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ABSTRACT 
 
 
 Efficacy of many of the new and existing therapeutics is often hampered by the 
lack of an effective and compliant method of delivery. Typically, drugs have poor water 
solubility, short half-lives, and low permeability across the biological membranes. The 
result is low bioavailability of the drugs at the target site and can cause toxicity and side 
effects at high doses. Often the conventional dosage forms fail to overcome these 
limitations. In the recent decades, biodegradable polymeric drug delivery systems have 
emerged as promising candidates to solve the challenges of poor solubility, low 
permeability and sustained release owing to the advantages of biocompatibility, 
versatility, and tunable drug release. Polyesters and polysaccharides are the most 
common polymers that were explored for drug delivery applications because of their 
unique advantages including non-toxic nature, wide availability, relatively low cost, and 
flexibility in chemistry. Although a major progress has been in the field of drug delivery, 
still there are unmet medical needs which require new materials for delivering drugs such 
as, injectable systems that can achieve long-term contraception (five months or longer) at 
low cost, and drug delivery systems that can enhance the permeability of drugs across 
ocular/blood-brain barriers and sustain release as well for treating chronic diseases such 
as diabetic retinopathy in the eye and Alzheimer’s disease in the brain. Therefore, this 
research has evaluated the potential of different biodegradable polymeric biomaterials 
based on polyesters or polysaccharides for long-acting contraception and drug delivery to 
the eye and brain to resolve the issues such as poor compliance and adherence to the 
existing contraceptive dosage forms or poor solubility and permeability of the drugs 
across ocular/blood-brain barriers. 
 

The first system includes polyester-based injectable in situ forming depot systems 
(ISD) for long-acting contraception. The aim of this project was to develop injectable 
ISD system containing levonorgestrel (LNG) for contraceptive effect for five months or 
longer after single shot that helps to reduce unintended pregnancies with high patient 
compliance and low cost. A series of LNG-containing ISD formulations were designed 
by employing unique strategies which include the use of poly(lactic acid-co-glycolic 
acid), poly(lactic acid) with different biodegradable properties, and blends of these 
polyesters, use solvent mixtures of N-methyl-2-pyrrolidone, triethyl citrate, benzyl 
benzoate, and vary the polymer/solvent ratios, and various drug loadings. The 
formulations were evaluated for viscosity, initial burst, in vitro and in vivo long-term 
release. In vivo investigation in rats showed the sustained-release pharmacokinetic profile 
of LNG from the ISD formulations for at least five months and continued for more than 
seven months depending on the composition, and the vaginal cytology studies have 
demonstrated that formulations have successfully suppressed the rat estrous cycle. After 
the end of the treatment, a rapid and predictable return of fertility was observed in rats. 
The optimized lead formulation has shown promising injectability (23 G) and low initial 
in vivo burst profiles. The results suggested that the developed LNG-ISD formulations 
have a great potential for developing into future robust affordable long-acting 
contraceptive products for improving patient compliance and adherence. 



 

vii 

Another type of polymeric biomaterial systems that were evaluated in this study 
includes polysaccharide-based biodegradable nanoparticles for drug delivery across 
ocular and blood-brain barriers. Depending on the need of the therapeutic application, 
two types of polysaccharide-based nanoparticles were investigated for their drug delivery 
feasibility which includes: (a) Poly(N-isopropylacrylamide-co-Dextran-lactateHEMA) 
nanogels for the potential delivery of hydrophilic peptide (insulin) across ocular barriers 
for the treatment of diabetic retinopathy. The in vitro, and ex vivo studies showed that the 
developed nontoxic nanogels have great potential to enhance the drug permeability across 
ocular barriers including the in vitro retinal pigment epithelium, sclera and cornea 
barriers for treating diabetic retinopathy; and (b) β-cyclodextrin-poly(β-amino ester) 
nanoparticles as potential drug carriers to enhance the solubility and blood-brain barrier 
(BBB) permeability of 17-N-allylamino-17-demethoxygeldanamycin (17-AAG) to treat 
Alzheimer’s disease. The nanoparticles sustained the release of 17-AAG for at least one 
week in vitro and showed increased permeability (2-fold) of the 17-AAG across BBB in 
vivo in mice, and resulted in enhanced expression of the Hsp70 protein in the brain.  
 

