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SHAH: Hash Function Based on Irregularly
Decimated Chaotic Map

Mihaela Todorova, Borislav Stoyanov, Krzysztof Szczypiorski, and Krasimir Kordov

Abstract—We present a new hash function based on irregularly
decimated chaotic map, in this article. The hash algorithm
called SHAH is based on two Tinkerbell maps filtered with
irregular decimation rule. We evaluated the novel function
using distribution analysis, sensitivity analysis, static analysis of
diffusion, static analysis of confusion, and collision analysis. The
experimental data show that SHAH satisfied valuable level of
computer security.

Keywords—Hash function, Chaotic functions, Shrinking deci-
mation rule, Pseudo-random number generator

I. INTRODUCTION

DURING recent decades, with the dynamic development
of computer science and information technologies, net-

work security tools are becoming increasingly important.
Decimation sequences play a big part in the area of basic

cryptographic primitives. The output bits are produced by
applying a threshold function into a sequence of numbers. The
resulting decimation sequence has good randomness proper-
ties. In [6], two linear feedback shift registers (LFSRs) and
threshold function are used to create novel output of pseudo-
random bits. An algorithm of a pseudo-random generation
based on a single LFSR is proposed in [21]. In [12], a
class of irregularly decimated keystream schemes, based on
1-D piecewise map is presented. Pseudo-random sequences
constructed from two Chebyshev maps, filtered by decimation
function are presented in [25]. In [4], [9], [14], [15], [17],
[24], [26]–[28] new pseudo-random bit generation techniques,
software applications based on chaotic maps, and studies about
sets are presented.

A cryptography hash function is a one-way algorithm used
for compression of a plain text of arbitrary length into a secret
binary sequence of fixed-size. The hash function provides
the necessary security in authentication methods and digital
signature algorithms.

Novel chaos-based hash algorithm, which uses m-
dimensional Cat map, is proposed in [16] and improved in
[7]. Another hash function based on a Cat map, is defined in
[10]. Based on a chaotic system, a hash construction which

This work is supported by the Scientic research fund of Konstantin
Preslavski University of Shumen under the grant No. RD-08-121/06.02.2018
and by European Regional Development Fund and the Operational Program
”Science and Education for Smart Growth” under contract UNITe No.
BG05M2OP001-1.001-0004-C01 (2018-2023).

M. Todorova, B. Stoyanov, and K. Kordov are with the Department of Com-
puter Informatics, Konstantin Preslavsky University of Shumen, 9712 Shu-
men, Bulgaria (e-mails: mihaela.todorova@shu.bg, borislav.stoyanov@shu.bg,
krasimir.kordov@shu.bg).

Krzysztof Szczypiorski is with Warsaw University of Technology, Warsaw,
Poland; Cryptomage SA, Wroclaw, Poland (e-mail: ksz@tele.pw.edu.pl).

has high performance is designed in [22]. A chaotic look-up
table based on a tent map is used to design a novel 128-bit
hash function in [18]. A hash algorithm based on a tent map
is constructed in [13]. In [11], a 2D generalized Cat map is
used to present an improved hash function.

In [31], a circular-shift-based chaotic hash function, is
constructed. A hash function by low 8-bit of 8D hyperchaotic
system iterative outputs is proposed in [19]. In [1], an al-
gorithm for generating secure hash codes using a number of
chaotic maps is designed.

The aim of the article is to construct a new hash algorithm
based on irregularly decimated chaotic map.

In Section II we propose a novel pseudo-random bit scheme
based on two Tinkerbell maps filtered with shrinking rule.
In Section III we present the novel hash function SHAH
and detailed security analysis is given. Finally, the last part
concludes the article.

II. PSEUDO-RANDOM BIT GENERATOR BASED ON
IRREGULARLY DECIMATED CHAOTIC MAP

The work presented in this section was motivated by recent
developments in chaos-based pseudo-random generation [8],
[29], [30], and with respect of [6].

