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Abstract—The majority of homing guided missiles use gim-
baled seekers. The equations describing seeker gimbal system are
highly nonlinear. Accurate nonlinear control of the motion of the
gimbaled seeker through the attached DC motors is required. In
this paper, an online technique for finite-horizon nonlinear track-
ing problems is presented. The idea of the proposed technique is
the change of variables that converts the nonlinear differential
Riccati equation to a linear Lyapunov differential equation. The
proposed technique is effective for wide range of operating points.
Simulation results for a realistic gimbaled system with different
engagement scenarios are given to illustrate the effectiveness of
the proposed technique.
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I. INTRODUCTION

S
TRATEGIC military dependence on missile technology

has been growing rapidly since its first use at the be-

ginning of the twentieth century. The critical requirement

regarding missile usage is to lead the missile robustly and

accurately from its launch point to its designated end point

or target. The missile target could be a certain point on its

required orbit in space, or a moving hostile object either

flying or rolling on terrain. To achieve this requirement, three

operations have to be completed and they are described in

literature as the Guidance, Navigation and Control (GNC)

process [1].

Guidance systems can be categorized into four main cat-

egories. These categories are command, beam rider, au-

tonomous, and homing guidance [2]. The majority of homing

guided missiles use gimbaled seekers, an example of gimbaled

seekers is shown in Fig.1 [2]. The control technique used

for the gimbal system on a tactical missile must provide

fast and precise tracking of relative error signals created by

the missile’s signal processing unit. Poor performance during

engagement will result in large miss distances which may

leads to low probability of mission success. The equations

describing the gimbal system under consideration are highly

nonlinear. In order to accurately calculate the missile-target

LOS angle and its rate, accurate nonlinear control of the

motion of the gimbaled seeker through the attached DC motors

is required. The linear control techniques become inadequate
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Fig. 1. Active Radar gimbaled Seeker Basic Blocks

and it becomes necessary to use some other nonlinear control

techniques. The competitive era of rapid technological change

has motivated the rapid development of nonlinear control

theory for application to challenging complex dynamical real-

world problems [3]. There exist many nonlinear control design

techniques, each has benefits and weaknesses. Most of them

are limited in their range of applicability, and use of certain

nonlinear control technique for a specific system usually

demands choosing between different factors, e.g. performance,

robustness, optimality, and cost. One of the highly promis-

ing and rapidly emerging techniques for nonlinear optimal

controllers designing is the State Dependent Riccati Equation

(SDRE) technique [4], [5]. Although the SDRE has a great

impact in the missile guidance area [6], [7], [8], but none

of these works have addressed the problem of finite-horizon

optimal control of nonlinear systems.

This paper offers a novel technique for tracking of finite-

horizon nonlinear systems. This is accomplished by using

the change of variable [9], [10] to convert the nonlinear

differential Riccati equation (DRE) to a linear differential

Lyapunov equation [11], which can be solved in real time

at each time step [12].

The reminder of this paper is organized as follows: The

relation between infinite-horizon and finite-horizon SDRE is

discussed in Section II. Section III presents the SDRE in finite

horizon regulator problem. Section IV presents the nonlinear

finite horizon tracking technique via SDRE. Missile system

description is presented in Section V. Simulation results are

given in Section VI. Finally, conclusions of this paper are

given in Section VII.

II. FINITE-HORIZON SDRE

Finite-horizon optimal control of nonlinear systems is a

challenging problem in the control field due to the complexity
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of time-dependency of the Hamilton- Jacobi-Bellman (HJB)

differential equation. In finite-horizon optimal nonlinear con-

trol problem, the DRE can not be solved in real time by

backward integration from t f to t0 because we do not know the

value of the states ahead of present time step. To overcome the

problem, an approximate analytical approach is used to convert

the original nonlinear Ricatti equation to a linear differential

Lyapunov equation that can be solved in closed format each

time step.

In this section, the relation between the proposed method

and the exact optimal solution to the problem will be dis-

cussed.

