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Abstract 

Electric vehicles and renewable energy sources are collectively being developed as a synergetic 

implementation for smart grids. In this context, smart charging of electric vehicles and vehicle-to-grid 

technologies are seen as a way forward to achieve economic, technical and environmental benefits. The 

implementation of these technologies requires the cooperation of the end-electricity user, the electric 

vehicle owner, the system operator and policy makers. These stakeholders pursue different and 

sometime conflicting objectives. In this paper, the concept of multi-objective-techno-economic-

environmental optimisation is proposed for scheduling electric vehicle charging/discharging. End user 

energy cost, battery degradation, grid interaction and CO2 emissions in the home micro-grid context are 

modelled and concurrently optimised for the first time while providing frequency regulation. The results 

from three case studies show that the proposed method reduces the energy cost, battery degradation, 

CO2 emissions and grid utilisation by 88.2%, 67%, 34% and 90% respectively, when compared to 

uncontrolled electric vehicle charging. Furthermore, with multiple optimal solutions, in order to achieve 

a 41.8% improvement in grid utilisation, the system operator needs to compensate the end electricity 

user and the electric vehicle owner for their incurred benefit loss of 27.34% and 9.7% respectively, to 

stimulate participation in energy services.  

Highlights  

 Optimisation of energy cost, battery degradation, grid utilisation and CO2 emission 

 The conflicts among objectives were addressed with multi-objective optimisation 

 A multi-criteria decision making process was tailored to the stakeholders 
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 Frequency regulation provision was overall profitable for electric vehicle owners 

 The decision makers must cooperate to achieve societal benefits 

 

Nomenclature  

 

Acronyms 

AHP Analytical hierarchy process 

ANEC Augmented non-dominated ε-constraint 

method 

DM Decision maker 

DN Distribution network 

DOD Depth of discharge 

DSO Distribution system operator 

EOL End of life 

EV Electric vehicle 

FFR Firm frequency response 

ICE Internal combustion engine 

LV Low Voltage 

MCDM Multi-criteria-decision-making 

MOO Multi-objective optimisation 

MOTEEO Multi-objective techno-economic-

environmental optimisation 

PV Photovoltaic 

RES Renewable energy source 

SOC State of charge 

TSO Transmission system operator 

V2G Vehicle-to-grid 

V2H Vehicle-to-home 

  

Sets and indices 

 𝑡 Current time step 

 ∆𝑡 Time interval, 15 min. 

 𝑁𝑠 Total number of simulated time steps 

 𝑁𝑎 Total number of steps from arrival to 

departure 

  

Constants 

 𝜂 Efficiency of the EV charger 

 𝐸𝐸𝑉 EV Battery capacity (kWh) 

 𝐸𝐸𝑉 Minimum EV battery capacity limit 

(kWh) 

 𝑓 Upper frequency limit of droop-

controller (Hz) 

 𝑓 Lower frequency limit of the droop-

controller (Hz) 

 𝑃𝐸𝑉 Maximum charging/discharging rate of 

the EV charger (kW) 

  

Parameters 

 𝜋𝑡 Real-time price signal at time t (£/kWh) 

 𝑃𝑡
𝑑 Electricity demand at time t (kW) 

 𝑃𝑡
𝑃𝑉 PV generation at time t (kW) 



 𝑒𝑡
𝑘𝑊ℎ Specific CO2 emission (kgCO2/kWh) 

 𝐶𝐵 Cost of the battery (£/kWh) 

 𝑇𝐵 Temperature of the battery (°) 

 𝛽1→8 Fitting parameters of the battery 

degradation model 

 𝑟𝑒𝑔𝑡  Regulation signal for FFR (kW) 

 𝑓 Electrical frequency (Hz) 

 𝑘𝑑 Droop coefficient (kW/Hz) 

 𝑡𝑎 Arrival time of the EV 

 𝑡𝑑 Departure time of the EV 

 𝐴𝑡
𝐸𝑉 Availability of the EV at time t 

 𝐸𝐸𝑉,𝑎 Energy of the EV upon arrival (kWh) 

 𝐸𝑡𝑟𝑖𝑝 Energy required for the next trip (kWh) 

  

Functions 

 ℂ𝑒 Energy cost of a H-MG (£/kWh) 

 ℂ𝑑 Battery degradation cost (£/kWh) 

 ℙ𝐺  Grid net exchange (kWh) 

 𝔼𝐶𝑂2 CO2 emissions of the H-MG (kgCO2) 

 𝐸𝑡
𝐸𝑉 Energy of the EV at time t (kWh) 

 𝐸𝑡
𝐿 Lifetime energy throughput under a 

certain charging condition (kWh) 

 𝑛𝐸𝑂𝐿 Number of cycles before battery EOL 

 𝛼𝑐 Battery degradation coefficient  

  

Decision variables 

𝑃𝑡
𝐸𝑉+, 𝑃𝑡

𝐸𝑉− Charging/discharging of EV (kW) 

 

1. Introduction 

The uptake of electric vehicles (EVs) is rapidly increasing around the world with the concurrent 

development in available renewable energy sources (RES) [1]. In this context, a number of stakeholders 

can achieve benefits; these are the final electricity consumer, the EV owner, the electricity system 

operators and the policy makers, which collectively will be referred hereby as ‘stakeholders’. Smart 

charging and Vehicle-to-Grid (V2G) are implemented to achieve electricity cost reduction, EV battery 

degradation minimization, CO2 emission reduction and grid impact optimization. Due to the inherent 

conflict of the aforementioned dimensions, in order to achieve benefits along one dimension, others 

must be traded off. In this context, the application of multi-objective optimization (MOO) methods is 

crucial. The different objectives of the optimization should be modelled based on the goals the 

stakeholders, who then take a decision on the most suitable EV utilization. In this paper, the concept of 

multi-objective-techno-economic-environmental optimisation (MOTEEO) is proposed by connecting 

the stakeholders involved in smart grids with optimal control of EVs. With this innovative concept, EV 

charging/discharging is controlled to simultaneously optimize technical, economic and environmental 

benefits. 

Several studies have addressed optimal charging scheduling for single objectives and multiple 

objectives. The grid impact has been widely addressed or identified as a critical objective. In [3], the 



power flow in a distribution network RES was optimally controlled by scheduling EV charging. In [4], 

Voltage deviation caused by excessive PV generation was successfully mitigated by discharging the 

batteries of EV fleets. In [5], the electricity demand of a residential building was satisfied with a 

combination of PV system and EVs. The availability of EVs and their capacity to provide demand peak 

shaving was investigated in [6]. In the framework proposed in [7], by making use of electricity demand 

and PV generations forecasts, an aggregator and several EV agents performed load levelling. A 

decentralised optimisation process for EV charging scheduling was proposed in [8]. Although this work 

did not consider RES, the proposed method effectively performed load-levelling with a fleet of EVs. A 

decentralised approach was also proposed in [9] to optimally charge EVs in order to reduce demand 

peak and variance. Power imbalance reduction was addressed in an optimisation process performed in 

[10]. This proposed method reduced the mismatch between PV generation and electricity demand. A 

number of studies also aimed at minimizing the EV charging cost [2] and energy arbitrage [11]. In [12], 

EV charging/discharging was controlled to implement optimal energy management in a micro-grid with 

availability of wind generation. This method reduced the energy cost of the building. Provision of 

frequency regulation was explored in [3]. However, a major lack of research on battery degradation 

minimization has been identified, as none of the aforementioned studies addressed this issue. Indeed, 

only [2], [3] and [11] included battery degradation in their economic analysis but only as a constant 

parameter, based on estimated cycle life and unaffected by the charging schedule. Moreover, apart from 

[17], the other studies implementing single-objective optimisation did not minimise CO2 emissions.   

Only a number of studies in recent literature have applied MOO in the context of smart grids and EVs. 

In [13] grid load variance was optimised while providing Voltage control by scheduling grid-connected 

EVs with a centralised approach. However, the objective functions were sequentially optimised and, 

since the results of the top layer fed the lower layer, the objectives did not conflict with each other. In 

the approach proposed in the present paper, the critical objective of battery degradation is modelled and 

optimised whilst ensuring that the transportation requirements of the individual EV are satisfied. This 

is possible only with a decentralised approach and a multi-objective optimisation as proposed in this 

paper. Optimal deployment of charging infrastructure to minimise annual investment cost and maximise 

annual captured traffic flow was proposed in [14]. However, the proposed approach performed a 

centralised decision plan and did not provide optimal charging scheduling, which would affect the 

individual EV owner. In [15], EV battery swapping stations were simulated in a distribution network in 

order to minimize battery charging cost, power loss cost, to flatten the network Voltage profile and 

release network capacity. Although this study consider the important aspect related to grid constraints, 

they do not take into account the interests of the EV owner as done in this paper by minimising battery 

degradation, and do not address environmental objectives as we do with CO2 emission reduction. In 

[16], optimal scheduling of energy storage systems by minimising both battery calendar degradation 

and energy costs was implemented. However, in their proposed methodology, the two objectives were 



linearly combined. Such a method is not feasible for other objectives such as load levelling because 

appropriate, and often unknown, weights must be assigned. Furthermore, this approach does not present 

a Pareto analysis, as we do in our proposed framework, which is essential for multi-criteria-decision 

making where several objectives are involved. In [17], a notable approach of scheduling EV charging 

to minimize cost and emission was proposed, which accounted for two out of the four objectives 

considered in our work. However, their proposed method did not consider battery degradation nor the 

impact of EV charging on the grid. In [18] an improved optimal power flow in a distribution network 

with EVs, wind energy and PV was implemented to address CO2 emission and operational cost. The 

uncertainty regarding RES generation and EV availability considered with a Monte Carlo simulation 

and multi-objective genetic algorithm was implemented to address the two objectives. This study was 

able to highlight the trade-off between the two objectives, however, as the authors themselves point out, 

their centralised approach suffers from high computational expense, at the point that parallel 

computation was proposed as a solution to reduce this burden. Furthermore, battery degradation was 

not addressed in their work. Fuel consumption and battery degradation and were linearly combined for 

optimal drive-train energy management strategy in [19]. Although the approach proposed in the paper 

is effective in optimising the two objectives, the interaction with the grid was not investigated since no 

charging scheduling was implemented. Load variance and charging cost were minimised with a 

weighted sum method in [20] with a decentralised approach. Although some measures to reduce battery 

degradation were mentioned, i.e. reduce the maximum SOC level, it was not optimised as a separate 

objective. Similarly no mention was made on the environmental footprint of the charging process, and 

the weighted sum method may not find Pareto solutions if the final objective function is not convex; in 

general ε-constraint is superior as it overcomes such problem 

Game theory based approaches have also been implemented to energy management (see [21]). 

