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ABSTRACT 

 

 

Background: Significant concerns are associated with the use of broad-spectrum 

antibacterial agents, including collateral eradication of beneficial bacteria from the 

human microbiome, the onset of antibacterial-associated infections, and continued 

emergence of antibacterial drug resistance. As such, a critical need for novel and 

selective antibacterial targets exists. The investigation of two such targets, each 

pertaining to the highly concerning infections caused by streptococcal species and 

Clostridioides difficile, are presented herein. Bacterial topoisomerase I represents a 

potentially promising narrow-spectrum target as studies have arisen demonstrating its 

essentiality in bacterial species lacking the only other type IA topoisomerase 

(topoisomerase III). Additionally, recent studies demonstrating the essentiality of the 

fabK gene expressing enoyl-ACP reductase II (FabK) in C. difficile indicate its 

significant potential as a narrow-spectrum target. Presented here are data characterizing 

and validating both the TopoI and FabK enzymes as novel antibacterial targets via the 

implementation of an array of drug discovery techniques, including structural studies, 

biochemical assay development and application, and inhibitor screening and testing. 

 

Methods: An assortment of drug discovery techniques were employed for the targeting 

of SmTopoI and CdFabK, including different protein expression and purification 

techniques; X-ray crystallography; various biophysical and biochemical techniques for 

target characterization, validation, and drug screening; and different lead development 

and optimization studies.  

 

Results: The respective genes for SmTopoI and CdFabK have been cloned, and the 

expression and purification of various constructs of each target have been carried out and 

optimized for further analysis. The crystal structure of SmTopoI_N65 has been 

determined to 2.06 Å and diffracting CdFabK crystals (3.5 Å) have been attained. A 

high-throughput plate-based biochemical fluorescence kinetic assay has been optimized 

for screening against the CdFabK enzyme. Furthermore, activity and modality of 

inhibition assessment of small-molecule inhibitors of the CdFabK enzyme have been 

conducted, including phenylimidazole and benzothiazole compounds. Phenylimidazole 

analogues have been found to display micromolar inhibitory activity against CdFabK, 

and a benzothiazole analogue has been found to display nanomolar inhibitory activity 

against the target. 

 

Conclusions: The SmTopoI and CdFabK enzymes present potentially novel, narrow-

spectrum antibacterial drug targets, and substantial progress has been made toward the 

rational targeting of these two enzymes. Of particular note, the first structure of a Topo I 

fragment from a gram-positive organism, S. mutans, has been determined. Enzymology 

and inhibitor studies have been conducted supporting the druggability of CdFabK and 

indicating the potential for selective inhibition of CdFabK. 
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CHAPTER 1.    INTRODUCTION1 

 

 

Overview 

 

 The current threat of antibacterial resistance looms large across the entire globe. 

Only a century ago, the threat posed by bacterial infections seemed all but defeated. As 

initial antibacterial breakthroughs were made, humanity’s victory over such infections 

was generally regarded as a near guarantee. As resistance mechanisms surfaced, however, 

pathogenic bacterial infections crept their way back into the healthcare arena, regaining 

an insidious foothold that, in retrospect, now appears to have been underestimated. 

Resistances continued to evolve, outpacing novel and effective antibacterial drug 

development and cutting into the hard-won gains humanity had made. Eventually, easily 

treated infections again became dire and the world is once more on alert, demonstrating 

the significant need for a modern and concerted effort to develop novel antibacterial 

agents. A compelling modern argument is being made that such an effort should include, 

at least in part, an investigation of narrow-spectrum targets for the development of these 

much needed novel antibacterial agents. A brief survey of the historic eras, modern 

efforts, and possible future of antibacterial drug discovery may act as a road map for such 

a case. Furthermore, a discussion of the requirements such narrow spectrum 

investigations entail helps to accurately present the accompanying benefits and costs. 

 

 

Antibacterial Drug Discovery Eras: Past, Present, and Future 

 

The Golden Era   

 

Before the advent of antibacterial drugs, any insult small or large that introduced 

the risk of infection was potentially fatal. From a sliver to surgery to simply being in 

close proximity to a person suffering from a communicable disease, the ever-looming 

threat of infectious disease was everywhere. However, in the early 1900s, an 

unprecedented breakthrough occurred. In 1928, Alexander Fleming made his famously 

“serendipitous” discovery of penicillin, and the “golden era” of antibacterial discovery 

was born (Figure 1-1).1 During this era, phenotypic whole-cell natural product screening 

predominated, bringing with it a prosperity in antibacterial drug discovery research yet to 

be rivaled. The majority of antibacterial agents arose from this era, including the 

penicillins, sulfonamides, vancomycin, streptomycin, chloramphenicol, tetracycline, and 

erythromycin. In fact, many of these antibiotics, or their derivatives, are still in use and 

relied upon today. 

 

 

 

                                                 

 
1 Adapted from final submission by permission of The Royal Society of Chemistry. Jones, J. A., Virga, K. 

G., Gumina, G. & Hevener, K. E. Recent Advances in the Rational Design and Optimization of 

Antibacterial Agents. Medchemcomm 7, 1694-1715, https://doi.org/10.1039/C6MD00232C (2016).1  

https://doi.org/10.1039/C6MD00232C


 

2 

 
 

Figure 1-1. Antibacterial eras and recent advances. 

 

Long past the historical “golden era” of antibacterial drug discovery, the modern 

“resistance era” is being countered by new legislation and advances in the rational design 

of antibacterial agents.  

Reprinted from final submission by permission of The Royal Society of Chemistry. 

Jones, J. A., Virga, K. G., Gumina, G. & Hevener, K. E. Recent Advances in the Rational 

Design and Optimization of Antibacterial Agents. Medchemcomm 7, 1694-1715, 

https://doi.org/10.1039/C6MD00232C (2016).1 

 

  

https://doi.org/10.1039/C6MD00232C
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The Medicinal Chemistry Era  

 

An effective follow-up to this preeminent era occurred in the mid- to late-

twentieth century in the form of the formidable “medicinal chemistry era.” Born out of 

the golden era, the medicinal chemistry era forsook the phenotypic screening modalities 

that preceded it and instead shifted researchers’ focus toward an elegant combination of 

synthetic modifications of previously discovered compounds, high-throughput screening, 

and prototypical library design.2 Antibacterial agents discovered or developed during this 

era include ampicillin, methicillin, the cephalosporins, and the quinolones. While early 

hope and expectations at the time were that this era would usher in a veritable end to the 

long reign of bacterial infections, history would more realistically highlight it as an 

incognizant precursor to the modern “resistance era”—an age marked by the menace of 

expanding bacterial resistance coupled with the unfavorable reality of an inversely 

diminishing antibacterial pipeline.3  

 

The Resistance Era  

 

In stark comparison to the gains made against bacterial infections during the 

historical golden and medicinal chemistry eras, the contemporary resistance era is 

overshadowed by a resurgence of infections for which modern antibacterials are less or 

altogether ineffective, such as the “ESKAPE” pathogens (Enterococcus faecium, 

Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas 

aeruginosa, and Enterobacteriaceae species). Moreover, the current drug discovery 

climate is noticeably less fruitful than that of its forerunners, due in part to the fact that it 

is geared around more arduous and time-consuming rational drug design modalities that 

highlight target-based high throughput screening (HTS) campaigns while implementing 

comparatively exhaustive and limited tools like combinatorial libraries.4 The few 

antibacterial agents developed during this era include linezolid and daptomycin. Apart 

from relatively slower process inherent to rational drug design and discovery, additional 

issues are associated with contemporary efforts that were, for the most part, innately 

avoided in the past by the very nature of the phenotypic whole-cell screening methods 

used in the golden era include difficulties with inadequate cell penetration, drug efflux, 

and in vivo instability, to name a few. Overall, the relatively reduced output of the 

modern drug discovery era combined with the accelerating occurrence of antibacterial 

drug resistance and the rapid rate at which infections spread with modern travel has 

merged to form an alarming modern public health concern with an even more concerning 

prognosis of the future.  

 

The Post-Antibiotic Era  

 

Looking ahead on the antibacterial timeline, the next major antibacterial drug 

discovery era is commonly forecasted as the “post-antibiotic era,” which foretells the 

existence of a bleak period reminiscent of the time before the existence of antibacterial 

agents—a future in which human deaths attributed to resistant microorganisms rises from 

the current 700,000 per year to an excess of 10 million per year.2 The United Nations 

(UN) World Health Organization (WHO) Ad hoc Interagency Coordination Group on 



 

4 

Antimicrobial Resistance (IACG) reported this year (2019) that by 2050, drug-resistant 

microbial diseases could cause economic damage on par to the 2008-2009 global 

financial crisis, and that by 2030, up to 24 million people could be forced into extreme 

poverty due simply to the effects of antimicrobial resistance.5 In order to adequately 

combat this threat, a multi-faceted approach has commenced. Both public and private 

entities across the globe have risen to meet the challenge of antimicrobial resistance in an 

effort to avert the post-antibiotic era, including new legislative and research efforts.  

 

 

Public and Private Responses to the Threat of Antimicrobial Resistance 

 

Within the last several years of the “resistance era,” the United States has 

launched several initiatives aimed at curbing the threat of infectious diseases including 

legislation like the Generating Antibiotics Incentives Now Act (GAIN Act) aimed at fast-

tracking the development and approval of Qualified Infectious Disease Products (QIDPs). 

Likewise, Europe has recently implemented its own similar responses, such as the 

Innovative Medicines Initiative (IMI) ENABLE project under the “New Drugs 4 Bad 

Bugs” (ND4BB) program aimed specifically at battling Gram-negative bacteria. The 

WHO has also led multiple initiatives aimed at addressing antibacterial awareness, 

including the launch of World Antibiotic Awareness Week, the Global Antimicrobial 

Resistance Surveillance System (GLASS), the Global Antibiotic Research and 

Development Partnership (GARDP), as well as the formation of the aforementioned 

IACG. However, while momentum has increased, these governmental responses did not 

manifest themselves spontaneously. In large part, they were the result of long-fought 

battles by private citizens and associations working diligently to assess, interpret, and 

raise the alarm regarding the overall problem—parts of an overall war still being fought. 

 

Appropriately combatting the modern threat of microbial disease centers around 

countering antibacterial resistance. Therefore, it is arguable that the individuals best 

suited to assess the threat are infectious disease-focused healthcare professionals 

themselves. Indeed, an early leader in this fight, the Infectious Disease Society of 

America (IDSA) has gone to great lengths to increase public awareness of the looming 

problem. As early as 2002, IDSA publicly conveyed worry for the lack of noteworthy 

research and development (R&D) aimed at combatting multidrug resistant (MDR) 

microbial infections.6 By 2004, IDSA had issued a clarion call to government agencies 

for the enactment of formal regulatory and funding initiatives to aid in the fight against 

the forthcoming antibacterial resistance crisis.7  Moreover, in 2010, IDSA introduced its 

“10 x ‘20 Initiative” calling for R&D sufficient to bring 10 novel and effective systemic 

antibacterial agents by the year 2020.8 By 2013, an update by the IDSA communicated 

some advancement had been made, but that it still appeared inadequate to properly 

confront the growing problem of resistance.9  

 

That same year, the Centers for Disease Control and Prevention (CDC) appeared 

to take the regulatory lead when it released its report titled “Antibiotic resistance threats 

in the United States, 2013.”10 In the report, the CDC called out four “core actions” to 

prevent antibiotic resistance, which included preventing the spread of infections and, 
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therefore, the spread of resistance; tracking antibiotic resistant infections; improving 

antibiotic prescribing via effective stewardship; and lastly, developing new diagnostic 

tests and new drugs. Because the natural evolution of bacteria includes antibiotic 

resistance, the CDC notes, the threat can be slowed with adequate measures, but never 

completely avoided or suspended entirely. This concept has been showcased recently by 

the existence and conservation of various elements of bacterial resistomes from isolated 

cave bacteria previously unexposed to modern antibacterial drugs.11 Because of this 

sobering fact, it is expected that a perpetual need for novel antibacterial drugs will always 

exist.  

 

 

Recent Advances in Antibacterial Drug Discovery, the Modern Era 

  

Attempts to address the modern challenge of antibacterial drug discovery have 

taken place via several different avenues. Since the 1980s, FDA approvals of new 

antibacterial agents steadily declined from sixteen approvals between 1983 and 1987 to 

only two approvals between 2011 and 2012, then rebounded between 2013 and 2017, 

increasing to seven approvals during that period.6 First glance suggests that private and 

public initiatives have begun to have a positive effect, resulting in a recent upswing in 

antibacterial drug discovery efforts. However, with the exception of an extremely small 

number of antibacterial agents possessing a novel mechanism of action (MOA), modern 

research efforts have primarily focused on the optimization of known antibacterial agents 

emphasizing rational design strategies geared around classic, conventional targets 1,6 

(Table 1-1). For the most part, the substantial bulk of these targets are well validated and 

have a long history of practical exploitation.4 In general, these modern antibacterial 

efforts have revolved around improving or regaining overall spectra of activity of the 

agents, as well as improving physicochemical properties, pharmacokinetics, adverse 

effects, off-site activities, and so on. In these efforts, modern antibacterial researchers 

have recently begun to “re-discover” natural products chemistry, complementing their 

endeavors with contemporary approaches like rational semi-synthetic modifications.12,13  

 

Recent advances in the rational design and optimization of antibacterial agents 

include the development of various agents across multiple drug classes. Developmental 

status of these novel agents range from early-stage clinical trials to recent approval by the 

U.S. Food and Drug Administration (FDA) while, unfortunately, some hopeful products 

have recently been withdrawn altogether.1 A brief summary of recently developed (within 

the last decade), mostly small molecule antibacterial agents is as follows:  

 

Advanced generation cephalosporins   

 

Recent advances in the chemistry of the β-lactam antibiotics have resulted in the 

approval and late-stage development of several advanced (or 5th) generation 

cephalosporins that boast enhanced spectra of activity (SOA), including activity against 

some Extended-Spectrum ß-Lactamase (ESBL) producers, methicillin-resistant  

Staphylococcus aureus (MRSA), and Pseudomonas aeruginosa (PA). There are currently  
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Table 1-1. Overview of antibacterial agents in clinical trials or recently approved. 

 

  

 

Class 

 

Novel 

Agents* 

 

Novel 

MOAs 

 

Novel 

Targets 

Status 

Early Stage 

(Phase 1) 

Late Stages 

(Phase 2 to 3) 

Recently 

Approved 

Advanced Generation Cephalosporins 

Cefiderocol  

Ceftaroline  

Ceftabiprole  

Ceftolozane 

4 1 

No 

No 

YES 

No 

0 

No 

No 

No 

No 

0 2 

Phase 3 

 

Phase 3 

 

2 

 

2010 

 

2014 

Next-Generation Beta-Lactamase Inhibitors 

AI101  

Avibactam 

ETX2514  

Nacubactam  

Relebactam  

Vaborbactam  

VNRX-5133 

Zidebactam  

8 0 

No 

No 

No 

No 

No 

No 

No 

No 

0 

No 

No 

No 

No 

No 

No 

No 

No 

4  

 

 

Phase 1 

Phase 1 

 

 

Phase 1 

Phase 1 

2 

Phase 3 

 

 

 

Phase 3 

2 

 

2015 

 

 

 

2017 

Next-Generation Oxazolidinones  

Contezolid (MRX-I)  

Radezolid  

Tedizolid  

3 0 

No 

No 

No 

0 

No 

No 

No 

0 2 

Phase 2 

Phase 2 

1 

 

 

2014 

Next-Generation Bacterial Topoisomerase Inhibitors 

Avarofloxacin  

Delafloxacin  

Finafloxacin 

Gepotidacin  

Nemonoxacin  

Zabofloxacin  

Zoliflodacin  

7 2 

No 

No 

No 

YES 

No 

No 

YES 

0 

No 

No 

No 

No 

No 

No 

No 

0 5 

Phase 2 

 

 

Phase 2 

Phase 3 

Phase 3 

Phase 2 

2 

 

2017 

2014 

Next-Generation Tetracyclines 

Eravacycline approved 2018 

Omadacycline approved 2018 

TP6076 Phase 1 

3 0 

No 

No 

No 

0 

No 

No 

No 

1 

 

 

Phase 1 

0 2 

2018 

2018 

Next-Generation Macrolides 

Solithromycin  

Nafithromycin  

Cethromycin  

3 0 

No 

No 

No 

0 

No 

No 

No 

0 3 

Phase 3 

Phase 2 

Phase 3 

0 
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Table 1-1. Continued. 

 

 

Does not include “novel” combination products comprised of multiple non-novel agents.  

DHFR, dihydrofolate reductase; LPS, lipopolysaccharide; MOA, mechanism of action; NDA, new drug application; FAS-II, bacterial 

fatty acid biosynthesis pathway. 

Data sources: Jones, J. A., Virga, K. G., Gumina, G. & Hevener, K. E. Recent Advances in the Rational Design and Optimization of 

Antibacterial Agents. Medchemcomm 7, 1694-1715, https://doi.org/10.1039/C6MD00232C (2016).1 

Talbot, G. H. et al. The Infectious Diseases Society of America's 10 x '20 Initiative (Ten New Systemic Antibacterial Agents FDA-

approved by 2020): Is 20 x '20 a Possibility? Clin Infect Dis, https://doi.org/10.1093/cid/ciz089 (2019).6 

 

 

Class 

 

Novel 

Agents* 

 

Novel 

MOAs 

 

Novel 

Targets 

Status 

Early Stage 

(Phase 1) 

Late Stages 

(Phase 2 to 3) 

Recently 

Approved 

Next-Generation Aminoglycosides 

Plazomicin 

1 0 

No 

0 

No 

0 0 1 

2018 

Novel Bacterial Folate Synthesis Inhibitors 

Iclaprim  

1 0 

No 

0 

No 

0 1 

NDA 

0 

Novel Inhibitors of the Bacterial FAS-II Pathway 

Afabicin desphosphono (Debio-1452)  

CG400549  

2 1 

YES 

No 

0 0 2 

Phase 2 

Phase 2 

0 

Novel Lipoglycopeptides 

Dalbavancin  

Oritavancin  

2 0 

No 

No 

0 

No 

No 

0 0 2 

2014 

2014 

Novel Penems  

Sulopenem Phase 3 

Tebipenem (SPR994) Phase 1 

2 0 

No 

No 

0 

No 

No 

1 

 

Phase 1 

1 

Phase 3 

 

0 

Novel Monobactams 

LYS228 

1 0 

No 

0 

No 

0 

 

1 

Phase 2 

0 

Other Novel Agents 

Fosfomycin disodium (epoxide, cell wall synthesis inhibitor) 

Fusidic acid (fusidane, protein synthesis inhibitor) 

Lefamulin (pleuromutulin, protein synthesis inhibitor) 

Murepavadin (POL7080; peptide mimetic, LPS inhibitor) 

SPR741 partner antibiotic (cationic potentiator) 

5 

 

1 

No 

No 

No 

YES 

No 

1 

No 

No 

No 

YES 

No 

1 

 

 

 

 

Phase 1 

4 

NDA 

Phase 3 

NDA 

Phase 3 

0 

TOTAL 42 5 1 7 21  12 

https://doi.org/10.1039/C6MD00232C
https://doi.org/10.1093/cid/ciz089
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two next generation cephalosporins that were recently approved and two in late-stage 

development (Phase 2 or Phase 3) in the U.S.6  

 

Next generation beta lactamase inhibitors  

 

The development of two new classes of ß-lactamase inhibitors (BLIs) has resulted 

in a much-needed respite from the steadily increasing threat of multi-drug resistant 

(MDR) and pan-drug resistant bacterial infections. There are currently eight novel BLIs 

of note, with four recently approved or in late-stage development, and four more in early 

stage development (Phase 1).6 

 

Next generation oxazolidinones  

 

The oxazolidinone class of antibacterials is a fully synthetic class of agents and 

has been considered a major breakthrough in antimicrobial drug development with 

linezolid standing as the best-known representative.14 The recent emergence of linezolid 

resistance has driven the investigation and advancement of next-generation 

oxazolidinones with improved antibacterial activities and decreased adverse effect 

profiles.15-17 To that aim, one novel oxazolidinone has recently been approved, and two 

more are in late-stage development.6 

 

Next generation bacterial topoisomerase inhibitors  

 

Bacterial topoisomerases are extremely well validated as efficacious antibacterial 

drug targets, and the type II topoisomerase inhibitors known as quinolone antibiotics 

have proven to be one of the most practically effective antibacterial classes in recent 

history. Quinolones have shown astonishing popularity over the last several decades, 

perhaps contributing to the sharp rise in use, or overuse, and subsequent respective 

resistance rates across the country.18 Nonetheless, bacterial topoisomerases have gained a 

great deal of attention within the realm of antibacterial drug development, and several 

inhibitors within this class have either been recently approved or are in late-stage clinical 

trials. Additionally, this is one of the few classic targets with new antibacterial agents 

being developed that showcase novel MOAs. One of these classes of new agents, known 

as novel bacterial topoisomerase inhibitors (NBTIs), consequently lack cross-resistance 

among pathogens possessing quinolone resistance. Additionally, the newer 

spiropyrimidinetrione class has recently arisen with yet another unique mechanism of 

topoisomerase II inhibition. Though discovered via whole-cell activity screens, 

spiropyrimidinetriones have since been rationally optimized.19 As one would expect, the 

unique MOIs of these newer classes imply accordingly unique structures, scaffolds, and 

SARs. Overall, two novel bacterial topoisomerase inhibitors have recently been 

approved, and five are in late-stage development. 6 

 

Next generation tetracyclines  

 

Tigecycline (Tygacil®; Wyeth Pharmaceuticals Inc., a subsidiary of Pfizer Inc., 

initial U.S. approval in 2005) is the first semi-synthetic representative of a class of 
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antimicrobials called glycylcyclines.20 The design and synthesis of glycylcyclines were 

intended to overcome the major problems of modern ribosomal protection and efflux-

pump-mediated tetracycline resistance.21,22 The success and utility of tigecycline, coupled 

with climbing resistance rates against other major antibacterial classes, have recently 

prompted the development of several more novel tetracycline analogues, including two 

recently approved agents and one in early stage development.6 

 

Next generation macrolides  

 

Macrolide antibiotics are natural product-based antibacterials composed of a 

large, macrocyclic lactone core, to which a variety of sugar substituents may be attached. 

Disadvantages of the macrolide antibiotics include limited Gram-negative activity, acid 

instability limiting the oral effectiveness of some compounds in the class, and interaction 

with human drug metabolizing enzymes in the cytochrome P-450 system that can result 

in significant drug interactions.23  Further, emerging resistance, typically due to 

alterations of the macrolide binding site on the ribosome, has limited the clinical utility of 

older compounds in the class and, therefore, novel modified ketolide antibacterials have 

been developed to overcome such issues. To date, three novel macrolides are currently in 

late-stage development. 

 

Next generation aminoglycosides  

 

Development of next-generation aminoglycosides has been somewhat limited. 

Nonetheless, semi-synthetic techniques have been implemented to develop a single novel 

aminoglycoside, plazomicin. It has shown activity against a broad range of Gram-positive 

and Gram-negative organisms, including ESBL-producing pathogens, when used in 

combination therapy with other antibacterial agents.24  Plazomicin is not active, however, 

against organisms harboring aminoglycoside resistance due to the expression of 

ribosomal methylases.6,25 It is the sole next-generation aminoglycoside in development, 

and was very recently approved.6 

 

Novel bacterial folate synthesis inhibitor  

 

Iclaprim (Motif Bio, PLC) is the sole next generation dihydrofolate reductase 

(DHFR) inhibitor in late-stage development. It was rationally designed using structural 

data and molecular modeling, and has potent Gram-positive bactericidal activity that 

includes activity against methicillin-sensitive S. aureus (MSSA), MRSA, and 

trimethoprim-resistant F98Y mutant strains.26,27  Activity against Gram-negative and 

atypical organisms is reported to be similar to that of trimethoprim.28 Iclaprim was 

granted qualified infectious disease product (QIDP) status and is in the NDA stage.6 

 

Novel inhibitors of the bacterial FAS-II pathway 

 

Two promising anti-staphylococcal FabI inhibitors are currently under 

development, both of which represent notable rational design methods. The first 

compound, CG400549, was designed to overcome the unfavorable pharmacokinetics of 
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triclosan by replacing a metabolically unstable phenol group with a pyridone ring system 

and the small ether linker with a methylene group.29,30 CG400549 binds to the FabI-

NADPH (reduced cofactor) binary complex, making the drug uncompetitive with respect 

to NADPH binding and competitive with respect to the binding of the FabI enoyl 

substrate.  The other FabI inhibitor in development, afabicin (Debio-1450) was developed 

using a classically iterative, structure-guided strategy, and showcases a unique MOA 

where the agent binds to a binary complex of the enzyme and its oxidized cofactor, 

NADP+
.
31-33  Modern structural information has guided recent efforts to expand the 

activity of CG400549 by iterative, structure-guided design strategies, to include Gram-

negative pathogens and mycobacteria.29 Both GC400549 and afabicin are in late-stage 

development.6 

 

Novel lipoglycopeptides 

 

The lipoglycopeptides contain large lipophilic moieties linked to glycopeptides, 

making their molecular weight notably high and, therefore, inherently separate from 

“small molecule” antibacterials.34 Nonetheless, two lipoglycopeptides with notable 

Gram-positive activity, dalbavancin and oritavancin, were approved within the last five 

years.6 

 

Novel penems  

 

The carbapenems are ß-lactam antibacterials developed several decades ago that 

showed exceptional activity against MDR bacteria.35 Their use has become more limited 

over the years, though, as resistance to the class was observed very soon after their 

clinical emergence.36 Recent development of novel penems has resulted in one agent in 

early stage development and one oral agent in late-stage development.6 

 

Novel monobactam  

 

Monobactams were discovered several decades ago, with the prototype aztreonam 

showcasing, as the class name would indicate, an unfused ß-lactam ring.37 While 

aztreonam is susceptible to serine beta lactamases, the novel monobactam LYS228 shows 

greater stability against SBLs and is currently in late-stage development. 

 

Other novel agents 

 

While more difficult to classify, several other novel antibacterial agenta are 

currently under development. These include the cell wall synthesis inhibitor fosfomycin, 

currently undergoing NDA status; the protein synthesis inhibitor fusidane, known as 

fusidic acid, currently in late-stage development; the pleuromutlin protein synthesis 

inhibitor known as lefamulin, currently in NDA status; the cationic, Gram-negative outer 

membrane targeting potentiator known as SPR741, currently in early-stage development; 

and Murepavadin (POL7080, Polyphor, Ltd.), which is a synthetic beta hairpin 

peptidomimetic with anti-pseudomonal activity currently in late-stage development and 

is, notably, the only novel antibacterial agent with a truly novel target.6,38 It is worth 
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mentioning, however, that as a peptide, this agent is not a small molecule antibacterial, 

per se.  

 

 

The Narrow Spectrum Era 

 

Current techniques and methods being implemented in the rational design and 

optimization of antibacterial agents suggest a subtle change in the recent state of affairs 

regarding the struggle against bacterial infections. As described above, recent advances in 

various techniques have helped gain small amounts of ground in the modern struggle 

against resistant bacterial infections—a conflict where prolonged trends have mostly 

demonstrated losses. Promising standouts include specific chiral configurations of new 

quinolones that grant improved activity under acidic conditions, fully-synthetic 

techniques used in the next-generation tetracyclines that allow for novel side-chains that 

grant activity against resistant pathogens, and semi-synthetic techniques used in the next-

generation macrolides that allow for the modification of functional groups that improve 

binding and, again, activity against resistant pathogens. The recent advances in the 

rational design and optimization of antibacterial agents are both encouraging in the fact 

that the downward trend in FDA approvals has been, if not reversed, at least momentarily 

slowed. Nonetheless, results are also somewhat discouraging in the fact that up until this 

point, all recent approvals lack novel targets. 

