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Abstract—The article presents the results of modelling and
simulation of normally-off AlGaN/GaN MOS-HEMT transistors.
The effect of the resistivity of the GaN:C layer, the channel
mobility and the use of high-κ dielectrics on the electrical
characteristics of the transistor has been examined. It has been
shown that a low leakage current of less than 10

−6 A/mm can
be achieved for the acceptor dopant concentration at the level of
5×10

15 cm−3. The limitation of the maximum on-state current
due to the low carrier channel mobility has been shown. It has
also been demonstrated that the use of HfO2, instead of SiO2, as
a gate dielectric increases on-state current above 0.7A/mm and
reduces the negative influence of the charge accumulated in the
dielectric layer.
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I. INTRODUCTION

H IGH ELECTRON MOBILITY TRANSISTORS

(HEMTs) based on the AlGaN/GaN heterostructures

can be used for power electronics owing to the excellent

electro-physical properties of III-N materials, such as

high critical electric field and high carrier concentration

and mobility of two-dimensional electron gas (2DEG) in the

channel [1]. The use of silicon as the substrate material for the

epitaxial growth of AlGaN/GaN HEMT structures, seems to

be particularly attractive which allows to obtain high-quality

epitaxial layers, on large diameter substrates (6 inches). One

of the essential requirements for such applications is an

enhancement mode (normally-off) operation. Conventional

AlGaN/GaN HEMT structures are not suitable for power

devices due to normally-on operation, resulting from the

strong piezoelectric effects in III-N materials. There are

several approaches allowing to realize normally-off mode

operation e.g. etching of AlGaN barrier layer under the gate

electrode [2], surface modification using fluorine plasma[3],

the introduction of p-type GaN or AlGaN layer [4], or the

use of recessed gate MOS-HEMT structure [5]. Among these
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E. Kamińska and A. Piotrowska are with Institute of Electron Technology,
Al. Lotników 32/46, 02-668 Warsaw, Poland (e-mails: eliana@ite.waw.pl,
ania@ite.waw.pl).

solutions only the use of MOS-HEMT structure potentially

resulting in high threshold voltage above 1V and low gate

current value in both “on” and “off” state of the transistor.

This paper presents the results of modelling and simulation

of electrical characteristics of the normally-off AlGaN/GaN

MOS-HEMT. The effect of the key design elements on the

electrical parameters of the device, in particular, threshold

voltage (VTH ), off-state and the maximum drain current in

the on state (Imax
DS ) were shown. Simulations were performed

using the Silvaco ATLAS simulation package [6].

II. SIMULATION DETAILS

Figure 1 shows the structure of the normally-off Al-

GaN/GaN MOS-HEMT used in the simulations.

Fig. 1. Cross section of normally-off AlGaN/GaN MOS-HEMT structure

The transistor structure consists of the buffer layer on a silicon

substrate ( 〈111〉 orientation), a highly resistive carbon doped

GaN layer with a thickness of 2.5µm, undoped GaN layer

with a thickness of 500 nm and Al0.25Ga0.75N barrier layer

having a thickness of 20nm . To ensure high resistivity of

GaN:C layer a deep acceptor trap level located at 0.9eV [7]

above the valence band and traps density 1× 1018 cm−3 was

introduced. A shallow donor traps concentration 1×1015 cm−3

[8] was assumed for all nitrides layers. The recess depth in

Al0.25Ga0.75N barrier layer under gate electrode and thickness

of gate dielectric was 20 and 50nm, respectively. For the initial

simulation the relative permittivity of gate dielectrics was 3.9

(SiO2). The carrier mobility in the channel was set to 200

cm2/Vs, taking into account possible surface roughness. 2DEG

mobility between source and gate or gate and drain electrode

was 1500 cm2/V, which is typical value for AlGaN/GaN

HEMTs. The source-gate LSG and gate-drain LGD distance,

was 1 and 5.5 µm respectively. Gate length LG was set to be 2

µm. The ohmic contacts resistance for source and drain regions
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Fig. 2. Modelled a) electron velocity dependence on electric filed in GaN and Al0.25Ga0.75N, b) polarization dependence on the Al mole fraction in
Al0.25Ga0.75N

(Rc) was 0.6 Ωmm. The self-heating effects were neglected

during simulation.

The most important models included in simulation are

electric filed dependent mobility of 2DEG and composition

dependent physical properties of nitride layers. The band

gap of AlxGa1−xN depending on the aluminium content is

described by following formula [9]:

Eg(AlxGa1−xN) = Eg(AlN)x+Eg(GaN)(1− x)− 1.3x(1− x)
(1)

where band gap of GaN is 3.42eV and band gap of AlN is

6.2eV.

The relation of field dependent mobility of GaN and

Al0.25Ga0.75N has the form [10]:

µn =
µ0 + vsat

EN1−1

EN1
c

1 +A
(

E
Ec

)N2
+
(

E
Ec

)N1
(2)

where model parameters for GaN and Al0.25Ga0.75N are given

in the Table I. Calculated based on this model electron velocity

profiles (v = µ× E) are shown in Fig. 2a.

