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ABSTRACT 

 

 

Models of speech perception suggest a dorsal stream connecting the temporal and inferior 

parietal lobe with the inferior frontal gyrus. This stream is thought to involve an auditory-

motor loop that translates acoustic information into motor/articulatory commands and is 

further influenced by decision making processes that involve maintenance of working 

memory or attention. Parsing out dorsal stream’s speech specific mechanisms from 

memory related ones in speech perception poses a complex problem. Here I argue that 

these processes may be disentangled from the viewpoint of the temporal dynamics of 

sensorimotor neural activation around a speech perception related event.  

 

Methods: Alpha (~10Hz) and beta (~20Hz) spectral components of the mu () rhythm, 

localized to sensorimotor regions, have been shown to index somatosensory and motor 

activity, respectively. In the present work, event related spectral perturbations (ERSP) of 

the EEG -rhythm were analyzed, while manipulating two factors: active/passive 

listening, and perception of native/nonnative phonemes. Active and passive speech 

perception tasks were used as indexes of memory load employed, while native and. 

nonnative perception were used as indexes of automatic top-down coding for sensory 

analysis. 

 

Results: Statistically significant differences were found in the oscillatory patterns of  

components between active and passive speech perception conditions with greater  

alpha and beta event related desynchronization (ERD) after stimuli offset in active speech 

perception. When compared to listening to noise, passive speech perception presented 

significantly (pFDR<0.05) stronger alpha and beta ERD during and after stimuli 

presentation. When comparing native to nonnative speech perception, stronger alpha (8-

14Hz) and beta (22-25Hz) event related synchronization (ERS) were observed before and 

during stimuli onset in the passive nonnative task. Passive native perception, on the other 

hand, presented stronger alpha and especially beta ERD before stimuli onset as well as 

stronger alpha ERD between presentation of the two syllables composing the stimuli 

(600-850ms), and during the presentation of the second syllable (1000ms). 

 

Conclusion: These findings suggest that neural processes within the dorsal auditory 

stream are functionally and automatically involved in speech perception mechanisms. 

While its early activity (shortly after stimuli onset) seems to be importantly involved with 

the instantiation of predictive motor/articulatory internal models that help constraining 

speech discrimination, its later activity (post-stimulus offset) seems essential in the 

maintenance of working memory processes. 
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CHAPTER 1.    INTRODUCTION 

 

 

Speech perception is a dynamic and essentially multisensory neural process, 

which has been shown to involve several areas of the brain. These areas include temporal 

regions, such as the superior temporal gyrus (STG) and the superior temporal sulcus 

(STS), which are traditionally implicated in auditory analysis (Belin, Zatorre, & Ahad, 

2002; Okada et al., 2010), and also frontal regions, such as the inferior frontal gyrus 

(IFG) and the premotor cortex (PMC) that are usually associated with converting auditory 

percepts to articulatory representations of speech (Hickok & Poeppel, 2015). This 

concept of speech perception as a highly dynamic auditory-motor system dates back to 

Wernicke’s conception of the neural network behind language processing (Wernicke, 

1969).  

 

Building on Wernicke’s concept, Hickok and Poeppel (2004, 2007) proposed a 

comprehensive model of speech perception, the dual stream model, that accounts for the 

dynamic interaction between auditory and sensorimotor processes. According to this 

model, speech perception starts by involving auditory-responsive fields in STG 

bilaterally, then diverting into two processing streams: a ventral stream, and a dorsal 

stream. The ventral stream originates in the upper posterior part of the temporal lobe and 

extends toward the anterior part of the temporal lobe, where it also connects to the ventral 

inferior frontal gyrus through the uncinate fasciculus and extreme capsule, and it has been 

shown to be involved in mapping sound onto meaning (Hickok & Poeppel, 2007; 

Rauschecker & Scott, 2009; Saur et al., 2008; Scott & Wise, 2004; Specht, 2013; Weiller, 

Bormann, Saur, Musso, & Rijntjes, 2011). The dorsal stream extends from the posterior 

temporal lobe through inferior parietal areas into the left inferior frontal gyrus, including 

premotor areas1. This stream mainly follows the arcuate and longitudinal fasciculi, 

connecting the temporal and inferior parietal lobe with the inferior frontal gyrus (Catani 

et al., 2007; Houde & Nagarajan, 2011). Traditionally, the dorsal stream has been 

reported to be left lateralized. More recently, however, evidence has been found to 

suggest a more bilateral organization in speech (Cogan et al., 2014; Simmonds et al., 

2014). Hickok and Poeppel suggest that the dorsal stream is an auditory-motor loop that 

translates acoustic information into motor/articulatory commands (Hickok & Poeppel, 

2004, 2007; Rauschecker & Scott, 2009; Scott & Wise, 2004). Hickok et al. (2011) have, 

in fact, proposed a framework of speech sensorimotor integration which helps explain the 

activation and possible top-down modulatory influence of the motor system during 

speech perception. They view it as a feedback control architecture by which inverse 

internal models convert the input auditory signal into potential articulatory planning 

control signals; the auditory consequences of these articulatory planning control signals 

are then predicted by forward internal models that are compared with the auditory speech 

representation. These internal models are constructed based on previous experience or 

learned associations between the motor representations of a phonological signal and their 

sensory consequences (Hickok et al., 2011). 

                                                 

 
1 Rauschecker and Scott (2009) have specified the superior and dorsal premotor cortex as the premotor 

regions being influenced by the dorsal stream. 
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Inconsistent research findings regarding dorsal stream activity, however, have 

muddied the interpretation of findings in relation to its function in speech perception. 

(Chevillet, Jiang, Rauschecker, & Riesenhuber, 2013; Leech, Holt, Devlin, & Dick, 2009; 

E. B. Myers, Blumstein, Walsh, & Eliassen, 2009). Consistent with the Hickok and 

Poeppel’s model, a number of studies suggest that activation within the dorsal stream 

reflects the automatic comparison of sensory information from speech against an internal 

phonological or articulatory template (automatic predictive coding or hypothesis testing) 

(D. Callan, Callan, Gamez, Sato, & Kawato, 2010; M. Iacoboni, 2008; Kawato, 1999; 

Stephen M. Wilson & Iacoboni, 2006). However, because the dorsal stream has also been 

found to be active during decision making processes that involve maintenance of working 

memory or attention (Binder, Liebenthal, Possing, Medler, & Ward, 2004; Buchsbaum & 

D’Esposito, 2008; Krawczyk, 2002), it has been difficult to separate out primarily 

speech-related neural activation from activation that is chiefly related to attention and 

working memory when examining the relative magnitude of neural activation associated 

with these processes. These processes may, however, be distinguishable from the 

viewpoint of the dynamics of activation across the time-course of speech processing. 

 

In particular, a number of studies have demonstrated that activation of the dorsal 

stream varies with the cognitive demands of the task. Conditions where subjects are 

actively asked to discriminate speech sounds involve the maintenance of those sounds in 

working memory to facilitate the comparison of those sounds. On the other hand, passive 

conditions, in which subjects passively listen to speech do not require the maintenance of 

sounds in working memory and therefore are less cognitively demanding. Thus, research 

has shown that tasks requiring active discrimination of phonemes show greater dorsal 

stream activation than passive listening to the same phonemes (Jussi Alho et al., 2014; 

Daniel Callan, Callan, & Jones, 2014; Meister, Wilson, Deblieck, Wu, & Iacoboni, 

2007). Similarly, discrimination of phonemes in noisy conditions (while intelligible) 

evidences a more significant involvement of motor regions, within the dorsal stream, in 

comparison to discrimination of phonemes in quiet conditions (Binder et al., 2004; 

D'Ausilio, Bufalari, Salmas, & Fadiga, 2012; Du, Buchsbaum, Grady, & Alain, 2014; 

Jenson et al., 2014). Thus the cognitive demands of the task which require greater effort 

and/or greater reliance on a phonological working memory seem to elicit greater activity 

in the dorsal stream. 

 

These findings, however, do not obviate the notion that the dorsal stream is 

involved in the automatic activation of articulatory templates if one considers the 

dynamic nature of the time-course of activation. Dorsal stream activation related to task 

reliance on a phonological working memory buffer should be observed to happen after 

stimuli have been presented. Dorsal stream activity related to automatic activation of 

articulatory templates, on the other hand, should occur within 200ms of hearing the 

stimulus (D. Callan et al., 2010). Thus it is not the absolute or relative amount of dorsal 

stream activity alone, but how that activation changes across the time-course of 

processing that is important when distinguishing the functions of dorsal stream activity in 

active versus passive tasks.  
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Much of the research cited in support of one or the other role of the dorsal stream, 

however, is not designed to measure the time-course of activation; instead, it measures 

the average activation across entire trials. For example, Callan et al. (2010) examined the 

role of the PMC in perceptual performance under noise, using fMRI and MEG in both 

active discrimination and passive listening tasks. The authors found PMC activation 

across all conditions with greater activation during active tasks, and during correct trials. 

They interpreted the existence of dorsal stream activity during passive trials as indicating 

an automatic role for this area, and suggested the greater activity during active and 

correct trials reflected greater reliance on phonological working memory. While we tend 

to agree with this interpretation, assumedly both passive and active conditions embody 

some measure of attention. It could therefore be argued that the existence of lower levels 

of dorsal stream activation during passive listening indicates lower levels of attention 

being paid to the stimuli, and is not on its own an indication of activation of automatic 

sensorimotor processing. The time-course of activation would in this case help to parse 

out these effects. If the greater activation associated with active trials were to occur 

primarily after stimuli offset, this would suggest that the activation is indeed due to 

greater reliance on the phonological memory buffer. 

 

A second way in which one might attempt to disentangle the effects of cognitive 

load on dorsal stream activity in speech perception is by comparing nonnative phoneme 

activation to native phoneme activation. Because nonnative phonemes are not part of the 

articulatory repertoire of a speaker, they should elicit less automatic dorsal stream 

activation during speech processing (in comparison to native phonemes), and potentially 

more activation after stimuli offset as an indication of the greater effort required to 

processes the unfamiliar phonemes. An fMRI study by Callan et al. (2003) suggests that 

nonnative phonemes may well elicit less dorsal stream activity. Their results indicated 

significantly less dorsal stream activity for nonnative phonemes prior to discrimination 

training in comparison to dorsal stream activity after discrimination training. The authors 

suggest the post-training dorsal stream activity is due to the formation of auditory-

articulatory (perceptual-motor) mappings related to speech processing and that formed as 

a result of the phoneme discrimination training that took place. Prior to training no such 

mappings existed resulting in markedly less automatic auditory-articulatory processing. 

Although Callan et al. (2003) did not investigate timing differences, and did not make a 

direct comparison between native and nonnative speech sounds, their results suggest that 

the time-course of dorsal stream activation should show greater sensorimotor activity 

close after stimuli onset during the perception of native sounds, and comparatively less 

for the perception of nonnative sounds. 

 

One methodology well-suited to examining the combination of these factors in a 

single experiment is the analysis of spectral temporal activity derived from analysis of 

electroencephalogram (EEG) oscillations. Research has shown that measuring changes in 

spectral power within the mu () rhythm, whose pattern is characterized by oscillatory 

peaks in both alpha (~10Hz) and beta (~20Hz) frequency bands, is a good method for 

understanding sensorimotor processes related to speech perception (A. Bowers, 

Saltuklaroglu, Harkrider, & Cuellar, 2013; A. L. Bowers, Saltuklaroglu, Harkrider, 

Wilson, & Toner, 2014; D. Callan et al., 2010; Jenson et al., 2014; Skipper, van 



 

4 

Wassenhove, Nusbaum, & Small, 2007). The  alpha component frequencies of the 

sensorimotor -rhythm tend to originate from the somatosensory cortex when guidance is 

needed for ongoing movement, while its  beta component frequencies tend to emerge in 

a somatotopic manner from the precentral gyrus corresponding with the motor cortex for 

the effector involved (i.e., lip vs. hand movements) and indicate motor activity (Hari, 

2006; Jensen et al., 2005; Jaime A. Pineda, 2005). Therefore, the analysis of patterns 

within -alpha and -beta frequencies around speech related events is likely to disclose 

important information regarding the timing of sensorimotor integration processes in 

speech processing. 

 

Measures of -rhythm oscillatory activity can be visualized using event-related 

spectral perturbations (ERSPs) which allow for analysis of changes in spectral power 

across a range of frequencies. Changes in spectral power are thought to indicate degrees 

of synchronization of the action potentials of neurons in the area being investigated. 

Decreases in spectral power reflect event-related desynchronization (ERD) of cortical 

neural network oscillations, while increases in spectral power reflect event-related 

synchronization (ERS) of cortical neural network (Pfurtscheller & Lopes da Silva, 1999).  

 

ERD and ERS are band and location specific, a fact which has resulted in several 

interpretations of their cognitive correlates. Of particular interest to the present work is 

that alpha ERD is thought to indicate a release from inhibitory sensory filtering or gating 

and may also contribute to predictive coding (W. Klimesch, 2012). Beta ERD, on the 

other hand, is often associated with predictive ‘top-down’ coding (hypothesis testing) for 

sensory analysis (Buschman & Miller, 2007; Kilavik, Zaepffel, Brovelli, MacKay, & 

Riehle, 2013; Siegel, Donner, & Engel, 2012). Monotonic alpha power has also been 

found to decrease with increased attentional or cognitive demands. Weisz and colleagues 

(2011) study indicated that a monotonic decrease in alpha power (i.e., alpha ERD) across 

a wide network of brain regions (prefrontal, temporal, parietal) was related both to 

reductions in speech intelligibility and working memory set size, supporting its sensitivity 

to both speech perception and working memory.  ERS, on the other hand, has been 

interpreted as having inhibitory or gating effects which can be very important to optimize 

energy demands and control over excitatory processes (W. Klimesch, 2012; W. Klimesch 

et al., 1996). Research has connected  ERS with gating of noise in speech discrimination 

tasks (Jenson et al., 2014). 

 

In addition, research has shown that -alpha ERD in speech production may 

provide an index of sensory feedback in audio-vocal monitoring (Jenson et al., 2014; 

Jenson, Harkrider, Thornton, Bowers, & Saltuklaroglu, 2015; Tamura et al., 2012). 

Recent studies analyzing oscillations of the sensorimotor  rhythm in both speech 

perception and production (Jenson et al., 2014; Jenson et al., 2015) have contributed with 

further evidence that  alpha and  beta can be reliable indexes of sensory feedback and 

forward predictive models (hypothesis testing), respectively, in both speech perception 

and production. 

 

Consequently, given that  rhythm is localized to primary motor/PMC regions, 

and that the PMC is strategically localized within the auditory dorsal stream, maintaining 
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a bidirectional communication between auditory and somatosensory regions via the 

arcuate and longitudinal fasciculi,  alpha and beta oscillations present a unique system 

for the analysis of the phonological sensory loop mechanisms ( beta, predictive forward 

model and  alpha, sensory feedback). In fact, a recent body of research analyzing the 

time course activity of the  rhythm (A. Bowers et al., 2013; A. L. Bowers et al., 2014; 

Jenson et al., 2014; Jenson et al., 2015) strongly suggests that the dorsal auditory stream 

supports a variety of roles in speech perception and production processes (articulatory 

representations, attention, experience and memory load). 

 

Utilizing high temporal resolution techniques, like EEG, to analyze neural activity 

behind speech perception has, therefore, been shown to be fruitful. In the past, problems 

associated with artifact removal and the biophysical inverse problem used to limit its 

reach and application. Recently, however, new approaches to EEG data analysis have 

been found to bypass these problems. ICA is an algorithm-based analysis that applied to 

EEG data aims to identify spatially fixed and temporally independent sources of neural 

activity that are linearly mixed across several sensors (A. Delorme & Makeig, 2004; 

Makeig, Debener, Onton, & Delorme, 2004; Onton, Westerfield, Townsend, & Makeig, 

2006). It can, for example, separate out artifacts embedded in the data (e.g.: eye 

movements, eye blinks, muscle tension), since they are usually independent of each other. 

Applying ICA to EEG data brings together high time/frequency resolution with enhanced 

spatial resolution.  

 

Consequently, the analysis of  alpha and  beta ERSPs from EEG activity via 

ICA represents an ideal methodology through which to explore both the nature and 

timing of sensorimotor processes in the perception of speech. More specifically, the 

suggested method is able to verify whether phonological activation related to working 

memory occurs both after stimulus presentation, and during active rather than passive 

tasks. Similarly, since nonnative phonemes lack entrenched articulatory templates, 

contrastive analysis of native and nonnative phonemes can verify whether dorsal stream 

activity occurring during stimulus presentation is related to automatic phonological 

processing. Moreover, since nonnative phonemes may well require more attention than 

native ones, crossing this factor with the active/passive conditions as we suggest above, 

allows us to disentangle the effect of working memory from the effect of automatic 

phonological processing. 

 

In the present study we hypothesize that activation related to automatic 

phonological processing will occur during stimulus presentation while processing related 

to working memory will occur after stimulus presentation. To test these hypotheses, we 

investigate sensorimotor -rhythm activity localized to the dorsal stream during speech 

perception while manipulating two factors: native/nonnative phonemes and active/passive 

listening. This produces the following conditions: 1) listening to noise (control); 2) 

passively listening to a native speech contrast; 3) active discrimination of a native speech 

contrast; 4) passively listening to a nonnative speech contrast; and 5) active 

discrimination of a nonnative speech contrast. The hypotheses tested are the following:  

 

 H1: Greater sensorimotor activity after stimuli offset is correlated with working 
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memory buffer processes, instantiated within the dorsal auditory stream. If this is 

the case, greater sensorimotor activity (μ-alpha and μ-beta ERD) after stimuli 

offset is expected in active discrimination tasks in comparison to both passive and 

noise conditions. 

