that can extract from a slice of a signal. The

features used to represent the signals without losing the

important information about these signals. The feature

extraction process is the determination of the feature or the

feature vector from the signal. So as to make signal processing

problems can be solved, need to convert signals to features

which will become abbreviated representations of the signals,

which only contain important information for the signal. The

aim of this section is to identify convenient input feature vectors

which would discriminate between the event-related potentials

of the brain. In this work, EEG signal analysis is divided into

five parts: normalization, knot extraction, knot selection, feature

extraction and classifier.

A. Normalization

The normalization is a process of removing, the difference in

the amplitude between the signals in each kind or category. In

order to make the data has a zero mean; the computed mean of

data will be subtracted from the raw EEG signal. Normalization

steps can be summarized as follows:

1. For EEG signals, mean value of data is stable to zero

value. Thus, the offset will be removed from the signal.

2. Subtract the mean value from the raw EEG signal.

3. After subtraction, the mean value of the original EEG

signal, must be zero or nearby zero.

B. Knot extraction

The accurate analyses of the EEG signal have special

importance in this system. Where extract the features of the

EEG signal depends firstly and dramatically on determining

characteristic points sites, whenever these sites were accurate,

Classification of EEG Signals Using Quantum

Neural Network and Cubic Spline
Mariam Abdul-Zahra Raheem and Ehab AbdulRazzaq Hussein

T

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Journal of Electronics and Telecommunications (Warsaw University of...

https://core.ac.uk/display/234040739?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

402 M. ABDUL-ZAHRA RAHEE, E.ABDULRAZZAQ HUSSEIN

the extracted features of the signals were accurate too. A

technique that is used to find the knots largely depended on the

shape of the EEG signal. These knots which are a part of the

data can found by sorting data in ascending order after the data

is divided into many parts and then to find the upper and lower

values in every part of the data parts. This process will be

repeated multiple times and in every time the number of the

extracted knots will be increasing and will be saved in a matrix

and will remove the duplicate points meaning that knots

formerly extracted will be removed in order to prevent

repetition.

C. Knot Selection

The extracted knots may not represent significant changes in

the signal, or may be convergent between values, so that, in

order to solve this problem, each extracted knots will be

considered as a new data and will insert into the same technique

previously used and thus will get only the distinctive knots that

represent significant changes of the signal and will delete excess

of the knots (the last knots) without losing the basic information

of the signal.

D. Feature extraction using Cubic Spline Technique

Cubic spline interpolation is a useful technique to interpolate

between known data points due to its stable and smooth

characteristics [4]. The objective of the cubic spline

interpolation is to get an interpolation formula, which is

continuous in both first and second derivatives, both inside the

intervals and at the interpolating knots. This will give function

interpolation more smoothly. Generally, if the function to be

approximate was smooth, then the cubic splines will do what is

better than the piecewise linear interpolation [5].

The function S that consists of n-1 cubic polynomial pieces

will be constructed as:

𝑆(𝑥) = {

𝑠1(𝑥)

𝑠2(𝑥)

𝑠𝑛−1(𝑥)

𝑖𝑓
𝑖𝑓
⋮

𝑖𝑓

𝑥1
𝑥2

𝑥𝑛−1

≤
≤

≤

𝑥
𝑥

𝑥

<
<

<

𝑥2

𝑥3

𝑥𝑛−1

 (1)

Where Sᵢ is a third degree polynomial defined by:

𝑆ᵢ(𝑥) = 𝑎ᵢ(𝑥 − 𝑥ᵢ)3 + 𝑏ᵢ(𝑥 − 𝑥ᵢ)2 − 𝑐ᵢ(𝑥 − 𝑥ᵢ) + 𝑑ᵢ (2)

Where n is the number of extracted knots. The cubic spline will

need to conform to the following stipulations [6]:

1. The piecewise function 𝑆(𝑥) will interpolate all knots.

2. 𝑆(𝑥) will be continually on the interval [x₁ ,xn].

3. 𝑆′(𝑥) will be continually on the interval [x₁ ,xn].

4. 𝑆′′(𝑥) will be continually on the interval [x₁ ,xn].
As the piecewise function 𝑆(𝑥) will interpolate all of the knots,

we can conclude that [7]:

𝑆(𝑥ᵢ) = 𝑦ᵢ (3)

For i = 1, 2, ..., n-1. Since 𝑥ᵢ 𝜖 [𝑥ᵢ, 𝑥ᵢ₊₁]
𝑆(𝑥ᵢ) = 𝑠ᵢ(𝑥ᵢ) (4)

The mathematical expression for Natural Cubic Spline (NCS)

condition is:

𝑆′′(𝑥₁) = 𝑆′′(𝑥 n) (5)

Two additional conditions are needed to determine the natural

cubic splines which they are 𝑒₁ = 𝑒𝑛 = 0 for every subinterval

[xi, xi+1] and the other values of 𝑒ᵢ were not yet known. Then the

curvatures are linear in an interval and denoting values at the

points 𝑥ᵢ as:

