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ABSTRACT 

 

 

 Magnocellular neurosecretory cells (MNCs) are large oxytocin (OT)- and 

vasopressin (VP)-releasing neurons that secrete these hormones into the circulatory 

system in response to physiological stimuli. These cells exhibit unique phasic and burst 

firing patterns to release these peptides into the circulatory system where they primarily 

control milk ejection and parturition (OT) as well as salt-water balance and 

vasoconstriction (VP). This firing is underlain by intrinsic ionic mechanisms that shape 

the duration and frequency of these bursts. One of these mechanisms is the Ca2+-

dependent afterhyperpolarization (AHP), which activates during bursts and causes spike 

frequency adaptation. This afterhyperpolarization has three distinct conductances: a fast 

component (fAHP) underlain by BK channels, a medium component (mAHP) underlain 

by apamin-sensitive SK channels, and a slow component (sAHP) which is an apamin-

insensitive K+ conductance. The mechanisms that control the sAHP are poorly 

understood in MNCs. The work embodied here explores the mechanisms involved in 

generation of AHPs, specifically how the phospholipid, PIP2 can activate and modulate 

the mAHP and sAHP. The major discovery is that the mechanisms that generate mAHP 

and sAHP are different between OT and VP neurons. PIP2 depletion via wortmannin in 

the cells abolishes the mAHP and sAHP of OT but not VP neurons. This demonstrates 

OT neurons require PIP2 to activate an AHP while VP neurons do not. Interestingly, 

increasing PIP2 within the cells has little effect on OT neurons while drastically 

enhancing the sAHP in VP neurons, thus PIP2 plays a different role in both cell types. In 

OT neurons, PIP2 exerts its effect by facilitating Ca2+ entry through voltage-gated Ca2+ 

channels, demonstrated by inhibited Ca2+ currents in the presence of wortmannin.  

 

The mechanistic differences extend to which Ca2+ channels contribute Ca2+ to the 

mAHP and sAHP. In OT neurons, N-type Ca2+ channels couple primarily to both 

components. In VP neurons, N-type channels couple to the mAHP while the sAHP 

receives a contribution from R-type channels. The precise way PIP2 modulates Ca2+ 

channels in OT neurons is explored further in dissociated neurons genetically labeled for 

OT or VP. PIP2 depletion inhibited the amplitude, shifted the steady-state activation 

curve leftward, and modestly accelerated the inactivation of both the whole-cell and 

isolated N-type current in OT neurons only. This suggests that PIP2 is not required, but is 

a co-factor, for channel activation. The PIP2 mechanisms of AHP modulation in VP 

neurons appear complex, as the enhancement observed during increased PIP2 didn’t occur 

when EGTA was replaced with fura-2 in the pipette. In order to understand what happens 

to [Ca2+]i during this enhancement, we changed the Ca2+ indicator to fluo-4 and was able 

to observe enhancement under specific conditions. This suggests that VP modulation is 

critically dependent on the time course and buffering of available Ca2+.   

 

Finally, I also performed a cursory evaluation of possible morphological 

implications in AHP generation. I used regression analysis to assess the relationships 

between AHP amplitude, [Ca2+]i, and dendritic size. There is a moderate relationship 

between AHP amplitude and dendritic length in both OT and VP neurons, suggesting that 

a considerable portion of the AHP conductance could occur in the dendritic tree of these 
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neurons. These studies highlight the unique AHP mechanisms between OT and VP 

neurons of supraoptic nucleus. 
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CHAPTER 1.    LITERATURE REVIEW AND SPECIFIC AIMS 

 

 

Magnocellular neurosecretory cells (MNCs) projecting to the pituitary gland serve 

highly critical roles in animal physiology by releasing the hormones oxytocin (OT) and 

vasopressin (VP) into neurohypophysial capillaries (Hatton 1988). The neurohormones 

then enter systemic circulation where they act on distal targets. The frequency, pattern, 

and volume of release is highly correlated with the firing patterns of Magnocellular 

Neurosecretory Cells (MNCs) in response to physiological stimuli (Poulain and Wakerley 

1982). While the distinguished array of firing patterns are well characterized (Armstrong 

1995), mechanisms underlying the frequency and duration of repetitive firing remain 

unclear. This dissertation seeks to reveal PIP2-mediated mechanisms of 

afterhyperpolarization generation, a K+ current that shapes firing patterns in MNCs (and 

other neurons). 

 

 

Magnocellular Neurosecretory Cells: Anatomy and Relevant Physiology 

  

MNCs represent the final common pathway of hormone release in response to 

physiological stimuli. The relevant anatomy, animal physiology, and cellular physiology 

are explored in the following section. 

 

 

Anatomy of the Central Magnocellular Neurosecretory System 

 

MNCs primarily reside in two nuclei: the paraventricular nucleus (PVN) and the 

supraoptic nucleus (SON). These nuclei are the two main sources of OT- and VP-

secreting neurons, bilaterally hugging the walls of the 3rd ventricle (PVN) and the lateral 

edges of the optic tract/chiasm (SON) (Armstrong 2015b). Besides these two nuclei, 

many accessory nuclei scattered throughout the hypothalamus contain small numbers of 

MNCs. These include the nucleus circularis, anterior and posterior fornical nuclei, and 

anterior commissural nucleus (Tweedle and Hatton 1976; Armstrong et al. 1980; 

Sofroniew and Glasmann 1981; Ju et al. 1986). The axons of MNCs from primary nuclei 

project down the neural stalk and terminate in the posterior lobe of the pituitary (Watson 

and Paxinos 2014; Armstrong 2015a) (Figure 1-1). The SON is relatively uniform, 

comprising mostly MNCs, but the PVN cell population is diverse. It contains 

parvocellular neurosecretory cells (PNCs) in addition to MNCs (Swanson and Kuypers 

1980; Swanson et al. 1986; Armstrong 2015a). These PNCs are immunoreactive to a 

myriad of hormone peptides and project to the median eminence where they influence 

release of hormones from the anterior lobe of the pituitary. For a comprehensive 

description of the PVN and PNCs, refer to The Rat Nervous System, 4th Edition Chapter 

14 (Armstrong 2015a). The rest of this work focuses on MNCs in SON. 

 

MNCs produce either OT or VP for secretion with a small (2-3%) number of 

MNCs producing both (Mezey and Kiss 1991; Armstrong et al. 1994). These neurons 

have large cell bodies, averaging ~25 m in size with a capacitance of 15.2 pF   



 

2 

 
 

Figure 1-1. Anatomy of the Magnocellular Neurosecretory System. 

MNCs primarily originate in two main nuclei of the hypothalamus: the paraventricular 

nucleus (PVN) and the supraoptic nucleus (SON). Axons from these two neurons bundle 

ventrally and project down the infundibular stalk to terminate on blood vessels outside of 

their respective nuclei. These blood vessels are in the posterior pituitary. Synaptic input 

to these neurons can generate action potentials which propagate down the axons and into 

the terminals where dense core vesicles are stored. Action potentials trigger vesicle 

fusion with the terminal membrane to secrete OT and VP into the circulatory system, 

where they can act at distal targets. Reprinted with open access permission. Cassels J. 

The Posterior Pituitary Pathway | GLOWM [Online]. 

2012. http://www.glowm.com/section_view/item/283/recordset/18975/value/283 [23 Jul. 

2018]. 

 

  

http://www.glowm.com/section_view/item/283/recordset/18975/value/283
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(Sofroniew 1985; Oliet and Bourque 1992). Each MNC contains a singular axon 

projecting to the posterior pituitary, and 2-3 long dendrites. While the originating 

dendrites are lengthy, the 2nd and 3rd order arobors are limited (Perlmutter et al. 1984; 

Randle et al. 1986; Smith and Armstrong 1990). The electrotonic properties of these 

dendrites is varies highly between individual neurons (Armstrong and Smith 1990), and 

the dendrites release peptides from neurosecretory vesicles (Ludwig 1998). Thus, these 

neurons demonstrate relatively simple dendritic morphology compared to other neuronal 

cell types, yet present highly complex functional roles (Preston et al. 1980; Foehring et 

al. 1991; Clark et al. 2005).  

 

 

Animal and Cellular Physiology of OT and VP Neurons 

 

 OT is most notably involved in the milk ejection reflex in which oxytocin neurons 

will fire in response to suckling behavior (Lincoln and Paisley 1982). The bolus release 

of OT into the blood stream from the posterior pituitary triggers a milk ejection in the 

mammary gland (Wakerly and Lincoln 1971). This milk ejection is pulsatile, and reflects 

synchronous bursting of OT neurons in PVN and SON (Cobo et al. 1967; Wakerley and 

Lincoln 1971; Lincoln and Wakerley 1974; Lincoln and Paisley 1982; Belin et al. 1984; 

Belin and Moos 1986). This synchrony is achieved, in part, via local release of OT 

(Freund-Mercier and Richard 1981; Freund-Mercier M J and Richard P 1984). OT also 

plays a role in uterine contractions during parturition (Ott and Scott 1909; Higuchi et al. 

1986). OT neurons are also activated during hyperosmolality OT, serving a natriuretic 

function at the kidney (Stricker et al. 1987). 

 

VP plays a critical homeostatic role in regulating salt-water balance changes, 

signaling water retention in the kidneys in response to hyperosmolality during 

dehydration or salt loading, and constricting blood vessels in response to low 

hypotension/hypovolemia (Wakerley et al. 1978; Bourque et al. 1998). In contrast to OT 

neurons, VP neurons demonstrate asynchronous and prolonged phasic activity, resulting 

in a constant release of VP into circulation during hyperosmotic or hypovolemic 

stimulation (Poulain and Wakerley 1982). VP release is enhanced in response to 

dehydration (Wakerley et al. 1978).  

 

Both OT and VP neurons are consequently sensitive to osmotic challenge 

(Brimble and Dyball 1977; Bourque and Renaud 1984; Maícas Royo et al. 2016). OT and 

VP neurons undergo morphological, genetic, and electrophysiological plasticity in 

response to changes in hyperosmolality (Somponpun and Sladek 2003; Ghorbel et al. 

2006; Trudel and Bourque 2010; Shah et al. 2014; Greenwood et al. 2015). OT and VP 

secretion also occurs centrally, releasing from MNC terminals projecting in distal CNS 

targets as well as from dendrites (Pow and Morris 1989; Morris et al. 2000). Dendritic, 

paracrine release of peptide has been studied extensively and is a cardinal feature of these 

neurons (Morris et al. 2000; Morris and Ludwig 2004; Ludwig and Leng 2006). 

Spatiotemporal differences in peptide release patterns in axons versus dendrites indicate 

that release mechanisms are relatively distinct and independent (Ludwig 1998). 

Additionally, OT and VP neurons express receptors for their peptide on cell bodies, 
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indicating these peptides play an autoregulatory role (Freund-Mercier et al. 1994; Freund-

Mercier and Stoeckel 1995; Dayanithi et al. 2000). 

 

Though MNCs secrete dense core vesicles of peptide, they are categorically 

neurons as they receive synaptic input, fire action potentials, and display Ca2+-triggered 

vesicle release from nerve terminals (Morris 1976a, 1976b; Poulain and Wakerley 1982; 

Tasker and Dudek 1993; Armstrong et al. 1994; De Crescenzo et al. 2004; Leng et al. 

2005). Much of the activity in MNCs is marked by strong periodicity, wherein OT 

neurons fire in bursts (2-4 sec.; 30-50 Hz) with long interburst intervals (minutes), and 

VP neurons display longer bursts marked by tens of seconds of spiking and equally long 

periods of quiescence (Poulain and Wakerley 1982; Belin and Moos 1986) (Figure 1-2). 

This firing activity is initially high frequency, but attenuates within a single burst in both 

cell types. This phenomenon is called spike frequency adaptation. OT neurons 

demonstrate synchronous firing, resulting in salvos of hormone release into the 

bloodstream; VP neurons demonstrate phasic and asynchronous firing, resulting in a 

steady release of VP into the bloodstream (Bourque et al. 1998). The functional 

significance of this burst and phasic activity is that it produces maximal hormone release 

at lower stimulation frequencies compared to continuous activity (Dutton and Dyball 

1979).  

 

 

Intrinsic Mechanisms of Spike Patterning in MNCs 

   

 in vivo, both OT and VP neurons display action potential discharge with either 

slow irregular or continuous patterns. This firing encompasses the typical activity of 

MNCs until they are stimulated by lactation and parturition (OT), or by hyperosmotic, 

hypovolemic, and hypotensive challenges (OT and VP). Responses to the latter 

challenges vary between the cell types. For example: Dehydration, a hyperosmotic and 

hypovolemic challenge, shifts VP firing from a slow (2 Hz) irregular pattern to an 

accelerated (6-7 Hz) phasic firing pattern while it shifts OT firing from a similar resting 

pattern to a slightly faster (4 Hz) continuous discharge (Wakerley et al. 1978; Bourque 

and Renaud 1984). As mentioned earlier, OT neurons demonstrate unique patterns of 

bursting that are synchronous between neurons within and across the SON and PVN in 

response to suckling or parturition (Belin et al. 1984; Belin and Moos 1986). 

 

While synaptic activity largely dictates action potential discharge in vivo, the 

activation of intrinsic mechanisms shapes the periodic spike activity of these neurons in 

an in vitro slice preparation. Synaptic input does appear to play a more significant role in 

shaping bursts when these inputs remain intact in an in vivo preparation. The most 

important evidence for this idea is that blocking synaptic activity abolishes phasic 

bursting in vivo (Nissen et al. 1995; Brown et al. 2004) yet has little effect on this in vitro 

(Hatton 1982; Li et al. 2007). Intrinsic mechanisms still factor in vivo, but probably have 

heightened influence in vitro where synaptic activity has been depressed (Sabatier et al. 

2004). The following work will focus on the intrinsic mechanisms that shape phasic 

bursting. 
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Figure 1-2. Example of phasic bursting and subsequent afterpotentials in a 

vasopressin neuron. 

(A) Voltage record of phasic bursting VP neuron recorded with the whole cell patch 

technique in the supraoptic nucleus (SON) of a hypothalamic slice made from an adult 

female rat. Bursts are underlain by a plateau potential (white dashed line), and separated 

by silent periods consisting of a slow depolarization. The grey dashed line indicates the 

peak of the post-burst hyperpolarization. (B) Ratemeter histogram of the spike activity 

shown in (A). Note the highest firing rate occurs in the first 2 s of the burst (blackened 

line) followed by a slowing of frequency, indicating adaptation. (C). Depolarizing 

Afterpotentials (DAPs) activate by one spike (left) summates after two spikes, instigating 

a burst. Modified with permission. Armstrong WE, Wang L., Li C, Teruyama R. 

Performance, Properties and Plasticity of Identified Oxytocin and Vasopressin Neurones 

In Vitro. J Neuroendocrinol 22: 330–342, 2010. 
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 The activation and termination of phasic bursting in MNCs reflects an interplay 

between two intrinsic afterpotentials: The depolarizing afterpotential (DAP) and the 

afterhyperpolarization (AHP), respectively. The DAP reflects a plateau potential 

activation to initiate phasic bursting while the AHP activates during spikes to terminate 

the bursts (Andrew and Dudek 1983, 1984; Bourque 1986; Armstrong et al. 2010). One 

can observe these potentials experimentally by examining the membrane potential 

immediately after a train of spikes. The afterpotentials are revealed with the AHP 

followed by a DAP. The full time course of one afterpotential is revealed by block of the 

other (Figure 1-3).  

 

The DAP is a voltage- and Ca2+-dependent conductance that iss insensitive to 

TTX (Bourque 1986). The ionic identity of the current is unresolved, but evidence exists 

for two possibilities. Some demonstrate a reversal potential near EK (Li and Hatton 1997), 

while other reports show the DAP is dependent on the presence of multiple cations 

(Smith and Armstrong 1993; Ghamari-Langroudi and Bourque 2002).  DAP incidence is 

much lower in OT neurons (17%) compared to VP neurons (82%) (Teruyama and 

Armstrong 2002). Consequently, much of the work addressing the DAP’s role in phasic 

burst initiation was done in VP neurons (Harris et al. 1975; Bicknell and Leng 1981; 

Andrew and Dudek 1983; Li et al. 1995, 1999; Ghamari-Langroudi and Bourque 2002). 

DAP incidence in OT, but not VP neurons increases significantly during pregnancy 

(61%). The slow component of the DAP is blocked by Cs+ (Ghamari-Langroudi and 

Bourque 1998). The excitatory neurotransmitter histamine enhances the DAP, 

highlighting one mechanism by which excitatory neurotransmitters may stimulate phasic 

MNC activity (Smith and Armstrong 1993). This mechanism ties nicely to observations 

that the AHP is attenuated by application of histamine in other cell types (Haas and 

Konnerth 1983). This highlights that neurotransmission isn’t purely the gating of 

ionotropic receptors, but also the modulation of intrinsic membrane properties. The 

mechanisms of the DAP’s overlapping intrinsic membrane property, the AHP, is 

described below. 

 

 

Afterhyperpolarizations 

 

 MNCs and other neurons demonstrate AHPs that fall below resting potential after 

one or many spikes that decays over seconds. The AHP is underlain by AHP multuple K+ 

currents (IAHPs) that determine the size, shape, and duration. AHPs activate during trains 

of spikes, and are observed by depolarizing the neuron with a step or pulse train of 

injected of current (current clamp, CC) or clamping the voltage to positive potentials 

(voltage clamp, VC) and then immediately clamping the cell to rest (Figure 1-4). 

 

 

Initial Discovery and Characterization 

 

 Some of the earliest descriptions of AHPs were from embryonic chick heart tissue 

cultures, where they showed AHP amplitude changed when extracellular potassium  
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Figure 1-3. DAP and AHP afterpotentials that shape phasic burst patterns in OT 

and VP neurons.  

Afterpotentials in a MNC were generated by a train of action potentials evoked by 

intracellular current injections (20-spike, 5 ms width depolarizing pulses, 100–250 pA, 

20Hz). (A) In artificial cerebrospinal fluid (ACSF), the train of action potentials is 

followed by a distinct medium afterhyperpolarization (mAHP) that is subsequently 

followed by the slow DAP (sDAP). (B) Bath application of apamin (100 nM) completely 

blocks the mAHP and unmasks the presence of the fast DAP (fDAP), which is followed 

by the sDAP. (C) Additional application of Cs+ (5 mM) blocks the sDAP, revealing the 

sAHP. (D) Superimposed traces of A–C illustrate the temporally overlapping, multiple 

afterpotentials. (E) Expanded portion of the trace in C (indicated by underline) reveals 

that the onset of the fDAP occurs after the 1st action potential and its amplitude increases 

with each subsequent action potential until a plateau is reached after 12 spikes. (F) 

Inward tail current thought to be underlying the DAPs (IDAPs) was generated by 50 ms 

steps to 0 mV from a holding potential of -60 mV. Tail currents with similar time courses 

as the fast and slow DAPs were obtained and the application of 5 mM Cs+ blocked only 

IsDAP. Reprinted with permission. Teruyama R, Armstrong WE. Calcium-Dependent Fast 

Depolarizing Afterpotentials in Vasopressin Neurons in the Rat Supraoptic Nucleus. J 

Neurophysiol 98: 2612–2621, 2007. 
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Figure 1-4. AHPs in SON are underlain by three distinct components. 

(A) AHP obtained from an OT neuron of a virgin Sprague-Dawley rat demonstrating how 

AHP amplitude and duration increases with number of evoked spikes in a train. Three 

spikes during a 200 ms current injection evokes an fAHP-obscuring DAP, indicating 

AHPs are still not fully activated. When increasing the depolarizing current, the mAHP 

(apamin sensitive) reaches its peak after 8-15 spikes. The appearance of a second, slower 

AHP is observed after 18-22 spikes, indicating sAHP activation. (B) Recording of an 

AHP tail current (IAHP) in voltage clamp. Currents display as a positive, outward K+ 

current following a 200 ms square pulse. The curves are well fit by a double exponential, 

indicating the presence of a ImAHP and IsAHP. (C) Example of an AHP recorded under 

control conditions following a 20-spike protocol at 20 Hz. (D) The mAHP and sAHP are 

fully revealed after 5 mM Cs+ application. Cs+ results in abrupt deceleration of the decay 

of the AHPs, and therefore reveals the presence of the mAHP and sAHP more clearly. 

(E) Application of 100 nM apamin blocks the mAHP, leaving the apamin-insensitive 

sAHP intact. Modified with permission.  Foehring RC, Armstrong WE. Pharmacological 

dissection of high-voltage-activated Ca2+ current types in acutely dissociated rat 

supraoptic magnocellular neurons. J Neurophysiol 76: 977–983, 1996. 
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concentration was changed (DeHaan and Gottlieb 1968). Early descriptions of AHPs in 

neurons appeared in the 1970s when Gustafsson and colleagues published a series of 

papers highlighting their characterization of the AHP as a K+ conductance and its role in 

spike frequency adaptation in cat motoneurons (Baldissera and Gustafsson 1971, 1974a, 

1974b). 

 

 Starting in the late 1970s and early 1980s, numerous reports of AHPs emerged 

from a myriad of neuronal cell types. These AHPs were exceptionally long-lasting, 

compared to those reported in cardiac muscle and invertebrates (Meech 1978). Much 

early work was done in CA1 and CA3 pyramidal cells, where groups first characterized 

core features of the AHP including (1) its amplitude as a function of spike train duration, 

(2) critical dependence on intracellular Ca2+, (3) lack of voltage dependence, (4) 

attenuation by neurotransmitters, and (5) role in spike frequency adaptation (Alger and 

Nicoll 1980; Hotson and Prince 1980; Madison and Nicoll 1982; Brown and Griffith 

1983; Haas and Konnerth 1983). These AHP characteristics were corroborated by studies 

in neurons of the locus coeruleus (Andrade and Aghajanian 1984; Williams et al. 1984), 

the nucleus of solitary tract (Dekin and Getting 1984), and myenteric neurons (Morita et 

al. 1982). The consensus was that this outward K+ conductance activated during trains of 

spike activity, slowing firing rate, and resulting in spike frequency adaptation. 

 

 AHPs in MNCs were first described in 1984 (Andrew and Dudek 1984). As in 

previous descriptions, the MNC AHP follows brief evoked spike trains and increases in 

size and duration with increasing frequency and duration of the evoked spike trains. 

Chelation of Ca2+ via  high molar EGTA dialysis through the patch pipette eliminated the 

AHP, demonstrating intracellular Ca2+ dependence (Andrew and Dudek 1984). It was 

proposed that AHPs caused the spike frequency adaptation of phasic bursts as well as the 

ensuing post-burst periods of silence observed in MNCs (Brimble and Dyball 1977; 

Dutton and Dyball 1979; Poulain and Wakerley 1982; Andrew and Dudek 1984).  

 

 

The Three AHP Components 

 

As dissection of the AHP continued, it was discovered that cells generating an 

AHP often contained multiple components. It was obvious that the AHP was Ca2+ 

dependent, and so Ca2+-activated K+ (KCa) channels became target candidates for channel 

identity of the AHP. It became apparent that block of certain KCa channels such as the 

small-conductance KCa (SK) channel didn’t block the entire AHP. Additionally, the AHP 

was often described as being fit by more than one exponential curve. This suggested the 

phenomenon was the coalescence of multiple K+ channel types. (Pennefather et al. 1985; 

Bourque and Brown 1987; Storm 1987; Schwindt et al. 1988b; Storm 1989, 1990). The 

three components now identified are a fast AHP (fAHP), medium AHP (mAHP), and 

slow AHP (sAHP). An example of these three distinct AHP components in SON neurons 

is provided (Figure 1-4). 
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Fast AHP (fAHP).     The fAHP is a short-duration (<5-15 ms) hyperpolarization 

that follows single spikes. The BK channel’s underlying K+ conductance contributes to 

spike repolarization, but is not the only K+ channel to do so (Schwindt et al. 1988b; 

Pathak et al. 2016). The fAHP is consequential of a K+ conductance through big 

conductance calcium-activated K+ (BK) channels (Lancaster and Nicoll 1987; Storm 

1987). Early studies of the fAHP in cat sensorimotor cortex showed TEA and Ca2+-free 

external decreased the fAHP additively, and that apamin and Cd2+ didn’t affect the fAHP 

(Schwindt et al. 1988b). This suggested that BK channels have a degree of Ca2+ 

dependence, and that spike repolarization and fAHP have distinct mechanisms, and that 

the fAHP is categorically different from the mAHP. The mechanisms of fAHP activation 

are complicated and dynamic. While BK are activated by Ca2+, they are also activated by 

Mg2+ (Marty and Neher 1985; Behrens et al. 1988; Yang et al. 2015). 

 

 Some of the first descriptions of BK in SON came from experiments in guinea 

pigs. BK currents were described as a minimally inactivating outward K+ current (Hlubek 

and Cobbett 1997). Similar to studies in sensorimotor cortex of cat, these currents were 

inhibited by TEA, charybdotoxin (ChTx), iberiotoxin (IbTx), and blockage of Ca2+ entry 

with Cd2+ (Hlubek and Cobbett 1997; Greffrath et al. 1998; Dopico et al. 1999). Though, 

it should be noted that ChTx also blocks spike-repolarizing KV1 channels. Block of these 

channels also resulted in widening of spike repolarization (Hlubek and Cobbett 2000). 

Interestingly, BK currents were inhibited by both ChTx and IbTx, but only ChTx resulted 

in spike widening (Dopico et al. 1999; Hlubek and Cobbett 2000). This suggested that 

regionally segregated populations of BK channels exist in SON neurons with distinct 

pharmacological and biophysical properties that contribute to spike repolarization and 

AHPs differently (Dopico et al. 1999). This was reinforced later in which certain BK 

splice variants were found to be restricted to somas (Salzmann et al. 2010). Much work 

has been done on ethanol’s effect of BK channel modulation in these neurons, where 

ethanol upregulates BK channel activity in terminals but not soma (Widmer et al. 1998; 

Dopico et al. 1999, 2014). While SON neurons clearly express BK channels that generate 

a fAHP, this dissertation does not investigate them, but instead focuses on the mAHP and 

sAHP. This thesis attempts to understand the mechanisms of the later, slower currents as 

opposed to the repolarization and hyperpolarization of single spikes. 

