
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2018, VOL. 64, NO. 2, PP. 137–145
Manuscript received September 30, 2017; revised March, 2018. DOI: 10.24425/119361

Tabu Search
Against Permutation Based Stream Ciphers

Iwona Polak and Mariusz Boryczka

Abstract—Encryption is one of the most effective methods of
securing data confidentiality, whether stored on hard drives or
transferred (e.g. by e-mail or phone call). In this paper a new state
recovery attack with tabu search is introduced. Based on research
and theoretical approximation it is shown that the internal state
can be recovered after checking 252 internal states for RC4 and
2180 for VMPC.

Keywords—tabu search, TS, cryptanalysis, RC4, VMPC,
stream cipher, state recovery attack

I. INTRODUCTION

PEOPLE each day communicate with each other. The
formal, mathematical definition of this process was given

by Shannon and Weaver [1]. Then on this basis Shannon in
1949 created a model of secret communication, where the
content of the message is not known to the outsiders [2].

Encryption surrounds us even if we are not fully aware of
it. It is implemented wherever the protection of transmitted or
stored information is crucial. Everyone uses encryption when
talking on the phone, logging in to the bank account through
the Internet or shopping online.

To maintain high quality of cryptographic protection both
already being in use and newly created ciphers need to be
widely verified. In this paper a state recovery attack on two
stream ciphers is presented. The ciphers are RC4 [3], [4] and
VMPC [5]. The presented method is based on optimization
technique called tabu search.

The goal is to generate such a keystream that is identical
with the keystream being analysed, and thereby find the inter-
nal state of the cryptographic algorithm. For RC4 the correct
internal state can be found after checking approximately 252

internal states. The method is compared to another nature-
inspired technique, namely Genetic Algorithm. Details of this
technique can be found in [6].

Because there exist stronger attacks on RC4 [7], the pre-
sented method was also tested on another permutation-based
cipher VMPC. For this stream cipher the correct internal state
can be found after checking approximately 2180 internal states.
While it is still a big number, the improvement over brute force
and other known attacks is well seen.

In both cases only 256 (28) B of a keystream are analysed.
Experiments are made for 512 iterations and using regression
analysis and extrapolation it is predicted how many iterations
are needed to completely reproduce the keystream and thereby
find a proper internal state of the cipher.

Authors are with the Institute of Computer Science, University of Silesia,
Poland (e-mail: {iwona.polak, mariusz.boryczka}@us.edu.pl).

In Section II some basic facts about stream ciphers are
compiled. Also a detailed description of the RC4 and the
VMPC is given here. For every cipher known attacks are
summarized.

Section III contains a brief summary of tabu search method.
It also provides a detailed exposition of a new state recovery
attack on permutation-based ciphers. In order to explain the
idea more clearly a simple example is described.

In Section IV we discuss a research that was made using the
presented state recovery attack with tabu search. The section
contains more closely look on the conditions of experiments
and parameters values that were used. After this a detailed
exposition of achieved results is provided, separately for RC4
and VMPC. Results are compared with known attacks and
with the probability of random guess.

Section V contains a brief summary of the article and it
discusses further work.

II. STREAM CIPHERS

Modern cryptography is divided into symmetric-key cryp-
tography and public-key cryptography. The first one is then
divided into block and stream ciphers (Fig. 1).

Modern
cryptography

public-key
cryptography

symmetric-key
cryptography

stream
ciphers

block
ciphers

Fig. 1. Classification of modern ciphers

Encryption and decryption in symmetric-key cryptography
in the simplest way can be defined as follows:

ENCRYPTION: EK(P) = C (1)

DECRYPTION: DK(C) = P (2)

where:
E – encryption,
D – decryption,
K – key,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Journal of Electronics and Telecommunications (Warsaw University of...

https://core.ac.uk/display/234040658?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

138 I. POLAK, M. BORYCZKA

P – plaintext,
C – ciphertext.

In order to obtain a valid cryptographic algorithm, these
functions must have the following property:

DK(EK(P)) = P (3)

In stream ciphers usually the key is not used directly, but it
is used to generate keystream κ of much longer period than
the key itself. In most cases the keystream is added to the
plaintext with the use of eXclusive OR (XOR) function. So
in stream ciphers the decryption and encryption processes are
defined as follows:

ENCRYPTION: Pn ⊕ κn = Cn (4)

DECRYPTION: Cn ⊕ κn = Pn (5)

where:
Pn – n-th bit of plaintext,
κn – n-th bit of keystream,
Cn – n-th bit of ciphertext,
⊕ – eXclusive OR (XOR).

For example:

P : 10011101011100011011011000110111...
κ : ⊕ 11100111110101000011110100101100...
C : 01111010101001011000101100011011...

Of course decryption and encryption in stream ciphers
satisfy property from Eq. 3, because:

Cn⊕κn = (Pn⊕κn)⊕κn = Pn⊕κn⊕κn = Pn⊕0 = Pn (6)

Most of the stream ciphers’ algorithms are divided into two
phases:
• Key Scheduling Algorithm, KSA – a phase in which the

value of the secret key K and the apparent initialization
vector (IV) is dissipated in the internal structure of the
algorithm,

• Pseudo-Random Generation Algorithm, PRGA – the gen-
eration of the keystream κ; in this phase neither the key
nor the IV are used any more.

