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ABSTRACT 
 
 
 Despite the improved outcome associated with current treatment strategies of 
pediatric acute lymphoblastic leukemia (ALL), relapse still represents a major challenge. 
Pediatric ALL demonstrates branched evolution in response to selective pressure exerted 
by therapy; relapse founder clones emerge from pre-leukemic clones or minor subclones 
present at diagnosis. It is hence crucial to develop biomarkers capable of tracking 
subclones throughout therapy. Current practices for monitoring disease response in 
leukemia rely on the analysis of BM biopsy sample at specific time points throughout 
therapy. Not only the invasiveness of the BM biopsy hinders the sequential sampling, but 
also, the currently implied techniques are associated with a lack of sensitivity to detect 
subclones other than the major diagnostic clone. Somatic mutation detection in 
circulating-tumor DNA (Ct-DNA) offers a new venue for non-invasive studying of 
genetic heterogeneity and tracking clonal dynamics throughout therapy. Here, we employ 
targeted Next-Generation Sequencing (NGS) using a specifically designed ALL custom 
gene panel for Ct-DNA analysis of sequential plasma samples of 14 pediatric ALL during 
remission induction therapy. Utilizing 1 ml of plasma, Ct-DNA successfully captured all 
the clinically relevant somatic single nucleotide variants (SNVs) detected by whole 
exome sequencing (WES) in bone marrow (BM) biopsy samples at diagnosis. Moreover, 
we were able to show the ability of Ct-DNA analysis to track the change in the mutant 
allele fraction (MAF) across multiple time points as well as, to detect mutations in 
Flowcytometry (FC) MRD-negative patients. Taken together, sequential analysis of Ct-
DNA in plasma demonstrates a role, as a non-invasive technique, for detecting the clonal 
composition as well as, tracking clonal dynamics in pediatric ALL. 
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CHAPTER 1.   INTRODUCTION 
 
 

Overview 
 
 Acute Lymphoblastic Leukemia (ALL) shows the highest prevalence among 
children and adolescents in the United States, comprising one fifth of the cancers in 
persons aged below 20 years. [1] ALL is either B-cell or T-cell, both of which constitute 
different subtypes, harboring chromosomal alterations as well as, secondary sequence 
mutations. [2] ALL is polyclonal at diagnosis; most of  B-cell of leukemias having 
multiple subclonal mutations at diagnosis.[3] Chromosomal alterations, which 
compromise an early initiating event, have been used to risk stratify children with ALL, 
together with treatment response (i.e. minimal residual disease (MRD) at specified time 
points)[4, 5] Still, within the favorable risk group, a substantial number of patients, 
relapse [5]. A number of studies have addressed the change in the clonal dynamics and 
mutational landscape at relapse using matched used matched diagnosis/remission/relapse 
samples [3, 6, 7] Mutant allele frequency/fraction (MAF) defined as "the number of 
mutant reads divided by the total number of reads – coverage – at a specific genomic 
position" [8] changes from diagnosis to relapse, where in most cases, one minor clone 
that survived therapy and acquired additional mutations becomes the relapse founder 
clone [3]. Mutations in different pathways have shown to be enriched at relapse, of which 
NT5C2 and CREBBP have been shown to confer resistance to 6-mercaptopurine (6-MP) 
& glucocorticoids, respectively.[6, 9].  
 
 It has been postulated that therapy contributes to clonal evolution through either 
differential sensitivity or through mass extinction [10]. Besides, an increase in subclonal 
MAF preceded clinical relapse In one study, ultra-deep sequencing of sequential samples 
(4 patients) during maintenance phase, showed an exponential increase in the percentage 
of PRSP1 mutation (conferring resistance to 6MP) preceded clinical relapse, hence, 
indicating that PRSP1 could drive relapse. [11] Additionally, spatial heterogeneity 
at relapse has been demonstrated; a recent study had shown that in a case with combined 
(BM and testicular relapse), the testicular relapse represented an independent subclone 
from the BM relapse. [12] 
  
 Despite the advancement in treatment protocols, the currently applied strategies 
for ALL diagnosis and follow up have two main limitations hindering the detection of 
clonal diversity as diagnosis and longitudinal follow up of clonal evolution. First, single 
site BM biopsy at diagnosis lack the ability to capture tumor heterogeneity associated 
with spatially separated subclones.[13, 14]. Second, flow cytometry (FC) as well as, 
Polymerase Chain Reaction (PCR)-based methods for disease monitoring fail to detect 
evolved leukemic clones that were not initially detected at diagnosis [15, 16]. Thus, 
prohibiting early detection of somatic mutations that confer therapy resistance and 
consequently, relapse.  
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 In the light of the above findings, the incorporation of a sensitive biomarker 
capable of capturing temporal and spatial heterogeneity, would have a potential 
implication in real-time monitoring of the disease and guiding therapy accordingly.   
  
 Tumor derived Cell-free DNA or Circulating tumor DNA (Ct-DNA) has been 
isolated and characterized from the plasma of cancer patients, together with non-tumor 
derived Cell-free DNA (Cf-DNA). Ct-DNA is 167 bp double stranded DNA fragments 
released from apoptotic/necrotic tumor cells (12,13). Derived from different 
malignant subclones, Ct-DNA offers a representation of tumor heterogeneity, 
consequently, providing a better characterization of disease behavior than does currently 
used quantitative methods based on the detection of the most dominant diagnostic clone. 
Several proof-of-concept studies have demonstrated the utility of Ct-DNA in molecular 
profiling, monitoring of disease response, tracking therapy resistance, as well as, 
unraveling the heterogeneity of resistance mechanisms. [14, 17, 18]  
 
 Capturing heterogeneity at diagnosis, and more importantly, early detection of 
evolving resistant subclones have a number of therapeutic implications, i.e., the 
incorporation of newly discovered targeted therapies and small molecules to reverse a 
phenotype or to use different therapies sequentially to evade evolving clones.  (3,10,11).  
 
 In this project, we evaluated the utility of detecting somatic mutations in plasma 
Ct-DNA as a non-invasive technique for molecular profiling at diagnosis, as well as 
monitoring tumor dynamics throughout therapy. We performed Next-generation 
sequencing (NGS) of Ct-DNA (whole exome sequencing (WES) or targeted sequencing) 
from sequential plasma samples withdrawn during remission induction therapy. We then 
compared the MAF across different time points as well as, between BM biopsy, and 
plasma samples at diagnosis. 
 
 Our preliminary data showed that Whole Exome Sequencing (WES) is capable of 
detecting the change in predominance of subclonal somatic mutations in Ct-DNA.  We 
employed WES for the first recruited patients; however, data analysis was challenged by 
the large number of mutations detected, rendering it difficult to discriminate true 
mutations from false positive ones. Hence, for the next group of patients, we applied 
targeted sequencing using a specifically designed ALL customized gene panel. Our long-
term goal is to incorporate Ct-DNA in the clinical protocols as a minimally invasive 
biomarker for comprehensive molecular profiling, and longitudinal monitoring of disease 
response in pediatric ALL. 
 
 

Aim of the Work  
 
 NGS was applied to study somatic mutations in Ct-DNA in peripheral blood 
(PB)/bone marrow (BM) plasma. Plasma samples were obtained at diagnosis, at specified 
time points during, and at the end of remission induction therapy. MAF was calculated 
for all the specified time points. Study specific aims are:  
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1) To test the utility of Ct-DNA in capturing ALL tumor heterogeneity at diagnosis. 
We compared MAF detected by Ct-DNA analysis of diagnostic PB plasma to 
MAF detected by clinical WES of diagnostic BM biopsy sample. 

2) To test the utility of Ct-DNA in monitoring the change in clonal dynamics during 
remission induction therapy. We compared the results of somatic mutation 
detection in Ct-DNA to FC based clinical MRD, with a specific focus on patients 
with negative MRD. 
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CHAPTER 2.   LITERATURE REVIEW 

 
 

Genetics and Pharmacogenomics in ALL 
 
 
Introduction 
 
 Acute Lymphoblastic Leukemia (ALL) shows the highest prevalence among 
children and adolescents in the United States, comprising one fifth of the cancers in 
persons aged below 20 years. [1] ALL comprise a malignant clonal proliferation of 
lymphoid progenitor cells of the B-cell or T-cell lineage; B-cell lineage (B-ALL) being 
the most common.[2, 19].  Recent advances in cytogenetic and molecular techniques 
have allowed for the unraveling of the genetic basis of leukemogenesis, clonal evolution 
and relapse. Moreover, it allowed for the study of the prognostic significance of those 
genetic alterations, thus improving risk stratification and treatment outcome. [20]. ALL, 
either B-cell or T-cell, constitute different subtypes, harboring chromosomal alterations 
as well as, secondary sequence mutations. [2]. It has been proposed that the genetic 
alterations associated with pathogenesis as well as, relapse occur sequentially. Common 
inherited genetic variants and less frequently highly penetrant germline mutations 
predispose to ALL [2, 19]. It follows that chromosomal alterations, in the form of 
aneuploidy, translocations or intrachromosomal re-arrangement occur as an initiating 
event. Finally, secondary genetic mutations or structural alterations in in genes involved 
in tumor suppression, cell cycle regulation, apoptosis, lymphoid development and 
chromatin modification lead to the clinical manifestation of leukemia. [2]  
 
 Genetic heterogeneity, plasticity and clonal evolution in response to therapy 
further complicates the genetic landscape of leukemia, where in most cases relapse 
emerges from a subclone present at diagnosis or moreover, a pre-leukemic clone. 
Additionally, pharmacogenomic determinants of toxicity or response affects the outcome. 
[3, 5, 21-23]  
 
 A number of advancements led to the improvement in the outcome of ALL; the 
use of multi-agent chemotherapy, the use of response-adapted therapy where biological 
features together with minimal residual disease evaluation are used for patient 
stratification, as well as the consideration of pharmacodynamics, pharmacokinetics and 
pharmacogenomic features. Despite the unpreceded improvement in the outcome, relapse 
still represents a challenge. [5, 24] 
 
 
Germline Variants Associated with Increased Risk of ALL Development 
 
 Inherited susceptibility to ALL occurs through highly penetrant germline 
mutations, predisposing to high-risk childhood leukemia in rare familial cases or common 
susceptibility alleles, associated with lower risk for leukemia development. [23, 25]. 
During leukemogenesis, interaction occurs between inherited and somatic genetic 
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alterations, where specific inherited alleles predispose to specific chromosomal-defined 
subtypes, hence playing a role in disease pathogenesis and prognosis [26] Another 
synergistic interaction exists between inherited and acquired genetic alterations, where 
somatic mutations target ALL susceptibility loci [27] 
 
 Loss of function of mutations in TP53, associated with Li-Fraumeni syndrome, 
have been reported in more than 90% of children with low hypodiploid ALL. The 
mutations included missense, non-sense as well as, indels mostly in a homozygous state 
because of aneuploidy. The presence of TP53 in non-tumor cells in 43% of patients 
suggested that the mutation is either inherited or a denovo mutation acquired in germline 
or hematopoietic compartment. The inherited origin of TP53 was highly suggested due to 
the presence of family history in 2 patients and its confirmation in another patient through 
studying non-hematopoietic cells [28].  
 
 Mutations of PAX5 show another example of inherited deleterious penetrant 
mutations in pediatric ALL [23]. PAX5 is a transcription factor encoding B-cell lineage-
specific activator protein (BSAP). The transcriptional control of Pro-B cell development 
occurs through both activation of B-cell specific genes (BLNK, Igα, CD19) as well as, 
repression of alternate pathway genes (MPO, Notch1, M-CSFR), thus playing a major 
role in B-cell commitment and fate.  [29, 30]. A number of partner genes are involved; 
HIPK1, FOXP1, POM121, ELN, AUTS2, JAK2, ETV6, DACH1, PML, ZNF521, BRD1, 
CHFR, SOX5 and POM121C [27, 31, 32].  In 2013, inherited germline mutations of 
PAX5 were reported in two kindred of uncommon ancestry. The heterozygous germline 
variant affected PAX5 octapeptide domain and resulted in decreased transcriptional 
activity. PAX5 mutations were present together with deletion of 9p and loss of 
heterozygosity in all the affected children within both families. However, the mutation 
showed incomplete penetrance. [23, 29] 
 
 Other genes associated with increased susceptibility to ALL, among different 
groups, have been identified by GWAS association studies.  The top list includes 
ARID5B, IKZF1, CEBPE, CDKN2A, PIP4K2A, GATA3 and TP63 [25].  ARID5B (AT 
rich interaction domain transcription factor), IKZF1 (Transcriptional regulator of the 
differentiation of lymphoid cells) and CEBPE showed significant association with the 
risk of ALL, and in addition retained significant association to B-cell ALL. ARID5B was 
shown to be associated with an increased risk of development of hyperdiploid ALL. [33-
35].  CDKN2A encodes both p16 (INK4A) which negatively regulates cyclin-dependent 
kinases, as well as p14 (ARF1), an activator of p53.  rs3731217 which localizes to intron 
1 of CDKN2A showed significant association with both B-cell and T-cell ALL. [36]. 
However, ARID5B, IKZF1, CEBPE, CDKN2A altogether, underscore for 8% of B-cell 
precursor genetic variance. [37]. PIP4K2 belongs to a family of enzymes which 
phosphorylates phosphatidylinositol-5-phosphate to form phosphatidylinositol-5,4-
bisphosphate (PIP2), a PIP3 precursor.  The clustering of four SNPs within PIP4K2A 
gene intronic region was reported; with rs10828317 showing specific association with 
hyperdiploid ALL. [38, 39]  TP63 (a member of TP53 family) and PTPRJ (Protein 
Tyrosine Phosphatase, Receptor Type J, involved in the regulation of several cellular 
processes including cell differentiation, cell growth, mitotic cell cycle as well as, 
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oncogenic transformation) have been identified as susceptibility genes to ETV6-RUNX1-
rearranged pediatric ALL. [35].  
 
 Several studies have addressed the association between GATA3 (a transcription 
factor and putative tumor suppressor gene) and genetic susceptibility to B-cell leukemia. 
GATA3 rs3824662, which maps to a predicted enhancer, showed association with non-
(Tel-AML) positive, non-hyperdiploid ALL. rs3824662 homozygous risk allele showed a 
significant correlation to older age as well as, worse event free survival [39]. In a 
discovery GWAS in adolescents and young adult patients, the frequency of GATA3 risk 
allele was higher in patients aged 16yrs or above, compared to younger patients 
irrespective of the subtype. [40] In a GWAS of Ph-like ALL, rs3824662 allele showed 
strong association with Ph-like associated genetic lesions (JAK mutation, CRLF2 
rearrangement, and IKZF1 deletion). [26]. Additionally, rs3824662 A allele was 
associated with an increased risk of relapse, as well as higher level of MRD measured at 
end of induction. Compared to non-ALL controls, rs3824662 was also overrepresented in 
non-Ph-like-ALL implying a variant effect on ALL predisposition in general. [26].  
 
 
Recurrent Somatic Genetic Alterations of Precursor B-cell ALL (BCP-ALL) 

 
 Chromosomal alterations include aneuploidy, chromosomal rearrangements, and 
translocations [19]. Translocations either relocates oncogenes under the effect of 
regulatory regions of actively transcribed genes; hence leading to the dysregulated 
expression of the oncogenic protein or fuses two genes resulting in the expression of a 
chimeric functionally distinct protein. Several subtypes of ALL, lacking a single 
characterizing chromosomal alteration, have been characterized based on genomic (i.e. 
unique gene expression profile) or pathologic features. [2] Advancements in NGS and 
array-based cytogenetic techniques have allowed for the discovery of submicroscopic 
DNA alterations in genes involved in various cellular processes i.e. normal 
hematopoiesis, cell cycle regulation, tumor suppression and apoptosis. In addition, it 
allowed for a deeper insight into the known recurrent abnormalities, as well as the 
unraveling of gene targets involved in abnormal hematopoiesis and relapse. [20]  
 
 Aneuploidy. Aneuploidy is further classifier into the following: 
 
 High hyperdiploid ALL. defined as 51-65 chromosomes, confers good prognosis 
in 25-30% of BCP pediatric ALL. [20, 41] High hyperdiploid ALL genomic landscape 
showed involvement of histone modifiers and RTK-RAS pathway. Structural alterations 
included structural deletions, duplications, translocations, as well as complex 
rearrangements of a number of genes including ETV6, IKZF1, PAX5 and ADD3. Single 
nucleotide variations in the form of substitutions and indels were detected in nine genes 
including FLT3, KRAS, NRAS, WHSC1, CREBBP, and PTPN11, known to be associated 
with leukemia. [42] 
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 Hypodiploid ALL. defined as less or equal 45 chromosomes, represents 6-7% of 
pediatric ALL. [43] Hypodiploid ALL is further classified into subgroups; namely high 
hypodiploid (40-43 chromosomes), low-hypodiploid (32–39 chromosomes) and near-
haploid (24-31 chromosome) [44].  The first genomic analysis done to characterize 
hypodiploid leukemia has shown that near-haploid and low-hypodiploid show 
recognizably different sequence mutations and focal deletions, hence compromising two 
distinct subtypes. Near haploid ALL, harbored deletion in PAG1 (Csk-binding protein 
(CBP)), deletion of the lymphoid transcription factor gene IKZF3, deletions of a histone 
cluster at chromosome 6p22, activating genetic alteration (deletion, amplification and/or 
sequence mutation) affecting the RTK or RAS signaling pathway (of NF1, NRAS, KRAS, 
MAPK1, FLT3 or PTPN11 genes), RB1 alterations. Low-hypodiploid cases, however, 
showed TP53 sequence mutations (nonsense, missense and indels) in 88.2, IKZF2 
deletion, RB1 alteration. [28]. 
 
 Recurrent translocations of pediatric BCP-ALL. Translocations arise from 
either the fusion of two genes or the relocation of an oncogene into a regulatory region of 
another active gene. This results in the production of a new chimeric protein with a 
recognizably different function from the joined genes or the dysregulation of expression 
of an oncogene, respectively.  [2] 
 
 Common translocations of BCP ALL include ETV6-RUNX1 (TEL-AML1), 
TCF3-PBX1 (E2A-PBX1), BCR-ABL1 (Philadelphia chromosome), MLL gene 
rearrangements, IGH translocations and Intrachromosomal amplification of chromosome 
21 (iAMP21). Various translocations exist at different frequencies among different age 
and ethnic groups. [23].   
 