However, under MOTEEO every charging schedule leads to different outcomes (modelled by different 

objective functions), and we propose a framework for decision making that agrees on a single schedule 

in a set of equally efficient schedules, which constitute a Pareto frontier. This is different from game 

theory, where different players with different strategies seek a Nash equilibrium. 

As evidenced by the literature review, the main research gaps can be summarised as: 

 Lack of a holistic solution to simultaneously optimize the critical objectives of energy cost, battery 

degradation, grid net exchange and CO2 emissions. None of the studies have addressed the trade-

off between these objectives. Indeed, only a subset of the aforementioned objectives has been 

optimised. 

 There is an evident lack of studies addressing battery degradation minimisation as an optimisation 

process applied to EV charging.  



 CO2 emission has been seldom addressed as an objective, and its conflict with other objectives has 

not been satisfactorily highlighted. 

 The trade-off between ancillary service provision and other energy services has not been explicated 

in the literature. 

 A decision making process tailored to key smart grid stakeholders, namely end electricity user, EV 

owner and electricity system operator has not been proposed in previous works. 

Therefore, the purpose of the present work is to address this research gap and the key contributions may 

be summarised as follows: 

 Simultaneous optimisation of electricity cost, battery degradation, grid net exchange and CO2 

emissions has been performed.  

 A dynamic battery model (using empirical data), depicting the impact of three key stress-factors, 

has been implemented in order to minimize cycle degradation as a key objective. 

 The use of EV batteries to provide ancillary services to the grid has been considered as an 

additional objective and its implications on other objectives has been investigated. 

 The conflict of interest among the end electricity user, the EV owner and the system operator has 

been highlighted and addressed using analytical hierarchy process (AHP) and utility function. 

The remainder of the paper is organised as follows: in Section 2, the MOTEEO problem is formulated 

in accordance with the priorities of five stakeholders. Section 3 details the analytical formulation of the 

four objectives of the involved stakeholders and ancillary services along with the constraints of the EV 

model, the MOO and multi-criteria decision-making (MCDM) approach.  Section 4 elaborates on the 

case studies, presenting and discussing the achieved results whilst providing advice to decision makers. 

In Section 5 the conclusions on the implementation of MOTEEO and its advantages are drawn. 

2. Problem statement 

The implementation of smart grids brings together several stakeholders at different scales. From the 

consumer-facing level to higher ones the relevant stakeholders are the EV owner, the end electricity 

user (also owning the PV system and the household electricity appliances), aggregators, distribution 

system operator (DSO), transmission system operator (TSO) and regulatory bodies – with the latter 

enforcing environmental targets. Consequently, a variety of stakeholders, which would not necessarily 

collaborate, are brought together and each of them have their own aims/objectives. Some of these are 

aligned, whereas in some cases the objectives from the different stakeholders may be in conflict. 

In this paper we propose a decentralised optimisation framework for day-ahead EV 

charging/discharging scheduling, where the information is gathered locally and processed by the 

individual agents that are in charge of the single home-micro-grids (H-MG). This choice is motivated 

by the onerous communication network, data privacy and safety issues entailed by a centralised 

approach [22] (also see [18]). Furthermore, the proposed approach facilitates the scalability of the 



optimisation algorithm with high EV penetration, where the computational burden is shared and not 

concentrated as in centralised management frameworks. The approach proposed in this paper is 

particularly suitable for peer-to-peer energy trading [23], as each agent maximises the benefit of the 

respective user and with a local energy market in place, the users could trade energy under regulated 

price signals. 

We define EV charging/discharging strategies and services, to benefit a variety of stakeholders 

including smart charging, V2X (vehicle to archetype), smart grid services, such as energy arbitrage and 

ancillary services (e.g. frequency response). The services that we consider ranging from the 

transmission level, to services behind the meter are: ancillary services (involving the TSO), peak 

shaving, (involving the DSO), energy bill reduction and energy-autonomy maximisation, both 

involving the end-electricity user and the policy-maker (since increased energy autonomy achieves 

emission reduction). 

As EV batteries are costly, utilizing them for the aforementioned services may cause additional battery 

wear. We safeguard the EV owner by minimizing battery degradation with an empirical dynamic model. 

The aforementioned services are provided by considering transportation as the main purpose for EVs, 

therefore this is taken as a constraint in the EV model. The proposed framework prioritises the inviolable 

EV travelling requirements, hence the charging scheduling are always compatible with the EV owner’s 

need. From the end user to the DSO, the objectives modelled in this work are: 

 𝑂𝑏𝑗1is the energy cost of the dwelling, which is modelled based on a real-time price and taking into 

account the local PV generation. 

 𝑂𝑏𝑗2 is the battery degradation incurred for EV charging/discharging both for transportation 

requirement and energy services. 

 𝑂𝑏𝑗3 is the grid net exchange, which account for the interaction of the power absorbed/injected by 

the dwelling from/to the grid. 

 𝑂𝑏𝑗4 is the CO2 emission caused by absorbing energy from the grid. 

It should be pointed out that although the present work models four objectives, as will be explained in 

Section 4.1, under suitable assumptions, 𝑂𝑏𝑗3 and 𝑂𝑏𝑗4 are comparable. Hence, in the proposed 

methodology, 𝑂𝑏𝑗1, 𝑂𝑏𝑗2 and 𝑂𝑏𝑗3 will be optimised.  

Another critical stakeholder is the TSO, who procures ancillary services to ensure stable operation of 

the transmission network. As transmission and distribution networks are connected, the TSO is also 

considered here as a stakeholder. Therefore, ancillary service provision is modelled in the current work 

as an additional scenario; more details are provided in section 3.5. 

We then propose a multi-objective techno-economic-environmental optimisation (MOTEEO) 

framework and apply it to three case studies with two scenarios to provide the stakeholders with a 



comprehensive assessment of the prospective benefits. Table 1 outlines the case studies and the 

scenarios simulated in the current work. 

Table 1 Case study and scenarios for MOTEEO 

 Scenario i) without ancillary 

service 

Scenario ii) with ancillary 

service 

Case study 1: home-micro-grid 

(H-MG) 

Bidirectional home charging Bidirectional home charging 

Case study 2: distribution grid a) Uncontrolled charging e) Bidirectional home charging 

b) Smart charging 

c) Bidirectional home charging 

d) Bidirectional home and 

work charging 

Case 3: utility function in 

home-micro-grid 

Bidirectional home charging 

 

In the first case study, we highlight the conflicts among the objectives of the stakeholders (and ancillary 

service), and implement MOTEEO to a single dwelling with one EV. We evaluate two scenarios, aiming 

to show the additional benefits of ancillary service provision. To quantify the benefits on a higher level, 

i.e. for the DSO, we then apply MOTEEO to an electricity distribution system with multiple dwellings 

and EVs. Smart charging and bidirectional charging strategies are applied in home and workplaces. In 

the case 2d, the EV can be charged at the workplace where we assume a PV system is present. Finally, 

we consider case study 3, where the utility function can be applied to combine the energy cost, battery 

degradation and peak demand in one objective to show the trade-off between these three objectives. We 

do this to highlight the importance of a joint-decision making process where benefits must be shared to 

satisfy all involved stakeholders.  

The framework of MOTEEO for case study 1, a H-MG is presented in Figure 1. Different stakeholders 

have business relationships (dashed link) with various participants of a smart grid (i.e. the EV owner, 

EV-O, owns the EVs and pays the DSO, who is in charge of the distribution system for the use of the 

grid, the policy maker P-M enforces environmental targets etc.). The components of the smart grid are 

modelled and these models are integrated within MOTEEO. In particular, EVs communicate their 

charging requirements, arrival and next departure times; these set the constraint of the optimisation. 