Matching the internal state of the encryption algorithm im-
mediately after the KSA will allow to generate a subsequent
keystream without the need for a secret key. And then, without
the need to know the key, one will be able to decipher the
secret message. The attack, which aim is to guess or calculate
the internal state, is called state recovery attack. Because of
the negligibility of the KSA phase in these considerations, it
will be omitted in the descriptions of cryptographic algorithms
in subsequent paragraphs.

Stream ciphers presented below share the same internal
structure, namely a permutation of 256 integer values, from
0 to 255. Both of them produce one byte of keystream every
clock. Then a byte of keystream is XORed with a byte of
plaintext and as a result it produces one byte of a ciphertext.
Furthermore internal state changes with every clock. However,
KSA and PRGA phases are different in RC4 and in VMPC.

A. RC4

RC4 is a stream cipher designed by Ron Rivest in RSA
Security in 1987. Initially it was a trade secret, but after several
years the algorithm was anonymously sent to the Cypherpunks
mailing list [3]. The RC4 cipher has variable key length (up
to 2048 bits), which sets the initial permutation of numbers
in the 256-element array S. At a given time it can be in one
of 256! · 256 · 256 ≈ 21700 possible states. The keystream
is the same length as the plaintext and is independent of it.
The algorithm has been implemented e.g. in SSL/TLS (Secure
Socket Layer/Transport Layer Security) to encrypt traffic on
the Internet and in WEP (Wired Equivalent Privacy) and WPA
(WiFi Protected Access) to secure wireless networks [4]. In
its time it was probably the most widely used stream cipher in
the world. Its popularity is due to the ease of implementation
in both software and hardware. PRGA of the RC4 is presented
in Fig. 2 and 3, where:
i, j – 8-bit variables,
S – 256-byte array with a permutation of unsigned integer
numbers {0, 1, ..., 255},
L – the length of the plaintext (in bytes),
+ – addition mod 256.

1: i ← 0
2: j ← 0
3: for b ← 1 to L do
4: i ← i + 1
5: j ← j + S[i]
6: swap (S[i], S[j])
7: output ← S[S[i] + S[j]]
8: end for

Fig. 2. RC4 PSEUDO-RANDOM GENERATION ALGORITHM

Fig. 3. RC4 encryption scheme

1) Known attacks: Exhaustive key space search requires
checking 22048 possibilities. Checking all possible initial in-
ternal states will reduce the number of opportunities to 21684

(256!).
There is an attack with the use of another metaheuris-

tic, namely Genetic Algorithm (GA), by B. Ferriman and
C. Obimbo [6]. This technique is based on the phenomenon
of evolution and its main components are: selection, crossover
and mutation. There were two versions considered: non-
adaptive and adaptive. The attack was a state recovery attack.
GA allowed for 10-25% fit for 256-byte keystream. Authors
estimate that finding a proper internal state will take 2122

generations (with 5 solutions in each generation).
RC4 has been subject to wide cryptanalysis for last 30 years.

The most important attacks are presented by Mathy Vanhoef

TABU SEARCH AGAINST PERMUTATION BASED STREAM CIPHERS 139

and Frank Piessens [7]. They demonstrated an attack on
WPA-TKIP (Wi-Fi Protected Access – Temporal Key Integrity
Protocol), which can be executed within an hour. The same
authors have also designed a practical approach to recovery
the cookie of TLS protocol used in HTTPS, with success rate
of 94%, using 230 ciphertexts.

B. VMPC

VMPC is a function and stream cipher published by Bartosz
Zoltak in 2004 [5]. The name is an acronym for Variably Mod-
ified Permutation Composition. VMPCrypt software, written
by the same author, is used for internal purposes by Polish
companies, institutions and individuals.

The definition of the VMPC function for the n-element
permutation f is as follows:

g(x) = VMPC(f(x)) = f(f(f(x)) + 1) mod n (7)

According to the author’s declarations, the VMPC algorithm
offers much better statistical properties than the RC4. The
internal state of the VMPC may take 256! · 256 · 256 ≈ 21700

values (256-element permutation and two 8-bit variables). The
initial internal state is calculated on the basis of a secret
key and an explicit initialization vector. The key length, like
in RC4, is variable (here from 128 to 512 bits). With each
generated byte of a keystream, the internal state of the cipher
changes. The security of the cipher is based on the assumption
that the g(x) is a one-way function. PRGA of the VMPC is
presented in Fig. 4, where:
i, j – 8-bit variables,
S – 256-byte array with a permutation of unsigned integer
numbers {0, 1, ..., 255},
L – the length of the plaintext (in bytes),
+ – addition mod 256.

1: i ← 0
2: for b ← 1 to L do
3: j ← S[j + S[i]]
4: output ← S[S[S[j]]+1]
5: swap (S[i], S[j])
6: i ← i + 1
7: end for

Fig. 4. VMPC PSEUDO-RANDOM GENERATION ALGORITHM

1) Known attacks: Inverting the base function, which
would break the VMPC stream cipher, requires an estimated
average of 2260 computational operations [5]. Alexander Maxi-
mov published distinguishing attack on this cipher with O(240)
computational complexity [8]. From other distinguishing at-
tacks [9]–[11] the best one requires 224 B of keystream.
A distinguishing attack allows an attacker only to distinguish
the keystream from random bitstream, but does not reveal any
information about the key or the secret message.

III. TABU SEARCH

The tabu search technique (TS) was introduced by F. Glover
in 1986 [12], [13]. The main idea of TS is to build upon

previous experiences to make better decisions in the future. An
important element of this technique is the memory of previous
movements, which in some way leads searching in the space
of possible solutions. This memory is represented as a tabu list
(hence the name) of the most recently executed movements,
which are simultaneously prohibited movements in the nearest
future. Amount of iterations in which a movement is forbidden
is horizon parameter.