𝑒𝑖 = 𝑠ᵢ′′(𝑥ᵢ), 𝑖 = 1,2, … , 𝑛. (6)

They comprise a linear spline for the data set (𝑥ᵢ , 𝑒ᵢ , 𝑖 =
1,2, … , 𝑛) therefore:

𝑠 (𝑥) = 𝑒𝑖+1
𝑥−𝑥𝑖

𝑥𝑖+1−𝑥𝑖
+ 𝑒𝑖𝑖

′′ 𝑥𝑖+1−𝑥

𝑥𝑖+1−𝑥𝑖
, 𝑖 = 1,2, … . , 𝑛 − 1 (7)

By integrating over x twice, will get:

𝑠𝑖(𝑥) =
𝑒𝑖+1

6ℎ𝑖
(𝑥 − 𝑥𝑖)3 +

𝑒𝑖

6ℎ𝑖
(𝑥𝑖+1 − 𝑥)3 + 𝑐(𝑥 − 𝑥𝑖) +

𝑑(𝑥𝑖+1 − 𝑥) (8)

Where

ℎ𝑖 = 𝑥𝑖−1 − 𝑥𝑖. (9)

And c and d are constants of integration. The terms of

interpolation 𝑠𝑖(𝑥𝑖) = 𝑦𝑖 And 𝑠𝑖+1(𝑥𝑖+1) = 𝑦𝑖+1
𝑒𝑖

6ℎ𝑖
(𝑥𝑖+1 − 𝑥)3 + 𝑑(𝑥𝑖+1 − 𝑥) = 𝑦𝑖 (10)

And
𝑒𝑖+1

6ℎ𝑖
(𝑥𝑖+1 − 𝑥)3 + 𝑐(𝑥𝑖+1 − 𝑥) = 𝑦𝑖+1 (11)

Applying the C0 conditions, will get:

𝑐 =
𝑦𝑖+1

ℎ𝑖
−

𝑒𝑖+1ℎ𝑖

6
; 𝑑 =

𝑦𝑖

ℎ𝑖
−

𝑒𝑖ℎ𝑖

6
 (12)

From the C1 continuity condition, the other values of 𝑒𝑖 can be

found and by differentiating equation (8) after compensating c

& d, will get:

𝑠𝑖
′(𝑥) =

𝑒𝑖+1

2ℎ𝑖
(𝑥 − 𝑥𝑖)

2 −
𝑒𝑖

2ℎ𝑖
(𝑥𝑖+1 − 𝑥)2 + (

𝑦𝑖+1

ℎ𝑖
−

𝑒𝑖+1ℎ𝑖

6
) −

(
𝑦𝑖

ℎ𝑖
−

𝑒𝑖ℎ𝑖

6
) (13)

And

𝑠𝑖
′(𝑥𝑖) = −

𝑒𝑖

2ℎ𝑖
ℎ𝑖

2 + (
𝑦𝑖+1

ℎ𝑖
−

𝑒𝑖+1ℎ𝑖

6
) − (

𝑦𝑖

ℎ𝑖
−

𝑒𝑖ℎ𝑖

6
) (14)

𝑠𝑖
′(𝑥𝑖) = −

𝑒𝑖+1ℎ𝑖

6
−

𝑒𝑖ℎ𝑖

3
+ 𝑏𝑖 (15)

Where

𝑏𝑖 =
𝑦𝑖+1−𝑦𝑖

ℎ𝑖
 , 𝑖 = 1,2, … , 𝑛 − 1 (16)

Also

𝑠𝑖−1
′ (𝑥𝑖) =

𝑒𝑖

2ℎ𝑖−1
ℎ𝑖−1

2 + (
𝑦𝑖

ℎ𝑖−1
−

𝑒𝑖ℎ𝑖−1

6
) − (

𝑦𝑖−1

ℎ𝑖−1
−

𝑒𝑖−1ℎ𝑖−1

6
) =

𝑒𝑖−1ℎ𝑖−1

6
+

𝑒𝑖ℎ𝑖−1

3
+ 𝑏𝑖−1 (17)

𝑠𝑖−1
′ (𝑥𝑖) = 𝑠𝑖

′(𝑥𝑖) (18)

By setting equation (18) at all interior points, will obtain:

ℎ𝑖−1𝑒𝑖−1 + 2(ℎ𝑖−1 + ℎ𝑖)𝑒𝑖 + ℎ𝑖𝑒𝑖+1 = 6(𝑏𝑖 − 𝑏𝑖−1) (19)

Which is a tridiagonal system of equations in terms of the

unknowns 𝑒𝑖 's. There are 𝑛 unknowns and 𝑛 − 2 equations.