 Recurrent genetic alterations of pediatric T-cell ALL. T-cell ALL can be 
subclassified into three groups: (1) Early T-cell precursor (ETP), (2) Near-ETP ALL and 
(3) Non-ETP ALL. Detailed characteristics of ETP are discussed in the following 
section. T-cell ALL is associated with dysregulation of the expression of transcription 
factor genes. Such dysregulation can be employed to classify T-cell ALL into 8 groups 
according to the deregulated gene (TAL1, TAL2, TLX1, TLX3, HOXA, LMO1/LMO2, 
LMO2/LYL1 and NKX2-1).  TAL1 deregulation frequently occurs in both near- and 
non-ETP ALL; whereas TLX3 is more frequently detected in near-ETP cases, and 
deregulation of TLX1 deregulation showed to be the most common non-ETP ALL. [45] 
 
 New ALL subtypes. The newly discovered genetic alterations have a clinical 
implication on the diagnosis, risk assignment as well as, targeted therapy. [20] New ALL 
subtypes include Philadelphia chromosome-like ALL, Early T-cell precursor (ETP) ALL, 
DUX4-, and ERG-Deregulated ALL, and MEF2D, and ZNF384 gene fusions. [19] 
 
 Philadelphia chromosome-like ALL (BCR-ABL1-like ALL. BCR-ABL1-like 
ALL occurs at a higher frequency in young adults (27% vs 10% in children). This 
comprises a group of patients who possess leukemia cell gene expression profile similar 
to that of Ph-positive ALL, despite the lack of BCR-ABL1 fusion. However, the majority 
of patients in this group carries genetic alterations activating the kinase signaling 
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pathways. The most common genetic alterations detections are rearrangements in ABL1, 
ABL2, CRLF2, PDGFRB, PTK2B, TSLP, TYK2, CSF1R, EPOR, NTRK3, JAK2, and 
sequence mutations in   FLT3, IL7R, or SH2B3. [23, 27, 46, 47] 
 
 Early T-cell precursor (ETP) ALL. ETP ALL Early T-cell precursor (ETP) 
represents 15% of T-cell ALL and is associated with poor outcome. ETP comprises a 
distinct entity of leukemia, with a characteristic pattern of gene expression different from 
human early T-cell precursor cells. ETP ALL expresses myeloid or stem cell markers. 
Additionally, the gene expression profile of ETP ALL showed enrichment for signatures 
associated with poor outcome ALL (leukemic stem-cell signature, IKZF1-mutated high-
risk B-progenitor ALL signature). [19, 48, 49]. ETP ALL commonly demonstrates 
dysregulation in the expression of transcription factor genes LMO2/LYL1 [45] 
 
 Genes frequently mutated in ETP ALL comprise RAS signaling pathways, 
cytokine receptor regulation, epigenetic regulation and hematopoietic development. 
Activating mutations in genes involved in RAS signaling and cytokine receptor 
regulation (KRAS, NRAS, IL7R, FLT3, BRAF, JAK1, JAK3 and SH2B3) exist at the 
highest frequency. Genes harboring mutations that inactivate hematopoietic development 
include ETV6, RUNX1, IKZF, GATA3, and EP300 whereas histone modifying genes 
affected include SETD2, EZH2, EED, SUZ12, and EP300. [19, 48] 
 
 
Pathways Commonly Mutated in Pediatric ALL 

 
 Pathways commonly mutated in B-cell precursor ALL at diagnosis. In a study 
of clonal evolution of pediatric B-cell leukemia from diagnosis to relapse, high frequency 
of mutations was detected in six pathways at diagnosis and/or relapse. Different mutation 
frequency existed among different pathways; epigenetic modification (65%), Ras 
signaling (65%), JAK-STAT signaling, (25%), transcriptional regulation of lymphoid 
development (85%), nucleoside metabolism (45%), and cell cycle regulation (60%). In 
addition, NT5C2, CREBBP, WHSC1, TP53, USH2A, NRAS and IKZF1 mutations have 
shown to be enriched at relapse [3].   
 
 Pathways commonly mutated in T-cell ALL at diagnosis. In T-cell, ten 
pathways were recurrently mutated. As is the case with BCP, transcriptional regulation 
showed the highest mutation frequency (91%). Other pathways that showed recurrent 
mutations were cell cycle regulation and tumor suppression in 84% of the studied case, 
NOTCH1 signaling in 79%, epigenetic modification in 68% and to lesser extent JAK-
STAT signaling (25%), PI3K-AKT-mTOR signaling (29%), ribosomal function (13%), 
RNA processing (9%) whereas RAS signaling was only mutated in 14% of the cases. 
[45] 
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Somatic Mutations Associated with Relapse and Therapy Resistance 
  

 Mutation frequency has been shown to vary among different subtypes in relation 
to enrichment at diagnosis or relapse. Moreover, a number of studies have unraveled the 
association between specific mutations and therapy resistance. Importantly, the cytotoxic 
activity of novel small molecules in mutant cells has been shown, holding promise for 
future role in the clinic. Moreover, reversal of the resistant phenotype and regaining of 
sensitivity was demonstrated. [11, 50] 
 
 Several studies have addressed somatic mutations in epigenetic regulators in high 
risk groups of leukemia, however, the reported frequency varies in different subtypes of 
denovo ALL. 60% of hypodiploid cases carried somatic mutations in genes encoding 
epigenetic regulators. In contrast to other ALL subtypes where CREBPP is more enriched 
in relapse, mutation in CREBPP was the most common epigenetic regulator mutation 
reported in denovo hypodiploid ALL. CREBBP encodes a histone/non-histone 
acetyltransferases which plays a role in regulation of glucocorticoid gene expression, its 
mutation contributes to prednisolone/dexamethasone (glucocorticoid) resistance [9, 51]; 
[28] CREBBP  mutations were also prevalent among hyperdiploid ALL relapsed cases.  
[52]. Missense mutations were also detected in EZF2 gene; with 2 cases harboring EZF2 
mutations only at relapse [3, 48].  
 
 Matched diagnosis/remission/relapse samples of pediatric patients with B-cell 
ALL showed enrichment of mutations in genes coding epigenetic regulators at relapse, 
with 57% of the patients harboring epigenetic regulator mutations at relapse. Frequently 
mutated epigenetic regulators included MLL2, KDM6A and MSH6, as well as additional 
mutations in SETD2 and CREBBP. The high frequency of mutations detected in relapsed 
cases, as well as denovo high risk ALL, plus the different mechanisms by which SETD2 
and MSH6 can promote clonal survival, explains a possible role in chemotherapy 
resistance. The importance of such findings lies in the possible future role of epigenetic 
therapy aiming at inhibiting the enzymatic activity of the opposing regulators [53]. 
Another study also showed a relapse mutation rate in epigenetic regulator genes of 65% 
compared to 45% at diagnosis; with relapse-specific mutations found in WHSC1 and 
CREBBP; with CREBBP showing multiclonal mutations in one case  [3].  
 
 In a group of patients with ETP, 48% showed activating mutations in histone 
modifying genes, namely EZH2, EED, SUZ12, SETD2 and EP300 [28, 48]. Also, 
Mutations in WHSC1, SUZ12, SMARCA4, ARID4B and USP7 were reported as relapse 
specific mutations in T-cell ALL pediatric patients. A finding that highlights the 
importance of somatic mutations in epigenetic regulators is the detection of E1099K 
activating mutation in the H3K36 histone methyl transferase (WHSC1) as the only 
mutational difference between primary leukemia and relapse in a patient who suffered 
early relapse [7].  
 
 Several studies have reported RAS mutations to be subclonal, with a 
heterogeneous pattern of clonal evolution; where associated RAS mutations can be 
gained, lost or even retained from diagnosis to relapse. [3, 54] In BCP ALL, RAS 
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mutations (KRAS, NRAS, FLT3, PTPN11 were highly prevalent (Incidence 37.9%) at 
relapse, and more importantly, demonstrated significant association with early relapse 
(KRAS/NRAS), as well as CNS involvement [50] The role of RAS-MAPK signaling in 
drug resistance has been studied both in human cell lines as well as, mouse primary 
isogenic leukemic lymphoblasts. Functional analysis of RAS mutations corroborates a 
role of this signaling pathway in methotrexate resistance; as well as increased sensitivity 
to vincristine. Thus, positive or negative selection of RAS mutant clones can occur at 
relapse. [54].  
 
 In vitro functional analysis as well as, genetic study of T-cell ALL reported an 
association between IL-7receptor signaling components (including KRAS and JAK-1) 
and poor prednisone response and clinical outcome. [55]. An important 
pharmacogenomic implication to that association, is the finding that combining 
ruxolitinib, a JAK1/2 inhibitor, and dexamethasone may enhance the efficacy of 
glucocorticoids (GC) in a subset of T-cell ALL, with IL-7 dependent GC resistance. [56]  
 
 Multiple relapse-specific activating mutations in NT5C2, conferring resistance to 
purine analogues (6-MP and TG), have been discovered in both BCP and T-cell. NT5C2 
encodes a hydrolase which metabolizes and inactivates active metabolites of 6-MP, hence 
affecting 6-MP cytotoxicity.  Several groups demonstrated NT5C2 to be exclusively 
present in relapse samples. However, the frequency of NT5C2 varied across different 
studies from 3%-45% in BCP [3, 57] . Ma et al. detected NT5C2 at 45% in relapse cases, 
with 3 cases showing multiclonal mutations whereas, in 4 out of 14 cases, mutations at 
relapse were subclonal from the relapse founder clone.  [3]. NT5C2 demonstrated a 
significant association with early relapse (within 36 months of diagnosis). In was 
detected at a frequency of 16% in early relapsing patients and 100% of Individuals 
carrying NT5C2 mutations encountered early relapse [6].  
 
 In T-cell pediatric patients, NT5C2 was among the most common relapse 
mutations, detected at a frequency 19%-38.5% across different studies [7, 57]. As is the 
case in BCP, NT5C2 could be present as clonal or subclonal mutation at relapse, hence 
representing a late event in relapse. [7] 
 
 Mutually exclusive to NT5C2, multiple activating PRPS1 mutations have been 
identified as relapse specific in B-cell pediatric ALL. PRSP1 mutants modulate 
thiopurine activity indirectly through reduced feedback inhibition of de novo purine 
synthesis and hence, competitive inhibition of thiopurine activation. Mutant PRSPS1 
conferred early relapse in all patients who carried the mutation. Other relapse specific 
mutations in the denovo purine synthesis pathway have been detected; involving PRPS2, 
ATIC, ADSL, GART and PFAS. [11] 
 
 
Tumor Heterogeneity, Clonal Evolution and Therapy Resistance 

 
 The notion that tumors are formed of evolving clones predicts specific 
characteristics: the presence of clonal genotypes, the temporal change in clonal dynamics, 
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spatial variation across different sites, emergence of drug resistant clones, partial 
response to drug therapy, as well as relapse originating from minor subclones. [3, 58, 59] 
 
 Generally, ALL is polyclonal at diagnosis i.e. multiple genetically distinct clones, 
sharing the common clonal origin are present at diagnosis. It has been shown that 50% of 
the BCP ALL cases leukemias exhibit multiple subclonal mutations at diagnosis. 
Different subclones show various response to the selective pressure imposed by therapy 
[2, 3, 60]. It has been assumed that therapy exerts its effect on clonal evolution via one of 
three. The first model “Differential Sensitivity” model, in which active selection of 
therapy resistant clones takes place, resulting in convergent evolution, in which the drug 
resistant mutation become the predominant clone at relapse. Differential sensitivity 
model may show specific relevance to targeted therapies directed against genetic 
alterations not shared across various clones.  [10]. The second “Mass Extinction and 
Competitive Release” model, assumes equal therapy sensitivity across various subclones, 
as evident by comparable proportion pre-and post cytoreduction. In this second model, 
the evolutionary landscape is continuously altered by the clearing niche, causing the best 
fitting clone to expand. [10, 61]. The third model is “Chemotherapy Induced 
Mutagenesis”, where novel mutations are induced by genotoxic chemotherapy [10]. The 
last model is less likely to explain clonal evolution in pediatric ALL as current treatment 
protocols limit the use of mutagenic agents and there is no shift in mutation burden nor an 
increase in the burden of sequence mutations. [3]  
 
 A recent study of the mutational profiling in two ALL kids with testicular relapse 
has shown that in one case (combined BM and testicular relapse), the relapse clone 
evolved from an ancestral clone. Importantly, the VAF analysis showed that although 
BM and testicular leukemia originate from the ancestral clone, yet the testicular relapse 
represents an independent subclone (that shares a fraction of mutations with the 
diagnostic clone which were absent in the marrow). [12] 
 
 In most cases, a minor subclone at diagnosis that either harbors or acquires 
additional mutations conferring therapy resistance or else from ancestral clones 
(premalignant clone) prior to the dominant diagnostic clone, survives therapy and 
expands to be the relapse founder clone. To a lesser extent, predominant relapse clones 
are identical to or genetically distinct from the diagnostic clones representing a secondary 
leukemia. [2, 3, 5, 60].  Hence, a better understanding of clonal evolution, drug resistance 
mechanisms is required, in order to tailor therapy in a way that counters clonal evolution, 
consequently improving the outcome. [58].   
 
 
Clinical Implications of Monitoring Clonal Dynamics and Drug Resistance   
 
 Backtracking of serial BM samples in relapsing ALL patients harboring PRSP1 
mutation, conferring resistance to purine analogues, showed an exponential increase in 
the percentage of PRSP1 mutation, prior to clinical relapse. NT5C2 was also detected in a 
remission prior to clinical relapse. [11] 
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 The detection of somatic mutations has a great role in advancing precision 
medicine. Ruxolitinib, a JAK1 inhibitor, has been incorporated in a recent clinical trial 
for patients harboring genetic alterations (mutations, deletions or re-arrangements) 
affecting the JAK/STAT signaling (e.g., EPOR, IL7R, JAK1, JAK2, JAK3 or SH2B3). 
(unpublished data) Studies on small molecules also hold a great promise in combating 
resistance associated with specific pathways. Selumetinib, an allosteric selective 1/2 
MEK-inhibitor, demonstrated significant in vitro cytotoxicity against RAS-mutant ALL 
cells harboring KRAS, G12D and G13D or NRAS, Q61R. Moreover, it showed 
significant decrease in the level of circulating blasts in mice xenografted with RAS-
mutant primary ALL cells harboring KRAS, G12D or NRAS, Q61R; as well as 
significantly decreased the CNS disease burden. MEK inhibitors may carry a therapeutic 
role in the future in patients harboring RAS mutations. [50] Lometrexol, GART inhibitor, 
provides another example; it successfully inhibited denovo purine synthesis resulting in 
reversal of thiopurine resistance in PRPS1 mutant cells[11].  
 
 Not only small molecules show promising activity, conventional chemotherapy 
might still play a role in patients harboring mutations to as specific drug; i.e. in patients 
with NT5C2 mutations, the mutation didn’t confer resistance to Nelarabine, used as 
second line therapy in T-cell ALL. (T-cell). [57] 
 
 
Pharmacogenomics of ALL 

 
 In addition to the aforementioned genetic alterations; several germline variants 
play a role as pharmacogenomic determinants of toxicity or drug response affecting the 
treatment outcome.  
 
 Germline variants associated with poor outcome. In a Genome-wide 
association (GWAS) studying the relationship between genotypes at single nucleotide 
polymorphisms and risk of relapse, 134 SNPs were found to be associated with relapse. 
133 SNPs showed to be prognostic after adjusting for other risk factors. Top 25 SNPs 
associated with ALL relapse involved the following genes PYGL, MYRIP, LOC642340, 
PDE4B, TBXAS1, MAGI2, RIT2, NPFFR1, ATP8A2, PDE4B, ANTXR1, NPAS3, 
ATP8A2, STAG1, ANKS1B, ATP8A2 (validation frequency ranging between 37%-
79%). [62]  
 
  One important finding of the study is the significant association between relapse-
associated SNPs and pharmacokinetics and pharmacodynamics of 3 antileukemic drugs 
(L-asparaginase, dexamethasone and methotrexate) as follows: 2 relapse specific SNPs 
within FCHSD1 gene showed association with high L-asparaginase antibody levels and 
increased risk of relapse, 4 SNPs (2 in ABCB1 gene) showed an association with higher 
dexamethasone clearance, 5 SNPs (3 SNPs within the PDE4B gene) showed association 
with lower intracellular methotrexate polyglumate accumulation, as well as 3 SNPs 
associated with higher MTX clearance. The role ABCB1 (MDR1) in the transport of 
other chemotherapeutic agents (glucocorticoids, anthracyclines and vincristine), raises the 
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possibility that the association between ABCB1 SNP and outcome is due to unfavorable 
host pharmacokinetic properties as well as, intrinsic leukemic blast resistance [62] 
 
 Germline SNPs associated with increased toxicity to antileukemic therapy 
 
 SNPs associated with Vincristine toxicity. Several studies evaluated the 
association of SNPs to Vincristine peripheral neuropathy. A CEP72 variant is associated 
with increased vincristine neuropathy during maintenance therapy in pediatric ALL 
patients treated with 1.5 mg/m2 vincristine. The mutant protein (T allele at rs924607) 
increases sensitivity to vincristine through binding a transcription repressor, leading to 
lower level of CEP72 expression. Patients homozygous for the risk allele showed a 
significant increase in the cumulate incidence of Grade 3-4 neuropathy. [63]. CEP72 
polymorphism was not related to the incidence of neuropathy during or by the end of 
remission induction in the same patient cohort. [64]. Polymorphisms in drug transporter 
ABCC2 may play a role in vincristine neuropathy during induction, where 3 SNPs were 
shown to associated with neurotoxicity in early phases of treatment in the primary 
analysis yet didn’t reach statistical significance after FDR correction. [65]. A higher risk 
of high grade neurotoxicity was associated with one SNP in the ACTG1 gene, which 
encodes a major cytoskeletal protein ACTG. 2 SNPs in CAPG and ABCB1 genes were 
shown to be protective against low grade neurotoxicity. [66]  
 
 SNPs associated with 6-Mercaptopurine toxicity. The relationship between 
TPMT genetic variation and thiopurine toxicities has been well established and 
preemptive TPMT genotyping is used clinically to guide MP dosing during ALL therapy 
[67]. Despite the reduction in toxicity brought about by preemptive TPMT-guided dosing, 
clinically significant thiopurine-related myelosuppression is still observed in patients 
with so-called normal TPMT activity. [68]  
 
 Several recent studies addressed the association between genetic variants other 
than TPMT and 6MP toxicities. In the discovery GWAS of 657 children with ALL in the 
AALL03N1 cohort, a germline variant in NUDT15 (rs116855232) strongly associated 
with MP dose intensity in childhood ALL (P = 8.8 x 10-9), where the number of copies of 
the T allele at the NUDT15 SNP rs116855232 showed a significant correlation with 
tolerated MP dose, indicating a gene dosage effect. Patients heterozygous for NUDT15 
variants (TC genotype) tolerate 63% of a standard 6-MP dose and NUDT15-deficient 
patients (TT genotype) tolerated only 8% of a standard dose. Yang et al. also showed that 
rs116855232 genotype distribution varied substantially by race/ethnicity, being more 
frequent in East Asians (9.8%). Consistent with these findings Tanaka et al. 2015 showed 
a statistically significant NUDT15 association with grade 3-4 leucopenia development 
within 60 days of the initiation of maintenance therapy (early leucopenia) in a cohort of 
92 Japanese children with acute lymphoblastic leukemia. Although both TPMT and 
NUDT15 are associated with susceptibility to 6-MP toxicity, different mechanisms are 
hypothesized. [68] For TPMT, the risk variants affect metabolism leading to 
accumulation of TGNs, the active metabolite of 6-MP, in hematopoietic tissues while for 
NUDT15, susceptibility to toxicity involves DNA repair and apoptotic pathways.[69] 
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 Mutation in ABCC4 (rs3765534), a drug efflux transporter, showed significant 
association with severe neutropenia in Japanese patients with childhood leukemia. The 
combined effect of ABCC4 and heterozygous NUDT15 variants was similar to that 
conferred by loss of NUDT15 activity. [70] 
 
 SNPs associated with L-Asparaginase toxicity. A recent GWAS study detected 
an association between germline mutations in ULK2, a gene involved in autophagy as 
well as, in RGS6 gene (a negative regulator of G-protein signaling) and asparaginase 
associated pancreatitis (AAP). In patients <10 years, heterozygous for both risk alleles 
(ULK2 rs281366 and RGS6 rs17179470) showed AAP cumulative incidence of 85%, 
compared to 22.5% in patients harboring only one risk allele, whereas the incidence in 
patients without no risk allele was 4.1%.  [71] 
 
 Few studies addressed associations between SNPs and L-asparaginase 
hypersensitivity. Asparaginase allergy was significantly associated with GRIA1 variants 
(rs10070447, rs6890057, rs4958676, and rs6889909) [72], HLA-DRB1*07:01 allele 
(45% higher incidence of L-asparaginase hypersensitivity) [73] and intronic 
polymorphism in NFATC2 (rs6021191). It has also been shown that patients carrying 
both NFATC2 rs6021191 and HLA-DRB1rs17885382 variants are at higher risk of 
developing asparaginase hypersensitivity compared with patients with single or no risk 
alleles [74] 
 
 SNPs associated with methotrexate toxicity. The most common toxicities 
following MTX administration are nephrotoxicity, hepatotoxicity and myelosuppression. 
Several genetic polymorphisms showed association with a specific MTX toxicity. 
Polymorphisms of the ARID5B gene (rs4948502, rs4948496, rs4948487) were associated 
with MTX and 7-OH-MTX serum levels, and toxicity. SLC19A1 rs7499 was 
significantly associated with hepatotoxicity; yet SLC9A1 rs1051266 didn’t show 
correlation with toxicity. Granulocytopenia post 2gm/m2 MTX dose was associated with 
MTR rs3768142 [75]. SLCO1B1 also shows association MTX pharmacokinetics. [76] 
 
 

Monitoring Disease Response in Pediatric Leukemia 
 
 

Introduction 
 

 In leukemia patients, minimal residual disease (MRD) represents leukemic cells 
undetectable by morphologic examination of bone marrow smears. Acute lymphoblastic 
leukemia (ALL) has been at the head of the development of MRD methods.[77]  Testing 
of MRD has a great impact on the advancement of ALL treatment; it has shaped the 
definition of remission, proved to be the most important prognostic factor for treatment 
outcome and it measure during induction , as well as at specific points throughout 
therapy, has been used to risk-stratify the patients according to treatment response [4, 15] 
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Detection of Minimal Residual Disease (MRD) in Pediatric ALL  
 
 Sampling. An important point to consider, when looking into the reliability of 
MRD measurement in representing the burden of the disease, is that studies are 
performed on a single small bone marrow aliquot, assuming heterogeneity throughout the 
marrow. In fact, it has been shown as early as 1966 that heterogeneity is associated with 
the distribution of leukemia, where 38% of patients who were morphologically in 
remission by peripheral blood and single bone marrow samples had persistent infiltration 
in different site. [78, 79]  
 
 Analytical platforms for MRD measurement. Currently applied methods for 
measuring MRD in lymphoblastic leukemia are based on specific molecular and cellular 
characteristics [80] Each of the mentioned techniques is associated with advantages and 
limitations.  
 