 

With newly implemented incentivization and modern advances in research 

methods, it is hoped that the threat of antibacterial resistance will continue to be met with 

appropriate countermeasures. The number of novel antibacterial agents that were recently 

approved or under late-stage development is highly encouraging, as is recent U.S. and 

European legislation facilitating the rapid development and approval of new 

antibacterials. By 2016 alone, there were almost 60 antimicrobial drugs granted QIDP 

status in the U.S., six of which had already attained U.S. approval, and 37 that were in 

late-phase clinical trials. In the last ten years, twelve new antibacterial agents were 

approved and, by 2019, three agents were in NDA status.6 These results stand as evidence 

for the initial success of these new initiatives and their ability to drive the advancement of 

antibacterial development. As mentioned above, however, a thorough analysis of the 

antibacterial pipeline showcases a trend that is still somewhat troubling. While there has 

been a noteworthy increase in antibacterial drug discovery and development, the 

astonishingly low number of compounds under development with original targets 

highlights the urgent need for the characterization and validation of such.  

 

This need for novel, validated targets has been emphasized by numerous reports 

from public health agencies across the world indicating the fact that resistance to 

antibacterial agents that exploit traditional targets continues to surge. Just within the last 

several years, the CDC reported a fatality within the United States resulting from a strain 

of New Delhi metallo-ß-lactamase (NDM) possessing Klebsiella pneumoniae found to be 

resistant to 26 antibiotics, including every aminoglycoside and polymyxin agent tested, 

and possessing what is assumed to be a novel resistance mechanism to the commonly 

regarded “antibiotic of last resort,” colistin.39 Despite encouraging progress being made 
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with optimization strategies, relying on classic antibacterial targets alone is simply not 

enough. It has been argued that ample attention should be turned toward the future 

development of selective antibacterial targets, a move that is expected to bolster the 

antibacterial pipeline as well as slow the development of antibacterial resistance. It is 

reasonable to believe that antibacterial agents geared toward such selective targets would 

have substantial additional benefits—such as the possibility of developing effective 

microbiome-sparing agents and the requirement for rational, more responsible use of 

antibacterial agents that would in turn contribute to greater antibacterial stewardship. This 

is giving way to what some predict will be the next phase of antibacterial discovery and 

development—the “narrow spectrum-era.”2  While indeed an exciting prospect, 

characterizing and validating novel narrow-spectrum targets would of course require an 

understandably substantial amount of intellectual resources, innovation, and effort 

previously unseen—including fully rational drug design based around heretofore novel 

and unconventional targets, the employment of a broad arsenal of drug discovery skills 

and techniques (Figure 1-2), and a certain degree of anticipated success.  

 

 

Requisite Antibacterial Drug Discovery Skills and Techniques 

 

Target identification and production techniques 

 

Techniques involved with preliminary target identification include a thorough 

literature review in order to survey the successes, failures, difficulties, and considerations 

of researchers who may have already pursued similar research paths; genomic 

bioinformatics techniques for data mining the existence of genes of interest for rational 

targets in pathogens of interest, as well as comparative genomic techniques for assessing 

the absence or existence of respective selective or otherwise rational targets in other 

bacteria; other bioinformatic techniques that allow one to assess certain parameters of the 

target that will later prove invaluable during target production, characterization, and 

compound screening—parameters such as target size, stability, isoelectric points, 

extinction coefficient, solubility, and lipophilicity. 

  

Once a satisfactory rational target has been selected that confers a particular 

degree of anticipated success, techniques centered around target production become of 

immediate importance. First, cloning techniques are required to produce the gene of 

interest that codes for the particular target enzyme. First, the gene must be acquired, must 

commonly done by polymerase chain reaction (PCR) amplification. Different cloning 

techniques must then be used to transfer the gene of interest into a suitable expression 

vector. Such cloning techniques include classic restriction enzyme cloning, TOPO 

cloning, TA cloning, Gibson cloning, Gateway cloning, ligation-independent cloning 

(LIC), and others. Decisions regarding codon optimization for anticipated expression 

organisms must also be considered at this point. Alternatively, the gene and an 

appropriate vector may also simply be purchased. As with all research, a cost analysis of 

time, money, manpower, and perhaps learning opportunity must be taken into account 

when selecting the most suitable technique. Additionally, decisions on later expression  

  



 

13 

 
 

Figure 1-2. Drug discovery skills and techniques used in the investigation of 

narrow spectrum targets in antibacterial drug discovery. 
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and purification techniques must be considered here, as an appropriate vector must be 

selected that carries the appropriate induction methods to produce the target enzyme, as 

well as the appropriate tags desired for solubility, recognition, purification, etc. Once the 

gene of interest is produced and has been inserted into a satisfactory vector, it must be 

transformed into a production host, such as bacteria (most commonly Escherichia coli), 

yeast, insect, or mammalian cell lines. 

  

Next, protein production techniques become imminently necessary. This includes 

growth and induction techniques, such as classic isopropyl-ß-D-1-thiogalactopyranoside 

(IPTG) induction, tetracycline induction, or autoinduction, among others. Target protein 

can then be harvested and purified via a number of various popular techniques, 

ammonium sulfate precipitation, immobilized metal affinity chromatography (IMAC), 

ion exchange chromatography, hydrophobic interaction chromatography (HIC), and size-

exclusion chromatography (SEC) among some of the most popular. Numerous other 

techniques are available, including more costly, but also highly specific antibody directed 

purification systems. A researcher can also use resins and slurries that apply his or her 

purification modality of choice under gravity filtration, or choose pre-packed columns 

and fast protein liquid chromatography (FPLC) systems for higher throughput and 

convenience. and expertise in protein biochemistry and purification make it possible to 

tailor the purification protocol to the characteristics and needs specific to a particular 

rational target. Upon determination of a rational antibacterial target and its subsequent 

procurement, it should be immediately and fully engaged. While multiple steps exist 

during such engagement, it is somewhat difficult to list a definitive order for proper 

execution of such and, therefore, a certain degree of adaptability is required. Nonetheless, 

the techniques essential for further pursuit follow, but are not in a definitive order and, 

instead, all have the potential to contribute a portion of all knowledge required for 

successful rational antibacterial drug discovery and development. 

 

Preliminary target characterization 

 

While every protein is different, some targets may be inherently stable and 

immediately easy to work with, while others prove recalcitrant to many conditions and 

procedures from the moment they are purified. Such intractability may prove not only 

inconvenient, but altogether discordant with the timeline a research team is under. 

Therefore, it is of the utmost benefit to characterize the target protein, and any constructs 

created, as soon as possible in order to move forward as efficiently as possible. As such, a 

number of techniques exist to aid in such hasty pursuits.  

 

General techniques. Several miscellaneous techniques exist for the preliminary 

characterization of a purified target protein that may be of some service to a research 

team. While much information can be determined about the protein of interest from the 

aforementioned application of bioinformatics and literature searches, techniques exist to 

corroborate calculated protein parameters or, often times, determine a characteristic more 

precisely. Examples include, but are not limited to, isoelectric focusing to determine a 

precise isoelectric point that could prove highly useful during stability assessments; 

denatured or native polyacrylamide gel electrophoresis (PAGE) for determining sample 
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purity, analyzing degradation, or evaluating dimerization; analytical gel filtration 

chromatography, or analytical SEC, for analyzing purity, size, dimerization, and other 

global characteristics of a target protein, such as whether or not it is retaining a bound 

cofactor or not; and mass spectrometry (MS), which offers an enormous amount of 

knowledge about the target, from identification via peptide fingerprinting, to de novo 

sequencing of an unknown target, to general structural inferences, to protein-protein 

interaction analyses via cross-linking MS.40,41 While only a few examples of general 

preliminary techniques, these highlight the importance of possessing a thorough working 

knowledge of protein biochemistry and the tools available for one’s use in thoroughly 

analyzing and characterizing a target protein in early-stage antibacterial drug discovery. 

 

Thermal shift assay. Another popular and very useful early-stage target 

characterization technique resides in the thermal shift assay, or differential scanning 

fluorimetry (DSF). This technique should be employed as early as possible as it may 

allow for subsequent analyses to occur that, without stable target protein, may not be 

feasible. Mastery of this technique is actually dually beneficial, as it can be used to 

identify ligands that bind to the purified target enzyme, thereby stabilizing the protein and 

increasing its melting temperature—which is determined by a hydrophobic fluorescent 

dye binding to the similarly hydrophobic innards of the target protein that are exposed 

upon melting and resulting in a measurable increase in fluorescence—or it can simply be 

used to identify salt, polyol, buffer, pH, or additive conditions that stabilize the protein, 

making further work notably easier.42   

 

Compound screening and hit selection techniques 

 

After purified stable, homogenous target protein is acquired, one of the next 

rational drug discovery steps is compound screening and selection of hit compounds for 

the sake of assessing how “druggable” the target is—meaning how likely is it that the 

target is accessible to a small molecule that can elicit a measurable biological response of 

biological and, potentially, clinical import. Once again, an immediately initial technique 

worthy of noting with respect to compound screening and hit selection is simply a 

thorough literature review.  

 

Active compound literature review. During early screening, it may be possible to 

find previous hits or compounds discovered or developed previously against related or 

otherwise similar targets by other research groups that may also be active against a novel 

rational target of interest. Even if such a compound does not show similar activity against 

the new target, it may prove useful as a chemical probe with utility later on in target and 

hit validation and characterization, or as a scaffold for iterative lead development and 

structure-activity relationship (SAR) analyses. Whether or not such an asset may be 

exhumed from the literature for any given rational drug discovery campaign, a battery of 

other useful drug discovery techniques prove to be absolute necessities.  

 

Biophysical techniques. For truly novel antibacterial targets, previous inhibitors 

or chemical probes simply may not be known, or may not even exist. What is more, high-

throughput screening (HTS) assays may not be developed, either. Also, knowledge of 
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conditions necessary for the stabilization of the targeted protein may not be immediately 

available. Nonetheless, a reasonable starting point in the search for useful chemical 

probes may be found in a more medium throughput method, or even a low throughput 

method under the most dire of circumstances.  

 

As mentioned above, the thermal shift assay technique is of significant utility 

during early stages of antibacterial drug discovery for the sake of preliminary protein 

characterization. While extremely useful for identifying stabilizing conditions for the 

novel target, the utility of the thermal shift assay in finding ligands that bind the enzyme 

is also substantial, but must be pursued cautiously. The reason for this is that just because 

a compound is discovered that binds the enzyme as a ligand, and therefore shifts the 

melting temperature higher, does not guarantee it has any activity, such as agonism or 

antagonism. As such, the discovery of such a compound would unquestionably call for 

further analysis and highlights the need for the use of a known functional assay or, if the 

existence for such does not exist, the requisite development of such. 

 

Lower throughput techniques used for the study of ligand-protein binding 

interactions include surface plasmon resonance (SPR; low to medium throughput) and 

isothermal titration calorimetry (ITC; lowest throughput of methods discussed). SPR 

requires the first protein binding component be immobilized on a sensor chip as the other 

test-compound binding component is free in solution and passed over the first component 

while subtle differences in refractive index are detected at the surface of the sensor.43 

ITC, on the other hand, simply uses heat as a signal to quantitatively measure binding 

affinity (Ka), stoichiometry (n), and enthalpy change (ΔH), after which free energy 

change (ΔG) and entropy change (ΔS) can be calculated.44 While lower throughput, both 

of these techniques benefit from the fact that neither requires labeling of any sort.  

 

Biochemical techniques. HTS methods are desirable in order to increase 

efficiency in the search for hits against a rational target. Biochemical assays are naturally 

more amenable to supporting higher throughput screening than their biophysical 

counterparts. In contrast to biophysical assays, biochemical assays allow not only for the 

measurement of the affinity of test compounds for purified target protein, but also for the 

measurement of some biologically meaningful effect related to the overall function of the 

target enzyme.45 Moreover, biochemical assays can often be read in small volumes 

compliant high throughput plates and plate readers that make large numbers of repetitive 

assays possible, thereby introducing the possibility of screening entire libraries in very 

little amounts of time and covering as much chemical space as possible in the search for 

active compounds. Often, assays exist or can be developed that rely upon the 

measurement of some easily recorded change in absorbance, fluorescence, or 

luminescence via the exploitation of reactions involving components such as metabolic 

cofactors, fluorophores, and quenchers. Such assays not only allow for high throughput 

chemical library screening, but also allow for efficient target and hit validation. 
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Target and hit validation and characterization techniques 

 

Once hit compounds are determined, a more thorough analysis of the target 

enzyme and the hit compound, as well as the interactive relationship between the two, 

can commence. A number of techniques exist to this end, and while it may be nearly 

impossible for a single lab or researcher to have a mastery of all of the following 

techniques, as well as access to the necessary respective instrumentations, the more 

techniques that can be employed, the more thorough understanding and knowledge 

pertaining to the target will be afforded. At minimum, however, a well-balanced and 

complementary combination of the following techniques are necessary. 

 

 Structural biology techniques. Various structural biology techniques exist that 

may be used for further biophysical characterization of a target protein and any 

significant interactions the target protein may make with various ligands. As would be 

expected, each technique carries with it its own benefits and liabilities, including 

administrative attributes like ease of use, access, and cost, as well as actual benefits and 

liabilities associated with the actual nature of the techniques and the application and 

results that can be expected from each. 

 

 X-ray crystallography. Considered the most powerful structure-guided drug 

discovery tool, X-ray crystallography offers a multitude of knowledge about the target 

protein down to the atomic level, with some crystal structures even determined and 

deposited in the protein data bank (PDB) with resolution below 1 Å.46 While structures at 

this high of a resolution are not overwhelmingly common, numerous structures exist in 

the PDB near the 2 Å resolution level, which allows not only overall structural features to 

be observed, but also finer features like peptide side chains and atomic interactions 

critical for structure-guided drug discovery. Cons to X-ray crystallography include the 

need to crystallize the target protein which, depending on the protein, may take 

substantial amounts of time (or simply never occur), may not yield high-quality 

diffracting crystals, and may not necessarily represent a biologically relevant 

conformation of the target protein; the need for access to a high-power X-ray source; as 

well as the substantial learning curve involved in procuring pure, homogenous protein, 

attaining high resolution diffracting crystals, data collection, data processing, and 

refinement. Nonetheless, the benefits of X-ray crystallography continue to outweigh the 

costs as it remains the indisputable golden standard for protein structure analysis. 

 

 Cryo-electron microscopy. Quickly becoming one of the most popular and 

powerful structural biology techniques available, cryo-electron microscopy (cryo-EM) 

has recently undergone substantial hardware, software, and methodology improvements 

that allow for near-atomic resolution biomacromolecular structure determination. 

Benefits of cryo-EM include the fact that the target protein does not need to be 

crystalized, which saves a substantial amount of time for the researcher and also allows 

structural analysis of the protein in an arguably more “biologically relevant,” or “near 

native” state.47 Limitations nonetheless include the requirement for pure, stable, and 

homogeneous protein; access to expensive equipment; substantial expertise; lower 

resolution structure determination relative to X-ray crystallography; and a high target 
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protein molecular weight cutoff limit relative to other major structural biology 

techniques.48 Though these last two issues represent major historical barriers to cryo-EM, 

which have traditionally included difficulty crossing the 2 Å resolution barrier and 

difficulty determining the structure of target proteins smaller than ~200 kilodaltons 

(kDa), recent reports exist of instances where the technique indeed produced results that 

broke each of these proposed barriers.49 As such, this technique is understandably gaining 

momentum, offering some utility in rational drug discovery efforts, with the potential for 

even greater utility to come. 

 

 Nuclear magnetic resonance spectrometry. Perhaps the final main structural 

biology technique worth discussing, nuclear magnetic resonance (NMR) spectrometry 

adds a significant amount of knowledge that complements the aforementioned techniques 

very well. While limitations indeed exist, such as a requirement for soluble protein, 

access to equipment and expertise, and a less practical general maximum target protein 

size cutoff limit of roughly 25 kDa, NMR is an extremely powerful modern tool used in 

drug discovery efforts. Unlike the other techniques mentioned, NMR offers the ability to 

characterize highly dynamic and disordered target proteins, the ability to analyze target 

enzyme activity in real-time, and the ability to effectively map specific binding site 

characteristics, among others.50-52 

 

 Enzymology techniques.  Thorough target protein characterization and validation 

requires a variety of different enzymology techniques. Functional biochemical assays are 

an absolute requirement for proper analyses of compound potency and the evaluation of 

mode of inhibition. A return to biophysical assays like thermal shift, ITC, and SPR is 

necessary for a proper assessment of binding kinetics.  

 

Iterative lead development techniques 

 

As the realistic terminal goal of any rational drug discovery campaign is the 

eventual development of lead compounds that can be carried on to clinical development, 

a fair amount of iterative rational compound optimization must occur. As a culmination 

of all pre-clinical development up to this point, it is understandable that SAR-guided 

chemical optimization should include all techniques heretofore discussed, as well as a 

few additional techniques.  

 

SAR-guided chemical optimization. Thorough analysis of structural data, ideally 

with a bound ligand, affords the researcher the opportunity to visualize the target enzyme 

and its corresponding active or allosteric site along with a previously discovered or 

developed ligand. This will allow for rational modification to the compound that allows 

the researcher to manipulate the compound to maximize characteristics like potency via 

improved or added non-covalent molecular interactions, solubility via rational addition of 

solubilizing groups at key positions, and so on. This allows for medicinal chemistry trials 

to commence, where newly synthesized rationally modified compounds can be tested via 

in vitro or in vivo functional assays.  
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Virtual screening. Additional methods can also take place once structural data is 

obtained, including virtual screening, where significantly large computational libraries 

can be prepared and screened against the target protein via techniques like docking, 

pharmacophore matching, and shape matching. Any possibly improved and optimized 

compounds that result can then be synthesized or purchased and, again, tested against the 

target protein for potency assessment.  

 

Any gains or losses that result after classic “manual” SAR-guided optimization or 

virtual screening regarding potency and physicochemical attributes can be rationally 

weighed and evaluated. Then, the products can be rationally analyzed and further 

modified in an iterative fashion until a satisfactory product results that has, ideally, 

balanced an increased potency with satisfactory physicochemical properties that will not 

hamper the compound with respect to toxicology, metabolism, pharmacokinetics, or 

pharmacodynamics during future clinical trials and development.  

 

While it is unlikely that a researcher or research team would have access to 

expertise and equipment needed for every technique discussed above, a working 

combination is required and must be tailored to the specific rational target. Pros and cons 

of each technique must be considered, and a respectively appropriate research plan 

should commence based around which techniques are needed for project success and 

which techniques are available. While some techniques are absolute necessities, such as 

bioinformatics and protein production and purification, some but not all representatives 

from the other overarching technique categories can be mixed and matched. For example, 

depending on the specific research needs, while access to SPR may not exist, ITC may 

take its place; while cryo-EM may not be suited for a smaller protein target, X-ray 

crystallography may work well; and while biochemical assays utilizing absorbance may 

not be feasible, development of chemical probes or substrates that utilize specific 

fluorophores may be a possibility. As with most endeavors, the more knowledge and 

expertise one possesses, the more adaptability is afforded, and the more anticipated 

success exists. Consequently, it is arguable that access to enough knowledge, skills, and 

instrumentation would allow for any novel target to be engaged.  

 

 

Novel Narrow Spectrum Antibacterial Targets 

 

Whether the novel antibacterial target of interest is intended to be a broad 

spectrum target, a narrow spectrum target, or simply “anything we can get,” knowledge 

about the target itself is of paramount importance. In fact, before the actual pursuit 

begins, it is understood that a substantial amount of resources—time, energy, money—is 

going to be invested into the target. That is why, as mentioned above, a certain degree of 

anticipated success must accompany any real antibacterial drug discovery and 

development campaign. But, how can a researcher anticipate success when so little is 

known about a previously un-elucidated target? The only way, in fact, is to harvest as 

much knowledge about the target of interest in advance. This is, of course, important 

during rational drug discovery and development, but absolutely crucial when pursuing 

narrow spectrum antibacterial targets.  
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Pertinent questions include, but are not limited to, is the antibacterial target 

essential, or does its function at least dictate a significant degree of fitness to its host 

organism that could be exploited in some clinically significant manner? Perhaps it is an 

explicitly essential enzyme target. Or, perhaps it is instead a more cryptic target that 

confers some degree of fitness that can be taken advantage of and leveraged in high-stress 

biological situations, such as during immune response, concomitant antibacterial agent 

administration, or human microbiome supplementation and overcrowding. With respect 

to potential narrow spectrum targets, another pertinent question involves the existence—

or rather the absence—of the target in other bacteria that represent the beneficial 

members of the human microbiome. For the sake of selectivity, multiple beneficial 

scenarios could exist. First, it would be ideal if the target existed only in the genomes of 

only a few pathogens, thereby sparing beneficial bacteria from collateral damage and 

eradication. Alternatively, the gene responsible for the target enzyme could exist in 

bacteria other than the target pathogen, but perhaps the non-targeted bacteria possess 

bypass mechanisms that render that particular target non-essential in the respective 

bacteria under physiological conditions.  

 

Other pertinent preliminary questions of course involve the overall nature of the 

pathogen being targeted, such as site of infection, gram-stain classification, absence or 

presence of efflux pumps, and extent of pathogenicity. These types of questions may help 

guide anticipated physicochemical characteristics necessary for any future chemical 

probes or inhibitors, amongst others. Altogether, it is evident that the more preliminary 

knowledge a researcher has before commencing a rational antibacterial drug discovery 

campaign, the better. Once a requisite amount of preliminary knowledge is gained, a 

number of actual laboratory-based techniques are required for the successful discovery 

and development of rational antibacterial agents. 

 

Again, as our understanding of the human microbiome evolves, the deficiencies in 

traditional, broad-spectrum antibacterial therapy are becoming increasingly apparent. 

Both the advent of multi-drug resistant bacterial infections and the devastating 

disturbance of our normal bacterial ecology testify of the alarming need for novel 

antibacterial agents capable of selectively targeting pathogens, drug-resistant or 

otherwise, while mitigating the impact on beneficial and commensal organisms. As such, 

the benefit of narrow spectrum targets, which may afford opportunities for the killing or 

inhibiting specific pathogens without significantly inhibiting the growth of collateral or 

beneficial bacteria, is substantial. Engaging enzyme targets that meet these requirements, 

however, hinges upon exploiting intrinsic differences between the enzymatic proteomes 

of pathogenic bacteria and commensal bacteria—differences can be notably difficult to 

discern, thereby making the identification of such narrow spectrum antibacterial targets 

appropriately difficult.53,54 Two such potential targets follow.  

 

Bacterial topoisomerase I  

 

Bacterial topoisomerase I represents a potentially promising narrow-spectrum 

target as studies have arisen demonstrating its essentiality in bacterial species lacking the 
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only other type IA topoisomerase (topoisomerase III). With evidence supporting the 

bacterial essentiality of at least one type IA topoisomerase (topoisomerase I or 

topoisomerase III), an overlapping role between the two enzymes, and the fact that a 

select few pathogenic bacterial species solely possess topoisomerase I without 

topoisomerase III, the catalytic inhibition of bacterial topoisomerase I represents an 

attractive prospect for novel, selective antibacterial development.55-59 The streptococci 

are one of the few bacterial species that may possess topoisomerase I as their sole type IA 

topoisomerase and a representative, Streptococcus mutans, exists as a particularly 

promising candidate for the exploration and validation of topoisomerase I as a novel, 

selective antibacterial target.60-66 

 

Bacterial enoyl-acyl carrier protein (ACP) reductase II, FabK 

 

Bacterial enoyl-acyl carrier protein (ACP) reductase II, or FabK, is an enzyme 

within the bacterial fatty acid biosynthesis (FAS II) pathway that represents another 

highly promising narrow-spectrum target. Recent studies have demonstrated the 

essentiality of fabk gene that codes for enoyl-ACP reductase II (FabK) in C. difficile.67 

FabK is one of several disparate enoyl-ACP reductase isozymes (FabI, FabK, FabL, and 

FabV) that exists across bacteria.68-70 Additionally, recent data has shown that different 

regulatory systems control whether or not a bacterium is capable of bypassing FAS II 

inhibition via the uptake of exogenous fatty acids.71,72 Because FabK is the sole, essential 

enoyl-ACP reductase expressed in C. difficile, combined with the fact that different 

bacteria may possess an assortment of other enoyl-ACP reductase isozymes and 

regulatory systems, FabK from C. difficile represents a potential antibacterial target with 

particularly significant narrow-spectrum promise.  

 

Presented here are data investigating both the bacterial topoisomerase I and FabK 

enzymes as novel and potentially narrow spectrum antibacterial targets via validation and 

characterization studies using an array of drug discovery techniques, including structural 

investigations, biochemical assay development and application, and inhibitor screening 

and testing. 
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CHAPTER 2.    TARGETING BACTERIAL TOPOISOMERASE I2 

 

 

Introduction 

 

 

Topoisomerases Background 

 

Biological role of topoisomerases 

 

Topoisomerases are ubiquitous enzymes that help manage the diverse topological 

complications DNA undergoes during various biological processes. In general, the 

overall mechanism by which all topoisomerases function is centered around the initiation 

of controlled breaks in the DNA via temporary phosphodiester bonds between the 

substrate and a conserved catalytic tyrosine residue on the enzyme.73-75 The topological 

complications managed include negative and positive supercoils, catenated DNA rings, 

and various entanglements.75 There are a number of different topoisomerases that exist 

across all forms of life, which are organized into particular types and subtypes and serve 

varying biological roles. These roles may or may not overlap to a certain degree as they 

are carried out to address the different aforementioned topological complications in 

particular ways (Table 2-1).55,75-78 Type I topoisomerases exist as monomers that cause 

single DNA strand breaks and elicit topological change one link at a time via either a 

rotational or strand passage mechanism, and type II topoisomerases are multimers that 

require adenosine triphosphate (ATP) hydrolysis as an energy source in order to initiate 

double stranded breaks and facilitate DNA strand passage; whereas subtype A 

topoisomerases result in a 5’ phosphotyrosine DNA cleavage intermediate, and subtype B 

topoisomerases result in 3’ phosphotyrosine intermediates.55,75,79 Accordingly, 

topoisomerases are indispensable in their biological duties and, therefore, represent 

highly attractive and efficacious chemotherapeutic targets. While many human 

topoisomerases exist as well-validated and exploited anti-cancer targets, only a select few 

bacterial topoisomerases are currently exploited as useful antibacterial targets. 

 

Different bacterial topoisomerase targets   

 

Up to four topoisomerases can be present in the prokaryotic genome, two from the 

type IIA family and two from the type IA family. Type IIA topoisomerases are 

heterotetramers encoded by multiple genes (gyrA/B and parC/E), and type IA 

topoisomerases are monomers encoded by single genes—topA for topoisomerase I

                                                 

 
2 Adapted from final submission with permission from Elsevier Inc. Jones, J. A., Price, E., Miller, D. & 

Hevener, K. E. A simplified protocol for high-yield expression and purification of bacterial topoisomerase 

I. Protein Expr Purif 124, 32-40, https://doi.org/10.1016/j.pep.2016.04.010 (2016).73 

Adapted from final submission with open access permission from Elsevier Inc. Jones, J. A. & Hevener, K. 

E. Crystal structure of the 65-kilodalton amino-terminal fragment of DNA topoisomerase I from the gram-

positive model organism Streptococcus mutans. Biochem Biophys Res Commun, 

https://doi.org/10.1016/j.bbrc.2019.06.034 (2019. In Press).74
 

https://doi.org/10.1016/j.pep.2016.04.010
https://doi.org/10.1016/j.bbrc.2019.06.034


 

23 

Table 2-1. Overview of types and subtypes of select topoisomerases. 