Given the nonlinear system in the form:

ẋ(t) = f(x)+ g(x)u(t). (1)

The nonlinear system can be expressed in a state-dependent

like linear form, as:

ẋ(t) = A(x)x(t)+B(x)u(t), (2)

where f(x) = A(x)x(t), B(x) = g(x).
The exact solution to the optimal control of nonlinear system

(2) subject to the cost function

J(x,u) =
1

2
x′(t f )Fx(t f )+

1

2

∫ t f

t0

[

x′(t)Q(x)x(t)+u′(x)R(x)u(x)
]

dt, (3)

where Q(x) and F is a symmetric positive semi-definite matrix,

and R(x) is a symmetric positive definite matrix, is given by

u(x, t) =−R−1(x)B′(x)[P(x, t)x(t)+Π], (4)

where

Π =
1

2
[x′Px1

x . . . x′Pxn
x]′,Pxi

=
∂P(x, t)

∂xi
. (5)

P(x, t) is a symmetric positive definite solution to the equation

−Ṗ(x, t) = P(x, t)A(x)+A′(x)P(x, t)

−P(x, t)B(x)R−1(x)B′(x)P(x, t)+Q(x)+Ω, (6)

with the final condition P(x, t f ) = F

where

Ω =
1

4

n

∑
i=1

n

∑
j=1

Pxi
x[B(x)R−1(x)B′(x)]i jx

′Px j
, (7)

and [ ]i j is the ith element of the jth row of that matrix.

Performing some approximations by neglecting terms Ω in

(6) and Π in (4), which leads to the optimal control given by

u(x, t) =−R−1(x)B′(x)P(x, t)x(t), (8)

resulted from solving DRE

−Ṗ(x) = P(x)A(x)+A′(x)P(x)

−P(x)B(x)R−1(x)B′(x)P(x)+Q(x). (9)

Using these approximations, the control can be approximated

to optimal control. The proof is given in [9].

III. NONLINEAR FINITE-HORIZON REGULATOR VIA

SDRE

Finite-horizon optimal control of nonlinear systems is a

challenging problem in the control field due to the complexity

of time-dependency of the Hamilton- Jacobi-Bellman (HJB)

differential equation. In finite-horizon optimal nonlinear con-

trol problem, the DRE can not be solved in real time by

backward integration from t f to t0 because we do not know the

value of the states ahead of present time step. To overcome the

problem, an approximate analytical approach is used [9], [10],

[11], [12] to convert the original nonlinear Ricatti equation to

a linear differential Lyapunov equation that can be solved in

closed format each time step.

A. Problem Formulation

The nonlinear system considered in this paper is assumed

to be in the form:

ẋ(t) = f(x)+ g(x)u(t), (10)

y(t) = h(x). (11)

That nonlinear system can be expressed in a state-dependent

like linear form, as:

ẋ(t) = A(x)x(t)+B(x)u(t), (12)

y(t) = C(x)x(t), (13)

where f(x) = A(x)x(t), B(x) = g(x), h(x) = C(x)x(t).
The goal is to find a state feedback control law of the form

u(x) =−kx(t), that minimizes a cost function given by [13]:

J(x,u) =
1

2
x′(t f )Fx(t f )

+
1

2

∫ t f

t0

[

x′(t)Q(x)x(t)+u′(x)R(x)u(x)
]

dt, (14)

where Q(x) and F is a symmetric positive semi-definite matrix,

and R(x) is a symmetric positive definite matrix. Moreover,

x′Q(x)x is a measure of control accuracy and u′(x)R(x)u(x)
is a measure of control effort.

B. Solution for Finite-Horizon SDRE Regulator

To minimize the above cost function (14), a state feedback

control law can be given as

u(x) =−kx(t) =−R−1(x)B′(x)P(x)x(t), (15)

where P(x, t) is a symmetric, positive-definite solution of the

State-Dependent Differential Riccati Equation (SDDRE) of the

form

−Ṗ(x) = P(x)A(x)+A′(x)P(x)

−P(x)B(x)R−1(x)B′(x)P(x)+Q(x), (16)

with the final condition

F = P(x, t f ). (17)

The resulting SDRE-controlled trajectory becomes the solution

of the state-dependent closed-loop dynamics

ẋ(t) = [A(x)−B(x)R−1(x)B′(x)P(x)]x(t) (18)
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As the SDRE is a function of (x, t), we do not know the value

of the states ahead of present time step. Consequently, the

state dependent coefficients cannot be calculated to solve (16)

with the final condition (17) by backward integration from

t f to t0. To overcome the problem, an approximate analytical

approach is used [9]. Which converts the original nonlinear

Ricatti equation to a differential Lyapunov equation. At each

time step, the Lyapunov equation can be solved in closed form.