 

 

Medium AHP (mAHP).     The mAHP is a Ca2+-activated, voltage-independent 

phenomenon underlain by the ImAHP (Vogalis et al. 2003b; Adelman et al. 2012). Much of 

the early work on mAHPs described them as a separate current from BK channels 

because they displayed low sensitivity to TEA and strong Ca2+ dependence (Meech and 

Standen 1975; Meech 1978; Romey and Lazdunski 1984). The critical discovery of the 

high-affinity (IC50 < 0.1 nM) toxin apamin has advanced our understanding of the 

mAHP; it is derived from bee venom (Burgess et al. 1981). Apamin blocks small 

conductance Ca2+-activated K+ (SK) channels and was shown to inhibit a medium-

duration, voltage-independent AHP generated by short trains of action potentials in a 

variety of neurons (Pennefather et al. 1985; Blatz and Magleby 1986; Schwindt et al. 

1988b, 1988a; Lorenzon and Foehring 1992; Pineda et al. 1992). d-tubocurarine is 

another channel toxin that blocks SK channels at the same binding site as apamin. 
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Though the affinity is lower (IC50 = 2.4 M), d-tubocurarine is easily reversible (Köhler 

et al. 1996). There are three members of the SK channel family: SK1, SK2, and SK3. 

These channels have varying degrees of sensitivity to apamin, but are all blocked robustly 

by 100 nM apamin; SK1 channels having the lowest sensitivity (Shah and Haylett 2000; 

Grunnet et al. 2001). In the SON, SK3 appears to be the only SK channel expressed 

(Stocker and Pedarzani 2000). In pyramidal neurons, block of the mAHP with apamin 

leads to increased firing frequency with no effect on spike frequency adaptation 

(Lorenzon and Foehring 1992). 

 

While the localization of SK channels was determined in SON before any 

electrophysiological studies (Mourre et al. 1986), the effect that apamin has on the 

mAHP was characterized shortly after (Bourque and Brown 1987). The mAHP in SON 

follows brief trains of action potentials, is blocked by apamin, is reversibly blocked by 

removal of extracellular Ca2+, is voltage-independent, and has a reversal potential near EK 

(Armstrong et al. 1994; Kirkpatrick and Bourque 1996; Greffrath et al. 1998, 2004). In 

continuously firing MNCs, apamin increases firing frequency and in phasically firing 

MNCs, apamin increases the frequency while also decreasing phasic burst duration by 

~50% (Kirkpatrick and Bourque 1996). Application of apamin often unmasked a DAP 

which encouraged the neurons to fire in a burst pattern. 

  

Recent work has highlighted the modulation of SK channels in MNCs. The SK 

channel forms a complex with constitutive calmodulin (CaM), casein kinase 2 (CK2), and 

protein phosphatase 2A (PP2A). CK2 and PP2A modulate the Ca2+ sensitivity of the 

channel by respectively dampening or amplifying the effect of bound Ca2+. It does so by 

either phosphorylating (CK2) or dephosphorylating (PP2A) SK-associated CaM 

(Adelman et al. 2012). Recent work has demonstrated this complex is present in SON 

neurons and that enhancements in mAHP observed during pregnancy reflect in part a 

downregulation of CK2 (Wang et al. 2018). 

 

 

Slow AHP (sAHP).     The sAHP is a slow (5-10s of seconds), Ca2+ dependent 

component of the AHP. It is characterized by insensitivity to apamin, which when 

applied blocks the mAHP, and reveals a lower amplitude longer lasting AHP. The sAHP 

shares many features with the mAHP, including its Ca2+ dependence, voltage-

independence, and reversal near EK (Alger and Nicoll 1980; Hotson and Prince 1980; 

Schwindt et al. 1988a; Ghamari-Langroudi and Bourque 2004). One feature that 

separates the sAHP from the fAHP and mAHP (aside from kinetics) is its susceptibility to 

neurotransmitter modulation. Early work demonstrated attenuation following application 

of norepinephrine or histamine (Madison and Nicoll 1982; Haas and Konnerth 1983; 

Schwindt et al. 1988a). Subsequent studies revealed that many additional 

neurotransmitters could modulate sAHPs, including muscarine (Scroggs et al. 2001; 

Ghamari-Langroudi and Bourque 2004), serotonin (Lorenzon and Foehring 1992), and 

dopamine (Pedarzani and Storm 1995). Like the mAHP, the sAHP also underlies spike 

frequency adaptation, the slowing of firing frequency during a prolonged train. 

Attenuation of the sAHP via neurotransmitters abolishes this spike frequency adaptation 

(Lorenzon and Foehring 1992).  



 

12 

 

The sAHP’s kinetics and attenuation by neurotransmitters spurred extensive 

studies of the pathways triggered by those transmitters. The mechanism of action for 

neurotransmitter attenuation of AHPs is cell-type specific. The transmitter pathways that 

modulate these pathways typically fall into one of two categories: (1) the activation of 

Gs-coupled receptors, leading to elevated cAMP and subsequent PKA activation, and 

(2) the activation of Gq-coupled receptors, leading to activation of phospholipase-C 

(PLC), which cleaves PIP2 into DAG and IP3. These products activate PKC and bind IP3 

receptors to trigger Ca2+ release from endoplasmic Ca2+ stores. The PKA modulation 

pathway is well studied, where hippocampal neurons are known to be modulated by this 

pathway (Madison and Nicoll 1982; Pedarzani and Storm 1993; Lancaster et al. 2006). 

This pathway has been comprehensively mapped in enteric neurons (Vogalis et al. 

2003a). The second pathway, mediated by PLC-cleavage of PIP2 into DAG and IP3, is 

influential of sAHPs in cortex, hippocampus, and SON (Krause et al. 2002; Ghamari-

Langroudi and Bourque 2004; Villalobos et al. 2011). AHPs in these neurons are 

attenuated by muscarine or acetylcholine.  

 

While neurotransmitters and their signaling pathways are known to modulate the 

sAHP, how does the influx of Ca2+ lead to the activation of a sAHP? The activation and 

decay of the current are too slow to simply reflect the binding of Ca2+ to a proximal 

channel. This suggests that there are intermediary steps involved. The sAHP activates 

after longer trains of spikes, in which the amplitude of the sAHP is non-linearly 

correlated with spike count. It is clear that the sAHP is activated by elevated cytoplasmic 

Ca2+ (Hotson and Prince 1980; Abel et al. 2004). How do the sAHP channels sense this 

change in [Ca2+]i? Ca2+ sensor (NCS) proteins may provide an explanation for this 

detection. Most notable is the dependency of sAHPs on the NCS hippocalcin in CA1. 

When hippocalcin expression is drastically knocked down, IsAHPs are nearly abolished in 

CA1 neurons (Tzingounis et al. 2007). This same study also showed that when CA1 

neurons were given extremely strong pulses (long duration; high frequency), they could 

elicit a tiny sAHP in the hippocalcin knockouts. This current was insensitive to 

noradrenergic modulation. Other Ca2+ sensors have been implicated in a similar manner 

in other cell types such as calcineurin in myenteric neurons (Vogalis et al. 2004) and 

neurocalcin  in cortex (Villalobos and Andrade 2010). A more detailed explanation on 

how the cellular Ca2+ environment affects AHPs is provided in the next section. 

 

A captivating aspect of the sAHP is that the channel(s) has eluded identification. 

Many candidates have been proposed. One proposal was that of intermediate-

conductance Ca2+-dependent K+ channels (IK), formerly known as the SK4 channel 

(King et al. 2015). This has been widely contested by the field due to failure of IK block 

to produce abolishment of AHPs (Wang et al. 2016a). Additionally, IK channel presence 

in the brain is sparse at best, expressing mostly in non-nervous tissues and some 

peripheral neurons (Jensen et al. 2001; Neylon et al. 2004). The best evidence for a single 

channel is KCNQ (Kv7) channels. KCNQ, in concert with hippocalcin, contributes a 

portion of the IsAHP in CA1 (Tzingounis and Nicoll 2008; Tzingounis et al. 2010). 

KCNQ2, 3, and 5 knockout animals generate shunted sAHPs, indicating that KCNQ 

channels contribute to a portion of the sAHP, but not all of it. In the same study, they 
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evaluated superior cervical ganglion neurons, cells with KCNQ channels but no 

hippocalcin or sAHP. When they introduced a hippocalcin-expressing virus, the cells 

could generate a sAHP. This demonstration makes a powerful statement about sAHP 

gating: that sAHP activation reflects the detection of elevated Ca2+ and downstream 

coupling to K+ channels, as opposed to the opening of a single ion channel species. 

Though it may not be the same in all cell types, as KCNQ blockers in neocortical 

pyramidal neurons failed to affect the sAHP (Guan et al. 2011; Andrade et al. 2012). 

 

 Others have observed another slow component in some neurons that appears to be 

carried by Na+-dependent K+ channels or the exchange of ions through the Na+/K+-

ATPase (Schwindt et al. 1988a; Foehring et al. 1989; Gulledge et al. 2013). This type of 

AHP is beyond the scope of this review. 

 

 With regards to the sAHP in MNCs, they can be categorically called sAHPs due 

to possessing the same cardinal features of sAHPs found in other neuronal cell types 

(Greffrath et al. 1998, 2004; Ghamari-Langroudi and Bourque 2004). The major 

characterization of sAHPs in SON was accomplished by attenuating the sAHP with 

muscarine and evaluating the effects on the phasic bursting. Due diligence was taken to 

ensure that muscarine wasn’t affecting other Ca2+ dependent parameters such as single-

spike shape or the DAP. sAHP inhibition via muscarine produces increased phasic 

bursting duration, spike count, and firing frequency, resulting in an enhanced plateau 

potential (Ghamari-Langroudi and Bourque 2004). This provides direct evidence for how 

muscarinic attenuation of the sAHP can facilitate phasic firing in MNCs via attenuation 

of a hyperpolarizing current. This study further highlights the interplay between DAP and 

sAHP to intrinsically produce and terminate phasic bursting. 

 

 

AHP Plasticity during Pregnancy and Lactation in SON 

 

 AHPs demonstrate marked plasticity during the reproductive cycle in MNCs. At 

labor and during subsequent lactation OT neurons produce robust, synchronous firing to 

trigger massive release of OT for parturition and milk ejection (Poulain and Wakerley 

1982; Belin et al. 1984). The plastic changes in AHP and DAP may shape the phasic 

pattern changes observed in OT neurons during these periods. Specifically, the AHP 

enhances in amplitude and decay during pregnancy and lactation of OT but not VP 

neurons (Stern and Armstrong 1996; Teruyama and Armstrong 2002, 2005). This 

translates to stronger spike frequency adaptation during phasic activity in OT, but not VP 

neurons. OT and VP neurons were shown to undergo some plastic changes in single spike 

parameters through the reproductive cycle. The only change in DAP observed was an 

increase in DAP incidence of OT neurons, which is significantly lower in virgin OT 

neurons compared to VP neurons. Neither cell type showed changes in passive membrane 

properties. Closer analysis revealed that both mAHP and sAHP components were 

enhanced during lactation in OT but not VP neurons. Interestingly, corresponding [Ca2+]i 

measurements revealed a significantly faster decay tau but no change in peak for both OT 

and VP neurons. Peak Ca2+ currents also increased, but so did membrane capacitance 

during lactation, suggesting the increased currents was a result of increased cell body 
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size, as when adjusted for current density there was no difference (Teruyama and 

Armstrong 2005). Finally, blockade of oxytocin receptors during gestation produces 

smaller sAHPs (Teruyama et al. 2008). This suggests that central OT modulation of 

sAHPs contributes to the synchronization of OT neurons during parturition and lactation. 

 

 

Calcium 

 

Intracellular Ca2+ concentration is so vital for AHP generation that it warrants 

special consideration in terms of its role, sources, buffering, and signaling mechanisms. 

This is especially true for the sAHP, where activation isn’t simply the binding of Ca2+ 

ions to K+ channels but rather a complex activation of intermediary pathways. 

 

 Ca2+ sources for the AHP include high-voltage-gated Ca2+ channels as inorganic 

channel blockers inhibit the AHP (Andrade and Aghajanian 1984; Schwindt et al. 1988a; 

Ghamari-Langroudi and Bourque 2004). Specific types of voltage-gated Ca2+ channels 

often couple to AHPs, depending on the cell type. A detailed list of these couplings can 

be found in the Introduction to Chapter 4 of this document as well as in Andrade et al. 

(2012). Specific types of Ca2+ channels that couple to the mAHP and sAHP in MNCs are 

explored in Chapter 4 as well. In addition to entry through plasma membrane channels, 

Ca2+ from intracellular stores, such as ryanodine-sensitive stores, contribute to the AHP 

in certain neurons. Block of Ca2+ induced Ca2+ release from these stores inhibits the 

AHPs in mature repetitively firing enteric neurons, and hippocampal pyramidal neurons 

(Torres et al. 1996; Vogalis et al. 2001). 

 

 The fAHP and mAHP are thought to be activated by nanodomains and 

microdomains of Ca2+, the nano- and micro reflecting the order of magnitude of distance 

these pools of Ca2+ are from AHP channels. Nanodomains (~10 nM from the channel) of 

Ca2+ are formed during transient activation of Ca2+ channels which can activate BK 

channels (Fakler and Adelman 2008). This Ca2+ will combine with Ca2+ from other Ca2+ 

channels to form a microdomain, a pocket of elevated Ca2+ near the plasma membrane 

(Fakler and Adelman 2008). Ca2+ reuptake and buffering mechanisms are fast (< 1 ms), 

and occur through mechanisms such as the absorption into intracellular stores or extruded 

from the cell via a pump (Guerini 1998; Yang et al. 2018). The ability of Ca2+ to bind BK 

and SK channels through respective nanodomains and microdomains reflects these 

channels’ affinity for binding Ca2+(as well as the activity of the Ca2+ channels). SK 

channels have a higher affinity for Ca2+ (submicromolar) compared to BK channels 

(micromolar); this affinity is inversely proportional to their distance from the Ca2+ source 

(Fakler and Adelman 2008). 

 

 These microdomains have important implications for how AHPs are triggered by 

Ca2+ influx. In cortex and dopamine neurons, there was only a very rough, non-sigmoidal 

relationship between bulk [Ca2+]i and the mAHP, while the entire AHP displayed a 

cooperative, sigmoidal dose response relationship with bulk [Ca2+]i (Wilson and 

Callaway 2000; Abel et al. 2004). This suggests that SK channels are activated by 

localized microdomains of Ca2+ while the kinetically slower sAHP responds to bulk 
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increases in [Ca2+]i. This is because bulk [Ca2+]i is being measured and Ca2+ at the 

membrane decreases. This sAHP response constitutes a mechanism by which sAHP 

channels sense bulk rises in [Ca2+]i, such as hippocalcin in CA1 (Tzingounis et al. 2007). 

 

 

PIP2: Characteristics and Its Role in AHPs 

 

 

The Role of PIP2 in Cells 

 

Phosphotidylinositol 4,5-bisphosphate, PtdIns(4,5)P2, or simply PIP2, is a long 

chain phospholipid found on the inner leaflet of cell membranes. PIP2 levels are 

constitutive. In other words, molecules of PIP2 are constantly synthesized and broken 

down, resulting in maintenance of basal PIP2 molecules (Xu et al. 2003; Dickson et al. 

2013).  In addition to the IP3/DAG pathway, PIP2 controls a varied range of cellular 

functions including organization of filamentous actin, cellular differentiation, exocytosis, 

and ion channel maintenance (Eberhard et al. 1990; Sun et al. 1999; Hilgemann et al. 

2001; Hille et al. 2015). PIP2’s modulation of ion channels is well known. KCNQ (KV7) 

channels are certainly the best documented example (Suh and Hille 2002, 2007; Li et al. 

2005; Zaydman and Cui 2014; Hille et al. 2015), but much evidence exists for 

modulation of Voltage-gated Ca2+ channels (CaV) channels, inwardly rectified K+ (Kir) 

channels, and ATP-gated K+ (KATP) channels (Suh et al. 2010; Xie et al. 2014; Borschel 

et al. 2017). Often, the depletion of PIP2 from the membrane results in decreased channel 

activity in these cases. 

 

 

PIP2 Modulation of Ion Channels: Implications for AHPs 

 

 Some of the leading sAHP channel candidates are channels that also bind PIP2 

such as KCNQ, KATP, and TREK1 channels (Tzingounis and Nicoll 2008; Andrade et al. 

2012; Ford et al. 2013; Cabanos et al. 2017). This is most apparent in the KCNQ channel, 

a candidate for a channel underlying the sAHP. PIP2 stabilizes the opening of KCNQ 

channels and in many cases, shifts the voltage activation of the channel into ranges at 

which the sAHP generates (Kim et al. 2016b). It has also been proposed that KCNQ 

channels are not strictly voltage dependent, and that the presence of PIP2 is required to 

couple the pore domain to the voltage-sensing domain of the channel (Zaydman et al. 

2013; Kim et al. 2017). High PIP2 levels also alters the muscarinic sensitivity of the 

channel independent of the classic muscarinic modulation of M-Current via G-proteins 

(Hernandez et al. 2009; Zhou et al. 2013). The involvement of PIP2, KCNQ channels, and 

sAHPs is highlighted in (Kim et al. 2016b), where PIP2 concentration played a critical 

role in dictating which KCNQ channels contributed to the sAHP. KCNQ3 knockout 

animals still displayed a prominent sAHP, but was shown to be dependent on the 

presence of hippocalcin, suggesting that perhaps Ca2+ sensors are the primary gating 

components of sAHPs in CA1 neurons.  
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 With regards to the SK-mediated mAHP, recent single channel studies of SK 

channels in transfected HEK cells revealed that these channels became inert when PIP2 

was depleted from them, suggesting a constitutive role of PIP2 in the SK-channel 

complex as PIP2 binds to the SK-CaM interface (Zhang et al. 2014).  

 

 There are other ion channels besides AHP channels that PIP2 could bind to 

influence the AHP. For example bound PIP2 to Ca2+ channels (Suh et al. 2010), and the 

consequent modulation of Ca2+ entry could influence [Ca2+]i and activation of the sAHP. 

 

Recent evidence in neocortical pyramidal neurons demonstrates that PIP2 is a 

strong candidate as an intermediary between Ca2+ sensing and AHP activation. Rundown 

of the sAHP over long recording periods is rescued when PIP2 production is increased via 

overexpression of PIP5K (the PIP to PIP2 generating enzyme); rundown is accelerated 

when PIP2 is depleted via wortmannin (Villalobos et al. 2011) (Figure 1-5). An 

important finding was that PIP2 facilitation appeared to increase the sAHP amplitude by 

facilitating the ability of Ca2+ to activate an sAHP, suggesting that PIP2 presence is an 

important co-factor alongside Ca2+ to activate the IsAHP. There is a rising body of 

literature highlighting PIP2’s modulation of ion channels and its role in the AHP. The 

following thesis explores the potential role of PIP2 in modulation and gating of AHPs in 

MNCs of SON. 

 

 

Rationale and Specific Aims 

 

 OT and VP neurons in SON display Ca2+-dependent AHPs. While the 

mechanisms for the mAHP are relatively well documented, much remains unknown of 

the mechanisms underlying the sAHP including the specific channels involved. Recent 

work in cortical pyramidal neurons demonstrated that sAHPs were affected by the 

presence of PIP2. Excess PIP2 appeared to increase the sAHP sensitivity to Ca2+ and curb 

rundown while depletion of PIP2 enhanced rundown of the sAHP. This highlights an 

intracellular mechanism for sAHP gating consistent with the conductance’s slow kinetics 

(Villalobos et al. 2011). The CaM-SK channel complex conducting the mAHP is 

critically dependent on PIP2 in transfected cells (Zhang et al. 2014). The SON AHP 

shares many of the features of AHPs in other neuron types. SON AHPs are inhibited by 

muscarine, a transmitter that activates PLC cleavage of PIP2. Therefore, I explored the 

possibility of PIP2 involvement in AHPs of OT and VP neurons. Herein I primarily 

incorporated the use of whole-cell patch clamp electrophysiology with simultaneous Ca2+ 

imaging to determine PIP2’s role in the generation of AHPs. 

 

• Aim 1: Determine whether of PIP2 to generate an AHP in both OT and VP 

neurons in the SON as well as characterize how it affects Ca2+-activation of the 

AHP (Chapter 3). 

 

• Aim 2: Determine which high-voltage-activated Ca2+ channels contributed Ca2+ to 

mAHP and sAHP generation in both the OT and VP neurons of the SON (Chapter 

4).  
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Figure 1-5. The IsAHP in cortical neurons is sustained by PIP2. 

During long recording periods, the IsAHP current displays drastic rundown in its 

amplitude. This rundown is thought be in part due to cutoff of PIP2 supply to the neuron 

since its substrate, myo-inositol, is normally recruited from the animal’s diet. (A) Control 

rundown time course is plotted (white points) against rundown time courses for neurons 

in which PIP2 is depleted by wortmannin (gray points). Wortmannin accelerates the 

rundown of the IsAHP (B) Similar rundown time course as plotted in (A), but with Control 

(white points) plotted against rundown time courses for neurons in which PIP2 is 

maintained by overexpression of PIP5K (gray points). PIP5K overexpression prevents 

the rundown of the IsAHP. (C) The ability of PIP5K to facilitate the calcium gating of IsAHP 

is most evident when using very short depolarizing steps (1–10 ms). Under control 

conditions, such short steps fail to significantly activate IsAHP, while after transfection 

with PIP5K they produce robust, graded activations of this current. Modified with 

permission. Villalobos C, Foehring RC, Lee JC, Andrade R. Essential Role for 

Phosphatidylinositol 4,5-Bisphosphate in the Expression, Regulation, and Gating of the 

Slow Afterhyperpolarization Current in the Cerebral Cortex. J Neurosci 31: 18303–

18312, 2011.  
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• Aim 3: Determine the precise mechanism by which PIP2 modulates Ca2+ channels 

in OT neurons (Chapter 5). 

 

• Aim 4: Explore the possibility of dendritic localization of AHP currents in both 

OT and VP neurons of SON (Chapter 6). 
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CHAPTER 2.    METHODOLOGY 

 

 

Animals and Ethical Approval 

 

These studies were performed on either virgin adult Sprague-Dawley female rats 

(Harlan Laboratories, Indianapolis) or transgenic Wistar-Kyoto rats containing the AVP-

eGFP fusion and/or the OXT-mRFP1 fusion transgenes (Ueta et al. 2005; Katoh et al. 

2011). These rats weighed between 140-230 g. The UTHSC IACUC review board 

approved all experiments and the experiments conform to the principles of UK 

regulations as described in (Drummond 2009). Animals were on an ad libitum diet. For 

use in experiments, rats were deeply anesthetized with either sodium pentobarbital (100 

mg kg-1) or ketamine/xylasine (10% xylasine; 100 mg kg-1) and perfused through the 

heart with artificial cerebrospinal fluid (aCSF) with NaCl replaced by 210 mM sucrose. 

The rats were decapitated via guillotine. The brains were then removed and subsequently 

sliced for use in whole cell patch clamp electrophysiology. AHPs in OT neurons undergo 

significant plastic changes during the female reproductive cycle (Teruyama and 

Armstrong 2002, 2005). Because of this, most of our studies are in females because these 

changes offer insights into the MNC-specific mechanisms of AHP generation. 

 

 

Cell and Tissue Preparation for Electrophysiological Recordings 

 

 

Slice Preparation 

  

250 µm coronal brain slices were cut using a Leica VT1000S vibratome in ice-

cold aCSF with 210 mM sucrose replacing NaCl. After cutting, the brain slices were 

transferred to an aCSF-filled holding chamber and warmed for 15-20 min at 32 ± 1°C. 

aCSF was continuously bubbled with 95% O2-5% CO2, and contained (in mM) 20 D-

glucose, 0.45 ascorbic acid, 2.5 KCl, 1 MgSO4, 1.25 NaH2PO4.H2O, 26 NaHCO3, 125 

NaCl, 2 CaCl2. Slices were then transferred to aCSF at room temperature, where they 

remained for at least 40 minutes prior to recording. 

 

 

Acutely Dissociated Neuron Preparation 

 

 After removal, the brain was placed under a dissecting microscope for the 

dissection of supraoptic tissue. The brain was placed with the ventral surface up. Using 

iris scissors, a horizontal strip of tissue was excised from the ventral surface of the brain 

containing the supraoptic nucleus attached to the optic chiasm/tract. This strip of tissue 

was divided into four even strips of optic tract with hypothalamus attached (Figure 2-1). 

These explants were then submerged in aCSF bubbled with 95% O2-5% CO2. After 

resting a minimum of 30 minutes, tissue was transferred to a glass chamber warmed by a 

water bath at 34 °C. The chamber containing the tissue was aCSF + 1 mg/ml of 

Streptomyces griseus (Type XIV) enzyme bubbled with 95% O2-5% CO2 for 24-30  
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Figure 2-1. Explants of supraoptic nucleus were removed from rat brain.  