 

 

DS, double stranded; SCs, supercoils; SS, single stranded 

Data sources: Champoux, J. J. DNA topoisomerases: structure, function, and mechanism. Annu Rev Biochem 70, 369-413, 

https://doi.org/10.1146/annurev.biochem.70.1.369 (2001).75 

Pommier, Y. Drugging topoisomerases: lessons and challenges. ACS Chem Biol 8, 82-95, https://doi.org/10.1021/cb300648v (2013). 

Slesarev, A. I. et al. DNA topoisomerase V is a relative of eukaryotic topoisomerase I from a hyperthermophilic prokaryote. Nature 

364, 735-737, https://doi.org/10.1038/364735a0 (1993).55  

Wendorff, T. J. & Berger, J. M. Topoisomerase VI senses and exploits both DNA crossings and bends to facilitate strand passage. 

Elife 7, https://doi.org/10.7554/eLife.31724 (2018).77 

 

Type Subtype Enzyme Source Function Link Energy Source Subunits 

I, SS 

Break 

A 

Topo I  Bacteria Relax - SCs 

5’ 

Torsional strain Monomer 

Topo III Bacteria Decatenation, relax - SCs Torsional strain Monomer 

Topoisomerase IIIα  Mammalian Relax - SCs Torsional strain Monomer 

Topoisomerase IIIß  Mammalian Uncertain Torsional strain Monomer 

Reverse gyrase Archaea, other Cause + SCs ATP Heterodimer 

B Topoisomerase I Mammalian Various, relax +/- SCs 
3’ 

Torsional strain Monomer 

C Topoisomerase V Archaea Relax +/- SCs Torsional strain Monomer 

II, DS 

Break 

A 

Topo II/Gyrase Bacteria Introduce - SCs 

5’ ATP 

Heterotetramer 

Topoisomerase IV Bacteria Relax - SCs, decatenation Heterotetramer 

Topoisomerase IIα Mammalian Decatenation Homodimer 

Topoisomerase IIß Mammalian Various Homodimer 

B Topoisomerase VI Archaea Relax +/- SCs, decatenation Heterotetramer 

https://doi.org/10.1146/annurev.biochem.70.1.369
https://doi.org/10.1021/cb300648v
https://doi.org/10.1038/364735a0
https://doi:10.7554/eLife.31724
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topB for topoisomerase III.55,80 Only two bacterial topoisomerases—the type IIA 

topoisomerases known as gyrase and topo IV—have inhibitors that have been developed 

and marketed as antibacterial drugs.55 These type IIA topoisomerases stand as very well-

established and well-validated antibacterial targets via the quinolone class of 

topoisomerase poisons, which form bactericidal topoisomerase-DNA-quinolone ternary 

complexes and result in broad-spectrum antibacterial activity. In contrast, the type IA 

topoisomerases—topoisomerase I and topoisomerase III—remain relatively unexplored 

from a drug discovery and development standpoint and are consequently without 

respectively approved inhibitors.55 Current efforts are being undertaken, however, to 

discover and develop novel bacterial topoisomerase IA inhibitors.81  

 

As evolutionary paralogues, topoisomerase I and topoisomerase III are believed to 

have arisen via gene duplication and, therefore, reasonably exemplify a certain degree of 

functional overlap.82 Topoisomerase I exists in all bacteria to relax negative DNA 

supercoils, while topoisomerase III is only found in some bacteria and is primarily geared 

toward decatenation (Table 2-2).78 Nevertheless, it has been shown that E. coli strains 

possessing the genes for both topoisomerase I and topoisomerase III (topA and topB, 

respectively), while comparatively less fit, are able to survive topA gene deletion 

mutations, but strains lacking the topB gene showed no such viability.83 The scientific 

deduction made herein is that when topoisomerase I activity is negated in some way, the 

residual topoisomerase III enzyme, if present, is capable of relieving the resultant insult, 

thereby maintaining viability and fitness to some extent and acting as a sort of enzymatic 

levee. This concept introduces the hypothesis that, on top of the potential broad-spectrum 

fitness cost of topoisomerase I inhibition across all species of bacteria, specific 

topoisomerase I inhibitors could have the added effect of showing selectivity against 

organisms that possess the topA gene in absence of the topB gene (Figure 2-1).  

 

 

Type IA Topoisomerases in Streptococci 

 

Several clinically relevant bacteria exist that possess topA without topB and, 

therefore, express topoisomerase I as their sole type IA topoisomerase. Examples include 

Acinetobacter baumanii, Francisella tularensis, Helicobacter pylori, Legionella 

pneumophila, Mycoplasma pneumoniae, and Mycobacterium tuberculosis.78 The 

clinically relevant streptococci were also long thought to possess topA without topB. 

However, recent provisional streptococcal topoisomerase III protein sequence depositions 

in the National Center for Biotechnology Information (NCBI) database have surfaced that 

now suggest otherwise. Further bioinformatic analysis, though, suggests at least the 

possibility that the streptococcal topo III protein sequences found in NCBI may be 

misannotated as there is no NCBI-annotated streoptococcal topB gene.84 Furthermore, a 

Basic Local Alignment Search Tool (BLAST) nucleotide-to-nucleotide “blastn” analysis 

of the E. coli topB gene (accession no. CP009685.1) against the genome of the Gram-

positive model organism Streptococcus mutans (taxid: 1309), returned no significant 

similarities.84,85 Similarly, a BLAST protein-to-nucleotide “tblastn” analysis of the 

provisionally annotated S. mutans topo III protein (accession no. SUN72613.1) from  
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Table 2-2. Topoisomerases present in clinically relevant bacteria. 

 

Species Topoisomerase 

I 

Topoisomerase 

III 

Gyrase Topoisomerase 

IV 

S. mutans X ? X X 

A. baumannii X - X X 

F. tularensis X - X X 

H. pylori X - X - 

L. pneumophila X - X X 

M. pneumoniae X - X X 

M. tuberculosis X - X - 

B. anthracis X X X X 

C. difficile X X X - 

E. coli X X X X 

E. faecalis X X X X 

H. influenzae X X X X 

K. pneumoniae X X X X 

N. gonorrhoeae X X X X 

P. aeruginosa X X X X 

S. aureus X X X X 

Y. pestis X X X X 

 

Data source: Forterre, P., Gribaldo, S., Gadelle, D. & Serre, M. C. Origin and evolution 

of DNA topoisomerases. Biochimie 89, 427-446, 

https://doi.org/10.1016/j.biochi.2006.12.009 (2007).78 

 

 

 

 

  

https://doi.org/10.1016/j.biochi.2006.12.009
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Figure 2-1. S. mutans topoisomerase I structural homology model.  

 

Full structure of the SmTopoI enzyme (blue ribbons) with the N-term (green) and flexible 

C-term domain highlighted (red). 
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NCBI against the S. mutans UA159 genome (taxid: 210007) only showed a 27.6% 

identity match with the S. mutans complete genome (accession no. AE014133.2), which 

may possibly represent a low-grade match to the nucleotide sequence for another DNA-

binding enzyme from S. mutans such as, but not necessarily, topA.84,85 An open protein-

to-protein “blastp” search of the NCBI annotated S. mutans topo III protein (accession 

no. SUN72613.1), however, returned a substantial number of topo III protein sequence 

matches from other streptococci that range from 65.46 to 98.45%.85 While an uncertainty 

indeed lingers around the presence or absence of topB in S. mutans, substantial utility still 

remains in studying the topo I enzyme from this useful organism. 

 

If S. mutans does in fact possess topo I as its sole type IA topoisomerase, then it 

would serve as a particularly promising subject for the validation of topo I as an effective 

narrow-spectrum antibacterial drug target. In contrast, if it turns out S. mutans actually 

expresses topo III as well, topo I from S. mutans (SmTopoI) may, for the time being, still 

act as a useful surrogate antibacterial target for amassing information regarding the 

druggability of topo I that may later be translated to other bacteria that are confirmed to 

express topo I as their sole type IA topoisomerase. Therefore, either way, the 

investigation of SmTopoI serves as a promising head start for the characterization and 

validation of topoisomerase I as a selective antibacterial target. This research thereby 

endeavors to use S. mutans to address remaining gaps in knowledge relating to key 

structural evidence substantiating the druggability of topoisomerase I in general.  

 

As a representative of the viridans group streptococci (VGS) and a Gram-positive 

model organism, S. mutans exists as an excellent candidate for the initial exploration and 

validation of topo I as a novel antibacterial target.60-66 VGS are represented by a plurality 

of heterogeneous streptococcal organisms that constitute a common component of the 

human microbiome found primarily within the oral cavity and upper respiratory tract, as 

well as in the gastrointestinal tract and female genitourinary tract.86,87 With historically 

low consideration for pathogenicity, VGS have been increasingly implicated in a wide 

array of problematic diseases such as endocarditis, pneumonia, cellulitis, bacteremia, and 

viridans streptococcal shock syndrome, among others.86,88 Moreover, VGS stand as the 

predominant group of microorganisms within the oropharynx, with a member of the 

group, S. mutans, representing the main culprit in dental cariogenesis.89 Considering the 

vast clinical and economic burdens now known to be caused by VGS, the necessity for 

effective antibacterials targeting these pathogens has escalated. While the majority of 

VGS infections are still susceptible to penicillin, the proliferation of drug-resistant VGS 

organisms, including those resistant to penicillins, macrolides, and lincosamide 

antibiotics, is becoming more of a concern.86,87 Additionally, as the beneficial bacteria 

that cohabitate the usual sites of VGS residence are concomitantly eradicated by the 

traditional use of these broad-spectrum antibacterials, significant collateral consequences 

such as candidiasis and Clostridioides difficile infections have increased over time.90-92  

Therefore, novel targets for new VGS-focused antibacterials are in dire need. 
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Targeting SmTopoI 

 

As most bacterial topo I inhibitors published to date are general DNA-binding 

agents, they would be expected to show poor selectivity for individual type IA 

topoisomerases.56 With that in mind, there are two known direct mechanisms for 

topoisomerase inhibition. First is the formation of aforementioned cytotoxic 

“topoisomerase poisons” that form ternary enzyme-DNA-inhibitor complexes and 

prevent the rejoining of transiently cleaved DNA strands. The second mechanism is 

catalytic inhibition via competition at the allosteric ATP site, or direct competition at the 

active DNA site. As type IA topoisomerases act independently of ATP, any catalytic 

inhibition would likely need to be accomplished by specifically targeting the DNA active 

site. While the majority of published direct bacterial topoisomerase I inhibitors have been 

shown to be “topoisomerase poisons,” scientific precedent does exist for catalytic 

bacterial topoisomerase I inhibition via direct DNA competition.93,94 As such, this 

research focuses on characterizing the DNA active site of SmTopoI as the first step in 

rationally providing evidence of the possibility of selective topoisomerase I druggability. 

Accordingly, a thorough structural understanding of the target enzyme is required to 

identify key determinants of substrate and inhibitor binding along the DNA active site. 

Such knowledge would support future efforts for the identification of novel chemical 

probes and support the druggability of bacterial topoisomerase I. To gain such an 

understanding, the structural determination of the enzyme at atomic resolution is 

necessary. Substantial initial hurdles exist, however, as topo I is a DNA binding enzyme 

and, as such, has been proven throughout the literature to be a highly difficult target 

enzyme to purify and crystallize.95-97  

 

Unfortunately, additional difficulties also exist that are unique to targeting topo I. 

For example, unlike the ATP-dependent type IIA topoisomerases, the ATP-independent 

type IA topoisomerases catalyze an energetically favorable event and rely solely on the 

torsional strain of their DNA substrate to generate the energy required to carry out their 

biological responsibilities relaxing hyper-negative supercoils or decatenating interlinked 

DNA.55 This fact carries with it multiple liabilities. First, unlike the type IIA 

topoisomerases, there is no opportunity to measure the expenditure of an energy source 

when targeting type IA topoisomerases. As such, the only way to measure the activity of 

the topo I enzyme, and in turn measure the inhibition of its activity, is by measuring the 

degree of substrate DNA supercoiling that remains after incubation. 

 

 

Aims 

 

 

Protein Expression and Purification of SmTopoI 

 

As mentioned above, inherent difficulties are involved with the purification of 

DNA-binding proteins such as bacterial topoisomerase I. The initial need to separate 

cellular DNA from the target enzyme introduces an early obstacle in the protocol. To 

overcome such an obstacle, previous methods including treating extracts to batch anion 
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exchange, DNase treatments, and DNA precipitations using different compounds like 

streptomycin sulfate and polyethyleneimine have been employed.98 While each DNA-

separation method has its own advantages and disadvantages, they all share a certain 

degree of costliness with respect to time and resources. Previous studies regarding the 

expression and purification of bacterial topoisomerase I have yielded varied results. 

While truncated N-terminal fragments of E. coli topoisomerase I have been well studied 

and characterized, the full-length enzyme is desirable for thorough characterization and 

inhibitor development.99,100  In one study, the purification and analysis of full-length 

topoisomerase I from the extremophile Thermotoga maritima was carried out (expressed 

in E. coli with IPTG induction; heated to precipitate non-thermophile proteins and DNA; 

purified using a heparin column followed by size exclusion chromatography) and yielded 

2-3 mg/Liter.101,102  However, information gleaned from an extremophile would not 

necessarily be expected to provide data that could be reliably applied to clinically 

relevant bacteria. Another study detailed the purification of full-length topoisomerase I 

from Streptococcus pneumonia (expressed in E. coli with IPTG induction followed by 

dialysis, IMAC purification, and a second dialysis step), but did not report yield.93  

Despite their noteworthy contributions to our understanding of bacterial topoisomerase I, 

these studies either failed to report the amount of protein yielded from their respective 

protocols, or the yield was relatively low, making biophysical and biochemical assay 

studies logistically difficult. A study developing the purification of topoisomerase I from 

E. coli yielded a significant amount of the enzyme, but would not be appropriate for 

expressing and purifying topoisomerase I from non-E.coli bacteria as the protocol lacked 

a method for separating non-native enzyme from native.103 More recent studies discussed 

the purification of full-length E. coli and Mycobacterium tuberculosis topoisomerase I 

used for the subsequent crystallization and characterization of the respective enzymes, 

but did not report the yields.95,96 

 

Herein, the expression, rapid two-step purification, and preliminary 

characterization of full-length topo I from S. mutans with yields significantly greater than 

previously reported purifications of bacterial topoisomerase I are reported. Notably, the 

expression protocol requires significantly less effort than classical induction methods and 

the purification protocol bypasses traditionally cumbersome DNA-removal methods and 

can be carried out in a single day with an estimated purity of 95% or higher.  

 

 

Structural Determination of SmTopoI_N65 

 

As overall interest in type IA topoisomerases continues to increase, especially 

with regard to efforts aimed at discovering and developing novel antibacterial agents—

particularly topo I inhibitors—the need for a greater amount of structural topo I data 

becomes more apparent.56,57,93,97,104 Aiding in these efforts, several three-dimensional 

apo- and co-crystal structures of topo I from various bacterial species have been 

determined, including those from the gram-negative model organism E. coli (EcTopoI),96 

the gram-negative extremophile Thermotoga maritima (TmTopoI),101 and the uniquely 

non-gram-classified Mycobacterium tuberculosis (MtTopoI).95  
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Though E. coli prevails as the predominant model organism in microbiological 

research, inherent differences exist between gram-negative and gram-positive bacteria. 

Accordingly, as Streptococcus mutans has gained utility as a gram-positive model 

organism,105 efforts were undertaken to obtain diffraction-quality full-length S. mutans 

topo I (SmTopoI) protein crystals. Though, similar to other topo I crystallization 

campaigns reported in the literature, such efforts were met with initial difficulty.95,96 

Therefore, rational constructs of main body N-terminal fragment of SmTopoI were 

cloned and expressed to remove the flexible C-terminal domain and improve chances of 

crystallization. This eventually led to a 65-kDa fragment (SmTopoI_N65) that yielded 

high diffraction-quality crystals used for structural characterization of SmTopoI. Herein 

the three-dimensional crystal structure of SmTopoI_N65, the first topo I structure 

determined from a gram-positive bacterium and its corresponding structural 

characterization are reported. 

 

 

Materials and Methods 

 

 

Reagents, Chemicals, Biologicals, and Equipment 

 

Biological materials, equipment, and reagent-grade chemicals used were from the 

following sources: Streptococcus mutans genomic DNA, ATCC® 700610D-5™ from 

ATCC® (Manassas, VA); ArcticExpress(DE3) Competent Cells, pUC18 plasmid, XL1-

Blue Supercompetent cells, and BL21(DE3)-Gold Competent cells from Agilent 

Technologies (Santa Clara, CA); ChampionTM pET SUMO Protein Expression System, 

including One Shot® Mach1TM-T1R and BL21(DE3) One Shot® Chemically Competent 

E. coli cells from invitrogenTM by Life TechnologiesTM (Carlsbad, CA); HyperLadder™ 

1kb Plus from Bioline USA Inc (Taunton, MA); pET-15b vector, pET-16b vector, and 

pET-21d vector from Novagen® EMD Millipore® (Billerica, MA); Quick LigationTM 

Kit, BamHI, NdeI, and NcoI restriction enzymes from New England Biolabs, Inc. 

(Ipswich, MA); DifcoTM LB, Miller and Terrific Broth from BDTM (Franklin Lakes, NJ); 

Thermo Scientific™ GelCode™ Blue Safe Protein Stain and SpectraTM Multicolor High 

Range Protein Ladder from Thermo Fisher Scientific (Waltham, MA); HiMark™ Pre-

stained Protein Standard, Novex™ InVision™ His-Tag In-Gel Stain, Platinum® PCR 

SuperMix High Fidelity, NuPAGE® Novex® 3-8% Tris-Acetate Protein Gels, Novex™ 

NuPAGE™ LDS Sample Buffer (4X), and Novex™ NuPAGE™ Tris-Acetate SDS 

Running Buffer and Molecular ProbesTM SYPROTM Orange Protein Gel Stain from 

InvitrogenTM by Life TechnologiesTM (Carlsbad, CA); QIAGEN Plasmid Maxi Kit, 

QIAquick PCR Purification Kit, and QIAprep Spin Miniprep Kit from Qiagen (Valencia, 

CA); DTT, glycerol, IPTG, lysozyme, NaCl, MgCl2, protease inhibitor tablets (EDTA-

free), Tris, Tris base, and Triton X-100 from Fisher Scientific (Pittsburgh, PA);DNase I 

from Worthington Biochemical Corporation (Lakewood, NJ); ampicillin, kanamycin, and 

KH2PO4 from Acros Organics, part of Thermo Fisher Scientific (Waltham, MA); 30,000 

MWCO Amicon™ Ultra-15 Centrifugal Filter Units and Imidazole from EMD 

Millipore® (Billerica, MA); K2HPO4 from Sigma Aldrich (St. Louis, MO); GelRed™ 

nucleic acid gel stain from Biotium, Inc. (Hayward, CA); primers synthesized by 
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Integrated DNA Technologies (Coralville, IA); Hampton Solubility & Stability Screen 

2TM from Hampton Research (Aliso Viejo, CA). ÄKTA Purifier FPLC, HisTrap-HP 5 

mL column, and HiLoad 26/600 Superdex 200 PG size exclusion column from GE 

Healthcare Life Sciences (Pittsburgh, PA). 

 

 

Buffers 

  

The mini-expression lysis buffer is composed of 75 uL of 1% n-octyl beta-D-

thioglucopyranoside (OTG) in 20 mM Tris HCl (pH 7.5), 0.1 mg Lysozyme, 0.1 mg 

DNase I, and 0.5 uL of 0.5 M MgCl2 for one cell pellet.  The 2x LDS dye is composed of 

5 mL Novex™ NuPAGE™ LDS Sample Buffer (4X), 500 mM DTT, and brought to 10 

mL with ddH2O.  The standard lysis buffer is composed of 20 mM sodium phosphate (pH 

7.4), one Pierce® EDTA-free protease inhibitor tablet per 50 mL, 1 mM DTT, 0.5% 

Triton X, 0.5 M NaCl, 5% glycerol, 0.5 mg/mL lysozyme, 5µg/mL DNase, and 5 mM 

imidazole.  Lysis buffer 2 is composed of standard lysis buffer without DNase I.  Buffer 

A is composed of 20 mM sodium phosphate (pH 7.4), 0.5 M NaCl, 5 mM imidazole, and 

5% glycerol.  Buffer B is composed of 20 mM sodium phosphate (pH 7.4), 0.15 M NaCl, 

250 mM imidazole, and 5% glycerol.  The size exclusion buffer is composed of 50 mM 

sodium phosphate (pH 7.4) and 150 mM NaCl.  Buffer C is composed of buffer A with 

1M NaCl.  Buffer D is composed of buffer B with 0.5M NaCl and 350 mM imidazole.  

Size exclusion buffer 2 is composed of 20mM Tris (pH 8.0), 1 mM MgCl2, 0.5M NaCl, 

and 1 mM DTT.  The gel assay buffer and assay stop buffer were prepared as previously 

reported.104  The gel assay buffer is composed of 10mM Tris pH 8.0, 50mM NaCl, and 6 

mM MgCl2.  The assay stop buffer is composed of 50mM EDTA, 50% glycerol, and 

0.5% w/v bromophenol blue.   

 

 

SmTopoI Cloning and Plasmid Construction 

 

Initially, the topA gene was cloned from Streptococcus mutans UA159 genomic 

DNA for insertion into the pET-15b vector based for the NdeI and BamHI restriction 

sites using the following primers: 

 

TopA_Forward: 5’-TGT AGA CAT ATG ACA AGT AAA ACA ACG ACA ACA-3’ 

 

TopA_Reverse: 5’-TCA TCA GGA TCC TTA TTT AAC AGC TTT TTC CTT-3’ 

 

PCR was carried out via Platinum® PCR SuperMix High Fidelity protocol and denatured 

at 94 oC for 30 seconds, annealed at 58 oC for 40 seconds, and extended at 68 oC for two 

minutes for 30 cycles and then held at 4 oC. Success was analyzed via 1% agarose gel 

electrophoresis based upon the confirmed presence of the ~2Kbp SmTopA_pET PCR 

product. SmTopA_pET was then purified using QIAQuick® PCR Purification Kit per 

protocol. The pET-15b vector was then digested with NdeI and BamHI restriction 

enzymes per New England Biolabs (NEB) protocol, purified, then mixed and ligated with 

the SmTopA_pET PCR product via NEB Quick LigationTM Kit protocol. The ligation 
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product (SmTopA15b) was then transformed into XL1-Blue Supercompetent cells per 

protocol. Upon successful transformation, the plasmid was isolated with the QIAprep 

Spin Miniprep Kit via protocol and the sequence was confirmed via Retrogen, Inc. (San 

Diego, CA). The plasmid was also transformed into BL21(DE3)-Gold Competent cells 

via protocol.  

 

The topA gene was sub-cloned from the pET-15b vector in XL-1 Blue into the 

pET-16b vector using NdeI and BamHI restriction enzymes and NEB Quick LigationTM 

Kit per manufacturer protocols.  

 

For the pET 21d vector, the SmTopA gene was amplified via PCR around NcoI 

and BamHI restriction sites using the following primers: 

 

NcoI_Site_For: TAT ACG ATG GGC AGC AGC CAT CAT C 

 

NdeI_Site_For: GGC AGC CCC ATG GCA AGT AAA AC 

 

BamHI_Site_Rev: TTC GGA TCC TTT TTA ACA GCT TTT TCC TTA TAG TCA 

CAC 

 

PCR was carried out via Platinum® PCR SuperMix High Fidelity protocol and denatured 

at 94oC for 30 seconds, annealed at 58oC for 45 seconds, and extended at 68oC for two 

minutes and thirty seconds for 35 cycles and then held at 4 oC. 

 

 For the pET-SUMO vector, the topA gene was cloned from PCR with “hanging 

T” ends per ChampionTM pET SUMO Protein Expression System protocol using the 

following primers: 

 

TopA_SUMO_For: AGC ACA AGT AAA ACA ACG ACA ACA GTA AAA AAG 

ACG 

 

TopA_SUMO_Rev: TTA TTT AAC AGC TTT TTC CTT ATA GTC ACA CTC 

CTT ATT GC 

 

PCR was carried out via Platinum® PCR SuperMix High Fidelity protocol and denatured 

at 94oC for 30 seconds, annealed at 60oC for 45 seconds, and extended at 68oC for two 

minutes and thirty seconds for 35 cycles and then held at 4 oC. 

 

All gene and respective plasmids were ligated and transformed per respective 

protocols per respective protocols into XL1-Blue Supercompetent cells and BL21(DE3)-

Gold Competent cells except the SmTopA_SUMO plasmid used with the ChampionTM 

pET SUMO Protein Expression System, which utilized included One Shot® Mach1TM-

T1R and BL21(DE3) One Shot® Chemically Competent E. coli cells. Sequences were 

confirmed by sequencing via Retrogen, Inc. (San Diego, CA).  
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Mini-Expression of SmTopI15b 

 

A mini-expression was initially conducted in order to determine preliminary 

expression conditions, starting with a 5-mL LB and 100 ug/mL starter culture of 

SmTopI15b in BL21(DE3)-Gold grown at 32oC overnight. Upon the next day, the sample 

was diluted 100-fold into three 5-mL sterile TB and 100 ug/mL ampicillin samples for 

each of three different temperatures: 37oC, 25oC, and 18oC. Cultures were then grown for 

two hours, then one sample from each temperature was induced with 1 mM IPTG, one 

with 0.5 mM IPTG, and one remained un-induced. Samples were then grown an 

additional twenty-four hours, then centrifuged at 10,000 rpm for five minutes. The 

supernatant was then removed and each pellet was dissolved in Mini_Lysis_Buffer for 

five minutes. Cells were re-suspended and vortexed for 30 seconds to completely 

dissolve and the samples were centrifuged at 13,000 rpm for five minutes. The 

supernatants were then separated into clean 1.5 mL microcentrifuge tubes as the soluble 

fractions. Pellets were washed by re-suspending in 30 uL of 1% OTG in 20 mM Tris (pH 

7.5) and centrifuging at 13,000 rpm for five minutes. The supernatant was then discarded. 

Pellets were once again re-suspended in 30 uL of 1% OTG in 20 mM Tris (pH 7.5) and 

mixed with 30 uL of LDS_Sample_Buffer, then centrifuged again at 13,000 rpm for five 

minutes with the resulting supernatant containing the insoluble fraction. 10 uL samples 

were then heated at 95oC for five minutes and loaded on SDS-PAGE gels for analysis.  

Mini-expression was repeated for 48-hour growths as well. (Data not shown.) Mini-

expression was again repeated with SmTopI16b at 18oC.  

 

 

Expression of SmTopoI constructs and cell lysis 

 

Expression and purification experiments were conducted in duplicate. SmTopI15b 

initial starter cultures were grown in BL21 cell lines at 32°C overnight in 5-mL LB with 

100 ug/mL ampicillin (pET constructs) or 50 ug/mL kanamycin (SUMO construct) and 

used to inoculate 500mL TB with respective antibiotics. Cultures were grown to OD600 

~0.6, induced with 0.5 mM IPTG, and expressed at 18°C for 24 hours. Auto-induction 

was carried out per Studier protocol with SmTopI16b and grown for 24 hours at 37°C.106  

All samples were then centrifuged at 15,000 g for 30 minutes at 4oC and the supernatants 

were discarded. Pellets were stored at -80oC.  