The TS is a metaheuristic search method based on local
search and is used for mathematical optimization. In every step
neighbouring solutions of current solution are considered and
the best one from the current neighbouring set is chosen. Now
this best solution becomes current solution. A movement that
was made is placed on tabu list. As the next current solution,
one that is not on tabu list is selected, regardless of whether
the new solution has a greater value of the fitness function than
the current solution or not. This should break the solution out
of the local optimum. Presented in Subsection III-A technique
is based on the basic version of TS.

The tabu search is an iterative search of the neighbourhood
in the solutions space. However, in order not to run infinitely,
there is a certain limitation on the duration of the algorithm.
This limitation is called a termination criterion and can be
defined in different ways depending on ones needs. The most
common conditions of termination are:
• after a predetermined number of iterations or a certain

amount of processor time,
• after a number of consecutive iterations, during which no

improvement in the quality of the solution occurred,
• after finding a solution with a predetermined quality (usu-

ally defined as a specific value of the fitness function).
In spite of its simplicity, TS gives very good results where

exact algorithms are not known or intractable in practice. For
this reason, the current applications of TS cover many areas,
e.g. bioinformatics, pattern classification, energy distribution,
resource and space planning, molecular engineering, telecom-
munication, financial analysis or waste management [13].

A. State recovery attack

The main goal is to find a permutation that generates the
analysed byte stream, in other words, to find the cipher’s inter-
nal state from the beginning of the communication. Discovery
of the internal state in this moment is synonymous with key
knowledge – it allows one to decrypt the rest of the secret
message.

Based on the tabu search, a cryptanalysis method of
permutation-based stream ciphers was developed. The pro-
posed algorithm for cryptanalysis is shown in Fig. 5. This
attack is a plaintext attack, which means that an attacker has
access to a plaintext and a ciphertext associated with it. From
those two a keystream can be calculated. The attack is also
a state recovery attack, because the main goal is to recover
the internal state of the cipher, right after KSA and before the
start of the communication.

The cryptanalytic algorithm starts with generating a random
solution r (random internal state, random permutation) (Fig. 5,
line 1). In the presented work, the candidate solution (internal

140 I. POLAK, M. BORYCZKA

1: current permutation r ← random permutation
2: TABU ← {}
3: while termination criterion not satisfied do
4: identify set R(r) of possible 2-element swap on r
5: r ← best permutation ∈ R(r) ∧ /∈ TABU
6: update TABU
7: end while
8: return best permutation found

Fig. 5. CRYPTANALYSIS WITH TABU SEARCH

state) is any permutation of non-negative integers from 0 to
255. The tabu list is empty at the beginning (Fig. 5, line 2).

Then a set of neighbouring solutions of r is identified
R(r) (Fig. 5, line 4). The neighbouring solution is also
a permutation, almost identical to the considered one. They
differ by two elements that have been swapped with each other.
So the size of the neighbourhood |R(r)| in this case is 32 640
(≈ 215).

From this neighbourhood R(r) the best solution is selected,
i.e. the solution with the highest value of fitness function (see
Sec. III-A1) (Fig. 5, line 5). Solutions, which emerged by
making swaps that are in the tabu list (TABU), are not taken
into consideration, independently of their quality. The chosen
solution becomes a new current solution. In every iteration
only one solution is maintained and this solution is modified
in each subsequent iteration by 2-element swap.

The procedure for updating the tabu list (Fig. 5, line 6) con-
sists of listing the currently executed movement (permutation
elements swap) and deleting the oldest entry if necessary (i.e.
an entry that is in the list for more than horizon iterations).

Changing the current solution and updating the tabu list is
made until the termination criterion is reached (Fig. 5, line 3).

1) The fitness function: The fitness function is a measure
of quality of solutions. In this case the fitness function is
the percentage of correctly guessed bytes in the keystream
generated by the analysed solution (eq. 8). In the research
(Sec. IV) the length of the analysed keystream is arbitrarily
set to 256 bytes.

ffit =
B

256
(8)

where:
ffit – fitness function,
B – number of bytes correctly guessed in the keystream.

The best possible result is 1, which means that the analysed
byte stream and the keystream generated by the candidate
solution are 100% consistent. We assume that at this point
the internal state of the attacked cipher was recovered. The
internal state of presented ciphers change with every generated
byte, so it seems highly unlikely that incorrect initial internal
state would produce correct 256 B of a keystream and after
this would desynchronize (see Sec. IV-C).

The ffit may be represented as a number from range 〈0, 1〉
or the percentage value from range 〈0%, 100%〉. For clarity,
in this paper only the second convention will be used.

2) Example: Let us assume that the cryptosystem’s internal
state (permutation) is of size 5 and the size of the tabu list
(horizon) is |TABU| = 3. Random initial permutation (internal
state) was generated as follows:
r = 4, 2, 3, 0, 1
At the beginning the tabu list is empty:
TABU = {}.

