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Abstract—The paper proposes solution for two important

issues connected to navigation of independent mobile platforms

in an unknown environment. First issue relates to obstacle map,

estimated based on stereovision images. It provides a basis for

further platform path-planning. The main problem that has to
be solved in obstacle map derivation is elimination of artifacts

resulting from depth estimation. Thus a two-step artifact filtering

procedure is proposed, which exploits both within-frame spatial

correlations as well as temporal, between-frame correlations to do

this task. Second procedure, based on well-known Lees algorithm

is designed for obtaining vehicle collisionless path. Such routes

need to be updated on-the-fly to take into account moving ob-
stacles or newly detected objects. The main idea of the proposed

approach is to identify regions where environment has changed

and to execute a procedure of selective path updates. As a result,

an optimal path can be derived at a computational expense

comparable to the heuristic Lifelong A* search. Experiment

results demonstrate efficiency of the two discussed approaches
for platform operation control in real environments, where both

static and moving obstacles are present.

Keywords—mobile platform motion system, camera motion

estimation, map of obstacles, path planning.

I. INTRODUCTION

T
HE CAPABILITY of collision-free navigation in an un-

known environment is a basic requirement that majority

of the autonomous robotic mobile platforms have to satisfy. In

many systems, e.g. robots aimed for environment exploration,

there is no way to provide up-to-date detailed obstacle map

beforehand. In such systems the missing knowledge has to be

discovered by the system in real time. To cope with problems

of mobile platform operation in dynamically changing and

partly-known environments, the concept of the Simultaneous

Localization And Mapping (SLAM) was introduced.

SLAM methods build an up-to-date map while robotic

devices estimate their own position. While moving, the map

is updated every time the new obstacles are encountered.

Not only new obstacles are marked on the map, but also

the old ones position is updated according to new platform

localization. This has to be done in order to preserve spatial

relationships between objects. To ensure the localization relia-

bility, complex computations must be performed in real time.

Another problem connected to platform motion control is

appropriate path planning to avoid collisions in dynamically
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changing environment. Most of path-planning algorithms as-

sume that obstacle distribution is known before the unmanned

vehicle sets off [1]. One of the most commonly-used search

methods the heuristic A* algorithm [2], outperforms other

ones in terms of the computational burden, however, it can be

further improved if accumulated history from previous steps is

taken into account. This idea is implemented e.g. in Lifelong

Planning A* [3], which is a tuned version of A* or the D*

and the D* lite algorithms [4], [5]. Lees algorithm [6],

originally developed for printed circuit board design, can also

be harnessed to plan routes for autonomous vehicles. The

algorithm is optimal yet simple and its incurred computational

cost is low. However, as it does not use any heuristics, it is

usually slower than A*.

The objective of this paper is twofold. First, a procedure

for collision avoidance, aimed for autonomous mobile plat-

forms equipped with stereovision camera, is presented. In

such systems obstacle localization can be determined from

depth image. Unfortunately, errors introduced during disparity

calculation can significantly impair correct identification and

localization of obstacles. Therefore there is a need to improve

process of building map of the obstacles by eliminating arti-

facts introduced during stereovision depth image formation. To

solve this problem a novel approach, based on spatio-temporal

filtering, is proposed. In motion control module a fuzzy logic

algorithm was used, resulting in an overall hybrid, fuzzy-

crisp computational architecture of the proposed system. The

experimental results show that the resulting method enables

real time navigation in unknown indoor environments such as

corridors or office rooms.

Secondly, the extension of original Lee approach was pro-

posed to enable path-replanning mode yielding significant

reduction in its execution time and becoming competitive to

heuristic search methods.

This paper is organized as follows. Section 2 presents

the literature review on obstacle map estimation, Section 3

describes proposed method for such a map building. Section

4 discusses the new path replanner algorithm, Section 5 shows

sample experimental results obtained for moving platform

implementing these two novel approaches, finally Section 6

concludes the paper.

II. APPROACHES TO ESTIMATION OF THE OBSTACLE MAP

Several approaches that deal with the problem of building

up-to-date obstacle maps can be found in literature. Most
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of the existing solutions use a laser rangefinder, augmented

with monocular/stereo vision [7], [8], [9] or sonar sensors

[10], as a source of information on the environment. Such

complex systems are characterized by high precision and

reliability but are expensive. Therefore, many researches focus

on stereovision-only based systems that are more error-prone

but much cheaper [11].

In majority of stereovision-based systems imprecision of

disparity calculation is compensated by fusion of utilizing

a single camera image and depth image. For example in [12]

the depth discontinuities in U-V-disparity domain is used to

confirm the existence of obstacles. Other researchers have

developed sub-pixel displacement methods [13] to enhance

the accuracy of disparity.