 

Cell pellets for all constructs were thawed at room temperature and immediately 

lysed in the standard lysis buffer by stirring for 1 hour at 4°C.  Samples were then 

sonicated for 8 minutes, centrifuged at 18K rpm at 4°C for 15 minutes, filtered at 0.22 

um, and collected.  Auto-induction samples were lysed in the same fashion, except lysis 

buffer 2 was used, and then samples were sonicated and filtered as above.  

 

 

Purification of SmTopoI constructs  

 

Each initial construct sample was purified using a HisTrap-HP 5 mL column on 

an ÄKTA Purifier FPLC. Samples were loaded at 1 mL/min, washed with 20 column 
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volumes (CVs) Buffer A at 2.5 mL/min, and eluted via linear gradient from 100% Buffer 

A to 100% Buffer B over 20 CVs at 2.5 mL/min. Samples were then collected and 

concentrated using a 30,000 MWCO Amicon™ Ultra-15 Centrifugal Filter Unit. The 

SmTopI16b sample was collected and loaded onto a GE HiLoad 26/600 Superdex 200 

PG size exclusion column and eluted with 1.5 CV of SE Buffer. The sample expressed 

via auto-induction (SmTopI16b_AI) was purified similarly, except it was loaded and 

washed with Buffer C for 40 CVs and eluted with a step gradient of Buffer D using 7CV 

steps at 15%, 20%, and 100% with the sample eluting in a sharp peak in the 100% step. 

The sample was then loaded onto a pre-equilibrated GE HiLoad 26/600 Superdex 200 PG 

size exclusion column and eluted with SE Buffer 2. All sample concentrations were 

attained via Bradford assay with BSA as the standard. 

 

 

Biochemical Assays 

 

Gel assays were used to confirm target protein activity using published 

methods.104 The pUC18 plasmid was isolated via QIAGEN Plasmid Maxi Kit per 

protocol. Enzyme assays were conducted in standard volumes of 20µL comprised of 25, 

50, 75, 100, 150, 200, or 400 ng SmTopI; 500 ng negatively supercoiled pUC18 plasmid; 

and a sufficient quantity of gel assay buffer to bring the reaction volume to 20 uL. One 

unit of commercially obtained E. coli topoisomerase I was substituted for SmTopI as a 

positive control. Assays were incubated at 37⁰C for 30 minutes and then terminated using 

5µL of assay stop buffer per reaction. DNA relaxation activity was monitored on 0.7% 

agarose gels in Tris-Acetate-EDTA TAE buffer at 20V for 10 hours and then stained with 

GelRed™ nucleic acid gel stain per protocol. Freeze trials were conducted similarly using 

1 ug (high concentration) or 400 ng (low concentration) of enzyme in 50% glycerol or 

0% glycerol and either snap-frozen in liquid nitrogen, frozen drop-wise in liquid nitrogen 

and stored at -80oC overnight, or simply refrigerated. Non-specific DNAse activity assay 

was conducted using published methods and incubated for 6 hours.103  

 

 

Thermal Stability Assay 

 

Protein stability and solubility conditions were analyzed via the use of Hampton 

Research Solubility and Stability Screen 2TM per protocol to evaluate buffers and salt.  

 

 

Peptide fingerprinting 

 

Target protein identity was confirmed by standard in-gel tryptic digest and LC-

MS analysis.107-109 Peptide spectra matching and protein identification was achieved by 

database search using Sequest HT algorithm in Proteome Discoverer 1.4 (Thermo 

Scientific). 
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SmTopoI Protein Homology Modeling 

 

A homology model of the SmTopoI protein (Figure 2-1) was built using the E. 

coli 67-kDa N-term fragment (1ECL) and T. maritima (2GAI) topoisomerase I crystal 

structures as templates, the Streptococcus mutans (UA159 strain) protein sequence, and 

the program MODELLER.110,111 

 

 

SmTopoI_N65 Cloning, Expression, Purification and Crystallization 

 

SmTopoI_N65 was cloned, expressed, and purified to over 95% purity via PAGE 

analysis similarly to full-length SmTopoI described elsewhere.73,74 However, the target 

construct gene of interest, topA_N65, was amplified via PCR off of the topA-containing 

SmTopI_16b plasmid from above based around the NdeI and BamHI restriction sites 

using the following primers:  

TopA_Forward: 5′-TGT AGA CAT ATG ACA AGT AAA ACA ACG ACA ACA 

G-3′ 

TopA_N65_Rev: 5’-GGA TGG ATC CTT ACT GTT CCT CTG C-3’ 

The gene was ligated into a pET-15b vector (Novagen® EMD Millipore®, 

Billerica, MA) and the target plasmid was transformed into BL21(DE3)-Gold Competent 

cells (Agilent Technologies, Santa Clara, CA) per the manufacturer’s specified protocol. 

The target enzyme was expressed via auto induction and purified per previous protocol, 

except Tris was substituted for all phosphate buffers.73,106 Briefly, cells were lysed for 1 

hour at 4°C in Lysis Buffer composed of 20 mM Tris-hydrochloride (HCl) pH 8.0, one 

Pierce® EDTA-free protease inhibitor tablet per 50 mL, 1 mM DTT, 0.5% Triton X, 0.5 

M NaCl, 5% glycerol, 0.5 mg/mL lysozyme, and 5 mM imidazole, then sonicated, 

centrifuged, and filtered at 0.22 m. Hexa-his-tagged protein was purified using a 

HisTrap-HP 5 mL column on an ÄKTA Purifier FPLC (GE Healthcare Lifesciences, 

Pittsburgh, PA) via step-gradient nickel immobilized metal affinity chromatography 

(IMAC) in Buffer A, composed of 20 mM Tris-HCl pH 8.0, 1 M NaCl, 5 mM imidazole, 

and 5% glycerol, and Buffer B, composed of 20 mM Tris-HCl pH 8.0, 0.5 M NaCl, 350 

mM imidazole, and 5% glycerol. The sample was then purified on a GE HiLoad 26/600 

Superdex 200 PG size exclusion chromatography (SEC) column in SEC Buffer, 

composed of 20 mM Tris (pH 8.0), 1 mM MgCl2, 0.5 M NaCl, and 1 mM DTT. Target 

protein fractions were pooled, concentrated with a 10,000 MWCO  AmiconTM Ultra-15 

Centrifugal Filter Unit from EMD Millipore® (Billerica, MA) and used for 

crystallography.  

 

SmTopoI_N65 was crystallized at 4.6 mg mL-1 in a 3uL:3uL 1:1 ratio protein to 

condition using the hanging-drop vapor-diffusion method off of a coarse-matrix screen. 

The initial crystal growth condition was JCSG-plus (Molecular Dimensions, Maumee, 

OH) condition 1-5 (0.2 M magnesium formate dihydrate, 20% w/v PEG 3350) at 18°C. A 

1:1 mixture of Izit Crystal Dye (Hampton Research, Aliso Viejo, CA) and acid red dye 

was added to original crystal-containing drops and allowed to stain overnight for 

preliminary crystal assessment. Unstained crystals from the same well, but from a 
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different drop, were collected for X-ray diffraction analysis. Initial crystals showed 

relatively weak diffraction (greater than 4 Å). Optimized crystals were then obtained via 

fine grid screen in 0.2 M magnesium formate dihydrate, 25% w/v PEG 3350 at 4°C and 

unstained crystals were collected for analysis. Crystals were grown in 48-well VDX 

plates with sealant (Hampton Research, Aliso Viejo, CA) and were visible within two 

weeks. 

 

 

SmTopoI_N65 Structure Determination and Refinement 

 

SmTopoI_N65 crystals were harvested, looped through 20% w/v PEG 3350/30% 

MPD in the crystallization condition for cryo-protection, and cooled to 100 K for data 

collection. A complete data set was collected at GM/CA-CAT beamline 23ID-D of sector 

23 of the Advanced Photon Source (APS), Argonne National Laboratory, Lemont, 

Illinois, USA (Table 2-5). Data were processed and scaled, then the structure of 

SmTopoI_N65 was determined via molecular replacement using the previously 

determined 67-kDa N-terminal fragment of EcTopoI (PDB 1ECL)100 all using the HKL-

3000 suite.112 Initial automatic model building was performed within HKL-3000 using 

Buccaneer.112,113 Refinement was then conducted using phenix.refine and the model was 

further built out using AutoBuild from the PHENIX suite.114 Subsequent refinement and 

model building was conducted iteratively with phenix.refine and Coot.114,115 Late-stage 

automated re-refinement was conducted using PDB_REDO.116 Validation of the structure 

was conducted within PHENIX using MolProbity.117 Figure 2-14 was produced with the 

UCSF Chimera package.118 

 

 

TopoI Sequence and Structure Alignments  

 

SmTopoI_N65, EcTopoI_N67, EcTopoIII (PDB 1D6M), and MtTopoI sequence 

alignment was generated with the ESPript 3 server (http://espript.ibcp.fr/) using a 

multiple protein sequence alignment produced with Clustal Omega, with secondary 

structure information extracted from the SmTopoI_N65 structure.119,120 Residues within 

5Å of the active site Y316 were determined with UCSF Chimera and the structure 

distances measurement tool.118 Structural alignment of SmTopoI_N65 with 

EcTopoI_N67 (PDB 1ECL) and MtTopoI (PDB 5UJ1) conducted with UCSF Chimera 

MatchMaker structure comparison tool.100,101,118 

 

 

Generation of SmTopoI_N65 Topology Model 

 

The SmTopoI_N65 topology model was generated with PDBsum and SmTopoI_N65.pdb 

structure file.121  

 

 

http://espript.ibcp.fr/
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SmTopoI_N65 Multiple Sequence Alignment with Select Topo I Homologs of 

Undetermined Structure 

 

SmTopoI_N65, EcTopoI_N67, and MtTopoI sequence alignment was generated 

similarly as done described in the main manuscript with the ESPript 3 server 

(http://espript.ibcp.fr) using a multiple protein sequence alignment produced with Clustal 

Omega, with secondary structure information extracted from the SmTopoI_N65 

structure.119,120 Residues within 5Å of the active site Y316 were determined with UCSF 

Chimera and the structure distances measurement tool.118  

 

 

Structural Alignment of SmTopoI_N65 and TmTopoI (PDB 2GUI) 

 

Structural alignment of SmTopoI_N65 with TmTopoI (PDB 2GUI) conducted 

with UCSF Chimera MatchMaker structure comparison tool.101,118 The unique loop 

extension near the active site of SmTopoI_N65 is highlighted with a red circle. 

 

 

SmTopoI_N65 Sequence Alignment with EcTopoIII (PDB 1D6M) 

 

SmTopoI_N65 and EcTopoIII (PDB 1D6M) sequence alignment figure was 

generated with ESPript 3 server (http://espript.ibcp.fr) using multiple protein 

sequence alignment from Clustal Omega and secondary structure information from 

SmTopoI_N65 structure.119,122 

 

 

Results 

 

 

Cloning and Expression of Recombinant SmTopoI 

 

Considering the need to rapidly isolate SmTopoI from host E. coli topoisomerase 

I, cloning into a poly-histidine affinity tag system was chosen and implemented. The S. 

mutans topA gene was first cloned and inserted into the pET15b vector (SmTopA15b), 

introducing a hexa-Histidine (hexa-His) tag at the N-terminus of the target enzyme.123 

The target gene was also cloned or sub-cloned into several alternate vectors in order to 

analyze the effects of different constructs, including affinity tag location and size, as well 

as the usefulness of a protein fusion tag. BL21(DE3)-Gold Competent cells were used for 

the over-expression of target protein. The target gene was also transformed into the 

ArcticExpress Competent Cell system to evaluate the utility of expressing at lower 

temperatures (12oC) in order to increase solubility, but was not found to significantly 

improve results in this instance (data not shown).124,125  

 

Preliminary mini-expression results from the SmTopI15b construct led to a 

traditional IPTG induction and expression that was implemented across all constructs in 

duplicate. Expression products were then carried into initial IMAC nickel column 

http://espript.ibcp.fr/
http://espript.ibcp.fr/
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purification trials using a standard linear imidazole elution protocol. While SmTopI16b 

from the N-term deca-His construct and SmTopI-SUMO both significantly outperformed 

the others, SmTopI16b was ultimately selected and carried forward (Table 2-3). Of note, 

as the SmTopI-SUMO enzyme approached the customary 100-kDa E. coli expression 

cutoff, the additional 11 kDa in size added by the SUMO fusion tag showed no apparent 

deleterious effect on the expression in this respective system, demonstrated by the 

average calculated amounts of expressed recombinant protein from the construct trials 

resulting in 88.9 pmol for the ~83 kDa SmTopI16b and 100 pmol for the ~93 kDa 

SmTopI-SUMO, respectively.  

 

As further loss of target protein was anticipated with additional purification steps, 

different conditions were also employed in order to further increase target protein 

expression and convenience, including the implementation of auto-induction for protein 

expression.106 Upon transitioning from a classical IPTG-induction method to a standard 

auto-induction method, the yield of SmTopI16b increased dramatically, as did the 

convenience of the protocol (Table 2-3).106 A subsequent IPTG mini-expression profile 

of SmTopI16b was also conducted in order to determine favorable IPTG expression 

conditions, which was also compared to auto-induced expression and illustrated no 

apparent loss of solubility from adopting an auto-induction method (Figure 2-2).  

 

 

Purification of Recombinant SmTopoI 

 

Early exploratory nickel-nitrilotriacetic acid (Ni2+-NTA) column IMAC 

purification with the pET15b N-term hexa-His tag system showed the affinity of the 

tagged target protein for the Ni2+-NTA column to be markedly weak, leading to both an 

unacceptable loss of target protein during wash steps and very early dissociation upon 

elution. Furthermore, it was discovered upon peptide fingerprinting analysis that what 

was initially presumed to be the ~83 kDa SmTopI15b target protein upon SDS-PAGE 

analysis was actually the ~84 kDa native E. coli catalase HPII protein co-eluting with the 

target protein (Figure 2-3). 

 

Comparative analysis of chromatographic linear elution profiles from the 

SmTopoI IMAC purification trials showed a slight increase in the retention time for the 

deca-His tagged target protein relative to the hexa-His tags (Figure 2-4). Therefore, the 

precise point of elution of SmTopI16b from the linear gradient was observed to be at 

25% elution buffer (about 90 mM imidazole), and this aspect was used to develop a step 

elution protocol. Upon implementation of a 15%, 20%, 100% step elution protocol, 

SmTopI16b eluted in a sharp peak at the 100% elution step and was successfully 

separated from contaminating proteins, including E. coli catalase HPII, as determined by 

SDS-PAGE analysis and His-staining (Figure 2-3). As such, the pET16b N-term deca-

His tag system was deemed the most successful and carried forward for further 

experimentation.  

 

While analyzing mini-expression data, it was determined that target protein 

solubility could likely be improved. A simple transition from 50 mM Tris-HCl pH 8.0 to  



 

39 

Table 2-3. Comparative summary of purification yields from SmTopoI 

constructs. 

 

Vector 

System 

System 

Characteristics 

Growth/Induction Method Overall Yield 

(mg/500 mL)a 

pET-15b N-term 6X His tag 500 mL TB; 0.5 mM IPTG; 

18oC x 24 h 

4.94 (IMAC) 

pET-16b N-term 10X His tag 500 mL TB; 0.5 mM IPTG; 

18oC x 24 h 

7.11 (IMAC) 

6.24 (SE) 

pET-21d C-term 6X His tag 500 mL TB; 0.5 mM IPTG; 

18oC x 24 h 

4.11 (IMAC) 

SUMO N-term SUMO fusion 

tag and N-term 6X His 

tag 

500 mL TB; 0.5 mM IPTG; 

18oC x 24 h 

9.12 (IMAC) 

 

pET-16b N-term 10X His tag 500 mL TB; 0.5 mM IPTG; 

18oC x 24 h; high salt 

8.30 (IMAC) 

pET-16b N-term 10X His tag 500 mL auto-induction media; 

37oC x 24 h; high salt 

14.21 (IMAC) 

11.66 (SE) 

 
aOverall yields are an average of two 500 mL growths in respective media. 

Reprinted from final submission with permission from Elsevier Inc. Jones, J. A., Price, 

E., Miller, D. & Hevener, K. E. A simplified protocol for high-yield expression and 

purification of bacterial topoisomerase I. Protein Expr Purif 124, 32-40, 

https://doi.org/10.1016/j.pep.2016.04.010 (2016).73 

 

  

https://doi.org/10.1016/j.pep.2016.04.010
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Figure 2-2. Mini-expression SDS-PAGE. 

 

Mini-expression of SmTopI16b comparing 0.5 mM and 1 mM IPTG induction at 18oC 

over different times as well as auto-induction at 37oC over 24 hours (Sol, soluble 

fraction; Ins, insoluble fraction; AI, auto-induction). Insoluble auto-induction fraction not 

shown as it repeatedly resulted in an unacceptably high amount of smearing, presumed to 

be due to substantial pellet size and an excess of cellular debris.  

Reprinted from final submission with permission of Elsevier Inc. Jones, J. A., Price, E., 

Miller, D. & Hevener, K. E. A simplified protocol for high-yield expression and 

purification of bacterial topoisomerase I. Protein Expr Purif 124, 32-40, 

https://dx.doi.org/10.1016%2Fj.pep.2016.04.010 (2016).73  

https://dx.doi.org/10.1016%2Fj.pep.2016.04.010
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Figure 2-3. Catalase contaminant SDS PAGE. 

 

SDS-PAGE showing initial difficulty presented by native catalase HPII contaminant at 

~84 kDa and target enzyme at ~83 kDa during purification of N-term hexa-His-tagged 

SmTopI_15b construct. Lane 1, ladder; 2-4, nickel column flow-through; 5-7, early 

nickel elution peak; 8-9, middle nickel elution peak; 10-12, tail end shoulder of nickel 

elution peak.  

Reprinted from final submission with permission of Elsevier Inc. Jones, J. A., Price, E., 

Miller, D. & Hevener, K. E. A simplified protocol for high-yield expression and 

purification of bacterial topoisomerase I. Protein Expr Purif 124, 32-40, 

https://dx.doi.org/10.1016%2Fj.pep.2016.04.010 (2016).73 

  

https://dx.doi.org/10.1016%2Fj.pep.2016.04.010
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Figure 2-4. Chromatogram of nickel column linear elution from preliminary 

construct trials.  

 

Direct vertical comparison. (A) N-term hexa-His-tagged SmTopI_15b construct. (B) N-

term deca-His-tagged SmTopI_16b construct. (C) C-term hexa-His-tagged SmTopI_21d 

construct. (D) N-term SUMO and hexa- his-tagged SUMO construct.  

Reprinted from final submission with permission of Elsevier Inc. Jones, J. A., Price, E., 

Miller, D. & Hevener, K. E. A simplified protocol for high-yield expression and 

purification of bacterial topoisomerase I. Protein Expr Purif 124, 32-40, 

https://dx.doi.org/10.1016%2Fj.pep.2016.04.010. (2016).73 

  

https://dx.doi.org/10.1016%2Fj.pep.2016.04.010
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20 mM phosphate buffer pH 7.4 in the lysis and nickel column buffers showed an 

apparent increase in yield and increasing the ionic strength of the nickel column binding 

and wash buffers (from 150 mM to 1 M NaCl) and the nickel column elution buffer (from 

150 mM to 500 mM NaCl) greatly increased the overall purification yield of SmTopI16b 

(Table 2-3 and Figure 2-5). A long wash step over 40 CVs with the higher ionic strength 

binding buffer also resulted in satisfactory removal of DNA from the target protein. 

Absorbance at 260 nm and 280 nm was monitored, ensuring the maximal removal of 

DNA. As stated above, transitioning to an auto-induction expression protocol also 

significantly improved yield and convenience.  

 

Following successful IMAC purification, SmTopI16b was identified upon SDS-

PAGE analysis as an overexpressed band (Figure 2-5a). Target protein identity was 

confirmed initially using mass spectrometry peptide fingerprinting (Figure 2-6), 

secondarily upon His-epitope tag antibody directed western blot (data not shown), and 

again using His-tag staining (Figure 2-5b). Protein concentrations and yield were 

calculated using the standard Bradford protein assay with BSA as the protein standard, 

which is compatible with the IMAC elution buffer.126  

 

Following optimization of the IMAC purification step, analyses with several 

alternative secondary purification methods, including the use of a heparin column, cation 

and anion exchange columns, a Cibacron Blue column, and a size exclusion (SE) column 

were conducted. Ultimately, transitioning straight from IMAC to a second, polishing size 

exclusion step was chosen due to simplicity and the fact that it showed the overall 

greatest yield. The target protein size of ~83 kDa was judged to be distinct enough from 

any of the remaining ~97 kDa native E. coli topoisomerase I to separate them using size 

exclusion chromatography. After increasing the ionic strength of the size exclusion buffer 

(from 150 mM NaCl to 500 mM NaCl), the target protein solubility was found to be 

sufficient for purification without the need for an intermediate buffer exchange or dialysis 

step of the Ni2+-NTA purification product, which again afforded an additional gain in 

speed and convenience. Following the size exclusion chromatography polishing step, the 

target protein was collected and again analyzed via SDS-PAGE, indicating purity deemed 

greater than 95%. Yield was again determined from duplicate trials by Bradford protein 

assay with BSA as a standard, which indicated over 23 mg/L of target protein (Table 2-3 

and Table 2-4). 

 

 

Characterization of SmTopoI 

  

In order to track protein activity, a gel-based DNA-relaxation assay was employed 

using published methods (Figure 2-7).104 The activity of SmTopI16b was maintained 

over three months in SE Buffer 2 refrigerated at 4oC, as well as after overnight freeze 

trials at -80oC including enzyme with and without 50% glycerol using both snap-freezing 

and drop-wise freezing methods in liquid nitrogen (Figure 2-8). Protein activity after 

cleavage of the deca-His tag was also analyzed, showing no apparent increase in activity 

(Figure 2-9). Furthermore, the absence of DNase activity was determined via the  
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Figure 2-5. SDS-PAGE gels of SmTopI_16b purification results.  

 

(A) SDS-PAGE after blue-staining. (B) SDS-PAGE after His-staining in order to verify 

target protein bands. L, ladder; CE, clarified extract from auto-induction growth; FT, 

nickel column flow-through; P1, nickel column first peak from first step elution using 

high salt buffers; Ni2+, target fraction from nickel column; SE, target fraction from size 

exclusion; Ec; commercially available E. coli topoisomerase I; TB, target fraction from 

nickel column from TB growth with high salt buffers.  

Reprinted from final submission with permission of Elsevier Inc. Jones, J. A., Price, E., 

Miller, D. & Hevener, K. E. A simplified protocol for high-yield expression and 

purification of bacterial topoisomerase I. Protein Expr Purif 124, 32-40, 

https://dx.doi.org/10.1016%2Fj.pep.2016.04.010. (2016).73 
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Figure 2-6. Peptide fingerprinting.  

 

Peptide fingerprinting analysis showing 74.20% sequence coverage for Topoisomerase I 

from Streptococcus mutans serotype c (strain ATCC 700610/UA159).  

Reprinted from final submission with permission of Elsevier Inc. Jones, J. A., Price, E., 

Miller, D. & Hevener, K. E. A simplified protocol for high-yield expression and 

purification of bacterial topoisomerase I. Protein Expr Purif 124, 32-40, 

https://dx.doi.org/10.1016%2Fj.pep.2016.04.010. (2016).73 

 

 

 

 

Table 2-4. Summary of S. mutans topoisomerase I purification. 

 

Step Total 

Protein 

(mg)a 

Target 

Protein 

(mg)b 

Total 

Activity 

(units)c 

Specific 

Activity 

(units/mg) 

Yield 

(%) 

Purity 

(%)d 

Clarified 

extract 

1445 107.3 N/A N/A 100 7.4 

Nickel 

column 

28.4 25.3 N/A N/A 24 89 

Size 

exclusion 

column 

23.3 22.6 58,250 2,575 21 97 

 
a Protein concentration determined by Bradford assay using BSA as the standard protein. 
b Amount of target protein determined based off of SDS-PAGE gel analysis. 
c Activity measured as described under Materials and Methods section. 
d Purity determined based off of SDS-PAGE gel analysis. 

Reprinted from final submission with permission from Elsevier Inc. Jones, J. A., Price, 

E., Miller, D. & Hevener, K. E. A simplified protocol for high-yield expression and 

purification of bacterial topoisomerase I. Protein Expr Purif 124, 32-40, 

https://doi/org.10.1016/j.pep.2016.04.010 (2016).73 

  

https://dx.doi.org/10.1016%2Fj.pep.2016.04.010
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Figure 2-7. Gel-based DNA relaxation assay. 

 

Lane 1, ladder; lane 2, supercoiled pUC18 plasmid (DNA substrate as negative control); 

lane 3, commercially available E. coli topoisomerase I (positive control); lanes 4-10, 

SmTopI16b enzyme in increasing concentration (nM). N, nicked; FR, fully relaxed; PR, 

partially relaxed; SC, supercoiled.  

Reprinted from final submission with permission of Elsevier Inc. Jones, J. A., Price, E., 

Miller, D. & Hevener, K. E. A simplified protocol for high-yield expression and 

purification of bacterial topoisomerase I. Protein Expr Purif 124, 32-40, 

https://dx.doi.org/10.1016%2Fj.pep.2016.04.010. (2016).73 
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Figure 2-8. SmTopI16b freeze trials. 

 

Agarose gel showing activity of target enzyme frozen via different methods (1 ug enzyme 

used, except 400ng used for [low] samples and 1 unit for EcTopoI positive control). 

Reprinted from final submission with permission of Elsevier Inc. Jones, J. A., Price, E., 

Miller, D. & Hevener, K. E. A simplified protocol for high-yield expression and 

purification of bacterial topoisomerase I. Protein Expr Purif 124, 32-40, 

https://dx.doi.org/10.1016%2Fj.pep.2016.04.010. (2016).73 

 

 

 

 

 

Figure 2-9. His-tag cleavage activity assay.  

Agarose gel showing activity of SmTopI16b after cleavage of deca-his tag via factor Xa. 

Reprinted from final submission with permission of Elsevier Inc. Jones, J. A., Price, E., 

Miller, D. & Hevener, K. E. A simplified protocol for high-yield expression and 

purification of bacterial topoisomerase I. Protein Expr Purif 124, 32-40, 

https://dx.doi.org/10.1016%2Fj.pep.2016.04.010. (2016).73  

https://dx.doi.org/10.1016%2Fj.pep.2016.04.010
https://dx.doi.org/10.1016%2Fj.pep.2016.04.010
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implementation of a non-specific DNase activity assay using published methods (Figure 

2-10).103  

  

To characterize the stability of SmTopI16b, a number of methods were employed. 

Hampton Research Solubility & Stability Screen 2™ was used to assess conditions that 

mitigate target protein precipitation and increase its overall stability.127 Optimal buffer 

conditions as determined via Differential Scanning Fluorimetry (DSF, or “thermal shift”) 

from the screen were found to be 0.05 M sodium citrate tribasic dihydrate (pH 5.0) with 

4.0 M sodium chloride as showcased by an optimal melting temperature (Tm) of 48oC 

(Figure 2-11).  An apparent trend was seen showing optimal buffer conditions included 

relatively low pH and high salt content. Protein solubility was also analyzed via overnight 

dialysis trials into lower-salt-containing buffers across a wide range of pH values. Results 

showed considerable visual precipitation regardless of buffer and pH when ionic strength 

was decreased below 200 mM NaCl with protein concentration at 1 mg/mL, indicating 

the necessity of a higher ionic strength buffer for the solubility of this particular enzyme 

and construct (data not shown).  