Schematic of the horizontal sections used to isolate the SON. The location of the SON 

and the dissection are shown. Dotted lines: cuts made after the initial incubation, before 

enzyme treatment. The midline tissue rostral to the medial cuts was discarded and the 

SON-optic tract sectioned into four pieces. OT, optic tract; OT, optic chiasm; R, rostral; 

C, caudal. Modified with permission. Foehring RC, Armstrong WE. Pharmacological 

dissection of high-voltage-activated Ca2+ current types in acutely dissociated rat 

supraoptic magnocellular neurons. J Neurophysiol 76: 977–983, 1996. 
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 minutes. After enzymatic treatment, tissue was transferred to a glass test tube containing 

a solution (in mM): 140 Na+ Isethionate, 2 KCl, 0.1 CaCl2, 4 MgCl2, 20 Glucose, 10 

HEPES, pH balanced to 7.2 with NaOH. The tissue was then titrated through flame-

polished glass pipettes three times in three successfully smaller diameter pipettes. The 

supernatant was removed and plated onto a culture dish, which was placed into the 

chamber of an inverted microscope (Nikon Diaphot 300). The cells were allowed 7 

minutes to settle on the dish. A background flow of Hanks buffered saline solution 

(HBSS) was adminstered and cells were visualized. 

 

 

Electrophysiology 

 

Slice Recordings 

  

Slices were placed in the well of a plexiglass chamber attached to a modified 

stage on an Olympus BX51WI upright microscope and perfused with aCSF containing 5 

mM CsCl to block the slow depolarizing after-potential (sDAP) (Ghamari-Langroudi and 

Bourque 1998; Teruyama and Armstrong 2005, 2007). The aCSF was bubbled constantly 

with 95% O2-5% CO2, warmed to 32 °C ± 1oC, and flowed at ~2 ml/min. Whole cell 

voltage clamp recordings were obtained using an Axon Multiclamp 700B amplifier 

(Molecular Devices, Sunnyvale, CA, USA). Traces were digitized using an Axon 1440A 

Digitizer at 10 kHz and filtered at 2 kHz on a Dell desktop computer running Clampex 9 

software (Molecular Devices). 

 

Recording pipettes (4-8 MΩ) were pulled from borosilicate glass with an outer 

diameter of 1.5 mm using a P-1000 flaming/brown horizontal micropipette puller (Sutter 

Instruments, Sovato, CA, USA). The pipette internal solution for analyzing AHP tail 

currents consisted of (in mM): 135 KMeSO4, 8 NaCl, 10 HEPES, 2 Mg-ATP, 0.3 Na-

GTP, 0.1 leupeptin, 6 phosphocreatine, 0.2 EGTA with pH 7.2-7.4 and 285-295 mOsmol 

(kg H2O)-1. 0.1% biocytin (Sigma-Aldrich, USA) was added to an aliquot on the day of 

the experiment for visualization during immunochemical identification of cell type. The 

liquid junction potential for the KMeSO4 internal was ~-10 mV, and was not corrected.  

 

IAHP tail currents were evoked using a voltage clamp protocol of an unclamped 17 

spike, 5 ms pulse train at 20 Hz from a holding potential of -60 mV to +20 mV; the IAHP 

was clamped at -60 mV immediately following the train. This was done to mimic a train 

of action potentials, and at 20 Hz, 17 spikes produced an IAHP amplitude near maximum 

in pilot experiments (data not shown). In MNCS IAHP amplitude correlates with spike 

count (Ghamari-Langroudi and Bourque 2004). All IAHP recordings were taken in the 

presence of synaptic blockers 10 µM 6,7-dinitroquinoxaline-2,3-dione (DNQX), 40 µM 

2R)-amino-5-phosphonovaleric acid (AP5), and 100 µM picrotoxin to block fast synaptic 

currents. Cells whose series resistance exceeded 20 MΩ and/or changed by more than 

20% during the recording were discarded. IAHPs were averaged over 2 or more runs. 

 

For measuring whole cell Ca2+ currents, the external bath solution contained (in 

mM): 110 NaCl, 50 TEA-Cl, 5 CsCl, 1 MgCl2, 10 HEPES, 10 Glucose, 0.0005 
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tetrodotoxin (TTX), 0.1 picrotoxin, 4 CaCl2. The pipette internal solution contained: 180 

N-methyl-D-glucamine, 4 MgCl2, 40 HEPES, 10 EGTA, 12 phosphocreatine, 2 ATP-Mg, 

0.4 GTP-Na. The liquid junction potential for this internal is ~-5 mV and was not 

corrected. Cells were held at -70 mV. For I-V curves, cells were hyperpolarized to -90 

mV for 200 ms followed by 10 mV 1000 ms steps up to +10 mV. 400 µM Cd2+ was bath-

applied at the end of each trial to confirm the Ca2+ current. I-V curves were derived from 

the steady-state measurement of these steps. Currents were leak subtracted by scaling the 

current in response to a +10 mV step from baseline.  

 

 

Acutely Dissociated Neuron Recordings 

 

 Recording pipettes (2.5-5 MΩ) were pulled from borosilicate glass with an outer 

diameter of 1.5 mm using a P-1000 flaming/brown horizontal micropipette puller (Sutter 

Instruments, Sovato, CA, USA). The pipette tips were coated in candle wax to minimize 

capacitive artifacts during recordings. The pipette internal solution consisted of (in mM): 

180 N-methyl-D-glucamine, 4 MgCl2, 40 HEPES, 2 Na-ATP, 0.4 Mg-GTP, 12 

phosphocreatine, 0.1 leupeptin, 10 EGTA; pH: 7.2 adjusted with TEA-OH; 270-280 

mOsmol (kg H2O)-1. Cells were perfused with a background solution of HBSS. After 

achieving a whole-cell patch, a Ca2+ current- isolating solution was delivered to the cells 

via a gravity-driven multibarrel array of glass capillary tubing (150 m OD) mounted on 

a planted manipulator opposite to the recording pipette. Ca2+ currents were isolated with a 

solution in which Ba2+ replaced Ca2+ as the charge carrier. This was done because Ba2+ 

produces larger currents compared to Ca2+, it blocks K+ channels, and it minimizes the 

activation of intracellular Ca2+-dependent mechanisms. This solution contained (in mM): 

10 Glucose, 10 HEPES, 5 BaCl2, 150 TEA-Cl, pH= 7.2 balanced with TEA-OH. Drugs 

were administered using this same multibarrel array. Recordings were filtered at 2 kHz. 

Series resistance was corrected online by 60-85%. 

 

 All recordings in acutely dissociated neurons were obtained in VC. We used a 

ramp protocol at 0.33 mV/ms to evoke isolated Ca2+ currents stimulated from -60 mv to 

+50 mV. We also used a step protocol to evaluate time constants of activation, 

inactivation, and tail currents (500 ms step duration from -60 mV to +50 mV in 10 mV 

increments). All neurons received 400 M Cd2+ to confirm measurement of Ca2+ 

channels at the end of the recording. During analysis, all traces were leak subtracted and 

Cd2+ subtracted. Every measurement from an individual cell is an average of 2 or more 

sweeps. 

 

 

Pharmacology and Toxins 

 

Experimental reagents included: 0.001-10 µM wortmannin (Sigma-Aldrich, 

USA), 100 nM apamin (Sigma-Aldrich, USA), 10 µM 2-(4-morpholinyl)-8-phenyl-4H-1-

benzopyran-4-one (LY294,002) (Sigma-Aldrich, USA) to block PI3K, 10 µM 1-[6-

[[(17β)-3-Methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione 

(U73122) (Sigma-Aldrich, USA) to block PLC, and 300 µM (cells were incubated before 
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the experiment in 1 mM) myo-inositol (Sigma-Aldrich, USA) (Villalobos et al. 2011) to 

supplement the substrate for PIP2 production. For certain experiments, 30 µM diC8-PIP2 

(Echelon Biosciences, Salt Lake City, UT, USA) reconstituted in H2O was added to the 

internal solution. 

 

 

 Experiments evaluating Ca2+ channel contribution to AHPs used the following 

reagents: 5 µM nifedipine (Nif; Sigma-Aldrich, USA) to block L-type channels, 1 µM 

−conotoxin GVIA (GVIA; Peptides International, USA or Alomone Labs, Israel) to 

block N-type channels, 0.5 M Agatoxin-IVA (AgTx IVA; Alomone Labs, Israel) to 

block P/Q-type channels, and 0.3 M SNX-482 (Alomone Labs, Israel) to block R-type 

channels. Since SNX-482 also blocks A-type K+ currents (Liu and Bean, 2014), 4 mM 4-

aminopyridine (4-AP; Sigma-Aldrich, USA) was used to block A-Current (IA) and other 

voltage-gated K+ channels contributing to spike width prior to administering SNX-482. 

 

 

Immunochemistry 

 

 Slices were fixed in 4% paraformaldehyde and 0.2% picric acid in phosphate 

buffered saline (PBS) and stored at 4°C post-experimentally. Biocytin-labeled neurons 

were processed for double labeling with either anti-OT- or VP- neurophysins. The anti-

VP-neurophysin is a rabbit polyclonal antibody provided by Alan Robinson (UCLA, 

Emeritus), and was used at 1:20,000. The anti-OT-neurophysin antibody (PS36) is a 

mouse monoclonal antibody provided by Harold Gainer (National Institutes of Health, 

Emeritus) and was used at 1:500. All antibodies and labeling reagents were dissolved in 

PBS + 0.5% Triton X-100 (PBST). After 36-72 h of incubation at 4°C, the slices were 

washed with PBST and incubated in a cocktail of secondary antibodies including Alexa 

Fluor 488 goat anti-rabbit immunoglobulin G (IgG) and Alexa Fluor 594 goat anti-mouse 

IgG (1:200) along with Avidin-AMCA (1:200) for reaction with the biocytin. The 

specimens were mounted on a slide with 50% water/50-% glycerol solution. Double 

staining of biocytin and one antibody complemented with the negative staining of the 

other identified neurons as OT or VP (Figure 2-2). 

 

 

Calcium Imaging and Uncaging 

 

Electrophysiology and Ca2+ imaging were performed simultaneously on a single 

computer using a custom windows-based program (CCD32; written by Dr. J. Callaway, 

UTHSC, Memphis, TN, based on software developed by (Lasser-Ross et al. 1991). 

Voltage clamp recordings were acquired using an Axopatch 700A (Molecular Devices, 

Sunnyvale, CA). Electrodes were pulled using borosilicate electrodes (4-8 MΩ) as 

previously described. The pipette internal solution for analyzing AHP tail currents was as 

previously described, except with 0.2 mM EGTA replaced with 0.1 mM fura-2. Images 

were obtained with a CCD Imago Sensicam camera, using a Polychrome V 

monochromater (TILL Photonics, Planegg, Germany) to control excitation wavelength 

and intensity. Calcium fluorescence was obtained by exciting fura-2 at 380 nm using a  
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Figure 2-2. Example of a positively identified OT cell using immunolabeling.  

(A) A single cell loaded with biocytin during recording, and subsequently labeled with 

Avid-AMCA. The tissue was then labeled for OT- and VP-neurophysins (NP) by double 

immunofluorescence using Alexa Fluor 594- and Alexa Fluor 488- conjugated 

antibodies, respectively. This biocytin-labeled cell was immunoreactive to the OT-NP (B, 

C) but not to VP-NP (D). 
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USHIO UXL-150MO 150 W Xenon arc lamp. We measured fluorescence changes at an 

emission wavelength of 520 ± 40 nm. Photobleaching was corrected by subtracting a 

Ca2+ signal from a control sweep at equal length, in which the cell was not stimulated and 

held at a hyperpolarized holding potential (-70 mV) to minimize Ca2+ entry. We 

subtracted background autofluorescence by using a reference area near the cell. 

Measurements were made from the soma, excluding the nucleus (Figure 2-3).  

 

A Zeiss two-photon was used for some imaging experiments while the 

Polychrome V system described was under repair. When using the two-photon system, 

Ca2+ transients were acquired with windows-based software, Zeiss Zen 2010. Cells were 

imaged on an Zeiss LSM 7MP 2 photon system equipped with a Coherent Chameleon 

Vision-S laser (Titanium-Sapphire). We excited fura-2 at 800 nm. Cells were imaged 

using a raster scan at 30-40 Hz depending on the region of interest size. This equipment 

was used to supplement that from the Polychrome V when the latter was under repair. 

 

To uncage Ca2+, we used 2 mM DM-Nitrophen as the Ca2+ caging compound 

loaded into the internal solution with 40% calcium occupancy (0.8 mM CaCl2). In the 

internal solution, 0.2 mM EGTA was replaced with 0.05 mM fluo-4 for Ca2+ imaging. 

Fluo-4 was excited at 488 nM and measured at 520 + 40 nm. Additionally, Mg-ATP was 

replaced by Na-ATP to avoid loading the caging compound with Mg2+. We used a xenon 

flashlamp (Rapp Optoelectronic, JML-C2) for photolysis and discharged 72.6 J in ~1 ms 

with UV light. Upon photolysis, the Kd of DM-Nitrophen for Ca2+ increases from 5 nM 

to 3 mM, rapidly releasing Ca2+ into the cell (Sah and Clements 1999). 

 

All Ca2+ imaging data are reported as %F/F. These data were analyzed either 

with the custom acquisition program described above, or with Igor Pro 7.0 (Wavemetrics 

Inc., Portland, OR). 

 

 

Dissociated Cells for Looking at PIP2 Distribution 

 

Adult female rats (150-220 g) (n= 5) were anaesthetized with ketamine/xylazine 

(dose) and perfused through the heart with cold sucrose solution as described above for 

slices. We adapted the Shah et. al. (2014) protocol for assessing PIP2 labeling in 

dissociated SON neurons. Tissue blocks from the SON area were excised from 200 m 

sections taken with a vibratome, and incubated in oxygenated PIPES (in mM: 110 NaCl, 

5 KCl, 1 MgCl2, 1 CaCl2, 20 PIPES and 25 glucose, pH 7.1, containing trypsin (0.6 

mg/ml, Sigma Aldrich) for 90 minutes at 34°C. The tissue was transferred to oxygenated 

PIPES without trypsin for 30 minutes at room temperature, then gently triturated with 3-

different sizes of fire-polished pasture pipettes. The cells were plated into two wells from 

a 6-well plate (Cat. P06-1.5H-N, In Vitro Scientific, Sunnyvale, CA) and allowed to 

settle at room temperature for 30 minutes. One well was then treated with 100 nM 

wortmannin in PIPES for 30 minutes at room temperature, while the second well was 

untreated. The media in each well was then replaced with fixative- 4% paraformaldehyde 

with 0.2% picric acid in 0.01M phosphate-buffered saline (PBS), and incubated overnight 

at 4°C. The fixative was rinsed 3x with PBS and the cells then treated with 10% non-fat  
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Figure 2-3. Ca2+ imaging in an SON neuron with corresponding AHP and [Ca2+]i 

signals. 

(A) Image of an SON neuron filled with the Ca2+ indicator dye, fura-2 (100 M) through 

the patch pipette. The red and green boxes indicate the region of interest in which 

fluorescence is measured for soma and nucleus, respectively. (B) Example of a 20-spike 

AHP (top) and its corresponding Ca2+ signal (bottom) taken from the same cell as imaged 

in (A). [Ca2+]i was measured as the change in fluorescence divided by the total measured 

fluorescence (F/F). Note the rise and decay time of the nucleus signal (green) is delayed 

compared to the somatic signal (red), while the amplitude of the signals are equal.   
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dry milk in PBS for 1 hr at room temperature to block non-specific antibody interactions. 

The cells were incubated overnight at 4°C for double labeling with an antibody raised in 

rabbit against OT-NP (Oxytocin-Neurophysin, 1:5000) + mouse anti-PIP2 antibody 

(1:1000, Cat. ADI-915-062-100, Enzo Life Sciences), rinsed 3x in PBS then incubated in 

a cocktail of secondary antibodies for 1 hour at room temperature. The secondary 

antibodies used were goat-anti-rabbit (Alexa Fluor 568 nm, Invitrogen, Carlsbad, USA) 

and goat-anti-mouse (Alexa Flour 488 nm, Invitrogen, Carlsbad, USA) conjugated IgGs 

at 1:200 dilutions with PBS. Cells were rinsed 3x in PBS then stained with DAPI (300 

nM, Cat. D9542, Sigma Aldrich) in PBS for 5 mins. Cells were rinsed 3x in PBS and left 

immersed in PBS for microscopic analysis. 

 

Images were acquired with a Zeiss 710 confocal inverted microscope (Carl Zeiss 

Microscopy, Thornwood, NY) using a 63x oil-immersion objective (n.a. 1.4). OT-

positive neurons were located and 1 m optical sections were collected from the top to 

the bottom of each cell sampled. The laser power (18%) and the pin-hole (2.5 AU) were 

constant for all the images taken and well below saturation. Only cells that were positive 

for both OT-NP and PIP2 antibodies as well as exhibiting clear DAPI nuclear staining 

were considered for the study. For each group, from each animal, at least 31 images were 

taken. Thus a total of more than 150 cells per group (control and wortmannin treated) 

were analyzed for this study. Data were analyzed blind to treatment type. One 

investigator made the dissociated cell preparation, drug treatment and antibody staining. 

A second investigator acquired the images blind to the two groups, then coded the digital 

images for measurements by the first investigator. Thereafter the second investigator 

decoded the cells, and the first investigator made the appropriate statistical analysis.  

 

Images were analyzed with Image J (NIH, Bethesda, MD). Each Z-stack had 

between 15 and 25 optical sections, thus a PIP2 image for analysis was selected from each 

cell based on the maximum size of the nucleus through the stack. For measuring the 

average membrane (or near membrane) intensity of PIP2 staining for each cell, the line 

tool with freehand line option was used to draw a line (5 pixels) around the edge of the 

cell and the mean pixel intensity value was recorded. To measure the average intensity of 

the cytoplasm, an area excluding the nucleus and the perimeter of the cell was selected 

using the polygon tool (1 pixel), and the mean intensity was recorded. Such mean 

intensities recorded were then subtracted from the mean background intensity for each 

cell. To measure mean background intensity from each cell, a uniform dark spot was 

selected using the polygon tool (1 pixel), and the mean intensity was recorded. The data 

are presented as cytoplasm: membrane ratios. These ratios were then averaged for each 

group in each animal, and analyzed with a Wilcoxon Ranked-Sum non-parametric test, 

using JMP Pro 12. 

 

 

ABC-DAB Staining and Neural Drawings 

 

 Biocytin-labeled neurons in paraformaldehyde-fixed slices were processed for 

avidin-biotin complex (ABC) and 3, 3'-diaminobenzidine peroxidase (DAB) using a 

VECTASTAIN ABC-HRP Kit (SK-4100; Vector Laboratories). We used this stain to 
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visualize, draw, and measure MNC dendrites from neurons. Slices with cells first 

identified as OT and VP types were rinsed of their glycerol mounting solution and placed 

in H2O2 (2 drops/ 5 ml) for 30 minutes. 1% ABC mixture in PBS + 0.5% Triton was 

made and applied to the samples at 1:5 for 4 hours. Slices were then rinsed 3 times with 

PBS + 0.5% Triton. Slices were then incubated in DAB solution containing: 2 drops of 

buffer, 4 drops of DAB, 2 drops of Nickel, 2 drops of H2O2 per 5 ml H2O for 5 minutes 

or until slices changed to light orange/brown. Slices were then rinsed with BS without 

Triton. 3 times, then incubated in 1 ml 0.05% Osmium Tetroxide for 20 minutes or until 

slices turned dark brown to stabilize the DAB reaction product. Osmium was then rinsed 

thoroughly with PBS without Triton. Slices were then mounted to slides using a standard 

polyvinyl alcohol medium. Cells were drawn by hand using the tracing software 

Neurolucida v10.0 (MBF Bioscience). Dendritic length, area, and volume were measured 

using the same software at 40x magnification. 

 

 

Statistics and Analysis 

 

In MNC VC experiments, the IfAHP is a fast, transient event lasting < 15 ms 

(Dopico et al. 1999), and was not evaluated herein. The ImAHP decay tau is 500 ms in 

MNCs (Teruyama and Armstrong 2005), whereas the  IsAHP has a decay tau of 1-2 s in 

MNCs (Ghamari-Langroudi and Bourque 2004). With this consideration, we 

operationally defined the ImAHP and IsAHP as the amplitude of the AHP tail current (IAHP) 

at 100 ms and 1000 ms after the stimulus, respectively. While measurement of the ImAHP 

at 100 ms likely contains a small contribution from the IsAHP, it is dominated by the ImAHP 

due to the slower onset kinetics of the IsAHP (Teruyama and Armstrong 2005). 

Furthermore, we demonstrate in the Results that the SK channel blocker apamin (100 

nM) inhibits the ImAHP by 70.5 ± 5.5% (data not shown). In some experiments, the IsAHP 

was selectively evaluated after isolation in the presence of 100 nM apamin.  

 

For current clamp experiments, we evaluated AHPs from 20- and 5-spike 

protocols. 20-spike AHPs were evaluated at peak (mAHP+sAHP), as well as 1 second 

(sAHP) after the pulse. 5-spike AHPs were evaluated at peak only (mAHP). 

 

All electrophysiological traces were analyzed in ClampFit 10.2 (Molecular 

Devices) or Igor Pro. Because the ImAHP and IsAHP are relatively small currents, special 

considerations were taken when measuring them in voltage clamp. During analysis, the 

currents were further filtered using a Gaussian lowpass filter at 1 kHz. Measurements of 

amplitude were averaged over a 30 ms segment of current (30 points). This was done to 

marginalize the contribution of electrical noise to individual points. All statistics were 

performed in SPSS. Unless stated otherwise, data was compared using a two-way 

ANOVA. For the experiment comparing controls to apamin and apamin + wortmannin, 

we ran a repeated measures ANOVA with a Bonferroni post-hoc test for pairwise 

comparisons. All reported values are represented as Mean ± SEM. We used a repeated 

measures ANOVA with a Bonferroni post-hoc analysis to evaluate AP half width, as well 

as a One-way ANOVA to evaluate differences in spike broadening during trains. In the 

cases of 4-AP followed by SNX-482 block (Fig. 6), we used a Friedman’s test as some of 
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this data was not normally distributed. If the Friedman’s test was significant, we used a 

Bonferroni-Dunn post hoc analysis to make between-groups comparisons. We used 

regression (r2) plots to evaluate dendritic size with AHP and [Ca2+]i amplitudes. Spikes in 

figures are truncated. Data in figures is marked as statistically significant depending on 

the number of asterisks associated with a difference between groups: *p<0.05, **p<0.01, 

***p<0.001, and ****p<0.0001.   
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CHAPTER 3.    DIFFERENTIAL PIP2 MODULATION OF AHPS IN OXYTOCIN 

AND VASOPRESSIN NEURONS* 

 

 

Introduction 

 

Oxytocin- (OT) and vasopressin- (VP) secreting magnocellular neurosecretory 

cells (MNCs) play a crucial role in many physiological functions including lactation, 

parturition (OT cells) and cardiovascular regulation (VP cells) (Armstrong et al., 2010). 

The release of both hormones is optimized by a burst-firing pattern of action potentials, 

albeit of different form in the two cell types (Dutton & Dyball, 1979; Bicknell & Leng, 

1981; Cazalis et al., 1985). Sustained stimulation of these cells (most notably VP) results 

in significant reduction of hormone release over time, whereas periods of quiescence 

reverse this secretory fatigue (Bicknell, 1988).  Furthermore, the burst-firing is 

synchronized among all OT neurons in the supraoptic nucleus (SON) and paraventricular 

nucleus (PVN) (Belin et al., 1984) during lactation, whereas VP neurons burst 

asynchronously (Sabatier & Leng, 2007). Many cell types, including MNCs, express 

calcium-activated potassium currents that (i) produce afterhyperpolarizations (AHPs) 

following a single action potential or train of action potentials and (ii) shape firing 

patterns. In MNCS, the AHP typically comprises three components with varying time 

courses mediated by different channels: The fast (fAHP), medium (mAHP), and slow 

(sAHP). The fast AHP current (IfAHP) is contributed by KCa1.1 (BK) channels as well as 

voltage-gated K+ channels, and lasts < 15 ms (Dopico et al., 1999; Hlubek & Cobbett, 

2000; Roper et al., 2003). The Ca2+-depenmdent medium AHP current (ImAHP) lasts ~500 

ms, is underlain by KCa2.3 (SK3) channels (Stocker & Pedarzani, 2000; Tacconi et al., 

2001), and is blocked by apamin (Bourque & Brown, 1987). The channel underlying the 

slow AHP current (IsAHP) in MNCS (and most neuron types) is unknown, but is Ca2+-

dependent and lasts on the order of seconds (Ghamari-Langroudi & Bourque, 2004; 

Andrade et al., 2012). Pinpointing an exact mechanism underlying the sAHP has been 

difficult because the IsAHP characteristics differ among neuronal cell types (Andrade et 

al., 2012). However, there are some common features, including activation by rises in 

[Ca2+]i, modulation by neurotransmitters, and voltage-independence. This gap in our 

understanding is important because the IsAHP controls spike frequency adaptation and is 

affected by major intracellular signals in many cell types of several brain regions. With 

regards to MNCs, the ImAHP and IsAHP are of particular interest due to their significant 

influence on burst firing patterns. Further, the AHPs in OT neurons get larger during late 

pregnancy and lactation (Stern & Armstrong, 1996; Teruyama & Armstrong, 2002), 

coinciding with an increase in pulsatile OT release from the neurohypophysis during 

labor and lactation (Wakerly & Lincoln, 1971; Higuchi et al., 1986) and the adoption of 

synchronized bursting firing patterns (Poulain & Wakerley, 1982). 

 

 

________________________ 
* Portions of chapter from previously published article modified with permission of John Wiley and Sons. 

Kirchner MK, Foehring RC, Wang L, Chandaka GK, Callaway JC, Armstrong WE. 