In conclusion, the developed biodegradable polymeric biomaterials have shown 
potential to be used in long-acting contraception and drug delivery to the eye and brain. 
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CHAPTER 1.    BIODEGRADABLE POLYMERIC BIOMATERIALS FOR DRUG 
DELIVERY 

 
 

Introduction 
 
New drug discovery and development is a multi-stage complex and labor-

intensive process requiring years of time and large amounts of money. According to the 
latest report by the Tufts Center for the Study of Drug Development, the average 
expenses involved in the new drug development from the discovery stage to market 
approval was estimated to be $ 2.558 billion USD [1, 2]. Consequently, enhancing the 
safety and efficacy of current therapeutics has been attempted using various strategies 
such as novel drug delivery systems, personalized medication, dose alteration, and 
therapeutic drug monitoring. Delivering drugs at a sustained and controlled rate, targeted 
delivery using drug delivery systems was the most attractive method that has been 
pursued extensively [3]. New delivery systems can be developed at relatively low cost 
and time than new drug discovery, and this allows to maximize the return on investment, 
giving a second life to existing therapeutics, with improved efficacy and patient 
compliance [4]. Further, in the recent years, the concept of the drug has changed from the 
traditional small molecules to the biologics (such as peptides, proteins, monoclonal 
antibodies, RNA, DNA), and this change required the exploration of new delivery 
systems because of the failure of the conventional systems. Moreover, with the 
progressive shrinkage of the pipelines from pharmaceutical organizations and the release 
of many of the drugs from the patent, drug delivery systems are expected to play an 
increasingly critical part in the present pharmaceutical landscape [5]. The market related 
to drug delivery technology was projected to reach $ 1,504.7 billion USD by 2020 from $ 
1,048.1 billion in 2015 [6]. 

 
“Drug delivery describes the method and approach to delivering drugs or 

pharmaceuticals and other xenobiotics to their site of action within an organism, with the 
goal of achieving a therapeutic outcome”[1]. Currently, it is widely acknowledged that 
the success of a therapeutic molecule depends strongly on the function and efficiency of 
the drug delivery system. One of the strategies toward this goal has been the use of 
biodegradable polymeric biomaterials for drug delivery [7]. Numerous literature reports 
support that polymers have been used as a primary tool to control the drug release rate 
from the formulations [7-10]. Biodegradable polymers represent an emerging field, and 
significant advances have been made with regard to the development of biodegradable 
polymeric materials for formulation and drug delivery applications because of several 
advantages such as biodegradability, biocompatibility, versatility, and tunable drug 
release [10]. Each drug delivery application is unique and demands materials with 
specific physiochemical, biological, mechanical and degradation properties to meet the 
requirements to provide effective therapy. As a result, a wide range of natural or synthetic 
biodegradable polymers which can undergo hydrolytic or enzymatic degradation are 
being investigated. The classification and examples of synthetic and natural 
biodegradable polymers that have been widely used as biodegradable polymeric 
biomaterials for drug delivery are given in Figure 1-1. These polymers undergo 
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Biodegradable 
polymers

Synthetic 
Polymers

Polyesters

Poly(lactic acid), poly(glycolic acid), 
Poly(lactic-co-glycolic acid) 

poly(hydroxy butyrate), poly(ε-
caprolactone), poly(β-malic acid), 

poly(dioxanones)