A. Proposed Pseudo-random Bit Generation Algorithm

The Tinkerbell map [2] is given by the following function:

xn+1 = x2
n − y2

n + c1xn + c2yn

yn+1 = 2xnyn + c3xn + c4yn .
(1)

The map depends on the four paremeters c1, c2, c3, and c4.
The Tinkerbell map with different values of the parameters is
illustrated in Figure 1.

The shrinking generator [6] uses two sequences of pseudo-
random bits (a and s) to create a third output sequence (z) of
pseudo-random bits which includes those bits ai for which the
corresponding si is 1. Other bits from the first sequence are
decimated.

We propose a novel pseudo-random number scheme which
irregularly decimates the outputs of two Tinkerbell functions
by using the shrinking rule [6]. We used the following param-
eters c1 = 0.9, c2 = −0.6013, c3 = 2.0 and c4 = 0.50. The
novel generator is based on the following equations:

x1,n+1 = x2
1,n − y2

1,n + c1x1,n + c2y1,n

y1,n+1 = 2x1,ny1,n + c3x1,n + c4y1,n

x2,m+1 = x2
2,m − y2

2,m + c1x2,m + c2y2,m

y2,m+1 = 2x2,my2,m + c3x2,m + c4y2,m ,

(2)
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Fig. 1. The Tinkerbell map of Eq.(1). This is a plot of (xi, yi), for i = 0..100000. (a) Tinkerbell map with c1 = 0.9, c2 = −0.6013, c3 = 2.0, and
c4 = 0.50, (b) Tinkerbell map with c1 = 0.3, c2 = −0.6013, c3 = 2.0, and c4 = 0.50, (c) Tinkerbell map with c1 = 0.9, c2 = −0.6013, c3 = 2.0, and
c4 = −0.4, (d) Tinkerbell map with c1 = 0.9, c2 = −0.6013, c3 = 2.0, and c4 = 0.4, (e) Tinkerbell map with c1 = 0.3, c2 = −0.6013, c3 = 2.0, and
c4 = 0.4, and (f) Tinkerbell map with c1 = −0.3, c2 = −0.6013, c3 = 2.0, and c4 = 0.5.

where initial values x1,0, y1,0, x2,0 and y2,0 are used as a key.

Step 1: The starting points x1,0, y1,0, x2,0 and y2,0 of the two
Tinkerbell functions from Eqs. (2) are setted up.

Step 2: The two functions from Eqs. (2) are iterated for M
and N times, respectively.

Step 3: The computing of the Eqs. (2) continues, and y1,n and
y2,m are filtered as follows:

ai = abs(mod(integer(y1,n × 109), 2)

si = abs(mod(integer(y2,m × 109), 2),
(3)

where abs(x) returns the absolute value of x,
integer(x) returns the the integer part of x, truncating
the value at the decimal point, mod(x, y) returns the
reminder after division.

Step 4: Apply the shrinking rule [6] to the values (ai, si) and
produce the output bit.

Step 5: Return to Step 3 until the output bits limit is attained.

The novel hash algorithm is coded in C++, using
the input values: x1,0 = −0.423555643379287, y1,0 =
−0.762576287931311, M = N = 3500, x2,0 =
−0.276976682878721, and y2,0 = −0.348339839900213.

B. Initial Key Size Calculation
The initial key size is the set of all initial values of the

pseudo-random bit generation steps. The proposed generator
has four input parameters x1,0, y1,0, x2,0, and y2,0. According
to [34], the computational precision of the 64-bit double-
precision floating-point format is about 10−15, thus the initial
key size is more than 2199. The proposed pseudo-random
generator is secure against brute-force key size search [3].
Moreover, the starting iteration values M and N can be
included as a part of the key size.

C. Statistical tests
To measure statistical randomness of the output produced

by the proposed pseudo-random number algorithm, we used
the NIST suite [5], DIEHARD suite [20], and ENT suite [32].