 Flow Cytometry (FC). Leukemic blasts differ immunophenotypically from 
normal cells, as they express abnormal cell markers, hence flow cytometry can be used to 
detect leukemic lymphoblasts (based on the cell markers) with a limit of detection of 
0.01% (1leukemic cell in 10,000 normal cells). [79, 81]  The advantages of Flow 
cytometry are the accuracy of detection, ability to detect the hematopoietic cell 
maturation, easy storage of data and less time and labor needed compared to PCR. [15, 
82] 
 
 However, a number of limitations do exist. Flow cytometry is based on the 
phenotypic markers of the diagnostic dominant clone [16], the sensitivity is compromised 
by the difficulty inherited in the differentiation between ALL clones and regenerating 
blasts and importantly, it lacks the ability to detect emerging clones, that differ 
phenotypically from the diagnostic clone i.e. it doesn’t take into consideration the 
phenotype alteration associated with therapy derived clonal evolution. [15, 16, 82] 
 
 Polymerase Chain Reaction (PCR). PCR is applied to detect either 
rearrangement of T-cell receptor (TCR) and immunoglobulin (IG), which can be 
measured at a sensitivity of 0.001% by PCR. [83] the presence of chromosomal 
alterations (PCR amplification of fusion transcripts) [84] 
 
 Detection of TCR and IG re-arrangement by PCR shows high sensitivity and 
applicability in 90-95% of the patients. Moreover, in one study, it was shown to better 
predict T-cell leukemia patients with high risk of relapse than does flow cytometry[85]. 
As is the case with flow cytometry, the inability to detect subclones (due to the use of 
specific primer sets for the dominant clone) represents a major drawback. [15, 16] 
Additionally, PCR is associated with more time and labor due to the design of patient 
specific primer sets.[79]  
 
 A main advantage of the fusion transcripts amplification is that gene fusions, 
being early initiating events, exist in stable association with the leukemic clone, 
regardless of clonal selection. On the other side, drawbacks are the inaccurate 
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quantification due to intra-patient variability in the number of fusion transcripts per 
leukemic cell as well as, interpatient variability throughout treatment duration, and 
existence in less than half of leukemia patients. [3] 
 
 Next Generation Sequencing (NGS). Next generation sequencing is based on the 
use of consensus primers for parallel rapid sequencing. NGS overcomes a number of 
disadvantages associated with PCR. NGS is associated with higher sensitivity compared 
to PCR (up to 1 E06), the use of consensus primer rather than patient specific primers 
decreased the time and labor associated with the test, the ability to quantitate clonal 
evolution, hence allowing a deeper insight into the biology of leukemia as well as, the 
kinetics of relapse. The challenges associated with NGS is the need for the presence of 
high frequency index clone in the initial diagnostic sample and the expertise needed to 
use complex bioinformatics approaches in the analysis. [15, 16, 86, 87] 

 
 

Somatic Mutation Detection in Leukemia-derived Circulating DNA 
 
 

Introduction 
 

 Tumor heterogeneity, spatial and temporal, has been documented in cancer 
patients including pediatric ALL [3, 7, 12]. Therapy exerts a selective pressure leading to 
clonal evolution and therapy resistance [6, 10, 12]. Hence, one of the greatest challenge, 
for precision medicine, is to overcome tumor heterogeneity [88] , consequently 
improving the outcome.  
 
 Comprehensive characterization of the disease has been limited by sampling and 
technical issues incorporated in disease follow-up. Limitations associated with sampling 
include: single site biopsies lack the ability to capture heterogeneity among spatially 
separated malignant clones [14], the invasiveness of the procedures used limits the ability 
to obtain serial samples hence, the detection of the change mutational landscape 
throughout treatment [18]  , the sufficiency of the sample to perform multiple assays [88] 
and  quality of the specimens, i.e. BM hypoplasia or fibrosis can lead to low quality 
samples in MDS patients [17]. The criteria used to evaluate the disease, lack the ability to 
detect the change in the dynamics of the evolving malignant clones [17].  
 
 Ct-DNA analysis serves a minimally invasive technique, which can be repeated at 
multiple time points, comprehensively characterize contributions from heterogeneous 
clones [88]. and capture the differential response of different disease subclones 
throughout therapy and predict disease progression [17]. Moreover, the discovery of 
actionable mutations in Ct-DNA has potential important implications in the advancement 
of precision medicine. [14]  
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Characteristics of Cell-free and Circulating-tumor DNA 
 

 As early as 1948, Mendel and Mètais were the first to describe cell-free DNA (Cf-
DNA); fragments of DNA circulating freely in plasma. [89-91]. The detection of 
circulating DNA in the plasma of cancer patients occurred later, in 1987, when M. Stroun 
et al. isolated an extractable quantity of DNA from 27% of studied cancer patients as 
compared to none in normal controls, as well as, confirmed the human origin of the 
isolated DNA.[92] 
 
 Using murine models xenografted with human derived tumors, human derived 
circulating DNA was detected in the plasma of mice, along with an increased level of 
mouse derived DNA, demonstrating that CF-DNA is derived from both normal and 
tumor cells. [93]. The exact mechanism of release of circulating DNA into the plasma of 
cancer patients requires further elucidation. [94] Several mechanisms have been 
demonstrated mainly; apoptosis, necrosis, in addition to active secretion. [95] Apoptosis 
leads to the generation of fragments with size 180 bp or multiples, whereas necrosis 
produces much larger fragments. It has, hence, been suggested that different sizes of 
DNA fragments can be applied to distinguish between apoptosis and necrosis as sources 
of circulating DNA [96] However, studies demonstrated that 90% out of the total 
circulating DNA exist in a size range of 150-180bp [89] with a significant peak at 166 bp, 
representing a mono-nucleosome DNA length (147 bp) plus the length of the Histone H1 
linker DNA (20bp) [97]  
 
 The kinetic properties of Cf-DNA clearance have been derived from the studying 
of fetal Cf-DNA clearance from maternal plasma. The clearance of Cf-DNA occurs in 
two phases [98, 99], an initial rapid phase (mean half-life 1 hr.) corresponding to 
distribution/elimination followed by a second slower phase (mean half-life 13 hr.) 
corresponding to total elimination. [98, 100] It was also shown that several mechanisms 
contribute to clearance; with DNAse and trans-renal eliminations playing a minor role. 
[97, 98, 101] 
 
 It has been demonstrated that the change in circulating DNA level is correlated to 
treatment response after radiation therapy i.e. persistence of circulating DNA is 
associated with a poor treatment response whereas a decrease in the level of circulating 
DNA is associated with radiological signs of remission in different solid tumors. [102] 
Years later, it was shown, through the advancement of molecular techniques, that 
circulating nucleic acid displays a wide range of tumor-associated genetic alterations i.e. 
chromosomal alterations (Inversions & deletions), microsatellite alterations, point 
mutations, microsatellite alterations as well as, promotor hypermethylation. [10, 103] 
These finding, opened the door for studying the utility of Ct-DNA analysis in a wide 
range of applications in various tumor types.  
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Pre-analytical Considerations Affecting Cf-DNA Analysis 
 

 The variability in the levels of Cf-DNA detected across different studies can be 
attributed not only to the biological variability between patients, but also to the origins of 
contaminating DNA as well as, the sensitivity of the analysis methods. Hence, it is 
crucial to consider the pre-analytical factors that affect the stability and yield of Cf-DNA 
as well as, those that minimize contamination from other sources of DNA (i.e. genomic 
DNA).  [89] 
 
 Blood sampling. Plasma was shown to be a better matrix compared to serum for 
studying Ct-DNA. It has been shown that the increased concentration of Cf-DNA in 
serum occurs due to clotting of WBCs and release of genomic DNA which contributes to 
the higher concentration of Cf-DNA in serum. [104]  It has also been demonstrated that 
plasma is a better source for study tumor derived Cf-DNA. In mice xenografted with 
CRC cells, Thierry et al. were able to show that a higher concentration of Cf-DNA was 
detected in serum, as compared to plasma, when using murine specific KRAS wild-type 
primers. On the contrary, using human wild-type KRAS primers (targeting tumor derived 
Cf-DNA), the concentration measured was higher in plasma; indicating that plasma 
serves as a more reliable source for studying tumor derived Cf-DNA. [100, 105] 
 
 Anticoagulants. Lam et al. studied the effect of different anticoagulants on the 
concentration of Cf-DNA using quantitative real-time PCR. They showed that no 
significant difference in the concentration of Cf-DNA detected using heparin, citrate and 
EDTA as an anticoagulant as long as when plasma separation is done within 6 hr. from 
blood collection (P >0.05, Friedman test). However, after 24 hr., EDTA produced higher 
Cf-DNA concentration, compared to citrate or heparin. Hence, the authors recommend 
EDTA as the anticoagulant of choice if samples are to be stored for 24 hr. before analysis 
and considers all the three anticoagulants as acceptable options. [100, 106] 
 
 On the other hand, others recommend against the use of heparin as it might inhibit 
the polymerase chain reaction of downstream applications. [107] This later result was 
confirmed by Ginkel et al., reporting that the concentration of Cf-DNA concentrations 
can remain stable in EDTA plasma over 24 hr. until fractionation. [108]  
Another study was able to detect a significantly higher concentration in EDTA compared 
to heparin at 0 and 3 hr. (P<0.05). [109] 
 
 Handling of blood samples. The length of time and temperature of storage of 
plasma has been studied. Lam et al. showed that the total concentration of Cf-DNA 
increases after 24 hr. compared to the concentration at 0hr and 6 hr, irrespective of the 
anticoagulant used, likely due to apoptosis or necrosis of leucocytes. [106]  
 
 Cf-DNA quantification. Fluorospectroscopy and fluormetry quantification 
methods are used to measure isolated Cf-DNA. Mauger et al. studied the correlation 
between the Cf-DNA quantification carried by Nanodrop, Qubit to ddPCR 
measurements. They were able to demonstrate a significant strong correlation between 
the measurement obtained from Qubit show a significant strong correlation to the 
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measurements obtained by ddPCR. On the contrary, Nanodrop measurements lacked 
correlation with ddPCR measurements. Hence, the authors the recommend the use of 
low-cost Qubit quantification, to confirm that sufficient amount of DNA is isolated, prior 
to proceeding to PCR analysis. [109] 
 
 
Technological Platforms Used in Circulating-tumor DNA (Ct-DNA) Analysis 

 
 Introduction. Advancements in the molecular techniques and sequencing 
methods have allowed for an upsurge of studies of a wide range of applications of tumor 
derived Cf-DNA in various adult and pediatric cancers. [14, 17, 18]. Analysis of tumor 
derived Cf-DNA allows for the detection of the entire spectrum of tumor genetic 
alterations. The analysis of tumor derived Cf-DNA, however, is complicated by the low 
amount present in plasma (especially with low disease burden), the presence of non-
tumor derived CF-DNA in the plasma, the high degradation and additionally the tumor 
heterogeneity. Hence, sensitive detection techniques and analysis pipelines are needed. 
[89] 
  
 The detection of genetic alterations in Ct-DNA implies two main approaches; 
methods with a capability to detect all possible alteration and those targeting specific 
changes. [89]  
 
 Targeted approaches. The selection of targeted approaches for tumor derived 
CF-DNA analysis requires previous knowledge of hotspot mutations (specific positions at 
which mutations concentrate) and genetic alterations (indels and mutations). [89] 
 
 Digital Droplet PCR. Digital PCR, first described by Vogelstein et al., is based on 
mutation analysis by fluorescent probes. [110] The technique involves pairing digital 
PCR to Nanoliter-sized droplet technology where the PCR reaction is partitioned into 
10,000 to 20,000 independent polymerase reactions per tube, eliminating the error 
associated with reverse transcription and normalization. [111] ddPCR is associated with 
higher precision and less variability when compared to real-time PCR. [112] The 
technique is associated with increased sensitivity, limit of detection as low as 1 in 10,000 
copies (0.01%). [111], ddPCR can be applied in SNV, CNV analysis, rare variants 
detections and quantification of transcripts. [113] It has been implied in the analysis of 
Ct-DNA in a wide range of cancers as well as, for the validation of other methods used 
for Ct-DNA analysis [14, 18] 
 
 BEAMing. The workflow involves multiple steps: The workflow involves 
multiple steps: 
 

1) Coupling biotinylated oligonucleotides to streptavidin beads. 
2) Formation of microemulsions (an aqueous mix of PCR reagents, primer-bound 
3) beads. and DNA template mixed together with an oil/detergent mix). 
4) Conventional PCR. 
5) Breaking the emulsion, purification of the beads using a magnet.  
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6) Incubation of the beads with different oligonucleotides. 
7) FC to differentiate between different fluorescent beads.[114] 

 
 The technique has not been widely applied due to high cost, laborious workflow 
and low throughput. [113] 
 
 Clinical utility of BEAMING and ddPCR. In Colorectal Cancer patients, CF 
Tumor DNA has been used to identify actionable drug targets, track tumor dynamics 
throughout therapy as well as, monitor resistance to EGFR-blocking agents. Oncogenic 
mutations in RAS, NRAS and BRAF detect the lack of response to EGFR-blockade. By 
studying the mutations in the RAS pathway in matched tissue and blood samples, Ct-
DNA showed 97% concordant results. Additionally, it was able to capture mutations not 
detected in tissue samples in 8% of the patients, confirming its postulated capability to 
capture tumor heterogeneity. In a patient cohort refractory to EGFR, NGS has also 
allowed for the identification of somatic mutations in p53 and APC (known to be 
commonly mutated in CRC), somatic mutations in MEK gene, in addition to successfully 
detecting amplifications in ERBB2 and FLT3.  
 
 Ct-DNA successfully detected mutations associated with acquired (secondary) 
resistance to anti-EGFR antibodies (panitumumab or cetuximab) in colorectal cancer 
patients who progressed on treatment, Ct-DNA analysis was able to detect the presence 
of KRAS mutations in 73% of the patients, EGFR ectodomain mutations as well as, 
KRAS and MEK amplifications.  
 
 Longitudinal analysis of Ct-DNA in 5 the patients with KRAS mutations showed 
that the fractional abundance of KRAS mutations emerging at time of relapse, decreases 
upon suspension of the first line drug and remain below the level of detection with 
subsequent treatment.  
 
 Moreover, the study addressed the change in clonal evolution in a limited number 
of patients (3 patients) who received multiple rounds of anti-EGFR antibodies. The 
change in percentage of KRAS mutated alleles was carried in tissue or plasma samples. 
The KRAS clones decline upon suspension of EGFR blockage and increase after re-
challenge with anti-EGFR, despite partial response to the second line EGFR, showed the 
plasticity of CRC treated with EGFR blockade. This plasticity clearly shows the 
implication longitudinal real-time monitoring would have on treatment decisions which 
would otherwise depend an outdated molecular profile. It also supports the approach of 
adaptive therapy. The authors recommend that each new round of therapy should be 
selected based on a recent comprehensive molecular profile of the disease.  Hence, the 
plasma-based detection of Cf Tumor DNA may provide a more comprehensive 
interrogation of the mutational status of the RAS pathway than does the tissue-based 
molecular studies. [18] 
 
 Hence, Ct-DNA has a potential role in monitoring both intrinsic resistance due to 
primary tumor heterogeneity, as well as to dynamically tracking the acquisition of 



 

21 

secondary resistance to therapy through the selection of additional molecular alterations. 
[18] 
 
 Massive Parallel Sequencing (MPS) approaches. The study of tumor 
heterogeneity and evolution has been limited by the number of genetic lesions studied 
and/or the sensitivity of the techniques applied. [10] The advent of MPS, and associated 
improvement in sequence quality, read length and throughout have allowed it to provide a 
reliable method for Ct-DNA quantification. Although some limitations do exist; namely 
the efficiency of capturing the regions of interest and the high error rate of sequencing, 
different approaches to overcome associated limitations and decrease the error have been 
successfully applied. [89] 
 
 Techniques for quantifying Ct-DNA by MPS are classified into two main 
approaches, PCR-based on the amplification of the regions of interest using highly 
multiplexed specific primers and hybridization capture approaches in which to 
oligonucleotide probes complementary to the region of interest are used for capture 
followed by library amplification. Finally, deep sequencing is carried out to allow 
accurate quantitation of the relative amount of both wild type and mutant DNA at every 
specific locus. [89] The detection limit of Ct-DNA by ultrasensitive profiling is 
challenged by Cf-DNA recovery and errors introduced during library preparation and 
sequencing. [115]  
 
 Hybridization-capture based techniques. This approach involves barcoded 
library construction, followed by hybridization of the library(s) to oligonucleotide probes 
complementary to the region of interest. This is followed by isolation of the captured 
molecules (i.e. using streptavidin bead) then amplification using primer sets 
complementary to the library barcodes. [89] 
 
 Hybrid capture techniques comprise either on-array capture or in-solution capture, 
both being based on the use of oligonucleotide probes complementary to the regions of 
interest of the barcoded library.  The main difference, however, is the amount of DNA 
library and oligonucleotide probes. On-array capture use excess amount of library to 
oligonucleotide probes, hence requiring a library amount of 10–15μg as an input. [116] 
On the contrary, in solution capture utilizes excess probes over the DNA library, allowing 
capture from low input DNA library, [117] hence making it capable for use in Ct-DNA 
analysis. [89] 
 
 The advantage is this approach is the decreased contamination from non-apoptotic 
sources, due to lack of shearing step, which increases the Ct-DNA content of the library 
leading to an increased percentage of mutant Ct-DNA entering the analysis pipeline as 
compared to PCR-based methods. However, the technique is challenged by the low DNA 
quantity and quality.  [89] 
 
 A remarkably successful application of the use of hybridization capture 
enrichment strategy for NGS quantification of Ct-DNA is “cancer personalized profiling 
by deep sequencing (CAPP-Seq.)”, developed by Newman and colleagues. [115] 
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However, it requires a priori knowledge of recurrently mutated genes in the cancer of 
interest. [89] 
 
 Whole Exome Sequencing (WES). Whole exome sequencing can be utilized 
when a priori knowledge about mutations are lacking. [89] In a study of 6 adult patients 
with different solid tumors (Breast, Ovarian and Lung), Murtaza et al.2013 used exome 
sequencing of cell free tumor DNA to follow the genomic evolution of metastatic cancer. 
They were able to demonstrate that Ct-DNA represents the tumor genome. Additionally, 
they successfully tracked the change in MAF of the mutations detected in plasma after 
different courses of therapy; providing evidence for the utility of WES of Ct-DNA in 
monitoring clonal evolution and emergence of therapy resistance.  
The small number of patients recruited represents as limitation. Additionally, the 
selection of samples with high allele frequency (as detected by ddPCR and tagged-
amplicon deep sequencing (TAm-Seq.) limits the generalization 
of such findings to diseases with low Ct-DNA as well as, cases with low MAF.  
 