All nitrides in wurtzite structure, such as AlxGa1−xN, GaN,

AlN, InN, InxGa1−xN or InxAl1−xN are polar materials.

This is associated with the large difference in electronega-

tivity between atoms forming compound. Therefore, nitrides

exhibit spontaneous polarization (nonvanishing polarization

vector parallel to the c-axis of the crystal) and exhibit a

strong piezoelectric effect. Therefore, at the interface of two

nitride semiconductors are nonvanishing polarization vector

and the resulting charge. The net polarization charge at

AlxGa1−xN/GaN interface can be calculated by following

formula [9]:

σ = (P sp
GaN )− (P sp

AlxGa1−xN
+ P

pz
AlxGa1−xN

) (3)

where Psp is spontaneous and Ppz is piezoelectric polarization.

The relationship for spontaneous in AlxGa1−x is [9]:

P
sp
AlxGa1−xN

= −0.09x−0.034(1−x)+0.0191x(1−x) (4)

TABLE I
PARAMETERS OF CARRIER MOBILITY MODELS

Parameter GaN Al0.25Ga0.75N

vsat(cm2/s) 1.91×107 1.126×107

µ0(cm2/Vs) 1500 300

Ec(kV/cm) 220.9 380.5

N1 7.2 5.27

N2 0.78 1.03

A 6.19 3.12

and piezoelectric polarization in AlxGa1−x layer on relaxed

GaN [9]:

P
pz
AlxGa1−xN/GaN = −0.0525x+ 0.0282x(1− x) (5)

The above relations are depicted in Fig. 2b.

III. RESULTS OF SIMULATION

In standard HEMT structure at the gate bias of VGS=0V

there is a high concentration of 2DEG at the region be-

tween source and drain in quantum well at the AlGaN/GaN

interface. In normally-off MOS-HEMT structure, etching of

Al0.25Ga0.75N barrier layer under gate region results in deple-

tion of 2DEG at VGS=0V. A conductive channel in the GaN

layer can be formed by applying a positive bias to the gate

electrode and turns the transistor on. Electron concentration

profiles in “off” (VDS=20V, VGS=0V) and “on” (VDS=20V,

VGS=20V) state are presented in Fig. 3. A set of transfer

characteristics within VDS range from 1 to 20V is presented in

Fig. 43a. The threshold voltage for the simulated MOS-HEMT

structure was 1.39 V. In Fig. 4b a set of output characteristics

within VGS range from 0 to 20V is depicted. Maximum output

current Imax
DS in the on-state (VDS=20V, VGS=20V) was about

300mA/mm.

A. Influence of Acceptor Traps Concentration in GaN:C Layer

In the case of HEMT and MOS-HEMTs AlGaN/GaN

transistors on Si substrates it is important to obtain high
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Fig. 3. The distribution of electron concentration in AlGaN/GaN MOS-HEMT in off- (VDS=20V, VGS=0V) and on-state (VDS=20V, VGS=20V)

Fig. 4. Transfer (a) and output (b) characteristics of AlGaN/GaN MOS-HEMT

resistivity GaN layers between the channel and the substrate

to prevent short channel effects and substrate leakage currents

in the off-state. GaN epilayers often have background n-type

conductivity due to unintentional introduction of oxygen or

silicon atoms during growth, which act as a shallow donors.

The high resistivity GaN buffer layers can be achieved by

deep acceptor doping eg carbon or iron atoms. This creates

deep acceptor traps which can compensate background

shallow donors. In order to investigate the effect of acceptor

traps concentration in GaN:C buffer layer on the leakage

current, the concentration of traps was varied from 1 × 1018

cm−3 to 1 × 1015 cm−3. The transfer characteristics of

the MOS-HEMT for assumed values of acceptor traps

concentration are presented in Fig. 5a.

The off-state current strongly depends on the acceptor traps

concentration. For the highest concentration of 1×1018 cm−3

the leakage current reaches the level of nA/mm. The decrease

of acceptor traps concentration up to the level of 5 × 1015

cm−3 causes an increase in the leakage current to µA/mm.

When analysing the off-state current, a sharp increase is

observed for acceptor traps concentration of about 5 × 1015

cm−3, the value close to the concentration of shallow donor

traps in GaN or AlGaN layers (Fig. 5b). It is not possible to

turn the transistor off for the traps concentration of 1 × 1015

cm−3 cm−3. The current in the off-state is about 50 mA/mm.

The significant current is flowing across interface between

silicon substrate and GaN:C layer for. For NTA=1 × 1018

cm−3 the current is mainly flowing in GaN layer under gate

region as can be seen in Fig. 6.