 

 

Crystallization of SmTopoI_N65 

 

As reported previously, soluble full-length SmTopoI did not initially express well 

and, even after expression was optimized, its solubility required extremely high salt 

conditions not generally conducive to crystallization.73 As such, full-length SmTopoI 

proved recalcitrant to crystallization. Eventually, the C-terminal domain was rationally 

removed for subsequent crystallization trials. Iteratively shorter N-terminal fragment 

SmTopoI constructs corresponding to the original 67-kDa N-terminal EcTopoI 

(EcTopoI_N67) crystal structure (PDB 1ECL)99,100 were cloned, expressed, purified, and 

screened for crystals. After multiple fragments were screened, this eventually proved 

successful as diffraction-quality crystals of the 65-kDa 575 residue SmTopoI fragment 

were attained, however the diffraction resolution was relatively low (greater than 4 Å). 

Upon fine grid screening and implementation of temperature trials, high-resolution 

quality crystals were grown (Figure 2-12), and the structure was determined (PDB 

6OZW).  

 

 

Overall Structure of SmTopoI_N65 

 

The three-dimensional crystal structure of SmTopoI_N65 was determined to 2.06 

Å via molecular replacement using the EcTopoI_N67 crystal structure (PDB 1ECL) as a 

model,99,100 followed by iterative cycles of model building and refinement (Table 2-5). A 

sequence alignment between SmTopoI_N65 and EcTopoI_N67, which share a 42.9% 

sequence identity, is shown (Figure 2-13). The root mean square deviation (RMSD) 

between the two structures is 1.83Å. Analysis of the crystal structure and Matthews 

Coefficient indicate that there is one monomeric SmTopoI_N65 molecule per asymmetric 

unit (Figure 2-14).128-130 The monomeric state of SmTopoI_N65 was further 

corroborated by PISA (Protein, Interface, Structures, and Assemblies) analysis.131   
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Figure 2-10. Non-Specific DNase Activity Assay. 

 

Agarose gel confirming a lack of DNase activity after 6 hours incubation.  

Reprinted from final submission with permission of Elsevier Inc. Jones, J. A., Price, E., 

Miller, D. & Hevener, K. E. A simplified protocol for high-yield expression and 

purification of bacterial topoisomerase I. Protein Expr Purif 124, 32-40, 

https://dx.doi.org/10.1016%2Fj.pep.2016.04.010. (2016).73 
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Figure 2-11. Thermal stability data.  

 

Data showing differing thermal stability profiles of SmTopI16b with different salts and 

buffers.  

Reprinted from final submission with permission of Elsevier Inc. Jones, J. A., Price, E., 

Miller, D. & Hevener, K. E. A simplified protocol for high-yield expression and 

purification of bacterial topoisomerase I. Protein Expr Purif 124, 32-40, 

https://dx.doi.org/10.1016%2Fj.pep.2016.04.010. (2016).73 
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Figure 2-12 SmTopoI_N65 crystals. 

 

A. Original SmTopoI_N65 crystals grown at 18°C from coarse JCSG plus screen, 

condition 1-5 (0.2 M magnesium formate dihydrate and 20% PEG 3350). B. Same crystal 

as in (A), but stained with a 1:1 mixture of Izit Crystal Dye (Hampton Research, Aliso 

Viejo, CA) and acid red dye. C. Optimized SmTopoI_N65 crystal grown in 0.2 M 

magnesium formate dihydrate and 25% PEG 3350 at 4°C used for structure 

determination.  

Reprinted from final submission with open access permission, Elsevier, Inc. Jones, J. A. 

& Hevener, K. E. Crystal structure of the 65-kilodalton amino-terminal fragment of DNA 

topoisomerase I from the gram-positive model organism Streptococcus mutans. Biochem 

Biophys Res Commun, https://doi.org/10.1016/j.bbrc.2019.06.034 (2019. In Press).74 
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Table 2-5. Data collection and refinement statistics for SmTopo_N65. 

 
Data Collection Results 

Wavelength (Å) 1.033 

Space Group P 21 21 2 

Unit cell parameters  

a, b, c (Å) 88.58 98.37 72.71 

, ,  (°) 90 90 90 

Resolution (Å) 50.00 - 2.06 (2.10 - 2.06)a 

CC1/2 0.999 (0.690) 

Rmeas 0.084 (1.047) 

Rpim 0.032 (0.441) 

Total no. of reflections 254919 

No. of unique reflections 32714 (1394) 

Completeness (%) 82.17 (35.50) 

Redundancy 6.5 (5.1) 

Mean I/sigma 21.8 (1.5) 

Refinement 

Number of reflections used 32713 (1395) 

Resolution (Å) 49.18  - 2.063 (2.137  - 2.063) 

Rwork 0.2003 (0.2310) 

Rfree 0.2677 (0.3617) 

No. of non-H atoms 4700 

Macromolecules 4339 

Ligands 48 

Solvent 313 

Protein residues 538 

RMS (bonds) 0.008 

RMS (angles) 0.92 

Ramachandran favored (%) 96.24 

Ramachandran allowed (%) 3.20 

Ramachandran outliers (%) 0.56 

Rotamer outliers (%) 0.42 

Clash score 4.98 

Average B-factor 33.18 

Macromolecules 33.10 

Ligands 45.88 

Solvent 32.35 

 
a Statistics for the highest-resolution shell are shown in parentheses. 

CC1/2 is the Pearson’s correlation coefficient of random half sets of data.  

Adapted from final submission with open access permission from Elsevier Inc. Jones, J. 

A. & Hevener, K. E. Crystal structure of the 65-kilodalton amino-terminal fragment of 

DNA topoisomerase I from the gram-positive model organism Streptococcus mutans. 

Biochem Biophys Res Commun, https://doi/org.10.1016/j.bbrc.2019.06.034 (2019. In 

Press).74  

https://doi/org.10.1016/j.bbrc.2019.06.034
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Figure 2-13. Multiple sequence alignment of SmTopoI_N65 and structural 

homologs. 

 

Comparison of SmTopoI_N65, EcTopoI_N67, and MtTopoI via multiple sequence 

alignment shows high degree of sequence identity and similarity, including the highly 

conserved active site. Identical residues are highlighted in red, similar residues are 

highlighted in yellow, catalytic tyrosine is indicated with a red dot, active site residues 

within 5 Å from catalytic tyrosine are indicated with blue dots, and the nine-residue loop 

extension seen in SmTopoI_N65 is indicated with a magenta bar.98,99,118  

Reprinted from final submission with open access permission, Elsevier, Inc. Jones, J. A. 

& Hevener, K. E. Crystal structure of the 65-kilodalton amino-terminal fragment of DNA 

topoisomerase I from the gram-positive model organism Streptococcus mutans. Biochem 

Biophys Res Commun, https://doi.org/10.1016/j.bbrc.2019.06.034 (2019. In Press).74  
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Figure 2-14. Overall structure of SmTopoI_N65  

 

A. Flat ribbon diagram of the overall structure of SmTopoI_N65 showcasing the four N-

terminal domains that comprise the main body. D1, D2, D3, and D4 are colored in blue, 

orange, yellow, and green, respectively. Sub-domain secondary structures are also 

numbered respectively. The unique loop extension before and immediately adjacent to 

the active site in D3 between α2 and α3 is colored magenta. The small outcropping from 

D1 that is considered a part of D4 as in the EcTopoI and MtTopoI structures is colored 

charcoal. The catalytic Y316 residue in D3 is drawn in stick and colored red.  B. Mesh 

surface diagram of SmTopoI_N65 with the same color and orientation as in A, but turned 

on x axis by -10° for improved view of DNA binding site and groove, shown as a red 

arrow, with accompanying 90° turn along the y axis for profile view. C. Coulombic 

surface coloring showing electrostatic potential with standard red/negative and 

blue/positive coloring in the same orientation as B. The DNA binding site and groove is 

also shown with a red arrow. D. Structural alignment of SmTopoI_N65 with 

EcTopoI_N67 (1ECL) and MtTopoI.118  

Reprinted from final submission with open access permission, Elsevier Inc. Jones, J. A. 

& Hevener, K. E. Crystal structure of the 65-kilodalton amino-terminal fragment of DNA 

topoisomerase I from the gram-positive model organism Streptococcus mutans. Biochem 
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Electron density of the hexa-histidine tag is not visible in the model, nor is density for the 

first leading 18 N-terminal residue peptide chain (M1 to T18), which exists as an 

additional N-term extension compared to EcTopoI, similar to the first 16 residues seen in 

MtTopoI (PDB 5UJ1).95 This unmodeled N-term peptide continues to be of unknown 

function. It carries substantial positive charge and is relatively polar, with five positively 

charged lysines and one positively charged arginine, as well as six polar uncharged 

threonines and two polar uncharged serines. The SmTopoI_N65 model begins at P19, 

with K21 of SmTopoI_N65 aligning with K3 of EcTopoI_N67. This represents the 

beginning of the highly conserved topoisomerase-primase (TOPRIM) domain, which 

ends at N129 and N140 of SmTopoI_N65 and EcTopoI_N67, respectively.132 

 

The SmTopoI_N65 model includes the first four domains of the overall structure, 

which comprise the main body core and show an intricate topology (Figure 2-14 and 

Figure 2-15).133 Domains D1, D3, and D4 form the base of the body, and D2 forms the 

bulk of the toroid arch that represents the hinge domain. D1 is comprised of four alpha 

helices and three beta strands. D2 is connected to D4 via a bridge of two flexible loops 

and is comprised overall of two alpha helices and six beta strands. D3 is comprised of 

five alpha helices, with a likelihood of α4 actually forming a 310 helix. The catalytic 

Y316 residue is also located within D3 on a loop between α2 and α3 at the interface of 

D1, D3, and D4. The remainder of the highly conserved active site surrounds the catalytic 

tyrosine residue.  

 

While the SmTopoI_N65 fragment shares 42.9% sequence identity with the 

EcTopoI_N67 sequence and 25.19% sequence identity with the EcTopoIII sequence 

(PDB 1D6M, Figure 2-16), full-length SmTopoI shares 41.4% identity with full-length 

EcTopoI and 25.3% with full-length E. coli topo III, 37.1% identity with full-length 

MtTopoI, and 42.8% identity with full-length topo I from the thermophile T. maritima 

(TmTopoI).120 Of note, full-length SmTopoI shares 61.9% identity with the topo I 

enzyme from Staphylococcus aureus (SaTopoI), for which there is currently no 

determined three-dimensional structure.  

 

 

Discussion 

 

 

Expression and Purification of SmTopoI 

 

An active full-length bacterial topoisomerase I enzyme has been purified to a 

relatively high yield and purity from the clinically relevant bacteria S. mutans. A 

systematic analysis of different protein constructs was necessary as an unacceptable 

amount of the prototype hexa-his tagged protein showed weak affinity for the nickel 

column and was therefore lost to flow-through and overly contaminated with early co-

eluting proteins. In order to analyze the possibility of the obstruction of the N-term His 

tag in the protein’s folded state, the target gene was cloned into a pET21d vector 

(SmTopA21d), placing a hexa-His tag at the C-terminus. As increasing the length of 

histidine tags has been shown to increase affinity to Ni2+-NTA, allowing for the use of   
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Figure 2-15. SmTopoI_N65 topology diagram. 

 

Topology diagram of SmTopoI_N65 created with PDBsum showing beta strands as pink 

arrows and alpha helices as red cylinders.121  

Reprinted from final submission with open access permission, Elsevier Inc. Jones, J. A. 

& Hevener, K. E. Crystal structure of the 65-kilodalton amino-terminal fragment of DNA 

topoisomerase I from the gram-positive model organism Streptococcus mutans. Biochem 
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Figure 2-16. Multiple sequence alignment of SmTopoI_N65 and EcTopoIII. 

 

Comparison of SmTopoI_N65, EcTopoIII (PDB 1D6M) via multiple sequence alignment 

shows moderate sequence identity and similarity, with high sequence identity between 

the highly conserved active sites. Identical residues are highlighted in red, similar 

residues are highlighted in yellow, catalytic tyrosine is indicated with a red dot, active 

site residues within 5 Å from catalytic tyrosine are indicated with blue dots, and the nine-

residue loop extension seen in SmTopoI_N65 is indicated with a magenta bar.119,122 

Reprinted from final submission with open access permission, Elsevier Inc. Jones, J. A. 
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more rigorous wash steps, and generally resulting in improved removal of non-specific 

binding contaminant proteins, this concept was also explored by sub-cloning the target 

gene from the pET15b vector into a pET16b vector, placing and extended deca-His tag at 

the N-terminus.134,135 Finally, as the small ubiquitin-related modifier (SUMO) fusion 

system has been reported to increase both target protein solubility and target protein 

expression levels, the target was cloned into the pET SUMO vector system (SmTopA-

SUMO) in order to analyze the usefulness of an N-term SUMO fusion protein along with 

an N-term hexa-His tag.136,137  

 

Of the various constructs examined, the product of the deca-his-tagged pET16b 

construct (SmTopI16b) resulted in enough of an apparent increase in affinity for the 

nickel column to be successfully exploited via a step-wise elution to satisfactorily isolate 

the tagged target protein from the co-eluting contaminant proteins that plagued the hexa-

his-tagged pET15b construct. Furthermore, enzyme activity was maintained with the 

deca-his-tagged construct, bypassing the immediate need for cleaving the affinity tag for 

downstream applications—a luxury not necessarily expected with the larger SUMO 

fusion tag construct (which also showed promising results in the purification trials).  

 

Because the separation of DNA from DNA-binding proteins like topoisomerase I 

is essential, yet particularly onerous, a protocol implementing a rapid and efficient means 

of addressing this obstacle was highly desired. As an alternative to more traditional DNA 

removal methods, the ionic strength of the buffers used in the IMAC purification step 

were increased and the Ni2+-NTA-bound target protein was exposed to a high salt wash 

over an extended period of time in order to successfully disrupt the largely electrostatic 

nature of DNA-protein binding.138 Therefore, in order to further optimize SmTopI16b 

yield, higher ionic strength buffers were employed to both increase the solubility of the 

target protein as well as to aid in the expedited removal of DNA during purification steps. 

Additionally, auto-induction was successfully adopted in order to increase yield and 

greatly decrease the effort required during the expression and purification protocol. As 

mini-expression analysis showed no apparent gain or loss in target solubility by adopting 

auto-induction, it was deduced that the overall increase in target protein yield seen 

between auto-induction and IPTG-induction likely resulted from greater overall growth.  

 

 

Unique structural features of SmTopoI_N65 

 

The SmTopoI_N65 model shows only 3 beta strands in D1, whereas EcTopoI and 

MtTopoI each contain four D1 beta strands. Within 5 Å from the catalytic center of 

Y316, only one dissimilar residue is observed between SmTopoI_N65 and 

EcTopoI_N67, found between the two aspartates on the DXD TOPRIM motif—that is, 

P101 on SmTopoI_N65, versus L112 on EcTopoI_N67. Interestingly, immediately prior 

to the conserved active site, SmTopo_N65 displays a unique nine residue loop extension 

(Figure 2-13 and Figure 2-14) not present in any of the topo I structures previously 

determined, except for a similar but non-identical extension seen in topo I from the 

extremophile Thermotoga maritima (PDB 2GAI; Figure 2-17). The SmTopoI_N65 loop 

extension is mainly polar, with polar uncharged residues S307, N308, Q310, and Q311.   
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Figure 2-17. Structural alignment of SmTopoI_N65 and TmTopoI (PDB 2GUI) 

 

Structural alignment of SmTopoI_N65 (red) with topo I from the thermophile 

Thermotoga maritima, TmTopoI (PDB 2GUI; green) shown in flat ribbon format 

conducted with UCSF Chimera MatchMaker structure comparison tool.95,113 The unique 

loop extension near the active site is highlighted with a red circle and the catalytic Y316 

residue on SmTopoI_N65 if shown in stick format.  

Reprinted from final submission with open access permission, Elsevier, Inc. ones, J. A. & 

Hevener, K. E. Crystal structure of the 65-kilodalton amino-terminal fragment of DNA 

topoisomerase I from the gram-positive model organism Streptococcus mutans. Biochem 

Biophys Res Commun, https://doi.org/10.1016/j.bbrc.2019.06.034 (2019. In Press).74  
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Further sequence alignment analysis of SmTopoI_N65 against several additional select 

bacteria shows an intriguing lack of this nine-residue extension in several prominent gut 

microbes, such as E. coli, Bacteroides ovatus, Bacteroides fragilis, and Bifidobacterium 

breve, while a similar extension exists not only in the thermophile T. maritima, but also 

in Staphylococcus aureus, Clostridioides difficile, and Neisseria gonorrhoeae (Figure  

2-18). Lastly, as seen in MtTopoI, but dissimilar to EcTopoI_N67, SmTopoI_N65 lacks 

an equivalent α1 helix in D4.  

 

 

Summary 

 

As a DNA binding enzyme, SmTopoI presents inherent difficulties during 

expression and purification. Nonetheless, an effective, rapid, and simplified protocol was 

developed for the high-yield expression and purification of bacterial topoisomerase I at 

over 23 mg/L estimated at greater than 95% yield via SDS-PAGE analysis. With such a 

substantial yield of active and highly pure full-length SmTopoI enzyme, the enzyme can 

be used for effective biochemical and biophysical techniques that will allow for further 

target characterization and validation studies, as well as future compound screening 

campaigns and kinetic studies. Due to a number of circumstances, the full-length enzyme 

is unfortunately not well-suited for a variety of structural studies. As the enzyme is 

roughly 83 kDa, it is both too small for cryo-electron microscopy and too large for NMR. 

Additionally, what is presumed to be the highly dynamic nature of the full-length enzyme 

and the requisite high levels of salt necessary to maintain stability, it is also not well-

suited for X-ray crystallography.  

 

Via rational construction of a shortened construct of SmTopoI, useful structural 

information has nonetheless been attained from SmTopoI_N65 crystal structure 

determination. Because of the inherently conserved nature of topo I, SmTopoI_N65 

exhibits a substantial degree of sequence identity and similarity with other previously 

determined topo I structures, including a highly conserved active site and similar overall 

structure. Therefore, any novel distinction among topo I homologues is likely of 

significant interest and, as such, the SmTopoI_N65 nine-residue extension located 

immediately N-term-adjacent to the active site is notably unique as this extension is not 

seen in topo I structures from either E. coli or M. tuberculosis. What may have gone 

previously overlooked as an insignificant structural variation in topo I from an 

extremophile inconsequential to human health (TmTopoI), the presence of this loop 

extension in S. mutans—a bacterium noted for both its utility in research as a Gram-

positive model organism and its significance in dental and cardiovascular health—stands 

as a structural dissimilarity that certainly draws attention and may warrant further 

analysis. Its proximity to the enzyme active site is indeed intriguing, and important 

questions regarding any underlying significance, including possible implications related 

to enzymatic efficiency, target DNA sequence selectivity or stabilization, or even the 

possibility of rationally designing selective catalytic topo I inhibitors that exploit partial 

engagement with the extension, remain unanswered.  
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Figure 2-18. SmTopoI_N65 multiple sequence alignment with select topo I 

homologs of undetermined structure. 

 

Comparison of SmTopoI_N65 with homologs from various select bacteria, including E. 

coli, M. tuberculosis, T. maritima, S. aureus, C. difficile, N. gonorrhoeae, B. ovatus, B. 

fragilis, and B. breve via multiple sequence alignment. Sequence alignment was 

generated with the ESPript 3 server (http://espript.ibcp.fr/) using a multiple protein 

sequence alignment produced with Clustal Omega, with secondary structure information 

extracted from the SmTopoI_N65 structure.89,93,95,114,115 Alignment shows high degree of 

sequence identity and similarity, including the highly conserved active site. Identical 

residues are highlighted in red, similar residues are highlighted in yellow, catalytic 

tyrosine is indicated with a red dot, active site residues within 5 Å from catalytic tyrosine 

are indicated with blue dots, and the nine residue loop extension seen in SmTopoI_N65 is 

indicated with a magenta bar.119,122  

Reprinted from final submission with open access permission, Elsevier, Inc. Jones, J. A. 

& Hevener, K. E. Crystal structure of the 65-kilodalton amino-terminal fragment of DNA 

topoisomerase I from the gram-positive model organism Streptococcus mutans. Biochem 

Biophys Res Commun, https://doi.org/10.1016/j.bbrc.2019.06.034 (2019. In Press).74 
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Figure 2-18. Continued. 
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Employing X-ray crystallographic methods, this work identified conditions 

producing crystals that diffracted to 2.06 Å resolution, resulting in the first determined 

topo I structure from a Gram-positive bacterium, SmTopoI_N65. This topo I fragment 

structure offers important insight into both the similarities and differences between 

bacterial topo I from several different relevant organisms. Continued efforts to 

characterize SmTopoI are still warranted, including but not limited to the structural 

determination of full-length SmTopoI, co-crystal structures with bound oligonucleotides, 

enzymatic and kinetic studies, as well as various studies focused on the relatively unique 

active-site-adjacent nine-residue loop extension highlighted in this work. Such studies 

regarding the latter topic may include studies deleting, extending, or mutating the loop 

itself, as well as side-by-side comparison of structural and enzymatic studies of topo I 

enzymes from various bacterial organisms, including those with and without the loop 

extension. Nonetheless, the results of these studies have improved our knowledge of topo 

I and will facilitate future rational research efforts targeting this important enzyme.  
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CHAPTER 3.    TARGETING ACYL CARRIER PROTEIN (ACP)-ENOYL 

REDUCTASE II (FABK): PRODUCTION, STABILIZATION, AND 

CRYSTALLIZATION3 

 

 

Introduction 

 

 

Background 

 

Clostridioides difficile (formerly Clostridium difficile) is a gram-positive, spore-

forming, anaerobic pathogen that is the leading cause of health care-associated diarrhea 

and gastroenteritis-associated deaths in the U.S.139-142 Clinical consequences of C. 

difficile infection (CDI) range from asymptomatic or mild diarrhea to recalcitrant 

diarrhea and fatal pseudomembranous colitis.143 CDI is caused by the eradication of key 

gut flora, such as Bifidobacterium sp. and Bacteroides sp., which normally suppress C. 

difficile overgrowth.144 This typically occurs via the use of broad-spectrum antibiotics 

(e.g., clindamycin, fluoroquinolones, and beta-lactams).144-146 The first-line CDI 

treatment, vancomycin, exhibits activity against beneficial gut flora and results in their 

eradication, contributing to high rates of recurrence.147,148 Further contributing to relapse 

is the pathogen’s ability to produce treatment-resistant spores that survive in the intestinal 

tract.149,150 The emergence of epidemic strains, namely BI/NAP1/027 (North American 

pulsed-field gel electrophoresis type 1, ribotype 027), correlated with an increase in 

incidence and severity of CDI.147 While the alternative first-line drug fidaxomicin is 

narrow-spectrum and reduces recurrence, it has failed to show evidence of doing so in 

NAP1-mediated infections.151,152 Fecal microbiota transplantation (FMT) shows promise, 

but long-term safety data is still lacking, including non-infectious microbiota-related 

metabolic diseases like obesity.153,154 While new agents are currently in clinical trials, 

recent failures highlight the pressing need for novel anti-CDI agents to maintain the 

discovery pipeline.146,155 These issues emphasize that C. difficile remains a high-priority 

candidate for the development of novel narrow-spectrum antibacterial agents.  

 

 

Bacterial Type II Fatty Acid Biosynthesis (FAS II) Pathway 

 

During cyclic fatty acid elongation within the bacterial type II fatty-acid synthesis 

(FAS II) pathway, enoyl-acyl carrier protein (ACP) reductase enzymes catalyze the 

critical, rate-limiting terminal reduction step. The FAS-II system provides fatty acid 

precursory components vital to bacterial organisms for various biological processes like 

membrane phospholipid production and sporulation.156 Strong scientific precedent 

substantiates these enzymes as antimicrobial drug targets, exemplified by isoniazid, a 

                                                 

 
3 Portions of chapter from final submission adapted with permission from Jones, J. A.* et al. Small-

molecule inhibition of the C. difficile FAS-II enzyme, FabK, results in selective activity. ACS Chem Biol, 

https://doi.org/10.1021/acschembio.9b00293 (2019. In Press). (*Co-first author.) Copyright (2019) 

American Chemical Society.139 

https://doi.org/10.1021/acschembio.9b00293
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marketed inhibitor of tubercular InhA (enoyl-ACP reductase); triclosan, a well-known 

antibacterial FabI inhibitor; and the anti-staphylococcal FabI inhibitor afabicin (Debio-

1450) currently in clinical trials.31,157-159 While the existence of four distinct enoyl 

reductase isozymes (FabI, FabK, FabL, and FabV) in bacteria precludes the development 

of broad-spectrum antibacterials targeting them, it affords an ideal opportunity for the 

rational design of narrow-spectrum agents.68-70 Bioinformatics analyses of sequenced C. 

difficile genomes indicate it expresses the FabK isozyme as its sole enoyl-ACP 

reductase.67,160  

 

FabK, a member of the triosephosphate isomerase (TIM) barrel family of 

proteins, is a less abundant isozyme among the four enoyl-ACP reductases, and lacks 

sequence similarity to FabI, FabL, and FabV, which are members of the short-chain 

alcohol dehydrogenase/reductase (SDR) superfamily.69,161 Like the other isozymes, FabK 

requires either NADH or NADPH as a cofactor for activity, but unlike its SDR 

counterparts, FabK is a flavoenzyme that utilizes flavin mononucleotide (FMN) as an 

active site prosthetic group. FabK is also unique in that it uses a bi-bi double 

displacement (ping-pong) enzymatic mechanism for reducing its enoyl substrate.69,161-168 

The SDR enzymes, however, possess a classical Rossman fold for binding their 

NAD(P)H cofactor and rely on an ordered sequential enzyme mechanism for reducing 

their enoyl substrates.169,170 While there has been recent debate about the essentiality of 

the FAS-II pathway in Gram-positive bacteria,171-173 several groups have shown that 

possession of the FapR regulatory system over FabT, as seen in S. aureus, prevents full 

bypass of FAS-II inhibition by exogenous fatty acid uptake.71,72 Indeed, it was recently 

showed that C. difficile, which also possesses FapR, behaves in a similar manner as 

exogenous fatty acids were unable to rescue the pathogen from FAS-II inhibition.67 C. 

difficile also has unique branched fatty acid requirements, further limiting the likelihood 

of escape from FAS-II inhibition.174,175 Recent work also demonstrated the ability of 

FAS-II inhibition to decrease spore formation by nearly 90%, which in principle could 

reduce potential for spore survival, associated endogenous recurrence, and spore 

dissemination.67   

 

 

FabK as a Narrow-spectrum Target 

 

CDI pharmacotherapy has shown that maximizing therapeutic success includes 

preventing collateral damage to the GI microbiome. Important gut species such as Gram-

negative Bacteroides sp.176 express FabI with or without FabK, while Bifidobacterium sp. 

lack FabK entirely.67 Importantly, published FabK inhibitors are inactive against FabI 

and FabI-bearing strains.164,167 Similarly, FabK has demonstrated resistance to FabI 

inhibitors like triclosan, which are consequently inactive against strains carrying 

FabK.69,162,177,178 Lastly, the ability of bacterial strains carrying two enoyl reductases to 

survive the deletion of one isozyme suggests that both enzymes would need to be dually 

inactivated to inhibit the growth of such organisms.68 This data justifies the investigation 

of FabK as a narrow-spectrum target for selective anti-difficile therapy. In an effort to 

initially characterize the enzyme target, the following research includes CdFabK 
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expression and purification details, preliminary CdFabK characterization, and continuing 

CdFabK protein crystallography work. 