 Cancer Personalized Profiling by Deep Sequencing (CAPP-Seq.). The main aim 
for developing CAPP-Seq. was the design of a method capable of detecting somatic 
alterations in the majority of patients without the need of patient specific optimization at 
a reasonable cost. Newman and colleagues designed a selector for NSCLC, optimized the 
method and tested its clinical applicability in different stages of NSCLC.  
  
 CAPP-Seq. selector design. The selector is made up of biotinylated DNA 
oligonucleotides complementary to recurrently mutated regions in a specific cancer. 
Designing the selector comprises the combination of library preparation techniques from 
low input DNA to a 6-phase bioinformatics approach. The initial phase of the selector 
design involved the selection of genomic regions carrying known driver mutations in 
NSCLC from Catalogue of Somatic Mutations in Cancer (COSMIC). This was followed 
by the addition of exons that contain recurrent SNPs detected in 407 NSCLC by WES 
from The Cancer Genome Atlas (TCGA). The priority for exons to be included in the 
CAPP-Seq. NSCLC selector was done based on 2 metrics; Recurrence index (defined as 
“the number of unique patients (i.e., tumors) with somatic mutations per kilobase of a 
given genomic unit (i.e. exon) as well as, the number of unique patients (i.e. tumors) with 
mutations in a given genomic unit.  This allowed for keeping the selector size at 
minimum, while maximizing the number of missense mutations per patient. The authors 
then added exons of potential driver mutations. Finally, the authors added exons and 
introns with breakpoints for ROS1, ALK and RET rearrangements. [115] 
 
 The total selector size is 125 kb targeting mutations in 139 genes (521 exon and 
13 intron), offering the ability to detect 4 SNPs and to cover 96% of adenocarcinoma and 
squamous cell carcinoma patients. [115] The performance of CAPP-Seq. selector for 
NSCLC was carried by analyzing samples from cell lines, matched circulating 
DNA/leucocytes from NSCLC patients, Cf-DNA from healthy adults as well as, NSLC 
patients. The selector capture demonstrated uniformity and efficiency as shown by the 
size of the sequenced fragments. [115] 
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 The technique was optimized through studying different factors that would affect 
the limit of detection as well as accuracy of the approach have been studied. The recovery 
rate was in accordance with that of PCR, the sample cross contamination was 0.06% in 
multiplexed circulating DNA, the allelic bias towards reference alleles was minimum (as 
studied by analysis of heterozygous germline SNVs in peripheral blood) whereas the 
PCR and sequencing errors as measured by non-reference alleles distribution across the 
selector, showed to be reduced as compared to other techniques (mean background rate 
0.006% and median background rate 0.0003%). Further steps showed that the biological 
background doesn’t highly affect the quantitation of Ct-DNA at limits of detection > 
0.01%.  Importantly, the detection of fractional abundances at a range of > 0.02% 
(0.025% and 10%) were accurate and highly linear. [115] 
 
 Clinical utility of CAPP-Seq. CAPP-Seq. demonstrated utility in different aspects 
i.e. MRD monitoring, molecular profiling, assessment of response to therapy as well as, 
prediction of relapse free survival.  
 
 CAPP-Seq. Ct-DNA quantitation pre- and post- treatment accurately detected 
MRD in primary Stage I-III lung cancer patients. In the group of patients with Ct-DNA 
detected pre-treatment, MRD status (+ve/-ve) post treatment showed significant 
correlation with 3-yr progression-free as well as, event-free survival. The Ct-DNA MRD 
could actually predict disease progression (positive predictive value 100% and a negative 
predictive value 93%).[118]   
 
 In DLBCL, CAPP-Seq. showed utility in subtyping and risk stratification. First, 
somatic variants in genomic DNA were used to design Cell-of-origin classifier (CCO). 
CAPP-Seq. was then used to assess the performance of the classifier in tumor and plasma 
samples. CAPP-Seq. results for tumor and plasma were highly concordant (88%-93%). 
Initial Ct-DNA levels prior to treatment showed significant correlation with disease 
biomarker (LDH) and imaging (PET/CT metabolic tumor volume), International 
Prognostic Index (IPI) and, disease stage, hence, allowing for risk stratification of this 
group of patients. It was also shown that CCO by CAPP-Seq., in either plasma or tumor, 
can significantly predict PFS in this group of patients.  [119] 
 
 Studies also showed that Ct-DNA analysis by CAPP-Seq. can carry a role in 
selecting patients most likely to benefit from therapy, hence guide the clinical decision, 
consequently leading to a better outcome. In metastatic NSCLC, Ct-DNA quantitation by 
CAPP-Seq. was compared to CT scans (standard of care) for post immune checkpoint 
inhibitors (ICI) treatment response. Both Ct-DNA analysis by CAPP-Seq. and CT scans 
were done pre-treatment, and repeated post treatment every 6 weeks for CAPP-Seq. and 
every 2 months for CT scans. The first response assessment by CAPP-Seq. was done 
after a mean of 41 days from commencement of treatment compared to a mean of 60 days 
for CT imaging. Patients with partial response or stable disease (durable clinical benefit 
(DCB)), showed significant reduction in Ct-DNA as compared to patients with no 
durable benefit (NDB). Moreover, 100% of the patients who had undetectable Ct-DNA 
were in the DCB group. Hence, Ct-DNA would allow for earlier assessment of response 
to therapy and consequently patients who would benefit from ICI. [120]  
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 CAPP-Seq. utility in defining drug resistance mechanisms. Analysis of Ct-DNA 
by CAPP-Seq. proved beneficial in unveiling inter- and intra-patient heterogeneity of 
drug resistance mechanisms. Chabon. et al. applied a 302 kb CAPP-Seq. selector 
targeting 771 regions in 252 genes, followed by Illumina Hi-seq. 2500 High Output 
sequencing (median depth app. 5,500 x) for the analysis of sequential samples from 
T790M-positive NSCLC patients. They discovered inter- and intra-patient differences in 
the mechanism of resistance to different generations of tyrosine kinase inhibitors (TKIs) 
utilized in first as well as, second line treatment. [88] 
 
 In agreement with other studies, analysis of Ct-DNA by CAPP-Seq. was 
successfully applied for the molecular profiling. Pre-treatment (Pre-Rociletinib treatment, 
i.e. at progression on a first or second generation TKI) tumor and plasma samples showed 
high level of concordance for EGFR activating mutations and T790M (conferring 
sensitivity to Rociletinib). [88] 
 
 The authors showed that pre-treatment samples (resistant to first or second 
generation TKIs) harbor T790M in addition to other alterations (SNVs and CNV 
including MET), at a high frequency. The effect of such alterations (other than T790M) 
on response to Rociletinib was further investigated.  
 
 The change in clonal dynamics during Rociletinib therapy was also shown. 
Analysis of Ct-DNA captured the change in the relative ratio of T790M subclone to the 
EGFR activating mutation after the initiation of Rociletinib therapy. The relative ratio of 
T790M subclone to the activating mutation, in concordance with the results obtained 
from tissue biopsy, significantly declined at progression on Rociletinib therapy, 
indicating that Rociletinib is preferentially active against this subclone.  Additionally, the 
ratio of T790M to the activating mutation before Rociletinib initiation was significantly 
correlated with the treatment response; where patients with ratio ≤ 0.5 showing poor 
response compared to other patients, thus carrying a potential prognostic value. [88] 
  
 The group utilized the detected change in clonal dynamics, as measured by the 
change in the fractional abundance of putative resistance mutations, to unravel new 
mechanisms of resistance. As was the case with first line TKIs, Ct-DNA analysis 
revealed the heterogeneity of resistance mechanisms including MET copy number gain, 
concurrent SCNAs and SNVs in 65% of the patients developing resistance to Rociletinib. 
Based on the hypothesis that mutations driving resistance would be positively selected 
with therapy; an increase in the fractional abundance of the subclone harboring MET-
copy-number-gain led to further investigation of patients harboring the alteration. The 
authors were successfully able to demonstrate that MET-copy-number-gain confers 
resistance to Rociletinib, and that patients harboring MET-copy-number-gain experience 
a worse outcome. Interestingly, they were able to show that combination of Rociletinib 
and Crizotinib (MET inhibitor) leads to restoration of Rociletinib sensitivity in RR cells 
and patient-derived NSCLC xenograft model. [88] 
 
 More importantly, the study demonstrated a significant correlation between 
different mechanisms of resistance and PFS. Antecedent copy number gain in MET, 
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EGFR and ERBB2 was associated with PFS < 3 months (described by the authors as 
innate resistance), whereas a (PFS > 3 month) was associated with SNVs (described as 
acquired resistance).  Another seminal finding was the discovery of novel EGFR (L798I) 
tertiary mutation a KRAS activating mutation after TKI treatment in EGFR mutated 
NSCLC. [88] 
  
 Taken together, the aforementioned findings clearly demonstrate the therapeutic 
implication of Ct-DNA analysis in guiding therapy. In cases where multiple resistance 
mutations/mechanisms co-exist, single-pathway inhibition might be insufficient to elicit 
the desired response.[88] Ct-DNA holds a great promise in identifying patients who are 
more likely to benefit from single drug versus those who require a combination regimen. 
It follows that, incorporation of Ct-DNA analysis at diagnosis and throughout therapy, 
would not only impact the outcome; but also, the cost associated with administration of 
non-effective therapy. [88] 
 
 
Error Suppression for Deep Sequencing 
 
 For all applied sequencing approaches, a PCR step is included for Cf-DNA 
libraries enrichment. Despite using high-fidelity polymerases, which combine 
proofreading activity (3´→5´ exonuclease activity) with low error rates and keeping PCR 
cycles at minimal; the errors generated from PCR and sequencing (i.e. errors existing 
with bridge amplification at illumina platform) [121] remain a challenge for accurate 
detection of low frequency alleles.  [89, 115] Accordingly, the goal of error suppression 
methods is to be able to discriminate between reads originating from an original duplex 
and those originating from other fragments covering the same locus (i.e. representing 
different alleles or cells).[89]  
 
 Molecular indices comprise either random nucleotides, partially degenerate or 
defined nucleotides (in case of low template input) have been successfully employed to 
tag. [122]; single DNA strands or double-stranded DNA molecules. Single-strand 
molecular barcoding is associated with higher efficiency; whereas duplex molecular 
barcoding better suppresses errors.[123]  Two error suppression methods are introduced 
here, Safe-SeqS and iDES.   
 
 Safe-Sequencing System (“Safe-SeqS”). This approach mainly utilizes tagging 
of individual templates using endogenous or exogenous unique identifier (UID) and 
nested PCR amplification to amplify each uniquely tagged DNA molecules; for each UID 
tagged molecule, amplification results in UID family; each strand of the original duplex, 
produces a uniquely identified fragment.  Accordingly, a true mutation that exist in the 
original template should be present every daughter molecule i.e. shared across the UID 
family. This is followed by redundant sequencing; UID reads are used to organize the 
reads into a “UID family”. UID is designed as “supermutant” if the mutation is shared in 
95% of the family members. [121]  
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 The introduction of an endogenous UID is employed through introducing an 
exogenous sequence by PCR, ligation to the end of the DNA template; or shearing (in 
case of genomic DNA) and using original template ends as tags. The detailed method 
introduced by Kindle and colleagues utilizes shearing, which can’t be employed in the 
case of Ct-DNA as the fragment end distribution is not random. Briefly, shearing is 
followed library preparation, solid-surface capture, amplification and sequencing. Upon 
determination of the error rate with and without Safe-SeqS, the authors concluded that 
Safe-SeqS was associated with a 9-fold decrease in the error rate. [121] 
 
 Exogenous UID strategy for Safe-SeqS involves amplification with a set of 
primers targeting the gene of interest. The UID (random sequence 12-14 N) is attached to 
one of the primers at its 5’ end; both primers have universal sequence for later PCR 
amplification. Two PCR cycles are carried out to assign UID; as in the case of 
endogenous UID, each duplex produces two uniquely identified fragments. This is 
followed by PCR, using universal primers; followed by sequencing where the generated 
reads are used for UID family assignment and supermutants detection. [121]  
 
 Advantages of Safe-SeqS exogenous strategy is that it allows not only for the 
detection of the fraction of templates harboring the variants; but also, the quantitation of 
the number of templates analyzed. The technique can analyze low input samples with 
minimal template loss. Comparing Safe-SeqS to conventional analysis of illumina 
sequencing data showed an error reduction of 24- and 15-fold respectively when 
analyzing the prevalence of rare mutations in a single gene from human cells or short 
mitochondrial gene segment respectively. [121] 
 
 The applicability of the technique in analyzing multiple amplicons from a low-
input sample has not been studied; multiplexing is proposed to combat such a drawback. 
Additionally, Safe-SeqS success is dependent on the efficiency of early amplification 
cycles for UID assignment, which can be affected by the presence of inhibitors in the 
clinical sample. Also, during library enrichment, polymerase error can generate a new 
UID family; consequently, creating an artificial supermutant. Additional criteria for the 
analysis would help mitigate the effect of such factor. [121] 
 
 Integrated Digital Error Suppression method (iDES). Low concentration of 
Ct-DNA, especially post-treatment, represents a challenge for ultrasensitive detection 
techniques. CAPP-Seq. had > 50% sequencing artifacts below an allele frequency of 
0.02%. Newman et al. 2016 developed iDES error suppression method to overcome the 
sequencing errors challenging CAPP-Seq. at detection limit below 0.02%. [123] 
 
 Newman and colleagues designed “Index adapters” and “Tandem adapters”; 
detailed as follows.: (1) “Index Adapters” comprise a re-design of the original 8-base 
multiplexing barcode; an 4-mer “index barcode” is incorporated into the single stranded 
part of the adapter, adjacent to the now 4-base multiplexing barcode. During sequencing, 
Index barcodes are read with index reads. (2) “Tandem Adapters” include two exogenous 
index reads (to uniquely barcode each single strand of the original duplex) and two 2-
base-double stranded-UID “insert barcodes” integrated into the ds part, adjacent to the 
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ligating side, of the adapter. Insert barcodes are sequenced as part of the main read (at the 
beginning and the end of the read). Hence, for paired-end sequencing, 4-base UID is 
assigned to every single DNA strand. The authors note that that the position of insert 
and/or index barcode, as well as the length can be altered in different adapter designs to 
achieve the desired level of molecular diversity. [123] 
 
 The effect of “Index” and “Insert” barcodes on error suppression was evaluated 
using the NSCLC CAPP-Seq. selector previously described (under CAPP-Seq. Selector 
Design). Analysis done incorporating “index barcode” only resulted in 2.5-fold 
improvement in the mean error rate detected in the CAPP-Seq.  approach; whereas the 
incorporation of “insert” barcode only exceeded “index barcode” by 1.25 -fold. 
Employing both barcodes, the overall error rate was 9x10-5 error/base. [123] 
 
 Cell-free sequencing data showed that G>T transversions represent the majority 
of background errors. In their analysis for possible causes; Newman and colleagues were 
able to exclude in vivo oxidative damage and strand bias in sequencing as causes for such 
increase in G>T transversions. Evaluating different times associated with hybrid capture, 
they demonstrated that most of the errors is generated post ligation and during the 
enrichment step of strand-specific target sequence.  To mitigate background error, the 
authors designed a computational method “Background Polishing” through employing 
position-specific error modeling in a control cohort to allow error suppression in 
independent samples. [123] 
 
 Combining barcoding with background polishing “iDES” resulted in a 15-fold 
reduction of overall error rate (1.5 × 10−5 errors per base) achieving 98% error-free 
positions (as compared to 90%). [123] 
 
 The effect of iDES on the recovery rate (a known important factor affecting the 
detection limit) was evaluated using 32 ng of Cf-DNA. Post-capture recovery rates of 
60% were achieved for ∼ 10,000 input hGE, hence reducing errors without negatively 
affecting the efficiency of recovery. [123] 
 
 Furthermore, the effect of iDES on CAPP-Seq. detection limit was validated. A 
Glioblastoma multiforme personalized CAPP-Seq. selector was designed to cover 1502 
non-synonyms SNV; 32 ng of healthy Cf-DNA were spiked various proportions of GBM 
DNA molecules. The iDES-enhanced-CAPP-Seq. limited of detection was 10-fold below 
that reported for CAPP-Seq. i.e. 0.0025% (using 30 mutations and ∼ 3000 hGE). [123] 
 
 In samples obtained from NSCLC patients prior to clinical progression, a 
detection limit of 0.004% was achieved. iDES-enhanced-CAPP-Seq. successfully 
detected Ct-DNA in 93% of patient prior to treatment; and significantly detected in 73% 
of pre-and post-treatment samples (Specificity 100%). [123] 
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Ct-DNA in Hematological Malignancies 
 

 Employing advanced molecular approaches, proof-of-concept studies have 
demonstrated the utility of Ct-DNA analysis for mutational profiling and longitudinal 
monitoring in different hematological malignancies. [14, 17] 
 
 In patients with Myelodysplastic Syndrome (MDS), targeted deep sequencing of 
55 genes (known to be mutated in MDS) detected the driver mutations with 100% 
concordance between matched BM and plasma samples. Moreover, the MAF detected in 
Ct-DNA showed an excellent correlation (r2 = 0.84) with that measured in BM across 
most of the matched points, providing evidence for Ct-DNA as a non-invasive biomarker 
for disease monitoring. Importantly, monitoring of somatic mutations and karyotype 
abnormalities throughout therapy; successfully predicted treatment failure. [17]  
 
 The utility of somatic mutation detection in Ct-DNA in monitoring disease 
progression was also demonstrated in Multiple Myeloma (MM), where the change in the 
fractional abundance of a clone specific mutation showed concordance with the clinical 
disease status i.e. increase in FA coincided with disease relapse or moreover, occurred 
prior to serological markers detection.  [14]  
 
 Furthermore, Ct-DNA analysis showed applicability in the comprehensive 
characterization of MM mutational landscape, as an adjunct to BM. Mithraprabhu et al. 
utilized OnTarget mutation detection platform which includes 96 mutations in the KRAS, 
NRAS, CTNNB1, EGFR, PIK3CA, TP53, FOXL2, GNAS and BRAF genes, to study 
BM and plasma of newly diagnosed and relapsed/refractory MM patients. Out of total 
128 mutations detected, 46% showed concordance between BM and plasma, 30% were 
detected in BM only, whereas 24% were detected only in plasma; hence giving a 
supporting evidence for the presence of spatial heterogeneity in MM. [14] 
 
 
Ct-DNA in Pediatric Leukemia  
 
 Studies of Cf-DNA  in pediatric leukemia focused on the quantification of 
leukemia MRD, done by RQ PCR using allele specific oligonucleotide (ASO) primers for 
Ig/TCR targeting the junctional region, during early phase of treatment.[124, 125] In 
accordance with previous studies showing a higher Cf-DNA concentration in cancer 
patients, higher total plasma DNA was detected at diagnosis in pediatric ALL, as 
compared to healthy children, which decreased back to normal levels by D4. Sequential 
quantification of total plasma DNA, and leukemic MRD in pediatric ALL patients at 
specific time points during induction phase, demonstrated significantly higher plasma 
total DNA level initially and at D3 versus later time points, which correlated to the 
leucocyte count. Slight elevation in total DNA concentration was detected on D33 and 
week 12, alongside with marrow regeneration. Leukemia MRD detected qualitatively 
showed high concordance (86%) with MRD detection in leukocytes. [124] Leukemia 
MRD was below the limit of detection (cutoff of 10-5) at D33 and week 12. Despite the 
lack of correlation between FC-MRD and plasma leukemic MRD, plasma leukemic MRD 
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(D15, cutoff of 10-4) showed an independent correlation to the risk of relapse in both 
univariate and multivariate analysis in Chinese children. [125] 
 
 Limited by the sensitivity of the techniques used [126], the studies couldn’t 
solidify a role for Ct MRD quantification of Ct-DNA, yet, they clearly demonstrated the 
feasibility of analyzing Ct-DNA in this group of patients, showing that the analysis of Ct-
DNA in pediatric leukemia carries great promise if more advanced sensitive techniques 
are incorporated in the analysis.  
 