Within MOTEEO, a range of services/objectives are modelled according the necessities of the involved 

stakeholders. The decision variables that optimize the objectives are the EV charging scheduling. MOO 

is applied to provide the full range of available solutions. The stakeholders then participate in MCDM 

and the EV charging/discharging scheduling are decided. 
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Figure 1 MOTEEO framework for single H-MG 

The decentralised MOTEEO proposed in this paper is then applied to multiple EVs and dwellings in a 

real-distribution network as depicted in Figure 2. The business relationship links have not been depicted 

to simplify the image. Each EV applies MOTEEO, considering the objectives of the aforementioned 

stakeholders and the overall benefits are quantified. This case study is useful for the stakeholders at a 

higher level, i.e. DSO and policy maker, who can then quantify the prospective benefits at a higher scale 

than the single H-MG. These benefits are the reduction in the overall grid-peak demand and total CO2 

emissions. Finally, in case study 3, a utility function combining energy cost, battery degradation and 

grid net exchange is defined and optimised. This approach highlights the trade-off between the 

objectives and establishes the necessity of collaborative decision making. Stationary storage is also a 

promising technology which is extensively exploited in smart grids (see [16]). However, the aim of the 

current work is to highlight the opportunities brought by EVs. It is worth pointing out that the proposed 

MOTEEO framework is a consensus-based approach where EV users authorise the use of their EV 

batteries for energy services for a specific period and within certain energy levels; the algorithm ensures 

that the energy required by the EV user for the next trip is made available at the next departure. 
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Figure 2 MOTEEO framework for a distribution network 

Assumptions for the mathematical model  

For the purpose of this research, a number of assumptions have been made while defining the 

mathematical mode. These apply to all the cases and scenarios. 

 EVs have the same driving patterns as conventional internal combustion engine (ICE) vehicles. 

 EV driving requirements are taken as constraints, and plug-in and plug-off times are approximated 

to the nearest quarter of an hour. 

 The real-time electricity price provided to the consumer follows the same behaviour of the 

wholesale market price with distribution and transmission charges. This is not altered during EV 

charging. 

 EV batteries reach end of EV life when their state of health drops to 80%. 

 Upon arrival at home, the SOC of the EV battery, departure time for the next trip and the required 

energy (distance to drive) are known. 

 The daily dwelling electricity demand and PV generation profiles are known. It is assumed that 

prediction techniques can provide such information to the deterministic optimisation performed in 

this study. 

 The utility company or an aggregator is responsible for providing electricity supply to the final 

customers, and also provides real-time pricing. 

 An aggregator is responsible for the procurement of sufficient assets to meet the minimum 

requirement of EVs for frequency regulation. It is assumed that the aggregator is the DSO, so the 

revenue stream is directly passed from the DSO to the frequency regulation service providers. 



 Under smart charging and bidirectional charging, EV chargers can regulate the output power 

continuously. 

 Houses are symmetrically distributed across the three phases of a 400 V feeder, therefore we 

analyse one phase.  

 All charging events follow a constant current profile. Although real-life charging profiles also 

include constant-Voltage charging, this simplification does not diminish the quality of the 

modelled results as during constant-Voltage charging less energy is exchanged compared to 

constant-current charging. 

 The impact of charging on battery degradation is equal to that of discharging.  

 Calendar degradation does not influence the optimisation process and therefore is not quantified 

as a direct impact of the charging/discharging scheduling. 

 

The above assumptions are aligned with the current market structures and state of the art; in fact, short-

term forecasting techniques achieve reasonable accuracy [24], hence demand and local generation 

profiles can be known day-ahead. There are examples of utility companies providing V2G services, 

where the EV user specifies the departure time and the required level of charge [25]. Companies with a 

portfolio of distributed energy providers are being developed with Nuvve being one of the major players 

[26]; they aggregate EV fleets to provide energy services and remunerate the EV owners. A DSO in the 

UK [27], is involved in major V2G projects with the aim of reducing grid reinforcement costs. This 

highlights the interest of the system operators procuring V2G services by managing EV fleets. Calendar 

degradation is caused by high ambient temperature and SOC [28], with the former being unaffected by 

optimal charging scheduling. Moreover, the impact of SOC is quantified in the model developed in this 

work.  

3. Analytical formulation 

The stakeholders introduced in Section 2 pursue their objectives which can be economic, 

technical/operational and environmental. Figure 3 presents the flowchart for the proposed MOTEEO 

framework. In the present work, three different case studies, representing different scales and operating 

conditions are implemented. The four objectives, and one scenario introduced in Section 2, are 

mathematically formulated from Sections 3.1 to 3.5. The EV energy constraints, travelling requirements 

and limitations of the charging equipment are modelled in Section 3.6 and the augmented non-

dominated ε-constraint method (ANEC) is applied along with the Analytical hierarchy process (AHP) 

to quantify multiple optimal EV charging scheduling, in Sections 3.7 and 3.8 respectively.  
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Figure 3 Flowchart of the proposed MOTEEO framework 

 

3.1. Energy cost minimisation 

From the point of view of the end electricity user, the operational cost represents a fundamental 

objective that has to be minimised in order to receive a return from the assets.  Investments in energy 

efficiency and RES are made with the main aim of minimizing operational costs. For this study, a 

function representing the energy cost of the H-MG, ℂ𝑒, is expressed by Equation 1.  

 𝑎𝑟𝑔𝑚𝑖𝑛
𝑃𝑡

𝐸𝑉+,𝑃𝑡
𝐸𝑉− 

ℂ𝑒 =  ∑ [(𝑃𝑡
𝑑 − 𝑃𝑡

𝑃𝑉 + 𝑃𝑡
𝐸𝑉+ − 𝑃𝑡

𝐸𝑉−) 𝛥𝑡 𝜋𝑡]𝑁𝑠

𝑡=1  (1) 

Where 𝜋𝑡 is the price signal, 𝑃𝑡
𝑑  is the electricity demand at time t, 𝑃𝑡

𝑃𝑉 is the PV generation at time t, 

𝑃𝑡
𝐸𝑉+ is the power charged to the EV at time t and  𝑃𝑡

𝐸𝑉− is the power discharged from the EV at time 

t.  𝛥𝑡 takes into account the energy exchanged in the time-step and 𝑇𝑠 is the total number of time steps 

considered in the scheduling. Here the decision variables are 𝑃𝑡
𝐸𝑉+ and 𝑃𝑡

𝐸𝑉−: by iteratively 

manipulating their values, a minimum of the cost function for each time step can be reached. 

3.2. Battery degradation minimisation 

In this work, only cycling degradation is considered in the optimisation algorithm, as this is directly 

related to smart and bidirectional charging. Battery degradation cost 𝐶𝑑 caused by a charging schedule 

is defined as: 



 𝑎𝑟𝑔𝑚𝑖𝑛
𝑃𝑡

𝐸𝑉+,𝑃𝑡
𝐸𝑉− 

ℂ𝑑 = ∑ ℂ𝑡
𝑑(𝑃𝑡

𝐸𝑉+, 𝑃𝑡
𝐸𝑉−)𝑁𝑠

𝑡=1  (2) 

Where ℂ𝑡
𝑑 =

𝐶𝐵

𝐸𝑡
𝐿 is the battery degradation cost related to a charging/discharging event at time t, with 

𝐶𝐵 being the investment cost of the battery in £/kWh and 𝐸𝑡
𝐿  the prospective lifetime energy throughput 

under certain charging condition 𝑃𝑡
𝐸𝑉+, 𝑃𝑡

𝐸𝑉−. It should be pointed out that the future cost of EV 

batteries is expected to decline and a range of values are forecasted. We have considered an average 

battery cost that is compatible with the future trends (see [29], [30], [31] and [32]). Furthermore, 

although new battery technologies are being developed for EV applications, the Global EV outlook 

2018 of the International Energy Agency [1] expects that these will not reach commercialisation before 

2030, and that lithium-ion batteries will represent the majority and continue to be used even after 2030. 

From experiments performed on a range of Lithium-ion batteries, from cylindrical to automotive cells, 

cycled at a certain temperature, at a different charging/discharging rate and depth of discharge (DOD), 

𝐸𝑡
𝐿 can be defined, in accordance with [33], as: 

 𝐸𝑡
𝐿 =  2  × 𝑛𝐸𝑂𝐿 𝐸𝐸𝑉 𝐷𝑂𝐷 (3) 

Where 𝑛𝐸𝑂𝐿 is the number of full cycles before the battery reaches the End of life (EOL), 𝐸𝐸𝑉 is the 

maximum energy of the EV battery, 𝐷𝑂𝐷 is the depth of discharge adopted in the tests (90%), and a 

cycle is defined as a charging-discharging sequence (hence the 2 is employed in equation 3). It is 

observed from the empirical data [34] that capacity fading due to cycling degradation happens linearly 

with respect to the energy exchanged with the EV battery at each time step. EOL is generally associated 

with a battery degradation of 20%, hence, 𝑛𝐸𝑂𝐿  can be defined as in Equation 4. 

 𝑛𝐸𝑂𝐿  =
0.2

𝛼𝑐  (4) 

Where 𝛼𝑐 is the cycling degradation coefficient, which is influenced by several stress factors. In this 

paper, we model the battery degradation coefficient by considering three stress factors, namely battery 

temperature, charging rate and average SOC, in accordance with previous works [28], [35]. We propose 

an improved model based on [36] and adapted from cycling tests performed on commercial automotive 

Li-ion cells. In fact, in our improved model we fit the cycling results of automotive batteries and include 

the impact of average 𝑆𝑂𝐶, both not considered in [36]. In this study, we assume battery temperature 

to be the same as the average daily ambient temperature and is treated as an external condition that 

influences the optimisation but that cannot be handled to minimize its impact. Furthermore, the impact 

of charging and discharging rates are considered to be equal.  