The proposed approach for constructing reliable obstacle

maps exploits only depth information. Disparity derivation

errors are corrected by both spatial and temporal filtering. We

use original depth information, with its insufficient precision

to get a general environment perception, whereas appropri-

ately filtered information, without artifacts, is used for path-

planning. The proposed platform-guidance system provides

reliable mapping of an environment, correct short-term estima-

tion of the platforms current position and real-time operation.

III. PROPOSED SOLUTION

The proposed algorithm consists of 3 stages (I) camera

motion estimation, (II) building map of obstacles and (III) path

planning - as presented on the flowchart in Fig. 1. Detailed

description of camera motion estimation algorithm, which is

used in the proposed procedure, can be found in previous

authors work [14], [15]. Path planning is based on the

modified version of Lees algorithm [16]. See Section 4 for

details.

A. Preliminary Obstacles Detection

Preliminary obstacle detection is performed on the basis of

stereovision depth image (Fig. 1d). In parallel with camera

motion estimation (Fig. 1e), ambient obstacles are searched

for. First, the points that are located at distances larger than

Zmax (10m) from the camera are discarded. This way certainty

of point localization correctness in subsequent steps increases

(disparity for closer points can be estimated more accurately).

Points which Z coordinate is in the range 0Hmax (Hmax

platforms height, 0.8m) from the camera are considered as be-

longing to obstacles and are taken into account for further map

construction (Fig.1b). Such assumption enables eliminating

points lying on the surface on which mobile platform is mov-

ing and located on hanging obstacles that have no impact on

safety platform motion (note that to adopt this assumption the

camera needs to be mounted in parallel with the ground). Next,

points that belong to the considered volume are transformed

from camera coordinates to 2D map of obstacles (Fig. 1c).

The transformation is done according to the formula (1).

[

Xm

Zm

]

=

[

cos(β) sin(β)
− sin(β) cos(β)

]

·

[

X

Z

]

+

[

Xc

Zc

]

(1)

Fig. 1. The flowchart of the proposed algorithm. (a) Right image. (b)

Disparity image with marked potential obstacles. (c) Potential obstacles points
transformed to 2D map. (d) Depth image. (e) Motion vector. (f) Preliminary

map of obstacles (c) after erosion. (g) Left image. (h) Final map of obstacles.
(i) Time filtering. (j) Path. (k) Control mobile platform. (I) Camera motion

vector estimation. (II) Building map of obstacles. (III) Path planning.

where Xm, Zm - point coordinates in map, Xc, Zc - point

coordinates in real world, X , Z - camera current position in

map, β - tdirection of current camera movement.

B. Building Reliable Up-To-Date Map of Obstacles

Preliminary map of obstacles created in previous step con-

tains artifacts introduced by errors in disparity calculation

(Fig. 1c). These artifacts have to be filtered out as they cause

misjudgment what is an obstacle. Therefore before points

preliminarily classified as belonging to an obstacle are added

to the global map of obstacles they undergo spatio-temporal

filtration (Figs. 1f, 1c). They are stored in temporary buffer

and:

1) the 3x3 erosion with cross-shaped structuring element

is applied to eliminate single points (spatial filtering).

The probability that only one point was detected on the

obstacle is considered as very low thus such a point can

be neglected (Fig. 1f).

2) only points that are valid in three subsequent frames

(points from each frame are stored in separate temporary

buffers (Fig. 1i) are left (temporal filtering) and added

to global obstacle map (Fig. 1h).

While the camera is moving, a new region is explored and

new obstacles can appear or some can change their position.

Thus there is a continuous need to update the global map.
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Fig. 2. Key phases of the proposed algorithm. An initial path derived
using Lees algorithm (a), innovation detection (b), determination of expansion

register cells (c), new path selection (d).

Points from global obstacle map that are located within the

camera visual proximity (defined as the 10m-long rectangular

area in front of the camera restricted by a 100-degree camera

viewing angle) are taken into further consideration, as de-

scribed in [17]. Firstly, it is checked if the analyzed point

is present in all three temporary buffers. If it is, no update is

needed. If not, the label potentially to remove is assigned with

such a point and a follow-up procedure is done. In subsequent

steps it is verified whether this point is missing from the

temporary buffer because the obstacle is not valid anymore and

should be removed or if it was occluded by another obstacle.

In order to do this the disparities are compared. If the disparity

is:

1) Larger than the one resultant from the distance it means

that the obstacle was occluded by another one and

should not be removed from global map (closer object

has larger disparity).

2) Otherwise the object changed its position and has to

be removed from previous location on the map (some

farther object is now within the camera viewing range).

Disparity calculation based on the data from global map

is not a trivial task as the map is two-dimensional. Only

information about X and Z coordinates is stored. To cope

with this problem, disparities for all points in the range of

Y: 0 Hmax are computed and compared.