Phosphatidylinositol 4,5-bisphosphate (PIP2) modulates afterhyperpolarizations in oxytocin neurons of the 

supraoptic nucleus. J Physiol 595: 4927–4946, 2017.  
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 While we do not know how Ca2+ activates the unknown AHP channels, a study in 

neocortical pyramidal cells demonstrated that phosphatidylinositol 4,5-bispohsphate 

(PIP2) facilitates the IsAHP but not the SK-mediated ImAHP (Villalobos et al., 2011). This is 

intriguing because PIP2 is known to influence the properties of a host of channel types 

and is activated by Gq-coupled receptors (Hille, 1994; Suh & Hille, 2002, 2008; Suh et 

al., 2010; Kruse & Hille, 2013), including receptors that are activated by 

neurotransmitters known to attenuate the IsAHP, (e.g., acetylcholine via muscarinic 

receptors). These features, combined with the slow current kinetics and strong Ca2+-

dependence, support the hypothesis that a biochemical signaling cascade contributes to 

modulation of the IsAHP, which may influence more than one channel type (Andrade et al., 

2012). 

 

 

Results 

 

 

Depleting PIP2 from Cells Inhibits the IAHP of OT but Not VP Neurons 

 

Previous work demonstrated that PIP2 levels are critical for generation of IsAHP, 

but not ImAHP, in cortical pyramidal neurons (Villalobos et al. 2011). To test this in SON 

neurons, we bath-applied wortmannin and measured the macroscopic AHP tail current 

(IAHP) at two time points (see Methods: Data and Analysis section). Wortmannin is a 

pharmacological agent known to inhibit PIP2 levels by blocking the rate-limiting enzyme 

of PIP2 production, PI4K (Nakanishi et al. 1995) (Figure 3-1). Application of 

wortmannin (10 µM) caused a significant decrease in both ImAHP and IsAHP of OT 

supraoptic neurons (n= 10, p < 0.001; 100 ms: control 22.12 ± 1.9 pA vs. wortmannin 

2.67 ± 0.3 pA; 1000 ms: control 6.48 ± 0.9 pA vs. wortmannin 1.01 ± 0.4 pA) (Figure 

3-2). In contrast to OT cells, VP cells demonstrated no significant change in ImAHP and 

IsAHP in response to wortmannin (n=9, p > 0.05; 100 ms: control 19.67 ± 4.2 pA vs. 

wortmannin 23.72 ± 5.1 pA; 1000 ms: control 5.44 ± 1 pA vs. wortmannin 6.12 ± 1.1 pA) 

(Figure 3-2). To characterize wortmannin’s effect on AHPs further, we generated a dose 

response curve measuring percentage of ImAHP inhibition as a function of wortmannin 

concentration. We used the ImAHP time point because current amplitudes were much 

larger, allowing clear measurements at all doses. Wortmannin’s effects on OT neurons 

were dose-dependent, characterized by a sigmoidal dose response relationship with an 

IC50= 58 nM and a Hill coefficient of 1.6 (Figure 3-2). This indicates that wortmannin 

exhibits specific effects at nanomolar concentrations, with positive cooperative binding. 

While the effect of wortmannin was similarly dose-dependent on the IsAHP, with stronger 

inhibition at increased wortmannin concentrations, dose response plots could not be 

reliably fitted with a Hill equation due to the small amplitude of the IsAHP (<20 pA; data 

not shown). 

 

Although wortmannin is an inhibitor of PIP2 synthesis, it also depletes PIP3 by 

inhibiting phosphoinositide 3-kinase (PI3K) (Meyers and Cantley 1997; Vanhaesebroeck, 

et al. 2001). Furthermore, PI3K is the higher affinity target in comparison to 

PI4K (Meyers and Cantley 1997; Vanhaesebroeck, et al. 2001). We thus bath-applied   
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Figure 3-1. Diagram of the relevant PIP2 pathways.  

Upon stimulation of Gq-coupled receptors, the  component of the G-protein activates 

phospholipase-C (PLC), which cleaves membrane-bound PIP2 into diacylglycerol (DAG) 

and inositol trisphosphate (IP3). DAG activates protein kinase C while IP3 triggers release 

of Ca2+ ions from internal Ca2+ stores. U73122 blocks the activity of PLC. PIP2 has been 

demonstrated to modulate several ion channels in previous studies, such as Kv7 channels 

(Suh & Hille, 2007) and SK channels (Zhang et al., 2014). Inset-Dashed Box This box 

displays the pathway for production of different PIP molecules (blue hexagons), and the 

enzymes that phosphorylate each of them (purple boxes). Wortmannin blocks synthesis 

of PIP2 and PIP3 production while LY294,002 only blocks PIP3 production. Both work by 

blocking the synthetic enzymes. 
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Figure 3-2. Wortmannin (10 µM), a PIP2 and PIP3 synthesis inhibitor, blocks the 

ImAHP and IsAHP of OT neurons but not VP neurons.  

(A, B) Voltage clamp recording of a supraoptic magnocellular OT (A) and VP (B) cell 

before and after wortmannin application. Wortmannin application inhibits both the ImAHP 

and IsAHP in OT cells while having no effect in VP cells. (C) Summary data of the 

wortmannin effect on OT and VP cells: IAHP amplitude was measured at 100 ms (ImAHP) 

and 1000 ms (IsAHP) after the end of the pulse. OT cells demonstrate statistically 

significant inhibition of both the ImAHP and IsAHP (n=10, ***p < .001). In contrast, VP 

cells demonstrate no significant change in ImAHP or IsAHP amplitude (n=9, p > 0.05). (D) 

Dose-response curve for wortmannin in OT neurons. We plotted peak ImAHP inhibition as 

a function of wortmannin concentration. Wortmannin exerted robust inhibition at 

nanomolar concentrations (IC50 = 58 nM). The Hill Coefficient of 1.6 ± 0.02 indicates 

positive cooperative binding. A minimum of 5 cells was collected for each concentration 

of wortmannin. 
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the specific PI3K inhibitor LY294,002 (10 µM: (Vlahos et al. 1994; Lee et al. 2007; 

Wang et al. 2016b) to both OT and VP neurons to test for PIP3 involvement. This control 

has been used previously in studies of PIP2-affected AHPs in cortex (Villalobos et al. 

2011). As in pyramidal neurons, LY294,002 had no significant effect on the ImAHP or 

IsAHP of either cell type (OT: n= 7, p > 0.05; control 46.1 ± 6.4 pA vs. wortmannin 44.18 

± 7.4 pA; VP: n= 4 p > 0.05; control 36.48 ± 10.4 pA vs. wortmannin 38.58 ± 10.5 pA) 

(Figure 3-3), consistent with wortmannin reducing the AHPs by its action on PI4K.  

 

To ensure that wortmannin’s effects reflected a response specific to AHPs and not 

a change in general cell health, 10 MNCs (5 OT and 5 VP) were assessed in current 

clamp recordings, where we found no significant differences in spike amplitude (OT p > 

0.05; 61.5 ± 2.8 mV control vs. 59.2 ± 3.2 mV wortmannin; VP p > 0.05; 65.6 ± 4.0 mV 

control vs. 65.0 ± 3.8 mV wortmannin), spike half-width (OT p > 0.05; 2.3 ± 0.1 ms 

control vs. 2.5 ± 0.1 ms wortmannin; VP p > 0.05; 2.5 ± 0.1 ms control vs. 2.4 ± 0.1 ms 

wortmannin), resting membrane potential (OT p > 0.05; -60.0 ± 0.6 mV control vs. -60.2 

± 0.7 mV wortmannin; VP p > 0.05; -58.9 ± 2.6 mV control vs. -60.6 ± 2.2 mV 

wortmannin), or input resistance (OT p > 0.05; 467.37 ± 57.5 MΩ control vs. 444.49 ± 

55.3 MΩ wortmannin; VP p > 0.05; 545.75 ± 110.8 MΩ control vs. 528 ± 107.3 MΩ 

wortmannin) in cells before and after wortmannin application (Figure 3-4).  

 

 

Wortmannin Inhibits the IsAHP in the Presence of Apamin in OT Neurons 

  

To isolate wortmannin’s effects on the sAHP, we tested its effects in the presence 

of apamin, which blocks SK channels and thus the ImAHP in MNCs (Bourque and Brown 

1987; Erickson et al. 1993; Armstrong et al. 1994; Kirkpatrick and Bourque 1996; 

Teruyama and Armstrong 2005). Since we bath applied apamin (100 nM) first, followed 

by the addition of wortmannin (1 µM), we first ran a repeated measures ANOVA that 

revealed a significant main effect (p < 0.001). Post hoc analysis found that in OT 

neurons, apamin resulted in robust (~70%) inhibition of the ImAHP (measured at 100 ms: 

n= 7, p < 0.001; control 18.76 ± 2.5 pA vs. apamin 6.14 ± 1.8 pA; Fig. 5) while having 

no effect on the IsAHP (measured at 1 s: n= 7, p > 0.05; control 6.70 ± 1.5 pA vs. apamin 

6.10 ± 1.4 pA; Fig. 5).  Application of wortmannin inhibited the IsAHP in the presence of 

apamin (measured at 1 s: n= 7, p < 0.05; apamin 6.10 ± 1.4 pA vs. wortmannin + apamin 

2.81 ± 0.8 pA; Fig. 5). We also observed further inhibition of the IAHP at 100 ms (n= 7, p 

< 0.05; apamin 6.14 ± 1.8 pA vs. wortmannin + apamin 1.2 ± 0.4 pA) (Figure 3-5). For 

comparison, wortmannin had no effect on apamin-treated VP neurons (measured at 1 s: 

n= 6, p > 0.05; apamin 6.79 ± 1.6 pA vs. wortmannin + apamin 6.23 ± 1.9 pA) (Figure  

3-5). This data confirms that wortmannin acts on the isolated IsAHP in addition to ImAHP in 

OT cells. 

 

 

Wortmannin Reduced PIP2 Immunoreactivity in OT Neurons 

  

To determine whether the application of wortmannin at a similar dose to our 

electrophysiological experiments was associated with changes in the cellular distribution   
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Figure 3-3. LY294,002 has no effect on the IAHP.  

Because wortmannin also blocks PIP3, we tested the selective PIP3 blocker LY294,002 on 

the IAHP. (Top Trace) An example of LY294,002’s effect on an OT neuron. (Bottom 

Trace) Summary data of ImAHP amplitude in OT neurons. There was no significant 

difference (OT: n= 8, VP: n=6; p > 0.05). 

 

 

 

 

 
 

Figure 3-4. Wortmannin had no significant effect on single spike parameters. 
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Figure 3-5. Wortmannin inhibits the apamin-treated IAHP in OT neurons while 

having no effect in VP neurons. 

Apamin (100 nM) was applied to MNCs to block the ImAHP in both cell types, followed 

by wortmannin (1 µM) to observe effects on the isolated IsAHP. (A) Voltage clamp trace 

of IAHP from an OT neuron. This contains a baseline recording (black trace), apamin 

treated trace to block the ImAHP (grey), and a trace with apamin & wortmannin (red). 

Wortmannin inhibited the apamin-isolated IsAHP. (B) Voltage clamp trace of IAHP from an 

VP neuron. This contains a baseline recording (black trace), apamin treated trace to block 

the ImAHP (grey), and a trace with apamin & wortmannin (green). Wortmannin failed to 

inhibit the apamin-isolated IsAHP. (C) Summary data of OT (n= 6) neurons. There was a 

significant main effect (repeated measures ANOVA, F(2, 12) = 45.97, ***p < 0.001).  

Apamin inhibits the ImAHP at 100 ms (***p < 0.001). Measurements of the IsAHP (1000 

ms) indicate that apamin has little effect at this time, while subsequent wortmannin 

application significantly reduces the isolated IsAHP (*p < 0.05). (D) Summary data of VP 

(n= 6) neurons. Apamin inhibits the ImAHP in VP neurons (***p < 0.01). There was no 

significant effect of additional wortmannin (p > 0.05). 
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of PIP2 in OT neurons, we calculated the ratio of the staining intensity of PIP2 

immunoreactivity of the cytoplasm vs. membrane in dissociated cell preparations and 

compared control neurons with those exposed to 100 nM wortmannin (n = 5 animals in 

each group). As shown in (Figure 3-6), this ratio was significantly increased by 

wortmannin, suggesting depletion of membrane PIP2. This type of redistribution is 

similar to that reported for PIP2 in response to muscarinic modulation in sympathetic 

neurons (Suh and Hille 2002; Delmas and Brown 2005). 

 

 

diC8-PIP2 Slows Rundown of the ImAHP in OT; Enhances the IsAHP in VP  

  

We have shown that application of wortmannin blocks both the medium and slow 

IAHPs in OT neurons. We interpret this as wortmannin blocking PIP2 synthesis and thus 

reducing total PIP2 levels. In contrast, wortmannin has no significant effect on these IAHPs 

in VP neurons. We next tested whether directly increasing the amount of available PIP2 

inside the cell could affect the AHP. We evaluated this in the context of rundown. 

Rundown is a term used to describe the gradual decay of IAHPs amplitude over long 

recording sessions (Figure 3-7). Since a previous study in neocortical pyramidal neurons 

showed that enhancement or inhibition of PIP2 slows or hastens the rundown of the 

sAHP, respectively (Villalobos et al. 2011), we supplied the cells with water-soluble 

diC8-PIP2 (30 µM), and then evaluated rundown of the peak IAHP in cells with or without 

diC8-PIP2. OT cells dialyzed with diC8-PIP2 display slower rundown compared to 

controls over 30 minutes (Figure 3-7). 

 

 In contrast, VP cell IAHPs demonstrated a gradual increase in both the amplitude 

and inactivation tau starting 10-17 mins after break-in under normal recording conditions  

This change is substantial, but eventually stabilizes . Because of this phenomenon, cells 

that demonstrated a changing IAHP were monitored until the measurement of the tail 

current was stable for at least 2 minutes (Fig. 7B, grey trace). 

 

 

diC8-PIP2 in the Pipette Prevents ImAHP and IsAHP Inhibition by Wortmannin 

  

We next tested whether directly increasing the amount of available PIP2 inside the 

cell could prevent the wortmannin’s inhibition. We supplied the water-soluble PIP2 

analog diC8-PIP2 (30 µM) into neurons through the patch pipette to provide a constant 

source of PIP2. Wortmannin had no significant effect on ImAHP and IsAHP in OT neurons 

when diC8-PIP2 was dialyzed into the cell. (100 ms: n= 8, p > 0.05; diC8-PIP2 17.62 ± 1.9 

pA vs. diC8-PIP2
 + wortmannin 15.18 ± 2.4 pA; 1000 ms: n= 8 p > 0.05; diC8-PIP2 4.13 ± 

0.8 pA vs. diC8-PIP2 + wortmannin 3.82 ± 1 pA) (Figure 3-8). These results indicate that 

supplying the neurons with diC8-PIP2 through the pipette can prevent the inhibition of 

AHPs by wortmannin-induced PIP2 depletion. 
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Figure 3-6. Effect of wortmannin on PIP2 expression in OT neurons. 

Double immunofluorescence confocal microscopy revealed that PIP2 (green) in OT 

neurons is expressed more densely in the cell membrane in the control group (A & B; 

lower panels). Upon wortmannin (100 nM) treatment for 30 mins, OT neurons show a 

decreased PIP2 expression in the cell membranes (C & D; lower panels) relative to the 

cytosol. The upper panels show the expression of oxytocin-neurophysin (OT-NP) (red) 

expression and DAPI (blue) staining for nucleus. The histogram on the right side shows 

the mean cytoplasm: membrane ratios between the two groups, and indicates a significant 

difference (*Control vs. Wortmannin; *p < 0.016). n = 5 animals per group. 

 

 

 

 

 
 

Figure 3-7. Inclusion of water-soluble PIP2 analog diC8-PIP2 (30 µM) in the 

recording pipette slows IAHP rundown in OT  

(A) IAHP recordings in an MNC under normal conditions demonstrating rundown over a 

35 minute time period. Both OT and VP cells display IAHP rundown over long recording 

periods. (B) VP neurons dialyzed with diC8-PIP2 demonstrate steady enhancement of the 

IsAHP over a 20 minute period. (C) OT cells dialyzed with diC8-PIP2 display slower 

rundown and ran down less compared to controls at 30 min (n=9). (D) Summary data for 

the diC8-PIP2 enhancement of the IAHP amplitude in VP neurons.  
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Figure 3-8. Dialyzing OT neurons with diC8-PIP2 prevents inhibition of the IAHP 

by wortmannin.  

(A) IAHP of an OT neuron dialyzed with diC8-PIP2. diC8-PIP2 prevents inhibition of the 

IAHP by wortmannin. (B) IAHP of a VP neuron dialyzed with diC8-PIP2. We waited for the 

diC8-PIP2 enhancement to stabilize before applying wortmannin. Wortmannin failed to 

inhibit the IAHP. (C) Summary data for 8 OT and 7 VP cells tested. Measurements of the 

IAHP 100 ms (ImAHP) and 1000 ms (IsAHP) after the pulse reveal that there are no significant 

changes in IAHP peak amplitude after wortmannin application in diC8-PIP2 dialyzed cells. 

(p > 0.05).  
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Supplying the PIP2 Precursor, Myo-Inositol, also Prevents Inhibition by 

Wortmannin  

 

Another means of saturating the PIP2 supply is by adding the obligatory precursor 

myo-inositol in the bath. Myo-inositol is actively transported into the cell and increases 

PIP2 production (Fisher et al. 1992, 2002; Villalobos et al. 2011). We pre-incubated slices 

in aCSF in 1 mM myo-inositol for 1 hour. For recording, slices were then transferred to a 

solution of 300 µM myo-inositol in aCSF. Wortmannin (1 µM) had no effect on OT 

AHPs in the presence of myo-inositol (100 ms: n= 7, p > 0.05; myo-inositol 14.03 ± 1.6 

pA vs. myo-inositol + wortmannin 14.27 ± 1.5 pA; 1000 ms: n= 7 p > 0.05; myo-inositol 

4.11 ± 0.8 pA vs. myo-inositol + wortmannin 4.49 ± 0.6 pA; Fig. 8), similar to the results 

with diC8-PIP2 in the pipette (Figure 3-9).  

 

In contrast, wortmannin slightly, but significantly, increased AHPs in VP neurons 

(100 ms: n= 6, **p < 0.01; control 17.97 ± 2.6 pA vs. wortmannin 23.73 ± 3.9 pA; 1000 

ms: n= 6 *p < 0.05; control 4.46 ± 0.9 pA vs. wortmannin 7.13 ± 1.2 pA) (Figure 3-9). 

 

 

Changes in ImAHP and IsAHP via PIP2 Are Unlikely to Be the Result of Phospholipase 

C-Dependent Phenomena 

 

So far, we have demonstrated that a presumed reduction of PIP2 by wortmannin 

caused a pronounced inhibition of the ImAHP and IsAHP in OT neurons, suggesting that PIP2 

is required for generation of both AHPs. While these results demonstrate the ImAHP and 

IsAHP require PIP2, they do not provide any evidence for a mechanism by which PIP2 can 

modulate IAHPs. For example, PIP2 could directly modulate the AHP channels.  

Alternatively, reduced PIP2 levels could potentially act indirectly through phospholipase 

C (PLC)-induced inositol 1,4,5-trisphosphate (IP3) or diacylglycerol (DAG) since PIP2 is 

a precursor for breakdown by PLC into DAG and IP3 (Suh and Hille 2008).  That is, 

blocking PIP2 production by inhibiting the rate-limiting enzyme of production (PI4K) 

with wortmannin could cause a drop in PIP2, which could in turn would reduce PLC-

induced IP3 availability (IP3 binds to IP3 receptors on the endoplasmic reticulum and 

induces Ca2+ release into the cytoplasm from internal stores: (Dickson et al. 2013).  

 

To test this, we used the selective PLC inhibitor U73122 (10 µM) to directly 

block the conversion of PIP2 into DAG and IP3 (Bleasdale et al. 1990; Pérez et al. 2010). 

U73122 has been widely used in the nervous system, including the study of PLC-

dependent phenomena in SON (Sabatier et al. 1998; Li et al. 1999; Bonfardin et al. 

2010). In OT neurons, U73122 had no effect on either the ImAHP or the IsAHP amplitude 

(100 ms: n= 8, p > 0.05; control 21.48 ± 2.4 pA vs. U73122 20.53 ± 3.1 pA; 1000 ms: n= 

8 p > 0.05; control 3.45 ± 0.6 pA vs. U73122 3.42 ± 0.5 pA; Fig. 10). The decay time 

constant was also not significantly affected (n= 8; p > 0.05, control  = 233.32 ± 62.9 ms 

vs. U73122  = 507.61 ± 185.5 ms) (Figure 3-10).  

 

In contrast, the VP cells treated with U73122 display an enhancement of the IsAHP  

  



 

41 

 
 

Figure 3-9. Wortmannin fails to inhibit OT neurons in aCSF containing myo-

inositol.  

Slices were preincubated in aCSF containing 1 mM myo-inositol, an important precursor 

molecule for PIP2 synthesis. When the slice was transported to the stage for patch clamp, 

the aCSF perfused onto the slice contained 300 µM myo-inositol during recording. (A) 

Voltage clamp trace of an OT neuron before and after application of wortmannin. (B) 

Voltage clamp trace of a VP neuron before and after application of wortmannin. (C) 

Summary data of wortmannin on inositol-bathed neurons. OT neurons demonstrated no 

significant effect of wortmannin in the presence of myo-inositol ( p > 0.05). VP neurons 

demonstrated slight enhancements of both the ImAHP and IsAHP (ImAHP: **p < 0.01; IsAHP: 

*p < 0.05). 
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Figure 3-10. The PLC inhibitor U73122 (10 µM) failed to inhibit the ImAHP or IsAHP 

in OT neurons.  

(A) Voltage clamp trace of an OT neuron before and after application of U73122. (B) 

Voltage clamp trace of a VP neuron before and after U73122. U73122 causes amplitude 

enhancement and elongation of the inactivation tau of the sAHP. This enhancement has a 

similar shape and timecourse to that of diC8-PIP2 dialysis (Figure 3-7).  (C) Summary 

data for OT neurons: current amplitude at 100 ms (ImAHP), 1000 ms (IsAHP), and IAHP 

decay tau (n= 8, p > 0.05). (D) Summary data for VP neurons: current amplitude at 100 

ms (ImAHP; p > 0.05), 1000 ms (IsAHP; ***p < 0.001), and IAHP decay tau (**p < 0.01). 
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(Figure 3-10B). U73122 appeared only to significantly enhance the IsAHP component (100 

ms: n= 9, p > 0.05; control 19.93 ± 3.8 pA vs. U73122 19.30 ± 2.8 pA; 1000 ms: n= 9 

***p < 0.001; control 3.94 ± 1 pA vs. U73122 16.70 ± 2.96 pA). Additionally, the 

inactivation  of the IsAHP is 4-5 times longer in VP neurons after U73122 application (n= 

9; **p < 0.01, control  = 833.82 ± 224.1 ms vs. U73122  = 4973.52 ± 856 ms) (Figure 

3-10). 

 

These results show it is unlikely PIP2 modulates the IAHP by indirectly affecting 

downstream targets of PLC in OT neurons. This would primarily include Ca2+ release 

from stores via IP3, or working through DAG and its product, protein kinase C (also 

known to modulate ion channels: Suh and Hille (2008). For VP neurons, we observe an 

enhancement similar to that of diC8-PIP2 dialysis. We interpret this as an effective 

increase in cellular PIP2 resulting from PLC block. Since we are only blocking the 

breakdown and not the production of PIP2, we effectively increase its concentration. 

 

 

Differences between OT and VP Neurons in the ImAHP and IsAHP May Be Due to 

Changes in Ca2+ Influx after Wortmannin 

 

Unlike neocortical pyramidal cells where only the IsAHP is affected by alterations 

in PIP2 levels (Villalobos et al. 2011), all of our results in OT neurons occur in parallel 

for the ImAHP and IsAHP. A parsimonious explanation for this parallel effect is that PIP2 

exerts its effect upstream from the AHP K+ channels on Ca2+ entry or Ca2+ availability. 

We hypothesized that PIP2 may act on regulating Ca2+ entry or otherwise alter [Ca2+]i. To 

test this, we used Ca2+ imaging to determine whether wortmannin’s inhibition of the 

AHPs in OT neurons affected [Ca2+]i. We used the high affinity Ca2+ indicator fura-2 

(100 nM), as in our previous publications (Roper et al. 2003, 2004; Abel et al. 2004; 

Teruyama and Armstrong 2005). The relative change in fura-2 fluorescence (%F/F) is 

linearly proportional to bulk [Ca2+]i changes in the cytoplasm when %F/F is less than 

~0.5 (Abel et al. 2004). Since the peaks of bulk [Ca2+]i were less than 0.5, we used the 

%F/F value as an index for changes in [Ca2+]i. During the stimulus train, we observed a 

rapid rise in [Ca2+]i that decayed monoexponentially (Figure 3-11). In OT neurons, we 

found that simultaneous with the reduction in IAHPs (100 ms: n= 9, p > 0.001; control 

30.23 ± 4.5 pA vs. wortmannin 9.77 ± 2.5 pA; 1000 ms: p < 0.001; control 7.64 ± 0.5 pA 

vs. wortmannin 4.09 ± 0.5 pA), wortmannin (1 µM) also reduced the spike-evoked 

increase in somatic [Ca2+]i in OT neurons (n= 9, p < 0.001; control 44.09 ± 2.3 %F/F vs. 

wortmannin 30.77 ± 2.4 %F/F) (Figure 3-11).  