 

 

Aims 

 

 

Protein Expression, Purification, and Stabilization of CdFabK 

 

 In order to carry out the desired enzyme target characterization and validation, a 

high yield of high purity CdFabK was required. Because previous attempts had resulted 

in low yields of inactive enzyme, a number of different purification methods were tested 

to maximize the chances of success. As perhaps the most popular initial protein 

purification is IMAC, this was attempted with various hexa-histidine tag placements, 

including N-terminal and C-terminal tags. Additionally, native CdFabK was expressed 

and purified as tag placement has been reported to impede both enzyme activity and 

crystallization.179  

 

 While high quantity and purity of produced target enzyme is indeed of great 

importance, the desire to develop assays for the screening of inhibitory compounds and to 

characterize any potential compounds required the need for active and stable compounds. 

As such, iterative and systematic trials were necessary for determining optimized storage, 

assay, and crystallization conditions. Herein, the high-yield expression, rapid two-step 

purification, and stable enzyme activity conditions of FabK from C.difficile is reported. 

Production methods and can be carried out in a single day with an estimated purity of 

95% or higher.  

 

 

Crystallization of CdFabK 

 

 As the three-dimensional structure of CdFabK has not been previously 

determined, a high resolution structure of CdFabK is required in order to conduct 

structural characterization and structure-guided drug discovery efforts. As stated earlier, 

the CdFabK enzyme is too small for cryo-EM studies and too large for NMR structural 

studies. Therefore, X-ray crystallography is, by default, necessary for such requisite 

structural determination and analyses. In order to crystallize CdFabK, a variety of coarse 

crystallization screens for apo- and co-crystal CdFabK structures were carried out, and 

subsequent fine screening trials were also conducted. Herein, the conditions for the 

production of various moderate resolution CdFabK crystals is reported. 
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Materials and Methods 

 

 

CdFabK Construct Cloning, Plasmid Production, and Expression 

 

The fabk gene from C. difficile strain 630 was commercially optimized, 

synthesized, and cloned into the pET15b vector by GenScript (Piscataway, NJ) carrying 

an N-terminal hexa-histidine tag.139 The gene was also cloned into the pET21d vector 

with two different constructs, one carrying a C-term hexa-histidine tag, and the other 

carrying no tag and encoding only the native enzyme as the gene of interest. The 

respective plasmid products (CdFabK_15b, CdFabK_21d, and CdFabK_21d_NATIVE, 

respectively) were then transformed into XL1-Blue Supercompetent cells (Agilent 

Technologies, Santa Clara, CA) per protocol. Upon successful transformation, the 

plasmids were then isolated with the QIAprep Spin Miniprep Kit via protocol and the 

sequences were confirmed via the University of Tennessee Health Science Center 

(UTHSC) Molecular Research Center (MRC) sequencing services (Memphis, TN). After 

sequence confirmation, the plasmids were also transformed into BL21(DE3)-Gold 

Competent cells (Agilent Technologies, Santa Clara, CA) via protocol.  

 

The proteins were overexpressed in E. coli BL21(DE3)-Gold Competent cells 

(Agilent Technologies, Santa Clara, CA) cultivated at 37°C in TB medium with 100 

g/mL ampicillin by transferring 1% (v/v) overnight culture into fresh medium. Cells 

were allowed to grow until they reached an OD600 of ~ 0.6 and the protein expression was 

induced with 0.1 mM IPTG supplemented with 0.5 mM flavin mononucleotide (FMN). 

Growth temperature was decreased to 18C and cells were allowed to grow further for 18 

hours at 18C. After induction and growth, the cells were harvested by centrifugation at 

18000 x g for 15 minutes. Pellets were stored at -80C until use. 

 

 

CdFabK_15b and CdFabK_21d Purification 

 

Pellets were resuspended in CFabK Buffer A (20 mM HEPES buffer pH 8.0 with 

300 mM NH4Cl, 1 mM DTT, 18% glycerol, 10 g/mL benzamidine, and 10 mM 

imidazole). Lysis components were then added, including 0.5 mg/mL lysozyme, 10 

µg/mL DNaseI, 5 mM MgCl2, 0.5% Triton-X 100, 25 mM sucrose, and 1 Pierce® 

EDTA-free Protease inhibitor tablet per 50 mL. Cells were lysed at 4°C with gentle 

stirring, then sonicated at 50% amplitude on ice for eight minutes with eight seconds on 

and 24 seconds off. Lysates were centrifuged at 39,000  g for 15 minutes and the 

supernatants were filtered through a 0.22 polyethersulfone (PES) syringe filter (EMD 

Millipore, Billerica, MA).  

 

His-tagged proteins were purified via immobilized metal affinity chromatography 

(IMAC) by loading the filtered lysate on a HisTrap HP column (GE Life Sciences) in 

CdFabK Buffer A, washed over 20 column volumes with CdFabK Buffer A, and eluted 

via linear gradient to 100% CdFabK Buffer B (CdFabK Buffer A with 500 mM 

imidazole) over 20 column volumes. Peak eluted proteins were pooled and further 
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purified by SEC on a HiLoad 26/600 Superdex 200 PG size exclusion column (GE 

Healthcare Life Sciences, Pittsburgh, PA) in CdFabK SEC Buffer (50 mM HEPES pH 

8.0, 300 mM NH4Cl, 18% glycerol, and 3 mM DTT) via isocratic elution. After 

purification, proteins were concentrated via 10,000 MWCO Amicon™ Ultra-15 

Centrifugal Filter Units and brought to 100 M with 38.5% glycerol, snap frozen in 

liquid nitrogen, and stored at -80°C until future use. Proteins have been confirmed active 

up to six months after storage under these conditions. Enzyme was confirmed via SDS-

PAGE gel analysis (Mini-PROTEAN® TGX Stain-Free™ Pre-Cast Gel and Precision 

Plus Protein™ Unstained Standard, Bio-Rad Laboratories, Hercules, CA) and the enzyme 

activity was analyzed in an Implen NP80 nanophotometer as described below (West Lake 

Village, CA). Enzyme concentration was determined via PierceTM 660nm Protein Assay 

Reagent (ThermoFisher Scientific, Waltham, MA) per protocol.  

 

 

CdFabK_21d_NATIVE Purification 

 

Pellets were resuspended in Anion Buffer A (20 mM BIS TRIS Propane buffer 

pH 9.5, 1 mM DTT, and 18% glycerol). Lysis components were then added, including 

0.5 mg/mL lysozyme, 10 µg/mL DNaseI, 0.5% Triton-X 100, and 1 Pierce® EDTA-free 

Protease inhibitor tablet per 50 mL. Cells were lysed at 4°C with gentle stirring, then 

sonicated at 50% amplitude for eight minutes with eight seconds on and 24 seconds off. 

Lysates were centrifuged at 39,000  g for 15 minutes and the supernatants were filtered 

through a 0.22 PES syringe filter (EMD Millipore, Billerica, MA).  

 

Native CdFabK protein (CdFabK_NATIVE) was purified via anion exchange 

chromatography by loading the filtered lysate on HiTrap Q HP GE Column (GE Life 

Sciences) in Anion Buffer A, subsequently washed with 20 column volumes with Anion 

Buffer A, and then eluted via linear gradient to 100% Anion Buffer B (Anion Buffer A 

with 500 mM NH4Cl) over 20 column volumes. The 450 nm wavelength was followed to 

discern fractions containing FabK cofactor, flavin mononucleotide (FMN), which was 

followed to track the presence of the CdFabK_NATIVE protein. Fractions were collected 

and pooled, enzyme was confirmed via PAGE gel analysis, and the enzyme activity was 

analyzed in an Implen NP80 nanophotometer as described below (West Lake Village, 

CA). Enzyme concentration was determined via PierceTM 660nm Protein Assay Reagent 

(ThermoFisher Scientific (Waltham, MA, USA) per protocol. 

 

 

CdFabK Activity and Stability Assays 

 

Salt trials 

 

All activity and stability assays were carried out at 25°C. Trials were conducted in 

the presence of 50 nM CdFabK_15b N-term hexa-His tagged target enzyme, 5% DMSO, 

150 M Cro-CoA, and 150 M NADH in an overall volume of 100 L in the following 

various assay buffers: CdFabK Salt Assay Buffer 1 (HEPES pH 7.5, 0 mM NH4Cl, and 

4% glycerol), CdFabK Salt Assay Buffer 2 (HEPES pH 7.5, 100 mM NH4Cl, and 4% 



 

70 

glycerol), CdFabK Salt Assay Buffer 3 (HEPES pH 7.5, 300 mM NH4Cl, and 4% 

glycerol), and CdFabK Salt Assay Buffer 4 (HEPES pH 7.5, 500 mM NH4Cl, and 4% 

glycerol). DMSO and enzyme were incubated together for 5 minutes before the Cro-CoA 

substrate was added and the reaction was started immediately afterward via the addition 

of NADH. NADH absorbance (340 nm) was measured in a Biotek Synergy H1 

microplate reader (Winooski, VT) in a final volume of 100 L in Greiner Bio-One™ 

384-Well µClear™ Bottom Polystyrene Microplates (Monroe, NC) via 20 second 

intervals for 7 minutes to evaluate the rate of reaction. 

 

Glycerol trials 

 

Trials were conducted in the presence of 50 nM CdFabK_15b N-term hexa-His 

tagged target enzyme, 5% DMSO, 150 M Cro-CoA, and 150 M NADH in an overall 

volume of 100 L in the following various assay buffers: CdFabK Glycerol Assay Buffer 

1 (HEPES pH 7.5, 500 mM NH4Cl, and 0% glycerol), CdFabK Glycerol Assay Buffer 2 

(HEPES pH 7.5, 500 mM NH4Cl, and 4% glycerol), CdFabK Glycerol Assay Buffer 3 

(HEPES pH 7.5, 500 mM NH4Cl, and 10% glycerol), and CdFabK Glycerol Assay 

Buffer 4 (HEPES pH 7.5, 500 mM NH4Cl, and 15% glycerol). DMSO and enzyme were 

incubated together for 5 minutes before the Cro-CoA substrate was added and the 

reaction was started immediately afterward via the addition of NADH. NADH 

absorbance (340 nm) was measured in a Biotek Synergy H1 microplate reader 

(Winooski, VT) in a final volume of 100 L in Greiner Bio-One™ 384-Well µClear™ 

Bottom Polystyrene Microplates (Monroe, NC) via 20 second intervals for 7 minutes to 

evaluate the rate of reaction. 

 

Buffer and pH trials 

 

Trials were conducted in the presence of 50 nM CdFabK_15b N-term hexa-His 

tagged target enzyme, 5% DMSO, 150 M Cro-CoA, and 150 M NADH in an overall 

volume of 100 L in the following various assay buffers: CdFabK pH Assay Buffer 1 

(100 mM MES pH 5.5, 500 mM NH4Cl, and 10% glycerol), CdFabK pH Assay Buffer 2 

(100 mM MES pH 6.5, 500 mM NH4Cl, and 10% glycerol), CdFabK pH Assay Buffer 3 

(100 mM HEPES pH 7.5, 500 mM NH4Cl, and 10% glycerol), CdFabK pH Assay Buffer 

4 (100 mM HEPES pH 8.5, 500 mM NH4Cl, and 10% glycerol), and CdFabK pH Assay 

Buffer 5 (100 mM CHES pH 9.5, 500 mM NH4Cl, and 10% glycerol). DMSO and 

enzyme were incubated together for 5 minutes before the Cro-CoA substrate was added 

and the reaction was started immediately afterward via the addition of NADH. NADH 

absorbance (340 nm) was measured in a Biotek Synergy H1 microplate reader 

(Winooski, VT) in a final volume of 100 L in Greiner Bio-One™ 384-Well µClear™ 

Bottom Polystyrene Microplates (Monroe, NC) via 20 second intervals for 7 minutes to 

evaluate the rate of reaction. 
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CdFabK Stability Trials 

 

Initial  -Globulins dilution assays 

 

Stability assays were carried out at 25°C in the presence of 50 nM CdFabK_15b 

N-term hexa-His tagged target enzyme, 10% DMSO, 150 M Cro-CoA, and 150 M 

NADH in an overall volume of 100 L, in CdFabK Assay Buffer (HEPES pH 8.0, 500 

mM NH4Cl, and 10% glycerol). The enzyme was diluted from the 100 M storage stock 

concentration to 1 M working stock concentration in CdFabK Assay Buffer with 

varying amounts of -Globulins (Sigma Aldrich, St. Louis, MO)—ranging from 0 mg/mL 

(0 mg/mL overall assay concentration) to 2.5 mg/mL (0.125 mg/mL overall assay 

concentration), and then allowed to incubate at 25°C for 0, 30, and 60 minutes. Enzyme 

from each time point and -Globulin dilution concentration was then incubated with 

DMSO as a positive control for 10 minutes before the Cro-CoA substrate was added and 

the reaction was started immediately afterward via the addition of 50 L 300 M NADH. 

NADH fluorescence (340 nm/460 nm) was measured in a Biotek Synergy H1 microplate 

reader (Winooski, VT) in a final volume of 100 L in Greiner Bio-One™ 384-Well 

µClear™ Bottom Polystyrene Microplates (Monroe, NC) via 20 second intervals for 10 

minutes to evaluate the rate of reaction. 

 

 Optimizing -Globulins dilution assays 

 

Maximal CdFabK dilution assays were carried out at 25°C in the presence of two-

fold dilutions of 50 nM CdFabK_15b N-term hexa-His tagged target enzyme down to 

6.25 nM CdFabK_15b. Assays were carried out in 10% DMSO, 300 M Cro-CoA, and 

125 M NADH in an overall volume of 100 L, in CdFabK Assay Buffer (HEPES pH 

8.0, 500 mM NH4Cl, and 10% glycerol). The enzyme was diluted from the 100 M 

storage stock concentration to 1 M, 0.5 M, 0.25 M, and 0.125 M working stock 

concentrations in CdFabK Assay Buffer with an increased 5 mg/mL  -Globulins (0.25 

mg/mL overall assay concentration), and then allowed to incubate at 25°C for 30 

minutes. Enzyme was then incubated in assay buffer with DMSO as a positive control for 

10 minutes before the Cro-CoA substrate was added and the reaction was started 

immediately afterward via the addition of 50 L 250 M NADH. NADH fluorescence 

(340 nm/460 nm) was measured in a Biotek Synergy H1 microplate reader (Winooski, 

VT) in a final volume of 100 L in Greiner Bio-One™ 384-Well µClear™ Bottom 

Polystyrene Microplates (Monroe, NC) via 15 second intervals for 30 minutes to evaluate 

the rate of reaction and to monitor for any eventual loss of enzyme activity. 

 

 

CdFabK Crystallization 

 

CdFabK_21d crystals 

 

C-term hexa-histidine tagged CdFabK_21d was crystallized at 5 mg mL-1 in a 

3uL:3uL 1:1 ratio protein to condition using the hanging-drop vapor-diffusion method off 
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of a coarse-matrix screen. The initial crystal growth condition was Morpheus (Molecular 

Dimensions, Maumee, OH) condition 1-48 (0.12 M alcohols mix of 0.2 M 1,6-

hexanediol, 0.2 M 1-butanediol, 0.2 M 1,2-propanediol, 0.2 M 2-propanol, 0.2 M 1,4-

butanediol, and 0.2 M 1,3-propanediol; 0.1 M buffer mix of Tris base and BICINE, pH 

8.5; and 37.5% v/v precipitant mix of 25% v/v 2-methyl-2,4-pentanediol, 25% 

polyethylene glycol 1000, and 25% polyethylene glycol 3500) at 18°C. Crystals were 

collected for X-ray diffraction analysis. Crystals were grown in 48-well VDX plates with 

sealant (Hampton Research, Aliso Viejo, CA) and were visible within one week. 

 

CdFabK_15b crystals 

 

N-term hexa-histidine tagged CdFabK_15b was crystallized at 4.8 mg mL-1 in a 

7uL:7uL 1:1 ratio protein to condition using the hanging-drop vapor-diffusion method off 

of a coarse-matrix screen. The initial crystal growth condition was Morpheus (Molecular 

Dimensions, Maumee, OH) condition 2-48 (0.1 M amino acids mix of 0.2 M DL-

glutamic acid monohydrate, 0.2 M DL-alanine, 0.2 M glycine, 0.2 M DL-lysine 

monohydrochloride, and 0.2 M DL-serine; 0.1 M buffer mix of Tris base and BICINE, 

pH 8.5; and 37.5% v/v precipitant mix of 25% v/v 2-methyl-2,4-pentanediol, 25% 

polyethylene glycol 1000, and 25% polyethylene glycol 3500) at 18°C. Crystals were 

collected for X-ray diffraction analysis. Optimized crystals were then obtained via co-

crystallization in the same Morpheus 2-48 condition at 4.8 mg ml -1 in 7uL:7uL 1:1 ratio 

of protein to a mix of 93% crystallization condition and 7% 10 mM phenylimidazole 

compound 1g (see Chapter 4) in DMSO. Crystals were obtained using the hanging-drop 

vapor-diffusion method. Crystals were grown in 48-well VDX plates with sealant 

(Hampton Research, Aliso Viejo, CA) and were visible within five days. 

 

 

Results 

 

 

Cloning and Expression of Recombinant CdFabK 

 

Substantial amounts of pure, active target CdFabK protein are needed for the 

various characterization and validation studies required for effective CdFabK-directed 

drug discovery and development efforts. Again, cloning into various histidine affinity tag 

systems was chosen and implemented. For the sake of speed, the C. difficile fabK gene 

was commercially optimized, cloned, and inserted into the pET15b vector 

(CdFabK_15b), introducing the popular hexa-Histidine (hexa-His) tag at the N-terminus 

of the target enzyme for effective first-round purification.123 For thorough analysis, the 

target gene was previously cloned into several alternative vectors to study the effects of 

affinity tag placement at either the amino or carboxy terminus, as well as native enzyme 

without any tag. BL21(DE3)-Gold Competent cells were used for the over-expression of 

target protein. Yellow pellets were noticed upon growth and expression of all three 

constructs. 
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Purification of Recombinant CdFabK Constructs 

 

As a traditional first step purification method for many target enzymes, Ni2+-NTA 

IMAC purification of CdFabK with the pET21d C-term hexa-His tag system and the 

pET15b N-term hexa-His tag system both resulted in high yields (greater than 25 mg/L) 

of initially active enzyme when high levels of glycerol, such as 18%, were used 

throughout the purification steps. As the C-term hexa-His tagged enzyme (CdFabK_21d) 

proved to lose activity rapidly, the N-term hexa-His tagged construct (CdFabK_15b) 

became the construct of choice. Following successful IMAC purification, further 

purification of CdFabK_15b was carried out via size exclusion chromatography and 

resulted in highly pure enzyme of at least 95% purity via SDS-PAGE analysis (Figure  

3-1) and high overall yields greater than 10 mg/L determined via 660nm protein 

concentration assay with BSA as a standard. Target enzyme solubility was determined 

satisfactory for immediate pooling and purifying via SEC without needing to buffer 

exchange or dialyze, leading to a highly rapid and simple purification protocol that can be 

conducted in one to two days. Under current storage conditions at -80°C (Materials and 

Methods), enzyme has been determined active for over six months. 

 

The native CdFabK target enzyme was also purified via preliminary anion 

exchange chromatography, but the purity in comparison to the N-term hexa-His tagged 

construct was quite poor and further protocol development for purifying the native target 

enzyme was suspended for the time being.  

 

 

Characterization of CdFabK 

 

As the overall stability of CdFabK_21d had been determined previously to be 

very poor, CdFabK_15b was expressed, purified, and tested for comparative stability. Via 

systematic stability and activity trials, effective assay conditions were determined for 

CdFabK_15b with a trend of relatively high NH4Cl, relatively high glycerol, and slightly 

basic pH conditions combining for optimal conditions of HEPES pH 8.0, 500 mM 

NH4Cl, and 10% glycerol (Figure 3-2). Even with the optimized assay conditions, 

however, the target enzyme lost activity soon after being diluted to concentrations needed 

for making a working enzyme stock solution for compound screening. The addition of 

just 2.5 mg/mL -Globulins to the dilution buffer was determined to greatly increase the 

duration of activity of the diluted enzyme at an overall concentration of 50 nM from just 

a few minutes up to at least one hour (Figure 3-3). Additionally, increasing the -

Globulins even further to 5 mg/mL and doubling the substrate concentration to account 

for extended assay duration to 300 M allowed for further dilutions of enzyme 

concentration down to single-digit nanomolar (6.25 nM) with the capability of sustained 

activity for at least 30 minutes (Figure 3-4). 
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Figure 3-1. SDS-PAGE gel of CdFabK_15b purification results.  

 

(A) Stain-free SDS-PAGE. L, ladder; CE, clarified extract from IPTG-induction growth; 

Ni2+, target fraction from nickel column; SE1, target fraction from beginning of size 

exclusion peak; SE2, target fraction from middle of size exclusion peak.  

 

 

 

 

 
 

Figure 3-2. Enzyme activity studies of CdFabK_15b.  

 

(A) CdFabK_15b stability trials measuring enzyme activity in different NH4Cl salt 

concentrations, 0 mM (blue line with squares), 100 mM (green line with dots), 300 mM 

(purple line with diamonds), and 500 mM (red line with squares). (B) CdFabK_15b 

stability trials measuring enzyme activity in different glycerol concentrations, 0% (black 

line with triangles), 4% (orange line with diamonds), 10% (red line with squares), and 

15% (blue line with dots). (C) CdFabK_15b stability trials measuring enzyme activity in 

different buffers and at different pH values, MES pH 5.5 (blue line with dots), MES pH 

6.5 (red line with squares), HEPES pH 7.5 (green line with triangles), HEPES pH 8.0 

(black line with dots), HEPES pH 8.5 (orange line with diamonds), and CHES pH 9.5 

(purple line with upside down triangles). All reactions were carried out in the presence of 

a fixed concentration of NADH (150 M) and Cro-CoA (150 M). 
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Figure 3-3. Enzyme dilution and stability studies of CdFabK_15b.  

 

(A) CdFabK_15b stability trials measuring enzyme activity while diluted to 50 nM at 

different incubation times 0 minutes (green line with circles), 30 minutes (red line with 

squares), and 60 minutes (blue line with triangles). (B) CdFabK_15b stability trials 

measuring enzyme activity while diluted to 50 nM at different incubation times 0 minutes 

(green line with circles), 30 minutes (red line with squares), and 60 minutes (blue line 

with triangles) after having been diluted into a working stock including 2.5 mg/mL of -

Globulins and an overall assay concentration of 0.125 mg/mL -Globulins. All reactions 

were carried out in the presence of a fixed concentration of NADH (150 M) and Cro-

CoA (150 M). 
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Figure 3-4. Extended enzyme dilution and stability studies of CdFabK_15b.  

 

CdFabK_15b stability trials measuring enzyme activity at different two fold dilutions 50 

nM (blue line with dots), 25 nM (red line with squares), 12.5 nM (green line with 

triangles), and 6.25 nM (purple line with upside down triangles), and NADH control 

without enzyme (orange line with diamonds) after thirty minutes of incubation and a 

reaction runtime of thirty minutes. CdFabK_15b was diluted into a working stock 

including 5 mg/mL of -Globulins and an overall assay concentration of 0.25 mg/mL -

Globulins. All reactions were carried out in the presence of a fixed concentration of 

NADH (150 M) and Cro-CoA (300 M). 
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Crystallization of CdFabK_21d and CdFabK_15b 

 

Crystallization conditions were determined for both CdFabK_21d and 

CdFabK_15b (Figure 3-5). Protein crystals of CdFabK_21d were discovered first and 

diffracted to roughly 4 Å. CdFabK_15b crystallization conditions were also determined, 

and moderately optimized (as discussed in Materials and Methods) with the resulting 

crystals diffracting to roughly 3.5 Å.  

 

 

Discussion 

 

 

CdFabK Production 

 

 CdFabK was produced with two different hexa-Histidine tags, each to high 

homogeneity and purity (greater than 95% via SDS-PAGE analysis) and over 10 mg per 

liter of culture, however the C-term His-tagged construct proved highly unstable, despite 

significant efforts to optimize storage and activity assay conditions (data now shown). 

Therefore, the N-term His-tagged construct was expressed, purified via two-step 

purification, and studied further. Upon systematic stability and activity trial analysis, the 

salt, glycerol, and buffer and pH conditions were optimized for this specific construct as 

discussed below. While stored at -80°C, the activity of the enzyme remains well past six 

months, which is an important factor considering the desire to make large amounts of a 

single batch of enzyme, store it, and use it in the future for reliable and uniform and 

comparable high throughput compound screening. 

 

 

CdFabK Stabilization 

 

Upon systematic optimization of activity buffer conditions, optimal conditions 

were found to be 100 mM HEPES pH 8.0, 500 mM NH4Cl, and 10% glycerol. This takes 

into account many considerations as the eventual goal of CdFabK production includes 

future assay development for compound screening and inhibitor studies. As such, certain 

factors of concern include, of course, target enzyme stability and activity during both 

benchtop experiments as well as after long-term storage.180 During analysis of the activity 

of the CdFabK_15b enzyme under diluted conditions generally conducive to creating 

working enzyme stock concentrations needed for compound screening, it was discovered 

that any significant dilution of CdFabK_15b below ~100 M resulted in relatively rapid 

inactivation. Thus the addition of inert proteins were analyzed and the addition of -

Globulins to the assay buffer for the dilution of the enzyme storage stock to an enzyme 

working stock was determined to greatly increase the overall stability of the enzyme with 

respect to the duration of activity. This allowed for substantial dilutions that would afford 

the opportunity to conduct assays in the presence of reasonable concentrations of DMSO 

and at low enough enzyme concentrations needed to screen inhibitors.  
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Figure 3-5. CdFabK crystals. 

 

A. Original CdFabK_21d C-term hexa-His tagged crystals grown at 18°C from coarse 

Morpheus screen, condition 1-48 (0.12 M alcohols mix of 0.2 M 1,6-hexanediol, 0.2 M 1-

butanediol, 0.2 M 1,2-propanediol, 0.2 M 2-propanol, 0.2 M 1,4-butanediol, and 0.2 M 

1,3-propanediol; 0.1 M buffer mix of Tris base and BICINE, pH 8.5; and 37.5% v/v 

precipitant mix of 25% v/v 2-methyl-2,4-pentanediol, 25% polyethylene glycol 1000, and 

25% polyethylene glycol 3500). B. Optimized CdFabK_15b crystal grown at 18°C from 

coarse Morpheus screen, condition 2-48 (0.1 M amino acids mix of 0.2 M DL-glutamic 

acid monohydrate, 0.2 M DL-alanine, 0.2 M glycine, 0.2 M DL-lysine 

monohydrochloride, and 0.2 M DL-serine; 0.1 M buffer mix of Tris base and BICINE, 

pH 8.5; and 37.5% v/v precipitant mix of 25% v/v 2-methyl-2,4-pentanediol, 25% 

polyethylene glycol 1000, and 25% polyethylene glycol 3500) with 1:1 protein to 7% 10 

mM phenylimidazole compound 1g (see Chapter 4) and DMSO in Morpheus 

crystallization condition 2-48. 
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CdFabK Crystallization 

 

CdFabK required certain conditions for activity and stability, namely high salt, at 

least 300 mM NH4Cl, and high glycerol, 18%, not traditionally conducive to 

crystallization. As different methods were being considered for the optimization of 

crystallization standards, coarse crystallization trials were nonetheless attempted in the 

meantime. To some degree of surprise, crystallization conditions for both the C-term and 

N-term His-tagged constructs were discovered, despite the high salt and high glycerol 

storage buffer conditions. While certainly a noteworthy accomplishment, the crystals 

continually resulted in lower, relatively weak diffraction (higher than 3.5 Å) and were 

therefore of little use in structure-guided drug development efforts.  