Equation 5 expresses the proposed battery degradation model  

𝛼𝑐(𝑇𝐵, 𝑃𝑡
𝐸𝑉+, 𝑃𝑡

𝐸𝑉−) = [𝛽1 (𝑇𝐵)3 + 𝛽2(𝑇𝐵)2 + 𝛽3 𝑇𝐵 + 𝛽4] × [𝛽5 𝐶𝑅 +  𝛽6] × [𝛽7 〈𝑆𝑂𝐶〉  +

𝛽8]  

(5) 



where 𝛼𝑐 is the capacity degradation coefficient due to cycling degradation, 𝑇𝐵 is the battery 

temperature, 𝐶𝑅 =  
𝑃𝑡

𝐸𝑉+

 𝐸𝐸𝑉 
 is the charging/discharging rate,  𝐸𝐸𝑉  is the EV battery capacity, 〈𝑆𝑂𝐶〉 is the 

average SOC of the battery during battery utilisation and 𝛽1→8 are fitting parameters. In equation 5, the 

last multiplicative term considers the effect of EV charging at different average SOCs. In the simulated 

period, 𝑆𝑂𝐶̅̅ ̅̅ ̅̅  depends on the defined decision variables based on equation 6. 

 〈𝑆𝑂𝐶〉 =  
𝑆𝑂𝐶𝑎+

∑ (𝜂 𝑃𝑡
𝐸𝑉+−

𝑃𝑡
𝐸𝑉−

𝜂
) ∆𝑡𝑁𝑎

𝑡=1

𝐸𝐸𝑉 

𝑇𝑎       

 

(6) 

where 𝑆𝑂𝐶𝑎 is the SOC of the EV upon arrival, ∆𝑡 is a time duration of a simulation step and 𝑁𝑎 is the 

total number of steps available from arrival until the next departure. By quantifying the battery 

degradation cost caused by a certain charging intervention, this can be compared against the associated 

benefit. Accordingly, the algorithm can choose the values of the decision variables, complying with the 

imposed constraints, to minimize degradation. 

3.3. Grid net exchange minimisation 

Storage solutions can minimize the time mismatch between RES generation and electricity demand, by 

charging in periods of RES excess and discharging in periods of high demand. In this way, the net 

power exchange profile with the grid is flattened which allows an optimised generation dispatch and 

stable grid operation. It is therefore in the DSOs’ interest to allow energy storage implementation, both 

stationary and mobile (EV). The aim of the optimisation is to minimize the variation of the net power 

exchange with the grid. The objective function representing the grid net exchange ℙ𝐺 , can be depicted 

as in Equation 7. 

 𝑎𝑟𝑔𝑚𝑖𝑛
𝑃𝑡

𝐸𝑉+,𝑃𝑡
𝐸𝑉− 

ℙ𝐺  =  √∑ (𝑃𝑡
𝑑 − 𝑃𝑡

𝑃𝑉 + 𝑃𝑡
𝐸𝑉+ − 𝑃𝑡

𝐸𝑉−)
2𝑁𝑠

𝑡=1  
(7) 

where 𝑃𝑡
𝑑, 𝑃𝑡

𝑃𝑉, 𝑃𝑡
𝐸𝑉+ and 𝑃𝑡

𝐸𝑉− assume the same meaning as in Equation 1. This objective function is 

calculated as the variation of the net power exchanged with the grid. 

3.4. CO2 emission minimisation 

EVs are seen as a major solution to reduce global CO2 emissions from the transportation sector. 

However, the environmental benefits of EVs depend on the carbon intensity of the national/local energy 

mix. This is because the energy mix that is used to charge the storage, and hence the CO2 emitted for 

energy provision, changes during the day, week and season. Therefore, there are periods of low specific 

kgCO2/kWh (off-peak), as opposed to periods with high specific kgCO2/kWh (peak). In this paper, the 

emissions avoided by ICE substitution are not considered. 

Therefore, the objective function that aims to maximise environmental benefits can be defined in 

equation 8: 



 𝑎𝑟𝑔𝑚𝑖𝑛
𝑃𝑡

𝐸𝑉+,𝑃𝑡
𝐸𝑉− 

𝔼𝐶𝑂2 =  ∑ [
(𝑃𝑡

𝑑−𝑃𝑡
𝑃𝑉+𝑃𝑡

𝐸𝑉+−𝑃𝑡
𝐸𝑉−)+ (√(𝑃𝑡

𝑑−𝑃𝑡
𝑃𝑉+𝑃𝑡

𝐸𝑉+−𝑃𝑡
𝐸𝑉−)

2
)

2
 𝛥𝑡 𝑒𝑡

𝑘𝑊ℎ]   𝑁𝑠

𝑡=1  

 

(8) 

where 𝑒𝑡
𝑘𝑊ℎ is the time series of the specific CO2 emission for each kWh absorbed from the grid. At 

present, these mechanisms are not adopted in the electricity industry, but with the increasing concern 

on greenhouse gas emissions, this method represents a suitable approach for the future.  

3.5. Revenues from ancillary service provision 

Ancillary services such as dynamic frequency regulation, require the regulation of the output of the 

generation/demand asset according to the frequency deviation from the nominal value of 50Hz. This is 

carried out with the droop control approach, which determines the regulation power provided in 

correspondence of a certain frequency deviation. When providing this service, EVs will have to follow 

the regulation signal defined Equation 9-11, subject to the same imposed constraints as for the other 

objectives: 

 𝑟𝑒𝑔𝑡 =  −𝑘𝑑 𝑓  𝑖𝑓 𝑓 ≤ 𝑓 ≤ 𝑓 (9) 

 𝑟𝑒𝑔𝑡 =  −𝑃𝐸𝑉  𝑖𝑓 𝑓 ≤  𝑓 (10) 

 𝑟𝑒𝑔𝑡 =  𝑃𝐸𝑉  𝑓 ≥  𝑓 (11) 

Where 𝑘𝑑 =
𝑃𝐸𝑉

(𝑓−𝑓)
 is the droop coefficient of the frequency controller, 𝑓 is the electrical frequency, 𝑓 

and 𝑓 are the upper and lower frequency limits of the droop-controller. We assume the EV provides 

Firm Frequency Regulation (FFR) over night from 11 p.m. to 7 a.m., which means in that period the 

EV is not available for other services. It is implied that availability for FFR should be compatible with 

the driving pattern of the EVs. According to [37], frequency regulation does not lead to net change in 

battery charge. Therefore, we assume that the SOC of an EV at the end of the FFR provision window 

is the same as the SOC at the beginning of that window. However, participation to FFR schemes implies 

battery utilisation, which leads to degradation. On the other hand, this service provides a remuneration. 

The interaction between this objective and the others will therefore be modelled based on the principles 

outlined as follows: 

 The UK National Grid procures FFR for 8 hours on a daily basis. Providers can decide to deliver 

this service or not; to this end this decision is binary. 

 The provision period is fixed and cannot be optimally distributed throughout the day according to 

a mathematical computation. 

As a result of the above assumptions, the connection between Objective 1, 2, 3 and this scenario is 

brought to a binary decision variable (𝐹𝐹𝑅 ∈ [0,1]ℕ) which governs the FFR provision. Hence, we 

analyse two scenarios, with and without ancillary service provision. 



3.6. Constraints of the optimisation – EV model 

The constraints for the various objectives presented so far that define the boundaries of the feasible 

region are presented. These are defined based on technical restrictions, usage behaviour as well as 

practical approach. The aim of the optimisation is to define power exchange profiles of EVs for different 

objectives, subject to constraints. Equations 12 to 15 link the power exchange of an EV with the energy 

stored.  

 𝐸𝑡
𝐸𝑉 =  𝐸𝐸𝑉,𝑎  𝑖𝑓 𝑡 = 𝑡𝑎 (12) 

 𝐸𝑡
𝐸𝑉 =  𝐸𝑡−1

𝐸𝑉   i𝑓 𝐴𝑡
𝐸𝑉 = 0   (13) 

 𝐸𝑡
𝐸𝑉 =  𝐸𝑡−1

𝐸𝑉 − 𝐸𝑡𝑟𝑖𝑝  𝑖𝑓 𝑡 = 𝑡𝑑 + 1 (14) 

 𝐸𝑡
𝐸𝑉 =  𝐸𝑡−1

𝐸𝑉 + (𝜂 𝑃𝑡
𝐸𝑉+ −

𝑃𝑡
𝐸𝑉−

𝜂
) ∆𝑡  𝑖𝑓 𝐴𝑡

𝐸𝑉 = 1 (15) 

In Equation 12, upon arrival of the EV, the energy stored in the battery is measured. In Equation 13, if 

the EV is not available (𝐴𝑡
𝐸𝑉 ∈ [0,1]ℕ is a Boolean variable indicating the availability of the EV), then 

charging events cannot be initiated; hence, the energy state of the EV is unaltered (𝐸𝑡−1
𝐸𝑉  is the energy 

stored in the EV at the previous time step). Equation 14 takes into consideration the transportation 

constraint; in fact, at the departure time, the energy required for the next trip is deducted from the 

available capacity. If the EV is available, then in Equation 15 the energy stored is modified by adding 

the energy charged and deducting the energy discharged by taking into consideration the efficiency of 

the EV charger 𝜂.  

The physical constraints in terms of storage size and power ratings as well as EV travelling requirement 

are presented from Equation 16 to 19. 

 0 ≤ 𝑃𝑡
𝐸𝑉+, 𝑃𝑡

𝐸𝑉− ≤ 𝑃𝐸𝑉  ∀t (16) 

 𝐸𝐸𝑉 ≤ 𝐸𝑡
𝐸𝑉 ≤ 𝐸𝐸𝑉  ∀t (17) 

 𝐸𝑡
𝐸𝑉 ≥  𝐸𝑡𝑟𝑖𝑝+ 𝐸𝐸𝑉  𝑖𝑓 𝑡 = 𝑡𝑑𝑒𝑝,𝑛 (18) 

 𝑃𝑡
𝐸𝑉+ × 𝑃𝑡

𝐸𝑉− = 0  ∀t (19) 

Equations 16 and 17 limit the power exchanged by the EV and the energy stored within the respective 

bounds. Here, a minimum limit of EV capacity of 𝐸𝐸𝑉 = 0.2 𝐸𝐸𝑉  has been set provide for unforeseen 

journeys. Equation 18 ensures that the energy stored in the EV meets the need of the user for the next 

trip. Finally, Equation 19 ensure that charging and discharging do not happen at the same time.  