 

Rationale of the Study  
 
 Multiple genetic factors play a role in the pathogenesis and prognosis of pediatric 
leukemia. Interaction occurs between inherited and somatic genetic alterations, where 
specific inherited alleles predispose to specific chromosomal-defined subtypes. [1] The 
genetic landscape of leukemia is further complicated by the genetic heterogeneity; the 
disease reported to be polyclonal in 50% of the patients at diagnosis. [2] Additionally, 
pharmacogenomic determinants of drug response and toxicity affects the outcome [3]. 
 
 MRD-adapted therapy, in which risk stratification is based on biological features 
and response to therapy has been associated with an improvement in the treatment 
outcome. [4] Nevertheless, within the favorable risk group, a substantial number of 
patients, relapse. [5]  
 
 Advancement in the molecular techniques have provided a deeper insight into the 
biology of relapse. In most cases, relapse emerged from a minor clone at diagnosis or 
rather a pre-ancestral clone which survived therapy, acquired additional mutations to 
become the relapse founder clone. Moreover, mutations enriched at relapse were 
unraveled as well as, in many cases their association with drug resistance. [9, 11, 57]  
 
 Although several studies have addressed the role of clonal evolution in relapse [3, 
7], the change in clonal dynamics has been only studied at diagnosis, remission and 
relapse. Hence, the knowledge of real-time change in the clonal dynamics, in response to 
therapy, remains obscure.  
 
 Also, despite the demonstrated impact of heterogeneity on clonal evolution and 
relapse, comprehensive characterization of the disease at diagnosis or throughout therapy 
is still limited. This is attributed to the inherent limitations in the currently applied 
strategies for ALL diagnosis and follow up. Two main limitations hinder the detection of 
clonal diversity at diagnosis and longitudinal follow up of clonal evolution. Firstly, 
samples for response assessment are obtained through single-site BM biopsy. The 
invasiveness of the technique hinders its use for sequential analysis. [6,7] Additionally, a 
single BM aliquot fails to capture  tumor heterogeneity associated with spatially 
separated subclones. Secondly, MRD assessment is done either by Flowcytometry or 
PCR, both of which lack the ability to detect subclones that differ from the major 
diagnostic clone. [8,9] 
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 The finding that an increase in the percentage of mutations conferring resistance 
precedes clinical relapse, together with the successful reversal of resistance using small 
molecules or targeted therapies, implies the importance of incorporating techniques 
capable of tracking clonal dynamics into clinical management protocols. [10]  
 
 Hence, the development of biomarker that is capable of real-time follow up of 
clonal dynamics and therapy resistance carries great promise in leukemia monitoring, 
consequently guiding therapy. 
 
 Ct-DNA was shown to be derived from different malignant subclones and hence 
offers a representation of tumor heterogeneity and would thus provide a better 
characterization of disease behavior than does currently used quantitative methods based 
on the detection of the most dominant diagnostic clone.  Importantly, it would serve as a 
minimally invasive technique, which can be repeated at multiple time points.  [11] 
 
 Several proof-of-concept studies have demonstrated the utility of Ct-DNA in 
different application in various hematological and solid cancers. [11,12,13,14]. The 
analysis of Ct-DNA showed high degree of concordance to BM or tissue biopsy; 
demonstrating its utility in molecular profiling. [11,12]. Additionally, measurement of 
MAF in Ct-DNA showed utility in longitudinal monitoring of the disease [14]. Moreover, 
analysis of Ct-DNA allowed for tracking drug resistance and discovering drug resistance 
mechanisms. [11,13] 
 
 However, studies of Ct-DNA in pediatric leukemia were limited by the sensitivity 
of the techniques used yet, they were still able to demonstrate its feasibility in sequential 
analysis during early treatment phase of treatment. [15,16] 
 
 

Study Objective 
 
 In this project, we study the utility of somatic mutation detection in plasma Ct-
DNA as a method for molecular profiling at diagnosis, as well as monitoring tumor 
dynamics throughout therapy. We employed WES for the first recruited patients; 
however, data analysis was challenged by the large number of mutations detected and the 
difficulty to discriminate true mutations from false positives. For the next group of 
patients, we applied targeted sequencing using ALL customized gene panel. The MAF is 
compared across different time points as well as, between BM and Plasma samples at 
matched time points.  
 
 Our long-term goal is to incorporate Ct-DNA in the clinical protocols as a 
minimally invasive biomarker for comprehensive molecular profiling and longitudinal 
monitoring of the disease in pediatric ALL 
 
 NGS was applied to study somatic mutations in peripheral blood (PB)/bone 
marrow (BM) plasma Ct-DNA at diagnosis, at specified time points during, and at the 
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end of remission induction therapy. MAF was calculated for all the specified time points. 
The specific aims of the current work are:  
 

1) Testing the utility of Ct-DNA in capturing ALL tumor heterogeneity at diagnosis. 
MAF detected by Ct-DNA analysis of diagnostic PB plasma is compared to MAF 
detected by clinical WES of diagnostic BM biopsy sample.  

2) Testing the utility of Ct-DNA in monitoring the change in clonal dynamics during 
remission induction therapy. Somatic mutation detection in Ct-DNA was 
compared to FC based clinical MRD, with a specific focus on patients with 
negative MRD. 
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CHAPTER 3.   METHODOLOGY 
 
 

Patients and Samples  
 
 All patients were enrolled in Total Therapy Study XVII (TOTXVII), St. Jude 
Children’s Research Hospital. Samples were collected with informed consent for research 
use and approval of IRB. BM samples were collected at time of diagnosis, D15 and at the 
end of induction. Peripheral blood samples were collected at diagnosis, Induction therapy 
D3, 8, 15, 22 and at the end of induction.  
 
 

Separation of Plasma from Peripheral Blood  
 
 Blood samples were collected, at the specified time points during induction 
therapy, in K2EDTA tubes and plasma separated as follows: samples were diluted with 
PBS in a ratio 1:1, followed by centrifugation at 1600 g (10 min) , plasma is then 
separated and re-centrifuged at 14000 rpm (10 min.) to remove any residual cells, then 
stored  at -80°C as 1 ml aliquots until Cf-DNA extraction. BM and blood samples were 
fractionated by the biorepository staff. 
 
 

Cell-free DNA Extraction and Quantification 
 
 Cf-DNA was extracted from 650 μl – 1000 μl (average 950 μl) of plasma or non-
cellular BM (BM plasma) using Maxwell RSC ccfDNA Plasma Kit, according to the 
manufacturer’s protocol using 40 μl Qiagen elution buffer. Following extraction, Cf-
DNA was quantified using Qubit dsDNA High Sensitivity Kit.  
 
 Technical details for using Maxwell RSC ccfDNA Plasma Kit can be accessed at 
https://www.promega.com/resources/protocols/technical-manuals/101/maxwell-rsc-
ccfdna-plasma-kit-protocol/. [127] 
 
 

Construction of Adapter-ligated Libraries 
 
 For each sample, the whole amount of Cf-DNA isolated was input into library 
preparation. Library preparation was carried out by NEBNext® Ultra™ II DNA Library 
Prep Kit for Illumina (NEB #E7645) according to manufacturer’s protocol with few 
modifications: (1) no size selection was done irrespective of the input (2) Kappa 10x 
primer mix was used for PCR enrichment of the adapter-ligated libraries (3) For WES, 
dual indexed adapters were used whereas for targeted capture, index barcoded adapters 
were employed (4) Qiagen EB buffer was used for elution. 
 
 Since no pooling guidelines were available for Nextseq, we selected adapter 
combinations based on TruSeq DNA Sample Preparation Guide (Pooling Guidelines) for 
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Hiseq./Miseq. (https://support.illumina.com/content/dam/illumina-
support/documents/documentation/chemistry_documentation/samplepreps_truseq/truseqd
na/TruSeq_DNA_SamplePrep_Guide_15026486_C.pdf) [128] as well as, general pooling 
guidelines (https://support.illumina.com/bulletins/2016/10/library-pooling-guidelines-for-
the-nextseq-and-miniseq-systems.html). [129]  
 
 Post PCR clean-up was carried as single or double-sided cleanup.  Libraries were 
quantified using Qubit ds-DNA High Sensitivity Kit. Following library preparation and 
quantification, QC Miseq run was performed for assessment of the quality of the 
sequencing libraries prior to hybridization capture.  
 
 

Hybridization-based Capture and Sequencing 
 
 For each case, libraries (equivalent to pre-defined induction time points) are 
pooled (multiplexed) together (in a ratio 1:1) into one capture.  
  
 For WES, hybridization-based exome capture was done according to IDT 
protocol Hybridization capture of DNA libraries using xGen® Lockdown® Probes for 
Illumina HT- Adaptor Ligated Libraries according to manufacturer’s protocol, using 
xGen® Exome Research Panel which consists of 429,826 probes, spans a 39 Mb target 
region (19,396 genes) of the human genome and covers 51 Mb of end-to-end tiled probe 
space. Enriched libraries were quantified using Qubit™ dsDNA BR Assay Kit. QC 
Miseq run was performed for assessment of the quality of the pooled libraries prior to full 
Nextseq run employing Illumina Nextseq High Output lane. 
  
 For targeted capture, the same protocol was applied using the custom gene panel 
which covering ≅ 1668 exons and 319.4 kb.  
 
 

Design of the Mutation Capture Panel 
 
 A specific ALL custom gene panel was designed by our lab. computational 
biologist. Initially, the list combined a number of genes known to harbor somatic 
mutations in ALL derived from different pathways/sources (1) Oncogenic pathway,   
(2) Tumor suppressor genes, (3) Relapse-specific genes, (4) Drug metabolism, (5) 
CRISPR/Cas9 screening (unpublished data), (6) Genes associated with glucocorticoid 
resistance, (7) xGen® Pan-Cancer Panel (which includes list of genes derived from 
TCGA; known to be mutated across multiple cancer types. Finally, the genes which 
harbored ≥ 3 non-synonyms SNVs in B-cell or T-cell (either at diagnosis or relapse) in 
the SiTH database (derived from ≅ 500 patients) were selected for the final panel. Probes 
were designed to the genomic regions surrounding the mutations (Personal 
communication with Ousman Mahmoud on 17th March 2018, Charles Gawad Lab. St. 
Jude Children’s Research Hospital) (Appendix A. List of Genes of Custom ALL 
Panel). 
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Processing of Sequencing Data   
 
 For WES, Trimmomatic was employed for trimming adapters and illumina 
sequences. Sequence reads were aligned to the reference genome using Burrows-Wheeler 
Aligner (BWA-aln/sampe). Alignments were sorted by co-ordinate using Picard.SortSam. 
GATK was employed for marking duplicates, local realignment and base-recalibration. 
Variant calling and filtering was performed using Mutec2. Annotation was carried out 
using Annovar.  
 
 For targeted sequencing using the ALL customized gene panel, sequence reads 
were de-multiplexed using Picard, FgBio, Samtools. Sequence reads were aligned to the 
reference genome using Burrows-Wheeler Aligner (BWA-aln/sampe). Fgbio was 
employed for UMI consensus calling. Reads were grouped by UMIs (Fgbio – 
GroupReadsByUmi) Consensus reads generated (Fgbio –CallMolecularConsensusReads) 
and filtered (Fgbio– FilterConsensusReads). Sequence reads were aligned to the 
reference genome using Burrows-Wheeler Aligner (BWA-aln/sampe). GATK was 
employed for marking duplicates, local realignment and base-recalibration. Varscan was 
applied for mutation detection. Variant filtering was done according to specific criteria 
including: the presence in ≥ two time-points, location within the target region, Non-
synonyms mutation and absence from germline. Additionally, mutations detected in 
sequence repeats are removed as well as, those present across multiple samples.  
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CHAPTER 4.   RESULTS 
 
 

Study Design and Patient Enrollment  
 

 14 patients recruited in St. Jude Total Therapy Study XVII were included in the 
study. B-cell precursor comprised 11/14 (78.6%) whereas T-cell represented 3/14 
(21.4%).  The patients’ age ranged from 2.6 to 17.3 years (Table 4-1). Using NCI risk 
criteria for classification of precursor B-cell cases, 4 patients were classified as High risk 
(WBCs ≥ 50,000 cells and/or Age ≥ 10 years) and 7 patients were Standard risk (WBCs < 
50,000 cells and/or Age < 10 years). Provisional risk stratification as well as, final risk 
stratification according to Total XVII study is summarized in (Table 4-2). Total XVII 
provisionally classifies patients into three risk groups (low-, standard-, or high risk) 
according to several presenting features (age, TLC, CNS status, molecular, cytogenetic 
diagnosis and immunophenotyping (IPT). Early response to therapy, as measured by 
MRD during and at the end-of-induction therapy dictates the final risk stratification. 
(Appendix B.  Total XVII Risk Stratification).   
 
 In Total study XVII, NGS is implemented as a diagnostic clinical standard-of-care 
for all patients enrolled in the protocol. WGS, WES and transcriptome sequencing are 
carried by the clinical pathology lab.; genetic alterations with relevance to diagnosis or 
management are reported in patients’ clinical records. Total XVII therapy implies 
Flowcytometry based MRD for response assessment during induction therapy and 
throughout treatment. During induction, MRD is evaluated in BM on D15, D22 (in 
patients with D15 MRD ≥ 1%) and at end of induction (D42); whereas MRD evaluation 
in PB is carried out on D8.   
 
 We performed Ct-DNA analysis in sequential plasma samples withdrawn at 
equivalent time points. BM-plasma was evaluated on D1, D15 and at end of induction; 
whereas PB-plasma was evaluated on D1, D3, D15, D22 and at end of induction.  
 
 

Somatic Mutation Detection in Leukemia-derived Cell-free DNA 
 

 Cf-DNA was isolated from PB plasma and BM plasma using Maxwell® RSC 
ccfDNA Plasma Kit. Extracted DNA was quantified by Qubit™ dsDNA HS Assay Kit. 
whole amount of Cf-DNA isolated/sample was used as input into library construction. 
Molecular barcoding was incorporated into library preparation for targeted sequencing. 
Libraries were quantified using Qubit™ dsDNA HS Assay Kit, analyzed on agarose gel 
to confirm the size of the fragments. This was followed by QC Miseq. run for libraries. 
Following library construction, samples were either exome captured using IDT Exome 
Panel or targeted capture. Post exome or target enrichment, libraries were sequenced on 
Illumina NextSeq. 550-platform. Analysis of sequencing data was done by a 
bioinformatics pipeline for the detection of somatic SNV.
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Table 4-1. Patient Characteristics 
 

Case# IPT CRLF-2 
Expression 

Age 
(yrs) 

Initial 
WBCs 

(x10e9/L) 

CNS 
Status 

Stemline 
DNA 
Index 

t(9;22) 
CML 

t(9;22) 
ALL 

t(1;19) t(4;11) t(12;21) 

Case 1 B-cell Negative 2.9 4.4 Negative 1.25 Negative Negative Negative Negative Negative 

Case 2 B-cell Positive 3.1 50.6 Negative 1.05 Negative Negative Negative Negative Negative 

Case 3 B-cell Negative 11.1 1 Negative 1.20 Negative Negative Negative Negative Negative 

Case 4 T-cell ----- 12.8 189.5 Positive 1 ----- ----- ----- ----- ----- 

Case 5 B-cell Negative 12.3 6.4 Negative 1.18 Negative Negative Negative Negative Negative 

Case 6 B-cell Negative 2.6 25.7 Negative 1 Negative Negative Negative Negative Positive 

Case 7 B-cell Positive 17.3 49.7 Positive 1 Negative Negative Negative Negative Negative 

Case 8 B-cell Negative 3.6 2.5 Negative 1 Negative Negative Negative Negative Positive 

Case 9 B-cell Negative 7.6 1 Positive 1.24 Negative Negative Negative Negative Negative 

Case 10 ETP ----- 4.8 0.2 Negative 1 ----- ----- ----- ----- ----- 

Case 11 B-cell Positive 3.3 5.3 positive 1 ND ND Negative ND Negative 

Case 12 B-cell Negative 9.3 25.7 Negative 1 ND ND Negative ND Negative 

Case 13 B-cell Negative 7.7 3.5 positive 1.16 ND ND Negative ND Negative 

Case 14 T-cell ----- 11.3 32.5 Negative ---- ----- ----- ----- ----- ----- 
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Table 4-2. Classification of Patients into Risk Groups by NCI Criteria and Total XVII Criteria   
 

 

Case# NCI 
Risk 

Total XVII 
Provisional 

Risk 

D8 PB 
MRD (%) 

D15 BM 
MRD (%) 

D15 PB 
MRD (%) 

D22 BM 
MRD (%) 

D22 PB 
MRD (%) 

EOI BM 
MRD (%) 

EOI PB 
MRD (%) 

Total XVII 
Final Risk 

Case 1 Standard Low     0.408  6.820 ----   2.12 ---- <0.01 ---- Standard 
Case 2 High Standard     0.071     0.01 ---- ----- ---- <0.01 ---- Standard 
Case 3 High Low     0.013  2.150 ---- <0.01 ---- <0.01 ---- Standard 
Case 4 ---- Standard     <0.01   <0.01 ---- ---- ---- <0.01 ---- Standard 
Case 5 High Low     7.930  0.983 ---- ---- ---- <0.01 ---- Low 
Case 6 Standard Low     0.003  0.016 ---- ---- ---- <0.01 ---- Low 
Case 7 High Standard     0.738  1.502 ----     0.421 ---- <0.01 ---- Standard 
Case 8 Standard Low     0.030  0.022 ---- ---- ---- <0.01 ---- Low 
Case 9 Standard Standard     0.045  0.191 ---- ---- ---- <0.01 ---- Standard 
Case 10 ---- Standard     4.370 ---- <0.01     0.958  1.609     2.981 4.73 High 
Case 11 Standard Standard     0.018  0.014 ---- ---- ---- <0.01 ---- Standard 
Case 12 Standard Low     16.030  9.936 ----     2.059 ---- <0.01 ---- Standard 
Case 13 Standard Standard     <0.01   <0.01 ---- ---- ---- <0.01 ---- Standard 
Case 14 ---- Standard     38.65   55.203 47.04   31.665   30.246     0.139   0.043 High 
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Cf-DNA Isolation and Library Preparation  
 
 Samples for WES. An average of 952 μl (800μl-1100μl) plasma/sample was 
used as an input to Maxwell® RSC ccfDNA Plasma Kit followed by quantification by 
Qubit™ dsDNA HS Assay Kit.  The mean concentration of Cf-DNA isolated/sample was 
1.35 ng/μl; median= 0.27 ng/μl; range 0.05-34.2 ng/μl); For diagnostic samples, mean= 
1.5 ng/μl; median 0.332 ng/μl). The total yield of Cf-DNA isolated/sample was used as 
input into library preparation (mean Cf-DNA input to library preparation = 41.5 ng; 
median=9.6 ng; range=1.6-950 ng).  
 