B. Influence of Channel Mobility on AlGaN/GaN MOS-

HEMTs Parameters

To ensure low on-state resistance, it is necessary to obtain

high carrier mobility in the channel region. Mobility values

reach 250 cm2/Vs [11] for normally-off AlGaN/GaN MOS-

HEMTs. These values are still much lower than the electron

mobility in the two-dimensional electron gas due to the

existence of high density of interface states at the interface

between gate dielectric and GaN. Additionally, the carriers

can be scattered due to interface roughness caused by the dry

etching of AlGaN layer. To gain insight into how a decrease

in channel mobility affects the maximum current in the on-

state values of µch was sequentially reduced from 200 to

20 cm2/Vs. The effect of channel mobility on the output

characteristics is illustrated in Fig. 7a. With the decrease of

mobility from 200 to 20 cm2/Vs, the maximum current in the

on-state is reduced by more than 80% to less than 0.05 A/mm
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Fig. 5. The dependence of a) AlGaN/GaN MOS-HEMT transfer characteristics and b) off-state current (VDS=20V, VGS=0V) on the concentration of carbon
atoms in GaN:C layer

Fig. 6. Total current density in AlGaN/GaN MOS-HEMT in off-state (VDS=20V, VGS=0V) acceptor traps concentration NTA=1× 10
18 cm−3 (left) and

NTA=1× 10
15 cm−3 (right). Note different log scale in both figures

(Fig. 7b). In this case, the on-state resistance is limited by

channel resistance.

C. Influence of Relative Permittivity (ǫr) of Gate Dielectric on

AlGaN/GaN MOS-HEMTs Parameters

One of the mostly used gate dielectrics for fabrication of

AlGaN/GaN MOS-HEMTs and GaN MOSFETs is silicon

dioxide – SiO2[12]. The main advantage of SiO2 is high

barrier value between conduction bands of GaN and dielectric

layer[13]. The research on the use of other dielectric materials

are conducted, particularly on the high dielectric constant

materials (high-κ) such as aluminium oxide (Al2O3 ǫr=8-

9)[14] and hafnium oxide (HfO2 ǫr=15-20)[15]. The use of

dielectric layers with a high dielectric constant results in

better conductivity modulation in the transistor channel and

the increase of maximum current in the on-state. With the

increase of dielectric constant from 3.9 (SiO2) up to 15 (HfO2)

the on-state current (VGS=15V, VDS=20V) increases from 0.2

A/mm to 0.68 A/mm (Fig. 8a).

At the same time the use of high-κ dielectrics reduces the

influence of the charge accumulated in the gate dielectric

layer (Qeff ) on the characteristics and electrical parameters

of the transistor. Figure 6b shows the change in the threshold

voltage and the on-state current due to the sign and value

of the charge accumulated in the dielectric. In the case of

SiO2 layer the changes in those parameters are much larger

than in the case of HfO2 (Fig. 8b). Particularly important

are changes of the threshold voltage. The positive value of

Qeff reduces the threshold voltage and in the worst case it

is switching operating mode of the device from normally-off

to normally-on. With a density of positive charge at the level

of 1 × 1012 cm−2 in case of SiO2 the threshold voltage is

reduced to a negative value of -0.83V. At the same level of

positive charge the threshold voltage is still positive for HfO2

layers (0.78V).

IV. CONCLUSION

The article presents the results of modelling of normally-

off AlGaN/GaN MOS-HEMTs. Maximum positive thresh-

old voltage VTH=1.39V and the maximum on-state current

Imax
DS =0.3A/mm were achieved. The effect of deep acceptor
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Fig. 7. The effect of channel mobility on a) AlGaN/GaN MOS-HEMT output characteristics and b) on-state current (VDS=20V, VGS=20V)

Fig. 8. The effect of effective charge density on a) AlGaN/GaN MOS-HEMT transfer characteristics and b) on-state current (VDS=20V, VGS=15V) and the
threshold voltage for different gate dielectric SiO2 (ǫr=3.9) and HfO2 (ǫr=15)

traps concentration in GaN:C layer on the off-state current

has been shown. To avoid a high leakage current, the acceptor

traps concentration must be at least five times higher than a

background shallow donors concentration. In case of shallow

donors concentration of 5×1015 cm−3 acceptor traps concen-

tration should be above 1× 1016 cm−3. The limitation of the

maximum on-state current by the low carrier channel mobility

was presented as well. To achieve maximum on-state current

above 200 mA/mm µch should be more than 100 cm2/Vs. The

application of high-κ dielectrics in normally-off MOS-HEMTs

results in maximum on-state current increase and reduction of

the negative effect of the effective charge accumulated in the

dielectric layer on the threshold voltage. For ǫr=15, positive

Qeff of the order of 1012 cm−2 reduces Vth and Imax
DS only by

0.6V and 20%, respectively. This values are still better than

in the absence of Qeff in SiO2 gate dielectric. It follows that,

from the device performance point of view, high-κ dielectrics

should be applied in technology of normally-off AlGaN/GaN

MOS-HEMTs.
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