The NIST package Version 2.1.1 includes the following
statistical tests of randomness: monobit, block-frequency, cu-
mulative sums, runs, longest run of ones, rank, spectral,
non overlapping templates, overlapping templates, universal,
approximate entropy, random excursions, random excursion
variant, serial one, serial two, and linear complexity.

For the NIST tests, we outputted 1000 different binary
sequences of length 1,000,000 bits. The results from the tests
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TABLE I
NIST TEST SUITE RESULTS

NIST test P-value Pass rate

Frequency (monobit) 0.869278 981/1000

Block-frequency 0.548314 985/1000

Cumulative sums (Reverse) 0.790621 983/1000

Runs 0.610070 990/1000

Longest run of Ones 0.439122 984/1000

Rank 0.467322 989/1000

FFT 0.058612 988/1000

Non-overlapping templates 0.519879 991/1000

Overlapping templates 0.510153 982/1000

Universal 0.159910 989/1000

Approximate entropy 0.616305 991/1000

Random-excursions 0.641892 588/594

Random-excursions Variant 0.495265 589/594

Serial 1 0.614226 989/1000

Serial 2 0.151190 985/1000

Linear complexity 0.620465 990/1000

are given in Table I. The minimum pass rate for each statistical
test with the exception of the random excursion variant test is
980 for a sample size of 1000 sequences. The minimum pass
rate for the random excursion (variant) test is 580 for a sample
size of 594 sequences. The Tinkerbell map pseudo-random bit
generator passed very good all the NIST tests.

The DIEHARD application [20] is a set of following tests:
birthday spacings, overlapping 5-permutations, binary rank (31
x 31), binary rank (32 x 32), binary rank (6 x 8), bitstream,
overlapping-pairs-sparse-occupancy, overlapping-quadruples-
sparse-occupancy, DNA, stream count-the-ones, byte-count-
the-ones, parking lot, minimum distance, 3D spheres, squeeze,
overlapping sums, runs (up and down), and craps. The tests
produce P − values, which should be uniform in [0,1),
if the input stream contains pseudo-random numbers. The
P−values are obtained by p = F (y), where F is the assumed
distribution of the sample random variable y, often the normal
distribution. The novel pseudo-random bit algorithm passed
very well all DIEHARD tests, Table II.

The ENT software [32] includes 6 tests of pseudo-random
streams: entropy, optimum compression, χ2 distribution, arith-
metic mean value, Monte Carlo value for π, and serial cor-
relation coefficient. Streams of bytes are saved in files. We
tested output of 125,000,000 bytes of the Tinkerbell function
based pseudo-random number generation scheme. The novel
pseudo-random bit generation algorithm passed successfully
all ENT tests, Table III.

Based on the good test results, we can say that the proposed
pseudo-random bit generation algorithm has satisfying good
statistical properties and provides acceptable level of security.

TABLE II
DIEHARD TEST SUITE RESULTS

DIEHARD P-value

Birthday spacings 0.513830

Overlapping 5-permutation 0.927974

Binary rank (31 x 31) 0.890892

Binary rank (32 x 32) 0.609788

Binary rank (6 x 8) 0.486987

Bitstream 0.662411

OPSO 0.618526

OQSO 0.445982

DNA 0.526710

Stream count-the-ones 0.299022

Byte count-the-ones 0.546796

Parking lot 0.574512

Minimum distance 0.115118

3D spheres 0.527506

Squeeze 0.678411

Overlapping sums 0.556561

Runs up 0.543542

Runs down 0.438540

Craps 0.272223

TABLE III
ENT TEST SUITE RESULTS

ENT tests Results

Entropy 7.999998 bits per byte

Optimum compression OC would decrease the file
size by 0 %.

χ2 distribution For 125000000 samples is
278.28, and randomly would
exceed this value 15.15 %

of the time.