 

Consistent with our previous experiments showing no inhibition of AHPs, 

wortmannin had no effect on VP neuron ImAHPs or IsAHPs (100 ms: n= 7, p > 0.05; control 

23.01 ± 4.6 pA vs. wortmannin 21.18 ± 3.98 pA; 1000 ms: p > 0.05; control 5.34 ± 1.1 

pA vs. wortmannin 4.41 ± 0.9 pA) or on [Ca2+]i (control 47.40 ± 2.6 %F/F vs. 

wortmannin 44.03 ± 2.9 %F/F) (Figure 3-11).  
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Figure 3-11. Wortmannin (1 µM) inhibits the ImAHP, IsAHP and somatic Ca2+ while 

having no effect on these measures in VP neurons.  

(A, B) Averaged voltage clamp traces of OT (A) and VP (B) cells after wortmannin 

application; inset is higher temporal resolution of same trace with the mean ± SEM 

values superimposed at 100 ms and 1000 ms after the pulse. (C, D) Average intracellular 

Ca2+ response of OT (C) and VP (D) cells to wortmannin expressed as the change in 

fluorescence divided by the total fluorescence (%F/F; shaded area of the curve is SEM). 

(E) Summary data at 100 ms (ImAHP) and 1000 ms (IsAHP) amplitude (OT: n= 9, 100 ms & 

1000 ms ***p < 0.001; VP: n= 7, 100 ms and 500 ms p > 0.05) and summary data of 

Ca2+ transient peak amplitude (OT: n= 9, ***p < 0.001; VP: n= 7, p > 0.05). 
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PIP2 Depletion Has No Effect on AHPs Generated by Uncaging Ca2+ 

  

The previous Ca2+ data suggests that PIP2 modulates AHPs by changing Ca2+ 

entry or Ca2+ availability to the K+ channels but does not rule out additional effects on the 

AHP channel itself. To test whether or not PIP2 modulated AHP channels, we rapidly 

increased somatic [Ca2+]i of the cell via photolytic release of Ca2+ from its caging 

compound, DM-Nitrophen (2 mM). Neurons were dialyzed with DM-Nitrophen at 40% 

Ca2+ occupancy via the recording pipette and stimulated using a UV light flash from a 

xenon flash bulb. The result of this rapid Ca2+ release is an AHP generated without 

stimulating a train of action potentials in the cell, and thus an AHP independent of Ca2+ 

entry through voltage-gated Ca2+ ion channels (Sah and Clements 1999). Using fluo-4 

(50 µM) as the dye indicator for Ca2+, we elicited AHPs with spiking and uncaging in 

every cell tested. We opted to use current clamp for these experiments for two reasons: 

(1) Signal fidelity was much better in current clamp. It was sometimes difficult to see an 

uncaged AHP in voltage clamp, while it was always clearly present in current clamp. (2) 

While still present in current clamp, rundown of both the currents and the Ca2+ transient 

was slower than the rundown we observed in voltage clamp. 

 

 For AHPs generated from current injections, we evoked action potentials with 

suprathreshold current using 20, 10 ms pulses at 20 Hz, from a resting potential of ~-55 

mV (controlled by DC current injection). For AHPs generated from uncaging Ca2+, we 

administered a UV light flash of ~1 ms duration at 72.6 J at the same membrane 

potential. To control for rundown, we measured AHPs at two time points for each of two 

groups: one control group and one group that received wortmannin application between 

the first and second measurements. Consistent with previous results in voltage clamp, 

both mAHPs and sAHPs generated by spiking were significantly inhibited by 

wortmannin application (n= 7; 100 ms: p < 0.001; control 10.8 ± 0.6 mV vs. wortmannin 

6.7 ± 1.2 mV; 1000 ms: p = 0.018; control (n= 7) 8.3 ± 1.4 mV vs. wortmannin 4.6 ± 0.8 

mV) (Figure 3-12). The corresponding Ca2+ peak transients using fluo-4 were also 

inhibited significantly (n= 7; p < 0.05; control 45.2 ± 6.9 %F/F vs. wortmannin 23.7 ± 

4.1 %F/F) (Figure 3-12). However, when AHPs were generated by uncaging Ca2+ in 

these same cells, we found no significant differences between groups in either the peak or 

1000 ms uncaged AHP amplitude (n= 7; peak: p > 0.05; control 10.0 ± 1.2 mV vs. 

wortmannin (n= 8) 13.9 ± 3.0 mV; 1000 ms: p > 0.05; control 7.9 ± 3.6 mV vs. 

wortmannin 10.5 ± 1.8 mV).  Additionally, we found no change in the corresponding 

peak Ca2+ transient (n= 7; p > 0.05; control 128.6 ± 13.2 %F/F vs. wortmannin 23.7 ± 

4.1 %F/F) (Figure 3-12). This demonstrates that not only does PIP2 likely modulate 

AHPs via spike-induced Ca2+ entry, but also that PIP2 does not likely gate the AHP 

channels themselves. 

 

 

PIP2 Depletion Inhibits Whole Cell Ca2+ Currents in OT Neurons 

  

The results of our Ca2+ imaging and uncaging data suggest that PIP2 affects the 

AHP by modulating Ca2+ entry through voltage-gated Ca2+ channels. To further test this, 

we isolated whole cell Ca2+ currents in slices using 0.0005 mM TTX, 50 mM TEA, and 5  
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Figure 3-12. Wortmannin has no effect on AHPs or somatic Ca2+ when AHPs are 

generated via uncaging Ca2+ in OT neurons.  

Measurements of AHPs were taken at 2 time points to control for the rundown present in 

this experiment. In one group, wortmannin was administered between the two 

measurements. All example traces are group averages of the second measurement from 

the control and wortmannin groups. (A, left) Averaged current clamp traces of AHPs 

generated by trains of current injections with a superimposed mean ± SEM at 100 ms. (A, 

right) box plot summary data of this effect (**p = 0.008). (B, left) Corresponding Ca2+ 

signal average for traces shown in (A). Shaded area represents error. (B, right) box plot 

summary data for Ca2+ transients generated by spike-generated AHPs (left) (*p < 0.05).  

(C, left) Averaged current clamp traces of AHPs generated by uncaging Ca2+ inside the 

cell with a superimposed mean ± SEM at the peak (p > 0.05). (C, right) Box plot 

summary data for uncaging-generated AHPs. (D, left) Corresponding Ca2+ signal average 

for traces shown in (C). Shaded area represents error. (D, right) Box plot summary data 

for Ca2+ transients generated by an uncaging AHP (p > 0.05). 
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mM CsCl, measured steady-state current responses to voltage steps, and plotted I-V 

curves before and after wortmannin application. Space clamp is a prevalent issue when 

measuring these currents in slice recordings of dendritic neurons, so cells exhibiting 

marked space clamp errors were excluded from analysis (Criteria included delayed 

responses to voltage steps and escaping tail currents). Peak current occurred at a step to -

10 mV, a result consistent with previous studies done on whole cell Ca2+ currents in these 

neurons (Fisher and Bourque 1995; Foehring and Armstrong 1996; Teruyama and 

Armstrong 2005). Application of 400 µM Cd2+ after each trial resulted in a near complete 

block of current. When stepping positively, we started to observe inward current at the-40 

mV step. At -10 mV where steady-state Ca2+ currents are largest, we observed a 

statistically significant inhibition by wortmannin (n= 7, p = 0.018; control -459.0 ± 41.1 

pA vs. wortmannin -260.8 ± 23.9 pA) in OT neurons (Figure 3-13). By comparison, VP 

neurons displayed no change in Ca2+ currents after application of wortmannin (n= 5, p > 

0.05; control -482.5 ± 30.9 pA vs. wortmannin -493.8 ± 28.7 pA) (Figure 3-13). This 

result demonstrates PIP2 modulates Ca2+ entry through voltage-gated Ca2+ channels.  

 

 

KCNQ Channels Don’t Appear to Contribute the AHP in Either Cell Type 

 

 In an effort to understand the identity of the AHP channel(s), we tested XE-991, a 

KCNQ channel blocker, on the AHP in OT and VP neurons. Previous studes in CA1 

pyramidal neurons demonstrate that KCNQ channels contribute to the sAHP conductance 

activated upstream by the Ca2+ sensor protein, hippocalcin (Tzingounis et al. 2007, 2010; 

Tzingounis and Nicoll 2008). We wanted to test this possibility in SON, as KCNQ 

channels bind PIP2 and have been implicated as partial contributors to the sAHP (Kim et 

al. 2016b). One issue with this hypothesis is that KCNQ channels are voltage-dependent 

and not Ca2+ dependent per se. Tzingounis and colleagues, and others have proposed that 

PIP2 can shift KCNQ channels into the activation range of the sAHP. They’ve also 

suggested that PIP2 can act as an intermediary, bypassing the voltage-dependent 

activation via a Ca2+ sensor protein (Loussouarn et al. 2003; Zaydman and Cui 2014; 

Kim et al. 2016b). Here in SON, XE-991 failed to block any component of the AHP in 

both OT and VP neurons (p > 0.05) (Figure 3-14). This suggests that KCNQ channels do 

not contribute to the sAHP in these cells. 

 

 

Discussion 

 

 The AHP and its underlying currents are important regulators of intrinsic neuronal 

excitability. In SON neurons, they control the length and frequency of bursts of action 

potentials during phasic firing (Kirkpatrick and Bourque 1996; Ghamari-Langroudi and 

Bourque 2004). Despite the extensive work on the IsAHP, the gating mechanism via Ca2+ 

is currently unknown.  Furthermore, the mechanism appears to vary greatly depending on 

the neuronal cell type.  In neocortical pyramidal cells, the unknown sAHP channels were 

found to track cytoplasmic [Ca2+]i (Abel et al. 2004) and to be sensitive to PIP2 

manipulations (Villalobos et al. 2011). PIP2 depletion in these cells by wortmannin 

reduced the IsAHP, increasing PIP2 levels by adding myo-inositol dramatically slowed  
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Figure 3-13. Wortmannin inhibits whole cell Ca2+ currents in OT neurons while 

having no effect in VP neurons.  

Ca2+ currents were isolated and subsequently measured before and after wortmannin (1 

µM). I-V curves were plotted from steady-state measurements of these currents. (A) I-V 

curve of Ca2+ currents before and after wortmannin in OT neurons. Comparison at the 

highest amplitude steady-state current (-10 mV) revealed a significant difference (*p < 

0.05). (B) I-V curve of Ca2+ currents before and after wortmannin in OT neurons. (C) 

Example traces from a single OT neuron of isolated whole cell Ca2+ currents generated 

by voltage steps from -90 mV to +10 mV under control conditions (Ci) and after 1µM 

wortmannin application (Cii). The voltage protocol (Ciii) and 400 µM Cd2+ (Civ) are 

shown for the same cell. 
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Figure 3-14. XE-991 has no effect on the AHP. 

XE-991, a KCNQ channel blocker, has no significant effect on AHPs of either OT or VP 

neurons. (A) Example traces from an OT neuron before (black trace) and after (red trace) 

XE-991. (B) Summary data for XE-991’s effect on AHPs in OT neurons. red traces are 

individual neurons; black traces are the average ± SEM. There is no significant effect on 

AHP at peak, 1s, or the tau (p > 0.05). (C) Example traces from an VP neuron before 

(black trace) and after (green trace) XE-991. (D) Summary data for XE-991’s effect on 

AHPs in VP neurons. green traces are individual neurons; black traces are the average ± 

SEM. There is no significant effect on AHP at peak, 1s, or the tau (p > 0.05). 
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 IsAHP rundown, and increasing PIP2 by overexpression of PIP5K facilitated calcium 

activation of the IsAHP (Villalobos et al. 2011). Together, these data suggest that in 

pyramidal neurons, PIP2 may affect Ca2+ sensitivity of the IsAHP channel.  Several K+ 

channel types are known to require PIP2 for activation, including KCNQ (Kv7) and KATP, 

among others (Hilgemann and Ball 1996; Delmas and Brown 2005; Suh and Hille 2008; 

Zaydman et al. 2013; Eckey et al. 2014). In addition, the rundown during recordings of 

Kv7 and KATP currents is a result of PIP2 depletion (Hughes et al. 2007; Logothetis et al. 

2007). Ca2+ channels also play a critical role in the generation of AHPs, as different 

channel species are coupled to the AHP depending on the cell type (Andrade et al. 2012). 

Many of these voltage-gated channels interact with PIP2, and have been shown to have 

smaller currents when PIP2 is depleted from the cells (Suh et al. 2010; Cruz et al. 2016). 

Because PIP2 availability so greatly affected IsAHP generation in neocortical pyramidal 

cells, we tested the extent to which it could regulate the phenotypically similar IAHPs in 

SON. 

 

 Both OT and VP cells share core AHP features, including robust calcium 

dependence, voltage independence, modulation by neurotransmitters, and a relationship 

between amplitude and spike count (Alger and Nicoll 1980; Lorenzon and Foehring 

1993; Ghamari-Langroudi and Bourque 2004; Teruyama and Armstrong 2005; 

Armstrong et al. 2010; Andrade et al. 2012). Suggestions for the potassium channel 

underlying the sAHP channel across the nervous system include KCNQ, KATP, and 

TREK1 channels (Tzingounis and Nicoll 2008; Tanner et al. 2011; Ford et al. 2013). 

KCNQ channels have been a focus of study in this regard, considering the exhaustive 

documentation of their modulation by PIP2 (Suh and Hille 2002; Loussouarn et al. 2003; 

Li et al. 2005; Winks et al. 2005; Suh and Hille 2007; Liu et al. 2008; Kim et al. 2016b). 

While KCNQ channels may be promising candidates for at least a component of the 

sAHP in some cells due to their modulation by PIP2 (Loussouarn et al. 2003; Kim et al. 

2016b), it seems unlikely for SON given our data using XE-991. For example, (Kim et al. 

2016b) revealed a complicated dynamic in CA1 pyramidal cells between the IsAHP, the 

voltage-dependence of KCNQ3 (Kv7.3) channels, and hippocalcin, a Ca2+ sensor protein 

critical for sAHP generation in CA1 neurons (Tzingounis et al. 2007). However, 

hippocalcin has not been found in the SON (Paterlini et al. 2000), and although KCNQ 

channels are expressed in the SON (Zhang et al. 2009b), and muscarinic suppression of 

sAHPs in SON has been reported, the sAHP does not show any voltage-dependence 

(Ghamari-Langroudi and Bourque 2004). The latter authors did rule out BK, SK, and IK 

channels however, based on the insensitivity of the sAHP to toxins targeting these toxins 

(Ghamari-Langroudi and Bourque 2004). 

 

In SON neurons, we demonstrated an observable mechanistic difference between 

two similar cell types in the same nucleus. Depletion of PIP2 inhibits both the medium 

and slow components of the AHP in OT neurons while having no discernable effect on 

VP neurons. This is a novel and perhaps surprising result. Previous studies described cell 

type differences in firing patterns and plasticity during the reproductive cycle, but this is 

the first description of an OT-VP difference in an AHP mechanism (Bourque et al. 1985; 

Armstrong 1995; Teruyama and Armstrong 2002, 2005). Perhaps the differences are 

related to the fact that AHP and spike frequency undergo massive plastic changes in OT 
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neurons during pregnancy and lactation, while VP neurons remain mostly unaffected in 

this regard. Thus PIP2 activity could be a key regulator of AHP changes during the 

reproductive cycle. 

 

Differences between our results in SON and previous results in neocortical 

neurons are twofold: First, PIP2 depletion blocked both the ImAHP and IsAHP in OT neurons 

(with no effect in VP neurons), whereas it only affected the IsAHP in neocortical neurons 

(Villalobos et al. 2011). This is demonstrated by wortmannin block at 100 ms (mAHP) 

and 1000 ms (sAHP) after the stimulus (Figure 3-2) and inhibition of isolated IsAHP 

currents in the presence of apamin (Figure 3-5). Second, [Ca2+]i transients are reduced 

after PIP2 depletion in OT neurons (Figure 3-11) whereas neocortical [Ca2+]i transients 

were unaffected by PIP2 depletion. These differences reflect a novel distinction between 

AHP mechanisms of different cell types. The results in cortex likely reflect a change in 

Ca2+ sensitivity of the AHP while the results in OT neurons appear to reflect a change in 

Ca2+ entry through voltage-gated Ca2+ channels. 

 

 

Wortmannin-induced Inhibition of IAHPs Results from a Restriction of PIP2 

Availability 

  

Wortmannin consistently and effectively blocked the ImAHP and IsAHP in OT 

neurons in a dose-dependent manner. Because wortmannin has multiple targets and 

drastic effects on OT AHPs, careful dissection of its effects was carried out in this study. 

One potential confound is non-specific effects of wortmannin, since this drug inhibits 

more than PI4K In fact, wortmannin is an inhibitor of PI3K activity as well as the 

PI3K/Akt signal transduction pathway (Nakanishi et al. 1995; Brunn et al. 1996). PI3K is 

actually the higher affinity target of wortmannin (IC50 = 2-4 nM), as opposed to its effect 

on PI4K (IC50 ≈ 50 nM) (Nakanishi et al. 1995). The previously reported IC50 for 

wortmannin’s effect on PI4K is consistent with our dose response curve generated by 

the proportion of peak IAHP inhibition (IC50 = 58 nM), which was well fit by a single 

Langmuir isotherm. Consistent with the IC50 matching PI4K inhibition, the more 

specific PI3K inhibitor LY294,002 failed to affect the ImAHP and IsAHP in OT neurons 

(Figure 3-3). Elevating PIP2 levels by supplementing the internal solution with diC8-PIP2 

(Figure 3-7), or by exposing the cells to myo-inositol (Figure 3-8), prevented ImAHP and 

IsAHP inhibition by wortmannin. We also demonstrated that wortmanin increases the 

cytoplasm:membrane ratio of PIP2 in dissociated OT neurons (Figure 3-6). This result 

has also been reported with oxotremorine-M in MNCs with immunochemistry (Shah et 

al. 2014), and is consistent with a study in which wortmannin prevented the recovery of 

M-currents after PIP2 depletion via oxotremorine-M, confirming its inhibitory activity on 

PIP2 synthesis (Suh and Hille 2002). Together, these results demonstrate that wortmannin 

blocks the IAHP by inhibiting PIP2 production and that PIP2 availability is critical for 

generation of the ImAHP and IsAHP in OT neurons. The robust inhibition of both medium 

and slow components suggests PIP2 affects a common mechanism between the two. The 

most recognizable connection is the Ca2+ dependence of the ImAHP and IsAHP.  
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PIP2 Depletion Alters Ca2+ Entry through Voltage-gated Ca2+ Channels in OT 

Neurons 

  

We hypothesized that PIP2 affected either Ca2+ entry or Ca2+ availability to the 

AHP channels. We first considered that depleting PIP2 was effectively limiting Ca2+ 

release from IP3-gated Ca2+ stores, shown to be a source of AHP-related Ca2+ in 

dopamine neurons (Morikawa et al. 2000). To the extent that U73122 is specific to PLC 

inhibition, this application had no effect on the ImAHP or IsAHP of OT neurons (Figure  

3-10), consistent with the hypothesis that downstream targets of PLC activity are not 

involved. In contrast, both Ca2+ transients and whole cell Ca2+ currents were suppressed 

by wortmannin in OT, but not VP neurons, suggesting that PIP2 is interacting with 

voltage-gated Ca2+ channels in these cells. This conclusion was further strengthened by a 

lack of wortmannin effect on uncaging-invoked AHPs (Figure 3-12). Thus, PIP2 

depletion simultaneously inhibits AHPs, Ca2+ transients, and Ca2+ currents in OT 

neurons. Though this result contrasts with observations in cortical neurons, the data do 

not necessarily rule out a contribution of Ca2+ sensitivity as contributing to the effects of 

PIP2 on the IsAHP. 

  

 Although we observed clear inhibition of HVA currents with wortmannin, several 

voltage-activated Ca2+ channels are candidates for the PIP2 modulation.  It is presently 

unknown which specific Ca2+ channel types couple to the medium and slow AHP in OT 

and VP neurons in the SON (see Chapter 4). MNCs express high-voltage-activated 

(HVA) L-, N-, P/Q-type, and R type channels, as demonstrated with mRNA (Glasgow et 

al., 1999), immunochemistry (Joux et al., 2001) and pharmacological block of whole cell 

currents in voltage clamp (Fisher and Bourque 1995; Foehring and Armstrong 1996; 

Glasgow et al. 1999; Joux et al. 2001), although these studies did not differentiate 

between OT and VP neurons. Importantly, HVAs have been demonstrated to interact 

with PIP2 (Suh et al. 2010; Cruz et al. 2016; Kim et al. 2016a). Transient, low-threshold-

activated (LVA) type Ca2+ channels may also contribute to AHPs, and these have been 

reported in MNCs by some (Erickson et al. 1993; Fisher and Bourque 1995; Israel et al. 

2008), although not by all investigators (Foehring and Armstrong 1996; Luther and 

Tasker 2000; Joux et al. 2001; Luther et al. 2002). Nevertheless, LVAs clearly contribute 

to sAHPs in thalamic paraventricular neurons (Zhang et al. 2009a). Channel coupling 

may also be different for the mAHP and sAHP. Previous work in other cell types 

describes mAHPs being activated by restricted microdomains of membrane Ca2+, while 

the sAHP has a tighter, cooperative sigmoidal relationship with bulk somatic [Ca2+]i 

(Wilson and Callaway 2000; Abel et al. 2004). Therefore, the sAHP inhibition caused by 

PIP2 depletion could be caused by an inhibition of multiple Ca2+ channel species 

providing diffusible Ca2+. Interestingly, N-type channels contribute to peptide release in 

OT and VP neurons, while P/Q channels contribute only in VP neurons (Wang and Fisher 

2014). This trait might provide a clue about cell-type differences for PIP2 modulation of 

HVA channels. 

 

It is important to explicitly mention that our results don’t assume the same 

mechanisms for both the ImAHP and IsAHP, just that PIP2 is a regulator of both, and both are 

dependent on modulation of Ca2+ entry. For example, previous work demonstrated that 
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PIP2 is a necessary cofactor for SK channel activation, binding to the CaM-SK interface 

on these channels to shift Ca+ sensitivity (Zhang et al. 2014). Though this work was done 

on SK2 channels, the SK3 channel complex also contains CaM, and its modulation in this 

manner remains a possibility for gating the ImAHP in SON.  
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CHAPTER 4.    CALCIUM CHANNELS COUPLED TO THE AHP IN SON 

 

 

Introduction 

 

 High voltage-activated (HVA) Ca2+ channels were first categorized by their 

pharmacology (Tsien 1983) and later by their subunit composition (Birnbaumer et al. 

1994). Many neuronal cell types, including magnocellular supraoptic neurons (MNCs), 

express L-, N-, P/Q-, and R-type HVA Ca2+ channels (Fisher and Bourque 1995, 1996; 

Lorenzon and Foehring 1995a; Foehring and Armstrong 1996; Pineda et al. 1998; 

Mermelstein et al. 1999; Stewart and Foehring 2000; Castelli and Magistretti 2006; 

Quinlan et al. 2008; Simms and Zamponi 2014; Wang and Fisher 2014). Like many other 

neurons (Bean 2007), depolarization due to action potentials triggers the voltage-

dependent activation of these channels, allowing Ca2+ ions to flow inward. The existence 

of different HVA channel subtypes reflects a need to meet the complex Ca2+ 

requirements of neurons and other excitable cells. This is apparent in the coupling of 

HVA channels to distinct signaling pathways, their anatomical locations, and channel 

properties such as voltage dependence (Snutch et al. 2013). A classic example in neurons 

is the specific Ca2+ channel coupling to transmitter release in certain neurons (Wheeler et 

al. 1994; Cohen-Kutner et al. 2010; Catterall 2011; Snutch et al. 2013; Satake and Imoto 

2014). Another example is coupling of L-type channels to excitation-transcription 

coupling in muscle (Flavell and Greenberg 2008). 

 

 HVA Ca2+ channels are also involved in the activation of Ca2+-dependent K+ 

conductances underlying spike afterhyperpolarizations (AHPs) following spike trains. 

AHPs shape firing behavior and cause spike frequency adaptation in many cell types 

(Meech 1978; Storm 1989; Sah 1996; Pineda et al. 1998; Andrade et al. 2012). MNCs 

demonstrate three distinct AHPs after spiking. The fast AHP (fAHP) follows a single 

spike and is involved in repolarization of the cell after an action potential. We do not 

address the fAHP here. In MNCs, the medium AHP (mAHP) is a Ca2+-dependent 

conductance activated after 1-3 spikes, has an inactivation time constant () of 200-400 

ms, and is blocked by the SK channel toxin apamin (Bourque and Brown 1987; 

Armstrong et al. 1994; Kirkpatrick and Bourque 1996; Teruyama and Armstrong 2005). 

The mAHP contributes strongly to spike frequency adaptation in MNCs but also 

contributes to burst length in vasopressin (VP) neurons (Kirkpatrick and Bourque 1996). 

The slow AHP (sAHP) is also Ca2+-dependent, but requires longer spike trains, lasts for 

seconds, is insensitive to apamin, and is markedly attenuated by muscarinic receptor 

activation (Ghamari-Langroudi and Bourque 2004); the underlying channel is unknown. 

The sAHP contributes to phasic patterning in VP neurons (Ghamari-Langroudi and 

Bourque 2004). 

 

 Which Ca2+ channels couple to AHPs differs among neuronal cell types, and are 

often different for the mAHP and sAHP within the same neuron. In mature neocortical 

pyramidal neurons P-type currents are coupled to the mAHP while N-, P-, and Q-type 

currents are coupled to the sAHP (Pineda et al. 1998). In myenteric neurons and vagal 

motoneurons, N-type currents are coupled to both mAHPs and sAHPs (Sah 1995; 
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Vogalis et al. 2001). N-type currents contribute the Ca2+ that activates the mAHP in 

midbrain dopamine neurons (de Vrind et al. 2016) and striatal cholinergic interneurons 

(Goldberg and Wilson 2005). In non-neuronal cell types such as pancreatic −cells, L-

type channels are coupled to SK channel activation (Wang et al. 2014). L-type channels 

contribute to the sAHP in CA1, CA3, and sympathetic neurons (Moyer et al. 1992; 

Tanabe et al. 1998; Martínez-Pinna et al. 2000). An extensive review of the HVA Ca2+ 

channels coupling to sAHPs can be found in Andrade et al. (2012). 