These equations can be rearranged as:

𝑒1 = 0

ℎ𝑖−1𝑒𝑖−1 + 𝑢𝑖𝑒𝑖 + ℎ𝑖𝑒𝑖+1 = 𝑣𝑖 𝑖 = 2,3, … , 𝑛 − 1 (20)

𝑒𝑛 = 0

Where

𝑢𝑖 = 2(ℎ𝑖−1 + ℎ𝑖) (21)

𝑣𝑖 = 6(𝑏𝑖 − 𝑏𝑖−1), 𝑖 = 2,3, … , 𝑛 − 1 (22)

By using the tridiagonal solver, the values of (𝑒2, 𝑒3, … 𝑒𝑛)

can be obtained. These values in addition to 𝑒1 = 𝑒𝑛 = 0 can

then be used to find out the splines by the compensation in

equation (8). Figure 2 shows the flowchart of cubic spline

technique.

The cubic spline technique approach has many steps can be

described as follows:

1. The extracted knot for each signal of EEG signals is

considered as interpolation points of the cubic spline.

CLASSIFICATION OF EEG SIGNALS USING QUANTUM NEURAL NETWORK AND CUBIC SPLINE 403

Fig. 2. Flowchart of CST approach.

2. Forty coefficients are extracted for each beat and these

coefficients are rotated to represent one column.

3. Between each neighboring two knots, four coefficients

(features) are extracted representing the coefficients of

the third degree equation.

III. EEG SIGNAL CLASSIFICATION SYSTEM

PROPOSED

The main goal of the proposed system is to analyze the EEG

signals depending on the cubic spline as a different way to

extract the features of the signals and use QNN for

classification. Figure 3 shows the general schematic diagram of

the proposed system. Every one signal of EEG signals is formed

by 2500 samples, which represents a vector pattern. These

vectors in the data set will be normalized. After normalization,

knots are extracted and then select the best knot, that is

represents the basic characteristics of EEG signal form and its

distinctive points. By cubic spline algorithm, the features have

been extracted based on these knots. And then after forming the

feature vectors, they will be applied to the QNN for

classification or training purposes. A three layers (L) QNN used

as a classifier for EEG signal, which is use the extracted features

obtained by CST for training and testing purposes. The training

process was conducted until reached a maximum iteration. QNN

contains (5) output neurons (no) in the output layer, (40) input

neurons (ni) in the input layer.

`

Fig. 3. Structure of EEG Classification System.

IV. QUANTUM NEURAL NETWORK

Quantum Neural Network (QNN) is an energetic science

based on the combination of quantum computing and

artificial neural network. It also combines the benefits of fuzzy

theoretic principles and neural modelling. Are similar to

classical neural networks, QNNs has an inherently fuzzy

architecture that can degrade the sample information to discrete

levels of certainty or uncertainty. The transfer functions of

quantum neuron able to form graded sections instead of crisp

linear sections of the feature space. If the feature vectors lie

at the boundary between interlaced classes, QNN will assign

it partly to all related classes. If no certainty exists, QNN

will assign it to the corresponding class [8].

The back-propagation algorithm used to modify the

parameters for the desired output. The procedures of the

algorithm are the error at the output layer which spread

backward down to the input layer passing the hidden layer in the

network in order to get the final desired outputs. The gradient

descent method is utilized to calculate the phase variable 𝜃𝑗
𝑠

and phase controlled factor 𝑑𝑤𝑖
𝑘of the network and adjusts

them to minimize the output error [9].

V. LEARNING ALGORITHM FOR THE QNN

The gradient descent method is used to train the QNN of

multi-layer excitation function. In each training cycle, the

training algorithm revises both the connection weight between

Start

Load knot

Back-substitution 𝑒1 = 0, 𝑒𝑛 = 0

Evaluate 𝑠(𝑥)

Calculate 𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 , 𝑑𝑖

End

No

Compute 𝑢𝑖 and 𝑣𝑖

Yes

No

Yes

No

Yes

Yes

No

i=i+1

i=n-1

i=n-1

i=n-1

Compute ℎ𝑖 and 𝑏𝑖

i=n-1

Recorded EEG signal
2500 sample

Normalization

Knot selection and
Reduction

Knot extraction

Feature extraction by

Cubic Spline

Feature classification by
(QNN)

Class E

Counting

Class A

Baseline

Class D

Rotation

Class B

Multiplication

Class C

Letter composing

404 M. ABDUL-ZAHRA RAHEE, E.ABDULRAZZAQ HUSSEIN

the different level neuron and quantum intervals of the hidden

layer [10].

There are two steps to train the QNN. The first step is making

the input sample data compatible with the relevant class spaces

by updating the connecting weights. The second step is

embodying the uncertainty of data by updating the quantum

intervals of quantum neurons in the hidden layer [11].