Arithmetic mean value 127.5015 (127.5 = random)

Monte Carlo π estim. 3.141354290 (error 0.01 %)

Serial correl. coeff. 0.000115
(totally uncorrelated = 0.0)

III. HASH FUNCTION BASED ON IRREGULARLY
DECIMATED CHAOTIC MAP

A. Proposed Hash Function based on Irregularly Decimated
Chaotic Map

In this section, we construct a keyed hash function named
SHAH based on a irregularly decimated chaotic map. Let n be
the bit length of the final hash code. The parameter n usually
supports five bit lengths, 128, 160, 256, 512, and 1024 bits.
We consider input message M ′ with arbitrary length.

The novel hash algorithm SHAH consists of the following
steps:

Step 1: Convert the input string M to binary string using
ASCII table.

Step 2: The input stream M is padded with a bit of one, and
then append zero bits to obtain a message M ′ whose
length is m, a multiple of n.
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Step 3: The novel pseudo-random bit generation algorithm
(Section II) based on two Tinkerbell functions filtered
with shrinking rule is iterated many times, getting m
bits, m-sized vector P .

Step 4: The m-sized vectors M ′ and P are combined in a
new m-sized vector, N , using XOR operation.

Step 5: The vector N is split into p blocks, N1, N2, ..., Np,
each of length n and m = np is the total length of
the vector N .

Step 6: A temporary n-sized vector T is obtained by T =
N1 ⊕N2 ⊕ · · · ⊕Np.

Step 7: The bits from the temporary vector T are processed
one by one sequentially. If the current bit ti is 1 then
update ti = ti ⊕ s, where s is the next bit from the
novel pseudo-random generator based on Tinkerbell
function (Section II).

Step 8: Another n-sized temporary vector U is taken and all
the elements are initialized to 0s.

Step 9: The bits from the vector T are processed again one
by one sequentially. If the current bit ti is 1, the
vector U is XOR-ed with the next n bits from the
novel pseudo-random generator based on Tinkerbell
function (Section II). If the current bit ti is 0, the
matrix U is bitwise rotated left by one bit position.

Step 10: The final hash code is obtained by H = T ⊕ U .
The designed SHAH algorithm is implemented in C++

programming language.

B. Distribution Analysis

In general, a typical property of a hash code is to be
uniformly distributed in the compressed range. Note that the
length of the hash code is set as 128. Simulation experi-
ments are done on the following paragraph of input stream
(http://shu.bg/about-us/history?language=en):

Konstantin Preslavsky University of Shumen has inherited
a centuries-long educational tradition dating back to
the famous Pliska and Preslav Literary School (10th c).
Shumen University is one of the five classical public
universities in Bulgaria it is recognized as a leading
university that offers modern facilities for education,
scientific researches and creative work.
With the chosen input message, the SHAH hash code is

calculated. The ASCII code distribution of the input message
and the output hexadecimal hash code are shown in Fig. 2(a)
and 2(b). Another input message with the same length but
all of whitespaces, is generated. The ASCII code distribution
of the whitespaced input message and the corresponding
hexadecimal hash code are shown in Fig. 2(c) and 2(d). The
SHAH hash plots, Fig. 2(b) and 2(d), are uniformly distributed
in compress range even under exceptionally cases.

C. Sensitivity Analysis

To demonstrate the sensitivity of the proposed keyed hash
function to the input message and security key space, hash
algorithm tests have been performed under the following 9
cases:

C1: The input message is the same as the one in Section
III-B;

C2: Change the first character ’K’ in the input message into
’k’.

C3: Change the number ’10’ in the input message to ’11’.
C4: Change the word ’School’ in the input message to

’school’.
C5: Change the comma ’,’ in the input message to ’.’.
C6: Add an whitespace at the end of the input message.
C7: Change the word ’recognized’ in the input message to