3.7. Multi-objective optimisation with ANEC 

Some definitions are presented hereby to facilitate the formulation of the MOO problem [38]. 

Definition:  Given a MOO problem expressed by Equation 20: 



 min 𝑭(𝒙): 𝛤 → ℝ𝑘 = {
𝑓1(𝒙): 𝛤 → ℝ

…
𝑓𝑘(𝒙): 𝛤 → ℝ

  
 

 𝑘 ≥ 2 

 

(20) 

where 𝛤 ⊆  ℝ𝑛 is the feasible region, defined by the imposed constraints and 𝑓1, … , 𝑓𝑘 is the set of 

objectives  

 a solution 𝒙′ is said to Pareto dominate another solution 𝒙  and is indicated as 𝒙 ≺ 𝒙′ if  

 𝑓𝑖(𝒙′) ≤ 𝑓𝑖(𝒙)    ∀𝑖 = 1, … , 𝑘 (21) 

 𝑓𝑗(𝒙′) < 𝑓𝑗(𝒙)   𝑓𝑜𝑟 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑗 = 1, … , 𝑘 

 

 a solution 𝒙′ is Pareto optimal/efficient/non-dominated if there is no other solution that 

dominates it. The Pareto front is the set of all the Pareto optimal solutions.  

 In other words, Pareto optimal solutions are those that cannot be improved along one objectives 

without deteriorating the performance along another objective. The aim is to produce all the Pareto 

optimal solutions in order to enable decision-making.  

Among strategies aimed at obtaining the full Pareto front, the augmented ε-constraint method is widely 

implemented [39]-[43], for fast and reliable MOO. With this approach, one objective is optimised while 

the others are converted into constraints. By varying the strictness of such constraints, a subset of the 

Pareto front can be obtained. In this algorithm, Lexicographic ordering is applied to define the range of 

the objective values, from their maxima to the minima. Under Lexicographic ordering, the objectives 

are given priorities and are sequentially optimised; the values from the optimisations at higher priorities 

are used as constraints for the optimisations at lower levels. We subsequently apply non-dominated 

sorting to ensure that all the solutions are Pareto efficient. The following pseudo-code outlines (ANEC). 

Table 2 Pseudo-code for ANEC 

Algorithm 1 ANEC 

1: Input: MOO problem with 𝑭𝒎 set of 𝑚 objectives, 𝜞 defined by p constraints and 𝑛𝑚𝑎𝑥 divisions 

of the solution space 

2: Initialisation: Lexicographic ordering 

3: for k ← 1 to (m) do 

4:      𝜻𝒎×𝒎
𝒍𝒆𝒙 =  𝒍𝒆𝒙𝐦𝐢𝐧

𝒙,𝑓𝑘
𝑭𝒎    (21) 

5: end for 

6: Define Nadir point 𝜳𝑚×1 = max (𝜻𝒍𝒆𝒙) and optimal point 𝝍𝑚×1 =  min (𝜻𝒍𝒆𝒙)  

7: Arbitrarily select objective 𝑓𝑖 to be optimised 

8: for j ← 1 to (𝑛𝑚𝑎𝑥 + 1) do 

9:     for l ← 1 to (𝑛𝑚𝑎𝑥 + 1) do 

10:                   𝐪𝑚×1 = [𝒋, 𝒍, … ] 
11:                   𝛆𝑚×1 ← 𝜳 − 𝒒 ×

(𝜳− 𝝍)

𝑛𝑚𝑎𝑥    

12:                   𝛔 ←  argmin
𝒙∈𝜞,𝑭\{𝑓𝑖}= 𝜺+𝑺

(𝑓𝑖(𝒙)) −  𝛾 ∑ 𝑺   

13:                   if infeasible  



14:                           Exit current for loop and continue the loop above 

15:                   end if 

16:      end for 

17:  end for 

18: for o ← 1 to (𝑠𝑖𝑧𝑒(𝝈)) do 

19:      for p ← 1 to (𝑠𝑖𝑧𝑒(𝛔)) do 

20:             Check 𝝓𝑜 ≺ 𝝓𝑜 

21:      end for 

22: end for 

 

Where 𝑓𝑘 is the prioritised objective during Lexicographic ordering, 𝒒 is the index vector for the nested 

for loops,  𝛆 is a vector representing the constraints for the objective functions that are not minimised. 

There will be as many nested for loops as 𝑛𝑓𝑜𝑟 = 𝑚 − 1. 𝑺 = [𝑠1, … , 𝑠𝑚−1] are the slack-variables 

adopted for the augmented-ε constraint and 𝛾 is an arbitrary constant value . As the Pareto optimal 

solutions are progressively calculated, the values of 𝜺 vary from the maxima of the single objective 

functions to the minima. 𝝓𝑜 and 𝝓𝑝 are solutions of the ε-constraint method. It should be noted that 

𝑛𝑚𝑎𝑥 is the number of divisions of the range of each objective values. As the ε constraint for one 

objective is varied within the for loop, the constraints of the other objectives are kept constant. In the 

for loops at higher levels, the ε constraints of the other objectives are varied. It is evident that a number 

of computations will be infeasible; this is because as the objectives are conflicting and the objective 

values are constrained from their maxima to the minima, two conflicting objectives cannot 

simultaneously reach their minimum values. To avoid unnecessary computations, once an infeasible 

computation is found, the current for loop is ended and the loop at the higher level is continued.     

3.8. Multi-criteria-decision-making with analytical hierarchy process 

Once the full Pareto front is obtained, a decision needs to be taken to choose the preferred solution. If 

no preference is shown, the Pareto front represents the set of solutions that are equally optimal and 

therefore equivalent. MCDM techniques can help on choosing one solution from the Pareto front. In 

this study AHP [44] is employed.  

AHP evaluates the performance of n alternative solutions along a set of m objectives. The decision 

maker prioritizes the different objectives with a relative comparison matrix 𝑨𝑚×𝑚. The priority of each 

objective is quantified with relations 𝐴𝑖𝑗. 𝐴𝑖𝑖 = 1, ∀𝑖 as an objective has the same priority as itself. The 

relative comparison of two different objectives is outlined as follows: if 𝑖 is more important than 𝑗, then:  

 {
𝐴𝑖𝑗 = 𝑘,

𝐴𝑗𝑖 =
1

𝑘
 
 

Where 𝑘 ∈ [1,9] determines the relative priority of 𝑖 compared to 𝑗; 𝐴𝑖𝑗 = 1 indicates that 𝑖 and 𝑗 have 

the same importance while 𝐴𝑖𝑗 = 1 indicates that 𝑖 is extremely important compared to 𝑗. Then, a vector 

of weights 𝑩𝑚𝑥1 is built and ultimately, a final score is assigned to each solution based on their 



performance along each objective. The solution having the highest score shall be chosen as the preferred 

solution. It should be pointed out that, since in this paper we consider three decision makers, 3 weight 

vectors will be individually considered, i.e. [𝑩1 𝑩2 𝑩3]. An example of common decision making 

processes in a group of stakeholders with diverse and conflicting objectives can be found in [45] , where 

a method to combine the priorities of the different groups of decision makers in one matrix is proposed. 

However, in the present work, each group of decision makers is modelled separately, to highlight the 

benefits/drawbacks of different prioritisations and, as will be discussed in Section 4.3, a profit sharing 

approach to mitigate conflicts is proposed. A consistency check is also performed for each pairwise 

decision matrix to ensure reliability of the decision making process; a detailed explanation is provided 

in [44].The priorities of a group of stakeholders are modelled assuming that there is homogeneity in 

each group, namely end-electricity-users, EV users and DSO. Certainly, there will be differences in the 

priorities of each individual, which could be captured with a survey. However, in depth modelling of 

detailed user preference need to cover a dedicated investigation, which is beyond the scope of the paper. 

4. Results and discussion 

The proposed MOTEEO framework is initially applied at a household level to demonstrate the 

effectiveness of proposed method to model and maximize the interests of the five stakeholders. 

Subsequently, the strategy is applied to a typical distribution network with realistic penetration level of 

PV systems and EVs. Three EV charging strategies are adopted: uncontrolled, smart and bidirectional 

charging. The three DM who are involved in the decision-making process are the end electricity user, 

the EV owner and the DSO. Finally, an alternative utility function based MOTEEO is applied for a 

single-household to show the importance of collaborative decisions where benefits are shared. 

4.1. Case study setting 

As introduced in Figure 1, a single-dwelling comprising of a 4kW PV installation and one 30kWh EV 

is considered for case study 1 and case study 3 and the associated parameters are detailed in Table 3.   