 

 H2: Sensorimotor activation during stimuli presentation is functionally related to 

the automatic instantiation of auditory-articulatory mappings (entrenched for 

native phonemes, but not for nonnative phonemes. If this is the case, we will find: 

(1) greater sensorimotor activity (μ-alpha and μ-beta ERD) during passive 

stimulus presentation for the native phonemes in comparison to nonnative 

phonemes, and (2) greater activation in both speech conditions (native and 

nonnative) in comparison to noise. Early (within 200ms of stimuli onset) 

sensorimotor activity during stimuli presentation in passive conditions and not 

later on suggests involvement in automatic speech related processes rather than 

processes related to working memory buffer. 
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CHAPTER 2.    LITERATURE REVIEW 

 

 

Activity within the dorsal auditory stream has extensively been argued to relate to 

the maintenance of working memory and decision-making processes (J. Alho et al., 2012; 

Binder et al., 2004; Buchsbaum & D’Esposito, 2008; Holt & Lotto, 2010; Krawczyk, 

2002). There is however a great deal of research also involving this stream activity with 

the generation of auditory-articulatory mappings implicated in the predictive coding of 

the articulatory consequences of sensory information in speech perception (D. Callan et 

al., 2010; Hickok & Poeppel, 2007; M. Iacoboni, 2008; Kawato, 1999; Stephen M. 

Wilson & Iacoboni, 2006). These two processes are generally highly interconnected and 

their disentanglement can be hard to achieve. Therefore, most research exploring the role 

of the dorsal auditory stream in speech perception safeguards both possibilities. The 

current project ventures a complex research paradigm to try the disentanglement of these 

two functions of the dorsal auditory stream during speech perception. By the analysis of 

 alpha and  beta ERSPs from EEG activity via ICA the current project intends to 

explore the time-course activity of sensorimotor processes involved in speech perception, 

more precisely during the active and passive perception of native and nonnative sounds. 

This complex approach is new and therefore the following review attempts to justify why 

the time-course analysis of native and nonnative perception, during active and passive 

tasks will contribute to a better understanding of the sensorimotor integration processes 

behind speech perception.  

 

 

Active and Passive Speech Perception 

 

One possible, often reported, confound related to the observation of activation 

within the dorsal auditory stream during speech perception and categorization tasks is this 

stream’s involvement in the maintenance of working memory, attentional resources, and 

decision processes (J. Alho et al., 2012; Binder et al., 2004; Holt & Lotto, 2010). There 

are doubts whether its activation is due to attentional/decision-making processes involved 

with task performance or whether it is functionally related to speech perception and 

categorization processes. For this reason, the functional role of the dorsal auditory stream 

in speech perception and categorization keeps being debated and explored. A number of 

researchers have suggested that activation within the dorsal auditory stream is secondary 

to speech perception (Binder et al., 2004; D. Callan et al., 2010; D. E. Callan, Jones, 

Callan, & Akahane-Yamada, 2004; D'Ausilio et al., 2012; Hickok & Poeppel, 2007) – 

related to mental rehearsal and decoding degraded or ambiguous signal or even related to 

perception of nonnative speech sounds – while others have argued for a linguistic role of 

those areas (Chevillet et al., 2013; Y. S. Lee, Turkeltaub, Granger, & Raizada, 2012; 

Liebenthal, Sabri, Beardsley, Mangalathu-Arumana, & Desai, 2013; Meister et al., 2007). 

 

This debate has also been ignited by conflicting results reported in studies using 

transcranial magnetic stimulation (TMS). In one hand, there are studies where stimulation 

of motor areas has shown to influence speech perception abilities, like categorical 

perception (R. Möttönen & Watkins, 2009), discrimination of specific places of 
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articulation (R. Möttönen & Watkins, 2012), or discriminating stop-consonants (Meister 

et al., 2007). Moreover, another, more recent study from Möttönen et al. (2013) has 

combined TMS and EEG to measure the effect of stimulation of the lip and hand 

representations of the left motor cortex on the MMN response. Their results revealed a 

reduced MMN response after TMS of the lips, but not of the hand representation. As 

noted by Specht (2014), this is a strong indication that disturbances within the 

articulatory network can automatially perturb speech sound discrimination. On the other 

hand and concurrently, there are studies using TMS and lesion data reporting that 

disturbances to the motor cortex have only minor or even no effects on general speech 

percetion and comprehension abitilities (Hickok, 2009, 2012; Lotto, Hickok, & Holt, 

2009; Rogalsky, Love, Driscoll, Anderson, & Hickok, 2011).  

 

Neurophysiological data derived from imaging studies has not fundamentally 

helped resolving this question either, mainly because of divergence in the research 

methods employed.  A group of studies have, for example, employed research methods 

where only active perceptual discrimination and categorization tasks were used, i.e., tasks 

where the participants are explicitly asked to discriminate between speech sounds (Daniel 

E. Callan, Jones, & Callan, 2014; D. E. Callan et al., 2004; Du et al., 2014; Liu & Jin, 

2015; Pulvermüller et al., 2006). As an example, Callan et al. (2014) have explored the 

differential involvement of speech motor brain regions during the perception of native 

and foreign-accented phonemes for first and second language listeners. They presented 

their participants, English native speakers and Japanese native speakers, with syllables 

starting either with /r/ or /l/, in both an unaccented condition (/r/ and /l/ spoken by native 

English speakers), and a foreign-accented condition (/r/ and /l/ spoken by native Japanese 

speakers). Participants had to actively identify the syllables as starting with either /r/ or 

/l/. In what respects specifically to perception of the foreign-accented condition, which 

was similarly difficult for both English and Japanese speakers (as judged by behavioral 

testing), results showed significant activation of the right inferior ventral PMC/Broca’s 

area, the superior ventral and dorsal PMC, and the left cerebellum. Authors ruled out the 

hypothesis of PMC activation being related with general cognitive processes, since they 

controlled for task difficulty. However, another way this can be controlled for is by the 

use and contrast of active and passive speech perception tasks.  

 

In relation to this idea, there is another body of research that seems to support the 

automatic and functional role of the dorsal auditory stream in speech perception and 

categorization that typically uses methods where the participants are distracted from the 

speech perception task at hand, by being asked to pay attention to other properties of the 

stimuli (Chevillet et al., 2013; Y. S. Lee et al., 2012), or use a controlled combination of 

passive and active tasks (Jussi Alho et al., 2014; D. Callan et al., 2014; Meister et al., 

2007). Passive tasks are those in which participants are passively listening to the speech 

stimuli, therefore not being asked to make any decisions about the speech sounds heard. 

In fact, Wilson et al. (2004) have shown evidence that passively listening to speech may, 

in fact, activate motor areas involved in speech production  (see also Benson et al., 2001; 

Binder et al., 2000). Using fMRI, they compared neural activation during the following 

tasks: 1) passively listening to meaningless monosyllables, 2) speech production 

(production of the same meaningless monosyllables), 3) listening to white noise or bell 
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sound (control task), and 4) bimanual motor task (control task). Their observations 

highlighted the activation of areas of the PMC for both speech perception and production, 

with diminished response to non-speech stimuli. The superior ventral PMC showed an 

enhanced response to speech stimuli, while the inferior ventral PMC was stronger for 

speech production. The superior ventral PMC showed a diminished response to non-

speech sounds. As noted by the authors, these findings are “consistent with the view that 

speech perception involves the motor system in a process of auditory-to-articulatory 

mapping to access a phonetic code with motor properties” (S. M. Wilson et al., 2004, p. 

702). In agreement with these findings, in a later study, Wilson and Iacoboni (2006) 

analyzed the involvement of premotor brain areas in relation to nonnative phonemes 

varying in producibility, and once more found PMC activation, bilaterally,  while 

participants were passively listening to the speech stimuli. This study did not include an 

active discrimination task, but the activity was found in comparison to rest.  

 

In order to contribute to the disentanglement of the involvement of the dorsal 

auditory stream in speech perception, as possibly having an essential role or instead 

acting as an aiding agent, the current project employs a research method where both 

active perceptual discrimination and passive listening to speech tasks are used. Besides, a 

control task in which participants only listen to white noise is also employed. Less 

activity within the dorsal auditory stream is expected in the passive tasks, when compared 

to active discrimination of native and nonnative phonemes, since the participants are not 

being asked to produce any judgments about the stimuli and, therefore, no modeling or 

motor planning of the sounds is expected to occur. Furthermore, in accordance with 

‘dual-stream model’s’ assumptions, passive speech perception should elicit activity in the 

motor system only after stimulus onset, since forward models originated in PMC are 

thought to modulate perception by predicting the likely sensory consequences (Hickok & 

Poeppel, 2004, 2007; Skipper et al., 2007). Additionally, if dorsal auditory stream areas 

are automatically involved in speech perception, as opposed to non-speech signals, we 

should observe differences between passive speech perception tasks and listening to 

noise. PMC activity is expected in passively listening to the speech stimuli after stimulus 

onset, but not when listening to noise, in accordance with Wilson et al.’s results (2006; 

2004) and the view that speech perception involves the motor system in a process of 

mapping auditory signal to the articulatory properties of the speech sounds.  

 

In active perception, i.e. active discrimination of speech categories, ‘dual-stream 

model’ assumptions suggest that forward predictions generated in the PMC may generate 

predictions or articulatory hypotheses that will reduce the load on the sensory system by 

limiting the number of candidate perceptual targets. This model, in consequence, predicts 

early activity in the motor system and simultaneous activity in the sensory system for 

generation of those predictive articulatory hypothesis or expectations in regards to the 

sensory outcome, limiting the load for sensory analysis. This will result in activity within 

the dorsal auditory stream prior to speech stimuli onset, and possibly after stimulus 

offset, reflecting an initial articulatory hypothesis followed by synthesis with sensory 

information (i.e., sensorimotor integration). 
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Perception of Nonnative Categories 

 

Activation of brain areas within the dorsal auditory stream associated with speech 

perception and phonological categorization tasks has been reported somewhat extensively 

in the literature (D. Callan et al., 2010; D. Callan et al., 2014; D. E. Callan et al., 2004; D. 

E. Callan, Tajima, et al., 2003; Hickok et al., 2011; Hickok & Poeppel, 2015; M. 

Iacoboni, 2008; Stephen M. Wilson & Iacoboni, 2006). The function of these areas in 

speech perception and phonological categorization, however, is still not fully understood. 

Different researchers have suggested that brain motor areas, including the PMC, could be 

involved in transforming the acoustic signal to a phonetic code or, more specifically, in 

generating online internal forward models of auditory templates or native phonemes (D. 

Callan et al., 2010; D. E. Callan et al., 2004; D. E. Callan, Jones, et al., 2003; M. 

Iacoboni, 2008; Poeppel, Idsardi, & van Wassenhove, 2008; Skipper et al., 2007; Stephen 

M. Wilson & Iacoboni, 2006). These internal forward models are formulated as being 

mechanisms that predict the sensory consequences of internally stimulated articulatory 

models in way to facilitate speech perception (see Models of Sensorimotor Integration in 

Speech Processing). It has been argued that the dorsal auditory stream, believed to 

instantiate these predictive mechanisms, is especially important in aiding speech 

perception when the speech signal is degraded either by noise or in nonnative speech 

perception (mainly when learning new phonological contrasts) (A. M. Callan, Callan, 

Tajima, & Akahane-Yamada, 2006; D. Callan et al., 2014; D. E. Callan et al., 2004; D. E. 

Callan, Tajima, et al., 2003; Pillai et al., 2003; Wang, Sereno, Jongman, & Hirsch, 2003; 

Zhang et al., 2009). Wilson and Iacoboni (2006), for example, used fMRI to analyze 

neural responses to nonnative phonemes varying in producibility and found activation in 

both superior temporal (auditory) and PMC areas to distinguish native and nonnative 

phonemes, with greater signal changes for nonnative phonemes. Furthermore, in line with 

Callan’s (D. E. Callan et al., 2004) proposed model of forward internal predictive 

mechanisms, they suggest that internal representations of known phonemes result from 

the integration of sensory and motor systems, where the PMC is involved in generating 

internal forward models, while the auditory system is essentially responsible for 

“comparing the acoustic input to predicted acoustic consequences of phonemes under 

consideration” (Stephen M. Wilson & Iacoboni, 2006, p. 322). Their findings regarding 

the involvement of superior temporal areas in matching auditory input to stored templates 

(Hickok & Poeppel, 2004; Scott & Wise, 2004; Warren, Wise, & Warren, 2005) as well 

as their findings regarding the motor system role in the online generation of these internal 

templates (Hickok et al., 2011) find even further support in the literature and seem to be 

coherent with more constructivist theories of speech perception, which predict greater 

PMC engagement in the predictive coding of more difficult tasks. According to Wilson 

and Iacoboni’s (2006) interpretation of their own results, the greater PMC activation 

associated with the presentation of nonnative phonemes is related to this area’s 

engagement in repeated attempts to model the unfamiliar phonemes, when a match could 

not be obtained (templates can only be retrieved for native phonemes).  

 

Further information regarding the time-course of activity of these sensorimotor 

areas in the discrimination of native and nonnative phonemes is extremely important to a 

full understanding of the involvement and function of the dorsal auditory stream in 
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speech perception. The present study will try to disentangle working memory load and 

decision making processes from more automatic phonological processes associated with 

the dorsal auditory stream by analyzing the time-course of sensorimotor activity within 

this stream in relation to the timing of stimuli presentation – native and nonnative 

phonological contrasts. 

 

In the past, neural processing differences for native and nonnative phonemes have 

also been reported in several neurophysiological studies using mismatch negativity 

(MMN)2. These studies, however, tend to focus on the function of the auditory cortex in 

speech perception and not so much on the involvement of motor regions in speech 

recognition. Nevertheless, MMN studies have contributed significantly to support 

evidence on the existence of a language-specific memory trace associated with phonemic 

coding and storage. As an example of two essential studies that led to this conclusion, 

Näätänen and colleagues, in 1997, found that in a sequence of native phonemes, deviant 

native phonemes (i.e., a native phoneme different from the one previously being 

presented) produced a larger MMN in the left hemisphere, localized in the superior 

temporal regions, than deviant nonnative phonemes (Näätänen et al., 1997). In the same 

year, Dehaene-Lambertz found a larger MMN produced by acoustic changes that resulted 

in a crossing between phonemic categories than equivalent acoustic changes within a 

same phoneme category, localized in the same auditory temporal regions of the left 

hemisphere (Dehaene-Lambertz, 1997). These results lead to the theoretical assumption 

of the existence of a memory trace specific to language, where relevant linguistic traits of 

the native phonological system were stored, assumedly in the superior temporal brain 

regions. 

 

Additional evidence to the hypothetical existence of a language-specific memory 

trace associated with phonemic coding and storage came from training studies, where 

increased MMN were observed in the left hemisphere for newly learned phonetic 

categories (see Tremblay, Kraus, Carrell, & McGee, 1997). The greater MMN for native 

phonemes or learned contrasts consistently reported by MMN studies seems to contradict 

more recent findings using neuro imaging techniques, which report greater activity for 

nonnative phonemes. An explanation for the different results may however be related to 

differences in the stimuli used. The stimuli in Näätänen’s MMN studies often consists of 

native phonemes that are discriminable as deviants, whereas the nonnative phonemes are 

frequently not discriminable from the standards. Conversely, in the neuroimaging studies 

nonnative stimuli are readily perceivable as nonnative or non-prototypical sounds. 

Importantly, despite possible methodological incongruences, the hypothesis of a language 

specific memory trace for phonemic categories raised by the late MMN studies seems to 

link well with the more recent literature indicating that phonological categorization of 

native sounds seems to rely more heavily in the superior temporal regions, consistent 

with increased reliance on auditory-phonetic representations (D. E. Callan et al., 2004), 

                                                 

 
2 As a short review, the MMN is a negative component of the auditory event-related potential (ERP) that is 

elicited by any discriminable auditory change (“deviant”) in a sequence of repetitive (“standard”) stimuli, 

and it has been observed irrespective of the subject’s attention or task (Näätänen, 2001; Näätänen, 

Paavilainen, Rinne, & Alho, 2007). 
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when compared to perception of speech sounds in noise or in nonnative speech 

perception in which cases motor brain areas seem to become essential part in decoding 

the complex signal (D. Callan et al., 2014; D. E. Callan et al., 2004; Du et al., 2014).  

 

Imaging studies exploring the learning effects of new phonetic categories have 

also reached similar conclusions. This literature has generally reported greater task-

related activation in bilateral temporal and left inferior frontal structures after compared 

to before training on the new learned phonetic categories (A. M. Callan et al., 2006; D. E. 

Callan et al., 2004; D. E. Callan, Tajima, et al., 2003; Chollet, 2000; Golestani & Zatorre, 

2004; Poldrack, 2000; Van Mier, 2000). Myers and Swan (2012), for example, have 

observed bilateral activation in the middle frontal gyri specific to the encoding of learned 

category information, but detected no significant activation in the temporal lobes for 

between vs. within phonetic category contrasts. In this study, two groups of participants 

were trained to categorize speech sounds taken from a dental-retroflex-velar continuum 

according to two different boundary locations (one group was trained in a dental/retroflex 

contrast, while the other received training in a retroflex/velar contrast). After 

categorization training, differences in activation were observed almost exclusively in left 

and right frontal areas, specifically in the left inferior frontal gyrus and left and right 

middle frontal gyrus. The authors suggested this finding may imply that unlike the 

processing of novel speech categories, differential responsiveness to learned categories 

does not need to rely on retuning of sensitivities in the temporal lobe. This conclusion led 

Myers to the proposal of a model where, in the case of learned nonnative phonetic 

contrasts, "categorical sensitivity" emerges first in the inferior frontal lobe as participants 

learn the boundaries through acoustic space which define functional categories. Myers 

further suggests that this allows for rapid learning of category boundaries without 

fundamentally reshaping neural sensitivity to low-level details of the signal. (E. Myers, 

2014, p. 7). Studies in which participants underwent more sustained and intensive 

training has uncovered similar sensitivities reflected in the posterior temporal lobe 

activation (Leech et al., 2009; E. B. Myers & Mesite, 2014). This model seems to be 

consistent with the previously proposed formulation of internal models (D. E. Callan et 

al., 2004; D. E. Callan, Tajima, et al., 2003; M. Iacoboni, 2008; Poeppel et al., 2008; 

Skipper et al., 2007; Stephen M. Wilson & Iacoboni, 2006), which was expanded by 

Callan et al. (2004) to model the perception of nonnative categories. In analyzing the 

perception of a difficult second language contrast (/l/-/r/ by Japanese speakers), the 

authors concluded that when compared to native speakers, second language speakers 

revealed significantly greater activity of brain regions involved with motor planning 

(including PMC and Broca’s area), mainly in the left hemisphere. Conversely, native 

speakers revealed greater activity in anterior STG/S, consistent with increased reliance on 

auditory-phonetic representations (D. E. Callan et al., 2004).   