’recognize’.
C8: Subtracts 1× 10−15 from the input key value x1,0.
C9: Adds 1× 10−15 to the input key value y2,0.
The respective 128-bit hash code in hexadecimal numeral

system are the following:
C1: 8CE855A3026CCEE597C0965B5DB33096
C2: 8F0E33DA59B5B1114F9A1570EB466C24
C3: 11DEA1F51379EC2B429325D16FD5354C
C4: 6B834AC8D36B74EFAD0C6B8AAEA008BF
C5: 81704BC6412FF4E24AF09E570AB4D9DE
C6: A2B7D2EAC687D2953551AE2621720ADF
C7: E1D9A0BAA6184264481A25D08BEFF110
C8: 780378A8FE0011DBD81CE035414907F0
C9: C27AB518A87B8E3D6C46504814BF7940
The corresponding binary representation of the hash codes

are illustrated in Fig. 3.
The result shows that the novel hash algorithm based on

irregularly decimated chaotic map has high sensitivity to
minimal changes to its security key space. Even tiny changes
in secret keys or in input messages will lead to significant
differences of hash codes.

D. Statistic Analysis of Diffusion and Statistic Analysis of
Confusion

From a historical point of view, Shannon, with the pub-
lication in 1949 of his paper, Communication Theory of
Secrecy Systems [23], introduced the idea of two methods
for frustrating a statistical analysis of encryption algorithms:
confusion and diffusion.

Confusion is intended to use transformations to hide the
relationship between the plaintext and ciphertext, which means
the relationship between the plaintext and the hash code is as
complicated as possible.

Diffusion can propagate the change over the whole en-
crypted message, which means that the hash code is highly
dependent on the input data. For a binary representation of
the hash code, each bit can be only zero or one. Therefore,
the ideal diffusion effect should be that any small changes in
the starting values lead to a 50% changing probability of each
bit of hash code [33].

Six statistics used here are [18]: minimum number of
changed bits Bmin, maximum number of changed bits: Bmax,
mean changed bit number B̄, mean changed probability P ,
standard deviation of the changed bit number ∆B, and stan-
dard deviation ∆P .

They are defined as follows:
Minimum number of changed bits: Bmin = min({Bi}Ni=1)
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Fig. 2. Distribution of input string and output hash code.

Maximum number of changed bits: Bmax = max({Bi}Ni=1)

Mean changed bit number: B̄ = 1
N

∑N
i=1Bi

Mean changed probability: P = B̄
n × 100%

Standard deviation of numbers of changed bits:
∆B =

√
1

N−1

∑N
i=1(Bi − B̄)2

Standard deviation: ∆P =
√

1
N−1

∑N
i=1(Bi

n − P )2 ×
100%,
where N is the total number of tests and Bi is the number of
changed bits in the i-th test (Hamming distance).

Two types of statistical tests are performed [10]: type A and
type B. In the type A test, an input stream, of size L = 50n is
generated and its corresponding n−bit hash code is generated.
Then, a new stream is computed by choosing a single bit at
random from the input stream and modified to 0 if it is 1 or
to 1 if it is 0. The n-bit hash code of the new stream is then
compared with that of the original stream and the Hamming
distance between the two hash codes is recorded as Bi. This
is then repeated N times, where each time, a new original
stream is chosen and one of its bits is randomly chosen and
modified to 0 if it is 1 or to 1 if it is 0. Tables IV–VIII present
results of these tests for n = 128, 160, 256, 512, and 1024.

TABLE IV
STATISTICS FOR 128-BIT HASH CODES, TYPE A TESTS.

N=256 N=512 N=1024 N=2048 N=10,000

Bmin 51 49 47 45 45

Bmax 80 89 89 89 89

B̄ 64.5 63.998 64.11 63.99 64

P (%) 50.39 49.99 50.08 49.99 50.01

∆B 5.43 5.66 5.31 5.51 5.6

∆P (%) 4.425 4.19 4.15 4.33 4.37

TABLE V
STATISTICS FOR 160-BIT HASH CODES, TYPE A TESTS.