Table 3 Setting for the case study 1 

Parameters  

Electricity demand Detached single-house, single-phase 

RES type Roof-top photovoltaic 

RES system rating 4kW 

 𝑪𝑩 150 £/kWh 

EV charger type Type 2 conventional/Smart/Bidirectional/ single-phase 

 𝑷𝑬𝑽 3kW 

 𝜼 90 (90) % 
 ∆𝒕 15min 

Pricing strategy Real-time pricing 

Optimisation strategy Day-ahead 

 𝑻𝑩 18 C 

 𝒕𝒂 17:00 



 𝒕𝒅 10:15 

 𝑬𝑬𝑽 30kWh 

 

The optimisation is performed one day-ahead, with a real-time price derived from the wholesale spot 

price by adding network charges and taxes [46]. From the modelling implemented in Section 3.5, two 

scenarios, with and without ancillary service provision, are simulated. Figure 4 depicts the evolution of 

the real-time price, and EV availability for case study 1optimisation. It can be demonstrated that when 

PV generation is available, minimising grid net exchange corresponds to minimising CO2 emissions. A 

practical demonstration is provided in the appendix. Consequently, we minimize Objective 1 – Energy 

cost, Objective 2 – EV battery degradation and Objective 3 – Grid net exchange. The mathematical 

optimisation process for case study 1 is hereby detailed. 

A) 𝜁𝑚×𝑚
𝑙𝑒𝑥 =  𝑙𝑒𝑥min

𝑥,𝑓𝑘
𝐹𝑚     k = 1, 2, 3 and m=3, where 𝑓𝑘 has the highest priority. 

B) We define:  

 𝛹𝑖 = max (𝜁𝑖
𝑙𝑒𝑥) Nadir point and 𝜓𝑖 = min (𝜁𝑖

𝑙𝑒𝑥) for i = 1, 2, 3. Where 𝜁𝑖
𝑙𝑒𝑥 are the results for 

objective 𝑖 from the Lexicographic ordering. 

C) for 𝑜 = 1, … , 𝑛𝑚𝑎𝑥 + 1 and  𝑝 = 1, … , 𝑛𝑚𝑎𝑥 + 1 We minimise: 

D)         𝑎𝑟𝑔𝑚𝑖𝑛
𝑃𝑡

𝐸𝑉+,𝑃𝑡
𝐸𝑉−, 𝑠2,𝑠3  

ℂ𝑒 =  ∑ [(𝑃𝑡
𝑑 − 𝑃𝑡

𝑃𝑉 + 𝑃𝑡
𝐸𝑉+ − 𝑃𝑡

𝐸𝑉−) 𝛥𝑡 𝜋𝑡]𝑁𝑠

𝑡=1 − 𝛾 (𝑠2 + 𝑠3) 

E)        Subject to (12) to (19) and  

F)        ℂ𝑑 = 𝜀2 + 𝑠2 

G)        ℙ𝐺 =  𝜀3 +  𝑠3 

       Where 

H)        𝜀2 = 𝑜 ×
𝛹2−𝜓2

𝑛𝑚𝑎𝑥 
 , 𝜀3 = 𝑝 ×

𝛹3−𝜓3

𝑛𝑚𝑎𝑥 
 with 𝑛𝑚𝑎𝑥 = 6, 𝑠2 and  𝑠3 are slack variables and 𝛾 is 

       an arbitrary constant 

I)        If FFR is provided, 𝐴𝑡
𝐸𝑉 = 0  from 23 to 7. 

J) end for 

 

For case study 2, we apply the setting for case study 1 to all the EVs involved, in compliance with the 

associated electricity demand profiles, PV generation and EV transportation requirements. 

For case study 3, we adopt the same setting outlined in Table 3 but with the implementation of a utility 

function; the mathematical process is as follows: 

A)  𝑎𝑟𝑔𝑚𝑖𝑛
𝑃𝑡

𝐸𝑉+,𝑃𝑡
𝐸𝑉− 

𝜆1 ℂ𝑒 + 𝜆2 ℂ𝑑 + 𝜆3  ℙ𝐺 

B) Subject to (12) to (19) 

 Where 𝜆1 = 1, 𝜆2 = 𝐶𝐵 = 150 and 𝜆3 depends on the grid utilisation fee set by the DSO 



All the simulations have been carried out on a computer with an Intel Core i7-6500U CPU 2.5GHz 

processor and 16GB RAM Time resolution for the optimisation in all case studies is 15 min. Sequential 

quadratic programming algorithm in Matlab2017a has been employed for the non-linear optimizations. 

 

Figure 4 EV availability and real-time price 

As depicted in Figure 2, a typical UK distribution network (DN) [47], comprising a 400 V feeder which 

provides electricity to 57 houses is considered for case study 2. One phase of the 400 V feeder is 

simulated assuming balanced three-phase load distribution therefore, 19 houses are individually 

simulated. To quantify the unbalance in a three-phase distribution system, the three phases should be 

individually simulated and the conclusions, which are rather network and location dependent, should 

be evaluated on a case-by-case basis [48]. Eight days from four seasons, considering both week-days 

and week-ends, have been investigated. Different PV generation profiles, depicting the seasonal 

variations, and different EV availability patterns have been considered [49]. All the electricity demand 

profiles have been generated from the Centre for Renewable Energy Systems Technology (CREST) 

model [50]. The configuration of the typical DN is based on the PV and EV penetrations levels predicted 

for 2040 [51]. The year 2040 represents a crucial landmark because of the ban of ICE vehicles 

announced by the UK government [52]. By considering the current penetration of domestic PV systems 

[53], [54] and using the prediction of the UK National Grid Future energy scenario [51], a penetration 

rate of 50% is projected. This implies that in one phase of the LV feeder, 10 houses will be equipped 

with a PV system. Since the UK average PV system size is 3.35 kW, a normal distribution around a 

mean value of 3 kW is assumed. The PV generation profile is referred to a typical winter day (hence 

the ambient temperature) of the Midlands in the UK. An EV penetration rate of 50% is expected for 

2040 [51], among those that have access to at least one car [55] hence, 10 EVs are simulated. Table 4 

lists the parameters adopted to produce the EV transportation model and other key assumptions for case 

study 2.  



Table 4 Parameters of the case study 2 

Parameter Value 

EV  and PV penetration rate 50% [51], [53], [54] 

Average daily mileage 9 miles [55], [56] 

Average daily energy 

consumption 

1.74 kWh [55], [56] 

Arrival and departure times for trips randomly selected from National Time use Survey data  

Average PV size 3.35 kWp [53] 

 𝐸𝐸𝑉/ 𝑃𝐸𝑉 30 kWh/3 kW 

EV charger type Type 2 conventional/Smart/Bidirectional/ single-phase 

Frequency regulation prices From UK National Grid post-tender reports  

4.2. Results of case study 1 for single H-MG 

 To demonstrate the effectiveness of MOTEEO, highlighting the conflict of the different objectives 

defined in section 3, we apply the proposed methodology to a single dwelling with one EV.  

Single objective optimisation algorithm 

Figure 5 shows EV charging scheduling for Objectives 1, 2 and 3 without FFR provision.

 

Figure 5 EV scheduling for single-objective optimisations without FFR 

With reference to the cost signal in Figure 4, it can be seen that under Objective 1 the EV is charged at 

the minimum price available. Further price arbitrage is not carried out since having a round-trip 

efficiency of 81% the price difference is not sufficiently profitable. Furthermore, the transportation 

constraints are satisfied as the EV is charged before the next departure. When the EV is charged to 

minimize battery degradation under Objective 2, the charging happens only close to the next departure 

to minimize average SOC. In addition, the charging rate is gradually increased to minimize degradation. 

This is because from equation 5, the combination of high charging rate and high average SOC causes 

high degradation; charging the battery at a lower constant charging rate would have increased charging 



duration leading to a higher average SOC and therefore degradation. At the same time, the full charging 

rate (3 kW) is not employed as it would increase degradation; an optimum solution which underlines a 

balance between the charging rate and the average SOC (their product is considered in equation 5) is 

found.  Under Objective 3, the EV is used to minimize the grid net exchange. As during the PV excess 

hours the EV is mostly absent, PV energy autonomy is not fully maximised. However, upon arrival, the 

EV exploits as much PV energy as possible and the peaks of electricity demands are also provided by 

discharging the EV. Here, the conflict between the different objectives are unveiled. In fact, the EV is 

charged with radically different scheduling under the three objectives and the scheduling according to 

one objective inevitably worsen the performance along the others.  

Figure 6 depicts EV charging scheduling for Objectives 1, 2 and 3 with FFR provision. It should be 

noted that the EV does not initiate any charging event from 11 p.m. to 7 a.m., in accordance with the 

FFR commitment.  

 

Figure 6 EV scheduling for single-objective optimisation with FFR 

As shown in Figure 6, under Objective 1, the EV charging happens right before the FFR window starts 

(between 10-11 pm, which provides the lowest price in the available window). As for Objective 2, the 

charging is concentrated in the 7-10 period at a higher charging rate than Scenario i), which leads to 

higher degradation. Under all objectives, the EV is charged before the FFR window, which keeps the 

EV at a higher SOC, leading to a higher battery degradation compared to scenario i). In addition, the 

performance under Objective 3 is worse as there is less availability of the EV to service/meet the 

electricity demand. Table 5 presents the results of the three single optimizations with and without FFR 

provision. Throughout this paper, costs have been designated with negative sign while revenues have 

been attributed a positive sign. 