Finally, temporary buffers are updated by new data so that

data associated with the latest three images were stored and

analyzed. Such updated global map of obstacles is an entry

point for the path planning algorithm.

IV. THE PATH RE-PLANNING ALGORITHM

Before the proposed path-replanning algorithm is launched,

an initial environment map is built and the optimal path is

found using the original Lees method. To ensure computational

efficiency of the algorithm a vector of queues, referred to as an

expansion-register is proposed to be used as the data structure

for handling the node-expansion process. Each entry of this

vector groups cells with the same integer label. Expansion of

a node produces a set of new cells, which are placed at the

end of a queue corresponding to the subsequent registers row.

The proposed algorithm iterates through the following three

steps, each time a new, updated environment map is available

(see Fig. 2). The first step identifies cells that have got vacated

or taken due to obstacle location changes; it is performed

by subtracting two consecutive environment maps. The two

possible innovations are handled differently in the subsequent

step of the algorithm. If a cell gets vacated (it gets an empty

label), the algorithm looks for its neighbour with the lowest

possible integer label and registers its location. This neighbour

is appended to an appropriate row of the expansion register,

for further handling in the third phase of the procedure. If

a cell, initially labeled with some integer k, gets taken by an

obstacle, the algorithm first determines all descendants of this

lost location. Descendants are defined as these cells within

its 4-neighborhood, which are assigned with the subsequent

integer (k+1). Descendant-tracking is a recursive process,

which results in selection of a pool (or pools) of cells with

labels that are no longer valid. All the cells surrounding the

selected pools (i.e. elements of possibly closed contours) are

added to appropriate rows (based on their indices) of the

expansion register.

The third phase of the algorithm is the expansion of cells

that are stored in the expansion register. Expansion is made

row-wise and involves checking, whether some currently ana-

lyzed registers cell has any unlabeled neighbors or neighbors

with labels that are larger by at least a value of two. If this

is the case, such cells are placed at the end of a queue of the

consecutive row. Expansion proceeds until none of the two

above mentioned conditions hold or until the target cell is

visited. In the latter case, the backtracking step is necessary

to conclude the procedure.

Sample histograms that show expansion register usage (an

estimate of computational burden) for path-planning by means

of the extensive search, performed in the initial stage of

the proposed method (using Lees approach) and subsequent

path-replanning iterations, are shown in Fig. 3. Clearly, path-

replanning typically involves examination of only a fraction

of cells that need to be considered if data processing history

is not exploited. The proposed algorithm and the introduced

way of data representation enable substantial reduction in path-

planning computational cost, which has been experimentally

validated.

V. EXPERIMENTAL RESULTS

This Section discusses experimental results obtained based

on two proposed solutions applied for platform motion control.

To implement and validate the both approaches a test mobile

platform, equipped with the Bumblebee2 stereovision camera

[18], was used and several sequences of images, for indoor
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Fig. 3. Typical expansion-register usage (number of cells to be expanded at

subsequent steps) for Lee algorithm and the proposed method (for 100x100
grid exploration and for 500x500 grid exploration).

Fig. 4. The test mobile platform.

environment, were captured. This platform is presented in

Fig. 4.

A. Obstacle Map Estimation

In order to increase computational efficiency, the proposed

algorithm is implemented in four independent parallel threads.

The first thread is responsible for capturing stereovision im-

ages and calculating disparity. In the second one the camera

motion vector is estimated. Obstacles map derivation and

path planning is performed by third thread. The fourth thread

controls mobile platform motion.

Figure 5 presents the experimental results. In Fig. 5a the

right image captured by stereovision camera is shown. Fig. 4b

Fig. 5. The experimental results of proposed solution. (a) The frame captured

form stereovision camera. (b) Disparity image; points being analyzed are
marked with slanting lines; the darker color the further localized point; point

for which disparity could not be calculated are marked white. (c) Potential
obstacles points transformed to 2D map. Artifacts are visible. (d) Map of

obstacles after spatial-time filtering.
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Fig. 6. Global map of obstacles with found path, A obstacles outside the
camera vision range, B obstacles within camera vision range, C obstacles

hidden by other objects, D obstacles to remove (not valid any more).

presents the stereovision disparity image being the base of

all calculations - the darker color the farther localized point.

Points for which disparity could not be calculated are marked

in white. Regions marked with slanted lines correspond to

potential obstacles. In Fig. 5c the preliminary map of obstacles

is shown. Not only obstacle points (labeled 1-7) but also

artifacts are visible. Most of the artifacts are removed after

spatio-temporal filtering Fig. 5d. In Fig. 6 the global map of

obstacles, built during the process of exploration, is presented.

The thick dark line shows the optimal path. The A-D labels

mean respectively: A obstacles outside the camera vision

range; B obstacles within camera vision range; C obstacles

hidden by other objects; D obstacles to remove (not valid any

more).