  

 Although both oxytocin (OT) and VP MNCs exhibit prominent mAHPs and 

sAHPs (Teruyama and Armstrong 2005), the associated Ca2+ channels contributing to 

their activation are unknown. Previous work in our lab has demonstrated a stark 

mechanistic difference in that both the mAHP and sAHP are dependent on PIP2 in OT, 

but not VP neurons (Kirchner et al. 2017). It is possible that some of the observed 

differences could be explained by a difference in coupling of AHPs to Ca2+ channels 

between the cell types. Here we present a direct comparison of the Ca2+ channels 

involved in the generation of AHPs between OT and VP neurons. 

 

 

Results 

 

 To determine which specific Ca2+ channel subtypes contributed Ca2+ that elicited 

the mAHP and sAHP in SON neurons, we measured AHPs in current clamp before and 

after the application of pharmacological channel blockers. We used a train of 5 or 20 

spikes stimulated at 20 Hz from a resting potential of -55 mV to control for effects on 

spike frequency adaptation and ensure all neurons received the same stimulus. We 

simultaneously monitored changes in bulk somatic Ca2+ ([Ca2+]i) during stimulation. This 

measurement reflects Ca2+ entry plus extrusion and buffering. Measuring this allowed us 

to confirm the efficacy of toxin block on Ca2+ entry through its respective Ca2+ channel. 
 

 

Cd2+ Block of HVA Ca2+ Channels Inhibits Most of the AHP 
 

We first tested whether the AHP in both MNC cell types required Ca2+ entry with 

the inorganic HVA and LVA Ca2+ channel blocker, Cd2+ (Figure 4-1). 400 µM Cd2+ 

blocked 80 ± 18% of the mAHP and 81 ± 7% of the sAHP in OT neurons (n= 6). In VP 

neurons, it blocked 79 ± 17% of the mAHP and 89 ± 2% of the sAHP (n= 6). These data 

are consistent with previous reports that inorganic blockers such as Cd2+, Mn2+, and Co2+ 

block most of the AHP in MNCs (Bourque et al. 1985; Kirkpatrick and Bourque 1996; 

Ghamari-Langroudi and Bourque 2004). Even stronger block can be achieved by 

chelating intracellular Ca2+, highlighting that activation of AHPs is dependent on elevated 

intracellular Ca2+ (Andrew and Dudek 1984). Though, chelators may bind other 

compounds besides Ca2+ (Schwindt et al. 1992). 
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Figure 4-1. 400 µM Cd2+ application to MNCs inhibited nearly all of the AHP in 

current clamp. AHPs were evoked using a pulse train of 20 spikes and measured at 

peak (mAHP + sAHP) and 1s (sAHP) following the pulse.  

(A) Example of an OT neuron before and after Cd2+ application of an AHP in current 

clamp. The only remaining portion of the AHP is small and decays rapidly. (B, C) 

Summary data for Cd2+ inhibition at the peak current and 1 sec following the pulse train 

in both OT (B) and VP (C) neurons. 
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L-Type Channels 

 

 Application of the dihydropyridine L-type channel blocker Nif (5 µM) did not 

alter either the mAHP nor sAHP in OT (n= 6 p > 0.05) and VP (n= 6 p > 0.05) neurons 

(Figure 4-2). However, Nif reduced the peak [Ca2+]i, suggesting reduced Ca2+ entry. In 

OT neurons, we observed a 40 ± 1% reduction in peak Ca2+ signal after 20 spikes (n= 5 p 

< 0.01) and a 34 ± 4% reduction after 5 spikes (n= 5 p < 0.01). In VP neurons, we 

observed a 36± 2% reduction in peak Ca2+ signal after 20 spikes (n= 5 p < 0.01) and a 43 

± 1% reduction after 5 spikes (n= 5 p < 0.01). The reduction in Ca2+ signal is consistent 

with previous observations in which 5-10 µM Nif blocked a similar proportion of whole 

cell Ca2+ currents in acutely dissociated supraoptic neurons (Fisher and Bourque 1995; 

Foehring and Armstrong 1996). 
 

 

N-Type Channels 

 

 We next tested for effects of the N-type channel blocker GVIA (1 µM) (Figure  

4-3). In OT neurons, GVIA strongly reduced measurements at peak and 1 sec in both 20- 

and 5-spike protocols of AHP generation (n= 8). GVIA inhibited the 20-spike peak AHP 

by 39 ± 7% (p < 0.0001), at 1000 ms after the pulse by 38 ± 7% (p < 0.01), and the 5-

spike peak AHP by 61 ± 11% (p < 0.0001). GVIA inhibited the corresponding peak Ca2+ 

signals by 61 ± 4% for 20 spikes (p < 0.0001) and 69 ± 5% for 5 spikes (p < 0.0001).  

 

In VP neurons, GVIA inhibited the 20-spike peak AHP by 25 ± 9% (p < 0.01), at 

1000 ms after the pulse by 29 ± 5% (p > 0.05), and the 5-spike peak AHP by 25 ± 12% (p 

< 0.01). These effects on peak AHPs in VP neurons were significantly smaller when 

compared to OT neurons (20-spike and 5-spike AHP peak; p < 0.05). Nevertheless, 

GVIA strongly inhibited the corresponding peak Ca2+ signals by 60 ± 4% for 20 spikes (p 

< 0.0001) and 67 ± 6% for 5 spikes (p < 0.008) in VP neurons. Furthermore, there was no 

difference in control [Ca2+]i peaks or percentage inhibition of [Ca2+]i by GVIA between 

OT and VP neurons (p > 0.05). Thus, while N-type channels were found to be a major 

contributor of Ca2+ to the mAHP in both cell types, this relationship was stronger for OT 

neurons, and N-channels contributed significantly to production of the sAHP in OT 

neurons only. 
 

 

P/Q-Type Channels 

 

 To evaluate P/Q-type channel contribution, we used AgTx IVA (0.5 µM) (Figure 

4-4). P- and Q-type variants are often distinguished by their sensitivity to AgTx IVA 

(Mintz et al. 1992); lower concentrations of AgTx IVA (10-100 nM) have been shown to 

block only P-type variants, while 0.5 µM blocks both P- and Q-type (Zhang et al. 1993; 

Foehring and Armstrong 1996). Both P- and Q-type currents are generated by the 

CACNA1A gene, and splice variants may explain the phenotypic differences (Bourinet et 

al. 1999; Nimmrich and Gross 2012). In OT (n= 6) and VP (n= 5) neurons, application of 

0.5 µM AgTx IVA had no significant effect on either the mAHP or sAHP (p > 0.05), 

suggesting neither P- nor Q-type currents couple to the AHPs. Simultaneous Ca2+  
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Figure 4-2. Effect of L-type blocker 5 µM Nif on AHPs and corresponding Ca2+ 

transients in OT (A-D) and VP (E-H) neurons.  

(A) Example of an AHP after a 20 Hz, 20-spike train from an OT neuron treated with Nif 

and the corresponding somatic Ca2+ signal. (B) Example of an AHP after a 20 Hz, 5-

spike train from an OT neuron treated with Nif and its corresponding somatic Ca2+ signal. 

(C) Summary data for OT neuron AHP measurements at the 20-spike peak amplitude 

(mAHP + sAHP), at 1 sec after the train (sAHP), and 5-spike AHPs at the peak amplitude 

(mAHP). Red points are individual cells and black points are group averages (paired t-

test; p > 0.05 for all 3 measurements). (D) Summary data for OT neuron Ca2+ transients. 

Nif significantly reduced peak %F/F in 20-spike AHPs (paired t-test; **p < 0.01) and 5-

spike AHPs (**p < 0.01). (E) AHP after a 20 Hz, 20-spike train from a VP neuron treated 

with Nif and its corresponding somatic Ca2+ signal. (F) AHP after a 20 Hz, 5-spike train 

from a VP neuron treated with Nif and its corresponding somatic Ca2+ signal. (G) 

Summary data for VP neuron AHP measurements at the 20-spike peak amplitude (mAHP 

+ sAHP), at 1 sec after the train (sAHP), and 5-spike AHPs at the peak amplitude 

(mAHP). Green points are individual cells and black points are group averages (paired t-

test; p > 0.05 for all 3 measurements). (H) Nif significantly reduced peak %F/F from 

20-spike trains (paired t-test; **p < 0.01) and 5-spike trains (paired t-test; **p < 0.01). 
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Figure 4-3. Effect of N-type blocker 1 µM CnTx GVIA on AHPs and 

corresponding Ca2+ transients in OT (A-D) and VP (E-H) neurons.  

(A) Example of an AHP after a 20 Hz, 20-spike train from an OT neuron treated with 

CnTx GVIA and its corresponding somatic Ca2+ signal. (B) Example of an AHP after a 

20 Hz, 5-spike train from an OT neuron treated with CnTx GVIA and its corresponding 

somatic Ca2+ signal. (C) Summary data for OT neuron AHP measurements at the 20-

spike peak (mAHP + sAHP; ****p < 0.0001), at 1 sec after the train (sAHP; **p < 0.01), 

and 5-spike AHPs at the peak amplitude (mAHP; ****p < 0.0001). Red points are 

individual cells and black points are group averages. (D) Summary data for OT neuron 

Ca2+ transients during AHP stimulation. CnTx GVIA significantly reduced peak %F/F 

in 20-spike AHPs (****p < 0.0001) and reduced %F/F in 5-spike AHPs (****p < 

0.0001). (E) Example of an AHP after a 20 Hz, 20-spike train from a VP neuron treated 

with CnTx GVIA and its corresponding somatic Ca2+ signal. (F) Example of an AHP 

after a 20 Hz, 5-spike train from a VP neuron treated with CnTx GVIA and its 

corresponding somatic Ca2+ signal. (G) Summary data for VP neuron AHP measurements 

at the 20-spike peak amplitude (mAHP + sAHP; **p < 0.01), at 1 sec after the train 

(sAHP; p > 0.05), and 5-spike AHPs at the peak amplitude (mAHP; **p < 0.01). Green 

points are individual cells and black points are group averages. (H) CnTx GVIA 

significantly reduced peak %F/F in 20-spike AHPs (paired t-test; ****p < 0.0001) and 

5-spike AHPs (**p < 0.008). 
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Figure 4-4. Effect of P/Q-type blocker 0.5 µM AgTx IVA on AHPs and 

corresponding Ca2+ transients in OT (A-D) and VP (E-H) neurons.  

(A) Example of an AHP after a 20 Hz, 20-spike train from an OT neuron treated with 

AgTx IVA and its corresponding somatic Ca2+ signal. (B) Example of an AHP after a 20 

Hz, 5-spike train from an OT neuron treated with AgTx IVA and its corresponding 

somatic Ca2+ signal. (C) Summary data for OT neuron AHP measurements at the 20-

spike peak amplitude (mAHP + sAHP), at 1 sec after the train (sAHP), and 5-spike AHPs 

at the peak amplitude (mAHP). Red points are individual cells and black points are group 

averages (paired t-test; p > 0.05 for all 3 measurements). (D) Summary data for OT 

neuron Ca2+ transients. AgTx IVA significantly reduced peak %F/F after 20-spike 

AHPs (paired t-test; **p < 0.01) and 5-spike AHPs (p < 0.01). (E) Example of an AHP 

after a 20 Hz, 20-spike train from a VP neuron treated with AgTx IVA and its 

corresponding somatic Ca2+ signal. (F) Example of an AHP after a 20 Hz, 5-spike train 

from a VP neuron treated with AgTx IVA and its corresponding somatic Ca2+ signal. (G) 

Summary data for VP neuron AHP measurements at the 20-spike peak amplitude (mAHP 

+ sAHP), at 1 sec after the train (sAHP), and 5-spike AHPs at the peak amplitude 

(mAHP). Green points are individual cells and black points are group averages (paired t-

test; p > 0.05 for all 3 measurements). (H) AgTx IVA significantly reduced peak %F/F 

in 20-spike AHPs (*p < 0.05) and 5-spike AHPs (p > 0.05). 
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imaging revealed a decrease in peak somatic Ca2+. In OT neurons, AgTx IVA 

significantly inhibited the 20-spike Ca2+ peak by 16 ± 6% (p < 0.01) and the 5-spike Ca2+ 

peak by 25 ± 6% (p < 0.01). In VP neurons, AgTx IVA significantly inhibited the 20-

spike Ca2+ peak by 33 ± 5% (p < 0.04). The 5-spike Ca2+ peak decreased by 20 ± 5%, but 

not significantly (p > 0.05). Given the lack of effect at 0.5µM, we did not test lower 

concentrations of AgTx IVA to sort P from Q channel contributions. 
 

 

R-Type Channels 

 

 We also tested the R-type blocker SNX-482 (0.3 µM). While a potent blocker of 

R-type channels, SNX-482 also blocks IA with high affinity (1-10 nM) (Liu and Bean 

2014). Block of IA increases action potential width in MNCs, increasing Ca2+ influx 

during spike trains, and consequently altering the AHP amplitude and time course 

(Bourque 1988; Hlubek and Cobbett 2000). We therefore characterized SNX-482’s 

potentially confounding effects on IA (Figure 4-5). We initially observed that SNX-482 

greatly broadened single spikes (Figure 4-5Ai). This effect mimicked that of 4-AP (4 

mM), which blocks IA, as well as other Kv channels. SNX-482 only widened APs slightly 

after prior 4-AP (4 mM) application (Figure 4-5Ai). Second, we observed a decrease in 

the transient outward rectifier (Figure 4-5B), similar to the IA block by 4-AP application 

reported previously in MNCs (Bourque 1988; Stern and Armstrong 1997; Fisher and 

Bourque 1998). With these considerations, we quantified the spike broadening of spikes 

by measuring the half width of the first action potential (AP) of each 20-spike train (OT 

n= 5; VP n= 5; Figure 4-5C). Neurons dosed with 4-AP (4 mM) showed significantly 

larger AP half widths in OT (p < 0.05) and VP (p < 0.01) neurons. Subsequent SNX-482 

did not further increase spike width (OT p > 0.05; VP p > 0.05). These data demonstrate 

that 4-AP blocks almost all of IA, and that SNX-482 effects on AHPs can’t be attributed 

to changes in spike width. Additionally, 4-AP application increased spike widths more in 

VP neurons, consistent with previous reports of VP neurons having a larger IA (Stern and 

Armstrong 1997; Fisher and Bourque 1998). 

 

Finally, we evaluated spike broadening from the first to the 20th spike during the 

train. Repetitive activity produces spike frequency dependent broadening (Andrew and 

Dudek 1985; Bourque and Renaud 1985; Hlubek and Cobbett 2000) which has been 

shown to increase Ca2+ influx further complicating SNX-482 effects (Jackson et al. 

1991). We measured the ratio of the 20th and 1st spike in each train as an index of 

frequency-dependent broadening (Figure 4-5D). In both OT and VP neurons, spike 

broadening we observed during the train was significantly inhibited by 4-AP (OT and 

VP: p < 0.05). In 4-AP, the spike broadening index was 1.0 ± 0.1 for OT and 0.96 ± 0.1 

for VP indicating there was almost no change in AP half width during trains in 4-AP. 

This suggests a majority of the spike broadening in MNCs is the result of IA inactivation. 

Further application of SNX-482 to block R-type channels did not significantly alter the 

spike broadening index (p > 0.05). Since changes in AHP amplitude could reflect both 

changes in spike broadening and consequent Ca2+ entry as well as reduction of Ca2+ 

channels, we tested the R-type channel effects of SNX-482 on the AHP after pre-applied 

4-AP.  
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Figure 4-5. SNX-482 blocks transient outward rectification and broadens spikes.  

(Ai) Example of a single action potential from an OT neuron treated with SNX-482 (0.3 

M) showing obvious broadening of the action potential. (Aii) Example of a single action 

potential from a different OT neuron than (Ai), treated first with 4 mM 4-AP, followed by 

subsequent application of SNX-482. (B) Step injections of depolarizing current reveal a 

fast transient outward rectifier that is reduced by SNX-482 in the same cell as Ai. Positive 

steps (25 pA) were generated from cells at -80 mV. (C) In 20-spike trains, we measured 

AP half width of the first spike. In OT and VP neurons, 4-AP results in significant spike 

broadening (OT: *p < 0.05; VP: **p < 0.01). Subsequent application of SNX-482 

produced no further broadening (p > 0.05). (D) Changes in spike broadening between the 

first and 20th spike in a train represented as the ratio of AP half width between the two 

spikes. Values greater than 1 indicate spike-dependent broadening while values lower 

than 1 indicate narrowing. Application of 4-AP significantly reduced spike-dependent 

broadening within the 20-spike train in both cell types (*p < 0.05). Subsequent 

application of SNX-482 does not significantly reduce the spike broadening index 

compared to 4-AP alone. 
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We evaluated R-type channel contribution to AHPs in MNCs (Figure 4-6). In 

AHP measurements from both OT and VP neurons, 4-AP enhanced 20-spike AHP 

amplitude, spike width, and the corresponding Ca2+ transients, suggesting that the broader 

spikes increased Ca2+ entry. In OT neurons the AHP enhancement was significant for 20 

spikes at peak (20 ± 10% increase) and 1 sec (71 ± 11% increase) (p < 0.05 for both).  In 

VP neurons, the measurement at 1 sec after 20 spikes was significant (60 ± 12% increase; 

p < 0.05) while the peak measurement was not significant (16 ± 26% increase; p > 0.05).  

The 5-spike AHP was unaffected by 4-AP in either cell type (p > 0.05).  

 

The corresponding OT Ca2+ transients were significantly increased by 4-AP 

application in 20-spike AHPs by 15 ± 5% (Control vs. 4-AP p < 0.05) and 5-spike AHPs 

by 31+ 8% (Control vs. 4-AP p < 0.05). Likewise, VP Ca2+ transients in 20- and 5-spike 

peaks significantly increased after 4-AP by 21 ± 6% and 38 ± 2%, respectively (20 

spikes: Control vs. 4-AP p < 0.05; 5 spikes: Control vs. 4-AP p < 0.05).  These data were 

also consistent with the notion that broader spikes after 4-AP increased Ca2+ entry. 

 

While OT neurons demonstrated no significant inhibition of the AHP after 

subsequent application of SNX-482, the response of VP neurons was different. Here 

SNX-482 significantly reduced 20-spike AHPs at peak by 15 ± 8% and 1 sec by 26 ± 

11% after 4-AP application (20-spike peak: 4-AP vs. 4-AP + SNX p < 0.05; 20-spike 1 

sec: 4-AP vs. 4-AP + SNX p < 0.05). This was despite the further increase in AP width in 

SNX-482 after 4-AP (see above).  SNX-482 did not significantly affect 5-spike peaks (p 

> 0.05).  

 

These differential responses may be due to different Ca2+ channel contribution to 

Ca2+ entry. Application of SNX-482 in OT neurons inhibited the 20-spike Ca2+ peak by 

only 15 ± 5% (4-AP vs. 4-AP + SNX p < 0.05) and the 5-spike Ca2+ peak by only 22 ± 

10% (4-AP vs. 4-AP + SNX p < 0.05). However, SNX-482 inhibited the 20-spike Ca2+ 

peak by 45 ± 6% (4-AP vs. 4-AP + SNX p < 0.05) and the 5-spike Ca2+ peak by 45 ± 5% 

(4-AP vs. 4-AP + SNX p < 0.05) in VP neurons. The simplest interpretation of the 

significant reduction of the sAHP and the stronger inhibition of peak Ca2+ in VP neurons 

is that R-type contribution to the sAHP is larger in VP neurons. Because SNX-482 block 

of R-type channels does not result in spike narrowing during the trains (Figure 4-5), this 

inhibition is unlikely due to a decreased level of depolarization during the train, that 

might allow less Ca2+ influx. 
 

 

N-Type Block with Subsequent P/Q Block 

 

 While OT neurons show considerable mAHP and sAHP inhibition by GVIA, VP 

neurons demonstrated significantly less inhibition by comparison. N-type block does 

significantly reduce the mAHP in VP neurons, but our evidence suggests no single HVA 

channel is strictly coupled to the AHP in VP neurons. It’s possible that VP neurons would 

then have enough Ca2+ entry to generate a robust sAHP, even in the presence of any 

single Ca2+ channel blocker. To test this idea, we bath-applied 1 µM GVIA followed by a 

subsequent application of 1 µM MVIIC, which blocks N- and P/Q-type channels (Figure 

4-7). All reported percentages reflect a percent change between the two groups stated.  
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Figure 4-6. Effect of R-type blocker SNX-482 (0.3 M) on AHPs and their 

corresponding Ca2+ transients in OT (A-D) and VP (E-H) neurons.  

4-AP was pre-applied to block Kv4 channels and isolate SNX-482’s effect on R-type 

Ca2+ channels. (A) Example of an AHP after a 20 Hz, 20-spike train from an OT neuron 

and its corresponding somatic Ca2+ signal. (B) Example of an AHP after a 20 Hz, 5-spike 

train from an OT neuron and its corresponding somatic Ca2+ signal. (C) Summary data 

for OT neuron AHP measurements at the 20-spike peak amplitude (mAHP + sAHP), at 1 

sec after the (sAHP), and 5-spike AHPs at the peak amplitude (mAHP). Red points are 

individual cells and black points are group averages. After 20 spikes, 4-AP significantly 

increased the AHP at peak and 1 sec in 20 spike AHPs (*p < 0.05). Subsequent 

application of SNX-482 did not significantly reduce the AHP compared to 4-AP. 5-spike 

AHPs were unaffected. (D) Summary data for OT neuron peak Ca2+ transients during 

AHP stimulation in 20-spike AHPs and in 5-spike AHPs. 4-AP increased Ca2+ transients 

significantly in 20-spike trains (*p < 0.05), and successive SNX-482 significantly 

inhibited the Ca2+ signal compared to 4-AP after both 20- and 5-spikes (*p < 0.05). (E) 

Example of an AHP after a 20-spike train from a VP neuron and its corresponding 

somatic Ca2+ signal. (F) Example of an AHP after a 5-spike train from a VP neuron and 

its corresponding somatic Ca2+ signal. (G) Summary data for VP neuron AHP 

measurements at the 20-spike peak amplitude (mAHP + sAHP), at one sec after the train 

(sAHP), and 5-spike AHPs at the peak amplitude (mAHP). Green points are individual 

cells and black points are group averages. 4-AP significantly increased the 20-spike AHP 

at 1 sec (**p < 0.01). Subsequent SNX-482 significantly reduced the 20-spike peak and 1 

sec AHP when compared to 4-AP alone (*p < 0.05). 5-spike AHPs were unaffected. (H) 

Summary data for VP neuron peak Ca2+ transients in 20-spike AHPs and 5-spike AHPs. 

4-AP and significantly increased Ca2+ in the 20-spike (*p < 0.05) and 5-spike (**p < 

0.01) protocol. Subsequent SNX-482 significantly decreased Ca2+ transients in both 20- 

and 5-spike AHPs (**p < 0.01). 
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Figure 4-7. N-type blocker 1 µM CnTx GVIA and subsequent block with 1 µM 

CnTx MVIIC on AHPs and corresponding Ca2+ transients in OT (A-D) and VP (E-

H) neurons.  

(A) Example of an AHP after a 20 Hz, 20-spike train from an OT neuron and its 

corresponding somatic Ca2+ signal. (B) Example of an AHP after a 20 Hz, 5-spike train 

from an OT neuron and its corresponding somatic Ca2+ signal. (C) Summary data for OT 

neuron AHP measurements at the 20-spike peak amplitude (mAHP + sAHP), at 1 sec 

after the (sAHP), and 5-spike AHPs at the peak amplitude (mAHP). Red points are 

individual cells and black points are group averages. At all measurements, GVIA 

significantly reduced the AHP (20-spike peak **p < 0.01; 1 sec & 5-spike peak *p < 

0.05). Subsequent application of MVIIC reduced the AHP further at the 20-spike peak 

compared to control (**p < 0.01). (D) Summary data for OT neuron peak Ca2+ transients 

during AHP stimulation in 20-spike AHPs and in 5-spike AHPs. GVIA significantly 

reduced 20-spike (*p < 0.0001) and 5-spike (*p < 0.01) Ca2+. Subsequent MVIIC 

significantly inhibited 20-spike (*p < 0.05) and 5-spike (*p < 0.05) Ca2+ further. (E) 

Example of an AHP after a 20 Hz, 20-spike train from a VP neuron and its corresponding 

somatic Ca2+ signal. (F) Example of an AHP after a 20 Hz, 5-spike train from a VP 

neuron and its corresponding somatic Ca2+ signal. (G) Summary data for VP neuron AHP 

measurements at the 20-spike peak amplitude (mAHP + sAHP), at 1 sec after the train 

(sAHP), and 5-spike AHPs at the peak amplitude (mAHP). Green points are individual 

cells and black points are group averages. CnTx GVIA consistently reduced the AHP, but 

to a lesser degree compared to OT neurons (p > 0.05). Subsequent CnTx MVIIC 

significantly reduced the 20-spike peak AHP when compared to GVIA alone (*p < 0.05) 

and in 1 sec after the pulse when compared to Controls (*p < 0.05).  (H) Summary data 

for VP neuron peak Ca2+ transients in 20-spike AHPs and 5-spike AHPs. CnTx GVIA 

significantly reduced Ca2+ transients in both protocols (*p < 0.05). Subsequent MVIIC 

significantly reduced Ca2+ transients in both 20- (*p < 0.05) and 5-spike (**p < 0.01) 

AHPs. 