 

In summary, Myers (2014; E. B. Myers & Swan, 2012) and Callan’s (D. E. Callan 

et al., 2004; D. E. Callan, Tajima, et al., 2003) works seem to relate well in terms of their 

findings and theoretical models, and both seem to be in line with other literature 

indicating that phonological categorization of ambiguous and second language speech 

sounds is thought to engage PMC processing through a dorsal pathway (Chevillet et al., 

2013; Hickok & Poeppel, 2007; Liebenthal et al., 2013), where sensitivity to acoustic 
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information from native language speech sounds is found in the posterior superior 

temporal gyrus (pSTG) and superior temporal sulcus (STS) and feed-forward to category-

level coding in the frontal lobe when sounds are ambiguous (E. Myers, 2014), possibly 

like the ones recognized as foreign language sounds.  

 

 

Models of Sensorimotor Integration in Speech Processing 

 

As extensively suggested before, the involvement of motor areas in speech 

perception has long been suggested in theoretical considerations of the neural processes 

behind speech perception (A. M. Liberman, Cooper, Shankweiler, & Studdert-Kennedy, 

1967; A. M. Liberman & Whalen, 2000; Wernicke, 1969). The link between speech 

perception and production dates back to Wernicke’s model of the neural network behind 

language processing (Wernicke, 1969), which incorporated a direct sensory-motor 

connection, and Liberman’s ‘motor theory of speech perception’ (A. M. Liberman et al., 

1967; Alvin M. Liberman & Mattingly, 1985; A. M. Liberman & Whalen, 2000). The 

motor theory assumes that speech perception is motoric in nature, i.e., the articulatory 

gestures are the basic units of speech perception. Categorical perception of speech is, 

according to this view, dependent on an innate and speech-specific module responsible 

for detecting the speaker’s intended gestures, as opposed to being dependent on 

acoustic/auditory mechanisms. Although this and other controversial claims of the motor 

theory have since been highly questioned (Hickok, 2009; Lotto et al., 2009; Massaro & 

Chen, 2008; Schwartz, Basirat, Ménard, & Sato, 2012), the finding that PMC and Broca’s 

areas are active not only during action production, but also during action observation – 

‘mirror system’ – has ignited the discussion regarding the role of the motor system on 

speech perception (Arbib, 2010; Vittorio Gallese, Fadiga, Fogassi, & Rizzolatti, 1996; 

Perry & Bentin, 2009; Rizzolatti & Craighero, 2004; Schwartz et al., 2012).  

 

The mirror neuron system (MNS) is especially interesting for the purposes of the 

current project since it has been shown that the human MNS might be the 

neurophysiological basis for sensorimotor integration (Galantucci, Fowler, & Turvey, 

2006; V. Gallese, Gernsbacher, Heyes, Hickok, & Iacoboni, 2011). This postulation finds 

support in the discovery of mirror neurons in macaque area F5, thought to be a 

homologue of the human PMC, near Broca’s area. Since these areas (PMC/Broca’s area) 

are classically involved in speech production, a great deal of research has explored the 

involvement and function of the PMC and the dorsal auditory stream in speech 

perception (A. M. Callan et al., 2006; D. Callan et al., 2010; D. E. Callan, Callan, Honda, 

& Masaki, 2000; D. E. Callan, Kent, Guenther, & Vorperian, 2000; D. E. Callan et al., 

2006; Meister et al., 2007; Nishitani, Schürmann, Amunts, & Hari, 2005; Stephen M. 

Wilson & Iacoboni, 2006). There are essentially two main classical views of perception 

that inspired more current theories and models exploring the involvement of the dorsal 

auditory stream in speech perception: a direct realist view (Gibson, 1979) and a 

constructivist view (Von Helmholtz, 1867).  

 

The direct-realist theory of perception proposes that perceptual recognition is 

fundamentally founded on the detection of sensory stimulation properties that have parity 
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with self-generated actions (Fowler, 1986). In other words, gestural information is 

directly detected in speech perception, and constitutes the most basic unit of speech 

recognition. Direct detection, according to the direct-realist theory of speech perception, 

assumes no mediation by cognitive processes of inferencing or hypothesis testing. 

Instead, the listener directly recovers phonetically-structured articulatory gestures that are 

complexly encoded in the acoustic structure of the phonetic events (Fowler, 1986). The 

PMC, according to this view, has been indicated to implement a “non-inferential 

mechanism of action recognition based on neural identity” (Marco Iacoboni, 2005).  

 

The constructivist theory of speech perception, on the other hand, ascertains that 

the ongoing sensory stimulation is analyzed and constrained by a process of internal 

stimulation that predicts sensory outcomes of articulatory gestures. This approach to 

speech perception is tightly related with models of visual processing in which formulated 

hypothesis are tested against the inherently ambiguous information available to the retina 

(Hatfield, 2002). Therefore, this approach does not propose a direct link between the 

acoustic signal and speech perception. Rather, it proposes a mediated process where 

hypotheses about the speech signal are formed and tested basically based on three things: 

sensory input, previous phonological knowledge and high-level cognitive processes 

(Turvey, 1974).  

 

A more recent approach, derived from the constructivist theory, defends that the 

dorsal auditory stream is mainly involved with predicting sensory consequences of 

articulatory gestures, constraining or facilitating speech perception (D. Callan et al., 

2010; M. Iacoboni, 2008; Stephen M. Wilson & Iacoboni, 2006). This “prediction” has 

been conceptualized as the formulation of forward internal models, i.e., mechanisms that 

simulate (predictively) characteristics of speech articulation and its sensory consequences 

(Kawato, 1999).  

 

The concept of internal models is incorporated in a more comprehensive model of 

the functional anatomy of speech and language processing: the dual-stream model of 

speech processing (Hickok & Poeppel, 2004, 2007). This dual-stream model involves two 

partially segregated circuits in the brain: the ventral (occipital-temporal) and dorsal 

(occipital-parietal) streams (Hickok & Poeppel, 2015; Scott & Wise, 2004; Specht, 

2014). 

 

The ventral stream, also known as the ‘what’ stream (Scott & Wise, 2004), is 

generally agreed to be crucially involved with speech comprehension (lexical, syntactic 

and semantic processing) and speech perception3 (phonetic decoding, phonological and 

sub-lexical processing) (Hickok & Poeppel, 2007; Specht, 2013). Anatomically, the 

ventral stream is assumed to originate in the upper posterior part of the temporal lobe and 

to extend toward the anterior part of the temporal lobe, where it also connects to the 

ventral part of the inferior frontal gyrus through the uncinated fasciculus and extreme 

capsule  (Saur et al., 2008; Weiller et al., 2011). It should be noted that Rauschecker and 

                                                 

 
3 However, speech perception and speech comprehension are said to be two distinct functions of the ventral 

stream (Davis & Johnsrude, 2007). 
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Scott (2009)  have recently proposed a role for Broca’s area and ventral inferior premotor 

cortex in the ventral stream, expanding the influence of motor regions in speech 

perception and enhancing the overlap between the two streams (in contrast with Hickok 

and Poeppel’s (2004, 2007) dual-stream model, in which frontal speech areas are all 

thought to be within the postero-dorsal stream).  

 

While the role and function of the ventral stream in speech perception and 

comprehension is widely understood, the role and mainly the function of the dorsal 

stream in that respect is still debated. Also known as the ‘how’ stream (Scott & Wise, 

2004), the dorsal stream is believed to support auditory-motor integration, i.e., it is said to 

be involved in translating acoustic information of the speech signal into 

motor/articulatory commands (Hickok & Poeppel, 2004, 2007; Rauschecker & Scott, 

2009; Scott & Wise, 2004). Anatomically, the dorsal stream extends from the posterior 

temporal lobe of the left hemisphere through inferior parietal areas into the left inferior 

frontal gyrus, also including premotor areas4. This stream mainly follows the arcuate 

fasciculus, connecting the temporal and inferior parietal lobe with the inferior frontal 

gyrus (Catani et al., 2007).  

 

According to Hickok and Poeppel’s (2004) proposal of the dual stream model, the 

two streams are assumed to be organized hierarchically, where the input of each 

processing step depends on the output of the previous step. Each stream is assumed to 

have different patterns of lateralization: the dorsal stream tends to be left lateralized, 

while the posterior part of the ventral stream is believed to be bilateral  (Hickok & 

Poeppel, 2007).  

 

Saur et al. (2008) have shown the dominating role of the dorsal stream in 

repetition, essentially sub-lexical repetition, like pseudo words (see also Specht, 2014). 

The essential role of this network in the infant development of speech, enabling the 

creation of motor programs through auditory-motor integration, has also been shown  

(Hickok, 2012; Ueno, Saito, Rogers, & Lambon Ralph, 2011). What is less understood is 

the actual function of the dorsal stream in speech perception and the extent to which it 

might impact speech comprehension (D. Callan et al., 2010; Chevillet et al., 2013; 

Liebenthal et al., 2013; Specht, 2014). It has been conjectured that PMC and Broca’s 

areas may be responsible for instantiating internal models involved in constraining or 

aiding speech perception, especially in circumstances where the signal is degraded (D. 

Callan et al., 2010; D. E. Callan et al., 2004). Forward internal models, as mentioned 

above, predict the sensory consequences of internally stimulated articulatory models in 

way to facilitate speech perception. Callan and colleagues (2010; 2004) have provided 

some evidence that, especially in situations where the acoustic signal is degraded by 

noise or in nonnative speech perception, the mechanisms of internal models are important 

in enhancing perception “through the competitive selection of the internal model that best 

matches the ongoing auditory signal” (D. Callan et al., 2014, p. 2). More specifically in 

the case of perception of a nonnative speech contrast, in which an auditory representation 

                                                 

 
4 Rauschecker and Scott (2009) have specified the superior and dorsal premotor cortex as the premotor 

regions being influenced by the dorsal stream.  
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is not well defined, Callan and colleagues (2004) predicted that internal models of speech 

articulation would be used to facilitate phoneme identification. Indeed, their findings in a 

study using event-related fMRI, looking at the discrimination of /r/ vs. /l/, showed that 

second language5 speakers utilized articulatory-auditory and articulatory-orosensory 

based internal models to a greater extent than native speakers, with greater activation of 

brain areas involved with speech production planning, including the PMC (D. E. Callan 

et al., 2004; for similar results see also D. E. Callan, Tajima, et al., 2003; Pillai et al., 

2003; Wang et al., 2003). What this study didn’t use was a passive speech perception 

task, which would have helped ruling out potential confounds of the PMC activation 

related with task demands, like attentional and/or working memory resources. 

Furthermore, fMRI based studies cannot inform us on the timeline of the neural 

activation in relation to the stimulus presentation, which would inform us on when the 

predictive mechanisms of the internal models of speech perception become active.  

 

On a later study, Callan et al. (2010) have somewhat extended their previous 

findings combining fMRI and MEG techniques to look into premotor cortex activation in 

relation to perceptual performance (correct and incorrect trials) of a native speech 

contrast. This time, their experiment used passive and active perception tasks, as well as 

time-frequency analysis. This study, however, did not explore differences between native 

and nonnative perception, which are going to be examined in the current project. Callan’s 

findings showed greater PMC activation for correct over incorrect trials and greater 

event-related potentials for correct over incorrect trials in the alpha, beta and gamma 

frequencies prior to and after stimulus presentation. They interpreted their results as 

being indicative of articulatory processes facilitating perceptual performance instead of 

simply being a product of covert production of perceived actions. Furthermore, they have 

also found activation of speech motor areas in both the active and passive perception 

tasks, raising the possibility of articulatory processes to be necessary for speech 

perception (D. Callan et al., 2010).  

 

The timing of neural activation within the dorsal auditory stream pathway, in 

relation to its possible role in the formulation of internal models/predictive coding in 

speech perception is of special interest to this current work. Constructivist approaches, 

based on the notion of predictive internal models, predict the occurrence of sensorimotor 

activation prior to and following the presentation of speech stimuli. Furthermore, it 

predicts greater PMC engagement in predictive coding of more difficult tasks. The 

current project, however, intends to disentangle working memory load processes from 

those related with predictive phonological coding by examining the dynamics of 

sensorimotor activation across the time-course of speech processing. 

 

 

  

                                                 

 
5 Japanese native speakers with some English experience (at least 6 years of classes in junior and senior 

high school).   
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EEG and Sensorimotor Integration 

 

A large body of literature as appointed the dorsal auditory stream as an important 

player in the neural processes involving speech perception. It is believed that brain areas 

within this stream are an integrant part of the sensorimotor integration processes, wherein 

the PMC is involved with predicting sensory consequences of internally stimulated 

articulatory models, consequently aiding or constraining speech perception, in line with 

the specifications of forward internal models (D. Callan et al., 2010; Hickok & Poeppel, 

2015). Based on this type of models, important assumptions are made regarding the time-

course of activation of the different brain areas involved in speech perception and also 

highly significant implications can be made regarding when those areas become active in 

relation to stimulus presentation (see D. Callan et al., 2010). As shown previously, 

information regarding the time-course activation of the dorsal auditory stream during 

perception of native and nonnative speech stimuli may expand current knowledge about 

the function of sensorimotor integration processes in speech perception. Research studies 

have reported greater sensorimotor activity in perception of nonnative speech sounds, in 

relation to native ones, and this activity has been revealed to increase with learning, 

possibly reflecting extra attentional resources necessary to decode complex speech 

signals (A. M. Callan et al., 2006; D. E. Callan et al., 2004; D. E. Callan, Tajima, et al., 

2003; Wang et al., 2003). However, no speech event-related data is available on the 

perception of nonnative phonological categories. Data on this subject would provide 

extremely relevant information on when internal models become active during the 

perception of nonnative speech sounds. It is known that, during perception of native 

phonemes, internal models become active shortly after stimuli onset and that they can be 

predictive of performance (D. Callan et al., 2010).  In what regards nonnative speech 

perception, however, we have still to uncover how these internal mechanisms function. 

 

As described before, studies using MEG and EEG have identified oscillations in 

alpha and beta rhythms, generated in sensorimotor and auditory areas, to be modulated by 

different speech perception tasks and performance (A. Bowers et al., 2013; A. L. Bowers 

et al., 2014; D. Callan et al., 2010; Jenson et al., 2014; Jenson et al., 2015), and allied 

with new data decomposition methods it has great potential to explore the rich load of 

information behind event-related brain dynamics. EEG and MEG techniques have 

excellent time resolution (<1ms), contrary to the poor time resolution of fMRI (>1sec), 

for example. Hence, this section intends to describe a new method of EEG data analysis 

which minimizes some of the problems traditionally found with this technique, like low 

spatial resolution, and which provides a more adequate model of the spatially distributed 

event-related EEG dynamics that support cognitive events.  

 

EEG has traditionally been considered a low-spatial resolution measure of neural 

activity, mainly due to a physical problem of volume conduction. For the purposes of 

electrophysiology, volume conduction is described as the transmission of electric or 

magnetic fields from an electric primary current source through biological tissue towards 

measurement sensors on the scalp. This causes a significant problem in the interpretation 

of EEG data, because signals recorded at one sensor or electrode may be influenced by 

more than one current source, creating the illusion of entrainment when volume 
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conduction might also account for changes in oscillation. For this reason, in the past two 

decades, the bulk of research on speech perception has been recurring to different 

methods of data collection and analysis, like fMRI an TMS. However, more recent shifts 

in thought regarding the analysis of EEG data have allowed for advances in 

formulas/techniques of analysis and consequently have made the investigation of 

temporally independent and spatially fixed source generator’s feasible (Makeig, Debener, 

et al., 2004).  

 

 

Independent Component Analysis (ICA)  

 

A relatively novel approach to EEG data analysis applies a blind method for 

separation of temporally independent neural oscillations, via independent component 

analysis (ICA) (Makeig, Debener, et al., 2004; Makeig, Delorme, et al., 2004; Onton & 

Makeig, 2006; Onton et al., 2006). This method of linear data decomposition separates 

multichannel EEG data into maximally independent temporal and spatially fixed 

components with dipolar scalp maps, without taking into consideration any information 

about head geometry or electrode locations, strongly suggesting that recovered 

independent components represent physiologically distinct brain processes. Therefore, 

traditional EEG analysis problems like the biophysical inverse problem are bypassed by 

ICA. Besides, ICA is able to separate the contributions of stereotyped non-brain artifact 

signals, like eye movements, muscle activity, line noise, etc. (A. Delorme & Makeig, 

2004; Jung et al., 2000).  

 

In summary, analyzing EEG data using ICA presents several advantages in 

comparison to other traditional methods of electrophysiological data analysis. Namely, 

ICA is a robust method for artifact removal from EEG signal, since noise sources from 

blink and other artifacts are not temporally related to the cortical activity. Also, volume 

conduction from multiple sources and the related inversion problem are minimized 

because independent components are considered maximally independent from one 

another. Furthermore, this enhances the plausibility of a tight link between the 

components’ oscillatory dynamics and behavior. Finally, although ICA does not present a 

direct solution for the source localization problem, Congedo et al. (2008) have observed 

low variance between dipolar source reconstructions and ICA projections for both low 

and high-density electrode arrays, suggesting that ICA may act as an efficient spatial 

filter for spatial localization.   