Polyanhydrides
Poly(sebacic acid), poly(adipic acid), 

poly(terphthalic acid) and various 
copolymers

Polyamides
Poly(imino carbonates), polyamino

acids

Phosphorous-
based polymers

Polyphosphates, polyphosphonates, 
polyphosphazenes

Others
Poly(cyano acrylates), polyurethanes, 
polyortho esters, polydihydropyrans, 

polyacetals

Natural  
Polymers

Polysacharides dextran, chitosan, cyclodextrins 
hyaluronic acid, alginate

Protein-based 
polymers albumin, collagen, gelatin

 
Figure 1-1. The classification and examples of biodegradable polymers used in the 
fabrication of biomaterials for drug delivery. 
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biodegradation through cleavage of hydrolytically or enzymatically sensitive bonds in the 
polymer chain leading to polymer erosion [11]. Among the various polymers, polyesters 
and polysaccharides are the extensively investigated polymers for drug delivery 
applications [12-22]. 
 

A significant emphasis was made on innovation for improving the delivery of 
therapeutics by designing various drug delivery systems with various objectives which 
include: i) treat different conditions located at different physiological locations; ii) 
sustained drug release for reduction in dosage frequency and better patient compliance; 
iii) minimize the drug concentration fluctuations in vivo and maintain constant drug 
levels within therapeutic window; iv) localized drug delivery; v) enhanced delivery of 
poorly water-soluble drugs; vi) targeted delivery of therapeutics to a cell- or tissue in a 
specific manner; vii) transport of drugs across tight epithelial and endothelial barriers 
(transcytosis); viii) delivery of large-molecule therapeutics to intracellular sites of action; 
ix) co-delivery of multiple drugs or therapeutic modality for combination therapy; x) 
visualization or diagnosis of diseased sites by drug delivery through combining 
therapeutic agents with imaging modalities (theranostics) for real-time monitoring on the 
in vivo efficacy of a drug; xi) reduced incidence of toxicity and side effects; xii) reducing 
drug clearance in the path, and improving drug stability and bioavailability at the targets 
[6-10, 23-27]. The other objective or advantage is that manufacturer's development of a 
new delivery system of a product helps in extending the patent life [28].  
 

Depending on the drug, application, and therapeutic route, each approach will be 
unique and requires polymeric biomaterials with different physical, chemical and 
biological properties. As a result, we see drug systems that come in all shapes and sizes: 
macro-, micro-, and nano-dimensions. Table 1-1 shows a list of polymeric biomaterials 
that have been investigated for drug delivery applications. Some of the inherent 
properties or factors of polymeric biomaterials that can have an effect on their 
biocompatibility, biodegradability and applicability are: i) physical factors (size and 
shape), ii) chemical structure and composition of the material, iii) molecular weight 
distribution, iv) morphology (microstructure, amorphous/crystallinity) of the material, v) 
physicochemical conditions (ionic strength, pH), vi) hydrophilicity/hydrophobicity, vii) 
water absorption, viii) solubility, ix) lubricity, x) surface energy, xi) degradation and 
erosion mechanism, and xii) route of administration and site of action [6-10, 23-27, 29]. 
 

Although numerous efforts have been made to develop biomaterials for various 
drug delivery applications, however, still there are unmet medical conditions which 
require novel materials for delivering drugs to enhance the therapeutic efficacy and 
patient compliance. The goal of this research was to develop biodegradable polymeric 
biomaterials in different forms for loading and release of drugs to meet the unmet 
medical needs.  
 

One of such unmet needs is the efficient and affordable sustained release 
injectable system for long-acting contraception. Currently, available long-acting 
reversible contraceptives (LARCs) include intrauterine system (IUS), intrauterine device 
(IUD), preformed implants, and injectable contraceptives. IUS, IUD, and preformed 
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Table 1-1. List of polymeric biomaterials for drug delivery. 
 