In order to solve the DRE (16), one can follow the following

steps at each time step:

1) Solve Algebraic Riccati Equation to calculate the steady

state value Pss(x)

Pss(x)A(x)+A′(x)Pss(x)

−Pss(x)B(x)R
−1(x)B′(x)Pss(x)+Q(x) = 0. (19)

2) Use changing of variables technique and assume that

K(x, t) = [P(x, t)−Pss(x)]
−1.

3) Calculate the value of Acl(x) as

Acl(x) = A(x)−B(x)R−1B′(x)Pss(x).
4) Solve the algebraic Lyapunov equation [14]

AclD+DA′

cl −BR−1B′ = 0. (20)

5) Solve the differential Lyapunov equation

K̇(x, t) = K(x, t)A′

cl(x)+Acl(x)K(x, t)

−B(x)R−1B′(x). (21)

The solution of (21), as shown by [15], is given by

K(t) = eAcl(t−tf)(K(x, tf)−D)eAcl
′(t−tf)+D. (22)

6) Calculate the value of P(x, t) from the equation

P(x, t) = K−1(x, t)+Pss(t). (23)

7) Finally, calculating the value of the optimal control

u(x, t) as

u(x, t) =−R−1B′(x)P(x, t)x. (24)

IV. NONLINEAR FINITE-HORIZON TRACKING USING

SDRE

A. Problem Formulation

Consider nonlinear system given in (10) and (11),which can

be redescibed in the form (12) and (13), Let z(t) be the desired

output.

The goal is to find a state feedback control law that

minimizes a cost function given by :

J(x,u) =
1

2
e′(t f )Fe(t f )

+
1

2

∫ t f

t0

[

e′(t)Q(x)e(t)+u′(x)R(x)u(x)
]

dt, (25)

where e(t) = z(t)− y(t).

B. Solution for Finite-Horizon SDDRE Tracking

To minimize the above cost function (25), a feedback

control law can be given as

u(x) =−R−1B′(x)[P(x)x− g(x)], (26)

where P(x) is a symmetric, positive-definite solution of the

SDDRE of the form

−Ṗ(x) = P(x)A(x)+A′(x)P(x)

−P(x)B(x)R−1B′(x)P(x)+C′(x)Q(x)C(x), (27)

with the final condition

P(x, t f ) = C′(t f )FC(t f ). (28)

The resulting SDRE-controlled trajectory becomes the solution

of the state-dependent closed-loop dynamics

ẋ(t) = [A(x)−B(x)R−1(x)B′(x)P(x)]x(t)

+B(x)R−1(x)B′(x)g(x), (29)

where g(x) is a solution of the state-dependent non-

homogeneous vector differential equation

ġ(x) =−[A(x)−B(x)R−1(x)B′(x)P(x)]′g(x)

−C′(x)Q(x)z(x), (30)

with the final condition

g(x, t f ) = C′(t f )Fz(t f ). (31)

Similar to Section III, an approximate analytical approach is

used and the DRE can be solved in the following steps at each

time step:

1) Solve for P(x, t) similar to the SDDRE regulator prob-

lem in Section III
2) Calculate the steady state value gss(x) from the equation

gss(x) = [A(x)−B(x)R−1(x)B′(x)Pss(x)]
′−1

C′(x)Q(x)z(x). (32)

3) Use changing of variables technique and assume that

Kg(x, t) = [g(x, t)− gss(x)].
4) Solve the differential equation

Kg(x, t) = e−(A−BR−1B′P)′(t−tf)[g(x, t f )−gss(x)]. (33)