 Samples for targeted capture. For peripheral blood plasma and BM plasma 
samples analyzed, the mean yield of Cf-DNA extracted was 56.6 ng, median=9 ng.  
The yield of extraction for peripheral blood plasma samples was 54.5 ng, median = 
8.93ng whereas, for BM plasma samples; the mean yield of Cf-DNA extracted was 58.3 
ng and the median 9.46 ng.  
 
 Gel electrophoresis for Cf-DNA libraries. The fragment size was ∼ 300 bp as 
expected for Cf-DNA. Of notice that in some cases bi-nucleosomal inserts yield libraries 
of size ∼ 450 bp; ∼334 bp of the bi-nucleosomal Cf-DNA insert + 120 bp (2 *60-bp 
Adapter) (Figure 4-1). 
 
 
Exome Capture 
 
 Gel electrophoresis repeated after exome capture confirmed the 300 bp size was 
confirmed for the captured fragments (Figure 4-2).  
 
 
Sequencing Metrics 
 
 Post exome capture, Miseq QC run was carried followed by NextSeq. complete 
run. QC metrics are described below:  
 
 NextSeq. QC metrics for WES. QC metrics for the NextSeq. runs (Table 4-3) 
are summarized as follows: average number of reads =110717316.7, average % reads 
lligned = 99.39454545,   average % read duplicates= 33.39136364 and average % 
selected bases (xgen Exome) = 87.79.  
 
 Miseq. QC metrics for targeted capture. Miseq QC metrics for the targeted 
capture (Table 4-4) are summarized as follows: average % of aligned reads=88.7% 
whereas the average % of selected bases=93.94%.  
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Figure 4-1. Gel Electrophoresis for Cf-DNA Adapter-ligated Libraries 
Case#8 (left) and Case#10 (right)  

 

Figure 4-2. Gel Electrophoresis for Exome-captured Pooled Libraries (Case#2) 
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Table 4-3. NextSeq. QC Metrics for WES-captured Libraries 
 

 
  

Case # Sample Name Number of 
Reads 

% Reads 
Aligned 

% Read 
Duplicates 

%Selected Bases 
(xgen Exome) 

Case 01 Case01_D01_BMPL 155653732 99.56 73.42 88.97 

 Case01_D01_PBPL 84983694 97.53 14.98 92.24 

 Case01_D03_PBPL 117168598 99.45 64.00 89.62 

 Case01_D08_PBPL 8008298 99.29 3.53 92.04 

 Case01_D15_PBPL 107283528 99.44 53.65 90.42 

 Case01_D15_BMPL 153753698 99.53 48.28 91.13 

 Case01_D22_PBPL 106452792 99.43 13.91 91.96 

 Case01_D42_PBPL 111422134 99.50 32.16 91.68 

 Case01_D42_BMPL 95648770 99.42 44.80 90.94 

 
    

 

Case 02 Case02_D01_BMPL 166646680 99.71 14.00 92.63 

 Case02_D01_PBPL 143217210 99.71 12.83 92.55 

 Case02_D03_PBPL 131912546 99.66 14.60 91.89 

 Case02_D08_PBPL 144250060 99.21 20.82 82.97 

 Case02_D14_PBPL 90042306 99.75 40.96 91.16 

 Case02_D15_BMPL 79915688 99.40 30.39 90.87 

 Case02_D22_PBPL 88835376 99.74 83.13 84.53 

 Case02_END_PBPL 112411712 99.73 67.40 90.90 

 Case02_END_BMPL 65827244 99.22 32.92 88.91 

      

Case 03 Case03_D01_BMPL 122430274 99.22 19.81 82.94 
 Case03_D01_PBPL 110666618 99.33 21.45 84.53 
 Case03_D03_PBPL 93000222 99.22 22.08 83.61 
 Case03_D08_PBPL 101185822 99.31 35.93 82.44 
 Case03_D15_BMPL 143407628 99.35 78.32 65.89 
 Case03_D15_PBPL 81486274 99.31 22.66 82.97 
 Case03_D22_PBPL 76349870 99.33 22.60 83.27 
 Case03_END_BMPL 116908314 99.35 39.51 81.72 
 Case03_END_PBPL 124942240 98.51 19.64 84.54 
      

Case 05 Case05_D01_PBPL 164377728 99.64 14.76 88.98 
 Case05_D03_PBPL 135878598 99.56 13.39 88.24 
 Case05_D08_PBPL 151060668 99.57 14.01 89.02 
 Case05_D15_BMPL 124653950 99.32 12.06 88.25 
 Case05_D15_PBPL 119711104 99.56 13.42 88.16 
 Case05_D22_PBPL 180899414 99.63 70.73 79.90 
 Case05_END_BMPL 100656310 99.18 11.58 88.70 
 Case05_END_PBPL 136924480 99.58 49.21 84.22 
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Table 4-3. (Continued) 
 

 
  

Case # Sample Name Number of 
Reads 

% Reads 
Aligned 

% Read 
Duplicates 

%Selected Bases 
(xgen Exome) 

Case 06 Case06_D01_BMPL 131321820 99.62 31.37 91.28 

 Case06_D01_PBPL 137796606 99.62 12.82 91.90 

 Case06_D03_PBPL 49788616 99.60 8.61 92.09 

 Case06_D08_PBPL 1761754 99.53 17.28 92.21 

 Case06_D15_BMPL 119909784 99.25 54.59 89.78 

 Case06_D15_PBPL 16765330 99.38 82.45 85.21 

 Case06_D22_PBPL 153520806 99.63 84.49 84.51 

 Case06_END_BMPL 92246978 99.81 11.73 91.29 

 Case06_END_PBPL 120476660 99.67 18.94 91.70 
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Table 4-4. Post-capture Miseq. QC Metrics for Targeted-captured Libraries 
 
Case # Sample % Reads Aligned %Selected Bases 
Case 01 D1_PB 77.20 93.70  

D15_PB 78.58 93.90  
D22_PB 77.80 93.15  
D42_PB 79.19 93.79     

Case 02 D1_BM 77.82 93.49  
D1_PB 76.95 93.99  
D3_PB 77.05 93.68  
D8_PB 76.73 93.51  
D14_PB 76.10 94.01  
D15_BM 70.77 93.55  
D22_PB 76.44 92.12  
D42_BM 76.19 93.91  
D42_PB 76.07 93.78     

Case 03 D1_BM 77.13 93.91  
D1_PB 77.45 94.09  
D3_PB 76.89 94.55 
D8_PB 73.50 94.16  
D15_BM 75.61 93.44  
D15_PB 76.88 93.39 
D22_PB 76.60 93.86  
D42_PB 82.18 94.25  
D42_BM 68.10 94.03 
   

Case 04 D1_PB 73.73 94.01  
D3_PB 74.60 94.43  
D8_PB 84.27 90.74  
D15_BM 83.81 91.05  
D15_PB 84.97 90.80  
D22_PB 85.94 91.05  
D42_BM 83.20 91.40  
D42_PB 85.03 90.97 
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Table 4-4. (Continued) 
 
Case # Sample % Reads Aligned %Selected Bases 
Case 05 D1_PB 85.89 91.56  

D3_PB 85.26 91.50  
D8_PB 85.00 91.56  
D15.BM 85.56 91.65  
D15_PB 86.07 90.90  
D22_PB 85.50 91.46  
D42_BM 80.09 90.15  
D42_PB 83.92 89.33    

Case 06 D1_BM 84.38 90.07  
D1_PB 84.63 89.80 
D3_PB 84.30 89.1  
D8_PB 84.09 90.38  
D15_PB 85.67 89.85 
D15_BM 84.19 90.22  
D22_PB 85.09 90.27  
D42_BM 81.84 89.93 
D42_PB 84.81 90.56    

Case 07 D1_PB 83.81 88.12  
D3_PB 94.29 93.90  
D8_PB 93.70 94.88  
D15_BM 94.27 93.64  
D15_PB 94.16 94.75  
D22_PB 94.19 95.94  
D42_BM 94.28 95.03  
D42_PB 94.18 94.49  
D73_PB 92.42 94.94    

Case 08 D1_PB 94.46 96.35  
D3_PB 94.21 97.43  
D8_PB 93.25 95.48  
D15_BM 94.55 96.06  
D15_PB 94.29 96.65  
D22_PB 94.84 96.02  
D49_PB 93.99 96.10  
D52_BM 95.65 93.72  
D52_PB 94.49 96.12 



 

44 

Table 4-4. (Continued) 
 
Case # Sample % Reads Aligned %Selected Bases 
Case 09 D1_BM 94.55 96.65  

D8_PB 94.90 94.88  
D22_PB 95.16 95.92  
D50_BM 93.80 94.92  
D50_PB 94.11 95.46  
   

Case 10 D15_PB 94.92 95.49  
D22_PB 94.40 90.84  
D22_BM 97.27 94.33  
D43_PB 97.32 95.13  
D59_PB 96.98 94.42     

Case 11 D1_PB 97.44 91.25  
D3_PB 97.48 93.41  
D8_PB 97.32 95.13  
D14_PB 96.80 95.86  
D15_BM 96.67 94.93  
D22_PB 96.74 93.40  
D42_BM 96.99 95.14  
D42_PB 97.29 95.66  
D98_PB 97.02 94.36     

Case 12 D1_BM 97.44 91.02  
D1_PB 97.62 94.00  
D3_PB 97.52 91.33  
D8_PB 97.37 94.75  
D15_BM 97.11 94.80  
D15_PB 97.12 95.11  
D22_PB 97.51 97.11  
D42_BM 97.71 93.75  
D42_PB 95.86 94.11  
D71_PB 96.89 93.99 
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Table 4-4. (Continued) 
 
Case # Sample % Reads Aligned %Selected Bases 
Case 13 D1_PB 97.71 97.96  

D3_PB 97.67 91.92  
D8_PB 95.47 97.81  
D15_BM 96.40 96.95  
D15_PB 95.36 96.54  
D22_PB 96.18 98.42  
D42_PB 95.71 97.77     

Case 14 D1_BM 96.10 96.80  
D1_PB 95.94 96.01  
D3_PB 95.83 98.00 
D8_PB 95.62 96.96  
D15_BM 95.95 96.15  
D15_PB 96.33 97.85 
D22_PB 93.85 97.71  
D42_PB 64.76 97.62  
D64_PB 95.92 97.49 



 

46 

Non-synonymous Mutation Detection in Whole-exome Captured Libraries 
  
 Mutation detection in whole exome captured samples was challenged by the 
extremely high number of mutations detected per sample, the low MAF detected, the low 
depth of coverage, and high error rate; hence, rendering the discrimination of false 
positive from true positive calls difficult (Figure 4-3).   
 
 
Non-synonymous Mutation Detection in Targeted Captured Libraries 
 
 Correlation between WBCs and Cf-DNA yield. A moderate significant 
correlation existed between total leukocytic count (TLC) and Cf-DNA yield (spearman’s 
coefficient: r=0.33; p-value=0.0029) (Figure 4-4). 
 
 However, when samples were grouped according to WBCs into low (TLC<1) and 
high (TLC ≥1), no significant difference existed between the two groups. The mean Cf-
DNA yield for the high group was 43.53 ng (Sd=99.48 ng); whereas for the low group 
the mean Cf-DNA yield was 12.8 ng (Sd=13.69 ng) (p-value = 0.3352). The median Cf-
DNA yield for the High group was 8.545 ng (IQR=17.79 ng); whereas for the low group, 
the median Cf- DNA yield was 6 ng (IQR=6.9975ng) (p-value = 0.21). 
 
 Using multivariate analysis by Induction day; D22 yield was significantly 
different from each of D1 (p=0.021), D3 (p=0.0091) and D8 (p=0.018) (Table 4-5). 
 
 Concordance between PB plasma Ct-DNA and WES in BM biopsy at 
diagnosis. WES of bone marrow biopsy obtained at diagnosis reported 13 clinically 
relevant somatic SNV in 8 patients (Table 4-6). The MAF of SNVs detected in WES BM 
biopsy ranged from 6-74% (mean 37.2%; SD 17.13% and median of 30%; IQR 15%).  
 
 Ct-DNA analysis of diagnostic PB plasma detected 9 out the 13 mutations. The 
MAF of SNVs ranged from 2.22-41.27% (mean 24.9%; SD 19.6% and median of 27.6%; 
IQR 29.3%). PIK3CD was not included in our ALL custom gene panel nor were the 
specific exons of CCND3 or TRRAP in which the mutations were detected. For Case10, 
diagnostic PB plasma was not banked. Interestingly, analysis of Case10_D15 plasma 
sample detected the mutation at an AF of 0.79%. Hence Ct-DNA analysis in PB plasma 
showed 100% concordance with BM biopsy.  
 
 In Ct-DNA; somatic SNVs in the RAS/MAPK pathway represented ∼ 44% (3 
NRAS and 1 KRAS mutation) of the detected mutations followed by JAK2 representing 
∼ 33% of the detected mutations.  
 
 Regarding the correlation between MAF detected in PB plasma Ct-DNA and that 
detected in BM biopsy samples (whole exome clinical sequencing) at diagnosis, a 
moderate correlation was detected (Pearson coefficient r=0.53). (Figure 4-5 and Figure 
4-6).  
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Figure 4-3. Non-synonymous Mutations (Filtered Variant Calls) for Case#2 
Whole Exome-captured Libraries  

(Personal communication from Ousman Mahmoud Charles Gawad Lab. St. Jude 
Children’s Research Hospital on March 6tth   2018).  

 

Figure 4-4. Correlation Between TLC (cells*10e9/L) and Cf-DNA Yield (ng)  
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Table 4-5. Median DNA Yield and TLC at Different Time Points During 
Remission Induction Therapy 
 
Induction Day Median TLC 

(cells*10e9/L) 
Median Cf-DNA Yield 

(ng) 
D1 4.90 17.62 
D3 2.90 32.94 
D8 1.40 12.78 
D15 1.30   7.02 
D22 2.05   5.99 
EOI 2.20 10.71 

 
 
 
Table 4-6. Clinically Relevant Single Nucleotide Somatic Variants MAF in BM 
Biopsy WES and PBPL Ct-DNA at Diagnosis 
 

Case# Alteration HGVS Nomenclature WES BM 
Biopsy AF (%) 

Ct-DNA 
PBPL AF (%) 

Case 1 NRAS Q61K NM_002524:c.181C>A; p.Gln61Lys 28 34.03 
Case 2 JAK2 R683G NM_004972:c.2047A>G; p.Arg683Gly 17   4.19 
 JAK2 L884P NM_004972:c.2651T>C; p.Leu884Pro 24 37.41 
Case 3 KRAS G13D NM_033360:c.38G>A;  p.Gly13Asp 51   2.22 
Case 4 CCND3 E236K NM_001760:c.706G>A;p.Glu236Lys 33 ------- 
 NOTCH1 L1678P NM_017617:c.5033T>C;p.Leu1678Pro 38 27.64 
 PIK3CD E1021K NM_005026:c.3061G>A;p.Glu1021Lys 45 ------ 
Case 7 JAK2 R683S NM_004972:c.2049A>T; p.Arg683Ser 43 41.27 
Case 10 KRAS A146V NM_033360:c.437C>T; p.Ala146Val 6 ------ 
Case 11 NRAS G12S NM_002524:c.34G>A; p.Gly12Ser 30        10.7 
 SMARCA4 N817K NM_001128849:c.2451C>A; p.Asn817Lys 30   8.09 
 TRRAP E3107K NM_003496:c.9319G>A; p.Glu3107Lys 27 ------ 
Case 13 NRAS G12D NM_002524:c.35G>A; p.Gly12Asp 74        58.5 
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Figure 4-5. MAF in Diagnostic BM Biopsy (WES) and PB Plasma Ct-DNA at 
Diagnosis 

 

Figure 4-6. Correlation Between MAF in BM Biopsy (WES) and PB Plasma Ct-
DNA at Diagnosis 
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 Concordance between PB plasma Ct-DNA and BM plasma Ct-DNA at 
diagnosis. For the 9 cases in which clinically relevant mutations were detected, only 2 
(Case#2 and #3) had BM plasma analyzed at diagnosis. The MAF of the 3 mutations 
detected in Ct-DNA of PB plasma and BM plasma showed high concordance (Pearson’s 
coefficient r=1; p-value=0.0099) (Figure 4-7 and Figure 4-8). 
 
 Monitoring clonal dynamics and disease response throughout remission 
induction therapy. For those SNVs shared between diagnostic BM biopsy samples 
(WES) and PB plasma, Ct-DNA analysis in sequential plasma samples successfully 
captured the change in MAF across multiple induction time points. For all cases, the 
mutations were still detected in D3 plasma sample at a comparable or higher level for 
most cases. For all 7 cases, none of the SNVs re-emerged at a later time point after being 
undetected (Table 4-7).   
 
 Comparison of Ct-DNA analysis and FC-MRD across multiple time points. 
For cases in which mutations detected in clinical WES of BM biopsy, comparing MRD 
detection as a categorical variable (i.e. FC-MRD positivity/negativity and 
detection/absence of the initially specified mutation in Ct-DNA) at different induction 
time points (Table 4-8 ) demonstrated the following:  
 
 D8 Induction.  FC-MRD in PB demonstrated 50% concordance with PB plasma 
Ct-DNA.  
 
 D15 Induction.  FC-MRD in BM demonstrated 50% concordance with PB 
plasma Ct-DNA.  
 
 D22 Induction. FC-MRD in BM showed 100% concordance PB Ct-DNA; Ct-
DNA analysis successfully captured mutations in the two FC-MRD positive cases. 
 
 EOI. All samples were negative by both techniques. 
 
 Detailed description by case is provided below:  
 
 Case 1 Ct-DNA analysis of case 1 (B-cell hyperdiploid) demonstrated the 
presence of NRAS Q61K mutation at diagnosis at an allele frequency of 32.8% in PB 
plasma (BM plasma samples was not available for this case) in concordance with the 
BM-NGS clinical report. Reports previously detected the existence of RAS mutation at 
its highest prevalence in hyperdiploid ALL and were previously shown to confer 
resistance to methotrexate, prednisone; and sensitivity to VCR. 
 
 The change in FC-MRD and MAF in Ct-DNA followed the same pattern. In 
concordance with FC-MRD positivity on D15 and D22, NRASQ61K was detected (at a 
decreased allele frequency). At EOI, the patient achieved a negative FC-MRD and the 
NRAS Q61K was undetected at the assay threshold (Figure 4-9A and B). 
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Figure 4-7. MAF (%) in BM Plasma and PB Plasma in Ct-DNA at Diagnosis  

Figure 4-8. Pearson’s Correlation Between MAF Detected in Ct-DNA PB Plasma 
and BM Plasma  
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Table 4-7. MAF in Ct-DNA Across Multiple Induction Time Points 
 
  MAF (%) 
Case# Mutation D1 Ind. D3 Ind. D8 Ind. D15 Ind. D22 Ind. EOI 

Case1 NRAS Q61K 34.03 ----- ----- 2.33 6.38 0 
Case2 JAK2 R683G   4.19   2.48   2.67 0 0 0 

 JAK2 L884P 37.41 37.80 0 0 ----- 0 

Case 3 KRAS G13D   2.22   3.16 43.38 0 0 0 

Case4 NOTCH1 L1678P 27.64 11.41   3.33 4.76 0 0 
Case 7 JAK2 R683S 41.27 38.01 15.29 0.98 1.13 0 

Case 11 NRAS G12S 10.70 44.71 0 0 0 0 

 SMARCA4 N817K   8.09 43.69 0 0 0 0 

Case 13 NRAS G12D 58.50 48.74 24.16 0 0 0 
 
Only cases with mutations detected in clinical WES of BM biopsy are included. 
 