A. Update the synaptic weights in QNN

First should train the weights which involve presenting all

the training set to the network and a forward pass and back

propagation like a normal neural network. Let 𝑑𝑘 =
[𝑑1

𝑘𝑑2
𝑘𝑑3

𝑘 … 𝑑𝑛𝑜
𝑘]𝑇 be the desired output vector for the 𝑥𝑘

input feature vector 𝑥𝑘 = [𝑥1
𝑘 , 𝑥2

𝑘 , 𝑥3
𝑘, … , 𝑥𝑛𝑖

𝑘]𝑇. Let 𝑦𝑖
𝑘 =

[𝑦1
𝑘𝑦2

𝑘𝑦3
𝑘 … 𝑦𝑛𝑜

𝑘]𝑇 be the actual output [12]. A gradient descent

based algorithm for learning the synaptic weights of the QNN

can be derived by minimizing the quadratic error function

sequentially for each 𝑘.

𝐸𝑘 =
1

2
∑ (𝑑𝑖

𝑘𝑛𝑜
𝑖=1 − 𝑦𝑖

𝑘)2 𝑘 = 1,2, … , 𝑚 (23)

Where E: mean square error functions, 𝑚 is the total number

of the training pattern. The synaptic weights are adjusted so as

to minimize this error. This can be accomplished by adjusting

or changing each synaptic weight by an amount proportional to

the gradient of 𝐸𝑘 with regard to this specific synaptic weight.

The process of weights updating starting with the initial guess

of the weight (which may be selected at random) and then a

series of weights are generated using the following formulas:

This update could be found via calculate the derivative of E𝑘

with respect to 𝑤𝑗𝑖 as:

𝑤𝑗𝑖(𝑟 + 1) − 𝑤𝑗𝑖(𝑟) = −𝜂
∂E𝑘

𝜕𝑤𝑗𝑖
= 𝜂 ∑ (𝑑𝑖

𝑘𝑛𝑜
𝑖=1 − 𝑦𝑖

𝑘)
∂y𝑖

𝑘

𝜕𝑤𝑗𝑖
 (24)

Where 𝑤𝑗𝑖(𝑟 + 1)𝑎𝑛𝑑 𝑤𝑗𝑖(𝑟) are the values representing a 𝑤𝑗𝑖

after and before the modification for the 𝑘𝑡ℎ inputs and 𝜂 is a

small positive number called the learning rate, 0 < 𝜂 < 1.
∂y𝑖

𝑘

𝜕𝑤𝑗𝑖
= 𝑦𝑖

𝑘′
 �̌�𝑗

𝑘 (25)

Where

𝑦𝑖
𝑘′

= 𝛽𝑜𝑦𝑖
𝑘(1 − 𝑦𝑖

𝑘) (26)

∂E𝑘

𝜕𝑤𝑗𝑖
= 𝛽𝑜𝑒𝑖

𝑘𝑦𝑖
𝑘(1 − 𝑦𝑖

𝑘) �̌�𝑗
𝑘 (27)

Substituting equation (27) into equation (24), the update

equation is obtained as:

𝑤𝑗𝑖(𝑟 + 1) − 𝑤𝑗𝑖(𝑟) = 𝜂𝛽𝑜𝑒𝑖
𝑘𝑦𝑖

𝑘(1 − 𝑦𝑖
𝑘) �̌�𝑗

𝑘 (28)

Since

𝑤𝑗𝑖(𝑟 + 1) = 𝑤𝑗𝑖(𝑟) − 𝜂𝑑𝑤𝑖
𝑘 ∗ �̌�𝑗

𝑘 (29)

Where

𝑑𝑤𝑖
𝑘 = 𝛽𝑜𝑒𝑖

𝑘𝑦𝑖
𝑘(1 − 𝑦𝑖

𝑘) , 𝑒𝑖
𝑘=𝑑𝑖

𝑘 − 𝑦𝑖
𝑘 , �̌�𝑗

𝑘 is the output of

the 𝔧𝑡ℎ hidden neuron.

For synaptic weight v𝑙𝑗 that connecting between the 𝑗𝑡ℎ hidden

unit and the 𝑘𝑡ℎ input unit, the update equation will be derived:

v𝑙𝑗(𝑟 + 1) − v𝑙𝑗(𝑟) = −𝜂
∂E𝑘

𝜕𝑣𝑙𝑗
= 𝜂 ∑ (𝑑𝑖

𝑘𝑛𝑜
𝑖=1 − 𝑦𝑖

𝑘)
∂y𝑖

𝑘

𝜕𝑣𝑗𝑖
 (30)

Where v𝑙𝑗(𝑟 + 1) and v𝑙𝑗(𝑟) are the values of v𝑙𝑗 before and

after the adaptation.