There are 10 neighbouring solutions (elements that were
swapped are underlined), so the set R(r) consists of:
2, 4, 3, 0, 1
3, 2, 4, 0, 1
0, 2, 3, 4, 1
1, 2, 3, 0, 4
4, 3, 2, 0, 1
4, 0, 3, 2, 1
4, 1, 3, 0, 2
4, 2, 0, 3, 1
4, 2, 1, 0, 3
4, 2, 3, 1, 0

Every solution has a value of the fitness function. Let us
assume that those values are as follows:
2, 4, 3, 0, 1 : ffit = 9.4%
3, 2, 4, 0, 1 : ffit = 8.2%
0, 2, 3, 4, 1 : ffit = 12.1%
1, 2, 3, 0, 4 : ffit = 10.2%
4, 3, 2, 0, 1 : ffit = 10.5%
4, 0, 3, 2, 1 : ffit = 11.7%
4, 1, 3, 0, 2 : ffit = 7.8%
4, 2, 0, 3, 1 : ffit = 13.3%
4, 2, 1, 0, 3 : ffit = 9.8%
4, 2, 3, 1, 0 : ffit = 7.4%
The solution with the best fitness was marked with bold text.

The internal state with the best fitness is chosen for the
next iteration as current solution. So now:
r = 4, 2, 0, 3, 1
and the swap between 3rd and 4th elements is placed on the
tabu list:
TABU = {(3,4)}.

The next step (next iteration) is to consider all neighbouring
solutions of the new current solution. They are:
R(r) =
2, 4, 0, 3, 1 : ffit = 12.5%
0, 2, 4, 3, 1 : ffit = 8.6%
3, 2, 0, 4, 1 : ffit = 9.8%
1, 2, 0, 3, 4 : ffit = 10.2%
4, 0, 2, 3, 1 : ffit = 7.4%
4, 3, 0, 2, 1 : ffit = 12.9%
4, 1, 0, 3, 2 : ffit = 11.3%
4, 2, 3, 0, 1 : ffit = 10.9%
4, 2, 1, 3, 0 : ffit = 13.3%
4, 2, 0, 1, 3 : ffit = 10.5%
The internal state that is achieved through the swap that is in
the tabu list is struck out. This internal state is not taken into
account.

The best solution from this iteration is now the current
solution:

TABU SEARCH AGAINST PERMUTATION BASED STREAM CIPHERS 141

r = 4, 2, 1, 3, 0
and the swap between 3rd and 5th element is placed on the
tabu list:
TABU = {(3,4), (3,5)}.

The set of all neighbouring solutions of the current one
looks as follows, R(r):
2, 4, 1, 3, 0 : ffit = 20.3%
1, 2, 4, 3, 0 : ffit = 18.4%
3, 2, 1, 4, 0 : ffit = 19.9%
0, 2, 1, 3, 4 : ffit = 19.1%
4, 1, 2, 3, 0 : ffit = 16.0%
4, 3, 1, 2, 0 : ffit = 17.6%
4, 0, 1, 3, 2 : ffit = 14.5%
4, 2, 3, 1, 0 : ffit = 7.4%
4, 2, 0, 3, 1 : ffit = 13.3%
4, 2, 1, 0, 3 : ffit = 9.8%

The new current solution for the next iteration is:
r = 2, 4, 1, 3, 0
and
TABU = {(3,4), (3,5), (1,2)}.

The set R(r) consists of:
4, 2, 1, 3, 0 : ffit = 13.3%
1, 4, 2, 3, 0 : ffit = 16.0%
3, 4, 1, 2, 0 : ffit = 13.2%
0, 4, 1, 3, 2 : ffit = 14.8%
2, 1, 4, 3, 0 : ffit = 13.6%
2, 3, 1, 4, 0 : ffit = 13.4%
2, 0, 1, 3, 4 : ffit = 15.2%
2, 4, 3, 1, 0 : ffit = 18.0%
2, 4, 0, 3, 1 : ffit = 12.5%
2, 4, 1, 0, 3 : ffit = 12.9%

As it can be seen the solution with the best fit is on tabu
list, so it will not be chosen to the next iteration. For the next
iteration will be chosen a solution that has the best fit among
permitted swaps. Not only the best possible swap is not made,
but also a solution with worse fitness value than the previous
one is accepted. Thus the new current solution is:
r = 1, 4, 2, 3, 0.

The swap, which led to this permutation, is placed in the
tabu list. But at the same time the oldest movement is deleted,
because list’s length is 3. Thus:
TABU = {(3,5), (1,2), (1,3)}.

And so on, until the termination criterion is reached. After
exiting the main while loop the procedure will return the
internal state (permutation) with the highest value of the
fitness function found during the whole algorithm run. This
returned value is not necessarily from the last iteration. In
the above example, this will be a permutation (2, 4, 1, 3, 0)
with ffit = 20, 3% from iteration 3.

3) Two-element swap: Let us assume that all possible
permutations of m numbers form a graph. Two vertices are
connected if and only if permutations are different only by
two elements that are swapped with each other. An example
for permutations of size m = 3 is given in Fig. 6.

0 1 2 1 0 2

1 2 0

2 1 02 0 1

0 2 1

Fig. 6. Graph of permutations of size 3

The question is: what is the length of the longest path
(without cycles) in such a graph? In other words: having some
permutation, what is the maximum number of 2-element swaps
to get any other permutation? Let us assume that from some
(random) permutation we want to get permutation in which
elements are sorted in ascending order. This can be achieved
with the selection sort. From m elements choose the maximum
one and swap it with the last one (2-element swap). In the next
step choose from m − 1 elements (as the last one is already
sorted) and swap it with the one before last. And so on, until
the whole set is sorted. To sort m elements there are at most
m− 1 swaps necessary.