 
 
Table 4-8. FC-MRD Detection at Multiple Induction Time Points  
 

 
Only cases with mutations detected in clinical WES of BM biopsy are included. 
 
 
 
 
  

 MRD (%) 
Case# D8 PB  D15 BM  D22 BM  EOI BM  
Case 1     0.408   6.82   2.12 <0.01 
Case 2     0.071   0.01 NA <0.01 
Case 3     0.013   2.15 <0.01 <0.01 
Case 4 <0.01 <0.01 NA <0.01 
Case 7     0.738     1.502     0.421 <0.01 
Case 11     0.018     0.014 NA <0.01 
Case 13 <0.01 <0.01 NA <0.01 
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(A) 

 
(B) 

Figure 4-9. Case#1 Change in Ct-DNA MAF and FC-MRD Throughout 
Induction Therapy 

(A)Change in NRAS Q61K MAF in PB plasma Ct-DNA throughout induction. 
(B) FC-MRD in BM samples (left) and PB samples (right).  
(Personal communication with Ousman Mahmoud on 28th March 2018, Charles Gawad 
Lab. St. Jude Children’s Research Hospital). 
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 Case 2. Samples for all the study specified time points were analyzed. At 
diagnosis, the two JAK2 mutations (JAK2 L884P and JAK2 R683G) were detected in 
both BM plasma and PB blood plasma samples, at comparable allele frequency. On D8 
Induction, JAK2 R683G was still detected, coinciding with a positive PB FC-MRD. 
However, D15 Ct-DNA analysis revealed no mutations in either BM plasma or PB 
plasma, whereas FC-MRD was still detected at a borderline value of 0.01%. At end of 
induction, both assays were concordant showing a negative result (Figure 4-10A and B). 
 
 Case 3.  At diagnosis, Ct-DNA analysis of this case (B-cell hyperdiploid) detected 
KRASG13D in BM plasma and PB plasma at diagnosis. The MAF in BM biopsy sample 
was 51% whereas Ct-DNA captured the same mutation at an allele frequency of 2.2%. 
KRASG13D was not detected in D15 samples (BM plasma and PB plasma) whereas FC-
MRD was positive (2.15%).  
   
 Other mutations detected in the plasma samples at different time points require 
further computational analysis work to confirm them as true variants. Taking into 
consideration those mutations, Ct-DNA analysis showed concordance with FC-MRD, 
being detectable on both D8 and D15.  
 
 Additionally, two of the captured mutations remained positive at D22 and EOI in 
discordance with FC-MRD (Figure 4-11A and B). 
 
 Case 4. This patient comprises a T-cell ALL CNS-positive patient. At diagnosis, 
PB Ct-DNA analysis revealed KRAS G12D and NOTCH1 L1678P mutations (diagnostic 
BM plasma sample was not banked). Interestingly; Negative FC-MRD (<0.01%) was 
detected in D8 PB, D15 BM and at end of induction; whereas, Ct-DNA analysis detected 
NOTCH1 L1678P in D8 and D15 PB plasma and KRAS G12D in D15 BM plasma and 
PB plasma. Later during the course therapy, this patient experienced CNS relapse and an 
increase in BM FC-MRD (0.003%) (Figure 4-12A and B).   
 
 Case 7.  Ct-DNA analysis detected a single JAK2 mutation (JAK2 R683S) in PB 
plasma at diagnosis (diagnostic BM plasma sample was not banked). The MAF of the 
aforementioned mutation was comparable to that detected in diagnostic BM biopsy by 
clinical WES. The patient achieved a negative FC-MRD (<0.01%) as well as, an 
undetectable JAK2R683S only by the end of induction hence, all other measured points 
were considered positive by both techniques. However, FC-MRD decreased between D15 
and D22 whereas the MAF in Ct-DNA showed a slight increase between the same time 
points.  
  
 Ct-DNA detected KRAS G12D with changing allele frequency across different 
time points for which further computational analysis is needed, to determine whether 
KRAS G12D is a false positive call or not. KRAS G12D was still detected at EOI 
(Figure 4-13A and B).   
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(A) 

(B) 

Figure 4-10. Case#2 Change in Ct-DNA MAF and FC-MRD Throughout 
Induction Therapy  

(A) Change in JAK2 MAF in Ct-DNA throughout induction in BM samples (left) and PB 
samples (right). 
(B) Change in FC-MRD throughout induction therapy in BM samples (left) and PB 
samples (right).  
(Personal communication with Ousman Mahmoud on 28th March 2018, Charles Gawad 
Lab. St. Jude Children’s Research Hospital). 
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(A) 

(B) 

Figure 4-11. Case#3 Change in Ct-DNA MAF and FC-MRD Throughout 
Induction Therapy 

(A) Change in MAF in Ct-DNA throughout induction therapy in BM samples (left) and 
PB samples (right). 
(B) Change in FC-MRD throughout induction therapy in BM samples (left) and PB 
samples (right).  
(Personal communication with Ousman Mahmoud on 28th March 2018, Charles Gawad 
Lab. St. Jude Children’s Research Hospital). 
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(A) 

(B) 

 

Figure 4-12. Case#4 Change in Ct-DNA MAF and FC-MRD Throughout 
Induction Therapy  

(A) Change in MAF in Ct-DNA throughout induction therapy in BM samples (left) and 
PB samples (right). 
(B) Change in FC-MRD throughout induction therapy in BM samples (left) and PB 
samples (right).  
(Personal communication with Ousman Mahmoud on 28th March 2018, Charles Gawad 
Lab. St. Jude Children’s Research Hospital). 
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(A) 

  
(B) 

Figure 4-13. Case#7 Change in Ct-DNA MAF and FC-MRD Throughout 
Induction Therapy  

(A) Change in MAF in Ct-DNA throughout induction therapy in BM samples (left) and 
PB samples (right). 
(B) Change in FC-MRD throughout induction therapy in BM samples (left) and PB 
samples (right).  
(Personal communication with Ousman Mahmoud on 28th March 2018, Charles Gawad 
Lab. St. Jude Children’s Research Hospital). 
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 Case 11. The clinical WES detected 3 mutations in the diagnostic BM sample 
(NRAS G12S, SMARCA4 N817K and TRRAP E3107K). Ct-DNA analysis in PB 
plasma detected NRAS G12S and SMARCA4 N817K (the exon in which the TRRAP 
mutation was detected was not included in our ALL customized gene panel). In 
discordance with FC MRD, both mutations were undetected on D8 and D15 induction by 
Ct-DNA analysis (Figure 4-14A and B).    
 
 Case 13. NRASG12D was detected in the PB plasma at diagnosis. Despite that 
peripheral blood FC-MRD on D8 was negative, NRASG12D mutation was detected in 
Ct-DNA at a relatively high allele frequency of 24%. On D15, both techniques showed a 
negative result (Figure 4-15A and B).   
 
 Single nucleotide variants captured in cases#5, 6, 8, 9, 12 and 14 require further 
analysis to discriminate true variants from false positives. (Figure 4-16A and B through 
4-21A and B).  
 
 The following analysis considers the whole number of mutations detected in the 
studied in 13 patients (Table 4-2 and Figure 4-9A and B through Figure 4-21A and B). 
This data is liable to change upon confirming that the detected variants as true calls.  
 
 D8 Induction. Ten patients who had detectable FC-MRD on D8. Ct-DNA 
analysis was not done for one case at this time point, whereas Ct-DNA analysis in PB 
plasma showed a positive result in 8 out of 9 patients (∼88.8%). Only 3 patients had 
MRD <0.01% by FC; in one of the two patients FC-MRD was still detected at a level of 
0.003%. Ct-DNA analysis showed to be positive in the 3 patients detecting a range of 1-3 
mutations.  
 
 D15 Induction. FC-MRD was evaluated in BM for the 13 cases. FC-MRD level 
was undetected (<0.01%) in 2 cases,  ≥ 0.01%- < 1% in 6 cases and ≥ 1% in 5 cases.  
 
 In the first group of patients where FC-MRD <0.01%, Ct-DNA analysis and FC-
MRD results were discordant. Ct-DNA analysis of BM plasma as well as, PB plasma 
showed a positive result for both cases. 
 
 In the group of patients whose FC-MRD was ≥ 0.01%- < 1%; 5 out of 6 patients 
had samples available for Ct-DNA analysis.  For the 5 patients; Ct-DNA analysis was 
carried out in both BM plasma and PB plasma (10 samples). Ct-DNA showed a positive 
result only in 2 cases (40%). Ct-DNA analysis results were concordant between PB 
plasma and BM plasma in all 5 cases.   
 
 In patients with FC-MRD ≥ 1, Ct-DNA in PB plasma analysis was positive in all 
of the 4/5 cases (80%) whereas Ct-DNA in BM plasma analysis was positive in the 5/5 
cases (100%).  
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Figure 4-14. Case#11 Change in Ct-DNA MAF and FC-MRD Throughout 
Induction Therapy  

(A) Change in MAF in Ct-DNA throughout induction therapy in PB samples. 
(B) Change in FC-MRD throughout induction therapy in BM samples (left) and PB 
samples (right).  
(Personal communication with Ousman Mahmoud on 28th March 2018, Charles Gawad 
Lab. St. Jude Children’s Research Hospital). 
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Figure 4-15. Case#13 Change in Ct-DNA MAF and FC-MRD Throughout 
Induction Therapy  

(A) MAF in Ct-DNA in D15 BM sample (left), Change in MAF in Ct-DNA throughout 
induction therapy in PB samples (right). 
(B) Change in FC-MRD throughout induction therapy in BM samples (left) and PB 
samples (right).  
(Personal communication with Ousman Mahmoud on 28th March 2018, Charles Gawad 
Lab. St. Jude Children’s Research Hospital). 
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Figure 4-16. Case#5 Change in Ct-DNA MAF and FC-MRD Throughout 
Induction Therapy  

(A) Change in MAF in Ct-DNA throughout induction therapy in BM samples (left) and 
PB samples (right). 
(B) Change in FC-MRD throughout induction therapy in BM samples (left) and PB 
samples (right).  
(Personal communication with Ousman Mahmoud on 28th March 2018, Charles Gawad 
Lab. St. Jude Children’s Research Hospital). 
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Figure 4-17. Case#6 Change in Ct-DNA MAF and FC-MRD Throughout 
Induction Therapy  

(A) Change in MAF in Ct-DNA throughout induction therapy in BM samples (left) and 
PB samples (right). 
(B) Change in FC-MRD throughout induction therapy in BM samples (left) and PB 
samples (right).  
(Personal communication with Ousman Mahmoud on 28th March 2018, Charles Gawad 
Lab. St. Jude Children’s Research Hospital). 
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Figure 4-18. Case#8 Change in Ct-DNA MAF and FC-MRD Throughout 
Induction Therapy  

(A) Change in MAF in Ct-DNA throughout induction therapy in BM samples (left) and 
PB samples (right). 
(B) Change in FC-MRD throughout induction therapy in BM samples (left) and PB 
samples (right).  
(Personal communication with Ousman Mahmoud on 28th March 2018, Charles Gawad 
Lab. St. Jude Children’s Research Hospital). 
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Figure 4-19. Case#9 Change in Ct-DNA MAF and FC-MRD Throughout 
Induction Therapy  

(A) Change in MAF in Ct-DNA throughout induction therapy in BM samples (left) and 
PB samples (right). 
(B) Change in FC-MRD throughout induction therapy in BM samples (left) and PB 
samples (right). 
(Personal communication with Ousman Mahmoud on 28th March 2018, Charles Gawad 
Lab. St. Jude Children’s Research Hospital). 
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Figure 4-20. Case#12 Change in Ct-DNA MAF and FC-MRD Throughout 
Induction Therapy 

(A) Change in MAF in Ct-DNA throughout induction therapy in BM samples (left) and 
PB samples (right). 
(B) Change in FC-MRD throughout induction therapy in BM samples (left) and PB 
samples (right).  
(Personal communication with Ousman Mahmoud on 5th March 2018, Charles Gawad Lab. 
St. Jude Children’s Research Hospital). 
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Figure 4-21. Case#14 Change in Ct-DNA MAF and FC-MRD Throughout 
Induction Therapy  

(A) Change in MAF in Ct-DNA throughout induction therapy in BM samples (left) and 
PB samples (right). 
(B) Change in FC-MRD throughout induction therapy in BM samples (left) and PB 
samples (right).  
(Personal communication with Ousman Mahmoud on 12th March 2018, Charles Gawad 
Lab. St. Jude Children’s Research Hospital). 
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 End of induction (EOI). At end of induction, 12/13 patients achieved FC-MRD 
negativity (<0.01%). In 6/12 cases (50%). Ct-DNA analysis showed a positive result in 
either BM plasma (2 cases) or in both BM plasma and PB plasma (4 cases). 
Ct-DNA analysis of PB plasma for case 14 showed a positive result in concordance with 
FC-MRD positivity (BM plasma was not analyzed).  
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CHAPTER 5.   DISCUSSION 
 
 
 Clonal evolution represents a dynamic process; in which the genetic landscape 
continuously changes in response to changes in the evolutionary pressure (i.e. therapy 
selective pressure).  [22] Discovering the extent of intratumor heterogeneity has far been 
limited by the focus on large chromosomal aberrations to decipher the tumor clonal 
structure as well as, the reduced sensitivity of the experimental techniques which lacked 
the ability to detect smaller subclones. The introduction of second generation sequencing 
has allowed for the deciphering of subclonal somatic mutations leading to a number of 
remarkable studies that demonstrated the ALL relapse follows a pattern of branched 
clonal evolution; linear evolution is rarely involved. [54] However, in most cases, studies 
addressing the clonal dynamics in ALL relapse compared matched diagnosis/relapse/± 
remission BM samples. In the exceptional cases, where relapse mutations (in few 
patients) were backtracked to earlier remission time points [11], it was demonstrated that 
an increase in MAF of relapse-mutations preceded clinical relapse and that subclonal 
mutations persisting post induction therapy comprise clonal mutations at relapse. [7, 11]   
  
 Despite the seminal findings of these studies; techniques currently implemented 
for the measurement of minimal residual disease lack the ability to capture the genetic 
heterogeneity; providing a quantitative rather than a qualitative description of the change 
in MRD. The ability to unveil the mutational profile and clonal dynamics and 
composition in serial MRD samples would complement the analysis; hence improving its 
predictive value. Moreover, the detection of drug-resistance variants in MRD samples, 
will have a direct clinical implication in tailoring therapy.[22] Ct-DNA analysis in 
sequential plasma samples have proved utility in mutational profiling and monitoring 
change in clonal dynamics in various solid and liquid malignancies.  
 
 This study represents the first proof-of-concept study to assess the utility of Ct-
DNA in tracking tumor dynamics in pediatric ALL. Initially, WES sequencing was 
employed using a hybrid capture technique utilizing a whole exome gene panel targeting 
19,396 genes and covering 51Mb of end-to-end tile probe space. Several studies have 
shown the utility of WES in tracking mutational change in Ct-DNA in plasma of patients 
with different types of cancer. However, those studies evaluated patients with advanced 
solid tumors [130]; in a seminal study using WES, Ct-DNA was quantified using ddPCR 
and Tam-Seq. and only patients with high allele frequency were selected for WES.  In 
our study however, the mean total yield of Cf-DNA from the samples ranged from 6ng to 
32 ng on D22 and D3 respectively. WES detected a large number of SNVs at a low MAF, 
was associated with a high false positive error rate, rendering true SNVs calling 
problematic. 
 
 Next, our group developed an ALL custom gene panel to analyze Ct-DNA in 
sequential peripheral blood and matched BM plasma samples, obtained at specified time 
points during induction therapy. The study evaluated 14 pediatric ALL patients of 
different B-cell and T-cell subtypes. The ALL customized gene panel was designed by 
the lab. computational biologist to target 806 genes covering ≅ 1668 exons and 319.4 kb. 
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 The specific ALL custom gene panel designed includes genes with at least 3 
mutations in SiTH database (derived from app. 500 patients). Mutations selected are 
somatic non-synonymous SNVs found in T-ALL and B-ALL diagnostic and relapse 
samples.   
  
 Genes included showed to overlap with at least one of the following categories (1) 
Oncogenic pathway (2) Tumor suppressor genes (3) Relapse-specific genes (4) Drug 
metabolism (5) CRISPR/Cas9 screening  (unpublished data) (6) Genes associated with 
glucocorticoid resistance (7)  xGen® Pan-Cancer Panel (which includes list of genes 
derived from TCGA; known to be mutated across multiple cancer types). 
 
 Implementation of CAPP-Seq. in NSCLC was associated with artifacts in 50% of 
the positions sequenced, below a detection limit of 0.02%. In their efforts to suppress the 
error associated with CAPP-Seq., molecular barcoding was employed and successfully 
reduced the error.[123] Hence, we additionally used index barcoding for all target 
captured cases.  
 
 The cases enrolled in this pilot study comprise different ALL subtypes; 11 cases 
are BCP and 3 cases are T-cell; one of which with ETP. According to NCI risk criteria, 
36.4% (4 cases) of the BCP were high-risk whereas 63.6% (7 cases) were standard risk.   
According to Total XVII risk groups, 3 patients were stratified as low-risk, 2 patients as 
high-risk whereas 9 patients comprised the standard- (intermediate) risk group. In Total 
study XVII, NGS is implemented as a diagnostic clinical standard-of-care for all patients 
enrolled in the protocol. WGS, WES and transcriptome sequencing are carried by the 
clinical pathology lab.; genetic alterations with relevance to diagnosis or management are 
reported in the patient clinical record. Total XVII therapy implies Flowcytometry based 
MRD for response assessment during induction therapy and throughout treatment. During 
induction, MRD is evaluated in BM on D15, D22 (in patients with D15 MRD ≥ 1%) and 
at end of induction (D42); whereas MRD evaluation in PB is carried out on D8.  
Sequential analysis of Ct-DNA in plasma was employed at equivalent time points; BM-
plasma was evaluated on D1, D15 and at end of induction; whereas PB-plasma was 
evaluated on D1, D3, D15, D22 and at end of induction.  
 
 Total XVII induction therapy utilizes a 4-drug regimen during early induction 
(prednisone, daunorubicin, vincristine and peg-asparaginase) followed by cytarabine, 
cyclophosphamide and 6-mercaptopurine. Rituximab, bortezomib and dasatinib are 
administered to select patients (Appendix C. Total XVII Remission Induction 
Treatment Schedule). Hence, the study of somatic mutations in Ct-DNA offers a venue 
for monitoring the change in clonal composition and dynamics in response to the multi-
agent regimen applied. 
 
 The first question was whether Ct-DNA analysis would capture those mutations 
detected in BM biopsy samples or not. NGS (WES and WGS) reported 13 clinically 
relevant mutations in the diagnostic BM samples of 8 out of 14 patients. Somatic 
mutation detection in peripheral plasma Ct-DNA showed 100% concordance with WES 
of BM biopsy at diagnosis.  The ability of Ct-DNA analysis to capture all the detected 
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clinically relevant mutations utilizing ≅ 1 ml of plasma demonstrates the utility of Ct-
DNA application in ALL. 
  
