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Abstract—In this article we construct a finite-difference scheme 

for the three-dimensional equations of the atmospheric boundary 

layer. The solvability of the mathematical model is proved and 

quality properties of the solutions are studied. A priori estimates 

are derived for the solution of the differential equations. The 

mathematical questions of the difference schemes for the 

equations of the atmospheric boundary layer are studied. 

Nonlinear terms are approximated such that the integral term of 

the identity vanishes when it is scalar multiplied. This property of 

the difference scheme is formulated as a lemma. Main a priori 

estimates for the solution of the difference problem are derived. 

Approximation properties are investigated and the theorem of 

convergence of the difference solution to the solution of the 

differential problem is proved. 

 
Keywords— atmospheric boundary layer equations, difference 

scheme, approximation error, stability, convergence algorithm, 

numerical solution. 

I. INTRODUCTION 

ATHEMATICAL models of computational fluid 

dynamics serves as the basis for the study of various 

natural phenomena, technological processes and 

environmental problems. In this regard, the development and 

study of efficient and stable numerical algorithms for solving 

the system of equations of the atmospheric boundary layer and 

their practical implementation is relevant. There are various 

methods for the numerical solution of differential equations, 

new techniques have been developing, the work on their 

improvement has been continuously performed, and 

reassessing the methods is carried out. Basic methods for 

solving grid equations are systematized and described in detail 

in [1]. When solving the Navier–Stokes equations, explicit 

schemes are inefficient due to hard restrictions on the ratio of 

temporal and spatial steps of the computational grid, especially 

on finding stationary establishing solutions. Therefore, the 

most frequently used implicit difference scheme is 

unconditionally stable or has weaker constraints on the 
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stability. An overview of the most commonly used numerical 

algorithms is presented e.g. in papers [2]-[10]. 

In [11] a new symmetric method of approximation of the 

non-stationary Navier-Stokes equations of the Cauchy-

Kovalevskaya type is proposed. The properties of the modified 

problem are studied. The convergence of the solution of 

modified problem to the solution of the original problem is 

proved on an infinite time interval when 0→ε . In [12] the 

convergence of a finite-difference scheme, approximating the 

primitive equations with the second order in the spatial 

variables, to the solution of the differential problem is proved 

under the natural assumption of smoothness of the solution of 

the original problem. Paper [13] studies difference schemes by 

time which accuracy order can be arbitrarily high. Difference 

schemes by time for solving the Navier-Stokes equations are 

presented. The impact of the scheme order on the calculations 

accuracy is examined. In [14]-[16] numerical algorithms for 

solving the Navier-Stokes equations using the finite element 

method are proposed. The analysis of stability and 

convergence of the proposed methods is conducted. 

In [17], stable and convergent difference schemes for the 

boundary layer equations of the atmosphere, transport and 

transformation of impurities of harmful substances were 

constructed. A package of applied programs for the numerical 

simulation of atmospheric air pollution taking into account 

photochemical transformations and visualizations of the 

corresponding scenarios was developed. The problem of 

impurities’ distribution from point sources was considered. 

The results of numerical modeling of the harmful impurities’ 

propagation and transformation on the mesometeorological 

processes were presented on the example of Ust-

Kamenogorsk.  

II. STATEMENT OF THE PROBLEM 

Consider the three-dimensional equations of the 

atmospheric boundary layer in a domain  

 32,1,0 =i,l<x<=Ω ii
 with a border S : 
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where t  is time, 32 x,x,x1  are Cartesian coordinates, V


 is 

the wind velocity vector with components  ωυ,u, , p  is 

pressure, De  is a dimensionless characteristic describing 

deviation of the wind from the geostrophic value, TRe  is a 

dimensionless number of turbulent exchange, λ  is a 

dimensionless parameter of convection, 
2

xx a,a
1

are 

horizontal coefficients of atmospheric turbulence for the 

amount of movement, 
3

xa  is a vertical coefficient of 

atmospheric turbulent exchange for the amount of movement. 

 The system of equations (1)-(4) is complemented by the 

following initial and boundary conditions: 

 Sx=t)(x,VΩ;x(x),V=)(x,V  0,0 0


.                     (5)  

In Ω  the function (x)V 0


 is set as follows: 

0)(0 =xVdiv


. 