The same reasoning can be applied to get any permutation
from some other permutation. Thus for m numbers to get one
permutation from some other one by 2-element swaps there
are m−1 swaps needed at most. Therefore in presented in this
paper ciphers at most 255 (≈ 28) 2-element swaps are needed
to get any permutation from random one. And in particular,
a finite number of 2-element swaps is enough to get wanted
permutation from a random permutation.

IV. RESEARCH

Main aim of the research is to find internal state of the
cipher. This will lead to revealing the successive keystream.
The attack is a known plaintext attack – it is assumed that 256
bytes of plaintext is known, which consequently gives exact
knowledge about the same amount of keystream. In presented
research there are 2 ciphers cryptanalysed: RC4 (see Sec. II-A)
and VMPC (see Sec. II-B) as they share similar structure,
namely permutation of 256 values from 0 to 255. There are
10 different keys used for each cipher – values of those can
be found in Tables II and III.

A. Conditions of Experiments

In this research termination condition was set as an arbi-
trarily chosen number of iterations in order to see, how the
internal state and its ffit would change in time. In this case
the number of iterations was chosen as 512 (= 29). From the
method’s behaviour in this limited time, an approximation of
further development of the function is made.

142 I. POLAK, M. BORYCZKA

The initial internal state (permutation) is constructed ran-
domly. In every iteration swap of two numbers is evaluated –
the best swap passes to the next iteration (and is put on tabu
list for some amount of consecutive iterations). There were
four types of horizon considered:
• 1,

• log2(|R(r)|),
•
√
|R(r)|,

•
|R(r)|

2

where |R(r)| is the size of the neighbourhood, i.e. the amount
of possible 2-element swaps, here: |R(r)| = 32 640 (≈ 215).

The fitness value is the percentage of keystream bytes that
are the same in keystream produced by the candidate solution
and cipher being attacked (see Sec. III-A1, eq. 8).

For every configuration set there were 32 tests executed.
At the end of every test the best permutation found during
the whole test was returned, regardless of iteration number in
which it was found.

Comparatively random solutions (internal states) were gen-
erated in the number of 16 711 680 for every key. 16 711 680
is equal to 512 · 32 640, which is the number of solutions
evaluated in a single cryptanalysis test using TS.

B. Results

As the presented technique contains a random component
conclusions were drawn on the basis of average of returned
values from those 32 tests. Also tables and figures contain
average of returned values, unless it is clearly stated otherwise.

1) RC4: Results for RC4 are presented in Table IV. Every
result for TS is a pair of obtained value of ffit (above) and
iteration number, in which the best solution was found (below).
In columns there are results for different types of horizons. For
every of them minimum, average and maximum value of 32
runs is showed. Also random generated solutions are presented
at the end. A minimum, average and maximum value of 16 711
680 tries is showed there. In rows there are results presented
for every key (see Table II) separately and also total results
for all the keys altogether at the bottom.

When there is only one prohibited movement on the tabu
list, the best score is 19.4%. The best result is found in up
to 60 (of 512) iterations and later no improvement occurs.
Probably the algorithm falls into a local optimum and it is
unable to get out of it. It is therefore apparent that the tabu
list has a significant impact on the quality of the solutions
obtained.

The best results were obtained for horizon
√
|R(r)|. Fitness

function value in consecutive iterations for this horizon is
presented in Fig. 7. There is also a logarithmic regression chart
marked as red line to approximate the trend. The equation of
the line of the regression is:

f(x) = 0.0377018742 ln(x) + 0.028359542 (9)

Using this extrapolation, it can be predicted that the
keystream will be recreated after approximately 237 iterations.

0 100 200 300 400 500
0

5

10

15

20

25

iteracja

f f
it
[%

]

Fig. 7. Fitness function value in consecutive iterations for RC4 (horizon√
|R(r)|) – blue dots; logarithmic regression chart is marked as red line

In every iteration ≈ 215 potential solutions are being checked.
Thereby the correct internal state will be guessed after check-
ing 252 internal states on average.

Results for RC4 were compared to those achieved by
genetic algorithm (GA) [6] in Table V. Results from GA
are an average from 25 runs as it also contains a random
component. In 1 000 000 iterations GA on average found
internal state that covered 20.7% of bytes correct (adaptive).
Population of every iteration consisted of 5 candidates. In
512 iterations TS on average found internal state that covered
25.4% of bytes (65 of 256 B) correct (horizon

√
|R(r)|).

A neighbourhood of size 32 640 (≈ 215) was checked in
every iteration. Improvements of the GA and TS through
generations and iterations are logarithmic functions. Using
regression analysis and extrapolation it can be predicted that
on average the keystream could be completely reproduced by
GA after ≈ 2122 generations of 5 ≈ 22 candidates (details
in [6]), which gives ≈ 2124 internal states being checked.
Whereas for TS it can be predicted that on average the
keystream could be reproduced after ≈ 237 iterations of
≈ 215 candidates each, which gives ≈ 252 internal states
checks. While it is still a big number, the improvement is
well seen.

2) VMPC: Results for VMPC are presented in Table VI.
Every result for TS is a pair of obtained value of ffit (above)
and iteration number, in which the best solution was found
(below). In columns there are results for different types of
horizons. For every of them minimum, average and maximum
value of 32 runs is showed. Also random generated solutions
are presented at the end. A minimum, average and maximum
value of 16 711 680 tries is showed there. In rows there are re-
sults presented for every key (see Table II) separately and also
total results for all the keys altogether at the bottom. Horizon
equals 1 was not considered as in the experiments with RC4 it
was shown that the presented algorithm is ineffective without
the tabu list.