 

This new approach to EEG data analysis presents, therefore, several advantages to 

enhance our understanding of the brain processes behind speech perception. For the 

purposes of the current study, an ICA decomposition of event-related EEG during speech 

processing tasks (perception of native and nonnative phonological contrasts) is expected 

to separate sources with topographic scalp maps and source reconstructions consistent 

with sensorimotor integration brain regions (specifically BA 1, BA 2, BA 3, BA 4, and 

BA 6). Of special interest to the present work is the analysis of EEG oscillations of alpha 

and beta components of the -rhythm, time-locked to stimulus events (prior to, during 
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and after stimulus presentation), since this rhythm is said to represent a ‘down-stream’ 

measure of motor activity emerging from the PMC (Jaime A. Pineda, 2005). 

 

 

The Arceu or -Rhythm  

 

The arceu rhythm derives its name from an arc like shape, composed of two main 

frequency components: one spectral peak around 10 Hz (usually within the 8 to 13 Hz 

band) and the other around 20 Hz (usually within the 15 to 25 Hz band) (Hari, 2006; 

Hari, Salmelin, Mäkelä, Salenius, & Helle, 1997; Jaime A. Pineda, 2005). The -rhythm 

is typically localized to sensorimotor regions, and its changes in oscillations are usually 

quite brief, ranging from 0.5 to 2 sec. (Hari, 2006; Jaime A. Pineda, 2005). While the 

alpha component frequencies tend to be originate from the somatosensory cortex, the beta 

component frequencies tend to emerge in a somatotopic manner from the precentral gyrus 

corresponding with the motor cortex for the effector involved (i.e., lip vs. hand 

movements) (Hari, 2006; Jensen et al., 2005; Jaime A. Pineda, 2005). The rhythm is said 

to represent a ‘down-stream’ measure of motor activity emerging from the PMC (Jaime 

A. Pineda, 2005). 

 

Although the -rhythm can be measured over the sensorimotor cortex in the 

absence of processing, conceived as an ‘idling’ or ‘nil-work’ state, more complex 

accounts of its function are currently dominant, relating it to diverse brain functions that 

comprise sensory, motor, cognitive, mnemonic and integrative processes (Basar, Basar-

Eroglu, Karakas, & Schurmann, 1999; Başar, Schürmann, Başar-Eroglu, & Karakaş, 

1997; Petsche, Kaplan, von Stein, & Filz, 1997). Power in the -rhythm has been 

observed to decrease in association with certain tasks and to enhance with others 

(Karrasch, Krause, Laine, Lang, & Lehto, 1998; W. Klimesch, Doppelmayr, Russegger, 

Pachinger, & Schwaiger, 1998; Krause et al., 2000).   

 

 

Event-Related Synchronization and Desynchronization 

 

It is generally accepted that EEG synchronization is a correlate of brain ‘idling 

state’ or deactivated cortex, resulting in high spectral power and low brain metabolism. 

EEG desynchronization, on the other hand, is said to result from thalamocortical 

stimulation and it is correlated with excited or activated cortical areas, resulting in a 

decrease in spectral power (Jaime A. Pineda, 2005).  A negative correlation has been 

shown to exist between the EEG and fMRI (blood oxygen level dependent (BOLD)) 

signal change, dependent upon the spatial scale and the frequency band of cortical 

synchrony, i.e., alpha-band synchrony results in high EEG spectral power over alpha 

rhythms, but the low overall metabolism results in a small effect on the BOLD signal in 

the correspondent brain regions (Formaggio et al., 2008; Gonçalves et al., 2006; Laufs et 

al., 2003; Yang, Liu, & He, 2010). 

 

In what respects specifically to sensorimotor activity, there is extensive evidence 

relating sensorimotor event-related desynchronization (ERD) – power decrease or 
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suppression – with movement observation, imagination and execution (Pfurtscheller & 

Lopes da Silva, 1999). ERD has also been shown to correlate with task complexity and 

more efficient task performance (Doppelmayr, Klimesch, Hodlmoser, Sauseng, & 

Gruber, 2005; Wolfgang Klimesch, 1999; W. Klimesch, Doppelmayr, & Hanslmayr, 

2006; W. Klimesch et al., 1996; Sterman, Kaiser, & Veigel, 1996), suggesting that -

rhythms can be task specific. Also, explicit learning of movement sequences seems to be 

accompanied by greater  ERD over contralateral regions, and reduced after the 

movement becomes more “automatic” (Houdayer et al., 2016; Zhuang et al., 1997). This 

strongly suggests that activity in sensorimotor regions increases in association with 

learning and decreases after the task is learned. This seems to be consistent with fMRI 

literature reporting greater recruitment of bilateral cortical regions, including Broca’s 

area and premotor cortex, in association with learning of new phonological categories (D. 

E. Callan, Tajima, et al., 2003; E. Myers, 2014).  

 

The relationship between sensorimotor ERD and movement observation, 

imagination and execution (Pfurtscheller & Lopes da Silva, 1999) strongly implicates a 

relationship between the function of the -rhythm and alpha ERD and the conceptions of 

the mirror neuron system (MNS), prompted by the discovery of sensorimotor neurons in 

the macaque F5 area, and homologue of the human PMC (Hari, 2006; Jaime A. Pineda, 

2005). In fact, the possible function of  and alpha ERD in transforming incoming 

sensory information into action plans has been proposed in the last two decades by 

several researchers (Başar et al., 1997; Graimann & Pfurtscheller, 2006; Pfurtscheller, 

Stancák Jr, & Neuper, 1996). Several studies have measured -rhythms as a function of 

perceived biological movements and have observed that the -rhythm is reliably blocked 

in normal subjects during the observation of a diverse range of movements, including 

hand, arm, mouth an even implied movement (e.g., point-light biological motion) 

(Crawcour, Bowers, Harkrider, & Saltuklaroglu, 2009; Muthukumaraswamy & Johnson, 

2004a, 2004b; Muthukumaraswamy, Johnson, Gaetz, & Cheyne, 2006; 

Muthukumaraswamy, Johnson, & McNair, 2004; Ulloa & Pineda, 2007). Furthermore,  

suppression (ERD) has also been observed, although less reliably, in individuals thought 

to have deficits in the MNS, which suggests a functional role of  in movement 

processing (Oberman et al., 2005; Oberman et al., 2013; Oberman, Pineda, & 

Ramachandran, 2007; Oberman, Ramachandran, & Pineda, 2008).   

 

The opposite phenomenon to ERD is an event-related synchronization (ERS), i.e., 

an increase in a spectral peak at a given frequency component, i.e., an amplitude 

enhancement, based on the cooperative or synchronized behavior of a large number of 

neurons (Pfurtscheller & Lopes da Silva, 1999). This coherent activity in the alpha band 

is correlated with a deactivated state of the neural network, and active processing of 

information becomes very unlikely.  ERS is usually interpreted as having inhibitory 

effects which can be very important to optimize energy demands and control over 

excitatory processes (W. Klimesch et al., 1996) by blocking, for example, irrelevant 

features in the selection of a certain phonemic category. 

 

In summary, the reactivity of the -rhythm provides an easily accessible window 

into the complex connection between perception and action, or within the speech 
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perception field, the link between auditory and motor networks. The analysis of ongoing 

changes in the EEG signal, by means of the  ERS and ERD, offers a unique method to 

enhance our understanding of the neural mechanisms that support speech perception in 

general, and the categorical perception of native and nonnative speech sounds in 

particular. 
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CHAPTER 3.    METHODS AND PROCEDURES 

 

 

Methods 

 

 

Materials 

 

The stimuli are monosyllabic pairs of English native and English nonnative 

sounds. The native stimuli used are /f/ and /v/, followed by the central vowel /ʌ/, forming 

the monosyllables /fʌ/ and /vʌ/. The nonnative stimuli are /x/ - /γ/, followed by the 

central vowel /ʌ/, forming the monosyllables /xʌ/ and /γʌ/.  The first contrast is a minimal 

pair in English, and it contrasts the voiced and voiceless labiodental fricatives /vʌ/ and 

/fʌ/. The second contrast is nonnative to English, and it contrasts the voiced and voiceless 

velar fricatives /γʌ/ and /xʌ/.  

 

The stimuli were all produced and recorded by a phonetically trained American 

English native speaker. The speaker produced thirty samples of each monosyllable at a 

regular speech rate and level, and maintaining a similar intonation. The best exemplars of 

each monosyllable, judged by similarities in overall duration, intonation curve, and vowel 

quality, were then selected to be used in the categorical discrimination task. The best 

exemplars were so judged by two linguistically trained listeners. The stimuli’s intensity 

and duration were then normalized using PRAAT (Boersma & Weenink, 2011). The 

intensity of each monosyllable was manipulated to be approximately 72dB, and the 

duration was set to be exactly 600ms for each monosyllable.  

 

Pairs of English native labiodental fricatives (voiced vs. voiceless), and pairs of 

the nonnative velar fricatives (voiced vs. voiceless) were then created and a 250ms of 

silence was inserted as interstimulus interval (ISI). A silence of 550ms was also inserted 

after each pair of monosyllables, so that the total duration of each trial would be exactly 

2sec (see Figure 3-1). 

 

A pilot discrimination test was implemented to make sure the nonnative stimuli 

were highly discriminable for English native speakers, even if recognized as not 

belonging to their native language. The pair of nonnative monosyllables were presented 

to 11 English native speakers and they were instructed to identify the sounds as being the 

same or different. They listened to the four possible combinations of the nonnative 

syllables, each repeated 10 times, resulting in a total of 40 stimuli. Mean accuracy was 

93.6%, ranging from 82.5% to 100%.   

 

 

Participants 

 

One single group of 24 female monolingual American English native speakers 

participated in this study, with a mean age of 25.3 (range 20-69). As assessed by the  
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Figure 3-1. Trial timeline. 
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Edinburgh Handedness inventory, 23 participants were right handed and 1 was 

ambidextrous. All participants reported having no history of cognitive, language or 

hearing impairments. Prior to the experiment, informed consent approved by the 

University of Tennessee – Knoxville, Center of Institutional Review Board was obtained 

for all participants. 

 

 

Procedures 

 

The experiment was conducted in an electronically and magnetically shielded, 

double-walled, sound-treated booth. Participants sat in a comfortable reclining armchair 

with their heads and necks well supported. Participants heard audio from three different 

conditions: white noise, pairs of native syllables, and pairs of non-native syllables. The 

syllable stimuli were presented in four possible combinations, forming the following 

contrasts: 

 

1. Native contrasts: 

 

a. /fʌ/ – /vʌ/; /vʌ/ – /fʌ/; /fʌ/ – /fʌ/; /vʌ/ – /vʌ/. 

 

2. Nonnative contrasts: 

 

a. /xʌ/ – /γʌ/; /γʌ/ – /xʌ/; /xʌ/ – /xʌ/; /γʌ/ – /γʌ/. 

 

Stimuli were presented using Stim 2 4.3.3 stimulus presentation software on a PC 

computer. Participants were always presented with the passive listening conditions 

(native and nonnative) first, so that no tendency to covertly categorize the sounds would 

carry over. In the active tasks, participants were instructed to actively discriminate the 

above described native and nonnative syllable pairs by pressing a button. It has been 

shown that premotor planning occurs in repeated button-press movements 1 second prior 

to muscle contraction (Graimann & Pfurtscheller, 2006; Hari, 2006) and sensorimotor 

suppression (ERD) peaks shortly after (200 ms) (Makeig, Delorme, et al., 2004). In order 

to control for the possibility that preparation for the response might confound motor 

activity related to stimulus processing, participants’ manual response was cued by a 100 

ms, 1000 Hz, sawtooth wave tone, which appeared 2000 ms after stimulus onset. The 

passive listening conditions were also followed by button-press, in order to control for the 

required button-press in the active conditions (see below). The button-press in the passive 

listening conditions also serves to ensure participants are paying attention to the stimuli 

presented. Furthermore, button-press order (right or left hand) was counterbalanced 

across participants and experimental conditions. The presence of a button press in all 

conditions ensures that any differential activity is not a result of motor activity related to 

button press motion, but instead a result of the demands of the different conditions. 

 

Participants were, in summary, asked to listen under the following conditions:  

 

1. Passively listening to noise (Pas);  
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2. Passively listening to native syllables (PN);  

 

3. Passively listening to non-native syllables (PNN);  

 

4. Active native syllable discrimination (ND);  

 

5. Active nonnative syllable discrimination (NND). 

 

The order in which the conditions were presented was pseudo-randomized: the 

passive conditions – PN and PNN – were presented first and counterbalanced across 

participants, then the active conditions – ND and NND – and the noise condition – Pas – 

were presented in a randomized order. All conditions were presented in two blocks 

consisting of 40 trials each, resulting in a total of 560 trials. All stimuli were presented at 

an absolute intensity of 72 dB. An example timeline of one stimulus trial is displayed 

below, in Figure 3-2. To present the audio stimuli, audio was routed through insert ER-1-

14A ear tips. Electroencephalogram (EEG) data was acquired and analyzed using a 

Neuroscan 4.3.3 system. The total duration of EEG data collection was approximately 60 

minutes. 

 

 

Data Acquisition 

 

Methods applied to EEG data acquisition follow methods employed in Bowers et 

al. (2013) and Jenson et al. (2014).  

 

Sixty-eight electrode channels were used to acquire EEG data based on the 

extended international 10–20 method of electrode placement (Klem, Luders, Jasper, & 

Elger, 1999) using an unlinked, sintered NeuroScan Quik Cap. All recording electrodes 

were referenced to the common linked left (M1) and right (M2) mastoids. The electro-

oculogram (EOG) was recorded by placing electrodes on the left superior orbit and the 

left inferior orbit (VEOG) as well as the lateral and medial canthi of the left eye (HEOG) 

to monitor vertical and horizontal eye movements, respectively.  

 

EEG data were collected using Compumedics NeuroScan 4.3.3 software and 

Synamps 2 system. The raw data EEG data were filtered (0.15–100Hz) and digitized via 

a 24-bit analog-to-digital converter at a sampling rate of 500Hz. Data was time-locked to 

the onset of acoustic stimuli (time = 0). 

 

 

Data Processing 

 

Following data collection, the recorded EEG data were processed using EEGLAB 

12 software (A. Delorme & Makeig, 2004). The several steps involved in individual and 

group data processing and analysis are itemized below.  
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Figure 3-2. Stimuli presentation timeline. 
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A. Steps for individual processing: 

 

1. Processing of 10 raw EEG files (5 conditions x 2 blocks) for each 

participant; 

 

2. independent component analysis (ICA) on all concatenated files across 

all conditions for each participant; 

 

3. localization of neural and non-neural dipoles and identification of 

independent components (IC). 

 

B. Steps for group processing: 

 

1. analysis of the neural ICs, using the STUDY module of EEGLAB 12; 

 

2. identification and cluster common components across participants by 

the application of principal component analysis (PCA); 

 

3. identification of μ clusters (left and right) from the neural STUDY;  

 

4. localization of μ clusters, using equivalent current dipole (ECD) 

analyses; 

 

5. time-frequency analyses (changes in spectral power across time), by 

measuring event-related spectral perturbations (ERSPs) of the μ 

clusters (left and right). 

 

The details of the analysis on each step are described next. 

 

 

Individual EEG data processing/analyses 

 

For each condition, raw data from the two blocks of 40 trials each were: 

 

1. appended to make a single 80 trial data set for each condition; 

 

2. down sampled to 256Hz, in order to decrease computational requirements for ICA 

processing; 

 

3. epoched into 5000ms segments with individual epochs spanning from 3000 to 

2000ms around time zero; 

 

4. bandpass filtered between 3-34Hz to ensure that alpha and beta could be 

identified while filtering muscle movement from surrounding frequencies; 

 

5. re-referenced to mastoid electrodes; 
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6. visually inspected for gross artifacts, which were manually removed together with 

incorrect responses or response latencies that were abnormally long when 

compared to the mean latency for each participant. Only correct trials were 

included in the following analysis to ensure participants were attending to the 

stimuli and task in hand. 

 

A minimum contribution of 40 epochs per participant and condition was required 

for inclusion in the experiment. The average number of usable trials across participants 

per condition, however, exceeded the minimum of 40 required for inclusion in the 

experiment.  

 

After following the above described steps to pre-process the individual data, and 

prior to ICA training, the pre-processed EEG data for each individual participant were 

concatenated across conditions, in order to obtain one single set of ICA weights. This 

allowed for an activity comparison across conditions within spatially fixed ICs, i.e., all 

conditions for each subject bear the same set of component weights, which allows for a 

fair comparison between conditions. An extended Infomax algorithm (T. W. Lee, 

Girolami, & Sejnowski, 1999) was then used to decorrelate the data matrix, prior to ICA 

rotation. The data matrix was subsequently subjected to ICA training using the ‘extended 

runica’ algorithm in EEGLAB 12. The initial learning rate was set to 0.001 and stopping 

weight of 10-7. After decomposition, 66 ICs were yielded for each participant, reflecting 

the total number of recording electrodes (68 – 2 reference electrodes). Scalp maps for 

each IC were obtained by projecting the inverse weight matrix (W-1) back onto the spatial 

EEG channel configuration.  

 

After ICA decomposition, ECD models for each component were computed, 

using a standard 4-shell spherical model in the DIPFIT toolbox (Oostenveld & 

Oostendorp, 2002), freely available at https://sccn.ucsd.edu/eeglab/. Standard 10-20 

electrode coordinates were warped to the head model followed by coarse and fine-fitting 

to the spherical wire matrix, yielding a single dipole model for each 1584 ICs (66 ICs x 

24 participants). Dipole localization requires back-projecting the signal to a source that 

may have generated the scalp distribution for a given IC, and then computing the best 

forward model to explain the highest percentage of scalp map variance (Arnaud Delorme, 

Palmer, Onton, Oostenveld, & Makeig, 2012). The residual variance (RV) in dipole 

localizations were also computed, referring to the potential mismatch between the initial 

scalp map and the forward projection of the ECD model. 