∂y𝑖
𝑘

𝜕𝑣𝑗𝑖
= 𝑦𝑖

𝑘′
∑ 𝑤𝑗𝑖

𝑛𝑜
𝑖=1

 �̌�𝑗
𝑘

𝜕𝑣𝑗𝑖
 (31)

 With 𝑦𝑖
𝑘′

 as defined in equation (26), the definition of �̌�𝑗
𝑘

is:
 �̌�𝑗

𝑘

𝜕𝑣𝑗𝑖
= 𝛽ℎ

1

𝑛𝑠
∑ ℎ𝑗

𝑠,𝑘𝑛𝑠
𝑠=1 (1 − ℎ𝑗

𝑠,𝑘)𝑥𝑙
𝑘 (32)

Substituting equation (31) and equation (32) in equation (30),

the update equation becomes:

∂E𝑘

𝜕𝑣𝑙𝑗
= 𝛽ℎ𝛽𝑜 ∑ 𝑒𝑖

𝑘𝑦𝑖
𝑘(1 − 𝑦𝑖

𝑘)
𝑛𝑜
𝑖=1 𝑤𝑗𝑖

1

𝑛𝑠
∑ ℎ𝑗

𝑠,𝑘𝑛𝑠
𝑠=1 (1 − ℎ𝑗

𝑠,𝑘)𝑥𝑙
𝑘

 (33)

Result:

v𝑙𝑗(𝑟 + 1) − v𝑙𝑗(𝑟) = 𝜂 ∑ 𝑑𝑤𝑖
𝑘𝑛𝑜

𝑖=1 𝑤𝑗𝑖
1

𝑛𝑠
∑ ℎ𝑗

𝑠,𝑘𝑛𝑠
𝑠=1 (1 −

ℎ𝑗
𝑠,𝑘) ∗ 𝛽ℎ 𝑥𝑙

𝑘 (34)

 Since

v𝑙𝑗(𝑟 + 1) − v𝑙𝑗(𝑟) = 𝜂𝑑𝑣𝑖
𝑘 ∗ 𝛽ℎ 𝑥𝑙

𝑘 (35)

Where

𝑑𝑣𝑖
𝑘 = ∑ 𝑑𝑤𝑖

𝑘𝑛𝑜
𝑖=1 𝑤𝑗𝑖

1

𝑛𝑠
∑ ℎ𝑗

𝑠,𝑘𝑛𝑠
𝑠=1 (1 − ℎ𝑗

𝑠,𝑘) (36)

B. Updating the quantum intervals

First, QNN must be trained in order to recognize transitions

occurring between classes. The synaptic weights of the QNN

must be updated to enable the network to learn the class

boundaries of the feature space. After that training the quantum

intervals 𝜃𝑗
𝑠, before the jump-positions are updated, the training

set is presented to the network. Once again to calculate <Ĥ𝑗
𝑐𝑖>

(It's the sum of outputs of hidden neurons for all the inputs that

belong to class 𝑐𝑖 divided by the number of samples in that

class). This is seemed as a kind of forward pass, then 𝜃𝑗
𝑠is

updated [13].

The idea of adjustments to quantum intervals is to achieve the

minimum output miscellaneous of hidden layer neuron

depending on the same class of sample data, basically, it’s also

depends on the negative gradient algorithm, and the samples at

the vague boundary that do not belong to the same class can be

assigned to different classes by this algorithm.

The variance of the output of the 𝑗𝑡ℎ hidden nodes for 𝑖𝑡ℎ class

is

𝜎𝑗,𝑖
2 = ∑ (< Ĥ𝑗

𝑐𝑖 >𝑥𝑘𝜖𝑐𝑖
− Ĥ𝑗

𝑘)2 (37)

Where < Ĥ𝑗
𝑐𝑖 > =

1

𝐶𝑖
∑ Ĥ𝑗

𝑘
𝑥𝑘𝜖𝑐𝑖

 is the cardinal number of 𝐶𝑖

, i is the class number of patterns.

The amendment of quantum intervals 𝜃𝑗
𝑠 will be achieved by

minimizing the objective function G.

𝐺 =
1

2
∑ ∑ 𝜎𝑗,𝑖

2𝑛𝑜
𝑖=1

𝑛ℎ
𝑗=1 =

1

2
∑ ∑ ∑ (< Ĥ𝑗

𝑐𝑖 >𝑥𝑘𝜖𝑐𝑖
− Ĥ𝑗

𝑘)2𝑛𝑜
𝑖=1

𝑛ℎ
𝑗=1

 (38)

The update equation for 𝜃𝑗
𝑠 can be obtained by setting the

change in 𝜃𝑗
𝑠, say ∆𝜃𝑗

𝑠 proportional to the gradient of G with

respect to 𝜃𝑗
𝑠 as:

∆𝜃𝑗
𝑠 = −𝜂𝜃

𝜕𝐺

𝜕𝜃𝑗
𝑠 = ∑ ∑ (< Ĥ𝑗

𝑐𝑖 >𝑥𝑘𝜖𝑐𝑖
− Ĥ𝑗

𝑘) [
𝜕<Ĥ

𝑗

𝑐𝑖>

𝜕𝜃𝑗
𝑠 −

𝑛𝑜
𝑖=1

 Ĥ𝑗

𝑘

𝜕𝜃𝑗
𝑠] (39)

Where 𝜂𝜃 is the learning rate, 0 < 𝜂𝜃 < 1.