The best results were obtained for horizon log2(|R(r)|).
It was 10.0% bytes (26 of 256 B) correct in 512 iterations.
Fitness function value in consecutive iterations for this horizon
is presented in Fig. 8. There is also a logarithmic regression
chart marked as red line to approximate the trend. The
equation of the line of the regression is:

f(x) = 0.0082806371 ln(x) + 0.0553808841 (10)

TABU SEARCH AGAINST PERMUTATION BASED STREAM CIPHERS 143

0 100 200 300 400 500
0

2

4

6

8

10

iteracja

f f
it
[%

]

Fig. 8. Fitness function value in consecutive iterations for VMPC (horizon
log2(|R(r)|)) – blue dots; logarithmic regression chart is marked as red line

Using this extrapolation, it can be predicted that the
keystream will be recreated after approximately 2165 itera-
tions. In every iteration ≈ 215 potential solutions are being
checked. Thereby the correct internal state will be guessed
after checking 2180 internal states on average.

Although this number is outside the scope of the practical
breaking the VMPC cipher, this is a much better result than
the best known attack with complexity 2260. Furthermore, the
further research in this topic may lead to the development of an
effective VMPC cryptanalysis algorithm. All other presented
in Section II-B attacks are distinguishing attacks and as it
was stated before – such an attack does not reveal any
information neither about the key nor the plaintext. Therefore
attack presented in this paper is stronger as it could help in
decrypting the ciphertext.

C. Probability of random guess

Let us compare the results with random draw of 256 integer
numbers from the range 〈0, 255〉. Let p denote the probability
of success, i.e drawn number is the same as the number in the
byte stream (keystream). Then 1−p denotes the probability of
failure, i.e. drawn number is different than the number in the
byte stream (keystream). Probability of k successes in n tries
can be counted from Bernoulli Scheme:(

n

k

)
pk(1− p)n−k (11)

Probability of single success p in this case is equal to 1
256 .

And number of tries n = 256. Thus the equation will be as
follows: (

256

k

)(
1

256

)k (
255

256

)256−k

(12)

Probabilities of selected amounts of correct numbers are given
in Table I.

Cumulative probability of guessing less than 5 numbers is
0.9964. Cumulative probability of guessing up to 10 num-
bers is 0.999999992. Therefore the probability of guessing
correctly more than 10 numbers is 0.000000008 ≈ 2−27.
The attack with presented in the paper technique was able to
reconstruct 65 numbers for RC4 and 28 numbers for VMPC
in 512 iterations. As it can be seen from Bernoulli Scheme
guessing so many numbers by chance is very improbable.

TABLE I
PROBABILITY OF GUESSING NUMBERS CORRECTLY IN 256 NUMBERS

STREAM

numbers correct probability
k

0 0.3672 ≈ 2−1.4

1 0.3686 ≈ 2−1.4

2 0.1843 ≈ 2−2.4

3 0.0612 ≈ 2−4

4 0.0152 ≈ 2−6

5 0.0030 ≈ 2−8

6 0.0005 ≈ 2−11

7 6.89 · 10−5 ≈ 2−14

8 8.41 · 10−6 ≈ 2−17

9 9.09 · 10−7 ≈ 2−20

10 8.81 · 10−8 ≈ 2−23

...
26 2.71 · 10−28 ≈ 2−92

...
65 7.76 · 10−96 ≈ 2−316

...
256 3.09 · 10−617 ≈ 2−2048

Moreover probability of guessing a series of 256 numbers
equals 3.09 · 10−617 = 2−2048. It confirms that internal state,
which generates attacked byte keystream, is almost for sure
the right one.

V. CONCLUSION

In this paper a new state recovery attack was presented. It
was based on tabu search. It is constructed for permutation-
based stream ciphers.

Based on research and theoretical approximation it was
shown that the internal state can be recovered after checking
252 internal states for RC4 and 2180 for VMPC.

Further work will focus on applying the attack to other
permutation-based ciphers, e.g. RC4+ [14] or Spritz [15].
Interesting question is whether the method will be at least
the same good for a cipher RC4A [16], which consists of two
arrays of permutations.

REFERENCES

[1] C. E. Shannon, “A mathematical theory of communication,” The Bell
System Technical Journal, vol. 27, no. 3, pp. 379–423, July 1948.

[2] C. Shannon, Communication Theory and Secrecy Systems. Bell
Telephone Laboratories, 1949. [Online]. Available: https://books.
google.pl/books?id=8IL3HAAACAAJ

[3] “RC4 Source Code,” Cypherpunks, September 1994,
http://cypherpunks.venona.com/archive/1994/09/msg00304.html.

[4] B. Harris, “Improved Arcfour Modes for the Secure Shell (SSH)
Transport Layer Protocol,” January 2006. [Online]. Available: http:
//tools.ietf.org/html/rfc4345

[5] B. Zoltak, “VMPC One-Way Function and Stream Cipher,” in
Fast Software Encryption, ser. Lecture Notes in Computer Science,
B. Roy and W. Meier, Eds. Springer Berlin Heidelberg, 2004,
vol. 3017, pp. 210–225. [Online]. Available: http://dx.doi.org/10.1007/
978-3-540-25937-4\ 14

[6] B. Ferriman and C. Obimbo, “Solving for the RC4 stream cipher state
register using a genetic algorithm,” International Journal of Advanced
Computer Science and Applications, vol. 5, no. 5, pp. 218–223, May
2014.