 

 

Group EEG data processing/analyses 

 

The EEGLAB STUDY module was used to conduct group data analyses. This 

module allows for the analyses of ICA data from multiple participants across conditions, 

using specified designs relevant for the hypothesis in test. For the purposes of the current 

study, several contrasts were run to analyze possible significant differences between 

passive and active conditions as well as native and nonnative conditions. In order to 

https://sccn.ucsd.edu/eeglab/
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measure neural activity, in the STUDY module options’ specifications, only neural, i.e., 

‘in head’, dipoles with a residual variance (RV) < 30% were analyzed. To be included in 

further analysis, however, only dipoles with a RV < 25% were considered and the 

average RV of the included dipoles in the left and right  clusters ended up being < 15%. 

 

After the STUDY analysis was complete, component pre-clustering was 

performed, using the K-means statistical toolbox, part of the EEGLAB toolbox (A. 

Delorme & Makeig, 2004), which uses information based on common scalp maps, 

dipoles and spectra to group similar components from each participant via PCA. The 

resulting neural clusters were then individually inspected in terms of their spectra, scalp 

maps and dipoles, with special attention payed to the clusters of interest: left and right  

clusters and neighboring clusters. Localization to BA1-4, and 6 (i.e., somatosensory 

regions, primary motor and premotor regions), with characteristic  spectra were the final 

inclusion criteria necessary for inclusion in the  clusters.  

 

The  clusters source localization was identified using the DIPFIT module of the 

EEGLAB toolbox. This module provides an ECD source localization based on the 

average coordinates (x, y, z) of all IC dipoles within each cluster. The spherical dipoles 

coordinates were then converted to Talairach coordinates. The source localization of each 

IC dipole was then retrieved by inserting the coordinates in the Talairach Client 

application (Lancaster et al., 1997; Lancaster et al., 2000), freely available at 

http://www.talairach.org/. 

 

Following the identification and inspection of the  clusters, an ERSP analyses 

was employed to compute changes (scaled in normalized dB units) in power across time 

(i.e., time-frequency analysis) within the spectral range of interest (4-33Hz). Time-

frequency transforms were derived using a Morlet sinusoidal wavelet set at 3 cycles at 

3Hz, rising linearly to 20 cycles at 40Hz. The present study used a 900ms pre-stimuli 

period, selected from -2900 to -2000ms time interval, as the baseline for each trial. This 

baseline was constructed from a surrogate distribution based on estimates of spectral 

power from 200 randomly selected latency windows from within the 1000ms inter-trial 

interval (Makeig, Debener, et al., 2004). Subsequent individual ERSP changes from 

baseline over time were computed using a bootstrap resampling method (p < 0.025 

corrected for false discovery rate (FDR)). The single trial current for all experimental 

conditions for frequencies between 7 and 27Hz and times from −500 to 2000ms were 

entered in the time-frequency analyses. 

 

 

 

 

  

http://www.talairach.org/
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CHAPTER 4.    RESULTS 

 

 

Discrimination Accuracy 

 

Participants’ average discrimination accuracy for the native contrast was 98.8% 

(range: 95-100%). Participants’ average discrimination accuracy for the nonnative 

contrast was 97.3% (range: 86-100%). Although participants reported difficulties 

discriminating the nonnative contrast, their discrimination accuracy was still quite close 

to the average discrimination accuracy in the native contrast.  

Only correct trials were used in the EEG analysis to ensure that participants were paying 

attention to the stimuli and task in hand.  

 

 

 Clusters 

 

Right and left -components, localized to sensorimotor regions, were found 

across speech perception conditions. Nineteen participants contributed with thirty-nine 

IC’s presenting distinctive markers of the left -rhythm and 22 participants contributed 

with forty-seven IC’s presenting distinctive markers of the right -rhythm (see Figure  

4-1 and Figure 4-2). The mean source location of the  clusters was identified within the 

frontal lobe, precentral gyrus, Broadmann area 6, according with the following Taliarach 

coordinates: [(x, y, z) -40, -5, 51] in the left hemisphere; [(x, y, z) 41, -6, 49] in the right 

hemisphere. The mean residual variance (RV) on both the left and right  clusters was 

less than 9% (8.42% and 8.55% respectively).  

 

 

Event-Related Spectral Perturbations 

 

Similar patterns of results were found in both the left and right hemispheres, the 

left generally presenting slightly stronger power. For this reason, although always 

presenting figures for both the right and left hemispheres, the presentation will focus on 

the left  mean ERSP’s.  

 

Left and right  mean ERSP’s across subjects and conditions are depicted in a 

time-frequency graph with bootstrapped (p<0.05)6, FDR corrected significance values for 

condition in the far-right panel of Figure 4-3. The analysis revealed significant ERSP 

differences across conditions, with stronger alpha and beta event-related decrease in 

spectral power (ERD) after stimuli presentation offset (1450ms). A shorter ERD effect is 

also seen in the alpha band range precisely at the offset of the first syllable stimulus, 

around 600ms. 

 

                                                 

 
6 The FDR alpha value in EEGLAB was set to 0.025 for an effective alpha value of 0.05. 
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Figure 4-1. Cluster results for the left-hemisphere  components.  

A) Mean scalp potential distribution (W-1) scaled to RMS microvolts and individual 

scalp distributions for each participant. B) Average equivalent current dipole location. C) 

Mean spectra of the component as a function of condition. 
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Figure 4-2. Cluster results for the right-hemisphere  components. 
A) Mean scalp potential distribution (W-1) scaled to RMS microvolts and individual scalp 

distributions for each participant. B) Average equivalent current dipole location. C) Mean 

spectra of the component as a function of condition. 

  



 

33 

 
 

Figure 4-3. Mean left and right hemisphere  time-frequency ERSP's.  
ERSP’s are scaled in the same RMS decibel units as a function of condition (1x5) and 

random effects analysis in the traditional alpha (8-13Hz) and beta (13-25Hz) ranges. 

Non-significant values are colored green and significant values are colored red. Event-

related decreases in spectral power are indicated in a blue to teal scale (-3dB) and 

increases are indicated in a yellow to red scale (3dB). Dotted line marks the syllable onset 

and full line marks the syllable offset. 
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These differences appear to be mainly driven by differences between the active 

and passive tasks, since alpha and beta ERD are mostly observed in the active tasks, after 

stimuli offset (1450ms). To determine the validity of this observation, a separate 

ANOVA design was computed, using the STUDY module commands, to contrast passive 

listening to speech stimuli with active discrimination of the syllables. 

 

The data revealed significantly (pFDR<0.05) higher power for  alpha and beta 

ERD in active speech perception conditions, when compared to passive speech 

perception ones. This effect was evident both during and especially after stimuli 

presentation (Figure 4-4) with the greatest areas of activation beginning approximately 

300ms after syllable offset. Although weak alpha and beta ERD is visible in the passive 

task, in the time between the presentation of the two syllables in the stimuli (around 600 

to 800ms), its presence is significantly stronger in the active tasks.  

 

A similar pattern of results was observed for comparison of passive and active 

tasks in both the native and nonnative conditions. In the native condition, significantly 

greater (pFDR<0.05) alpha and beta ERD were found for the active task, when compared 

to passively listening to native sounds, in the timeline after stimuli offset (1450ms) 

(Figure 4-5). In the nonnative condition (Figure 4-6), the active discrimination of 

nonnative sounds was found to be related with significantly stronger alpha ERD, in the 

500-600ms time range, coincident with the offset of the first syllable sound (600ms), as 

well as stronger alpha and beta ERD after stimuli offset (1450ms). 

 

In order to compare sensorimotor activation during passive perception of native 

phonemes in comparison to nonnative phonemes, an ANOVA design was computed, 

using the STUDY module, to individually contrast passive native versus passive 

nonnative perception. Figure 4-7 depicts significantly (pFDR<0.05) stronger alpha (8-

14Hz) and beta (22-25Hz) ERS before and during early stimuli onset in the passive 

nonnative task. On the other hand, the passive native perception task presents alpha and 

beta ERD before stimuli onset as well as stronger alpha ERD during the time between 

presentation of the two syllables composing the stimuli (600-850ms), and during the 

presentation of the second syllable (1000ms) (Figure 4-7).  

 

A separate ANOVA was conducted to further explore the differences between 

sensorimotor activation in passive speech perception tasks and the baseline noise 

condition. The passive speech perception tasks in general, both for native and nonnative 

conditions, present significantly (pFDR<0.05) stronger alpha and beta ERD during and 

between syllable presentation (600-800ms), as well as significantly stronger alpha ERD 

right after stimuli offset (1450ms), when compared to the noise condition (Figure 4-8 

and Figure 4-9). In addition, when compared to the passive speech perception task, the 

noise condition presents overall greater increases in power (ERS), both in alpha and beta 

bands, consistent with inhibition of active phonological processing (Figure 4-8 and 

Figure 4-9). It is noteworthy, however, that the nonnative condition presents significantly 

greater alpha (8-14Hz) ERS before and during the first syllable presentation, compared to 

the noise condition. 
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Figure 4-4. Mean left and right hemisphere ERSP's for passive (native and 

nonnative) versus active (native and nonnative) perception tasks.  
ERSP’s are scaled in the same RMS decibel units as a function of condition (1x2) and 

random effects analysis in the traditional alpha (8-13Hz) and beta (13-25Hz) ranges. 

Non-significant values are colored green and significant values are colored red. Event-

related decreases in spectral power are indicated in a blue to teal scale (-3dB) and 

increases are indicated in a yellow to red scale (3dB). Dotted line marks the syllable onset 

and full line marks syllable offset. 
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Figure 4-5. Mean left and right hemisphere ERSP's for passive native versus 

active native perception tasks. 
 ERSP’s are scaled in the same RMS decibel units as a function of condition (1x2) and 

random effects analysis in the traditional alpha (8-13Hz) and beta (13-25Hz) ranges. 

Non-significant values are colored green and significant values are colored red. Event-

related decreases in spectral power are indicated in a blue to teal scale (-3dB) and 

increases are indicated in a yellow to red scale (3dB). Dotted line marks the syllable onset 

and full line marks syllable offset. 
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Figure 4-6. Mean left and right hemisphere ERSP's for passive nonnative versus 

active nonnative perception tasks.  
ERSP’s are scaled in the same RMS decibel units as a function of condition (1x2) and 

random effects analysis in the traditional alpha (8-13Hz) and beta (13-25Hz) ranges. 

Non-significant values are colored green and significant values are colored red. Event-

related decreases in spectral power are indicated in a blue to teal scale (-3dB) and 

increases are indicated in a yellow to red scale (3dB). Dotted line marks the syllable onset 

and full line marks syllable offset.  
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Figure 4-7. Mean left hemisphere ERSP's for passive native versus passive 

nonnative speech perception tasks.  
ERSP’s are scaled in the same RMS decibel units as a function of condition (1x2) and 

random effects analysis in the traditional alpha (8-13Hz) and beta (13-25Hz) ranges. 

Non-significant values are colored green and significant values are colored red. Event-

related decreases in spectral power are indicated in a blue to teal scale (-3dB) and 

increases are indicated in a yellow to red scale (3dB). Dotted line marks the syllable onset 

and full line marks syllable offset. 
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Figure 4-8. Mean left and right hemisphere ERSP's for listening to noise versus 

passive native speech perception task.  
ERSP’s are scaled in the same RMS decibel units as a function of condition (1x2) and 

random effects analysis in the traditional alpha (8-13Hz) and beta (13-25Hz) ranges. 

Non-significant values are colored green and significant values are colored red. Event-

related decreases in spectral power are indicated in a blue to teal scale (-3dB) and 

increases are indicated in a yellow to red scale (3dB). Dotted line marks the syllable onset 

and full line marks syllable offset. 
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Figure 4-9. Mean left and right hemisphere ERSP's for listening to noise versus 

passive nonnative speech perception task.  
ERSP’s are scaled in the same RMS decibel units as a function of condition (1x2) and 

random effects analysis in the traditional alpha (8-13Hz) and beta (13-25Hz) ranges. 

Non-significant values are colored green and significant values are colored red. Event-

related decreases in spectral power are indicated in a blue to teal scale (-3dB) and 

increases are indicated in a yellow to red scale (3dB). Dotted line marks the syllable onset 

and full line marks syllable offset. 

  



 

41 

CHAPTER 5.    DISCUSSION 

 

 

Experimental Results 

 

The main aim of the current project was to disentangle working memory and 

automatic phonological related functions of the dorsal auditory stream during speech 

perception, via analysis of its time-course activity. First, it was hypothesized that 

activation related to automatic phonological processing would occur during stimulus 

presentation and that processing related to working memory would occur after stimulus 

presentation. In previous research,  sensorimotor activity related to maintenance of 

working memory and decision making processes has been interpreted to occur shortly 

after stimuli offset and sustained until sensory decision is reached, not diminishing in 

power before a response is given (A. Bowers et al., 2013; Jenson et al., 2014), consistent 

with the idea of holding a mental representation in memory until a task is complete. 

However, the instantiation of automatic phonological processing, related to the 

formulation of general predictions regarding likely incoming sensory signals, should 

occur earlier than the memory related mechanisms. If, in fact, these internal models are 

associated with predictions made about the possible articulatory consequences of the 

auditory sensory input, these mechanisms should happen right after acoustic analysis of 

the speech signal in superior temporal regions, in accordance with theories based on the 

dual-stream model. MMN studies indicate that a time window of about 200ms to 300ms 

after the stimuli onset is necessary to process an auditory/acoustic speech signal 

(Näätänen, 2001; Zhang, Kuhl, Imada, Kotani, & Tohkura, 2005). Furthermore, 

consistent with this time window, in a study examining the role of the dorsal auditory 

stream in phonological processing, using event-related potentials and fMRI, Liebenthal 

and colleagues (2013) found early and almost simultaneous activity in superior temporal 

regions (80-100ms after stimulus onset) as well as in somatomotor brain areas (95-230ms 

after stimulus onset), indicating that the formulation of internal articulatory models of 

speech occur quite early in the neural processing of the speech signal, and may, in fact, 

be automatic and independent of working memory maintenance.  

 

Having these hypotheses in mind, regarding the possible time-course of 

sensorimotor activation within the dorsal auditory stream, it was further hypothesized that 

automatic phonological processing should be present during passive speech perception 

tasks as well as active tasks, while working memory processes should occur prominently 

in active discrimination tasks. This hypothesis finds some support in research showing 

that tasks requiring active discrimination of phonemes represent greater dorsal stream 

activation than passive listening to the same phonemes (Jussi Alho et al., 2014; D. Callan 

et al., 2014; Meister et al., 2007). Greater cognitive demands of the task (active 

discrimination, discrimination in noise, etc.), related to greater effort and/or greater 

reliance on a phonological working memory, seem therefore to elicit greater activity in 

the dorsal stream. Our results are consistent with our hypotheses, showing greater 

sensorimotor activation in active tasks compared to passive ones, after stimuli offset. The 

greater sensorimotor involvement in active tasks after stimuli presentation may be related 

to covert rehearsal/replaying of the speech stimuli in order to maintain it in working 
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memory or evaluation of the stimuli in the decision-making process. These results are 

also congruent with findings of post-stimuli alpha ERD in other speech perception related 

studies (Cuellar, Bowers, Harkrider, Wilson, & Saltuklaroglu, 2012; Obleser & Weisz, 

2012; J. A. Pineda et al., 2013; Shahin, Picton, & Miller, 2009).  

 

Furthermore, the results also revealed greater sensorimotor activity during passive 

speech perception when compared to listening to noise. As far as we know, this is the 

first experiment providing data that compares  sensorimotor activity related to speech 

perception in comparison to a noise signal. The results observed are consistent with 

previous findings indicating that the -rhythm is responsive to biologically 

relevant/reproducible sounds (S. M. Wilson et al., 2004). Although significantly weaker 

 sensorimotor activity was found in passive speech tasks when compared to active tasks, 

it is extremely interesting to find that passively listening to speech elicits a certain level 

of sensorimotor activity which is not present when listening to noise. It is worth noting 

here that passive conditions were always presented before active ones in order to 

eliminate the possibility of priming the participant to discriminatory behavior. Instead, 

participants were simply instructed to listen to the syllables being presented and press a 

button after the beep, which happened 2000ms after stimuli onset. This was done to make 

sure that participants were minimally attending to the stimuli, given that Möttönen et al. 

(2014) suggested that a certain level of attention to the speech stimuli is necessary to 

activate sensorimotor processes. Our results are, therefore, in line with previous findings 

suggesting that listening to speech, irrespective of the task, automatically elicits 

sensorimotor processes (Murakami, Kell, Restle, Ugawa, & Ziemann, 2015; Stephen M. 

Wilson & Iacoboni, 2006; S. M. Wilson et al., 2004). 

 

Our findings, however, seem to be inconsistent with those found by Bowers et al. 

(2013; 2014). They examined differences in sensorimotor activity, using EEG, in active 

vs. passive speech perception in noise and did not find significantly greater sensorimotor 

activity in passive speech sound perception, when compared to a noise baseline. The 

reason for this difference is not clear, but it is possible that degrading both signals with 

noise may account for the discrepancy between their findings and ours, since 

discrimination in noise has generally been found to relate with greater motor activity. In 

fact, in more recent studies by the same research group (A. L. Bowers et al., 2014; Jenson 

et al., 2014) it was found that alpha and beta rhythms, generated in the sensorimotor and 

auditory areas and measured during an EEG phoneme discrimination tasks, were stronger 

during discrimination in noise as compared to discrimination in quiet (both active tasks). 

Other researchers have also found greater PMC involvement in the discrimination of 

speech sounds in noise, indicating an aiding role of the PMC in decoding degraded 

speech signals (D. E. Callan, Jones, et al., 2003; D'Ausilio et al., 2012; Du et al., 2014). It 

is then possible that in the passive task, employed in Bowers (2013), participants were 

not attending to the speech signal at all because of the noise, i.e., the inclusion of noise in 

the speech signal was sufficient to block automatic phonological processing during the 

passive task due to the lack of effort being expended to parse the speech from the noise. 