N=256 N=512 N=1024 N=2048 N=10,000

Bmin 61 59 56 56 56

Bmax 94 96 100 101 101

B̄ 74.31 79.74 79.99 80 79.92

P (%) 49.57 49.84 49.99 50 49.95

∆B 5.86 6.07 6.21 6.39 6.3

∆P (%) 3.66 3.79 3.88 3.99 3.94
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Fig. 3. 128-bit hash codes of the input messages under nine different cases:
(a) C1, (b) C2, (c) C3, (d) C4, (e) C5, (f) C6, (g) C7, (h) C8, and (i) C9.

TABLE VI
STATISTICS FOR 256-BIT HASH CODES, TYPE A TEST.

N=256 N=512 N=1024 N=2048 N=10,000

Bmin 103 102 102 102 92

Bmax 148 152 156 161 162

B̄ 128.01 127.95 127.95 127.94 128.04

P (%) 50 49.98 49.98 49.97 50.01

∆B 8.04 8.1 7.99 7.94 7.99

∆P (%) 3.14 3.16 3.12 3.1 3.12

Comparing variables with most of these existing hash algo-
rithms given in Table IX, the SHAH has small ∆B and ∆P
values, respectively.

In the type B test, the original message M of size L = 50n
bits is generated at random and its corresponding n-bit hash
code is computed. Then, a single bit of the original message

TABLE VII
STATISTICS FOR 512-BIT HASH CODES, TYPE A TESTS

N=256 N=512 N=1024 N=2048 N=10,000

Bmin 214 214 214 214 212

Bmax 287 287 287 293 302

B̄ 255.94 255.95 256.03 255.74 256.04

P (%) 49.99 49.99 50.01 49.95 50

∆B 12.73 11.84 11.48 11.44 11.33

∆P (%) 2.48 2.31 2.24 2.23 2.21

TABLE VIII
STATISTICS FOR 1024-BIT HASH CODES, TYPE A TESTS.

N=256 N=512 N=1024 N=2048 N=10,000

Bmin 471 469 464 454 448

Bmax 561 561 561 563 577

B̄ 513.7 512.73 512.25 511.79 511.97

P (%) 50.16 50.07 50.02 49.98 49.99

∆B 15.42 15.37 15.47 15.61 15.85

∆P (%) 1.5 1.5 1.51 1.52 1.54

is chosen, modified to 0 if it is 1 or to 1 if it is 0, and the
hash code of the modified message is calculated. The two
hash codes are compared, and the number of flipped bits is
calculated as Bi. The same input stream is used for all N
steps. Tables X–XIV list the results obtained in tests of type
B for n = 128, 160, 256, 512, 1024, and different numbers of
N .

Comparing the results with few chaos based hash algorithms
given in Table XV, the SHAH has small ∆B and ∆P values,
accordingly.

In Tables IV–XIV we can observe that both types of tests,
the mean changed bit number B̄ and the mean probability
P are very close to the ideal values n/2 and 50%. These

TABLE IX
COMPARISON OF STATISTICS 128-BIT HASH CODES AND N=10,000, TYPE

A TESTS

Bmin Bmax B̄ P (%) ∆B ∆P (%)

SHAH 45 89 64 50.01 5.6 4.37

Ref. [10] 45 84 63.94 49.95 5.64 4.41

Ref. [11] 44 84 64 50 5.65 4.41

Ref. [13] 46 82 64.15 50.12 5.74 4.48

Ref. [19] 44 84 63.95 49.96 5.62 4.39

Ref. [33] 42 83 63.986 49.988 5.616 4.388

TABLE X
STATISTICS FOR 128-BIT HASH CODES, TYPE B TESTS.