Macro-systems Micro-systems Nano-systems 
Implants  
Oral delivery systems 
(tablets/ capsules/ pumps)  
In situ depot/implant  
Hydrogels   
Transdermal systems  

Microspheres  
Microcapsules  
Micelles  
Microgels  
Micro-osmotic pump  
 

Liposomes  
Niosomes  
Nanospheres  
Solid lipid nanoparticles  
Nanostructured lipid carriers  
Polymeric nanoparticles  
Nanogels  
Dendrimers 
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implants require a trained health care provider for implantation and removal, while the 
injectable LARCs are simple to administer and do not need any surgical procedures, 
therefore improving patient compliance. Greater than 40 million women worldwide use 
injectable contraceptives, and their usage is high in developing nations suggesting their 
need[30]. However, in spite of this popularity, rates of discontinuation are also high for 
injectable LARCs due to non-adherence. The currently available injectable contraceptives 
can provide contraception for 1-3 months, thus requiring women to return to their health 
provider four to 12 times a year, which could be challenging in resource-limited settings 
of developing nations and may cause discontinuation and prolonged return to fertility due 
to users’ difficulty in complying with the multiple-injection schedule. Despite their 
effectiveness, presently available LARCs do not address women’s needs or specifications 
which may be due to either poor accessibility or high cost [31-34]. Hence there is a 
necessity for developing affordable sustained release injectable LARCs that can provide 
effective contraception for five months or longer after a single shot. This research was 
focused on developing polyester-based injectable in situ forming depot (ISD) system 
containing levonorgestrel (LNG) for contraceptive effect for five months or longer after 
single shot that helps to reduce unintended pregnancies with high patient compliance and 
low cost and thereby expand contraceptive access and options for women around the 
globe. 
 

Another unmet drug delivery approach is to enhance the permeability of drugs 
across the ocular and blood-brain barriers and sustain the release as well. Although there 
are several potent therapeutics for treating diseases related to eye and brain, their efficacy 
is still hampered by the lack of an effective method of delivery [35, 36]. Typically, drugs 
have short half-lives, do not or hardly cross the ocular or blood-brain barriers, and can 
cause toxicity and side effects at high dose. Nanotechnology shows great promise for 
transporting therapeutics across biological barriers, reducing drug clearance in the path, 
and improving the bioavailability of drugs at the target sites [37-43]. Because of these 
advantages, nanoparticles have become increasingly attractive for delivering drugs to the 
eye and brain. Most widely investigated nanoparticles for drug delivery across biological 
barriers (ocular/BBB) were made of polyesters (poly(D,L-glycolide-co-lactide) [44], 
poly(lactic acid) [45-47], poly(ε-caprolactone)[48, 49]); poly(amino ester)[50], lipid 
[liposomes [51-54], niosomes [55, 56], solid lipid [57, 58]); polyamines [59-61], 
polyethyleneimine; polylysine and dendrimers [62-66]; polysaccharide (chitosan [67-70] 
and hyaluronic acid [70]); polyalkylcyanoacrylate [71-74]; albumin [75-77], and 
inorganic metals [78]. The polyester nanoparticles have shown to achieve sustained drug 
release, but not reported to cross the biological barriers themselves without the need to be 
conjugated or coated with some specific functional moieties [44-49]. Liposomes, solid 
lipid nanoparticles, dendrimers, surfactant-coated PBCA nanoparticles were reported to 
be able to cross the barrier; however, they cannot achieve sustained release and also can 
have toxicity issues [57, 73, 79, 80]. The other nanoparticles have not been reported to be 
able to either sustain drug release or cross the barrier without the need to be conjugated or 
coated with some specific functional moieties. Therefore, to treat chronic eye and brain 
diseases such as diabetic retinopathy (DR) and Alzheimer’s disease (AD), respectively, 
there is unmet need of nanoparticles that can carry drugs across the ocular/blood-brain 
barriers and show sustained release. This work was focused on developing biodegradable  
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polysaccharide-based nanoparticles poly(N-isopropyacrylamide-co-dextran-lactate-2-
hydroxyethyl methacrylate) (Poly(NIPAAm-co-DEXlactateHEMA) nanogels and β -
cyclodextrin-poly(β-amino ester) (CD-p-AE) nanoparticles, for sustained release of drugs 
across ocular and BB barriers, respectively. 
 