Table 5 Results of the single-objective optimisations for one day 

 Scenario i) (without FFR provision) 

 Energy 

cost (£) 

Battery 

degradation (£) 

Grid net 

exchange (kWh) 

Emissions 

(kgCO2) 

𝐦𝐢𝐧 𝑶𝒃𝒋𝟏 0.1617 -0.0127 11.3 1.6394 

𝐦𝐢𝐧 𝑶𝒃𝒋𝟐 0.1366 -0.0118 9.9647 1.4559 

𝐦𝐢𝐧 𝑶𝒃𝒋𝟑 0.1353 -0.0170 9.8243 1.4197 

 Scenario ii) (with FFR provision) 

 Energy 

cost (£) 

Battery 

degradation (£) 

Grid net 

exchange (kWh) 

Emissions 

(kgCO2) 

𝐦𝐢𝐧 𝑶𝒃𝒋𝟏 0.7947 -0.1031 11.3 1.6891 

𝐦𝐢𝐧 𝑶𝒃𝒋𝟐 0.7695 -0.1020 10.4762 1.5469 

𝐦𝐢𝐧 𝑶𝒃𝒋𝟑 0.7742 -0.1034 10.2768 1.5521 

 

When FFR is provided, the energy cost is further reduced by the FFR profits (£0.637) and battery 

degradation increased (£0.0902), resulting in an overall profitable service. As for the fourth objective, 

the limitation of the available optimisation window due to FFR provision increases the CO2 emissions 

slightly. Once the conflict between the objectives have been highlighted, MOO and MCDM techniques 

are applied to find the optimal solutions for all the three objectives.  

MOTEEO optimisation algorithm 

Figure 7 and Figure 8 depict the Pareto fronts obtained from the ANEC method for scenarios i) and ii). 

The performance along the three objectives have been normalised to their maximum values expressed 

in Table 5 to allow comparative analysis. 𝑛𝑚𝑎𝑥 was set to 6, which leads to a maximum of 49 Pareto 

efficient solutions. However, as discussed in Section 3.7, due to the conflict among objectives, a number 

of computations were infeasible, and this led to 42 and 35 Pareto efficient solutions for scenarios i) and 

ii), respectively. Some of the solutions cumulate in certain points; this could be avoided by dividing the 

solutions space with higher resolution; however, this would increase the computational cost [defined as 

𝑂((𝑛𝑚𝑎𝑥 + 1)2]. In this study, a rightful combination of both enough granularity of the Pareto front to 

informatively take decisions and computational cost has been achieved. 



  

Figure 7 Pareto front with ANEC method without FFR 

 

Figure 8 Pareto front with ANEC method and FFR 

It can be observed in Figure 8 that in one area of the solutions space, minimising grid net exchange also 

leads to battery degradation minimisation. This is because when FFR is provided, in order to minimise 

energy cost, the algorithm schedules EV charging at 3 kW during the minimum price period available 

(see Figure 6), which increases both battery degradation and grid net exchange (see Table 5). When 

battery degradation is forced to be reduced by the ε-constraint, the charging scheduling tends to the 

behaviour of EV Ob. 2 (green stems) which is closer to the behaviour of EV Ob. 3 (blue stems), therefore 

reducing grid net exchange. However, when grid net exchange is forced to be reduced towards its 



minimum value, battery degradation is increased. AHP is applied to choose the optimal solutions among 

the Pareto members provided by the MOO, according to the different prioritisation of the stakeholders. 

Three stakeholders/decision makers (DM) holding different priorities are considered. The relative 

comparison matrices (following from Section 3.8) for the three DMs is shown in Table 6. 

Table 6 Relative comparison matrix for different DMs 

  𝑫𝑴𝟏     𝑫𝑴𝟐     𝑫𝑴𝟑  

 𝑂𝑏1 𝑂𝑏2 𝑂𝑏3   𝑂𝑏1 𝑂𝑏2 𝑂𝑏3   𝑂𝑏1 𝑂𝑏2 𝑂𝑏3 

𝑶𝒃𝟏 1     5   9   𝑂𝑏1 1 1

5
  

2   𝑂𝑏1 1 1

2
  

1

9
  

𝑶𝒃𝟐 1

5
  

1 2   𝑂𝑏2 5 1 9  𝑂𝑏2 2 1 1

5
  

𝑶𝒃𝟑 1

9
  

1

2
  

1  𝑂𝑏3 1

2
   

1

9
 

1  𝑂𝑏3 9 5 1 

 

𝐷𝑀1 is the end-electricity user who wants to minimize the energy cost. 𝐷𝑀2 Is the EV owner who 

wants optimize the exploitation of the EV battery and 𝐷𝑀3 is represented by the DSO or the policy 

maker who wants to optimize grid utilisation and minimize CO2 emissions. The consistency ratios found 

for the three pairwise decision matrices, related to the three DMs, are lower than 0.1 which verifies the 

consistency of the decisions It should be pointed out that multi-objective optimisation applied to EV 

charging scheduling has only recently gained interest in the research community. Hence, there is a lack 

of studies addressing the prioritisation adopted by the different stakeholders, especially the EV user, for 

the different objectives. Thus, the priorities in the three relative comparison matrices have been set 

based on suitable prioritisation rules and could be verified by surveying a heterogeneous sample of 

potential stakeholders.     

The results from the decision making process are shown in Table 7. It can be seen that MOO with 

MCDM finds the overall best option while still favouring the DM’s choice. This is because once the 

full Pareto set is available, there is more freedom on choosing the option that achieve the best 

performance along the objectives while complying with the inherent prioritisation of the stakeholder.  

Table 7 Results of the MOTEEO method with the application of AHP for one day 

 Scenario i) (without FFR provision) 

 Energy 

cost (£) 

Battery 

degradation (£) 

Grid net 

exchange (kWh) 

Emissions 

(kgCO2) 

DM1 0.16 -0.0127 11.3 1.64 

DM2 0.15 -0.0120 9.95 1.42 

DM3 0.15 -0.0120 9.95 1.42 

 Scenario ii) (with FFR provision) 

 Energy 

cost (£) 

Battery 

degradation (£) 

Grid net 

exchange (kWh) 

Emissions 

(kgCO2) 

DM1 0.794 -0.1022 10.54 1.49 

DM2 0.769 -0.1020 10.48 1.55 



DM3 0.789 -0.1023 9.95 1.42 

 

From the results, it can be seen that the stakeholders would choose the solution that naturally fits with 

their priorities, sacrificing the performance along other objectives. Comparing Table 7 with Table 5, 

some differences are visible. Under scenario i), DM2 and DM3 agree on the same solution. When 

providing FFR, DM3 chose a solution that caused lower battery degradation and higher return for the 

end-user than with the single-objective optimisation. These differences compared to the single objective 

optimisation are due to fact that with MOTEEO the full Pareto front is considered when making the 

decision. In accordance with the weights presented in Table 6, the adopted solutions lead to higher 

overall benefits than the single-objective optimisations. Consistent with the previous results, cost 

minimisation with FFR provision is particularly adverse for the battery as the combination of Vehicle-

to-home (V2H) and V2G leads to a higher utilisation. As previously mentioned a lower energy cost 

leads inevitably to a higher grid impact and vice versa, because the price signal is not dynamically 

updated by to grid operator to better reflect the grid status. In addition, under the optimal grid net 

exchange, CO2 emissions are minimum. This effect will be particularly noticeable when the proposed 

methodology is applied to a real-life distribution system. 

4.3. Results of case study 2 for a distribution network 

 

MOTEEO optimisation algorithm 

The application of MOTEEO for a typical UK DN allows the quantification of grid peak power and 

overall CO2 emissions at a higher scale compared to the single dwelling. Eight days have been simulated 

over the four seasons, including weekday and weekend. Four charging strategies, including 

uncontrolled charging (a), smart charging (b), bidirectional at home (c) and work (d) are simulated with 

two scenarios related to the ancillary service provision. Under uncontrolled charging, upon arrival the 

EVs are fully charged at the maximum power. Under smart charging, the charging process is controlled 

but the EVs are not discharged; hence under this strategy FFR cannot be provided. Bidirectional 

charging allow EVs to discharge towards the H-MG or the grid. Figure 9 and Figure 10 depict the 

MOTEEO scheduling for scenario 2c) in the eight days. The preferred solution for the three decision 

makers, end-energy user, EV owners and DSO are shown. Other scenarios are not illustrated here for 

the purpose of conciseness.  



 

Figure 9 MOTEEO scheduling for scenario 2c) winter (weekday and weekend) and spring (weekday and weekend) from top 

to bottom 



 

Figure 10 MOTEEO scheduling for scenario 2c) summer (weekday and weekend) and autumn (weekday and weekend) from 

top to bottom 

As can be seen in Figure 9 and Figure 10, diverse PV generation and EV availability, have been 

simulated, due to seasonal effect and due to different travelling patterns on weekdays and weekends, 

respectively. As a general trend, EVs had higher availability for MOTEEO in the weekends. Higher 

availability and PV generation particularly benefitted grid net exchange minimisation under DM3, as 

can be seen in spring and summer weekends. Under DM2, to minimise battery degradation, the EVs are 

charged as close as possible to the respective departure times, while under DM1 price arbitrage is carried 

out. 

Table 8 presents the results for case study 2. For all the scenarios, the MOTEEO framework calculated 

the Pareto fronts and the DMs chose the preferred solution based on the MCDM criteria outlined in 

section 3.8. As illustrating all the Pareto fronts generated in case study 2 would lengthen the paper we 

present the Pareto fronts for one day (summer weekend) in the appendix.  



Table 8 Results of the MOTEEO method for eight days 

Case DM Energy 

cost (£) 

Battery 

degradation (£) 

Grid net 

exchange (kWh) 

Emissions 

(kgCO2) 

  2a i) -105.74 -28.55 1917 489.88 

 

2b i) 

DM1 -66.15 -9.97 178 334.48 

DM2 -72.08 -9.42 176.74 333.96 

DM3 -72.5 -10.2 170.53 322.30 

 

2c i) 

DM1 -52.79 -50.01 299 481.91 

DM2 -71.40 -9.52 176.72 333.69 

DM3 -72.80 -20.39 174.07 322.65 

 

2d i) 

DM1 -52.73 -51.06 291.19 486.77 

DM2 -71.26 -9.48 176.72 333.82 

DM3 -72.57 -10.26 173.90 322.87 

 

2e ii) 

DM1 -12.38 -26.74 276.1 392.50 

DM2 -20.83 -13.59 176.32 342.03 

DM3 -22.18 -17.5 171.26 334 
 

Under uncontrolled charging, the EVs are charged at maximum power until 80% of SOC is reached. 