N=256 N=512 N=1024 N=2048 N=50×128

Bmin 53 49 48 43 43

Bmax 78 83 83 83 84

B̄ 63.57 64.01 63.97 64.11 63.9

P (%) 49.66 50 49.97 50.08 49.92

∆B 5.19 5.61 5.6 5.59 5.71

∆P (%) 4.06 4.38 4.37 4.37 4.46
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TABLE XI
STATISTICS FOR 160-BIT HASH CODES, TYPE B TEST

N=256 N=512 N=1024 N=2048 N=50×160

Bmin 66 62 60 57 57

Bmax 94 96 101 101 108

B̄ 80.06 80.64 79.94 80.52 80.29

P (%) 50.03 50.4 49.96 50.32 50.18

∆B 6.17 6.16 6.35 6.66 6.53

∆P (%) 3.85 3.85 3.96 4.16 4.08

TABLE XII
STATISTICS FOR 256-BIT HASH CODES, TYPE B TESTS

N=256 N=512 N=1024 N=2048 N=50×256

Bmin 108 107 106 104 100

Bmax 143 148 151 153 156

B̄ 128.23 129.23 128.6 128.98 128.26

P (%) 50.09 50.47 50.23 50.38 50.1

∆B 8.44 8.12 8.05 8.08 8.06

∆P (%) 3.29 3.17 3.14 3.15 3.14

TABLE XIII
STATISTICS FOR 512-BIT HASH CODES, TYPE B TESTS

N=256 N=512 N=1024 N=2048 N=50×512

Bmin 229 229 229 217 216

Bmax 278 292 292 300 300

B̄ 255.28 255.82 256.45 256.62 256.11

P (%) 49.86 49.96 50.08 50.12 50.02

∆B 11.95 11.42 11.32 11.29 11.31

∆P (%) 2.33 2.23 2.21 2.2 2.2

TABLE XIV
STATISTICS FOR 1024-BIT HASH CODES, TYPE B TESTS

N=256 N=512 N=1024 N=2048 N=50×1024

Bmin 473 472 464 458 441

Bmax 551 556 556 557 568

B̄ 510.56 511.32 512.41 512.32 511.61

P (%) 49.85 49.93 50.04 50.03 49.96

∆B 13.7 14.82 15.16 15.85 15.95

∆P (%) 1.33 1.44 1.48 1.54 1.55

TABLE XV
COMPARISON OF STATISTICS FOR 128-BIT HASH CODES AND N=2048,

TYPE B TESTS

Bmin Bmax B̄ P (%) ∆B ∆P (%)

SHAH 43 83 64.11 50.08 5.59 4.37

Ref. [10] 47 81 63.95 49.96 5.62 4.39

Ref. [11] 48 83 64.22 50.17 5.65 4.42

Ref. [13] 47 84 63.94 49.95 5.69 4.44

TABLE XVI
ABSOLUTE DIFFERENCE D FOR HASH CODES, TYPE A TESTS, WHERE

N = 10, 000.

n Maximum Minimum Mean

128 2386 537 1367

160 2821 717 1706

256 4049 1395 2731

512 7517 3922 5459

TABLE XVII
COMPARISON OF THE ABSOLUTE DIFFERENCE FOR 128-HASH CODES,

TYPE A TESTS, WHERE N = 10, 000.

n Maximum Minimum Mean

SHAH 2386 537 1367

Ref. [10] 2391 656 1364

Ref. [13] 2320 737 1494

Ref. [22] 2455 599 1439

Ref. [33] 2064 655 1367

results demonstrate that the suggested hashing algorithm has
very robust potential for confusion and diffusion. Thus, the
SHAH function is trustworthy against this kind of attacks.

E. Collision Analysis

In this section we will analyse the novel hash function
SHAH based on the collision tests proposed in [10]. In general,
a common characteristic of a hash scheme is to have a collision
resistance capability, the following two types of tests are
performed, type A and type B. In tests of type A, an input
stream of size L = 50n is generated and its corresponding
n−bit hash code is calculated and saved in ASCII format.
Then, a new stream is used by choosing an one bit at random
from the input message and modified to 0 if it is 1 or to 1 if it
is 0. The n-bit hash code of the new stream is calculated and
recorded in ASCII format. The two hash codes are compared,
and the number of ASCII symbols with the same value at
the same location is counted. The absolute difference D
between the two hash codes is computed by the following:
D =

∑n/8
i=1 |dec(ei) − dec(e

′

i)|, where ei and e
′

i be the i-
th entry of the input and new hash code, respectively, and
function dec() converts the entries to their equivalent decimal
values. The test of type A is repeated N = 10, 000 times, and
minimum, maximum, and mean of D are presented in Table
XVI for different hash codes of size n = 128, 160, 256, and
512.