5) Calculate the value of g(x, t) from the equation

g(x, t) = Kg(x, t)+ gss(x). (34)

6) Calculate the value of the optimal control u(x, t) as

u(x, t) =−R−1(x)B′(x)[P(x, t)x− g(x, t)]. (35)

Fig.2 summarized the overview of the process of finite-

horizon SDDRE tracking technique
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Fig. 2. Overview of The Process of Finite-Horizon SDDER Tracking

V. MISSILE SYSTEM DESCRIPTION

The missile examined in this paper is a semi active homing

guided missile shown in Fig. 3 [16]. The semi-active homing

guidance system is based on the principle of utilizing the

electromagnetic wave reflection. A ground radar illuminates

the target, the missile seeker is designed to home on the

reflected energy from the target during its flight. Using this

reflected system energy from the target the missile formulates

its own correction signals. The missile is steered in space

following the proportional navigation guidance method. An

on-board guidance kit is utilized to generate the guidance

commands. The missile is aerodynamically controlled with

an acceleration control autopilot to steer the missile while

skid-to-turn (STT) control policy is utilized. The STT steering

policy requires two identical lateral (pitch and yaw) autopilots

to control the missile attitude while a roll autopilot performs

attitude stabilization in the maneuver plane. A roll position

controller is utilized to keep an adequate roll damping [17].

The missile flies in air under the effect of thrust, weight,

and aerodynamic forces. The action of these forces has a

certain effect on the shape of the missile trajectory. The

Aerodynamic force is usually distributed to axes of the velocity

coordinate system, which are related to the direction of the

missile motion. The components of this force are resolved

along the missile body axes as Fxa,Fya,andFza . These forces

create aerodynamic moments owing to the fact that they do

not pass through the missile center of gravity. The aero-

dynamic moment components around the missile body axes

are Mxa,Mya,andMza. The missile seeker is a narrow band,

continuous wave (CW) receiver that operates as a lock on-

before-launch, semi-active homing system. The system has

limited recede capability and cannot lock on targets incoming

at less than certain threshold (minimum incoming speed). The

missile flight and homing head angles are shown in Fig. 4.

Fig. 3. A Semi Active Homing Missile [16]

Fig. 4. Missile flight and homing head angles

VI. SIMULATION RESULTS

For numerical simulation and analysis, the developed op-

timal tracking technique in this paper is implemented for a

DC motor attached to a realistic gimbaled seeker system.

A computer code written under MATLAB environment is

employed to solve a missile simulation model [16]. The

code is devoted to evaluate the structure of the 6-Degree of

Freedom (6 DOF) model in conjunction with the calculation of

the desired seeker angles via numerical implementation [18].

Proportional Navigation is the guidance method used in these

simulations. In this guidance method, the guidance commands

are generated in proportion to the LOS angular rate [19].

Extensive simulation has been carried out. Three engage-

ment scenarios, in pitch plane only for better illustrations, in-

cluding fixed target, non-maneuvering target, and maneuvering

target are considered in the form of case studies.

The dynamic equation for the gimbaled seeker DC motor

are:

V (t) = L
di(t)

dt
+Ri(t)+ kb

dθ (t)

dt
, (36)

ml2 d2θ (t)

dt2
= −mglsin(θ (t))− kmi(t). (37)
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Fig. 5. Missile-Target Engagement Scenario (Case 1)

The system nonlinear state equations can be written in the

form:

ẋ1 = x2, (38)

ẋ2 =
g

l
sin(x1)+

km

ml2
x3, (39)

ẋ3 = −
kb

L
x2 +

R

L
x3 +

u

L
, (40)

y = x1, (41)

where: θ = x1 , θ̇ = x2 ,i = x3, V = u.
Or alternatively in state dependent form:





ẋ1

ẋ2

ẋ3



=





0 1 0
(g/l)sin(x1)

x1
0 km

ml2

0 −
kb

L
R
L









x1

x2

x3



+





0
0
1
L



u (42)

The weight matrices are chosen to be

Q = diag(3000,0,0),R = 30,F = diag(1,1,1). (43)

A. Case 1: Fixed Target

Consider a fixed target, in this case the desired seeker angle

will be z(t) = 0o, i.e the problem is now a regulator problem.