144 I. POLAK, M. BORYCZKA

TABLE II
RC4 – KEYS USED FOR EXPERIMENTS (HEXADECIMAL); CHOSEN FROM OFFICIAL TEST VECTORS [17]

ID key
1-0 0x0102030405
1-1 0x01020304050607
1-2 0x0102030405060708090a
1-3 0x0102030405060708090a0b0c0d0e0f10
1-4 0x0102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f20
1-5 0x833222772a
1-6 0x1910833222772a
1-7 0x8b37641910833222772a
1-8 0xebb46227c6cc8b37641910833222772a
1-9 0xc109163908ebe51debb46227c6cc8b37641910833222772a

TABLE III
VMPC – KEYS AND IV VECTORS USED FOR EXPERIMENTS (HEXADECIMAL); THE FIRST PAIR IS THE TEST VECTOR [5]

ID key IV
2-0 0x9661410ab797d8a9eb767c21172df6c7 0x4b5c2f003e67f39557a8d26f3da2b155
2-1 0xaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa 0x4b5c2f003e67f39557a8d26f3da2b155
2-2 0xaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa 0x55555555555555555555555555555555
2-3 0x00000000000000000000000000000000 0x00000000000000000000000000000000
2-4 0x80000000000000000000000000000000 0x00000000000000000000000000000000
2-5 0x09090909090909090909090909090909 0x00000000000000000000000000000000
2-6 0x000102030405060708090a0b0c0d0e0f 0x00000000000000000000000000000000
2-7 0x288ff65dc42b92f960c70f62b5085bae 0x00000000000000000000000000000000
2-8 0x00000000000000000000000000000000 0x00000010000000000000000000000000
2-9 0x00000000000000000000000000000000 0x288ff65dc42b92f960c70f62b5085bae

TABLE IV
RESULTS OBTAINED FOR RC4 (MIN – MINIMUM, AVG – AVERAGE, MAX – MAXIMUM);

IN THE FIRST ROW THERE IS ffit , IN THE SECOND – ITERATION NUMBER

horizon random

(function) 1 log2(|R(r)|)
√
|R(r)| |R(r)|/2

(numerically) 1 15 181 16 320 16 711 680
key ID min avg max min avg max min avg max min avg max min avg max
1-0 15.6% 18.8% 23.0% 18.0% 23.0% 27.3% 22.3% 25.8% 29.3% 22.7% 25.7% 30.5% 0.0% 0.4% 3.5%

33 40 47 39 367 510 186 432 512 307 436 512
1-1 16.4% 20.1% 25.0% 19.1% 23.0% 27.7% 23.0% 25.9% 29.3% 21.1% 26.0% 29.7% 0.0% 0.4% 3.5%

36 44 59 90 350 512 313 421 510 330 444 510
1-2 16.0% 19.5% 23.8% 20.3% 23.2% 27.7% 22.3% 25.2% 30.9% 21.9% 26.2% 31.3% 0.0% 0.4% 3.9%

35 43 55 123 352 509 249 436 506 192 425 507
1-3 15.6% 18.8% 21.5% 18.0% 22.8% 27.3% 22.7% 25.0% 28.5% 21.9% 25.2% 28.1% 0.0% 0.4% 3.9%

33 41 51 53 303 511 305 424 510 275 454 510
1-4 16.8% 19.3% 21.5% 20.3% 23.4% 28.1% 21.9% 25.2% 29.3% 21.9% 25.6% 30.9% 0.0% 0.4% 3.9%

35 42 51 44 333 512 210 430 502 312 435 507
1-5 15.2% 19.2% 23.0% 18.0% 22.7% 26.6% 20.7% 25.6% 28.9% 21.5% 25.6% 29.3% 0.0% 0.4% 4.3%

32 41 50 63 340 509 367 461 508 231 439 511
1-6 15.2% 19.8% 23.4% 20.7% 23.5% 26.6% 22.3% 25.4% 28.1% 22.7% 25.4% 28.1% 0.0% 0.4% 3.9%

31 43 60 93 341 508 245 440 508 263 445 512
1-7 16.0% 19.7% 24.2% 18.8% 22.4% 28.1% 21.9% 25.6% 28.5% 23.0% 25.5% 29.7% 0.0% 0.4% 3.9%

32 43 54 55 332 507 259 411 505 213 409 508
1-8 16.0% 19.1% 23.0% 16.8% 22.4% 26.2% 19.9% 25.4% 30.9% 22.7% 25.3% 29.3% 0.0% 0.4% 3.9%

32 41 53 93 305 497 239 415 510 269 429 510
1-9 16.4% 19.8% 24.2% 18.4% 22.7% 25.4% 21.9% 25.4% 28.1% 21.1% 25.2% 29.3% 0.0% 0.4% 3.5%

31 43 58 92 329 504 247 422 501 289 431 506
altogether 15.2% 19.4% 25.0% 16.8% 22.9% 28.1% 19.9% 25.4% 30.9% 21.1% 25.6% 31.3% 0.0% 0.4% 0.0%

31 42 60 39 335 512 186 429 512 192 435 512
see Fig. 7

TABU SEARCH AGAINST PERMUTATION BASED STREAM CIPHERS 145

TABLE V
COMPARISON OF RC4 CRYPTANALYSIS WITH GA AND TS

technique number of iterations · solutions per iteration = solutions checked ffit bytes correct
GA non-adaptive 1 000 000 · 5 ≈ 222

≈ 107

18.1% 46
GA adaptive 1 000 000 · 5 ≈ 222 20.7% 53
TS log2(|R(r)|) 512 · 32 640 ≈ 224 22.9% 59