Table XVII outlines the absolute differences of 128-hash
codes generated under tests of type A, where N = 10, 000,
of some existing hash functions which are based on chaotic
maps. The results show that the SHAH has comparable values.

The number of hits where the ASCII symbols are equal,
where N = 10, 000 and the hash codes are generated under
tests of type A, is listed in Table XVIII and distribution of the
128-hash codes, is presented in Figure 4.

In the type B tests, an input message M of a fixed size
L = 50n bits is created at random and its corresponding n-
bit input hash code is computed. Then, a single bit of the
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TABLE XVIII
COUNT OF HITS IN COLLISION TEST FOR N = 10, 000, TYPE A TESTS

n 0 1 2 3 4 5

128 9393 595 12 0 0 0

160 9236 734 30 0 0 0

256 8795 1138 64 3 0 0

512 7789 1944 242 23 0 0
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Fig. 4. Distribution of the values of locations where the ASCII symbols are
equal in the 128-bit hash codes, type A tests, where N = 10, 000

input stream is chosen, modified to 0 if it is 1 or to 1 if it
is 0, and the hash code of the modified stream is calculated.
Table XIX presents minimum, maximum, and mean values of
D for different hash codes of size n = 128, 160, 256, and
512 calculated under tests of type B. The same input message
is used for all N steps. Comparison with other algorithm is
presented in Table XX.

Distribution of the values of locations where the ASCII
symbols are equal in the 128-bit hash codes calculated under
tests of type B, where N = 50× 128 = 6400 are presented in
Figure 5.

TABLE XIX
ABSOLUTE DIFFERENCE D FOR HASH CODES, TYPE B TESTS, WHERE

N = 50n.

n Maximum Minimum Mean N

128 2035 636 1248 6400

160 2830 969 1908 8000

256 4124 1483 2817 12800

512 7469 3726 5709 25600

TABLE XX
COMPARISON OF ABSOLUTE DIFFERENCE D FOR 128-HASH CODES, TYPE

B TESTS, WHERE N = 6400.

n Maximum Minimum Mean

SHAH 2035 636 1248

Ref. [10] 2421 735 1576

Ref. [11] 2294 661 1360
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Fig. 5. Distribution of the values of locations where the ASCII symbols are
equal in the 128-bit hash codes, type B tests, where N = 6400

TABLE XXI
ABSOLUTE DIFFERENCE D FOR HASH CODES, TYPE B TESTS, WHERE

N = n.

n Maximum Minimum Mean N

128 1812 844 1263 128

160 2480 1253 1840 160

256 3894 2065 2843 256

512 7469 4400 5695 512

In addition to the above operations, the tests of type B are
repeated for very small input strings consisting of a single
n− bit block, Table XXI.

Distribution of the values of locations where the ASCII
symbols are equal in the 128-bit hash codes, type B tests,
where N = 128 and L = n are presented in Figure 6.
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Fig. 6. Distribution of the values of locations where the ASCII symbols are
equal in the 128-bit hash codes, type B tests, where N = 128 and L = n

From the obtained results it is clear that the novel hash
algorithm SHAH has a strong collision resistance capacity.
Compared with similar hash functions, the proposed one has
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a mean per character values close to the ideal of 85.3333 [7]
and low collision values.

IV. CONCLUSIONS

In this article, we present a novel hash algorithm based on
shrinking chaotic function. The hash function called SHAH is
based on two Tinkerbell maps filtered with the decimation rule.
Exact research has been provided on the novel scheme using
distribution analysis, sensitivity analysis, static analysis of
diffusion, static analysis of confusion, and collision analysis.
The experimental data show very good statistical results and
high level of cryptographic security of the SHAH algorithm.
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