This produces the highest values for all the metrics in Table 8, indicating that it is the worst scenario 

under all the criteria. The three rows for each case shows the results of the solution chosen by the three 

DMs, namely, end-electricity user, EV owners and DSO (𝐷𝑀1, 𝐷𝑀2 and 𝐷𝑀3 respectively). With smart 

charging the battery degradation is kept to a minimum and there is little difference between the three 

DMs along this dimension. When bidirectional charging is employed, the improvements are higher; 

especially the energy cost can be further minimised as price arbitrage is performed. It should be pointed 

out that the performance along grid utilisation depends on the availability of PV generation (in colder 

months the performance is worse than the warmer months) and EV availability pattern; the EVs may 

not be available or at high SOC, therefore it would be unable to charge from PV. The different interests 

of the stakeholders are again evident: in 2c i), under the solution preferred by the DSO (𝐷𝑀3), the total 

utilisation is reduced from 291.19 kWh to 173.9 kWh (-40.28%) when compared with the solution 

chosen by the end-electricity. Conversely, this solution increases battery degradation compared to the 

solution chosen by the EV owners (increases degradation by 7.6%). CO2 emissions are always at their 

minimum under the scheduling preferred by 𝐷𝑀3 as it utilises more local PV generation. Depending on 

the electricity demand profile of the dwellings and EV travelling pattern, this may not necessarily lead 

to the best solution along the other directions; this is because the EVs may be travelling when the peak 

demand occurs. When FFR is provided, it leads to an increase of all the metrics a part from the cost, 

because the optimisation window is reduced. However, FFR proves to be an overall profitable service 

as profits (£54.53) are higher than the incurred battery degradation cost (£3.53). Although an early 

replacement of the EV batteries may cause distress for the EV owners, this is taken into account by the 

battery degradation cost, which is offset by the prospective profits by a large margin (more than four 

times). As discussed in section 3.2, the cost of lithium-ion batteries is expected to drop in future, 



providing a better economic case. The forecasts predict a range of scenarios, where the average trend 

shows a cost reduction of 33% compared to current values. Despite the uncertainty in the future battery 

cost, any cost reduction will proportionally reduce the cost of battery degradation (battery purchase cost 

is included in the model). The positive consequence is that the use of EV batteries for energy services 

will become more cost-effective, which will improve the profitability of V2X services for all the 

stakeholders. A clear trade-off between the objectives is seen; the involved stakeholders must 

collaboratively take decisions and share benefits. It implies that all stakeholders must be sufficiently 

informed and capable of making informed decisions. Furthermore, a societal discussion will be required 

to see who can reap most of the benefits, and who must shoulder the burdens. To this end, the DSO is 

particularly suitable to manage this as a considerable improvement in grid utilisation is achieved which 

will defer grid investments. Therefore, it is in the DSO’s interest to share the profit with the electricity 

users (in the form of reduced electricity bills), who lose 27.34% under the case chosen by DM3, and EV 

owners (subsidising part of their batteries), who lose 7.6%, to stimulate participation to the MOTEEO 

program. If the profit is not shared, then end users and EV owners will not participate in delivering 

energy services and no peak reduction will be achieved; in the worst case, uncontrolled charging will 

cause negative impacts with increased EV penetration, and hence costs to the DSO. 

4.4. Results of case study 3 for cross-case comparison 

Smart incentives and intelligent tariff structures are critical for an effective implementation of 

MOTEEO. Among the possible solutions, the implementation of peak demand charges from the DSO, 

subsidy for the EV batteries and dynamic pricing are noteworthy. As an example of a smart tariff 

scheme, the case of commercial users in Flanders, Belgium is presented. Commercial users can 

purchase energy from the wholesale market but are charged transmission and distribution tariffs based 

on the peak demand [58]-[59]. We adapted this tariff to Case 1 scenario i) (without FFR) to highlight 

the importance of intelligent tariff schemes by applying the utility function [60] to combine the 

objectives with the value/cost they bring. The energy cost, the battery degradation cost and the peak 

demand charge have been combined in one function.  Table 9 presents the result of Case 3.  

Table 9 Results of the MOTEEO method with a utility function for one day 

 Energy cost (£) Battery 

degradation (£) 

Grid net exchange 

(kWh) 

Emissions 

(kgCO2) 

Case 3 0.14 -0.0121 10.26 1.55 

 

By comparing Table 9 with the results of the single optimization in Table 5, a general improvement 

along all the dimensions can be seen. In fact, under this case, the peak demands are targeted, leading to 

a better performance along 𝑂𝑏𝑗3 and 𝑂𝑏𝑗4 but with a 28.1% reduction in battery degradation (£0.0121 

instead of £0.0170) when compared to the single-objective optimization of 𝑂𝑏𝑗3. Therefore, the 

effectiveness of the utility function, which requires the cooperation of the three main stakeholders, has 



been demonstrated. Unfortunately, it is not always possible to assign a utility weight to all the 

objectives. Especially for 𝑂𝑏𝑗3, the peak demand penalty should be decided by the DSO in relation to 

the incurred investments for grid reinforcement, which should be calculated on a case-by-case basis (as 

these are both network and location specific). In countries/regions where these types of tariffs are not 

available, a joint decision between the involved stakeholders is critical to satisfy all the criteria. 

5. Conclusions 

In the present work, the MOTEEO approach is proposed and applied in three case studies and for 

different charging strategies in order to find the synergy of four objectives: energy cost, EV battery 

degradation, grid net exchange and CO2 emissions along with ancillary services. Mathematical models 

of the objectives and scenarios are constructed to represent the interests of the associated stakeholders. 

The conflicting objectives of stakeholders are resolved by multi-objective optimization with multi-

criteria-decision-making technique. By implementing the proposed methodology to the three case 

studies considered in this work some noteworthy conclusions were drawn and are summarised as 

follows.  

Smart charging restricts battery degradation; however, it does not provide satisfactory cost 

improvement, grid and environmental impact minimization. The benefits of bidirectional charging are 

considerably higher (there is a revenue instead of a cost in terms of energy expense and 11% reduction 

in demand peak) compared to smart charging if EVs should be available during the day as well. 

Therefore, it is important that bidirectional chargers (and PV generation) are available at different 

locations, including work places. In addition, since battery degradation limits the performance along 

the other objectives, batteries should be operated under optimal conditions as much as possible (low 

temperature, SOC and charging rates). This could reduce battery degradation by 66.6% when compared 

to uncontrolled charging. Confirming previous work in literature, uncontrolled EV charging is the worst 

approach under all perspectives.  

Under MOTEEO, the end-electricity users can increase their benefits by 81% (compare 2e with 2b) by 

providing frequency regulations service and the DSO can improve the grid utilisation by nearly 42%. 

However, these are the maximum achievable benefits along one objective only, and there needs to be 

cooperation between the stakeholders to increase the overall social benefits. This suggests that a larger 

(or new) regulatory role must be played to ensure that overall social benefits are obtained. The DSO 

must share the benefits achieved from improved grid utilisation (investment cost deferral) by ensuring 

a revenue to the end-electricity user and the EV owner. The quantification of such revenue is case-

dependent and each distribution network should be studied individually. Therefore, a collaborative 

decision process has been proposed. The implementation of a smart utility function under MOTEEO 

targets the peak demand by combining the objectives of the end-electricity user and the DSO achieving 

optimal grid operation while minimizing the damage to the battery (28.1% of reduction in battery 

degradation compared to the case without MOTEEO). This paper has demonstrated that a holistic 



decision-making process under MOTEEO is required, as not doing so will inevitably result in sub-

optimal consequences for other stakeholders and in the longer term, affect the social licence of that 

stakeholder and/or technology. Moreover, the MOTEEO framework allows costs and benefits to be 

quantified and discussed by the various stakeholders. The application of this framework in future energy 

systems will engage multiple stakeholders, increasing the utilisation of renewable energy sources and 

integrating the energy and transportation system. The cooperation among stakeholders through a 

decision-making process, as the one proposed in this paper, will bring overall societal benefits in future 

smart grids. The strategies proposed in this work optimise the utilisation of distributed energy resources, 

such as renewables and EVs, thus improving sustainability of the future energy landscape. 
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Appendix 

If a PV installation is available, then assuming that the energy generation from the PV system cause 

zero-emission (life cycle CO2 emissions are out of scope for this paper) it follows that by minimizing 

grid net exchange CO2 emission is also minimised. If the PV installation is not available, then emissions 

are minimised if the EV discharges in periods with high specific CO2/kWh. In the present work, we 

assume that a PV system is available.  Figure 11 shows the result of the ANEC method minimizing both 

CO2 emission and grid net exchange. Given the negligible variation of the two objective functions 

among the 11 Pareto optimal solutions, we consider grid net exchange and CO2 emission minimisation 

to be equivalent. 

 

Figure 11 Bi-objective optimisation of CO2 emissions and grid net exchange 



Figure 12 shows the normalised Pareto fronts (with respect to the maximum values of the objectives) 

for 10 EVs under scenario 2c) bidirectional charging for a summer weekend. The conflict among the 

different objectives is noticeable as minimising one objective reduces the performance along other 

objectives. 

 

Figure 12 Pareto fronts for 10 EVs, under scenario 2c) in a summer weekend 
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