The simulations were performed for final time of 8 seconds,

and the engagement scenario is shown in Fig. 5. The resulting

trajectories for the demanded and achieved seeker angles are

presented in Fig. 6, the optimal control is shown in Fig. 7,

and the optimal error is shown in Fig. 8.

In Fig. 6, the solid line denotes the actual (achieved) angle

trajectory of the finite-horizon tracking controller, the dashed

line denotes the desired seeker angle.

As shown in Fig. 5, a successful hit is observed. Fig.

6 shows that the finite-horizon SDRE nonlinear regulating

algorithm gives excellent results and the developed algorithm

is able to solve the SDRE finite-horizon nonlinear regulator

problem with a zero average optimal error and 0.003o standard

deviation.

B. Case 2: Non-Maneuvering Target

Consider a non-maneuvering target (with constant velocity).

The simulations were performed for final time of 8 seconds,
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Fig. 6. Angle Trajectories for Gimbaled System (Case 1)

0 1 2 3 4 5 6 7 8
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time [sec]

O
p
ti
m

a
l 
C

o
n
tr

o
l 
[V

]

Fig. 7. Optimal Control for Gimbaled System (Case 1)

and the engagement scenario is shown in Fig. 9. The resulting

trajectories for the demanded and achieved seeker angles are

illustrated in Fig. 10, the optimal control is shown in Fig. 11,

and the optimal error is shown in Fig. 12.

In Fig. 10, the solid line denotes the actual (achieved) angle

trajectory of the finite-horizon tracking controller, the dashed

line denotes the desired seeker angle.

Fig. 9 show that a successful hit is observed with accept-

able miss-distance. Comparing these trajectories in Fig. 10,

it’s clear that the developed finite-horizon SDDRE nonlinear
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Fig. 8. Optimal Error for Gimbaled System (Case 1)
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Fig. 9. Missile-Target Engagement Scenario (Case 2)
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Fig. 10. Angle Trajectories for Gimbaled System (Case 2)
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Fig. 11. Optimal Control for Gimbaled System (Case 2)
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Fig. 12. Optimal Error for Gimbaled System (Case 2)
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Fig. 13. Missile-Target Engagement Scenario (Case 3)
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Fig. 14. Angle Trajectories for Gimbaled System (Case 3)

tracking algorithm is able to solve the SDDRE finite-horizon

nonlinear tracking problem with an reasonable standard devi-

ation error of 0.075o.

C. Case 3: Maneuvering Target

Consider a highly maneuvering target. The simulations were

performed for final time of 10 seconds, and the engagement

scenario is shown in Fig. 13. The resulting trajectories for the

demanded and achieved seeker angles are illustrated in Fig.

14, the optimal control is shown in Fig. 15, and the optimal

error is shown in Fig. 16.

In Fig. 14, the solid line denotes the actual (achieved) angle

trajectory of the finite-horizon tracking controller, the dashed

line denotes the desired seeker angle.

Fig. 13 show that a successful hit is observed with accept-

able miss-distance. Comparing these trajectories in Fig. 14,

it’s clear that the gimbaled seeker performing a very good

tracking for the target even when the target tried to make high

maneuver. The gimbaled seeker controlled by the developed

algorithm is able to track maneuvering target with standard

deviation error of 0.026o, which is accepted with this high

maneuver.

VII. CONCLUSIONS

The paper offered a new finite-horizon tracking technique

for nonlinear systems. This technique based on change of
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Fig. 15. Optimal Control for Gimbaled System (Case 3)
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Fig. 16. Optimal Error for Gimbaled System (Case 3)

variables that converts the differential Riccati equation to a

linear Lyapunov equation.The Lyapunov equation is solved

in a closed form at the given time step. Simulation results

for gimbaled system in missile seeker are included. Three

engagement scenarios including fixed target, non-maneuvering

target, and maneuvering target are considered to demonstrate

the effectiveness of the developed technique.
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