The derivative of Equation (37) gives:

𝜕<Ĥ
𝑗

𝑐𝑖>

𝜕𝜃𝑗
𝑠 =

1

𝐶𝑖
∑

𝜕Ĥ𝑗
𝑘

𝜕𝜃𝑗
𝑠𝑥𝑘𝜖𝑐𝑖
 (40)

CLASSIFICATION OF EEG SIGNALS USING QUANTUM NEURAL NETWORK AND CUBIC SPLINE 405

𝜕Ĥ𝑗
𝑘

𝜕𝜃𝑗
𝑠 =

−𝛽ℎ

𝑛𝑠
∑ ℎ𝑗

𝑠,𝑘(1 − ℎ𝑗
𝑠,𝑘) =

𝑛𝑠
𝑠=1

−𝛽ℎ

𝑛𝑠
∑ 𝑣𝑗

𝑠,𝑘𝑛𝑠
𝑠=1 (41)

Where 𝑣𝑗
𝑠,𝑘 = ℎ𝑗

𝑠,𝑘(1 − ℎ𝑗
𝑠,𝑘) , < 𝑣𝑗

𝑠,𝑐𝑖 > =
1

𝐶𝑖
∑ 𝑣𝑗

𝑠,𝑘
𝑥𝑘𝜖𝑐𝑖

Substituting equation (40) and equation (41) into equation

(39) gives the update equation as:

∆𝜃𝑗
𝑠 = 𝜂𝜃

𝛽ℎ

𝑛𝑠
∑ ∑ (< Ĥ𝑗

𝑐𝑖 >𝑥𝑘𝜖𝑐𝑖
− Ĥ𝑗

𝑘)
𝑛𝑜
𝑖=1 (< 𝑣𝑗

𝑠,𝑐𝑖 > −𝑣𝑗
𝑠,𝑘

 (42)

The quantum interval can be obtained by:

𝜃𝑗
𝑠(𝑟 + 1) = 𝜃𝑗

𝑠(𝑟) + ∆𝜃𝑗
𝑠 (43)

Where 𝜂𝜃 ∈ (0,1) is the learning rate of 𝜃𝑗
𝑠 , 𝑛𝑜 is the number

of nodes in the output layer, and represents the total number of

classes, 𝑛𝑠 represents the quantum interval of layers, 𝑥𝑘: 𝑥𝑘𝜖𝑐𝑖

this means from all samples belong to the class 𝑐𝑖 . < Ĥ𝑗
𝑐𝑖 > Is

the sum of outputs of hidden neurons for all the inputs that

belong to class ci divided by the number of samples in that

class, to the 𝑘𝑡ℎ feature vectors 𝑥𝑘, �̌�𝑗
𝑘 the response of the 𝑗𝑡ℎ

multi-level hidden unit.

VI. DATA DESCRIPTION

In this work, the raw EEG signals that have been used

consisting of 2500 samples within 10 seconds, which is about

five categories (baseline, multiplication, letter composing,

rotation, counting) and each category contains 7 signals for

seven persons [14].

VII. SIMULATION RESULTS

A. Knot Extraction Result

After normalization, knot extraction achieved depending on

the shape of each signal from EEG signals. Firstly, all

intersection points will found and then find the maximum and

minimum values by sort the data on the signal in ascending

hence these totally points will represent the sections of data.

Then, repeat the process of extracting knots of each part of the

signal. After extracting all the knots will reduce these knots

using the same technique, and these extracted knots will be

considered as original or new data and by the same technique,

most change points will extract, without losing the basic

information of the signal. Figure 4 to figure 8 shows the knot

extracting for five categories before and after reduction.

A

B

Fig.4. Knots in EEG signal for Baseline task before and
after reduction A. Before reduction, B. After reduction

A

B

Fig.5. Knots in EEG signal for Multiplication task before and
after reduction A. Before reduction, B. After reduction

A

B

Fig.6. Knots in EEG signal for Letter Composing task before and
after reduction A. Before reduction, B. After reduction

406 M. ABDUL-ZAHRA RAHEE, E.ABDULRAZZAQ HUSSEIN

5 10 15 20 25 30 35
-1

0

1

2

3

4

5

v
a
lu

e

o
f

f
e
a
t
u
r
e
s

no.features

feature no.6 for five classes

0 5 10 15 20 25 30 35 40
-0.1

-0.05

0

0.05

0.1

0.15

v
a
lu

e

o
f

f
e
a
t
u
r
e
s

no.features

feature no.1 for five classes

`

`

B. Feature Extraction Result

In each signal of EEG signals, 11 knots were extracted. In

CST, between each two neighboring knots, there are four

coefficients, thus for each one signal of EEG there will be 40

coefficients. These coefficients represent the basic features of

the EEG signal. Work has been achieved for each class. So the

number of extracted features will be 40 columns and 35 rows.

Figures 9 to 10 show the results of feature extraction for five

classes.

Fig.9. Feature extracted No.1 for five classes.

Fig.10. Feature extracted No.6 for five classes.