 

  



 

70 

 
  



 

71 

OT neurons responded to GVIA as previously, displaying significantly reduced 20-spike 

AHPs at peak (33 ± 12% inhibition; p < 0.05), 1 sec (49 ± 15% inhibition; p < 0.05), and 

5 spike AHP peak (55 ± 8% inhibition; p < 0.05). Successive addition of MVIIC further 

reduced the 20-spike peak AHP (GVIA vs. GVIA+MVIIC: 34 ± 13% inhibition, p < 

0.05; Control vs. GVIA+MVIIC: 56 ± 13% inhibition, p < 0.01). It had no further effect 

on 5 spike AHPs (p > 0.05). The corresponding 20 spike peak Ca2+ transients were 

significantly inhibited in cells treated with GVIA by 35 ± 4% (p < 0.01) and subsequent 

GVIA + MVIIC by 30 ± 6% (p < 0.05). 5-spike peak Ca2+ transients were significantly 

reduced after GVIA by 35 ± 3% (p < 0.05), and after MVIIC by 35 ± 6% (p < 0.05). N-

type block accounted for much of the sAHP in OT neurons, while subsequent P/Q 

channel block had little effect.  Additionally, we observed a reduction in Ca2+ transients 

in both GVIA and GVIA + MVIIC signifying block of the channels. 

 

As before, VP neurons showed a modest reduction in AHP amplitude following 

GVIA. In these experiments, the mAHP block was not significant (5-spike Control vs. 

GVIA: p > 0.05), as was the sAHP (20-spike peak Control vs. GVIA: p > 0.05; 20-spike 

1 sec Control vs. MVIIC: p > 0.05). Subsequent addition of MVIIC significantly reduced 

the AHP measured at the 20-spike peak (GVIA vs. GVIA+MVIIC: 18 ± 15% inhibition, 

p < 0.05). At 1 sec after the pulse, the difference between controls and the combined 

toxins was significant (Control vs. GVIA + MVIIC: 43 ± 13% inhibition, p < 0.05). 

mAHP measurements showed no further reduction by MVIIC (GVIA vs. MVIIC: p > 

0.05, Control vs. GVIA+MVIIC: p > 0.05). Corresponding Ca2+ peak transients were 

reduced in all cases for both 20-spike (Control vs. GVIA: 28 ± 5% inhibition, p < 0.05, 

GVIA vs. GVIA+MVIIC: 20 ± 7% inhibition, p < 0.05) and 5-spike AHPs (Control vs. 

GVIA: 24 ± 12% inhibition, p > 0.05; GVIA vs. GVIA+MVIIC: 22 ± 4% inhibition, p < 

0.05). Thus, while P/Q-type block alone was insufficient to reduce VP sAHPs, it 

significantly reduced sAHPs when combined with N-type block. 
 

 

Discussion 

 

 We tested which HVA Ca2+ channels elicit the medium and slow phases of AHPs 

in OT- and VP-releasing neurons of the SON. Our lab has previously observed distinct 

mechanistic differences in AHP generation between OT and VP neurons (Kirchner et al. 

2017), spurring interest in the possibility of cell-type differences in coupling of Ca2+ 

channel types to AHPs. The present study demonstrates that Ca2+ channel contributions 

differ between OT and VP cells.  

 

 

The Major Contribution of N-type Channels to the AHP 

 

In both cell types studied, N-type channels appear to be the most influential of the 

HVA types for Ca2+-dependent AHP generation. OT neurons show especially strong 

reduction in the mAHP and sAHP after GVIA application. The coupling to the mAHP 

was the strongest, but there is also a major contribution to the sAHP. Thus, N-type 

channels provide the primary source of Ca2+ for both the mAHP and sAHP in OT 

neurons. It is important to note that some sAHP remains in OT neurons after N-type 
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channel block, suggesting that other sources of Ca2+ exist for OT sAHPs as well.  Block 

of the other individual HVA Ca2+ channels had no effect on the AHP in these cells. Block 

of P/Q channels produces a significant reduction in sAHP if N-type channels are already 

blocked, suggesting that P/Q channels can compensate in the absence of N-type channels. 

 

N-type channels also couple to mAHPs in VP neurons; GVIA significantly 

reduces the mAHP. However the percent inhibition by GVIA is significantly less in VP 

neurons compared to OT despite similar inhibition of Ca2+ transients between the cell 

types. Perhaps this is related to our group’s finding that depletion of PIP2 simultaneously 

inhibits AHPs in OT while leaving VP cells unaffected (Kirchner et al. 2017). Like OT 

neurons, GVIA is the only HVA channel toxin that we tested that affected VP mAHPs. 

Like OT neurons, if N-type channels are unavailable P/Q channels can provide Ca2+ to 

the sAHP. 
 

 

Corresponding [Ca2+]i Signals in MNCs  

 

Regardless of whether or not an HVA Ca2+ channel blocker was able to affect the 

AHP, we consistently observed a significant reduction in cytoplasmic [Ca2+]i after each 

application, indicating the toxins were effectively blocking Ca2+ channels. We 

acknowledge that summation of toxin effects on [Ca2+]i from all experiments exceeds 

100%. There are a few reasons for this. First, we compared populations of cells where 

there was individual variation in expression levels of HVA channels types between cells. 

Second, since preapplication of 4-AP increases [Ca2+]i, percent reduction by SNX-482 

will be skewed because Ca2+ inhibition is not being compared to the cell at the control 

peak [Ca2+]i value. Finally, while Ca2+ channel toxins are highly selective (Pringos et al. 

2011), there is some overlap in targets (Gandía et al. 1995; Lorenzon and Foehring 

1995b; Foehring and Armstrong 1996).  

 

The [Ca2+]i reduction after N-type block is the greatest of all the blockers in both 

cell types. This indicates MNCs contain a large population of N-type channels, as 

reported previously (Fisher and Bourque 1996; Foehring and Armstrong 1996; Lemos et 

al. 2012). 

 

As discussed earlier, SNX-482 blocks IA in addition to R-type channels, resulting 

in larger AP half widths. This broadening was coincident with an increased in [Ca2+]i, and 

posed a potential confound for our evaluation of SNX-482 alone on the Ca2+ dependent 

AHP. After 4-AP block of A-current, we observed a significant reduction in [Ca2+]i after 

SNX-482 despite no change in the spike broadening index (Figure 4-5), demonstrating 

its ability to block R-type channels independent of changes in spike width.  
 

 

Strict Coupling of mAHPs to Ca2+ Microdomains 

 

mAHPs in other cell types are often exclusively coupled to a specific HVA Ca2+ 

channel (Sah 1995; Vogalis et al. 2001). This strict coupling is consistent with SK 

channel activation by microdomains of Ca2+, suggesting that Ca2+ channels must be in 
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close proximity to the SK channels and that bulk Ca2+ would be a poor indicator of 

[Ca2+]i at the membrane (Neher 1998; Hallworth et al. 2003; Fakler and Adelman 2008). 

In neocortical pyramidal neurons, the relationship between the mAHP and bulk Ca2+ is 

poor (Abel et al. 2004), consistent with its activation from microdomains concentrated 

near the membrane. Our results are also consistent with this idea, as GVIA is the only 

toxin to inhibit mAHPs in OT and VP neurons, despite the other toxins’ ability to reduce 

[Ca2+]i.  
 

 

Coupling of Ca2+ to the sAHP in VP Neurons 

 

Cd2+ effectively blocks both mAHPs and sAHPs in both cell types, indicating 

dependence on Ca2+ entry. However, only block of N-type channels resulted in a decisive 

reduction in OT mAHPs or sAHPs. N-type channels are coupled to mAHPs in VP 

neurons as well, but only after R-type block (Figure 4-6) was the sAHP was inhibited in 

VP neurons. While N-type (OT) or R-type (VP) channels may be the preferred Ca2+ 

source, it is possible that block of the preferred Ca2+ channels could reveal other Ca2+ 

channels with looser coupling to the sAHP, as is suggested by the cells treated with 

MVIIC after GVIA.  This could be facilitated by the slow kinetics of the sAHP.  In other 

cell types there is lower specificity in the coupling of Ca2+ channels to the sAHP 

compared to the mAHP (Lorenzon and Foehring 1992; Ghamari-Langroudi and Bourque 

2004). This may also explain why Cd2+ is such a potent blocker of the AHP compared to 

GVIA or SNX-482. 

 

It has been proposed that there is an intermediate step between Ca2+ entry and 

activation of the sAHP (reviewed in Andrade et al. 2012).  In this model cytoplasmic 

Ca2+ binding proteins act as the calcium sensor for the sAHP.   Evidence consistent with 

a cytoplasmic Ca2+ sensor for the sAHP includes experiments where ablation of 

cytoplasmic calcium binding proteins (e.g., hippocalcin, visinin-like calcium binding, and 

calcineurin) resulted in substantial sAHP inhibition of myenteric and hippocampal 

neurons (Vogalis et al. 2004; Tzingounis et al. 2007; Villalobos and Andrade 2010). 

Another possible source for Ca2+ is from intracellular stores, which contribute to sAHPs 

in hippocampal neurons (Torres et al. 1996; van de Vrede et al. 2007) and immature 

neocortical pyramidal neurons (Pineda et al. 1998). It is possible that the sAHP in VP 

neurons is activated by Ca2+-induced Ca2+ release from internal stores, resulting in AHP 

resistance to block by specific Ca2+ channel blockers. One final source could be from 

transient, low voltage activated (LVA) T-type Ca2+ channels. While the presence of T-

channels in MNCs has been reported (Erickson et al. 1993; Fisher and Bourque 1995), 

others report little low threshold Ca2+ current (Foehring and Armstrong 1996; Luther and 

Tasker 2000; Luther et al. 2002). An LVA type current sensitive to Ni2+ was shown to 

contribute to the depolarizing afterpotential in guinea pig SONs (Erickson et al. 1993). 

 

 

Conclusions 

 

These studies revealed the HVA channel sources of Ca2+ to the AHP in MNCs. 

Briefly, in OT and VP neurons of the SON, it appears that mAHP generation reflects 
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activation of only N-type channels, though to a significantly less degree in VP compared 

to OT neurons. We observed cell type specific preferential coupling of the sAHP with 

specific Ca2+ channels: N-type for OT neurons and R-type for VP neurons. This 

reinforces mechanistic differences of AHP generation between cell types, some of which 

might underlie PIP2’s differential modulation of AHPs by affecting HVA currents 

(Kirchner et al. 2017). 
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CHAPTER 5.    PIP2 MODULATION OF CALCIUM CHANNEL CURRENTS IN 

SON 

 

 

Introduction 

 

 Voltage-gated Ca2+ (CaV) channels regulate transmembrane Ca2+ influx in 

neurons throughout the brain by opening in response to membrane depolarization. 

Elevated Ca2+ as a result of this influx activates neurotransmission, second messenger 

pathways, ion channels, and gene expression (Catterall 2011). There are five members of 

the CaV family named L-, N-, P/Q-, R-, and T-type divided into two general groups based 

on their voltage dependence, the high-voltage (HVA) and low-voltage activated (LVA) 

channels. T-type channels are the only members of the LVA group while the other four 

occupy the HVA group. In addition to activation by shifts in membrane voltage, these 

channels are modulated by an array of mechanisms including auxiliary -subunits, 

calmodulin, G-proteins, and second messenger Ca2+. 

 

 Plasma membrane-bound phospholipid phosphatidylinositol 4,5 bisphosphate 

(PIP2) regulates CaV channels (Suh et al. 2010; Hille et al. 2015). PIP2 is a long chain 

phospholipid found on the inner leaflet of cell membranes and it is critically involved in 

the maintenance of the IP3/DAG second messenger pathway. PIP2 levels are constitutive. 

In other words, molecules of PIP2 are constantly generated and broken down, this 

production is cyclical and tonic, and a basal population of PIP2 molecules is constantly 

maintained regardless of a cell’s current PIP2 demand (Xu et al. 2003). In addition to the 

IP3/DAG pathway, PIP2 controls a varied range of cellular functions including 

organization of filamentous actin, cellular differentiation, exocytosis, and ion channel 

maintenance (Eberhard et al. 1990; Sun et al. 1999; Hilgemann et al. 2001). PIP2’s 

modulation of ion channels is well known. KCNQ (KV7) channels are certainly the best 

documented example (Li et al. 2005; Suh et al. 2006; Kim et al. 2017), but evidence 

exists for modulation of CaV channels by PIP2. TsA201 cell lines transfected with 

different CaV channels show drastically reduced L- and N-type currents after PIP2 

depletion, including an acceleration of inactivation (Suh et al. 2010). Retarding of P/Q-

type rundown occurs when PIP2 is supplemented to the cells (Wu et al. 2002). This study 

analyzes how the absence of PIP2 affects HVA channel currents in magnocellular 

neurohypophysial cells (MNCs) of supraoptic nucleus (SON). 

 

 MNCs are large (~25 M) neurons that secrete oxytocin (OT) and vasopressin 

(VP) via action potential-triggered exocytosis that express L-, N-, P/Q-, R, and T-type 

voltage-dependent Ca2+ channels (Poulain and Wakerley 1982; Fisher and Bourque 1996; 

Foehring and Armstrong 1996). The interest in PIP2 modulation of CaV channels is 

spurred by previous work of our group on PIP2’s modulation of Ca2+-dependent 

afterhyperpolarizations (AHPs) in these neurons. We determined that PIP2 was required 

for AHP generation in OT, but not VP neurons (Kirchner et al. 2017). Our previous study 

suggested that PIP2 regulates AHP generation by gating CaV channels in OT neurons. 

Furthermore, AHPs are coupled tightly to N-type channel currents in OT neurons, while 

in VP neurons the mAHP is coupled to N-type channels and the sAHP is coupled to the 
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sAHP (Chapter 4). Ca2+ through P/Q-type channels can also activate the sAHP if N-type 

channels are unavailable (see Chapter 4). Given the striking similarity between PIP2/N-

type interactions in previous work (Delmas and Brown 2005; Michailidis et al. 2007), 

and the dependence of MNC AHPs on PIP2 and N-currents, we tested for the modulation 

of whole-cell and N-type Ca2+ currents by PIP2 in acutely dissociated MNCs from 

transgenic Wistar-Kyoto rats.  

 

 

Results 

 

In the study of Ca2+ channel currents, we used dissociated neurons to study 

modulation of Ca2+ currents because it avoids the issues of space clamp that a slice 

preparation has wherein the dendrites are present. replaced Ca2+ with Ba2+ as the charge 

carrier because Ba2+ produces larger currents through the channels, it prevents the 

activation of Ca2+-activated mechanisms, and it assists in the block of K+ channels. We 

contained the cells in a background flow of HBSS and isolated Ca2+ currents with barrel 

delivery of a solution that isolates Ca2+ channel currents by omitting Na+ and K+ ions and 

by blocking Na+ and K+ channels pharmacologically. 

 

Two different protocols were employed to study Ca2+ channel in these neurons, a 

step protocol and ramp protocol (Figure 5-1). The step protocol is positive square pulses 

in 10 mV increments from -60 mV. The ramp protocol is a 0.33 mV/ms ramp from -60 

mV to +50 mV. We first determined if I-V curves plotted from steps versus ramps were 

different from one another. We ran both protocols on the same cell populations. The 

traces from both protocols were averaged and then normalized to the maximal current. 

We did two comparisons: Control steps versus control ramps and wortmannin steps 

versus wortmannin ramps (Figure 5-1C). We determined that the ramp protocol provides 

an I-V curve that accurately reflects one plotted from peak currents generated in the step 

protocol. In this study, we evaluated changes in current amplitude and voltage 

dependence using the ramp protocol and changes in channel gating using the step 

protocol. 

 

 

PIP2 Inhibits Isolated Ca2+ Currents in OT Neurons 

 

 Though we’ve previously demonstrated that PIP2 depletion via wortmannin 

inhibits whole-cell Ca2+ currents in slices from wild-type Sprague-Dawley rats (OT 

neurons) (Kirchner et al. 2017), we wanted to test the wortmannin’s effect under 

conditions where voltage was better controlled and solutions could be rapidly changed. 

We tested wortmannin’s effect in transgenic dissociated neurons from transgenic Wistar-

Kyoto rats.  

 

In OT neurons, wortmannin (0.5 µM) significantly inhibited whole-cell Ca2+ 

currents but had no effect in VP neurons (Figure 5-2). Wortmannin inhibited ramp- 
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Figure 5-1. Comparison of Ca2+ current I-V relationship in ramps versus steps. 

To confirm that the I-V relationship of whole cell Ca2+ currents generated from ramps 

reflected the currents seen with steps to specific voltages, we plotted I-V curves from OT 

neurons (n= 5) from ramps and steps. Ba2+ currents through Ca2+ channels were isolated 

with 150 mM TEA, .0005 mM TTX, and removal of Na+/K+ from the bath solution. Ba2+ 

replaced Ca2+ as the charge carrier for Ca2+ channel currents. (A) Step protocol used to 

generate whole-cell Ca2+ currents. We stimulated from -60 mV to 50 mV in 10 mV 

increments for 500 ms before returning to baseline. (B) Ramp protocol used to generate 

whole-cell Ca2+ currents. We stimulated from -60 mV and ramped voltage to +50 mV at a 

rate of 0.33 mV/ms. (C) Summary plot of normalized ramps and steps I-V relationship in 

OT neurons before and after wortmannin. Each curve is an average of all five OT neurons 

tested. We included wortmannin inhibition as a second measure to confirm consistency in 

pharmacologicaly inhibited currents. All traces are normalized to the control trace. Note 

the similarity in I-V relationship between the two protocols under control and 

wortmannin conditions.  
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Figure 5-2. Wortmannin inhibits whole cell Ca2+ currents in OT neurons but not 

VP neurons.  

(A) (left) Whole cell Ca2+ currents generated via ramp protocol from an mRFP-labeled 

OT neuron before and after wortmannin (0.5 M). (right) Summary graph of 

wortmannin’s effect on OT neurons. Wortmannin inhibited whole cell Ca2+ currents 52.2 

± 8% (n= 6, ***p < 0.001). (B) (left) Whole cell Ca2+ currents generated via ramp 

protocol from a GFP-labeled VP neuron before and after wortmannin (0.5 M). (right) 

Summary graph of wortmannin’s effect on VP neurons. Wortmannin had no significant 

effect on whole cell VP Ca2+ currents (n= 5, p > 0.05). (C) Same experiment as (A) but 

with diC8-PIP2 supplemented in the internal solution. (left) Whole cell Ca2+ currents 

generated via ramp protocol from an mRFP-labeled OT neuron before and after 

wortmannin. (right) Summary graph of wortmannin’s effect on OT neurons. Wortmannin 

had no significant effect on whole cell OT Ca2+ currents when diC8-PIP2 was dialyzed 

through the pipette (n= 6, p > 0.05). (D) Activation plots of OT (left; n= 6) and VP (right; 

n= 6) neurons. These plots represent averages of all neurons derived from ramp 

protocols. While neither cell type demonstrates changes in slope, OT neurons 

demonstrate a significant hyperpolarizing shift of -4.6 mV after wortmannin measured at 

V1/2 (*p < 0.05). (E) Dose dependent wortmannin inhibition of whole cell Ca2+ currents 

in a single mRFP-labeled OT neuron.  
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generated Ca2+ channel current amplitudes by 52.2 ± 8% in OT neurons (n= 5; p < 

0.001). This effect was prevented when the water soluble, synthetic PIP2, dic8-PIP2 (30 

µM) was supplied to the cells via the patch pipette (n= 5; p > 0.05). We observed a dose 

dependence of the wortmannin effect on Ca2+ channel currents (Figure 5-3C), similar to 

our previous observations in slices. Wortmannin failed to inhibit ramp-generated Ca2+ 

currents in VP neurons (n= 5; p > 0.05).  

 

In addition to an effect of PIP2 depletion on current amplitude, we observed a 

significant shift in the voltage dependent activation for OT neurons. To determine this, 

we generated a plot from ramps wherein current was converted to conductance (G), 

normalized as G/GMax, plotted versus voltage, and fit to a standard Boltzmann equation. 

We measured both half-activation (V1/2) and slope of the Boltzmann. Wortmannin 

application negatively shifts the voltage-dependent activation of whole-cell Ca2+ currents 

by -4.6 mV measured at V0.5 (n= 5; p < 0.05). There was no change in slope of the curve 

(control 6.14 ± 0.01 vs. wortmannin 5.94 ± 0.01). VP neurons demonstrated no changes 

in V1/2 (control -15.8 vs. wortmannin -16.1) or slope (control 6.34 ± 0.01 vs. wortmannin 

6.10 ± 0.01). 

 

 

PIP2 Effects on Ca2+ Channel Gating 

 

 We generated Ca2+ currents using a step protocol and measured the kinetics of 

current activation, deactivation, and inactivation as a function of membrane voltage. We 

determined these kinetics by measuring percent inactivation (%Inactivation). We 

operationally defined % inactivation as the percent change in current between peak and 

steady-state values. We chose to use this measure instead of time constants because these 

cells Ca2+ channel currents don’t demonstrate full inactivation. We observed that even 

during steps lasting upwards of 5 seconds, the currents were not fully inactivating, 

especially in OT neurons. To avoid fatiguing the cells and current rundown, we opted to 

use a 500 ms step and measure the % Inactivation within this step. 

 

 At all membrane potentials measured, wortmannin had no significant effect on 

either activation τ in OT or VP neurons (n= 5) (Figure 5-3). For deactivation τ where we 

measured the tail current stepping down to -70 mV, wortmannin had no significant effect 

(p > 0.05). However, we did find a significant difference between OT and VP neuron 

deactivation τ (*p < 0.05). 

 

 For measures of % inactivation, we observed large differences in the presence of 

wortmannin (Figure 5-4). When comparing % inactivation of OT and VP neurons under 

control conditions, we observed significantly faster inactivation in VP neurons (p < 0.05; 

Figure 5-4A). This suggests differences in Ca2+ channel density and/or a proportion of 

different channel types between the two neurons. Furthermore, there are differences in 

how wortmannin affects % inactivation in OT and VP neurons. In OT neurons, 

wortmannin accelerates inactivation of Ca2+ currents significantly at potentials measured 

(p < *0.05, **0.01; Figure 5-4B). Inactivation becomes rapid and some steady-state 

current remains after wortmannin (Figure 5-4D). While VP neurons demonstrate faster  
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Figure 5-3. Wortmannin does not significantly affect activation and deactivation 

time constants in both OT and VP neurons. 

Measurements of activation and deactivation time constants () (A, C) were extracted 

from Ca2+ currents generated via a step protocol in OT (A, B) and VP (C, D) neurons. 

Activation of the current was fit to a single exponential function. We fit tail currents to a 

double exponential function, interpreting the first, faster  value as the deactivation 

 Activation  was not significantly altered in either cell type after wortmannin 

application (p > 0.05). Deactivation  was unaffected by wortmannin (p > 0.05), but there 

was a significant difference between OT and VP neurons (*p < 0.05) (Two-way repeated 

measures ANOVA).  
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Figure 5-4. Inactivation properties of OT and VP neurons before and after 

wortmannin. 

% Inactivation was measured as a % change between peak and steady-state current. We 

compared wortmannin’s (0.5 M) effect on % Inactivation in OT (B-D) and VP (E-G) 

neurons. (A) Control solution whole-cell % inactivation values for OT and VP neurons. 

At potentials where current is largest (-10 & 0 mV), VP neurons demonstrate 

significantly faster Ca2+ current inactivation. (B) Summary data of wortmannin’s effect 

on Ca2+ currents generated from steps in OT neurons. Wortmannin significantly inhibits 

% inactivation . Below is an example of OT Ca2+ currents before (C) and after (D) 

wortmannin. Note the different scale of the currents in (D) versus (C). Because the 

greatly decreased current amplitude would make it hard to see the change in % 

inactivation at the original scale, we chose to zoom the scale. (E) Summary data of 

wortmannin’s effect on Ca2+ currents generated from steps in VP neurons. Wortmannin 

had no significant effect on Ca2+ currents. Below this summary is an example trace from 

a VP neuron before (F) and after (G) wortmannin. Note the increased % inactivation 

compared to their OT counterparts, but also the lack of wortmannin effect this measure. 

Significance values are marked with asterisks as follows: *p < 0.05, **p < 0.01. 
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inactivation compared to their OT counterparts, they are unaffected by wortmannin 

application in this regard at any potential (Figure 5-4E). 

 

 

Modulation of N-type Current in OT Neurons 

 

 As noted earlier, there is a strong precedence for modulation and even necessity 

of PIP2 for N-type channel activation (Michailidis et al. 2007; Suh et al. 2010). We have 

observed specific Ca2+ channels couple to each AHP component, and specifically, that N-

type channels couple to AHPs in OT neurons. We therefore tested how PIP2 depletion 

effects N-type current. To study this, we isolated N-type currents by blocking all other 

HVA channels in the neurons with a cocktail of HVA channel blockers including 

nifedipine (Nif; 5 µM), agatoxin IVA (AgTx IVA; 0.5 µM), and SNX-482 (0.3 µM). 

After stable isolation of N-type currents, we applied wortmannin (0.5 µM) to the cell 

(Figure 5-5). In Ca2+ channel currents generated from ramps, isolation of N-type resulted 

in a 69.6 ± 6% reduction of the whole-cell peak current. Wortmannin inhibited the 

isolated N-type currents compared to just the isolation by 44 ± 6% (n= 5; p < 0.05). 

 

 We also tested wortmannin on remaining Ca2+ channel currents after N-type 

channel block with CnTx GVIA. We used conotoxin GVIA (CnTx GVIA; 1 µM) to 

block N-type currents. Block of N-type current resulted in 46 ± 6% reduction of whole-

cell current. Wortmannin inhibited the current further by 12 ± 1%, but this was not 

statistically significant (n= 5; p > 0.05). 