 

Fine screening crystallization attempts were made to the best of in-lab abilities, 

but initial efforts to do so were met with difficulty. The crystallization conditions were 

very complex, including combinations of multiple precipitants like MPD, PEG 1000, and 

PEG 3350 for both CdFabK construct hit conditions, and different complex ligand 

combinations that include a mix of six different alcohols for the initial C-term hit 

condition, and a complex ligand mix of five different amino acids for the N-term hit 

condition. Therefore, the realistic opportunity for fine screening was somewhat limited 

from the beginning and did not yield further results. As the crystals found off of the 

coarse screens were not shown to diffract near 2 Å, three-dimensional crystal structures 

have not been determined. Instead, additional crystallization and crystal optimization 

trials have continued.  

 

Such trials have included apo- and co-crystallography efforts with CdFabK_15b 

and analogues of a known phenylimidazole FabK inhibitor compound.163 Additionally, 

CdFabK_15b has been screened against multiple other coarse crystal screens at various 

temperatures. Also, protein to crystallization condition ratios have been altered, as have 

drop sizes, and hanging vs. sitting drop methods have been employed. An Additive 

Screen (Hampton Research, Aliso Viejo, CA) has also been attempted, and different cryo 

conditions have been analyzed, including various PEG compounds, glycerol contents, 

sugars, oils, and so on. Various post-crystallization techniques reported in the literature, 

such as annealing and denaturing methods, have been extensively attempted as well.181 

Thus far, diffraction has not improved, and further consideration is undergoing. 

 

Though generally reported in the literature to have little effect on crystal structure 

quality and resolution, another consideration has been that the His-tag may interfere with 

tight crystal packing and resulting resolution.182 As such, attempts were made to cleave 

the His-tag off of CdFabK_15b via thrombin cleavage, but enzyme activity was 

completely lost and not recovered after doing so (data not shown). It is surmised that the 

reason for this is the extensive degree of dilution for extended amounts of time required 

for the thrombin cleavage reaction to occur. Additionally, preliminary attempts have been 

made to purify native, untagged CdFabK for eventual crystallization trials but, similar to 

overall CdFabK crystallization studies, progress is ongoing. 
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Summary 

 

Recent studies have shown that the fabk gene in C. difficile, which codes for the 

CdFabK enzyme, is essential, even in the presence of exogenous fatty acids.67 This alone 

supports CdFabK as a potentially promising novel antibacterial target. However, as those 

studies also show that a known inhibitor of CdFabK inhibits the growth of C. difficile 

without substantially inhibiting the growth of several selected representatives of the 

human microbiome, the promise and potential of CdFabK as a narrow-spectrum 

antibacterial target is also notably suggested.67 In order to further investigate CdFabK as 

a narrow spectrum target for antibacterial drug discovery, it was immediately necessary 

to produce pure, active, and stable target protein for further characterization and 

validation.  

 

CdFabK initially proved to be a relatively unstable enzyme in that traditional 

purification buffers resulted in low-yield and inactive target protein. Via iterative trials, 

substantial yields of highly pure and active CdFabK are now rapidly obtainable. 

Moreover, conditions for reproducible and reliable assaying of the target enzyme have 

been determined, including assay buffer conditions and long-term storage conditions. 

While the activity of the enzyme can now be reliably measured at a satisfactory 50 nM 

conentration, the potential for measuring even lower concentrations—potentially into low 

double-digit nanomolar to single-digit nanomolar concentrations—appears possible. As 

this would be necessary for the testing of any potent CdFabK inhibitors discovered or 

developed, this is indeed a substantial and necessary achievement. Immediate future 

research, therefore, should include compound screening against CdFabK, as well as 

enzymology and characterization of known FabK inhibitors (discussed further in Chapter 

4). 

 

Aside from producing pure, stable, and active enzyme for future compound 

screening, solving the three-dimensional CdFabK structure via X-ray crystallography is 

extremely important for future structure-guided drug discovery efforts. Unfortunately, the 

crystallography results reported herein did not include crystallization conditions or 

crystals that yielded the resolution needed to determine the structure of CdFabK at atomic 

or near-atomic resolution (near 2 Å or lower), which would be necessary to observe 

structural characteristics in high detail and molecular interactions for potential ligands. 

Accordingly, future research should include continued crystallography efforts, both 

aimed at further optimizing diffraction of current crystals from known crystallization 

conditions, as well as determining new crystallization conditions and potentially 

constructing FabK mutants for additional crystallography studies (discussed further in 

Chapter 5).   
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CHAPTER 4.    CDFABK ENZYMOLOGY AND MODALITY OF INHIBITION4 

 

 

Introduction 

 

FabK from S. pneumoniae (SpFabK) was shown by Takahata et al. to be 

specifically inhibited by a compound (AG-205) they found during a high throughput 

screening campaign, which led to the development of the more potent phenylimidazole-

derived class of inhibitors via iterative medicinal chemistry modifications (e.g., replacing 

the amide linker with urea functionality, exploring various substitutions at the solvent 

exposed head region, un-fusing the benzimidazole and benzothiazole ring systems, and 

evaluating various substitutions at the tail region).166,168,183-185 Despite substantial gains in 

potency, further development was ceased, possibly due to the unfortunate fact that 

Streptococci are able to bypass FAS-II inhibition as they carry the FabT regulatory 

system.171 Because C. difficile harbors the FapR regulatory system, it presents an 

opportunity to renew the development of phenylimidazole FabK inhibitors.186 In an effort 

to characterize the enzyme target, essential kinetic evaluations of CdFabK, including 

substrate and cofactor Km determinations, inhibition modality, and substrate inhibition 

effects are herein performed. Data is also reported showing phenylimidazoles display 

potent on-target biochemical activity against CdFabK (Table 4-1) and are amenable to 

modifications that improve physiochemical properties (Figure 4-1) while maintaining 

biochemical and anti-C. difficile activity.  

 

As discussed above, the type II bacterial fatty acid synthesis pathway, FAS II, 

provides important fatty acid precursors for membrane phospholipids essential to 

bacterial cells and integral to sporulation. The FAS II pathway is distinctly separate from 

the mammalian FAS I pathway, which is composed of a single, multifunctional synthase, 

thus the FAS II enzymes represent novel and selective antibacterial targets that remain 

relatively unexploited.  The structure and function of the enzymes in the bacterial FAS II 

pathway have been previously reviewed.169,187-189  As a metabolic pathway there is some 

concern about the ability of bacteria to bypass FAS II inhibition using exogenous fatty 

acids and this has been the subject of intense debate.171-173  

  

Recent work, however, has demonstrated that certain bacteria, including S. 

aureus, remain susceptible to FAS II inhibition even in the presence of exogenous fatty 

acids due to differences in their regulation of genetic expression and feedback regulatory 

systems.71,190  As a rate-limiting enzyme in the FAS-II pathway, FabI, enoyl-[acyl-carrier 

protein (ACP)] reductase, represents a particularly attractive drug target and a number of 

inhibitors of this enzyme have been characterized.30,31,177,191-199  Triclosan, a stereotypical 

FabI inhibitor with a diphenyl ether scaffold, has been marketed for a number of years  

 

                                                 

 
4 Portions of chapter from final submission adapted with permission from Jones, J. A.* et al. Small-

molecule inhibition of the C. difficile FAS-II enzyme, FabK, results in selective activity. ACS Chem Biol, 

https://doi.org/10.1021/acschembio.9b00293 (2019. In Press). (*Co-first author.) Copyright (2019) 

American Chemical Society.139 

https://doi.org/10.1021/acschembio.9b00293
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Table 4-1. Inhibitory activity of Enoyl-ACP isozymes by phenylimidazole 

analogues. 

 

Compound CdFabK IC50 [95% CI]; 

% Inhibition at 10 M  

SpFabK IC50 [95% CI] 

Triclosan >100 M >100 M 

1a >10 M; 38.51% 0.730 M [0.434, 1.456] 

1b 3.31 M; 95% CI [2.68, 4.19] 0.067 M [0.054, 0.084] 

1c >10 M; 49.86% 0.242 M [0.214, 0.274] 

1d >10 M; 44.80% 0.198 M [0.178, 0.222] 

1e 2.86 M [2.02, 4.35] 0.078 M [0.066, 0.093] 

1f 4.63 M [3.12, 8.02] 0.163 M [0.124, 0.214] 

1g 7.35 M [5.35, 11.65] 0.085 M [0.072, 0.101] 

1h >10 µM; 35.58% 0.538 M [0.433, 0.675] 

AG-205 4.15 M [3.324, 5.597] 5.32 M [4.378, 6.809] 

 

CI, Confidence Interval 

Reprinted from final submission with permission from Jones, J. A.* et al. Small-molecule 

inhibition of the C. difficile FAS-II enzyme, FabK, results in selective activity. ACS 

Chem Biol, https://doi.org/10.1021/acschembio.9b00293 (2019. In Press). (*Co-first 

author.) Copyright (2019) American Chemical Society.139 

 

 

 

 

 
 

Figure 4-1. Phenylimidazole analogues 1a-h. 
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and is used in a variety of over-the-counter household products as a sterilizing agent, 

however it has low utility for systemic use because of poor bioavailability.200,201 

 

 

Aims 

 

While the fabk gene has been well-validated as an essential gene in C. difficile 

within the literature, the necessity to further validate the CdFabK enzyme as a druggable, 

selective antibacterial target still exists.67 In an effort to do so, the following work details 

essential kinetic evaluations of CdFabK, including substrate and cofactor Km 

determinations; substrate inhibition effects; and inhibition studies, including modality 

data of phenylimidazole compounds and preliminary inhibition data of novel 

benzothiazole compounds against CdFabK. 

 

 

Materials and Methods 

 

 

CdFabK_15b Cloning, Expression, Purification 

 

 The N-term hexa-histidine tagged CdFabK enzyme, CdFabK_15b, was produced 

and purified as detailed previously in Chapter 3 and used for all CdFabK enzymology, 

kinetic, and inhibitor studies discussed in this chapter. 

 

 

SpFabK Cloning and Plasmid Construction 

 

The fabk gene from S. pneumo strain R6 was cloned and amplified using standard 

PCR protocol and restriction enzyme techniques. Primers were designed around the NdeI 

and BamHI restriction sites using the following primers: 

 

SpFabKfwd: 5’-GGAGGCATATGAAAACGCGTATTAC-3’  

 

SpFabKrev: 5’-AAGGATCCTTAGTCATTTCTTACAACTCC -3’ 

 

The target gene was cloned into the pET15b vector and transformed into BL21-Gold 

(DE3) cells (Agilent Technologies, Santa Clara, CA). The protein was overexpressed in 

E. coli BL21-Gold (DE3) cells via cultivation at 37°C in TB medium with 100 g/mL 

ampicillin by first transferring 1% (v/v) overnight culture into fresh medium. Cells were 

allowed to grow until OD600 of ~ 0.6 and the protein expression was induced with 0.1 

mM IPTG. Cells were allowed to grow further for 18 hours at 18C and the cells were 

harvested by centrifugation at 18000 x g for 15 minutes. After induction and growth, the 

cells were harvested by centrifugation at 18000 x g for 15 minutes. Pellets were stored at 

-80C until use. 
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SpFabK_15b Purification 

 

The cell pellet was resuspended in 50 mL SpFabK Lysis Buffer (CdFabK Buffer 

A with 0.5 mg/mL lysozyme, 1mg/100mL DNase, 5 mM MgCl2, 0.5% Triton-X, and 1 

Pierce EDTA-free Protease Inhibitor tablet per 50 mL) and lysed at 4°C with gentle 

stirring, then sonicated on ice at 50% amplitude for eight minutes, with eight seconds on 

and 24 seconds off.  The cell lysates were centrifuged at 39000 x g for 15 min and the 

supernatant was passed through a 0.22 µM PES syringe filter (EMD Millipore, Billerica, 

MA). N-term hexa-histidine tagged SpFabK (SpFabK_15b) was purified via immobilized 

metal affinity chromatography (IMAC) by loading the filtered lysate on a HisTrap HP 

column (GE Life Sciences) in SpFabK Buffer A, washed over 20 column volumes with 

SpFabK Buffer A, and eluted via linear gradient to 100% SpFabK Buffer B (SpFabK 

Buffer A with 500 mM imidazole) over 20 column volumes. After IMAC purification, 

fractions were pooled and further purified by size exclusion chromatography (SEC) on a 

HiLoad 26/600 Superdex 200 PG size exclusion column (GE Healthcare Life Sciences, 

Pittsburgh, PA) in SpFabK SEC Buffer (50 mM Tris pH 7.4, 100 mM NH4Cl, and 3 mM 

DTT) via isocratic elution. The enzyme was confirmed via PAGE gel analysis and the 

enzyme activity was analyzed in an Implen NP80 nanophotometer as described below 

(West Lake Village, CA). The protein was concentrated to 75 µM with 35% overall 

glycerol and stored at -80°C until use.   

 

 

SaFabI_15b Expression 

 

FabI from S. aureus cloned into the pET15b vector (SaFabI_15b) was 

transformed into BL21-Gold (DE3) cells (Agilent Technologies, Santa Clara, CA) 

previously (data not shown), and SaFabI_15b was produced in high yield and purity as 

reported elsewhere in the literature with minor modifications.194 Briefly, SaFabI_15b was 

overexpressed at 37°C in TB medium with 100 g/mL ampicillin by transferring 1% 

(v/v) overnight culture into fresh medium. Cells were allowed to grow until they reached 

an OD600 of ~ 0.6 and the protein expression was induced with 0.5 mM IPTG grown 

further for 4 hours at 37°C. After induction and growth, the cells were harvested by 

centrifugation at 18000 x g for 15 minutes. Pellets were stored at -80C until use. 

 

 

SaFabI_15b Purification 

 

The cell pellet was resuspended in 50 mL SaFabI Buffer A (500 mM Tris pH 8.0, 

500 mM NaCl, and 10 mM imidazole) with 0.5 mg/mL lysozyme, 1mg/100mL DNase, 5 

mM MgCl2, 0.5% Triton-X, and 1 Pierce EDTA-free Protease Inhibitor tablet per 50 mL, 

and lysed at 4°C with gentle stirring, then sonicated on ice at 50% amplitude for eight 

minutes, with eight seconds on and 24 seconds off. The cell lysate was centrifuged at 

39000 x g for 15 minutes and the supernatant was passed through a 0.22 µM PES filter 

(EMD Millipore, Billerica, MA). The target protein purification was performed by 

affinity chromatography on HisTrap HP column (GE Lifesciences) with SaFabI Buffer A 

as binding and wash buffer and SaFabI Buffer B (SaFabI Buffer A with 500 mM 
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imidazole) as elution buffer. Elution peaks were pooled and buffer exchanged in a 10,000 

MWCO  AmiconTM Ultra-15 Centrifugal Filter Unit from EMD Millipore® (Billerica, 

MA) into SaFabI Storage Buffer (50 mM MES pH 5.5, 100 mM NaCl, 100 mM EDTA). 

 

SaFabI_15b was confirmed via PAGE gel analysis and the enzyme activity was  

confirmed in an Implen NP80 nanophotometer as described below (West Lake Village, 

CA). 

 

 

FAS-II Biochemical Enzyme Assays 

 

All compounds were dissolved in DMSO at concentrations of 10 mM, then 

further diluted in pure DMSO to the required concentrations.  Both CdFabK and SpFabK 

assays were conducted via the following protocol: Reactions were carried out at 25C in 

FabK Assay Buffer (100 mM HEPES pH 8.0, 500 mM NH4Cl, 10% glycerol, and 0.125 

mg/mL -Globulins; 10% DMSO) with 150 M Cro-CoA and 150 M NADH. 

Compounds were incubated in three-fold dilutions (ranging from 100 M to 5 nM for 

CdFabK and 33 M to 1.7 nM for SpFabK) in the presence of 50 nM target enzyme. 

Compounds and enzyme were incubated together for 10 minutes before the Cro-CoA 

substrate was added and the reaction was started immediately afterward via the addition 

of NADH. NADH fluorescence (340 nm/460 nm) was measured in a Biotek Synergy H1 

microplate reader (Winooski, VT) in a final volume of 100 L in Greiner Bio-One™ 

384-Well µClear™ Bottom Polystyrene Microplates (Monroe, NC) via 20 second 

intervals for 10 minutes to evaluate the rate of reaction.  

 

SaFabI assays were conducted at 25 C in FabI Assay Buffer (50 mM MES pH 

5.5, 150 mM NaCl, 10 mM EDTA, and 2% DMSO) with 300 M NADPH and 1 mM 

Cro-CoA. Compounds were incubated at 10 M with 500 nM SaFabI for 20 minutes. 

Reactions were started via the addition of NADPH. NADPH absorbance was measured 

(340 nm) every 10 seconds for 10 minutes in a final volume of 100 L to evaluate the 

rate of reaction.  

 

 

FabK IC50 Calculations and Kinetics  

 

Starting at three minutes, linear slopes were measured for three additional minutes 

and used to determine the reaction rates. Measurements were conducted in duplicate and 

IC50s were calculated via GraphPad Prism 7.0d (La Jolla, CA) using four-parameter 

logistic (Hill) curve analysis using the equation Y = Bottom + (Top – 

Bottom)/[1+10^((LogIC50 – X)*HillSlope)], where X is logarithm of dose and Y is 

response. Kinetics with respect to cofactor and substrates were also assessed via 

GraphPad Prism 7.0d comparing both standard Michaelis-Menten and substrate inhibition 

models. 
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FabI Activity  

 

Starting at two minutes, linear slopes were measured for three minutes and used to 

determine the reaction rates. Measurements were conducted in duplicate and percent 

inhibitions were calculated against un-inhibited enzyme.  

 

 

Generation of SpFabK and CdFabK Sequence Alignment 

 

SpFabK and CdFabK alignment figure generated with ESPript 3 server 

(http://espript.ibcp.fr) using multiple protein sequence alignment from Clustal Omega 

and secondary structure information from SpFabK structure (PDB 2Z6I).119,122 

 

 

Results 

 

 

The CdFabK Enzyme Possesses Intrinsic NADH Oxidative Activity and Double 

Substrate Inhibition 

  

The CdFabK enzyme displayed NADH oxidative activity in the absence of enoyl 

substrate (Figure 4-2). Apparent Km (Km
app) values were determined via 1.5-fold serial 

dilutions of the NADH cofactor while holding the enoyl substrate, crotonyl coenzyme A 

(Cro-CoA), constant at 150 M; likewise, 1.5-fold serial dilutions of Cro-CoA were 

tested while holding the NADH cofactor constant at 150 M; and an alternative enoyl 

substrate, octenoyl coenzyme A (Oct-CoA), was tested similarly via 1.5-fold dilutions 

while holding NADH constant at 150 M. Initially, Km
app values were determined via 

standard Michaelis-Menten non-linear regression fits. However, upon further analysis, 

the data for cofactor and substrates all fit a substrate inhibition model (R2 = 0.9854; 

0.7607; and 0.8479, respectively) better than the poorly fit standard Michaelis-Menten 

models. As such, respective Km
app values for NADH, Cro-CoA, and octenoyl coenzyme 

A were determined to be 138.1 M, 327.0 M, and 420.8 M, as opposed to 23.0 M, 

176.0 M, and 65.5 M observed with the standard Michaelis-Menten model, 

respectively. 

 

 

Phenylimidazole-Derived Compounds Selectively Inhibit the C. difficile FabK 

Enzyme  

 

Phenylimidazole compounds have been shown to inhibit SpFabK (PDB 2Z6J) and 

lack inhibitory activity against FabI from E. coli.183,184 To evaluate activity against 

CdFabK, phenylimidazole compounds were screened against purified enzyme to 

determine percent inhibition at 10 M. Compounds yielding over 50% inhibition were 

further screened to determine on-target 50% inhibitory concentrations (IC50). Compounds 

were also screened at 10 M against purified FabI from Staphylococcus aureus (SaFabI) 

to directly compare activity profiles.  

http://espript.ibcp.fr/
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Figure 4-2. Enzyme kinetics of CdFabK vs. velocity.  

 

(A) Non-linear regression curve fit of velocity of CdFabK with varying concentrations of 

NADH (1.5-fold dilutions from 350 M to 9.1 M) at a fixed concentration of Cro-CoA 

(325 M) demonstrating NADH substrate inhibition. Standard Michaelis-Menten fit 

(dashed blue line) and substrate inhibition line (solid black line with dots) shown for 

comparison. (B) Non-linear regression curve fit of velocity of CdFabK with varying 

concentrations of enoyl substrate Cro-CoA (1.5-fold dilutions from 4500 M to 78 M 

and 0 M) at a fixed concentration of NADH (125 M) demonstrating Cro-CoA 

substrate inhibition. (C) Non-linear regression curve fit of velocity of CdFabK with 

varying concentrations of alternative enoyl substrate octenoyl-CoA (1.5-fold dilutions 

from 2500 M to 43 M and 0 M) at a fixed concentration of NADH (125 M) 

demonstrating octenoyl-CoA substrate inhibition.  

Reprinted from final submission with permission from Jones, J. A.* et al. Small-molecule 

inhibition of the C. difficile FAS-II enzyme, FabK, results in selective activity. ACS 

Chem Biol, https://doi.org/10.1021/acschembio.9b00293. (2019. In Press). (*Co-first 

author.) Copyright (2019) American Chemical Society.139 

 

  

https://doi.org/10.1021/acschembio.9b00293
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We confirmed the phenylimidazole compounds inhibit CdFabK in a dose-

dependent manner. All compounds except 1a, 1c, 1d, and 1h showed greater than 50% 

inhibition of CdFabK at 10 M. IC50s ranged from 7.35 M with 1g to 2.86 M with 1e, 

with the series prototype, 1b, showing an IC50 of 3.31 M. Resulting Hill coefficients 

from IC50 logistic curve fits for 1b, 1e, and 1g were 0.901 (95% Confidence Interval (CI) 

= 0.761-1.064), 0.8594 (95% CI = 0.6449-1.134), and 1.014 (95% CI = 0.7417-1.365), 

respectively. These values are not significantly different from unity (Hill slope of 1.000), 

suggesting these compounds display normal inhibitory behavior and do not bind 

cooperatively, aggregate, form micelles, or demonstrate problematic insolubility. It also 

indicates the enzyme’s active sites function independently, despite CdFabK being a 

functional dimer.163,202 

 

All compounds showed IC50s against SpFabK in the sub-micromolar range, with 

1b resulting in an IC50 of 67 nM, roughly 49-fold better as compared to CdFabK. 

Likewise, 1e and 1g resulted in respective IC50s of 78 and 85 nM against SpFabK, 

illustrating roughly 87- and 37-fold better respective IC50s as compared to CdFabK. 

While activity of 1b against SpFabK was more potent than against CdFabK, it was still 

roughly 30 times less potent against SpFabK in our hands than reported elsewhere.184 As 

the monomer enzyme concentration used here (50 nM) was lower than that used in 

previous reports (about 60 nM), the reason for this discrepancy is not readily apparent. 

FabI was confirmed to be resistant to the phenylimidazole compounds as both 1b and 

AG-205 showed little inhibitory effect against SaFabI with percent inhibition values well 

below 50% (22.40 and 18.22%, respectively) at 10 M. 

 

The target specificity profile of CdFabK was examined via activity in the 

presence of triclosan—a well-known, potent, slow-binding inhibitor of the FabI 

isozyme.203 To verify our own methods, triclosan was confirmed to be a potent inhibitor 

of SaFabI, with nearly 90% inhibition at 10 M. Like SpFabK, CdFabK proved to be 

resistant to triclosan at 100 M and IC50 values were not determined. 

 

 

Phenylimidazole Compound 1b is Competitive for NADH and Uncompetitive for the 

Enoyl Substrate Against CdFabK 

 

To elucidate the modality of inhibition of the phenylimidazole compounds against 

CdFabK, we analyzed the inhibitory activity of 1b against purified enzyme in the 

presence of varying concentrations of NADH while holding Cro-CoA constant, and 

likewise in the presence of varying concentrations of Cro-CoA while holding NADH 

constant. Both non-linear fits and Lineweaver-Burk plots were analyzed. The best non-

linear fits for each substrate suggest that 1b acts as a competitive inhibitor of CdFabK 

with respect to NADH (R2 = 0.91) and an uncompetitive inhibitor with respect to Cro-

CoA (R2 = 0.90). The Lineweaver-Burk plots for each substrate corroborate these 

findings (Figure 4-3).  
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Figure 4-3. Characterization of inhibitory activity and mechanism of 1b against 

CdFabK. 

 

(A) Sigmoidal plots demonstrating dose response curves for the inhibition of CdFabK by 

two different phenylimidazole analogues, 1b (black line with dots) and 1g (blue line with 

triangles). (B) Sigmoidal plots as dose response curves for the inhibition of CdFabK by 

1b with different concentrations of Cro-CoA, 150 µM Cro-CoA (black line with dots) 

and 325 µM Cro-CoA (red line with squares). (C) Lineweaver-Burk plot showing 

competitive inhibition of CdFabK binding NADH by 1b. CdFabK was incubated with 

varying concentrations of 1b and NADH at a fixed concentration of Cro-CoA (325 µM). 

Concentrations of 1b were 33 µM (closed circle), 11 µM (square), 3.67 µM (triangle), 

1.22 µM (upside-down triangle), 0.4 µM (diamond), and 0 µM (open circle). (D) 

Lineweaver-Burk plot showing uncompetitive inhibition of CdFabK binding Cro-CoA by 

1b. CdFabK was incubated with varying concentrations of 1b and Cro-CoA at a fixed 

concentration of NADH (150 µM). Concentrations of 1b were 33 µM (closed circle), 11 

µM (square), 3.67 µM (triangle), 1.22 µM (upside-down triangle), 0.4 µM (diamond), 

and 0 µM (open circle).  

Reprinted from final submission with permission from Jones, J. A.* et al. Small-molecule 

inhibition of the C. difficile FAS-II enzyme, FabK, results in selective activity. ACS 

Chem Biol, https://doi.org/10.1021/acschembio.9b00293. (2019, In Press). (*Co-first 

author.) Copyright (2019) American Chemical Society.139 
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Benzothiazole Compound KH-70 Potently Inhibits CdFabK 

 

Benzothiazole compounds have also been shown to inhibit SpFabK.167 

Considering the lack of a significant difference between the observable potencies of 

phenylimidazoles and the prototype benzothiazole compound AG-205 against CdFabK, 

benzothiazole analogues were further considered. A hit determined from a virtual 

screening shape matching campaign conducted by the principal investigator of the 

laboratory resulted in a benzothiazole analogue, KH-70, that was later screened under the 

same optimized Km conditions as 1b (Materials and Methods). KH-70 proved to be the 

most potent inhibitor of CdFabK to date, with an IC50 of 0.3545 M (95% CI 0.2509 to 

0.4923) (Figure 4-4) 

 

 

Discussion 

 

We report here the kinetic evaluation of CdFabK, the biochemical activity of a 

series of phenylimidazole analogues, and microbiological data suggesting these 

compounds’ selective antibacterial activity against C. difficile over several other 

prominent gut organisms. The compounds display promising, low micromolar CdFabK 

inhibitory activity without significantly affecting the in vitro growth of important gut 

organisms. CdFabK biochemical activity assays confirmed the inhibitory activity of all 

phenylimidazole analogues against CdFabK, with several showing potent, low 

micromolar activity. This data further demonstrates the enzyme’s druggability and the 

potential of the phenylimidazole compounds as leads for developing a novel series of 

narrow-spectrum anti-C. difficile drug candidates. As the imidazole and thiazole-urea 

moieties in the first-generation inhibitor 1b were predicted in modeling studies to 

establish three hydrogen bond interactions, and thus play a significant role in FabK 

binding, initial structure activity relationship (SAR) and physicochemical exploration 

during druggability validation was focused on the 4-bromo-phenyl region of the molecule 

(Figure 4-1). The calculated solubility of 1b is poor (cLogP 4.56). Therefore, in this 

work, a new expanded set of substituents with different lipophilic and electronic 

properties in the tail region were tested to further probe existing SAR as well as enhance 

solubility. Specifically, six new compounds 1c-1h, along with two known compounds 1a-

b, were evaluated and, while chemical modifications did not substantially increase 

potency, IC50 values against CdFabK indicate inhibitory activity was not abolished 

despite crucial solubility enhancement via modification at this region. This is illustrated 

by comparing 1b (4-bromophenyl, cLogP 4.56 and IC50 3.31 M) and 1g (4-

cyanophenyl, significantly improved cLogP 3.15, similar IC50 7.35 M). Because the 

target enzyme’s natural, in vivo function involves the binding of relatively lipophilic fatty 

acid precursor substrates, this was a noteworthy discovery that will serve as an important 

structural basis for future inhibitor design and synthesis. While 1e and 1f showed MIC 

values similar in potency to 1b and 1g, increased cLogP values (4.6 and 4.8, respectively) 

for both compounds preclude them from further assessment. 