Camera motion estimation error is about 5%. Such errors

propagate and after long-term exploration a deviation between

real camera position and estimated one can reach unacceptable

level and result in wrong obstacles mapping. This is a common

problem of majority of algorithms based on visual odometry,

so there is a need of periodical corrections of localization

process, using some other input modality, such as e.g. GPS.

Also, as the process of detecting objects and building a map

is based only on disparity image, homogenous obstacles can

be missed. The possible solution to this problem is to consider

additional information from some other type of sensors or

introduce to the system some additional module of object

detection based on raw image (not a depth-map) analysis.

In the Table 1 the average times of computation for every

stage of the proposed algorithm are presented. All calculations

were performed using 2.5 GHz quad core computer. Resolu-

tion of images was 640x480. It shows that the path planning

module is a weak point of the proposed solution. In order to

cope with this problem some improvements were introduced,

TABLE I

AVERAGE TIMES OF COMPUTATION

Stage Time [ms] Thread

Image acquisition and disparity calculation 60 1

Camera motion estimation 40 2
Obstacles detection 15 3
Map updating 20 3

Path planning 5 3
Mobile platform control <1 4

Fig. 7. Path-planning time histograms for the proposed method, standard Lees
procedure and LPA* algorithm for two grids: 1000x1000 cells and 2000x2000

cells. A total of 100 000 maps (derived from 10 different obstacle distributions
by making 10000 steps of random obstacle displacements) were analyzed.

e.g. updating a path in near neighborhood only. Also, one

can consider entirely different, more computationally efficient

path-planning algorithms, where sub-optimal path selection is

sufficient. Comparing the performance with other solutions

tested on similar equipment (the same camera, 2.4GHz pro-

cessor), a significant improvement can be observed (average

computational time for images with resolution 640x480 pixels

for proposed algorithm does not exceed 133ms whereas in

[12] for images with resolution 320x240 it is 230ms). It results

in more reliable system, being able to avoid obstacles in

dynamically changing environment.

B. Lee-based Path Replanner

Computational complexity of the proposed algorithm is

a function of obstacle distribution. Therefore, algorithms per-

formance has been evaluated experimentally by selecting ran-

dom obstacle configurations and updating obstacle locations

by random displacements, thus imitating consecutive snapshots

of the monitored environment. Each obstacle configuration

was composed of rectangular objects of width/height changing

randomly from one pixel to 10% of the map side size. Total

area taken by obstacles have been varying from 10% to

40% of the map size. The route calculations were performed

on a 2.53GHz processor. The results are shown in Fig. 7
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Fig. 8. Results for path planning. The image from stereo camera (a),
corresponding obstacle map with marked collisionless path (b).

TABLE II
AVERAGE TIMES OF COMPUTATION

Map size [cells] Lee LR LPA* Path length [cells]

100x100 <1 <1 <1-10 95-150
500x500 8 2-6 1-300 470-750
1000x1000 45 15-30 3-1000 950-1500

2000x2000 180 50-120 10-3000 1900-3000

and Table 2, together with results obtained for the heuristic

Lifelong Planning A* algorithm [3], executed on the same

data.

As the search-procedure origin changes in time if assigned

to a moving vehicle, we decided to swap the two terminal

points of the path and to compute a path that starts from

the target and terminates at the origin. Several sequences of

images and planned paths, for dynamic outdoor and indoor

environment were captured. Sample results are presented in

Figs. 8 and 9.

Fig. 9. Results for path planning. The image from stereo camera (a),
corresponding obstacle map with marked collisionless path (b).

VI. CONCLUSION

The presented algorithm correctly builds the obstacle map in

majority of tested cases. Introduced spatio-temporal filtering of

artifacts improved quality of maps significantly. The precision

of obstacle localization allows avoiding collisions and reaching

the destination. Camera motion estimation is performed with

ca. 17 frames/s and path planning with ca. 7 frames/s. The

average delay between the path updates is ca. 230ms.

Further research will focus on modifications of the path

planning procedure, aimed at reducing its computational bur-

den. Additionally, the way the map of obstacles is updated will

be modified to prevent from removing of fast moving objects,

which is the case for the current algorithm.

The procedure proposed for planning collisionless routes for

unknown environments proved to be several times faster than

original Lees algorithm. For the dynamically changing maps

considered in this study, also the heuristic LPA* algorithm

did not perform well. This was caused by frequent labyrinth-

like obstacle configurations, resulting in instability of heuristic
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search performance (i.e. frequent jumps during execution

time). As computational complexity of the proposed algorithm

is low and the resulting paths are optimal, it becomes an

attractive candidate for application in run-time routing, e.g.

for unmanned moving vehicles.
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