TS
√
|R(r)| 512 · 32 640 ≈ 224 25.4% 65

TS |R(r)|/2 512 · 32 640 ≈ 224 25.6% 66
random 16 711 680 ≈ 224 0.4% 1

TABLE VI
RESULTS OBTAINED FOR VMPC (MIN – MINIMUM, AVG – AVERAGE, MAX – MAXIMUM);

IN THE FIRST ROW THERE IS ffit , IN THE SECOND – ITERATION NUMBER

horizon random

(function) log2(|R(r)|)
√
|R(r)| |R(r)|/2

(numerically) 15 181 16 320 16 711 680
key-IV ID min avg max min avg max min avg max min avg max
2-0 6.3% 9.8% 12.5% 8.6% 10.8% 12.9% 8.6% 10.3% 13.3% 0.0% 0.4% 4.7%

26 227 501 34 270 477 63 284 507
2-1 7.4% 10.0% 14.5% 8.6% 10.4% 13.3% 8.2% 10.7% 13.7% 0.0% 0.4% 3.9%

31 216 489 52 255 509 52 240 496
2-2 5.9% 10.1% 12.1% 8.2% 11.0% 14.1% 8.6% 10.5% 12.9% 0.0% 0.4% 4.3%

20 226 510 38 204 494 26 281 505
2-3 6.6% 9.6% 12.9% 8.6% 11.0% 14.5% 8.6% 11.0% 13.3% 0.0% 0.4% 3.9%

11 222 510 48 264 497 65 232 493
2-4 7.8% 10.3% 14.8% 8.2% 11.1% 14.1% 8.2% 11.0% 13.3% 0.0% 0.4% 4.3%

14 222 482 50 272 512 45 217 464
2-5 5.9% 9.9% 12.5% 8.2% 11.0% 14.1% 8.2% 10.8% 12.5% 0.0% 0.4% 3.9%

35 221 480 19 241 490 36 244 506
2-6 7.0% 9.6% 13.7% 9.0% 11.0% 13.3% 7.0% 10.4% 12.9% 0.0% 0.4% 3.5%

25 191 491 25 282 501 29 194 509
2-7 7.0% 10.3% 13.7% 9.4% 11.1% 14.5% 8.6% 10.4% 12.1% 0.0% 0.4% 3.9%

21 184 390 49 266 511 55 236 511
2-8 7.4% 9.8% 13.3% 8.2% 10.6% 14.1% 7.4% 10.2% 13.7% 0.0% 0.4% 3.5%

27 180 434 53 304 512 42 215 439
2-9 7.4% 10.4% 14.8% 7.8% 10.8% 14.1% 8.6% 10.8% 13.7% 0.0% 0.4% 3.5%

40 157 287 15 266 499 49 213 505
altogether 5.9% 10.0% 14.8% 7.8% 10.9% 14.5% 7.0% 10.6% 13.7% 0.0% 0.4% 4.7%

11 204 510 15 262 512 26 236 511
see Fig. 8

[7] M. Vanhoef and F. Piessens, “All Your Biases Belong to Us: Breaking
RC4 in WPA-TKIP and TLS,” in Proceedings of the 24th USENIX
Conference on Security Symposium, ser. SEC’15. Berkeley, CA,
USA: USENIX Association, 2015, pp. 97–112. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2831143.2831150

[8] A. Maximov, Two Linear Distinguishing Attacks on VMPC and RC4A
and Weakness of RC4 Family of Stream Ciphers. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2005, pp. 342–358. [Online]. Available:
https://doi.org/10.1007/11502760\ 23

[9] S. Li, Y. Hu, Y. Zhao, and Y. Wang, “Improved cryptanalysis of the
VMPC stream cipher,” Journal of Computational Information Systems,
vol. 8, no. 2, pp. 831–838, 2012.

[10] S. Sarkar, “Further non-randomness in RC4, RC4A and VMPC,”
Cryptography and Communications, vol. 7, no. 3, pp. 317–330, 2015.
[Online]. Available: https://doi.org/10.1007/s12095-014-0119-0

[11] Y. Tsunoo, T. Saito, H. Kubo, M. Shigeri, T. Suzaki, and T. Kawabata,
“The Most Efficient Distinguishing Attack on VMPC and RC4A.”

[12] F. Glover, “Future Paths for Integer Programming and Links to
Artificial Intelligence,” Comput. Oper. Res., vol. 13, no. 5, pp.

533–549, May 1986. [Online]. Available: http://dx.doi.org/10.1016/
0305-0548(86)90048-1

[13] F. Glover and M. Laguna, Tabu Search. Norwell, MA, USA: Kluwer
Academic Publishers, 1997.

[14] S. Maitra and G. Paul, Analysis of RC4 and Proposal of
Additional Layers for Better Security Margin. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2008, pp. 27–39. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-89754-5\ 3

[15] R. L. Rivest and J. C. N. Schuldt, “Spritz—a spongy RC4-like stream
cipher and hash function,” August 19, 2014, presented at Charles River
Crypto Day (2014-10-24).

[16] S. Paul and B. Preneel, A New Weakness in the RC4 Keystream
Generator and an Approach to Improve the Security of the Cipher.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 245–259.
[Online]. Available: https://doi.org/10.1007/978-3-540-25937-4\ 16

[17] J. Strombergson and S. Josefsson, “Test Vectors for the Stream Cipher
RC4,” May 2011. [Online]. Available: http://tools.ietf.org/html/rfc6229