That this is reasonable is again suggested by Möttönen et al. (2014), given that her 

findings point to the necessity of a certain level of attention to the speech stimuli in order 

to activate sensorimotor processes. In this study it was found that when speech sounds 
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were attended (active perception task) the articulatory-motor cortex contributed to the 

auditory processing of the sounds earlier (at 60-100ms after stimulus onset) than when 

the speech sounds were unattended (passive perception task) (~170ms after stimulus 

onset). Thus, although sensory-motor activation may occur automatically when a 

participant hears speech, the activation is still dependent on attention. 

 

Second, the present study argues that nonnative phonemes lack entrenched 

articulatory templates, and therefore that the contrastive analysis of native and nonnative 

phonemes would allow us to verify whether early dorsal stream activity occurring during 

stimulus presentation is, in fact, related to automatic phonological processing. This 

automatic phonological processing, related to the predictive formulation of 

motor/articulatory mappings of likely incoming sensory signals, is likely to occur in the 

presence of native phonological stimuli, but not while listening to unfamiliar nonnative 

stimuli. In the native language, language experience has contributed to the association of 

sensory input with its articulatory consequences, but these processes are not likely to 

have been formed for unfamiliar nonnative phonemes. Greater sensorimotor activity (μ-

alpha and μ-beta ERD) early during passive stimulus presentation was, therefore, 

hypothesized to occur during the presentation of native phonemes in comparison to 

nonnative phonemes. In fact, the current study results’ show that passive perception of 

native phonemes elicited greater sensorimotor activity during stimuli presentation in 

comparison to nonnative phonemes, suggesting an automatic activation of auditory-

articulatory mappings for native phonemes but not for nonnative phonemes. More 

specifically, results revealed significantly stronger alpha and especially beta ERD before 

native stimuli onset as well as stronger alpha ERD during native stimuli presentation. 

Beta ERD especially as been shown to correlate with the generation of hypothesis in 

relation to the phonological stimuli in order to help constrain the analysis and 

functionally improve speech discrimination (D. Callan et al., 2010). The fact that native 

and nonnative speech perception is, according to present results, differentiated by early 

sensorimotor activity and not by later activity (after stimuli presentation) is a strong 

indication that it is not being fundamentally driven by decision-making and working 

memory buffer related processes. Instead, our results seem to be better explained under 

the context of constructivist, internal model proposals of speech perception, by which this 

early activity is consistent with the generation of an early internal forward model, 

predicting motor/articulatory consequences of the incoming sensory signal. Alpha and 

beta ERD before and shortly during the presentation of native stimuli are consistent with 

the online generation of these internal models. On the other hand, stronger alpha and beta 

ERS before and partially during stimuli onset in the passive nonnative task are indicative 

of inhibitory processes (W. Klimesch et al., 1996; Pfurtscheller & Lopes da Silva, 1999), 

possibly resulting from gating/filtering competitive native phonemes, since no specific 

motor mappings exist for the nonnative stimuli. This type of activity, present during the 

passive task, where participants were attending to the stimuli, but were not asked to 

discriminate the sounds, is especially important because it enhances the possibility of 

automatic speech processing related to dorsal stream activity.  

 

Our results seem to be somewhat contrary to findings by Wilson and Iacoboni 

(2006) in a study examining neural responses to nonnative phonemes varying in 
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producibility, using fMRI. In their study, they reported that nonnative phonemes 

activated motor brain areas more than native phonemes, in a passive task compared to 

rest. They interpreted the greater motor activity when hearing a nonnative phoneme to 

result from the continuous engagement of the motor system repeatedly attempting to 

access an internal auditory template that could not be readily accessed, since no match 

was available in the native phonological system. The incongruence of findings could be 

due to the different methods employed in their study. While activity in fMRI studies is 

measured by average activation across entire trials (Formaggio et al., 2008; Gonçalves et 

al., 2006; Laufs et al., 2003; Yang et al., 2010), changes in EEG rhythmic activity are 

quantified in time and space relative to a specific event (Jaime A. Pineda, 2005), i.e., 

while fMRI reported activity represents the average magnitude of the blood oxygen flow 

across entire trials, EEG oscillatory activity represents increases and decreases in the 

electrical signal in relation to a certain point in time when an event of interest is 

happening. Therefore, it is difficult to interpret and compare the different levels of 

activation in both experiments.  

 

In active tasks, however, where attentional and decision-making resources 

become automatically involved, no significant differences between native and nonnative 

perception were found in the current experiment. When a discrimination task was 

involved, the attentional and decision-making processes necessary to complete the task 

seem to have evened out possible differences in the discrimination of native and 

nonnative sounds. 

 

In summary, the current study resulted in an insightful analysis of the time-course 

of activation of the dorsal auditory stream while contrasting active/passive conditions 

with native/nonnative ones. The methodology employed provided a new understanding of 

the nature of the activity emanating from the dorsal stream during speech perception and 

its function in working memory and automatic phonological processing. The results 

suggest that neural processes within the dorsal auditory stream are functionally and 

automatically involved in speech perception mechanisms. While its early activity (during 

stimulus presentation) seems to be importantly involved with the instantiation of 

predictive motor/articulatory internal models that help constraining speech 

discrimination, its later activity (post-stimulus presentation) may be essential in the 

maintenance of working memory processes. 

 

 

Limitations and Future Directions 

 

 The native and nonnative stimuli employed in this study present a voicing 

contrast: voiced vs. voiceless labiodental fricatives in the native condition and voiced vs. 

voiceless velar fricatives in the nonnative condition. A study by Murakami et al. (2015), 

however, suggests that sensorimotor mapping via the dorsal stream may be especially 

tuned to the place of articulation of perceived consonants, whereas processing underlying 

voicing analysis may be more related to the bilateral ventral stream. Although our study’s 

results show sensorimotor activity within the dorsal stream related to both the 

discrimination of native and nonnative voicing contrasts, Murakami’s (2015) study 
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suggests that using a place of articulation distinction could possibly have shown stronger 

effects. 

 

 In the present study,  activity is interpreted as emanating mainly from the PMC 

(mean source location of the  clusters was identified within Broadmann area 6), but it 

isn’t entirely clear that sources of activation are restricted to that area since we included 

areas of activity emanating not just from the PMC, but also the primary motor and the 

somatosensory cortices. Moreover, although our mean residual variance for dipole 

localization was considerably low, a generic spherical head model was used, limiting the 

source localization. Therefore, using methods that have better spatial localization would 

be valuable – MEG or EEG combined with fMRI. 

 

Also, this study could only count with the participation of female subjects. It 

would be useful to extend the analysis to male subjects as well.  

 

 In the future, it would be extremely interesting to further explore the inhibitory 

activity observed during the nonnative conditions. In the present study, we have 

interpreted this activity as reflecting the gating/filtering of competitive native phonemes, 

but more work needs to be done to verify the validity of this interpretation. It would be 

useful, for example, to analyze how these inhibitory processed are reflected in BOLD 

activity derived from fMRI data. 

 

Findings from the present study contribute to a body of research highlighting the 

multiple applications and benefits of using ICA to understand speech processing in both 

normal and clinical populations, given its high temporal resolution, economy and 

availability. In the future, it would be extremely interesting, for example, to analyze the 

time-course of sensorimotor activation within the dorsal stream in apraxia patients.  

 

 

  



 

46 

LIST OF REFERENCES 

 

 

Alho, J., Lin, F.-H., Sato, M., Tiitinen, H., Sams, M., & Jääskeläinen, I. P. (2014). 

Enhanced neural synchrony between left auditory and premotor cortex is 

associated with successful phonetic categorization. Frontiers in Psychology, 5, 

394. doi:10.3389/fpsyg.2014.00394 

 

Alho, J., Sato, M., Sams, M., Schwartz, J. L., Tiitinen, H., & Jaaskelainen, I. P. (2012). 

Enhanced early-latency electromagnetic activity in the left premotor cortex is 

associated with successful phonetic categorization. Neuroimage, 60(4), 1937-

1946. doi:10.1016/j.neuroimage.2012.02.011 

 

Arbib, M. A. (2010). Mirror system activity for action and language is embedded in the 

integration of dorsal and ventral pathways. Brain Lang, 112(1), 12-24. 

doi:10.1016/j.bandl.2009.10.001 

 

Basar, E., Basar-Eroglu, C., Karakas, S., & Schurmann, M. (1999). Oscillatory brain 

theory: a new trend in neuroscience. IEEE Eng Med Biol Mag, 18(3), 56-66.  

 

Başar, E., Schürmann, M., Başar-Eroglu, C., & Karakaş, S. (1997). Alpha oscillations in 

brain functioning: an integrative theory. International Journal of 

Psychophysiology, 26(1–3), 5-29. doi:http://dx.doi.org/10.1016/S0167-

8760(97)00753-8 

 

Belin, P., Zatorre, R. J., & Ahad, P. (2002). Human temporal-lobe response to vocal 

sounds. Brain Res Cogn Brain Res, 13(1), 17-26.  

 

Benson, R. R., Whalen, D. H., Richardson, M., Swainson, B., Clark, V. P., Lai, S., & 

Liberman, A. M. (2001). Parametrically dissociating speech and nonspeech 

perception in the brain using fMRI. Brain Lang, 78(3), 364-396. 

doi:10.1006/brln.2001.2484 

 

Binder, J. R., Frost, J. A., Hammeke, T. A., Bellgowan, P. S., Springer, J. A., Kaufman, J. 

N., & Possing, E. T. (2000). Human temporal lobe activation by speech and 

nonspeech sounds. Cereb Cortex, 10(5), 512-528.  

 

Binder, J. R., Liebenthal, E., Possing, E. T., Medler, D. A., & Ward, B. D. (2004). Neural 

correlates of sensory and decision processes in auditory object identification. Nat 

Neurosci, 7(3), 295-301. doi:10.1038/nn1198 

 

Boersma, P., & Weenink, D. (2011). Praat: doing phonetics by computer [Computer 

program] (Version 5.2.45). retrieved 28 September 2011 from 

http://www.praat.org/.  

 

http://dx.doi.org/10.1016/S0167-8760(97)00753-8
http://dx.doi.org/10.1016/S0167-8760(97)00753-8
http://www.praat.org/


 

47 

Bowers, A., Saltuklaroglu, T., Harkrider, A., & Cuellar, M. (2013). Suppression of the µ 

Rhythm during Speech and Non-Speech Discrimination Revealed by Independent 

Component Analysis: Implications for Sensorimotor Integration in Speech 

Processing. PLoS One, 8(8), e72024. doi:10.1371/journal.pone.0072024 

 

Bowers, A. L., Saltuklaroglu, T., Harkrider, A., Wilson, M., & Toner, M. A. (2014). 

Dynamic modulation of shared sensory and motor cortical rhythms mediates 

speech and non-speech discrimination performance. Frontiers in Psychology, 5, 

366. doi:10.3389/fpsyg.2014.00366 

 

Buchsbaum, B., & D’Esposito, M. (2008). Short-term and working memory systems. In 

J. H. Byrne (Ed.), Learning and memory: A comprehensive reference (Vol. 3, pp. 

237-260). Oxford: Elsevier. 

 

Buschman, T. J., & Miller, E. K. (2007). Top-down versus bottom-up control of attention 

in the prefrontal and posterior parietal cortices. Science, 315(5820), 1860-1862. 

doi:10.1126/science.1138071 

 

Callan, A. M., Callan, D. E., Tajima, K., & Akahane-Yamada, R. (2006). Neural 

processes involved with perception of non-native durational contrasts. 

Neuroreport, 17(12), 1353-1357. doi:10.1097/01.wnr.0000224774.66904.29 

 

Callan, D., Callan, A., Gamez, M., Sato, M. A., & Kawato, M. (2010). Premotor cortex 

mediates perceptual performance. Neuroimage, 51(2), 844-858. 

doi:10.1016/j.neuroimage.2010.02.027 

 

Callan, D., Callan, A., & Jones, J. A. (2014). Speech motor brain regions are 

differentially recruited during perception of native and foreign-accented 

phonemes for first and second language listeners. Frontiers in Neuroscience, 8, 

275. doi:10.3389/fnins.2014.00275 

 

Callan, D. E., Callan, A. M., Honda, K., & Masaki, S. (2000). Single-sweep EEG 

analysis of neural processes underlying perception and production of vowels. 

Brain Res Cogn Brain Res, 10(1-2), 173-176.  

 

Callan, D. E., Jones, J. A., & Callan, A. (2014). Multisensory and modality specific 

processing of visual speech in different regions of the premotor cortex. Frontiers 

in Psychology, 5, 389. doi:10.3389/fpsyg.2014.00389 

 

Callan, D. E., Jones, J. A., Callan, A. M., & Akahane-Yamada, R. (2004). Phonetic 

perceptual identification by native- and second-language speakers differentially 

activates brain regions involved with acoustic phonetic processing and those 

involved with articulatory-auditory/orosensory internal models. Neuroimage, 

22(3), 1182-1194. doi:10.1016/j.neuroimage.2004.03.006 

 



 

48 

Callan, D. E., Jones, J. A., Munhall, K., Callan, A. M., Kroos, C., & Vatikiotis-Bateson, 

E. (2003). Neural processes underlying perceptual enhancement by visual speech 

gestures. Neuroreport, 14(17), 2213-2218. 

doi:10.1097/01.wnr.0000095492.38740.8f 

 

Callan, D. E., Kent, R. D., Guenther, F. H., & Vorperian, H. K. (2000). An auditory-

feedback-based neural network model of speech production that is robust to 

developmental changes in the size and shape of the articulatory system. Journal of 

Speech, Language & Hearing Research, 43(3), 721-736.  

 

Callan, D. E., Tajima, K., Callan, A. M., Kubo, R., Masaki, S., & Akahane-Yamada, R. 

(2003). Learning-induced neural plasticity associated with improved identification 

performance after training of a difficult second-language phonetic contrast. 

Neuroimage, 19(1), 113-124.  

 

Callan, D. E., Tsytsarev, V., Hanakawa, T., Callan, A. M., Katsuhara, M., Fukuyama, H., 

& Turner, R. (2006). Song and speech: Brain regions involved with perception 

and covert production. Neuroimage, 31(3), 1327-1342. 

doi:http://dx.doi.org/10.1016/j.neuroimage.2006.01.036 

 

Catani, M., Allin, M. P., Husain, M., Pugliese, L., Mesulam, M. M., Murray, R. M., & 

Jones, D. K. (2007). Symmetries in human brain language pathways correlate 

with verbal recall. Proc Natl Acad Sci U S A, 104(43), 17163-17168. 

doi:10.1073/pnas.0702116104 

 

Chevillet, M. A., Jiang, X., Rauschecker, J. P., & Riesenhuber, M. (2013). Automatic 

Phoneme Category Selectivity in the Dorsal Auditory Stream. The Journal of 

Neuroscience, 33(12), 5208-5215. doi:10.1523/jneurosci.1870-12.2013 

 

Chollet, F. (2000). Plasticity of the Adult Human Brain. In A. Toga & J. C. Mazziotta 

(Eds.), Brain Mapping: The Systems (pp. 621-638). San Diego: Academic Press. 

 

Cogan, G. B., Thesen, T., Carlson, C., Doyle, W., Devinsky, O., & Pesaran, B. (2014). 

Sensory-motor transformations for speech occur bilaterally. Nature, 507(7490), 

94-98. doi:10.1038/nature12935 

http://www.nature.com/nature/journal/v507/n7490/abs/nature12935.html#supplementary-

information 

 

Congedo, M., Gouy-Pailler, C., & Jutten, C. (2008). On the blind source separation of 

human electroencephalogram by approximate joint diagonalization of second 

order statistics. Clinical Neurophysiology, 119(12), 2677-2686. 

doi:http://dx.doi.org/10.1016/j.clinph.2008.09.007 

  

http://dx.doi.org/10.1016/j.neuroimage.2006.01.036
http://www.nature.com/nature/journal/v507/n7490/abs/nature12935.html#supplementary-information
http://www.nature.com/nature/journal/v507/n7490/abs/nature12935.html#supplementary-information
http://dx.doi.org/10.1016/j.clinph.2008.09.007


 

49 

Crawcour, S., Bowers, A., Harkrider, A., & Saltuklaroglu, T. (2009). Mu wave 

suppression during the perception of meaningless syllables: EEG evidence of 

motor recruitment. Neuropsychologia, 47(12), 2558-2563. 

doi:http://dx.doi.org/10.1016/j.neuropsychologia.2009.05.001 

 

Cuellar, M., Bowers, A., Harkrider, A. W., Wilson, M., & Saltuklaroglu, T. (2012). Mu 

suppression as an index of sensorimotor contributions to speech processing: 

evidence from continuous EEG signals. Int J Psychophysiol, 2012 Aug;85(2):242-

8. doi(2012 Apr 19), 10.1016/j.ijpsycho.2012.1004.1003.  

 

D'Ausilio, A., Bufalari, I., Salmas, P., & Fadiga, L. (2012). The role of the motor system 

in discriminating normal and degraded speech sounds. Cortex, 48(7), 882-887. 

doi:10.1016/j.cortex.2011.05.017 

 

Davis, M. H., & Johnsrude, I. S. (2007). Hearing speech sounds: Top-down influences on 

the interface between audition and speech perception. Hearing Research, 229(1–

2), 132-147. doi:http://dx.doi.org/10.1016/j.heares.2007.01.014 

 

Dehaene-Lambertz, G. (1997). Electrophysiological correlates of categorical phoneme 

perception in adults. Neuroreport, 8(4), 919-924.  

 

Delorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of 

single-trial EEG dynamics including independent component analysis. J Neurosci 

Methods, 134(1), 9-21. doi:10.1016/j.jneumeth.2003.10.009 

 

Delorme, A., Palmer, J., Onton, J., Oostenveld, R., & Makeig, S. (2012). Independent 

EEG Sources Are Dipolar. PLoS One, 7(2), e30135. 

doi:10.1371/journal.pone.0030135 

 

Doppelmayr, M., Klimesch, W., Hodlmoser, K., Sauseng, P., & Gruber, W. (2005). 