C. Classification Results of EEG Signals

The proposed system used five types of EEG signals. Each

type of these signals is a mental task assigned to a particular

person to perform it. These tasks are (baseline, multiplication,

letter composing, rotation, counting). The number of the

extracted features for each signal are 40 features, means that

the entries that will enter the classification network is a

matrix within 40 rows and 35 columns for five classes (in each

case of the seven electrodes).

The extracted features were divided into two parts, training

part and testing part. Each part consists of a set of features

extracted. Randomly, 70% of samples were selected as training

samples and 30% of samples for testing. Again, 50% of samples

were selected as training samples and 50% of samples for

testing.

In this work, all the graphics and results were generated by M-

file MATLAB software program (Version 8.3, R2014a). In

order to find out the performance of the classification network

that is carried out by this software program, in each case, the

classification accuracy evaluated by using the equation below:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
∗ 100%

The accuracy of classification of five classes of EEG signals due

to the selection of 70% training and 30% testing data for seven

electrodes with different iterations according to best iteration

that gives the highest accuracy of classification is shown in

table I and figure 11.

A

B

Fig.7. Knots in EEG signal for Rotation task before and

after reduction A. Before reduction, B. After reduction

Fig.8. Knots in EEG signal for Counting task before and
after reduction A. Before reduction, B. After reduction

A

B

CLASSIFICATION OF EEG SIGNALS USING QUANTUM NEURAL NETWORK AND CUBIC SPLINE 407

0 100 200 300 400 500 600 700
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

X: 123

Y: 1.085

M
S

E

iteration

Classification of (QNN) for five classes for 1st electrode

X: 368

Y: 0.2295
X: 700

Y: 0.0674

X: 139

Y: 0.6596

0 100 200 300 400 500 600 700 800
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

X: 800

Y: 0.1005

X: 526

Y: 0.2211

X: 248

Y: 0.6097

X: 97

Y: 1.011

Iteration

M
S

E

Classification of QNN for five classes for the 1st electrode

0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

I: 498

E: 0.1585

iteration

M
S

E

Classification of (QNN) for five classes with ns=3

I: 348

E: 0.2647

I: 135

E: 0.5989

I: 115

E: 0.8997

0 50 100 150 200 250 300 350 400 450 500
0.5

1

1.5

2

X: 396

Y: 0.6086

Classification of (QNN) for five classes with nh=2n

Iteration

M
S

E

X: 353

Y: 1.008

X: 119

Y: 1.13

X: 500

Y: 0.5568

Fig.11. Classification of (QNN) for five classes with training (70% randomly)

of data for the 1st electrode.

Fig.12. Classification of (QNN) for five classes with training (50% randomly)

of data for the 1st electrode.

Fig.13. Classification of QNN with different quantum intervals (ns).

Fig.14. Classification of QNN with different number of nodes in the hidden

layer (nh).

The accuracy of classification of five classes of EEG signals due

to te selection of 50% training and 50% testing data for seven

electrodes with different iterations according to best iteration

that gives the highest accuracy of classification is shown in table

II and figure 12.

By changing the value of basic parameters, several tests have

been conducted on the classification network. Such as changing

the number of quantum intervals (ns), and the other test was

implemented by changing the number of nodes in the hidden

TABLE I

 THE ACCURACY OF CLASSIFICATION OF FIVE CLASSES OF EEG SIGNALS WITH

TRAINING (70% RANDOMLY) OF DATA, FOR SEVEN ELECTRODES

Electrode Iterations

MSE for

Training

MSE for

testing

Accuracy

(%)

1st elec. 700 0.0674 0.9817 96%

2nd elec. 700 0.0873 0.9852 92%
3rd elec. 500 0.1081 1.1277 96%

4th elec. 700 0.0998 0.9500 92%

5th elec. 500 0.0793 1.1310 92%
6th elec. 500 0.1240 1.3059 96%

7th elec. 500 0.0746 1.1878 96%

Average 586 0.0915 1.095 94.3%

TABLE II
 THE ACCURACY OF CLASSIFICATION OF FIVE CLASSES OF EEG SIGNALS WITH

TRAINING (50% RANDOMLY) OF DATA, FOR SEVEN ELECTRODES

Electrode Iterations

MSE for

Training

MSE for
testing

Accuracy

(%)

1st elec. 800 0.1005 1.22 94.4%
2nd elec. 600 0.0794 1.227 88.88%
3rd elec. 500 0.1058 1.246 88.88%
4th elec. 500 0.0831 1.0708 94.4%
5th elec. 700 0.0459 1.2511 94.44%
6th elec. 700 0.177 1.1367 88.88%
7th elec. 700 0.0432 0.0909 100%
Average 643 0.0907 1.034 92.84%

TABLE III

 THE CLASSIFICATION RESULTS OF QNN WITH DIFFERENT QUANTUM

INTERVALS

No. of ns

Iterations

MSE for

Training

MSE for

testing

Accuracy

(%)

ns=3 500 0.1584 1.0749 80%

ns=4 500 0.1210 1.5730 92%

ns=6 700 0.1225 1.0839 88%

TABLE IV

 THE CLASSIFICATION RESULTS OF QNN WITH DIFFERENT NUMBER OF NODES

IN THE HIDDEN LAYER

No. of nh Iterations

MSE for

Training

MSE for

testing

Accuracy

(%)

nh= ni/2 600 0.1876 1.1287 76%

nh=2ni 500 0.556 1.542 52%
nh=3ni 600 1.357 2.79 20%

408 M. ABDUL-ZAHRA RAHEE, E.ABDULRAZZAQ HUSSEIN

layer (nh). Table III and fig.13 show the classification results of

QNN with different quantum intervals (ns).