 

Because wortmannin accelerates inactivation of whole cell Ca2+ currents, we 

wanted to evaluate how much of this inactivation could be attributed to effects at N-type 

channels versus all other HVA currents (Figure 5-6). We found that N-type isolation 

resulted in a significant reduction of % inactivation at -30, -20, and -10 mV (n= 7; p < 

0.05). Application of wortmannin on N-type currents resulted in significant inhibition of 

% inactivation at almost all measured potentials (n= 7; p < 0.05). This is most apparent 

when the isolated N-type current and the wortmannin-treated current are scaled to the 

control amplitude, where rapid inactivation is apparent (Figure 5-6Cii).  

 

In contrast the isolated N-type currents, we observed no changes for % 

inactivation measured at any potential from the whole-cell currents with N-type channels 

blocked (n= 5; p > 0.05; Figure 5-6B). Again, this is apparent when the traces with CnTx 

GVIA and wortmannin are scaled to the control amplitude (Figure 5-6Dii).  

 

 

Discussion 

 

 Herein we provide evidence for two different but related aims: (1) to understand 

the precise mechanism by which PIP2 modulates Ca2+ channels in MNCs and (2) to 

determine if PIP2 can specifically modulate the N-type channel, which has been shown to 

be a critical source of Ca2+ for generation of AHPs in OT neurons of SON. 
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Figure 5-5. PIP2 significantly reduces pharmacologically isolated N-type Ca2+ 

currents in OT neurons. 

PIP2 depletion via wortmannin (0.5 M) appears to inhibit N-type currents (A, B) while 

unaffecting Ca2+ channel currents when N-type channels are blocked with CnTx GVIA (1 

M) (C, D). (A) Ca2+ channel current from a neuron (black trace) where N-type channels 

are isolated by blocking all other HVA Ca2+ channels (gray trace) with L-type blocker 

nifedipine (Nif, 5 M), P/Q-type blocker agatoxin IVA (AgTx-IVA, 0.5 M), and R-type 

blocker SNX-482 (0.3 M). The neurons were subsequently treated with wortmannin 

(red trace). (B) Summary data of peak Ca2+ channel currents from ramps. Isolation of N-

type currents resulted in a 69.6 ± 6% reduction of whole-cell current. Wortmannin 

significantly inhibits the isolated N-type current by 44 ± 6% (*p < 0.05). Red traces 

represent individual neurons while the black trace is the average. (C) Ca2+ channel 

current from a neuron (black trace) where N-type channels are blocked with conotoxin 

GVIA (CnTx GVIA, 1 M) (gray trace). The neurons were subsequently treated with 

wortmannin (red trace) to evaluate PIP2 depletion effects on the reciprocal HVA Ca2+ 

channel currents. (D) Summary data of peak Ca2+ channel currents from ramps. Block of 

N-type currents resulted in a 45.6 ± 6% reduction of whole-cell current. Wortmannin 

inhibited the current further by 12 ± 1%, but this was not statistically significant (p > 

0.05). Red traces represent individual neurons while the black trace is the average.  
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Figure 5-6. Wortmannin significantly accelerates inactivation of N-Type currents 

in OT neurons. 

PIP2 depletion via wortmannin (0.5 M) inhibits isolated N-current % inactivation (A, C) 

while having no effect on this parameter for Ca2+ currents in which N-type channels are 

blocked (B, D) in OT neurons. (A) Summary data of % inactivation under control 

conditions (black points), N-type channel isolation (gray points), and N-type isolation + 

wortmannin (red points). Significant differences between control and N-type isolation is 

marked with a pound symbol (#) while a significant difference between N-type currents 

before and after wortmannin is marked with an asterisk (*). (B) Summary data of % 

inactivation under control conditions (black points), N-type channel block (gray points), 

and N-type block + wortmannin (red points). No significant differences occurred between 

any groups at the measured potentials (p > 0.05). (Ci) Representative example of Ca2+ 

channel currents generated by a step protocol at -10 mV, the step with the largest current 

tested. Within the graphic, trace A is a baseline Ca2+ channel current. Trace B is the 

pharmacologically isolated N-type current. Trace C is this isolated current after 

wortmannin. (Cii) Traces B’ and C’ are the same respective traces scaled to the peak of 

the control. This highlights the effect of PIP2 depletion on % inactivation of the current. 

(Di) Representative example of Ca2+ channel currents generated by a step protocol at -10 

mV. Within the graphic, trace A is a baseline Ca2+ channel current. trace B is the whole-

cell Ca2+ channel current with blocked N-type current. trace C is this whole-cell current 

after wortmannin. (Dii) Traces B’ and C’ are the same respective traces scaled to the peak 

of the control. In contrast to (C), wortmannin doesn’t significantly change the % 

inactivation of these currents.  
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 We observe inhibition of Ca2+ channel current amplitudes after wortmannin in 

acutely dissociated OT (but not VP) neurons of Wistar-Kyoto rats. Wortmannin fails to 

inhibit the neurons when the patch pipette contains diC8-PIP2, suggesting that 

wortmannin’s effect on Ca2+ channel currents is indeed the result of PIP2 depletion. In 

contrast to OT neurons, wortmannin has no effect on VP neuron currents. These results 

are consistent with our previous observations in slices of wild-type Sprague-Dawley rats 

(Kirchner et al. 2017). Interestingly, we also observed a hyperpolarizing shift in the 

voltage-dependent activation of whole-cell Ca2+ currents. This result is consistent with 

previous reports in which PIP2 depletion results in a left-ward shift of voltage-dependent 

activation of N-type channels. While the shift was not statistically significant, they 

observed a 2-3 mV leftward shift, slightly less than our observed -4.6 mV shift (Suh et al. 

2010). This finding is puzzling because if PIP2 gated the current simply by shifting 

voltage dependence, then depleting PIP2 should depolarize the activation curve, resulting 

in a higher threshold of activation. Indeed, this has been demonstrated for Kv7 and P/Q-

type Ca2+ channels in which augmented PIP2 production hyperpolarizes voltage-

dependent activation (Wu et al. 2002; Kim et al. 2016b). It’s clear the presence PIP2 has 

modest effects on voltage-dependent activation of Ca2+ currents, but that it doesn’t 

explain how PIP2 specifically affects the channel. 

 

While VP neurons are unaffected in any way by wortmannin, they demonstrated 

significantly faster inactivation at high-conductance potentials compared to their OT 

counterparts. This suggests differences in Ca2+ channel density, family, and/or subunit 

populations between the two cell types. This hypothesis is backed by previous 

observations in which the percent of current blocked by HVA Ca2+ channel toxins was 

highly variable, and thus it was hypothesized that  the Ca2+ channel populations were 

different between the cell types (Foehring and Armstrong 1996). Additionally, reports 

show that N-type channels in VP neurons contain a  subunit absent in OT neurons 

(Ortiz-Miranda et al. 2010). This subunit is known to drastically alter the biophysical 

properties of the channel (Campiglio and Flucher 2015). 

 

 During exploration of how PIP2’s presence affects Ca2+ channel activity, we 

observed a significant effect of wortmannin on the % inactivation of OT Ca2+ currents, 

but not VP. Wortmannin application produced Ca2+ currents that rapidly inactivated, 

compared to their slowly-inactivating, or sometimes non-inactivating Ca2+ currents. 

These currents still display a fair amount of steady-state current after wortmannin. We 

found no effect of wortmannin on activation or deactivation  but did find a difference in 

the deactivation  between OT and VP neurons under control conditions. 

 

It’s clear that the presence of PIP2 allows for more robust Ca2+ channel currents 

(Kirchner et al. 2017). However, it was previously unknown which HVA Ca2+ channels 

PIP2 affects in MNCs. Because of our interest in N-type channels as the Ca2+ source for 

OT AHPs, and the wealth of evidence for PIP2 modulation of these channels, we focused 

our efforts on the specific modulation of N-type channels in OT neurons. We observed an 

inhibition of isolated N-type currents in which wortmannin reduced them by 

approximately half and no significant inhibition of current after block of N-type chanels. 

Furthermore, we observed significant increases in % inactivation of isolated N-type 
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currents after wortmannin, while % inactivation in GVIA-blocked Ca2+ currents was 

unaffected. This demonstrates the vast majority of PIP2-Ca2+ channel activity, including 

the inactivation of the currents, occurs at N-type channels in OT neurons.  

 

The % inactivation changes following PIP2 depletion are small compared to 

inhibition of the current amplitude. It seems unlikely that they could account for the 

entirety of inhibition Ca2+ currents. This observation is consistent with those in tsA-201 

cells in which they were large depressions of currents but relatively small changes in 

gating (Suh et al. 2010). They suggested that with reduced PIP2, fewer channels were 

available to open. It seems likely then that PIP2 increases open probability of the channel, 

something that has been previously demonstrated in KCNQ channels (Li et al. 2005). 

Another possibility is that PIP2 regulates single channel conductance. These possibilities 

remain to be tested. 

 

Unlike KCNQ channels, the depletion of PIP2 doesn’t result in failure of Ca2+ 

channel activity in this study (Hille et al. 2015). Even in isolated N-type channels, the 

channels which the majority of PIP2 modulation appears to occur among HVA channels 

of OT neurons, doesn’t result in complete abolishment of the current. This suggests that 

PIP2 is a co-factor, and not a requirement for Ca2+ channel activation, as has been 

previously reported (Suh et al. 2010). 
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CHAPTER 6.    DENDRITIC ARCHITECTURE AND AHPS 

 

 

Introduction 

 

In addition to questions regarding mechanisms, there is also a question of cellular 

localization of the AHP. A small, but diligent body of literature exists exploring where 

within the cell the mAHP and sAHP are generated. With regards to the mAHP, the 

channel is known to be SK1-3, and thus it can be concluded that the mAHP is localized to 

wherever SK channels are found in the cell. For supraoptic neurons, SK3 staining was co-

localized with both OT- and VP-neurophysins, and was found at the membrane of soma 

and dendritic processes (Armstrong et al. 2005). The staining was stronger at the soma 

with weak staining in the dendritic process, with apparent denser reactivity at the 

proximal dendrites. 

 

With regards to the sAHP, study of localization is more challenging. The 

channel(s) are unknown, so the approach must be different. In CA1 neurons, it’s been 

reported that the sAHP is primarily somatic (Lima and Marrion 2007). This was 

demonstrated by puffing BAPTA at the soma, which disrupted the trajectory of the AHP. 

The same BAPTA puff at an apical dendrite produced no such disruption. This contrasts 

with other experiments that proposed dendritic localization of the sAHP channels in CA1 

pyramidal neurons. These experiments used a different approach wherein they took 

advantage of electrotonic properties of the cell (Sah and Bekkers 1996). AHPs would be 

generated and during the sAHP conductance, a brief hyperpolarizing pulse would be 

administered. Measuring the time constant to relaxation of the new current would serve 

as an index for how far from the somatic patch the AHP was conducted. They established 

that this pulse interruption during a GABA IPSC had a longer time constant to relaxation 

for IPSCs in dendrites compared to soma. When this same protocol was employed in the 

measurement of AHPs, the time constant of relaxation was significantly longer compared 

to the IPSCs in soma but not dendrite. They later demonstrated that severing of the apical 

dendrite produced about a 30% reduction in sAHP amplitude; cutting the axon had no 

effect (Bekkers 2000). This suggests that sAHP channels are distributed in soma and 

dendrites apart from axons.  

 

A later study in basolateral amygdala measured dendritic localization with the 

same electrotonic protocols to estimate the distance from the soma of a current (Power et 

al. 2011). Comparing the time constant of relaxation of an interrupting current, they argue 

that the AHP is produced primarily in dendrites. Furthermore, they demonstrated that 

when calcium influx is restricted to the soma, no AHP is produced. The sAHP also 

reduces EPSP summation and reduces the dendritic AP-evoked calcium response. They 

conclude that the sAHP may play a role in synaptic plasticity and dendritic action 

potentials as well as spike frequency adaptation. These studies establish a precedent for 

sAHP currents in dendrites and thus I investigated this investigation in SON, where 

localization of sAHPs is unknown and dendrites play a major role in neuronal physiology 

and plasticity (Morris and Ludwig 2004). 
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A few obeservations in MNCs suggest that AHP conductances occur in the 

dendrites. First and foremost, wortmannin in the bath solution rapidly inhibits AHPs. By 

contrast, diC8-PIP2 dialyzed through the patch pipette takes a minimum of 15 minutes 

before any indication of sAHP enhancement is observed in VP neurons. It often takes at 

least 20 minutes to see a maximum enhancement. This may reflect the time it takes for 

diC8-PIP2 to distribute to the ends of the dendrites. Furthermore, all types of HVA Ca2+ 

channels are found in soma and dendrites of both OT and VP neurons, meaning that Ca2+ 

channels that couple to the AHP are available in the dendrites (Tobin et al. 2011). It 

should be noted that dissociated MNCs have AHPs, demonstrating that at least some of 

the AHP channel localization is in the soma (Oliet and Bourque 1992). 

 

To investigate possible dendritic contribution to AHPs of MNCs, we traced 

biocytin-filled neurons and correlated AHP and [Ca2+]i measurements to dendritic length, 

area, and volume. We did this initial pass to see if direct test of dendritic localization is 

warranted. Neurons were recorded with a biocytin-loaded patch pipette. The tissue was 

fixed and post-hoc ABC-DAB staining with osmium was performed on the slices to 

reveal the recorded neuron (Figure 6-1). We measured 9 OT, 12 VP, and 2 unidentified 

neurons using Neurolucida 10.0. The 2 unidentified neurons were pooled into our 

regression plots in which we combined OT and VP neurons. 

 

 

Results and Discussion 

 

OT Neurons 

 

 Regression analysis of OT neurons revealed some trends between AHP 

amplitude, [Ca2+]i, and dendritic architecture in 20-spike protocols. R2= 0.14 for 

comparisons of AHP amplitude with [Ca2+]i. While demonstrating a positive trend, this 

value doesn’t represent a strong relationship between AHP and [Ca2+]i. Regression 

analysis of AHP to Dendritic length revealed a relationship (R2= 0.29) (Figure 6-2). This 

trend broke down when comparing the AHP to dendritic area (R2= 0.15), but interestingly 

increased with volume (R2= 0.29). Together, OT neurons demonstrate evidence that 

dendrite length weakly correlates with sAHP amplitude and [Ca2+]i. This suggests that 

larger dendrites may allow for the expression of more AHP channels, and that sAHP 

conductances (20 spikes), in part, could be happening in dendrites.  

 

 

VP Neurons 

 

 Regression analysis of VP neurons in 20-spike protocols reveals a small linear 

relationship between peak [Ca2+]i and AHP amplitude (R2= 0.33). Additionally, a 

moderate relationship was observed between AHP amplitude and dendritic length (R2= 

0.30) (Figure 6-2). This relationship breaks down completely when AHP amplitudes are 

compared to dendritic area (R2= 0.08) and volume (R2= 0.08). This observation is 

interesting because this trend is much stronger in VP neurons compared to OT neurons. 

Like OT neurons, VP neurons display a moderate relationship between AHP amplitude  
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Figure 6-1. Drawings of MNCs in which dendritic size was measured. 

Examples of MNCs traced from ABC-DAB treated tissue. The left and middle neuron are 

OT neurons and the right cell is a VP neuron. They display classic morphology of MNCs 

including lengthy dendrites with few second and third order branches. Somas are marked 

with an asterisk. 

 

 

 

 

 
 

Figure 6-2. Regression plots for OT (top) VP (bottom) and OT+VP (right) for AHP 

amplitude vs. dendritic length.  
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and dendritic length, suggesting that a portion of the AHP conductance occurs in 

dendrites. 

 

 

Combined OT and VP Neurons 

 

 We performed the same comparisons on the combined pools of OT and VP data 

and an additional 2 unidentified cells (Figure 6-2). This was done to understand the 

general trend of magnocellular neurons, and perform the regression analysis on a robust 

sample size of data points (n= 23). For the 20-spike protocol, there was notable 

relationships between AHP amplitude and [Ca2+]i (R
2= 0.29), and dendritic length (R2= 

0.32). [Ca2+]i trends with dendritic length as well (R2= 0.23). When examining combined 

trends for 5-spike protocols, there are no notable relationships between these parameters. 
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CHAPTER 7.    ELUSIVE PIP2 ENHANCEMENT OF VP NEURONS, AND 

CONCLUSIONS 

 

 

PIP2 Enhancement of VP Neuron sAHPs 

 

 As demonstrated in (Figures 3-7 and 3-8), dialysis of the PIP2 analgoue diC8-PIP2 

into VP neurons causes drastic enhancement of the sAHP duration and amplitude. This 

contrasts with OT neurons where the PIP2 analog does not enhance the sAHP. This 

phenomenon appears to be the consequence of excessive PIP2, as PLC inhibition results 

in the same enhancement (Figure 3-9). PLC is responsible for breaking down PIP2 into 

DAG and IP3, and we interpret the PIP2 enhancement caused by the block of PLC a 

consequence of continued production but terminated breakdown. When I initially 

attempted to measure the [Ca2+]i of the neurons during this phenomenon, I could not 

replicate the enhancement. It turned out that replacing EGTA with fura-2 in the pipette 

was the issue, and that switching back to EGTA rescued the PIP2 enhancement. This 

posed a challenge for visualizing the Ca2+ time course during the sAHP enhancement of 

VP neurons. 

 

 Fluorescent Ca2+ dyes, including fura-2, are derivatives of BAPTA. BAPTA and 

EGTA are Ca2+ buffers inserted into the pipette (Cobbold and Rink 1987). During Ca2+ 

imaging experiments the dye Ca2+ indicator acts as the Ca2+ buffer, replacing EGTA. 

Binding affinities between EGTA and BAPTA are similar (KD: EGTA 150 nM; BAPTA 

160 nM), however the kinetics of these two chelators are drastically different. BAPTA 

binds Ca2+ approximately 150 times faster (Forward Rate Constants, KON: EGTA 0.025 

x108 M-1s-1; BAPTA 4x108 M-1s-1) (Naraghi and Neher 1997). The consequence is that 

BAPTA reaches equilibrium with cytoplasmic Ca2+ rapidly compared to EGTA. Thus, it 

appears that when Ca2+ is buffered too quickly, PIP2 cannot exert its amplifying effect on 

the sAHP. 

 

 We explored the possibility that buffering speed of available Ca2+ was critical for 

PIP2 enhancement of VP AHPs. We tested many different Ca2+ buffer mixtures in the 

pipette, but observed the most consistent enhancements with 25 M fluo-4 + 175 M 

EGTA. Fluo-4 is a BAPTA-derived Ca2+ indicator dye with a binding affinity on the 

same order of magnitude as fura-2 (fura-2 145 nM; fluo-4 345 nM). We attempted to curb 

the rapid chealation of the dyes by minimizing their concentration of fluo-4 in the pipette 

and substituting with EGTA to maintain the same total concertation of buffer (200 M). 

When diC8-PIP2 was dialyzed through the pipette using this protocol, AHP amplitude and 

duration increased over a 20-minute recording period (Figure 7-1). The enhancement is 

more pronounced after a 40-spike trace (Figure 7-1C and D). The corresponding Ca2+ 

signals demonstrated inhibited and delayed peaks as well as prolonged transients. The 

peaks are occurring after the end of the spike train, and the transients are slower to return 

to baseline. This may suggest that PIP2 is recruiting the release of Ca2+ from internal 

stores. Another possibility is that PIP2 is interfering with a cytoplasmic mechanism that  



 

94 

 
 

Figure 7-1. diC8-PIP2 dialyzed through the pipette enhances Ca2+ in the presence 

of fluo-4 and EGTA. 

diC8-PIP2 successfully enhances VP sAHPs during Ca2+-imaging when the pipette 

contains 25 µM fluo-4 and 175 µM EGTA. (A) 20-spike protocol reveals enhanced AHP 

amplitude and duration over a 20 minute recording period. (B) Corresponding Ca2+ traces 

for the traces in (A). Note the delayed time to peak and the prolonged transient after peak. 

(C) 40-spike protocol AHP from the same cell as (A, B). The AHP enhancement is even 

more pronounced under these conditions. (D) Corresponding Ca2+ signals for traces in (C 

(C). Note again the delayed time to peak and slower transients during diC8-PIP2 dialysis. 
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buffers Ca2+. The traces provided are preliminary, as we had limited success with our 

buffer ratio (25 M fluo-4; 175 M EGTA). Fluo-4, even at low concentrations, often 

resulted in spontaneous, high frequency spiking during the stimulus. This made it 

challenging to acquire data over an adequate length of time. VP neurons without diC8-

PIP2 and OT neurons with diC8-PIP2 showed no signs of enhancement under these 

conditions (not shown). 

 

 

Conclusions 

 

 The original undertaking was to better elucidate AHP mechanisms in AHPs of 

MNCs residing in the SON, testing the possibility of PIP2’s role in such a mechanism. 

PIP2 undoubtedly contributes to the generation of an AHP in both cell types, but 

interestingly the mechanisms for the AHPs differ between the cell types. It plays an 

essential role in OT neurons where it is required for AHP activation while it plays a 

subtler role in modulation of the sAHP in VP neurons. 

 

 In Chapter 3, I characterized PIP2’s role in AHP activation of OT and VP neurons. 

Much of this work characterizes the effects of wortmannin, a toxin that inhibits PIP2 

production, but has higher affinity for PIP3 inhibition. We determined that wortmannin 

doesn’t significantly affect cell viability, nor are its effects on AHPs attributable to PIP3 

inhibition. Both mAHP and sAHP are affected by wortmannin in OT neurons. I isolated 

the sAHP using apamin to block the mAHP and found that wortmannin inhibited the 

sAHP in OT but not VP neurons. Furthermore, wortmannin inhibits OT AHPs in a dose 

dependent manner. This demonstrates that in both medium and slow AHPs of OT 

neurons, PIP2 is required to activate. Increasing PIP2 levels had no effect on OT neurons 

besides slowing rundown and preventing the effects of wortmannin, consistent to 

observations in Villalobos et al. 2011. By contrast, increasing PIP2 enhances the sAHP in 

VP neurons drastically. PLC inhibition has a similar effect as diC8-PIP2.  

 

 Because PIP2 depletion appears to inhibit both the mAHP and sAHP in OT 

neurons, an effect on Ca2+ entry or buffering within the cells seemed like a parsimonious 

explanation for PIP2’s effects. Failure of PLC inhibition to affect OT neurons indicates 

that downstream release of Ca2+ from Ca2+ stores via IP3 activation was unlikely. 

Remaining possibilities included Ca2+ entry or Ca2+ sensitivity as modulation targets of 

PIP2. I determined that PIP2 modulated Ca2+ entry through voltage-gated ion channels by 

demonstrating AHPs generated from uncaging Ca2+ were unaffected by wortmannin. This 

result was reinforced by demonstration (in slice and dissociated neurons (Ch. 5)) that 

Ca2+ currents were reduced after wortmannin in OT but not VP neurons.  

 

 Chapter 4 explored another aspect of AHP mechanisms in MNCs: The HVA Ca2+ 

channels that contribute Ca2+ that activates the AHPs. I demonstrated that in OT neurons, 

Ca2+ from N-type channels couples to both the mAHP and sAHP. N-type channel block 

doesn’t completely abolish the AHP in these neurons, suggesting that these AHPs aren’t 

only coupled to N-type channels, but rather coupling is strongest for N-type channels. 
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 The mAHP in VP neurons couples to N-type channels like OT, but the percent 

inhibition by CnTx GVIA was significantly lower compared to its effects in OT neurons. 

The R-type channel blocker SNX-482 produced a significant reduction in sAHP 

amplitude in VP neurons. Unlike N-type block in OT neurons, much of the AHP remains 

even after SNX-482. This suggests that VP neurons may receive Ca2+ from other sources 

such as LVA T-type channels or internal Ca2+ stores. 

 

 In Chapter 5, I investigated the manner in which PIP2 modulates Ca2+ channels in 

OT neurons. Our previous data indicated that Ca2+ entry was the primary locus where 

PIP2 effects AHP production (Chapter 3). In this chapter, we characterized Ca2+ channel 

currents in acutely dissociated MNCs from fluorescent protein-labeled neurons to avoid 

space clamp artifacts such as delayed activation or escaping tail currents. As observed in 

slices, wortmannin inhibits Ca2+ channel currents in OT but not VP neurons. 

Additionally, wortmannin shifts the activation curve leftward by 4.6 mV without 

changing the shape of the curve. There were no notable effects on activation time 

constants. Accelerated inactivation results from wortmannin application in OT neurons. 

 

 Since N-type channels appear to be the primary source of Ca2+ for AHPs in OT 

neurons, we tested the effects of wortmannin on pharmacologically-isolated N-type 

channels as well as the reciprocal whole-cell currents in which N-type channels were 

blocked. We found a significant reduction of N-type current after wortmannin and no 

significant change in current where N-type channels were blocked. These data show that 

the primary effect of PIP2 manipulation in OT neurons is exerted on N-type Ca2+ 

channels. Additionally, the isolated N-type currents display accelerated inactivation after 

wortmannin. This change in inactivation is unlikely to fully account for the drastic 

reduction in Ca2+ current amplitude. 

 

 Chapter 6 provides a cursory screening of possible relationships between AHPs 

and dendritic size. I find that there is a considerable relationship between AHP amplitude 

and dendritic length in OT (R2= 0.29) and VP (R2= 0.30) neurons. This relationship 

diminishes when the AHP is compared to dendritic area and dendritic volume. The poor 

relationship with volume may reflect the difficulty of deriving a three-dimensional 

architecture from a two-dimensional drawing of a dendrite. 

 

 Chapter 7 provides some preliminary findings that indicate that PIP2 affects Ca2+ 

buffering in VP neurons. This could possibly occur in the manipulation of Ca2+ from 

internal Ca2+ stores.  
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