For the numerical solution of the equations of the 

atmospheric boundary layer (1)-(4), a mesh with distributed 

velocities is used. In Ω , we introduce the meshes 

,ΩΩΩΩ=Ω,Ω zyxhHH   where 

( ) ,kh=x,jh=x,ih=x,x,x,x=Ω 3k2j1i3k2jih 3211
 

( )321 ///0,1,...0,1,...1,...0, Nl=h,Nl=h,Nl=h,N,=k;N,=j;N,=i 332211321
 

( ) ( ) ,kh=x,jh=x,h+i=x,x,x,x=Ω 33k2j+i3k2j+ix 212/112/11 2/1     (6)                  

( )321 ///0,1,...0,1,...10,1,... Nl=h,Nl=h,Nl=h,N,=k;N,=j;N,=i 332211321 −  

( ) ( ) ,kh=x,h+j=x,ih=x,x,x,x=Ω 33kj+1i3k212j+iy 22/121/1 2/1  

( )321 ///0,1,...10,1,...0,1,... Nl=h,Nl=h,Nl=h,N,=k;N,=j;N,=i 332211321 −  

( ) ( ) ,h+k=x,jh=x,ih=x,x,x,x=Ω 21+3k2j1i21+3k2jiz 3/21/1 2/1  

( )3211 ///1,0,1,...0,1,...0,1,... Nl=h,Nl=h,Nl=hN,=k;N,=j;N,=i 33221321 − .                                    

Thus, the following difference scheme is constructed:  
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The continuity equation in a difference form is written as 

follows: 
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.                  (10) 

The following initial and boundary conditions are 

satisfied: 
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III. STUDY OF THE STABILITY AND CONVERGENCE OF THE 

DIFFERENCE SCHEME 

 

Lemma. For any grid functions 
xkj,+i Ωu 2,/1

, 

yk,+ji, Ωυ 2/1
, 

z+kj,i, Ωω 2/1
 satisfying conditions (10), (11), 

the following identities hold:  

( ) ( ) ( ) 0/2/1

3

1/2,/1

2

1/2,/1

1

1 =ω,ωL=υ,υL=u,uL 21+kj,i,+kj,i,

)(

hk2,1+ji,k+ji,

)(

hkj,2,1+ikj,+i

)(

h
  (12)                         (12) 

where the summation is performed by internal nodes of the 

mesh .zyx ΩΩΩ    

We define the norm of the velocity vector as follows: 

    
.)()()( 321

2

21,,321

2

,21,321

2

,,21

2




+



+



+ ++=
zyx

hhhhhhhhhuV n

kji

n

kji

n

kji

n 
      (13) 

Multiplying the differential equations (1)-(3) by  

321/2 hhhτu 1+n

kj,2,1+i
, 

321/2 hhhτυ 1+n

k2,1+ji,
 and 

321/2 hhhτω 1+n

21+kj,i,
 

respectively, then summing them over points of 
zyx Ω,Ω,Ω , 

we obtain the following basic energy inequality: 
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       14) 

Let us evaluate the term in equation (14). Considering the 

conditions (11), it can be seen that 
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Using Young's inequality and the boundedness of the 

coefficient )x,x,a(x 3k2ji1  from below, we have 
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where  
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Taτ=C Re/0,51
. 

The term hS  can be written as follows: 
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Further, using Young's inequality, we have 
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Adding non-negative summands 
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to the right-hand side of the inequality, we obtain 
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 Using the Cauchy-Schwarz inequality we obtain: 
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The term 
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nV


 is evaluated as follows [18]:  
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Hence we have 
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                   (27) 

In order to study the convergence of the solution of finite 

difference problem to the solution of the differential problem, 

we consider the finite difference equations for the equations of 

the atmospheric boundary layer: 
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with following initial and boundary conditions: 
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Let us define the error of solutions of the differential problem 

(1)-(5) and the difference problem (28)-(32) as follows: 
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where error of approximation of the difference scheme (28)-

(32) on the exact solution of the differential problem (1)-(5) is 

defined as 
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and it has the second order of approximation by h  and the 

first order by τ [19]. 