Table IV and figure 14 shows the classification results of QNN

with different numbers of nodes in the hidden layer.

VIII. DISCUSSION

The proposed system used five types of EEG signals. All the

graphics and results were generated by M-file MATLAB

software program (Version 8.3, R2014a). Feature extraction

accuracy depends on knot extraction accuracy. The extracted

features for the signals in each class differ from each other and

from the extracted features in other classes, as shown in figures

9 to 10.

In case of selecting 50% of data for training the network,

classification results and MSE differ from each electrode to

another and according to maximum iterations that gives highest

accuracy and differs from the results obtained in case of

selecting 70% of data for training, by comparing tables I and II,

the results illustrate that the accuracy of classification which

obtained in case of using 70% of data for training is higher than

the accuracy of classification which obtained in case of using

50% of data for training. Except one case, that is when training

50% randomly of data from the 7th electrode, the accuracy

obtained is 100% and MSE is 0.0432 which is the highest

accuracy and fewer MSE obtained.

Changing the number of quantum intervals (ns) for ns=5

Whether to increasing or decreasing will decrease the accuracy

as well as increase the MSE as shown in table III and the same

result obtained when changing the number of the nodes in the

hidden layer (nh) from nh=ni as shown in table IV.

IX. CONCLUSION

CST used for the first time to extract the features for five types

of EEG signals. The proposed system largely depended on the

shape of the signal so it is very important to normalize the EEG

signal in order to reduce the effects on it. The technique that

used to extract the knots was very precise and has many benefits

that are; reducing the features by selecting the best knots without

need to reduce the features after extraction, and the process of,

extracting and selecting the knots has been implemented by the

same technique. CST, which is based on the extracted knots

proved effective in extracting the features accurately. The

accuracy of classification was obtained as an average from the

seven electrodes which are 94.3% with 0.0915 MSE when

training 70% of features and 92.84% with 0.0907 MSE when

training 50% of the features. The number of iterations that gives

the best accuracy was different from electrode to another, thus

the number of iterations was not fixed.

REFERENCES

[1] Saeid Sanei and Jonathon Chambers, “EEG signal processing”, Cardiff

University, England, 2007.

[2] Terence W. Picton and others, “The recording and analysis of event-
related potentials”, Elsevier Science, Germany, Vol. (10), 1995.

[3] David Friedman and Ray Johnson, “Event-Related Potential (ERP)
Studies of Memory Encoding and Retrieval: A Selective Review”,

Microscopy Research and Technique, New York, 2000.

[4] Sky McKinley and Megan Levine, “Cubic Spline Interpolation,” CiteSeer,
February, 1999.

[5] CJC Kruger, “Constrained Cubic Spline Interpolation for Chemical
Engineering Applications,” M.S.C. Thesis, 2002.

[6] S. Fredenhagen, H. J. Oberle, & G. Opfer, “On the Construction of

Optimal Monotone Cubic Spline Interpolations,” Journal of Theory,
ELSEVIER, February, p.p.182-201, 1999.

[7] Professor J. Zhang, “Approximation by Spline Functions”, lecture 6, Dep.
of Computer Science, University of Kentucky Lexington, KY 402060046,

November 1, 2010.

[8] Maojun Cao, Fuhua Shang, “Quantum Neural Networks with application
in adjusting PID parameters”, IEEE, 2009.

[9] Dianbao Mu and others, “Learning Algorithm and Application of
Quantum Neural Networks with Quantum Weights,” International Journal

of Computer Theory and Engineering, Vol. (5), 2013.

[10] Gopathy Purushothaman and Nicolaos B. Karayiannis, “Quantum Neural
Networks (QNN’s): Inherently Fuzzy Feedforward Neural Networks”,

IEEE, VOL. (8), 1997.

[11] Shicai Yu and Ning Ma, “Quantum Neural Network and its Application in

Vehicle Classification”, IEEE, 2008.

[12] Daqi Zhu and Rushi Wu, “A Multi-layer Quantum Neural Networks

Recognition System for Handwritten Digital Recognition”, IEEE, 2007.

[13] Ajith Abraham, “Handbook of Measuring System Design”, Oklahoma
State University, Stillwater, OK, USA, 2005.

[14] Zachary A. Keirn, “Alternative modes of communication between man
and machine,” M.S.C Thesis, Purdue University, 1988.