 Next, we evaluated the correlation between the MAF detected by both techniques. 
Studying the allele frequency of the 9 mutations detected in both BM biopsy and plasma 
samples yielded a moderate correlation (Pearson’s coefficient = 0.53). The discrepancy 
can be attributed to a number of general factors namely, the low amount of Cf-DNA 
extracted (Median ∼ 17 ng) together with the fact that Cf-DNA is derived from various 
sources. Additional factors related to our study cohort that might have led to the modest 
correlation between MAF detected in BM WES and PB plasma Ct-DNA , are the small 
number of patients with detectable mutations and the presence of more than one mutation 
per sample (i.e. case 11 WES shows 3 mutations, each at an AF of ∼ 30% whereas 
plasma sample showed only 2 out of the 3 mutations at a much lower AF hence, one 
sample contributed to 22% of the dataset). Importantly, this discrepancy might in fact 
reflect a real difference in the MAF between different body compartments hence, 
reflecting tumor heterogeneity. 
 
 Additionally, Ct-DNA MAF was evaluated throughout the aforementioned time 
points and change in MAF was studied in relation to FC-MRD at matched time points.  
Although the study has not revealed the expected correlation between MAF and the 
quantitative level of FC MRD; Ct-DNA and FC-MRD were qualitatively concordant for 
50% of samples on D8 and D15 and 100% concordant at D22 and EOI.  
 
 Regarding the 7 cases in which mutations were shared between BM biopsy and 
PB Ct-DNA; 2 cases (Case 1 and Case 7) showed concordance between FC-MRD and 
Ct-DNA across all time points.  
 
 Two cases (Case 2 and Case 11) had no mutations detected in Ct-DNA at FC-
MRD positive time points. Case 11 harbored NRAS G12S, SMARCA4 N817K and 
TRRAP E3107K as detected by clinical WES of the diagnostic BM biopsy. TRAPP exon 
in which the mutation was detected was not included in our ALL custom gene panel. 
Hence, the inability of Ct-DNA to track TRAPP mutation detected in the BM biopsy 
sample might offer an explanation i.e. the positive FC-MRD might be attributed to the 
clone harboring the TRAPP mutation. Further analysis for the samples including that 
TRAPP exon might pose an answer.  Also, the improvement of the analysis pipeline for 
capturing true positive calls might reveal other mutations that were present in Case 2 yet 
filtered out with the currently applied analysis pipeline.  
 
 For case 3, although the KRAS G13D was undetected on D15 in discordance with 
a positive MRD (2.15%), KRAS G12D mutation was detected at an allele frequency of 
15.9%. Importantly, KRAS G12D was not detected in the PB plasma nor the BM plasma  
 diagnostic samples; yet it was initially detected in D8 PB plasma. KRAS G12D 
 detected in PB plasma as well as BM plasma on D15 and persisted till end of induction 
(at a lower allele frequency). ITSN1 L1393M was also detected at different allele 
frequencies across multiple time points and persisted till end of induction. Although 
further confirmation of these mutations as true positive is required, they might provide an 
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explanation for D15 discordance between FC-MRD and Ct-DNA on D15. Additionally, 
the fact that such mutations were still detected at EOI whereas the FC-MRD was 
negative. The aforementioned findings show the ability of the technique to unveil the 
clonal composition in FC-MRD positive patients as well as, its sensitivity to capture 
mutations at lower MAF in FC-MRD negative patients.   
 
 Case 4 showed a negative FC-MRD on D15 however NOTCH1 L1678P (detected 
at diagnosis) was still detected by Ct-DNA analysis in both PB plasma and BM plasma.   
Hence, it provides a confirmation for the sensitivity of the technique to unravel the clonal 
composition and detect mutations at low mutation allele frequency in FC-MRD negative 
patients. The same is true for Case 13 where NRASG12D mutation was detected in Ct-
DNA at a relatively high allele frequency of 24% on D8 whereas the FC-MRD was 
negative.  
 
 The different scenarios mentioned above demonstrate a potential role for 
sequential analysis Ct-DNA as a complementary technique to FC MRD; providing an 
insight into the clonal composition of the MRD and consequently guiding treatment 
decisions. The non-invasiveness of the technique as well as the relative low cost further 
supports the utility of incorporation in the clinical management.  
 
 Ct-DNA has a potential therapeutic implication in guiding therapy. Despite the 
small number of patients studied, Ct-DNA successfully captured clinically relevant 
mutations at diagnosis as well as throughout induction therapy. As such; several future 
therapeutic options might be incorporated into clinical practice. Case 2 provides a good 
example; as noted in the clinical sequencing report, the assay (WES) lacks capability to 
detect whether the 2 JAK mutations exist in cis or trans yet; it is important to consider 
that the presence of L884P mutation confers resistance to type 2 JAK2 inhibitors in 
CRLF2/JAK2 R683G cells (case_2 is CRLF2 positive). In such case, combination of type 
I/II JAK2 inhibitors might offer a treatment option to overcome resistance.[131] 
Monitoring the relevant change in MAF of both mutations throughout therapy might 
provide a deeper insight into the possible therapeutic options.  
 
 Further work would be needed to study a larger number of patients and advance 
the technique and the analysis pipelines in order to correctly detect real mutations and 
decrease false positive calls.   
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APPENDIX A. LIST OF GENES INCLUDED IN ALL GENE PANEL 
 

Gene Name 
ABP1 ALPK2 ATP13A4 C11orf41 CD6 CHRM2 
ACE2 ANAPC1 ATP5A1 C11orf82 CDC20B CHRNA4 
ACOX1 ANK3 ATP8A1 C12orf51 CDC6 CLCA4 
ACP5 ANKRD12 ATP8A2 C12orf64 CDH18 CLCN3 
ACSM2B ANKRD30B ATRNL1 C12orf66 CDH23 CLEC4M 
ACSM4 ANKRD43 ATRX C13orf40 CDH8 CLIC3 
ACTL6B AOX1 AXIN2 C14orf4 CDH9 CMYA5 
ACTN2 APC AXL C16orf52 CDK16 CNOT1 
ADD1 APOB48R AZI1 C1QTNF3 CDKN2A CNTN1 
ADH6 AR BAI2 C6orf97 CDKN2AIP CNTN3 
ADNP ARAP1 BAI3 CABLES1 CDR2L CNTN5 
ADRBK1 ARHGAP20 BAZ2A CAD CDYL2 CNTN6 
AFAP1 ARID1A BBS9 CAMSAP1L1 CELSR2 CNTNAP2 
AFF2 ARID1B BCOR CAND1 CENPC1 CNTNAP5 
AFF3 ARID2 BCORL1 CASP4 CENPE COPS2 
AGXT2L1 ARID5B BCR CBS CEP290 CPB1 
AHNAK ASH1L BIRC6 CBX4 CES1 CREBBP 
AHNAK2 ASXL1 BMP1 CCBE1 CFTR CREBBP,CREBBP 
AHRR ASXL2 BRAF CCDC114 CHD1 CRLF2 
AKR1B1 ASXL3 BRCA1 CCDC147 CHD2 CSMD1 
AKR1C2 ATF7IP BRPF1 CCND3 CHD4 CSMD2 
AKT1 ATG4A BRSK1 CD101 CHD7 CSMD3 
ALG13 ATM BVES CD36 CHD9 CSPG4 
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Gene Name 
CTCF DLC1 DST ETV6 FGFR2 GALNTL4 
CTNND1 DMBT1 DTX3L ETV6,ETV6,ETV6 FGFR3 GAS2L3 
CTNND2 DNAH2 DYNC2H1 EVC2 FHOD1 GATA2 
CTR9 DNAH5 DYSF EZH2 FLNC GATA3 
CUBN DNAH8 ECT2L F13B FLRT2 GBP7 
CXorf22 DNAH9 EED FAAH FLT3 GCKR 
CXorf23 DNM2 EEF1A2 FAT1 FLT3,FLT3 GGT1 
CXorf57 DNMT3A EGFLAM FAT4 FMN2 GIGYF2 
CXorf59 DNMT3B EGFR FBN1 FMN2,FMN2 GIGYF2,GIGYF2 
CYP2C8 DOCK11 EGR3 FBN2 FMOD GIPR 
CYP4F22 DOCK5 EHMT2 FBN3 FMR1 GLIS2 
DAAM2 DOCK6 EIF4A1 FBXL19 FN1 GLTSCR1 
DACH1 DPH1 ELAVL2 FBXO18 FNDC1 GNAQ 
DACT2 DPP3 ELF1 FBXW7 FOXA1 GNB1 
DCAF10 DPT ENPP5 FBXW7,FBXW7 FOXO4 GPC6 
DCHS2 DPYS ENPP6 FCGBP FOXP2 GPR116 
DCST2 DRD1 EP300 FCRL2 FRAS1 GPR142 
DDX3X DRP2 EPPK1 FCRLA FREM2 GPR98 
DEPDC5 DSC1 ERC2 FER1L6 FRMD4A GREB1 
DHX33 DSCAM ERCC6 FEZF1 FRMPD2 GRIA1 
DIAPH2 DSG2 ERG FGF12 FSIP2 GRIA2 
DIAPH3 DSG4 ESX1 FGF13 FURIN GRID1 
DISC1 DSP ETV1 FGF9 GAD1 GRID2 

 



 

83 

 

 
Gene Name 

GRIN2A HRNR JAG1 KIAA0922 LGALS12,LGALS12 MAMDC2 
GRM5 HUWE1 JAK1 KIAA1024 LGALS4 MAP1B 
GRPR HYDIN JAK2 KIAA1109 LIFR MAP2 
GSTA4 IDH1 JAK3 KIAA1217 LIMD1 MAP2K4 
GYS1 IFIH1 JAKMIP1 KIAA1244 LOXL3 MAP3K4 
H3F3A IGSF9B JARID2 KIAA1409 LPHN1 MAP4K5 
HADHA IKZF1 JMY KIAA1715 LPHN2 MAPK9,MAPK9 
HAT1 IKZF3 KAL1 KIF15 LPO MARCKS 
HCN4 IL15RA KCNA4 KIF21A LRFN2 MATN4 
HCRTR1 IL1RAPL1 KCNG2 KIF4A LRP1B MBD1 
HDAC2 IL7R KCNH1 KLF4 LRP2 MCF2 
HDAC5 IL7R,IL7R KCNH2 KLK9 LRRK2 MCM2 
HDAC7 IL7R,IL7R,IL7R KDM1A KNDC1 LSG1 MCTP1 
HDAC9 INPP4B KDM2B KPNB1 LTBP1 MDGA2 
HGF IQCB1 KDM5B KRAS LTBP2 MECP2 
HIST1H1B ITGA6 KDM5C KRAS,KRAS LUC7L2 MED12 
HIST1H1C ITGAD KDM6A KRT33A LYPD2 MED13 
HIVEP3 ITGB4 KDM6A,KDM6A L3MBTL1 LZTR1 MGA 
HK2 ITGB8 KDM6A,KDM6A,KDM6A L3MBTL4 MADD MGAT1 
HLF ITIH2 KIAA0240 LAMA2 MAGEB2 MGAT4C 
HMCN1 ITPKC KIAA0368 LAMB1 MAGED2 MGAT5B 
HNF4G ITPR1 KIAA0430 LAMC1 MAGI3 MID1 
HNRNPA1 ITSN1 KIAA0802 LEPREL2 MAGI1 MLL,MLL 
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Gene Name 

MLL2 NAV3 NNMT NUDT10 PCNX PKHD1L1 
MLL2,MLL2 NBEA NOD1 NXF1 PCSK2 PKN3 
MLL3 NCCRP1 NOS1 NYNRIN PDCD2L PKP2 
MLL4 NCKAP1 NOS1AP OGT PDE11A PLCB2 
MME NCKAP5 NOS2 OGT,OGT PDE3A PLCB3 
MMS19 NCOR1 NOS3 OLFM3 PDE7B PLCE1 
MPO NCOR2 NOTCH1 OPHN1 PDS5B PLS3 
MRC2 NDUFS6 NOTCH2 OPRM1 PDZD2 PLXNA2 
MSH6 NEDD4L NOTCH3 OR5I1 PDZRN4 PNMA2 
MSN NEGR1 NOTUM OTUD7A PEG3 POLB 
MTA1 NEIL3 NOVA1 PAK2 PER1 POLD1 
MTHFD1 NEK10 NOX1 PAMR1 PHACTR2 POLQ 
MTNR1A NELL1 NR3C1 PAPPA2 PHF12 POM121L12 
MTOR NEXN NRAP PARK2 PHF6 PON3 
MTUS2 NF1 NRAS PAX5 PHF6,PHF6 POT1 
MVP NF1,NF1 NRAS,NRAS PAX9 PHF8 PPFIA2 
MXRA5 NHSL1 NRAS,NRAS,NRAS PBRM1 PHLDB1 PPFIBP1 
MYB NIPBL NRK PCDH1 PIK3CA PPFIBP2 
MYC NKX2-8 NRXN1 PCDH15 PIK3R1 PPP1R10 
MYCBP2 NLGN4X NSD1 PCDHA3 PIK3R3,PIK3R3 PPP2R1A 
MYST3,MYST3 NLRC4 NT5C1B PCDHAC1 PIWIL4 PPP2R2C 
NALCN NLRP3 NT5C2 PCDHGA5 PKDREJ PPYR1 
NAT1 NLRP8 NT5C2,NT5C2 PCLO PKHD1 PRAM1 
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Gene Name 

PRDM1 PTPN11 RUNX1 SMARCC1 AMOTL2 FAM96B 
PRDM15 PTPN13 RXFP2 SMC1A ARNT FARSB 
PRDM2 PTPN14 RYR2 SMC3 ATG7 FOLR1 
PRDM9 PTPN3 SAE1 SNRNP200 BAK1 FTH1 
PRKCD PTPRF SALL3 SOX4 BRD4 G6PC2 
PRKCE PTPRG SCN5A SOX6 C12orf10 GHRL 
PRKCQ PTPRN SERPINA1 SOX9 C14orf178 GLIS1 
PRKCZ PTPRT SERPINA4 SPAST C2orf82 GPR149 
PRKD1 PTPRZ1 SERPINB10 SPEN CAPN3 GPR6 
PRKD2 PXDNL SETD2 SPOP CASP5 HEY2 
PRKDC RAB32 SETDB1 SPTA1 CBX8 HIST1H3A 
PRMT3 RAD21 SH2B3 SPTBN1 CCNDBP1 HIST1H3C 
PRPS1 RAI1 SH3KBP1 SPTBN5 CD5L HSD3B1 
PRRX1 RB1 SHISA2 SPZ1 CD79A IRGM 
PRSS22 RBMX SHROOM2 SRRM2 CPNE1 JPH3 
PRSS3 RELN SI SSPO CPSF6 KLF12 
PRUNE2 RIMBP2 SIN3A ST14 DDT KLHDC4 
PRX RIPK4 SLFN5 STAG2 DNHD1 LIMS2 
PSD4 ROBO1 SLIT3 STARD9 ECE2 LPA 
PSMA7 ROBO2 SLITRK2 STK11 EIF4EBP3 LRIG2 
PTCH1 ROR1 SLITRK4 ACTC1 ENPEP LRRC34 
PTGIS RPL22 SMARCA4 ADAMTS3 ERBB2 LRRC58 
PTPN11 RPL5 SMARCB1 ADAP2 EXTL3 LYPD4 
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Gene Name 
MAP10 TACC2 TMEM205 TUBGCP6 WDR17 ZSCAN20 
MYCN TACC3 TMTC1 TXNRD1 WHSC1  
NEUROG3 TAF1 TMTC2 U2AF1 WNK3  
NRIP1 TAF15 TNC UBA2 WRN  
P2RY12 TAF3 TNFRSF13B UBR2 WSCD2  
PCDHB16 TATDN1,TATDN1 TNIK UBR4 WT1  
PDCD6 TBC1D9 TNN UGT2A3 WWC1  
PLCH2 TBL1XR1 TP53 UHRF1 XBP1  
PMAIP1 TBX15 TP53,TP53 UHRF1BP1 XIRP2  
RPL22L1 TBX18 TP53,TP53,TP53 UNC80 XRRA1  
RRP9 TBX3 TPCN1 USH2A ZAN  
SERPINB7 TCF3 TRIM39 USP5 ZBTB3  
SHC2 TECTA TRMT1L USP7 ZEB2  
SHF TET2 TRPM1 USP9X ZFHX4  
SPATA31E1 TET3 TRPM3 UTY ZFP36L2  
SUN2 TGM4 TRPV2 VANGL1 ZKSCAN4  
SUPT6H THBS2 TRRAP VEZF1 ZMYM2  
SUZ12 THSD7A TSC1 VPS13A ZNF292  
SVIL TIGD7 TSHZ2 VSIG2 ZNF445  
SYNE1 TLN2 TSKS VWA3A ZNF483  
SYNE2 TMC6 TTC17 VWA5A ZNF521  
SYT12 TMEM127 TTC28 WBSCR17 ZNF687  
TAB2 TMEM184A TTC9 WDR16 ZNRF2  

 
(Personal communication with Ousman Mahmoud on 13th February 2018, Charles Gawad Lab. St. Jude Children’s Research Hospital) 
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APPENDIX B. TOTAL XVII RISK STRATIFICATION 
 
 

Criteria for Low-Risk (LR) ALL  
 

 
• B-ALL with DNA index ≥1.16, t(12;21) Or age 1 to 9.9 years and presenting 

WBC count <50 x 109/L  plus 
• Absence CNS 3 status, testicular leukemia, adverse genetic characteristics (t 

(9;22); t(1;19); MLL gene re-arrangement, hypodiploidy and poor early response 
defined as MRD ≥1% on D15 or  ≥0.01% at end of remission induction.  
 
 

Criteria for Standard-Risk (SR) ALL 
 
  

• Patients with T- or B-ALL who do not meet the criteria for low-risk or high-risk 
ALL.  
 
 

Criteria for High-Risk (HR) ALL  
 

 
• End of early intensification: MRD ≥0.1% + inadequate decrease in MRD levels 

after 1-2 courses of Consolidation treatment  
• End of remission induction: MRD ≥0.01% in hypodiploid patients.  
• After re-induction II (Continuation W17): Persistent ≥ 0.01% MRD 
• Increasing in MRD at ≥0.01% after remission induction  
• Previously MRD-negative patients: Re-emergence of MRD at ≥0.01% 
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APPENDIX C. TOTAL XVII REMISSION INDUCTION TREATMENT 
SCHEDULE 

 
 

Precursor B-cell ALL Remission Induction Treatment Schedule 
 
 
 
 

 
 
 
 

Bortezomib (No targetable lesions and Day 15 MRD ≥5%) on D29 and D32  
Dasatinib (Ph+, Ph-like ABL1-class fusion only) starting on D15 except for select 
cases 
Rituximab is given on D3 (un-blinded randomization)   

 
 

T-cell ALL Remission Induction Treatment Schedule 
 
 

Agent  Schedule  
Prednisone or Prednisolone  Days 1-28  
VinCRIStine  Days 1#, 8, 15, 22  
DAUNOrubicin  Days 2#, 8, 15  
Pegaspargase  Days 4 and 23†  
Cyclophosphamide†  Day 22  
Cytarabine†  Days 22-25 and 29-32  
Mercaptopurine†  Days 22-35  
  

Bortezomib (No targetable lesions and Day 15 MRD ≥5%) on D29 and D32  
Dasatinib (ABL1-class fusion only) starting on D15 except for select cases 

 
 

 
 
 
 
  

         Agent Schedule  
Prednisone or Prednisolone   Days 1-28  
Vincristine  Days 1#, 8, 15, 22  
DAUNOrubicin  Days 2# +/- 8   
Pegaspargase  Days 4 and 23  
Cyclophosphamide  Day 22  
Cytarabine  Days 22-25 & 29-32  
Mercaptopurine  Days 22-35  
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