 

A high degree of primary sequence identity and active site similarity exists 

between CdFabK and SpFabK (58% overall identity, 74% overall similarity, and 1% gaps  
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Figure 4-4. Structure and dose response curve against CdFabK for the novel hit 

KH-70. 

 

(A) Structure of benzothiazole hit KH-70. (B) Sigmoidal plot demonstrating dose 

response curve for the inhibition of CdFabK by KH-70. 

 

 

  



 

92 

with 2 missing loops on SpFabK, PDB 2Z6J100% and 91% active site identity within 3 Å 

and 4Å from bound inhibitors, respectively; Figure 4-5). Despite this, the 

phenylimidazole compounds showed greater activity against SpFabK than CdFabK (sub-

micromolar vs. low micromolar, respectively). The compounds, along with triclosan, 

were tested against both FabK and FabI to determine comparative FAS-II inhibition 

profiles. The compounds potently inhibited FabK but lacked activity against FabI, while 

triclosan potently inhibited FabI but lacked activity against FabK. The reason for the 

potency disparity of phenylimidazoles against the two similar FabK enzymes is not 

readily apparent. The mode of inhibition for the phenylimidazoles was reported to be 

competitive inhibition of SpFabK binding NADH and uncompetitive of SpFabK binding 

Cro-CoA,163 and confirmed here to be the same against CdFabK (Figure 4-2) and 

therefore not the cause for potency dissimilarity. Evaluation at incorrect Km
app values of 

substrate and cofactor was another potential cause for dissimilar potencies, therefore a 

substrate inhibition model was considered, increasing the Km
app of Cro-CoA to 327 M, 

up from 176 M seen with a standard Michaelis-Menten model. After re-testing 1b 

against CdFabK with 325 M Cro-CoA, the IC50 dropped from 3.31 M to 1.27 M. 

While this resulted in an IC50 closer to that observed against SpFabK, it still represents a 

roughly 19-fold increase and, therefore, also fails to fully explain the discrepancy. A final 

consideration is the possibility that the unique requirement of C. difficile for branched 

chain fatty acids may impact the substrate requirements of CdFabK, making a branched 

enoyl substrate more appropriate than Cro-CoA for compound screening, or even 

introducing the possibility of additional medicinal chemistry modifications to be made to 

the phenylimidazole compounds suited specifically to CdFabK.  

 

Interestingly, a return to the benzothiazole scaffold of AG-205 resulted in the very 

recent discovery of a related compound, KH-70, that has proven to be the most potent 

CdFabK inhibitor to date. In comparison to the phenylimidazole analogues and AG-205, 

KH-70 possesses a shortened linker group and a sulfone moiety, either of which may 

help improve the observed potency (Figure 4-4). Further consideration of benzothiazole 

scaffolds is certainly warranted, and further KH-70 hit characterization and validation are 

ongoing. Without such studies, current rationale for the increased potency of KH-70 

against CdFabK remains, to some extent, speculation. As such, necessary SAR studies 

are a primary goal for the future of this project. 

 

 

Summary 

 

With the continued use of broad-spectrum antibiotics, the increasingly 

diminishing spectrum of useful anti-CDI antibacterial agents, and the increased incidence 

of new pathogenic strains, the need for novel antibacterial agents targeting C. difficile 

continues to outpace their discovery. As demonstrated in these studies, a notably 

attractive target for antibacterial development resides in the bacterial FAS II pathway, 

which is structurally dissimilar from the mammalian fatty-acid synthesis (FAS I) 

pathway.204 FAS II also contains a number of dissimilar, independent enzymes and 

enzyme homologues collectively responsible for the synthesis of important bacterial fatty 

acid precursors and, therefore, appears inherently well-suited for selective targeting.186,205   
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Figure 4-5. Sequence alignment comparing CdFabK and SpFabK. 

 

Identical residues are highlighted in red, similar residues are highlighted in yellow, and 

active site residues, within 4 Å from phenylimidazole binding site, are indicated with a 

blue dot.119,122  

Reprinted from final submission with permission from Jones, J. A.* et al. Small-molecule 

inhibition of the C. difficile FAS-II enzyme, FabK, results in selective activity. ACS 

Chem Biol, https://doi.org/10.1021/acschembio.9b00293. (2019. In Press). (*Co-first 

author.) Copyright (2019) American Chemical Society.139 
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Additionally, the pathway has now been well-validated as being essential in both Gram-

negative bacteria and a number of Gram-positive bacteria, even in the presence of 

exogenous fatty acids.  

 

Via direct comparison here of the phenylimidazole compounds’ IC50 values 

against different purified enoyl-ACP reductase enzymes from different organisms, the 

selective druggability of CdFabK can be confirmed. Furthermore, analysis of in vitro 

MIC values of phenylimidazole compounds against various key gut microbes elsewhere 

in the literature has further illustrated this.67 As such, the selective inhibition of CdFabK 

represents a particularly promising pathway for future narrow-spectrum anti-difficile 

development. In vivo efficacy, toxicity, and dysbiosis studies in animal models of 

phenylimidazoles and derivatives will be indispensable for continued development and, 

therefore, are anticipated for future studies. Furthermore, as more information pertaining 

to the human microbiome continues to surface, an ongoing analysis of the distribution of 

current and novel FAS-II isozymes across the increasing number of known gut microbes 

will be of critical importance. Such analyses will guide an evolving understanding of the 

extent of antibacterial specificity and overall promise that targeting FabK truly offers.  
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CHAPTER 5.    DISCUSSION AND CONCLUSION 

 

 

General Overview 

 

Though the skillset required to address modern rational antibacterial drug 

development may be somewhat daunting at first glance, so is the rising threat of 

antibacterial resistance. It seems only fitting, then, that as the threat of resistance rises, so 

too must an equal measure of intellect and innovation to meet it. As even homologues of 

the same enzyme from different bacterial species may possess vastly different 

characteristics, there is no pre-determined roadmap for addressing the needs one may 

encounter when investigating novel antibacterial targets. Therefore, a wide and thorough 

understanding of the various methods and techniques needed for such endeavors is a 

necessity. Similarly, while even the best equipped laboratories likely do not possess every 

single piece of instrumentation available for drug discovery research, a wide knowledge 

base, experience, and familiarity with various methods and techniques offers the 

adaptability and expertise necessary to overcome even the most difficult projects. Indeed, 

understanding the advantages and disadvantages of different techniques, the overlap, and 

the subtle differences one may offer as opposed to another all combines to benefit the 

researcher.  

 

While certainly not completely exhaustive, an effective combination of methods 

and techniques were used in this work to investigate narrow spectrum antibacterial drug 

targets. As can be observed, all of this work builds upon itself. From rational target 

identification, to target production and preliminary characterization, to compound 

screening and hit selection, to target and hit validation and characterization, and finally to 

lead development and optimization, the techniques employed in this work are 

representative of the necessary methodology required for a rational and early pre-clinical 

investigation of antibacterial drug targets. While the actual near-end stage of discovering 

and developing validated hits is indeed exciting and stands out from the rest of the work, 

it is the early, more tedious research that precedes those discoveries that serves as the 

actual foundation for later breakthroughs. For example, the arduous, repetitive science 

that led to the production of stabilized CdFabK enzyme and balanced assay conditions 

was an absolute prerequisite for the subsequent phenylimidazole CdFabK inhibitor 

validation and preliminary biochemical screening of virtual screening hits. A brief 

synopsis illustrating these very points is discussed below.  

 

 

Results and Discussion of Methods and Techniques Employed in This Work 

 

 

Target Identification and Production 

 

 Embarking on the investigation of arguably any novel and rational antibacterial 

drug target begins simply with a thorough analysis of the data at hand. Whether it is 

genomic data, microbiological data, or a basic literature search, the investigation of 
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rational antibacterial targets requires just what the name implies, “rationalization.” The 

work conducted herein marked the beginning of two different projects previously 

conceptualized by the principal investigator of the laboratory based off of rational 

navigation of literature and genomic data.  

 

As seen in Chapter 2, at the time of inception, the bacterial topoisomerase I 

project was undertaken based on the data available at the time, which indicated that 

streptococci possessed the gene responsible for topoisomerase I, topA, and lacked the 

gene responsible for topoisomerase III, topB. After this work had commenced, however, 

protein annotations had arisen that introduced at least some level of doubt in both 

directions. As the lab in which this work was carried out does not conduct actual bacterial 

genetics research, a substantial amount of bioinformatic analysis was invested into 

ascertaining whether or not streptococci do in fact possess the topB gene and, in turn, 

express topoisomerase III. This included genomic analyses, gene searches, protein 

searches, various BLAST searches, and various literature searches. At the time this work 

was written, this question still remained. 

 

Significant preliminary work has been conducted in order to further characterize 

and validate bacterial topoisomerase I, including the development of a simplified and 

rapid protocol for the high-yield production of pure and active full-length topoisomerase I 

from the gram-positive model organism, S. mutans. Different affinity, fusion, and 

solubility tags were utilized, as well as different expression systems and purification 

modalities. The effectiveness of the protocol results in substantial target production that 

can later be used for further investigational studies and, therefore, still represents a 

valuable contribution. Whether or not streptococci produce topoisomerase III, the ability 

to effectively produce the bacterial topoisomerase I target in bulk amounts opens up a 

variety of studies that can be carried out, including but not limited to bacterial 

topoisomerase I enzymology, assay development, compound screening, and further 

structural studies. As several other notable pathogens express topoisomerase I as their 

sole type IA topoisomerase, high-yield production of target SmTopoI not only permits 

the continued investigation of the respective enzyme, but also affords the opportunity to 

further characterize and validate the target and potentially translate the findings to those 

pathogens where it is more certain bacterial topoisomerase I will represent a narrow-

spectrum antibacterial drug target. Furthermore, as topoisomerases are traditionally such 

effective chemotherapeutic targets, the option of pursuing bacterial topoisomerase I as a 

broad-spectrum antibacterial drug target also still exists.  

 

With respect to the FabK project, effective collaborations ensued that answered 

genetic essentiality questions, highlighting the importance and benefit of such 

partnerships.67 Nonetheless, thorough bioinformatic analyses were also conducted with 

respect to the fabK gene and ongoing evaluations are being undertaken to survey the FAS 

II-related proteome of not only pathogenic bacteria, but also that of the ever-expanding 

bacteria that comprise the human microbiome.206-208 Such a continuous bioinformatic 

analysis has allowed for an ongoing and contemporaneous survey of the bacterial battle 

field, as it were, and in turn acts as a type of real-time reconnaissance of the effects FabK 

inhibition might have as pre-clinical research continues to progress.  
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CdFabK enzyme target production evolved substantially throughout this work. 

Different affinity tag placements were combined with multiple purification techniques, 

along with systematic stability and activity studies in order to determine optimal salt, 

glycerol, and buffer and pH conditions. Ultimately, what was originally an inactive and 

later a relatively unstable enzyme, can now be produced and stored long-term as active 

enzyme. 

 

 

Preliminary Target Characterization 

 

 Initial difficulty was met when attempting to produce and characterize SmTopoI. 

As stated earlier, the DNA-binding nature of the target introduced foundational 

difficulties with procuring stable enzyme. Stabilizing conditions were elucidated via 

implementation of the thermal shift assay, which indicated high salt and acidic stabilizing 

conditions for full-length SmTopoI. Simple target enzyme parameter analysis, coupled 

with in silico homology modeling and extensive literature searches led to rational 

shortened construct design that later resulted in highly diffracting SmTopoI_N65 protein 

crystals.209  

 

 As mentioned above, CdFabK stability and activity was optimized via systematic 

salt, glycerol, and buffer and pH trials utilizing biochemical assays. This eventually 

permitted further target characterization that ultimately furnished effective assay 

conditions for inhibitor screening. Additionally, optimization of CdFabK stability under 

prolonged dilution and exposure to DMSO was of particular significance as many recent 

studies have underscored the importance of screening under extended enzyme-compound 

incubation times in order to discover slow-binding inhibitors.210-213 

 

 

Compound Screening and Hit Selection 

 

 As previously discussed, an initial method for screening compounds is at times an 

intellectual one, first involving a thorough literature review in order to survey the 

chemical characteristics of any known potential inhibitors or chemical probes of interest. 

With respect to bacterial topoisomerase I, there is still no clinically marketed catalytic 

topoisomerase I inhibitor to date, nor is there a standard, specific bacterial topoisomerase 

I catalytic inhibitor reported in the literature for laboratory use. Regarding FabK, 

prototype phenylimidazole and benzothiazole compounds used in previous studies 

throughout the literature were found upon prior literature searches conducted by the 

principal investigator of the laboratory.163-166 These previously known SpFabK inhibitors 

served as the launching point for preliminary hit screening against CdFabK at 10 M as 

discussed earlier in this work. Moreover, these inhibitors and additional phenylimidazole 

analogues were similarly screened and hits were considered to be any compound that 

resulted in over 50% CdFabK inhibition at the pre-determined 10 M concentration 

cutoff point. 
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Target and Hit Validation and Characterization 

 

 From the attained SmTopoI_N65 crystals, the three-dimensional structure of 

SmTopoI_N65 was determined to 2.06 Å resolution, and structural characterization was 

able to be conducted. This in turn resulted in a number of findings that significantly 

added to the overall structural understanding and characterization of SmTopoI. This 

includes overall similarities and differences between SmTopoI and topoisomerase I 

homologues from other bacteria. Of particular note, these structural studies revealed a 

relatively unique active site-adjacent loop that may be worth assessing in greater detail in 

the future.  

 

 A thorough assessment of those phenylimidazole analogues and benzothiazoles 

that met the 50% CdFabK inhibition at 10 M hit identification threshold indeed led to 

further hit validation and IC50 knowledge that can be used in later lead optimization and 

structure-guided lead development. Furthermore, phenylimidazole inhibitor modality 

studies further validated the phenylimidazoles as CdFabK inhibitors and led to further 

inhibitor characterization. CdFabK enzymology studies led to apparent Km 

determinations for the NADH cofactor and Cro-CoA enoyl substrate, which in turn led to 

optimal balanced assay conditions. This will allow for more effective compound 

screening in the future as it will increase the chances of discovering both competitive and 

uncompetitive inhibitors. Additional hit characterization was carried out via selectivity 

analysis, which confirmed selective inhibition of FabK over an alternative bacterial enoyl 

reductase, FabI.  

 

 

Lead Development  

 

With respect to CdFabK inhibitors, the phenylimidazole analogue 1g showed 

noteworthy merit as it displayed potency slightly lower yet very similar to the 

phenylimidazole prototype 1b, but also showed increased solubility. Previous hit 

characterization allowed for the direct comparison of the IC50 values of the benzothiazole 

prototype, AG-205, against CdFabK and SpFabK. Such a comparison indeed had 

interesting and noteworthy implications. Namely, the medicinal chemistry modifications 

made to AG-205 to arrive at phenylimidazole 1b that led to substantially improved 

inhibitory potency against SpFabK (low micromolar to low nanomolar, respectively) 

does not appear to translate to increased potency against CdFabK.164,166 As such, a 

rational return to the original AG-205 benzothiazole scaffold was undertaken for an SAR 

reset to be conducted more thoroughly in the future for effective lead development. In the 

meantime, the alternative benzothiazole compound KH-70 recently exhibited the highest 

observed inhibitory potency against CdFabK at the time of this work, suggesting at least 

some degree of merit in this lead development strategy.  
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Future Directions 

 

 The research presented here showcases the investigation of two very different 

narrow spectrum targets in antibacterial drug discovery. Both projects presented unique 

obstacles and successes and, therefore, required the implementation of various subjective 

techniques and methods. While various aspects of each project progressed to different 

stages, work remains regarding both projects.  

 

 

Bacterial Topoisomerase I Project 

 

Genomic analysis of streptococci 

 

The lingering uncertainty regarding whether or not streptococci possess the topB 

gene, and therefore whether or not streptococci indeed fit the original narrow spectrum 

hypothesis, represents a quandary that must be resolved. As such, determining whether or 

not streptococci possesses the topB gene and, therefore, whether or not they express 

topoisomerase III should be a top priority for future work. Further bioinformatic analyses 

would offer more information, but certainty is likely to only be found in benchtop 

bacterial genetic work. As such work is outside the scope of the principal investigator’s 

laboratory as it equipped at this time, a gifted collaborator with expertise in bacterial 

genetics and, possibly, a research emphasis on streptococci would be of significant worth 

to the future progress of this project. 

 

Full-length SmTopoI crystal structure 

 

 Useful insights were indeed gleaned from the determination of the three-

dimensional structure of the shortened 65-kDa amino terminal fragment of SmTopoI, 

SmTopoI_N65. However, as SmTopoI_N65 lacks the entire carboxy terminal domain, a 

full-length structure of SmTopoI would contribute substantial structural information that 

could potentially in turn be leveraged into effective structure-guided drug development 

efforts. As it was already exhaustively determined to be unlikely, or at the very least 

exceptionally difficult, to obtain full-length apo SmTopoI crystals, it is likely that co-

crystallography trials involving short oligonucleotide substrates with or without additive 

compounds would be of immediate benefit with respect to this particular aim. As SAR 

studies are an eventual long-term goal, this is a logical next step for this project. 

 

SmTopoI mutational studies 

 

 Knowledge gleaned from the determination of the SmTopoI_N65 crystal structure 

includes the relatively unique nine amino acid loop extension immediately adjacent to the 

active site. As this feature has not been discussed or elucidated any further in the 

literature, a deeper understanding may be warranted. In order to probe any significance of 

the loop, mutational studies could be undertaken to delete the loop and compare mutant 

SmTopoI to wild-type SmTopoI. Any changes in enzyme kinetics or nucleotide binding 
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specificity would be a significant discovery and, whether any notable change occurred or 

not, would further the understanding of the loop extension. Additionally, it may help 

ascertain whether or not the loop would be worth targeting or engaging for any future 

rational antibacterial drug discovery efforts.  

 

High throughput topoisomerase I assay development 

 

 Currently, the only well-validated assay for measuring the activity of bacterial 

topoisomerase I is an agarose gel-based DNA relaxation assay. This technique, while 

effective, is extremely low-throughput and is not immediately digitized for consistent 

comparisons. As such, an immediate need for successful antibacterial drug discovery 

efforts directed at topoisomerase I includes the development of a high throughput assay. 

This would allow for effective and efficient screening of large compound libraries as well 

as efficient enzymatic studies. As bacterial topoisomerase I acts independently of ATP 

and instead relies on the torsional strain of negatively supercoiled DNA, the only 

measurable entity for assaying is the actual extent of DNA supercoiling itself, which 

presents an inherently difficult task. Nonetheless, such a development would be a 

revolutionary advancement with respect to targeting bacterial topoisomerase I and is 

highly needed. 

 

 

CdFabK Project 

 

Crystallography 

 

Though diffracting CdFabK protein crystals have been acquired, the optimal 

crystals thus far have only diffracted to roughly 3.5 Å. In order to serve any real utility in 

structure-guided drug discovery efforts, high quality crystals that diffract near 2.0 Å or 

better are necessary to analyze atomic level interactions and peptide sidechains. To this 

end, numerous crystallography methods have been attempted up to this point to no avail. 

Countless alternative crystallization methods remain to be tried, though, ranging from 

immediately accessible techniques to those that are more arduous and time consuming. 

Methods that could be attempted immediately include but are not limited to co-

crystallizing different additive screens, co-crystallization trials with newly found inhibitor 

like KH-70, producing the target enzyme in alternative buffers, increased purification 

steps to remove any remaining contaminant proteins that may be interfering with crystal 

packing and quality, and various digestion methods.214  

 

More time consuming and taxing methods should also be explored, include 

various target enzyme mutational or deletional studies for the purpose of construct 

optimization, including modifying solvent exposed hydrophobic or flexible peptide 

regions that may result in non-specific aggregation and compromise ordered crystal 

lattice formation and organization.215,216 To this end, the determination of the CdFabK 

structure from the current best diffracting crystals may only result in the discernment of 

overall structure, but it may also afford insight into the crystallographic unit cell and 

crystal packing modalities, which may help drive the rationalization strategy behind any 
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future mutational studies. While all of these options are worthwhile endeavors, for the 

mere sake of expediting the process, co-crystallography with newly discovered potent 

CdFabK inhibitors would likely be an ideal place to start the next phase of a 

crystallization campaign. 

 

Further hit validation and characterization 

 

 As the benzothiazole analogue KH-70 was an extremely recent hit, further hit 

validation and characterization need to be conducted. Similarly, additional SAR studies 

should be undertaken, focusing on benzothiazole analogue SAR by synthetic medicinal 

chemistry, or SAR by commerce (see below). 

 

Compound screening 

 

The optimized CdFabK assay conditions should be leveraged as practicably and 

aggressively as possible for the discovery of novel CdFabK inhibitors. Small in-house 

libraries can be immediately screened. Likewise, virtual screening campaigns have 

already commenced by others in the laboratory, and high-priority in silico hits can be 

screened and verified in vitro and further validated. The utility of discovering inhibitors 

with both novel and similar scaffolds would be substantial. Novel scaffolds would 

introduce a new SAR opportunity and help further characterize the CdFabK target, and 

analogues of known inhibitor scaffolds would further elucidate current SAR studies. 

Related to known scaffolds, analogues of current inhibitors could be searched for online 

as a time- and cost-effective means of conducting SAR by commerce, effectively 

furthering iterative lead development and SAR expansion on the phenylimidazole and 

benzothiazole compounds.217,218  

 

Orthogonal high throughput assay development 

 

 The current CdFabK assay methods involve monitoring the fluorescence or 

absorbance of NADH during the enzymatic reaction. As many small molecules found in 

various compound screening libraries are in fact fluorescent or colored, substantial 

amounts of false positives can arise when using fluorescent- or absorbance-based 

assays.219 An orthogonal assay capable of counter-screening and further validating any 

potential hits discovered upon initial fluorescence- or absorbance-based assays (or vice 

versa) would be of substantial value. Any such assay should possess a number of ideal 

characteristics. First, it should be orthogonal to fluorescence- and absorbance-based 

assays, as discussed, such as a chemiluminescent assay. It should also be plate-based in 

order to accommodate high throughput implementation. Additionally, the ability to be 

run in low-volume would be beneficial as it would decrease resource consumption and 

assist in the high throughput requirement. Low cost would be ideal, but not a necessity as 

high throughput screens are generally accepted as rather costly endeavors. And lastly, the 

assay should be capable of producing a significantly high screening window coefficient, 

or Z’ factor, under moderate controls in order to reliably report any discovered hits at the 

predetermined thresholds.220,221  
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Conclusions 

 

Despite the recent increase in the number of novel antibacterial agents in the 

pipeline, there is still a noticeably small number of agents that possess novel mechanisms 

of action, and an even more noticeable absence of small-molecule compounds directed at 

novel targets. In fact, the only antibacterial agent currently in the pipeline that is directed 

at a novel target is the anti-pseudomonal synthetic beta hairpin peptidomimetic known as 

murepavadin (POL7080, Polyphor, Ltd.) currently in late stage (Phase III) 

development.6,38 While absolutely a welcome contribution to the fight against 

antimicrobial resistance, murepavadin does not meet the criteria of being a “small 

molecule,” and instead falls into the category of novel biologic agents increasing in 

popularity across most areas of drug discovery.222 Again, while any novel antibacterial 

agent is desirable, including any biologic, the desirable benefits of small-molecule 

antibacterial agents should not be overlooked. This is especially the case when 

considering antibacterials. Due to their inherent purpose, antibacterial agents in particular 

need to exhibit significant stability, cost-effectiveness, and ease of widespread 

administration. Rationale for this is due in part to the necessity for antibacterial 

stockpiling, dispersal in potentially harsh climates where many major infectious diseases 

are focused, and the need for rapid response to outbreaks or bioterror events. In general, 

biologics are more expensive than small-molecule drugs, less stable, more likely to cause 

adverse immune responses, and more difficult to administer.223 These points, on top of 

the aforementioned fact that there are currently no novel small-molecule antibacterial 

agents with novel targets in the current antibacterial drug discovery pipeline, highlight 

the continuing and apparent need that still exists to fill this void.  

 

Obvious merit exists for the development of narrow-spectrum antibacterial agents, 

and calls for such are only gaining momentum.2,54 As discussed throughout this work, 

significant advantages are associated with narrow spectrum antibacterial agents—mainly 

the counter to the disadvantages seen with broad-spectrum antibacterial agents. In 

general, the major benefits of narrow-spectrum agents include an attenuation of microbial 

selection for wide-spread multidrug resistance pertaining not only to the pathogens 

necessitating pharmacotherapy, but also commensal bacteria capable of harboring and 

spreading resistance mechanisms, as well as the related mitigation of collateral damage to 

the human microbiome. Though narrow-spectrum antibacterial drug discovery appears to 

hold great potential value, it is not without significant price. As showcased in this work, a 

substantial amount of rationalization and investment—intellectual or otherwise—is 

required in the pursuit of narrow-spectrum targets in antibacterial drug discovery. This 

includes target identification and production, preliminary target characterization, 

compound screening and hit selection, further target and hit validation and 

characterization, iterative lead development, followed by continued narrow-spectrum 

activity and dysbiosis analyses on top of all of that. While indeed difficult, different 

research groups are coming up with innovative modalities of identifying and pursuing 

narrow-spectrum targets. Modern methods include targeting enzymes that are unique and 

essential to specific pathogens of interest (as seen in this work), pursuing bacteriocins and 

synthetic peptides that only target particular pathogens and, interestingly, a return to the 
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whole-cell phenotypic screening modalities reminiscent of those used throughout the 

golden era of antibacterial drug discovery.2,38,54,67 

 

After surveying the global issue of antibacterial resistance and the concerted 

efforts being undertaken to combat it, it is clear that a multi-faceted approach is required 

to effectively respond to this growing threat. As such, it would be inaccurate to argue that 

the only answer to the issues currently presented lies in narrow-spectrum antibacterials. 

Instead, it represents a single component of a plurality of different approaches needed. As 

long as infectious disease diagnostics are not instantaneous, broad-spectrum antibacterial 

agents will always be necessary for empiric therapy. In an ideal situation, after an 

accurate diagnosis is made, antibacterial de-escalation could be implemented and a 

patient could be transitioned to a narrow-spectrum antibacterial therapy, thereby 

effectively treating an infection and mitigating both the damage done to the patient’s 

microbiome, and mitigating the promotion of antibacterial drug resistance. For this ideal 

situation to occur, however, substantial progress still needs to be made toward the 

development of narrow-spectrum antibacterial agents, and such progress begins with 

earnest investment in the investigation of narrow-spectrum targets in antibacterial drug 

discovery. This work highlights such investment and, in turn, progress with respect to the 

investigation of both bacterial topoisomerase I and bacterial enoyl-acyl carrier protein 

(ACP) reductase II, or FabK, as narrow-spectrum targets in antibacterial drug discovery. 
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