The initial and boundary conditions of the problem for 

errors (34)-(37) are defined as follows: 
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Multiplying the differential equation (34)-(37) by  
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respectively, then summing by grid domains zyx Ω,Ω,Ω , 

we obtain 
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Let us denote  
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Then considering that the third and fifth terms in the left-hand 

side of (41) are nonnegative, we obtain 
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Considering similarly as for problem (1)-(5), we obtain the 

following estimate for the problem (34)-(37), (39): 

,5

2

0

2

2

0

1

5

2
1









+ 

==

++
n

k

k
n

k

n

h

n C 
                                 (45) 

Further, considering that    )O(h=ψ n 2
 according to (38), we 

finally have  
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which proves the convergence of the solution of the difference 

problem (28)-(32) to the solution of the differential problem 

(1)-(5). 

Theorem. Let the conditions (43) hold. Then the difference 

scheme (28)-(32) is stable and its solution converges to the 

solution of the differential problem (1)-(5) with the speed 

determined by the inequality (46). 

IV. NUMERICAL CALCULATIONS 

The numerical calculations with different values of the 

input parameters were performed based on the model and 

proposed algorithm described above. The considering area is 

35х35 km2, and the height of the surface layer is 3500 m. The 

convection parameter )/(16,0 Csm = . The stratification 

parameter S  in terms of physical meaning  determine the 

temperature variations with altitude; therefore the calculations 

were performed based on the vertical temperature gradient. 

Carioles force is equal to 1410 −−= sl . 

The values of the horizontal and vertical turbulent 

exchange coefficients were taken as follows: 

smух /106 23==  , sm /30 2= . 

The characteristic scale of length, the wind speed and 

temperature are set as follows: 35000=L  m, 10=U  m/s, 

С= 20 . 

The following formulas were used for determination of 

dimensionless values of the input parameters  , l , S , x , 

y , HYX ,, : 
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L

X
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Y
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L

H
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where *U  is characteristic velocity,   is characteristic 

temperature, L  is the length scale. 

 

 
Fig. 1. The deviation of wind direction above the water surfaces at a wind 

speed equal to 1 m/s 
 

Figures 1 and 2 show the wind deflection over the water 

surfaces. This process is observed at moderate wind speeds 

and it is difficult to see it at high speeds of the fluctuations 

wind over water surfaces. 
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Fig. 2. The deviation of wind direction above the water surfaces at a wind 

speed equal to 2 m/s 

 

 

 
Fig. 3. Isolines of CO (carbon monoxide) distribution under the unstable 

weather conditions (in the absence of wind) 

 
Fig. 4. Isolines of CO2 (carbon dioxide) distribution under the unstable 

weather conditions (in the absence of wind) 

 
Fig. 5. Isolines of CO (carbon monoxide) distribution at the west wind 

direction at a speed equal to 1 m/s 

 

 
Fig. 6. Isolines of the distribution of CO2 (carbon dioxide) 

in the west wind direction at a speed equal to 2 m/s 
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Fig. 7. The isolines of CO distribution (carbon monoxide) in the north-west 
direction of the wind at a speed equal to 6 m/s 
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The source of carbon monoxide CO is the gas emission of 

cars. It is formed by the combustion of fuel in the internal 

combustion engines at insufficient temperatures [20]-[22]. 

Under the natural conditions, CO carbon monoxide is formed 

on the surface of the earth during the incomplete 

decomposition of organic compounds and the combustion of 

biomass, mainly during the forest fires. Figures 3 and 4 show 

the distribution isolines of this substance over the city of Ust-

Kamenogorsk in the absence of wind. 

Figures 5, 6 and 7 show the isolines of contaminant 

distribution in the west and north-west wind directions.  

As a result of numerical experiments, it was established 

that the anthropogenic impurity produced by industrial 

enterprises and picked up by wind currents at different 

directions, moves to large distances depending on the wind 

speed, which leads to the imposition of pollution fields. At 

unfavorable metaconditions, anthropogenic impurity forms a 

cloud over an industrial city. 
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