Intelligence related upper alpha desynchronization in a semantic memory task. 

Brain Res Bull, 66(2), 171-177. doi:10.1016/j.brainresbull.2005.04.007 

 

Du, Y., Buchsbaum, B. R., Grady, C. L., & Alain, C. (2014). Noise differentially impacts 

phoneme representations in the auditory and speech motor systems. Proceedings 

of the National Academy of Sciences of the United States of America, 111(19), 

7126-7131. doi:10.1073/pnas.1318738111 

 

Formaggio, E., Storti, S. F., Avesani, M., Cerini, R., Milanese, F., Gasparini, A., . . . 

Manganotti, P. (2008). EEG and FMRI coregistration to investigate the cortical 

oscillatory activities during finger movement. Brain Topogr, 21(2), 100-111. 

doi:10.1007/s10548-008-0058-1 

 

Fowler, C. A. (1986). an event approach to the study of speech perception from a direct-

realist perspective. Journal of Phonetics(14), 3-28.  

http://dx.doi.org/10.1016/j.neuropsychologia.2009.05.001
http://dx.doi.org/10.1016/j.heares.2007.01.014


 

50 

Galantucci, B., Fowler, C., & Turvey, M. T. (2006). The motor theory of speech 

perception reviewed. Psychonomic Bulletin & Review, 13(3), 361-377. 

doi:10.3758/bf03193857 

 

Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). Action recognition in the 

premotor cortex. Brain, 119(2), 593.  

 

Gallese, V., Gernsbacher, M. A., Heyes, C., Hickok, G., & Iacoboni, M. (2011). Mirror 

Neuron Forum. Perspect Psychol Sci, 6(4), 369-407. 

doi:10.1177/1745691611413392 

 

Gibson, J. J. (1979). The ecological approach to visual perception. Boston: Boston : 

Houghton Mifflin. 

 

Golestani, N., & Zatorre, R. J. (2004). Learning new sounds of speech: reallocation of 

neural substrates. Neuroimage, 21(2), 494-506. 

doi:10.1016/j.neuroimage.2003.09.071 

 

Gonçalves, S. I., de Munck, J. C., Pouwels, P. J. W., Schoonhoven, R., Kuijer, J. P. A., 

Maurits, N. M., . . . Lopes da Silva, F. H. (2006). Correlating the alpha rhythm to 

BOLD using simultaneous EEG/fMRI: Inter-subject variability. Neuroimage, 

30(1), 203-213. doi:http://dx.doi.org/10.1016/j.neuroimage.2005.09.062 

 

Graimann, B., & Pfurtscheller, G. (2006). Quantification and visualization of event-

related changes in oscillatory brain activity in the time–frequency domain. In N. 

Christa & K. Wolfgang (Eds.), Prog Brain Res (Vol. Volume 159, pp. 79-97): 

Elsevier. 

 

Hari, R. (2006). Action-perception connection and the cortical mu rhythm. Prog Brain 

Res, 159, 253-260. doi:10.1016/s0079-6123(06)59017-x 

 

Hari, R., Salmelin, R., Mäkelä, J. P., Salenius, S., & Helle, M. (1997). 

Magnetoencephalographic cortical rhythms. International Journal of 

Psychophysiology, 26(1–3), 51-62. doi:http://dx.doi.org/10.1016/S0167-

8760(97)00755-1 

 

Hatfield, G. (2002). Psychology, Philosophy, and Cognitive Science: Reflections on the 

History and Philosophy of Experimental Psychology. Mind & Language, 17(3), 

207-232. doi:10.1111/1468-0017.00196 

 

Hickok, G. (2009). Eight Problems for the Mirror Neuron Theory of Action 

Understanding in Monkeys and Humans. J Cogn Neurosci, 21(7), 1229-1243. 

doi:10.1162/jocn.2009.21189 

 

http://dx.doi.org/10.1016/j.neuroimage.2005.09.062
http://dx.doi.org/10.1016/S0167-8760(97)00755-1
http://dx.doi.org/10.1016/S0167-8760(97)00755-1


 

51 

Hickok, G. (2012). The cortical organization of speech processing: feedback control and 

predictive coding the context of a dual-stream model. J Commun Disord, 45(6), 

393-402. doi:10.1016/j.jcomdis.2012.06.004 

 

Hickok, G., Houde, J., & Rong, F. (2011). Sensorimotor Integration in Speech 

Processing: Computational Basis and Neural Organization. Neuron, 69(3), 407-

422. doi:http://dx.doi.org/10.1016/j.neuron.2011.01.019 

 

Hickok, G., & Poeppel, D. (2004). Dorsal and ventral streams: a framework for 

understanding aspects of the functional anatomy of language. Cognition, 92(1-2), 

67-99. doi:10.1016/j.cognition.2003.10.011 

 

Hickok, G., & Poeppel, D. (2007). The cortical organization of speech processing. Nat 

Rev Neurosci, 8(5), 393-402.  

 

Hickok, G., & Poeppel, D. (2015). Neural basis of speech perception. In F. B. Michael J. 

Aminoff & F. S. Dick (Eds.), Handbook of Clinical Neurology (Vol. Volume 129, 

pp. 149-160): Elsevier. 

 

Holt, L. L., & Lotto, A. J. (2010). Speech perception as categorization. Attention, 

perception & psychophysics, 72(5), 1218-1227. doi:10.3758/APP.72.5.1218 

 

Houdayer, E., Cursi, M., Nuara, A., Zanini, S., Gatti, R., Comi, G., & Leocani, L. (2016). 

Cortical Motor Circuits after Piano Training in Adulthood: Neurophysiologic 

Evidence. PLoS One, 11(6), e0157526. doi:10.1371/journal.pone.0157526 

 

Houde, J., & Nagarajan, S. (2011). Speech Production as State Feedback Control. 

Frontiers in Human Neuroscience, 5(82). doi:10.3389/fnhum.2011.00082 

 

Iacoboni, M. (2005). Understanding others: Imitation, language, empathy. Perspectives 

on imitation: From cognitive neuroscience to social science, 1, 77-99.  

 

Iacoboni, M. (2008). The role of premotor cortex in speech perception: evidence from 

fMRI and rTMS. J Physiol Paris, 102(1-3), 31-34. 

doi:10.1016/j.jphysparis.2008.03.003 

 

Jensen, O., Goel, P., Kopell, N., Pohja, M., Hari, R., & Ermentrout, B. (2005). On the 

human sensorimotor-cortex beta rhythm: Sources and modeling. Neuroimage, 

26(2), 347-355. doi:http://dx.doi.org/10.1016/j.neuroimage.2005.02.008 

 

Jenson, D., Bowers, A. L., Harkrider, A. W., Thornton, D., Cuellar, M., & Saltuklaroglu, 

T. (2014). Temporal dynamics of sensorimotor integration in speech perception 

and production: independent component analysis of EEG data. Front Psychol, 5, 

656. doi:10.3389/fpsyg.2014.00656 

 

http://dx.doi.org/10.1016/j.neuron.2011.01.019
http://dx.doi.org/10.1016/j.neuroimage.2005.02.008


 

52 

Jenson, D., Harkrider, A. W., Thornton, D., Bowers, A. L., & Saltuklaroglu, T. (2015). 

Auditory cortical deactivation during speech production and following speech 

perception: an EEG investigation of the temporal dynamics of the auditory alpha 

rhythm. Front Hum Neurosci, 2015 Oct 8;9:534. doi(2015), 

10.3389/fnhum.2015.00534.  

 

Jung, T. P., Makeig, S., Humphries, C., Lee, T. W., McKeown, M. J., Iragui, V., & 

Sejnowski, T. J. (2000). Removing electroencephalographic artifacts by blind 

source separation. Psychophysiology, 37(2), 163-178.  

 

Karrasch, M., Krause, C. M., Laine, M., Lang, A. H., & Lehto, M. (1998). Event-related 

desynchronization and synchronization during an auditory lexical matching task. 

Electroencephalogr Clin Neurophysiol, 107(2), 112-121.  

 

Kawato, M. (1999). Internal models for motor control and trajectory planning. Curr Opin 

Neurobiol, 9(6), 718-727.  

 

Kilavik, B. E., Zaepffel, M., Brovelli, A., MacKay, W. A., & Riehle, A. (2013). The ups 

and downs of beta oscillations in sensorimotor cortex. Exp Neurol, 245, 15-26. 

doi:10.1016/j.expneurol.2012.09.014 

 

Klem, G. H., Luders, H. O., Jasper, H. H., & Elger, C. (1999). The ten-twenty electrode 

system of the International Federation. The International Federation of Clinical 

Neurophysiology. Electroencephalogr Clin Neurophysiol Suppl, 52, 3-6.  

 

Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory 

performance: a review and analysis. Brain Research Reviews, 29(2–3), 169-195. 

doi:http://dx.doi.org/10.1016/S0165-0173(98)00056-3 

 

Klimesch, W. (2012). alpha-band oscillations, attention, and controlled access to stored 

information. Trends Cogn Sci, 16(12), 606-617. doi:10.1016/j.tics.2012.10.007 

 

Klimesch, W., Doppelmayr, M., & Hanslmayr, S. (2006). Upper alpha ERD and absolute 

power: their meaning for memory performance. Prog Brain Res, 159, 151-165. 

doi:10.1016/s0079-6123(06)59010-7 

 

Klimesch, W., Doppelmayr, M., Russegger, H., Pachinger, T., & Schwaiger, J. (1998). 

Induced alpha band power changes in the human EEG and attention. Neurosci 

Lett, 244(2), 73-76.  

 

Klimesch, W., Schimke, H., Doppelmayr, M., Ripper, B., Schwaiger, J., & Pfurtscheller, 

G. (1996). Event-related desynchronization (ERD) and the Dm effect: does alpha 

desynchronization during encoding predict later recall performance? Int J 

Psychophysiol, 24(1-2), 47-60.  

http://dx.doi.org/10.1016/S0165-0173(98)00056-3


 

53 

Krause, C. M., Sillanmaki, L., Koivisto, M., Saarela, C., Haggqvist, A., Laine, M., & 

Hamalainen, H. (2000). The effects of memory load on event-related EEG 

desynchronization and synchronization. Clin Neurophysiol, 111(11), 2071-2078.  

 

Krawczyk, D. C. (2002). Contributions of the prefrontal cortex to the neural basis of 

human decision making. Neurosci Biobehav Rev, 26(6), 631-664.  

 

Lancaster, J. L., Rainey, L. H., Summerlin, J. L., Freitas, C. S., Fox, P. T., Evans, A. C., . 

. . Mazziotta, J. C. (1997). Automated labeling of the human brain: a preliminary 

report on the development and evaluation of a forward-transform method. Hum 

Brain Mapp, 5(4), 238-242. doi:10.1002/(SICI)1097-

0193(1997)5:4&lt;238::AID-HBM6&gt;3.0.CO;2-4.10.1002/(sici)1097-

0193(1997)5:4<238::aid-hbm6>3.0.co;2-4 

 

Lancaster, J. L., Woldorff, M. G., Parsons, L. M., Liotti, M., Freitas, C. S., Rainey, L., . . 

. Fox, P. T. (2000). Automated Talairach atlas labels for functional brain 

mapping. Hum Brain Mapp, 10(3), 120-131.  

 

Laufs, H., Kleinschmidt, A., Beyerle, A., Eger, E., Salek-Haddadi, A., Preibisch, C., & 

Krakow, K. (2003). EEG-correlated fMRI of human alpha activity. Neuroimage, 

19(4), 1463-1476.  

 

Lee, T. W., Girolami, M., & Sejnowski, T. J. (1999). Independent component analysis 

using an extended infomax algorithm for mixed subgaussian and supergaussian 

sources. Neural Comput, 11(2), 417-441.  

 

Lee, Y. S., Turkeltaub, P., Granger, R., & Raizada, R. D. (2012). Categorical speech 

processing in Broca's area: an fMRI study using multivariate pattern-based 

analysis. J Neurosci, 32(11), 3942-3948. doi:10.1523/jneurosci.3814-11.2012 

 

Leech, R., Holt, L. L., Devlin, J. T., & Dick, F. (2009). Expertise with artificial 

nonspeech sounds recruits speech-sensitive cortical regions. J Neurosci, 29(16), 

5234-5239. doi:10.1523/jneurosci.5758-08.2009 

 

Liberman, A. M., Cooper, F. S., Shankweiler, D. P., & Studdert-Kennedy, M. (1967). 

Perception of the speech code. Psychol Rev, 74(6), 431-461.  

 

Liberman, A. M., & Mattingly, I. G. (1985). The motor theory of speech perception 

revised. Cognition, 21(1), 1-36. doi:http://dx.doi.org/10.1016/0010-

0277(85)90021-6 

 

Liberman, A. M., & Whalen, D. H. (2000). On the relation of speech to language. Trends 

Cogn Sci, 4(5), 187-196.  

 

http://dx.doi.org/10.1016/0010-0277(85)90021-6
http://dx.doi.org/10.1016/0010-0277(85)90021-6


 

54 

Liebenthal, E., Sabri, M., Beardsley, S. A., Mangalathu-Arumana, J., & Desai, A. (2013). 

Neural dynamics of phonological processing in the dorsal auditory stream. J 

Neurosci, 33(39), 15414-15424. doi:10.1523/jneurosci.1511-13.2013 

 

Liu, C., & Jin, S.-H. (2015). Auditory detection of non-speech and speech stimuli in 

noise: Effects of listeners&apos; native language background. The Journal of the 

Acoustical Society of America, 138(5), 2782-2790. 

doi:doi:http://dx.doi.org/10.1121/1.4934252 

 

Lotto, A. J., Hickok, G. S., & Holt, L. L. (2009). Reflections on mirror neurons and 

speech perception. Trends Cogn Sci, 13(3), 110-114. 

doi:10.1016/j.tics.2008.11.008 

 

Makeig, S., Debener, S., Onton, J., & Delorme, A. (2004). Mining event-related brain 

dynamics. Trends Cogn Sci, 8(5), 204-210. 

doi:http://dx.doi.org/10.1016/j.tics.2004.03.008 

 

Makeig, S., Delorme, A., Westerfield, M., Jung, T.-P., Townsend, J., Courchesne, E., & 

Sejnowski, T. J. (2004). Electroencephalographic Brain Dynamics Following 

Manually Responded Visual Targets. PLoS Biol, 2(6), e176. 

doi:10.1371/journal.pbio.0020176 

 

Massaro, D. W., & Chen, T. H. (2008). The motor theory of speech perception revisited. 

Psychonomic Bulletin & Review, 15(2), 453-457. doi:10.3758/pbr.15.2.453 

 

Meister, I. G., Wilson, S. M., Deblieck, C., Wu, A. D., & Iacoboni, M. (2007). The 

essential role of premotor cortex in speech perception. Curr Biol, 17(19), 1692-

1696. doi:10.1016/j.cub.2007.08.064 

 

Möttönen, R., Dutton, R., & Watkins, K. E. (2013). Auditory-motor processing of speech 

sounds. Cereb Cortex, 23(5), 1190-1197. doi:10.1093/cercor/bhs110 

 

Möttönen, R., van de Ven, G. M., & Watkins, K. E. (2014). Attention Fine-Tunes 

Auditory–Motor Processing of Speech Sounds. The Journal of Neuroscience, 

34(11), 4064-4069. doi:10.1523/jneurosci.2214-13.2014 

 

Möttönen, R., & Watkins, K. E. (2009). Motor representations of articulators contribute 

to categorical perception of speech sounds. J Neurosci, 29(31), 9819-9825. 

doi:10.1523/jneurosci.6018-08.2009 

 

Möttönen, R., & Watkins, K. E. (2012). Using TMS to study the role of the articulatory 

motor system in speech perception. Aphasiology, 26(9), 1103-1118. 

doi:10.1080/02687038.2011.619515 

 

http://dx.doi.org/10.1121/1.4934252
http://dx.doi.org/10.1016/j.tics.2004.03.008


 

55 

Murakami, T., Kell, C. A., Restle, J., Ugawa, Y., & Ziemann, U. (2015). Left dorsal 

speech stream components and their contribution to phonological processing. J 

Neurosci, 35(4), 1411-1422. doi:10.1523/jneurosci.0246-14.2015 

 

Muthukumaraswamy, S. D., & Johnson, B. W. (2004a). Changes in rolandic mu rhythm 

during observation of a precision grip. Psychophysiology, 41(1), 152-156. 

doi:10.1046/j.1469-8986.2003.00129.x 

 

Muthukumaraswamy, S. D., & Johnson, B. W. (2004b). Primary motor cortex activation 

during action observation revealed by wavelet analysis of the EEG. Clin 

Neurophysiol, 115(8), 1760-1766. doi:10.1016/j.clinph.2004.03.004 

 

Muthukumaraswamy, S. D., Johnson, B. W., Gaetz, W. C., & Cheyne, D. O. (2006). 

Neural processing of observed oro-facial movements reflects multiple action 

encoding strategies in the human brain. Brain Res, 1071(1), 105-112. 

doi:10.1016/j.brainres.2005.11.053 

 

Muthukumaraswamy, S. D., Johnson, B. W., & McNair, N. A. (2004). Mu rhythm 

modulation during observation of an object-directed grasp. Brain Res Cogn Brain 

Res, 19(2), 195-201. doi:10.1016/j.cogbrainres.2003.12.001 

 

Myers, E. (2014). Emergence of category-level sensitivities in non-native speech sound 

learning. Frontiers in Neuroscience, 8, 238. doi:10.3389/fnins.2014.00238 

 

Myers, E. B., Blumstein, S. E., Walsh, E., & Eliassen, J. (2009). Inferior frontal regions 

underlie the perception of phonetic category invariance. Psychol Sci, 20(7), 895-

903. doi:10.1111/j.1467-9280.2009.02380.x 

 

Myers, E. B., & Mesite, L. M. (2014). Neural Systems Underlying Perceptual Adjustment 

to Non-Standard Speech Tokens. J Mem Lang, 76, 80-93. 

doi:10.1016/j.jml.2014.06.007 

 

Myers, E. B., & Swan, K. (2012). Effects of category learning on neural sensitivity to 

non-native phonetic categories. J Cogn Neurosci, 24(8), 1695-1708. 

doi:10.1162/jocn_a_00243 

 

Näätänen, R. (2001). The perception of speech sounds by the human brain as reflected by 

the mismatch negativity (MMN) and its magnetic equivalent (MMNm). 

Psychophysiology, 38(1), 1-21. doi:10.1111/1469-8986.3810001 

 

Näätänen, R., Lehtokoski, A., Lennes, M., Cheour, M., Huotilainen, M., Iivonen, A., . . . 

Alho, K. (1997). Language-specific phoneme representations revealed by electric 

and magnetic brain responses. Nature, 385(6615), 432-434.  

 



 

56 

Näätänen, R., Paavilainen, P., Rinne, T., & Alho, K. (2007). The mismatch negativity 

(MMN) in basic research of central auditory processing: a review. Clin 

Neurophysiol, 118(12), 2544-2590. doi:10.1016/j.clinph.2007.04.026 

 

Nishitani, N., Schürmann, M., Amunts, K., & Hari, R. (2005). Broca’s Region: From 

Action to Language. Physiology, 20(1), 60.  

 

Oberman, L. M., Hubbard, E. M., McCleery, J. P., Altschuler, E. L., Ramachandran, V. 

S., & Pineda, J. A. (2005). EEG evidence for mirror neuron dysfunction in autism 

spectrum disorders. Brain Res Cogn Brain Res, 24(2), 190-198. 

doi:10.1016/j.cogbrainres.2005.01.014 

 

Oberman, L. M., McCleery, J. P., Hubbard, E. M., Bernier, R., Wiersema, J. R., 

Raymaekers, R., & Pineda, J. A. (2013). Developmental changes in mu 

suppression to observed and executed actions in autism spectrum disorders. Soc 

Cogn Affect Neurosci, 8(3), 300-304. doi:10.1093/scan/nsr097 

 

Oberman, L. M., Pineda, J. A., & Ramachandran, V. S. (2007). The human mirror neuron 

system: a link between action observation and social skills. Soc Cogn Affect 

Neurosci, 2(1), 62-66. doi:10.1093/scan/nsl022 

 

Oberman, L. M., Ramachandran, V. S., & Pineda, J. A. (2008). Modulation of mu 

suppression in children with autism spectrum disorders in response to familiar or 

unfamiliar stimuli: the mirror neuron hypothesis. Neuropsychologia, 46(5), 1558-

1565. doi:10.1016/j.neuropsychologia.2008.01.010 

 

Obleser, J., & Weisz, N. (2012). Suppressed alpha oscillations predict intelligibility of 

speech and its acoustic details. Cereb Cortex, 22(11), 2466-2477. 

doi:10.1093/cercor/bhr325 

 

Okada, K., Rong, F., Venezia, J., Matchin, W., Hsieh, I. H., Saberi, K., . . . Hickok, G. 

(2010). Hierarchical Organization of Human Auditory Cortex: Evidence from 

Acoustic Invariance in the Response to Intelligible Speech. Cerebral Cortex (New 

York, NY), 20(10), 2486-2495. doi:10.1093/cercor/bhp318 

 

Onton, J., & Makeig, S. (2006). Information-based modeling of event-related brain 

dynamics. Prog Brain Res, 159, 99-120. doi:10.1016/s0079-6123(06)59007-7 

 

Onton, J., Westerfield, M., Townsend, J., & Makeig, S. (2006). Imaging human EEG 

dynamics using independent component analysis. Neurosci Biobehav Rev, 30(6), 

808-822. doi:10.1016/j.neubiorev.2006.06.007 

 

Oostenveld, R., & Oostendorp, T. F. (2002). Validating the boundary element method for 

forward and inverse EEG computations in the presence of a hole in the skull. Hum 

Brain Mapp, 17(3), 179-192. doi:10.1002/hbm.10061 

 



 

57 

Perry, A., & Bentin, S. (2009). Mirror activity in the human brain while observing hand 

movements: A comparison between EEG desynchronization in the ?-range and 

previous fMRI results. Brain Res, 1282, 126-132. 

doi:http://dx.doi.org/10.1016/j.brainres.2009.05.059 

 

Petsche, H., Kaplan, S., von Stein, A., & Filz, O. (1997). The possible meaning of the 

upper and lower alpha frequency ranges for cognitive and creative tasks. Int J 

Psychophysiol, 26(1-3), 77-97.  

 

Pfurtscheller, G., & Lopes da Silva, F. H. (1999). Event-related EEG/MEG 

synchronization and desynchronization: basic principles. Clinical 

Neurophysiology, 110(11), 1842-1857. doi:http://dx.doi.org/10.1016/S1388-

2457(99)00141-8 

 

Pfurtscheller, G., Stancák Jr, A., & Neuper, C. (1996). Event-related synchronization 

(ERS) in the alpha band ? an electrophysiological correlate of cortical idling: A 

review. International Journal of Psychophysiology, 24(1?2), 39-46. 

doi:http://dx.doi.org/10.1016/S0167-8760(96)00066-9 

 

Pillai, J. J., Araque, J. M., Allison, J. D., Sethuraman, S., Loring, D. W., Thiruvaiyaru, 

D., . . . Lavin, T. (2003). Functional MRI study of semantic and phonological 

language processing in bilingual subjects: preliminary findings. Neuroimage, 

19(3), 565-576.  

 

Pineda, J. A. (2005). The functional significance of mu rhythms: Translating “seeing” 

and “hearing” into “doing”. Brain Research Reviews, 50(1), 57-68. 

doi:http://dx.doi.org/10.1016/j.brainresrev.2005.04.005 

 

Pineda, J. A., Grichanik, M., Williams, V., Trieu, M., Chang, H., & Keysers, C. (2013). 

EEG sensorimotor correlates of translating sounds into actions. Front Neurosci, 7, 

203. doi:10.3389/fnins.2013.00203 

 

Poeppel, D., Idsardi, W. J., & van Wassenhove, V. (2008). Speech perception at the 

interface of neurobiology and linguistics. Philosophical Transactions of the Royal 

Society of London B: Biological Sciences, 363(1493), 1071-1086. 

doi:10.1098/rstb.2007.2160 

 

Poldrack, R. A. (2000). Imaging Brain Plasticity: Conceptual and Methodological 

Issues— A Theoretical Review. Neuroimage, 12(1), 1-13. 

doi:http://dx.doi.org/10.1006/nimg.2000.0596 

 

Pulvermüller, F., Huss, M., Kherif, F., Moscoso del Prado Martin, F., Hauk, O., & 

Shtyrov, Y. (2006). Motor cortex maps articulatory features of speech sounds. 

Proceedings of the National Academy of Sciences of the United States of America, 

103(20), 7865-7870. doi:10.1073/pnas.0509989103 

 

http://dx.doi.org/10.1016/j.brainres.2009.05.059
http://dx.doi.org/10.1016/S1388-2457(99)00141-8
http://dx.doi.org/10.1016/S1388-2457(99)00141-8
http://dx.doi.org/10.1016/S0167-8760(96)00066-9
http://dx.doi.org/10.1016/j.brainresrev.2005.04.005
http://dx.doi.org/10.1006/nimg.2000.0596


 

58 

Rauschecker, J. P., & Scott, S. K. (2009). Maps and streams in the auditory cortex: 

nonhuman primates illuminate human speech processing. Nature neuroscience, 

12(6), 718-724. doi:10.1038/nn.2331 

 

Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annu Rev Neurosci, 

27, 169-192. doi:10.1146/annurev.neuro.27.070203.144230 

 

Rogalsky, C., Love, T., Driscoll, D., Anderson, S. W., & Hickok, G. (2011). Are mirror 

neurons the basis of speech perception? Evidence from five cases with damage to 

the purported human mirror system. Neurocase, 17(2), 178-187. 

doi:10.1080/13554794.2010.509318 

 

Saur, D., Kreher, B. W., Schnell, S., Kummerer, D., Kellmeyer, P., Vry, M. S., . . . 

Weiller, C. (2008). Ventral and dorsal pathways for language. Proc Natl Acad Sci 

U S A, 105(46), 18035-18040. doi:10.1073/pnas.0805234105 

 

Schwartz, J.-L., Basirat, A., Ménard, L., & Sato, M. (2012). The Perception-for-Action-

Control Theory (PACT): A perceptuo-motor theory of speech perception. Journal 

of Neurolinguistics, 25(5), 336-354. 

doi:http://dx.doi.org/10.1016/j.jneuroling.2009.12.004 

 

Scott, S. K., & Wise, R. J. S. (2004). The functional neuroanatomy of prelexical 

processing in speech perception. Cognition, 92(1–2), 13-45. 

doi:http://dx.doi.org/10.1016/j.cognition.2002.12.002 

 

Shahin, A. J., Picton, T. W., & Miller, L. M. (2009). Brain oscillations during semantic 

evaluation of speech. Brain Cogn, 70(3), 259-266. 

doi:10.1016/j.bandc.2009.02.008 

 

Siegel, M., Donner, T. H., & Engel, A. K. (2012). Spectral fingerprints of large-scale 

neuronal interactions. Nat Rev Neurosci, 13(2), 121-134.  

 

Simmonds, A. J., Wise, R. J., Collins, C., Redjep, O., Sharp, D. J., Iverson, P., & Leech, 

R. (2014). Parallel systems in the control of speech. Hum Brain Mapp, 35(5), 

1930-1943. doi:10.1002/hbm.22303 

 

Skipper, J. I., van Wassenhove, V., Nusbaum, H. C., & Small, S. L. (2007). Hearing lips 

and seeing voices: how cortical areas supporting speech production mediate 

audiovisual speech perception. Cereb Cortex, 17(10), 2387-2399. 

doi:10.1093/cercor/bhl147 

 

Specht, K. (2013). Mapping a lateralization gradient within the ventral stream for 

auditory speech perception. Front Hum Neurosci, 7, 629. 

doi:10.3389/fnhum.2013.00629 

 

http://dx.doi.org/10.1016/j.jneuroling.2009.12.004
http://dx.doi.org/10.1016/j.cognition.2002.12.002


 

59 

Specht, K. (2014). Neuronal basis of speech comprehension. Hear Res, 307, 121-135. 

doi:10.1016/j.heares.2013.09.011 

 

Sterman, M. B., Kaiser, D. A., & Veigel, B. (1996). Spectral analysis of event-related 

EEG responses during short-term memory performance. Brain Topogr, 9(1), 21-

30. doi:10.1007/bf01191639 

 

Tamura, T., Gunji, A., Takeichi, H., Shigemasu, H., Inagaki, M., Kaga, M., & Kitazaki, 

M. (2012). Audio-vocal monitoring system revealed by mu-rhythm activity. Front 

Psychol, 3, 225. doi:10.3389/fpsyg.2012.00225 

 

Tremblay, K., Kraus, N., Carrell, T. D., & McGee, T. (1997). Central auditory system 

plasticity: Generalization to novel stimuli following listening training. The 

Journal of the Acoustical Society of America, 102(6), 3762-3773. 

doi:doi:http://dx.doi.org/10.1121/1.420139 

 

Turvey, M. T. (1974). Constructive theory, perceptual systems, and tacit knowledge. In 

W. B. W. D. S. Palermo (Ed.), Cognition and the symbolic processes (pp. xii, 

450). Oxford, England: Lawrence Erlbaum. 

 

Ueno, T., Saito, S., Rogers, T. T., & Lambon Ralph, M. A. (2011). Lichtheim 2: 

synthesizing aphasia and the neural basis of language in a neurocomputational 

model of the dual dorsal-ventral language pathways. Neuron, 72(2), 385-396. 

doi:10.1016/j.neuron.2011.09.013 

 

Ulloa, E. R., & Pineda, J. A. (2007). Recognition of point-light biological motion: mu 

rhythms and mirror neuron activity. Behav Brain Res, 183(2), 188-194. 

doi:10.1016/j.bbr.2007.06.007 

 

Van Mier, H. (2000). Human Learning. In A. W. Toga & J. C. Mazziotta (Eds.), Brain 

Mapping: The Systems (pp. 605-620). San Diego: Academic Press. 

 

Von Helmholtz, H. (1867). Handbuch der physiologischen Optik (Vol. 9): Voss. 

 

Wang, Y., Sereno, J. A., Jongman, A., & Hirsch, J. (2003). fMRI evidence for cortical 

modification during learning of Mandarin lexical tone. J Cogn Neurosci, 15(7), 

1019-1027. doi:10.1162/089892903770007407 

 

Warren, J. E., Wise, R. J. S., & Warren, J. D. (2005). Sounds do-able: auditory–motor 

transformations and the posterior temporal plane. Trends Neurosci, 28(12), 636-

643. doi:http://dx.doi.org/10.1016/j.tins.2005.09.010 

 

Weiller, C., Bormann, T., Saur, D., Musso, M., & Rijntjes, M. (2011). How the ventral 

pathway got lost: and what its recovery might mean. Brain Lang, 118(1-2), 29-39. 

doi:10.1016/j.bandl.2011.01.005 

http://dx.doi.org/10.1121/1.420139
http://dx.doi.org/10.1016/j.tins.2005.09.010


 

60 

Weisz, N., Hartmann, T., Muller, N., Lorenz, I., & Obleser, J. (2011). Alpha rhythms in 

audition: cognitive and clinical perspectives. Front Psychol, 2, 73. 

doi:10.3389/fpsyg.2011.00073 

 

Wernicke, C. (1969). The Symptom Complex of Aphasia. In R. S. Cohen & M. W. 

Wartofsky (Eds.), Proceedings of the Boston Colloquium for the Philosophy of 

Science 1966/1968 (pp. 34-97). Dordrecht: Springer Netherlands. 

 

Wilson, S. M., & Iacoboni, M. (2006). Neural responses to non-native phonemes varying 

in producibility: Evidence for the sensorimotor nature of speech perception. 

Neuroimage, 33(1), 316-325. 

doi:http://dx.doi.org/10.1016/j.neuroimage.2006.05.032 

 

Wilson, S. M., Saygin, A. P., Sereno, M. I., & Iacoboni, M. (2004). Listening to speech 

activates motor areas involved in speech production. Nat Neurosci, 7(7), 701-702. 

doi:10.1038/nn1263 

 

Yang, L., Liu, Z., & He, B. (2010). EEG-fMRI reciprocal functional neuroimaging. 

Clinical Neurophysiology, 121(8), 1240-1250. 

doi:http://dx.doi.org/10.1016/j.clinph.2010.02.153 

 

Zhang, Y., Kuhl, P. K., Imada, T., Iverson, P., Pruitt, J., Stevens, E. B., . . . Nemoto, I. 

(2009). Neural signatures of phonetic learning in adulthood: A 

magnetoencephalography study. Neuroimage, 46(1), 226-240. 

doi:http://dx.doi.org/10.1016/j.neuroimage.2009.01.028 

 

Zhang, Y., Kuhl, P. K., Imada, T., Kotani, M., & Tohkura, Y. i. (2005). Effects of 

language experience: Neural commitment to language-specific auditory patterns. 

Neuroimage, 26(3), 703-720. 

doi:http://dx.doi.org/10.1016/j.neuroimage.2005.02.040 

 

Zhuang, P., Toro, C., Grafman, J., Manganotti, P., Leocani, L., & Hallett, M. (1997). 

Event-related desynchronization (ERD) in the alpha frequency during 

development of implicit and explicit learning. Electroencephalogr Clin 

Neurophysiol, 102(4), 374-381.  

 

 

 

 

 

 

  

http://dx.doi.org/10.1016/j.neuroimage.2006.05.032
http://dx.doi.org/10.1016/j.clinph.2010.02.153
http://dx.doi.org/10.1016/j.neuroimage.2009.01.028
http://dx.doi.org/10.1016/j.neuroimage.2005.02.040


 

61 

VITA 

 

 

 Daniela Santos-Oliveira was born in Portugal, in 1981. After graduating from 

High School, in 1998, she attended the University of Aveiro, Portugal, where she 

graduated in 2004 as a certified teacher of Portuguese, Latin and Greek. Beside her 

passion for teaching, during her Bachelor’s studies Daniela became especially interested 

in Linguistics. This interest lead her to pursue a Masters’ degree in Portuguese Studies, 

with a concentration in Linguistics. Focusing on Portuguese phonetics, Daniela graduated 

in 2007 from the same university, with a thesis entitled “Analysis and Modeling of 

Duration in European Portuguese”. In 2008, Daniela was accepted into the Speech 

Science Ph.D. program at the University of Tennessee Health Science Center (UTHSC). 

In 2009, she was awarded a scholarship from the Portuguese national funding agency for 

science, research and technology (www.fct.pt) to support her research towards the 

completion of the Ph.D. program. Her research has now been focused on the field of 

second language acquisition, and has been presented at the ASHA Annual Convention 

and the UTHSC Graduate Research Day, where she won a Best Poster award. She has 

also published in the Clinical Linguistics and Phonetics journal. Daniela will graduate 

from UTHSC in May 2017.  

 

http://www.fct.pt/

	University of Tennessee Health Science Center
	UTHSC Digital Commons
	5-2017

	Automatic Activation of Phonological Templates for Native but Not Nonnative Phonemes: An Investigation of the Temporal Dynamics of Mu Activation
	Daniela Cristina Santos-Oliveira
	Recommended Citation

	Automatic Activation of Phonological Templates for Native but Not Nonnative Phonemes: An Investigation of the Temporal Dynamics of Mu Activation
	Document Type
	Degree Name
	Program
	Track
	Research Advisor
	Committee
	ORCID
	DOI


	tmp.1494000050.pdf.YNRMz