 

Dissertation Hypothesis and Specific Aims 
 

The central hypothesis of this research was that different biodegradable polymeric 
biomaterials based on polyesters or polysaccharides can act as effective delivery systems 
for long-acting contraception for five months or longer, and drug delivery across ocular 
and blood-brain barriers to treat chronic diseases such as diabetic retinopathy and 
Alzheimer's disease in the eye and brain, respectively. The central hypothesis of the 
dissertation has been sub-divided into three sub-hypotheses that drive the formulation of 
the specific aims of the research:  
 

Sub-hypothesis 1 was that injectable in situ depot system with balanced 
biodegradable polymers and solvents can be developed as an effective delivery system 
for sustained release of contraceptives such as levonorgestrel for five months or longer 
after single SubQ injection through a 23G needle. This hypothesis was tested in Chapter 
2. The specific aims were:  
 

1. Design and conduct in vitro optimization and characterization of LNG-containing 
ISD formulations.  

2. Evaluate in vivo safety, pharmacokinetics and contraceptive effect of LNG-
containing ISD systems in rats.  

 
Sub-hypothesis 2 was that subconjunctivally injectable nanogels composed of 

DEXlactateHEMA and NIPAAm can cross the ocular barriers for potential delivery of 
drugs such as insulin to treat diabetic retinopathy. This hypothesis was tested in Chapter 
3. The specific aims were:  
 

1. Prepare and characterize poly(NIPAAm-co-DEXlactateHEMA) nanogels.  
2. Assess in vitro cytotoxicity, in vitro and ex vivo permeability of the 

poly(NIPAAm-co-DEXlactateHEMA) nanogels.  
 

Sub-hypothesis 3 was that the nanoparticles composed of β-cyclodextrin and 
poly(β-amino ester) can enhance the solubility and BBB permeability of Hsp90 inhibitors 
such as 17-AAG to treat Alzheimer's disease. This hypothesis was tested in Chapter 3. 
The specific aims were: 
 

1. Prepare and evaluate in vitro drug release of 7-AAG-loaded β-cyclodextrin-
poly(β-amino ester) nanoparticles 

2. Investigate in vivo efficacy of 17-AAG loaded β-cyclodextrin-poly(β-amino ester) 
nanoparticles. 
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Innovation 
 

Polyester-based ISD system for long-acting contraception: Although, polyester-
based ISD systems have been one of the successful dosage forms as evidenced by several 
market products (Eligard©, Atridox©). However, the major limitations associated with 
these long-acting ISD systems are injectability and initial burst. Most of these ISD 
systems are high viscous fluids and use thicker-gauge needle (such as 18G/19G) for 
injection and this limits the patient compliance. Attempts made to lower the viscosity of 
the fluids would usually result in an increase in the initial burst and may also lower the 
ability for long term release. In this research, unique strategies were employed to improve 
the injectability and initial burst profile, which include the use PLGA, PLA with different 
biodegradable properties, and blends of these polyesters; use co-solvents of NMP, TEC, 
benzyl benzoate (BB), and vary the polymer/solvent ratios. These strategies helped to 
improve the injectability while lowering the initial burst. This resulted in a unique 
injectable ISD system containing LNG for long-acting contraception, which can be 
injected through a thinner-gauge needle (21-23G) and has an advantage of low cost, the 
simplicity of manufacture, ease of application to the body, easy to hide, versatility and 
complete biodegradability. The use of approved materials, such as PLA, PLGA, and 
solvents used in this study can lessen the product approval time for future clinical trials. 
This system stands as an attractive substitute to conventional preformed implants and 
microparticles for parenteral sustained release applications. 
 

Polysaccharide-based nanoparticles for drug delivery to the eye and brain 
i) Poly(NIPAAm-co-DEXlactateHEMA) nanogels for ocular drug delivery: 
Biodegradable and hydrophilic nature of the dextran polysaccharide were slightly 
modified by grafting with hydrophobic hydrolytic degradable PLA and then 
copolymerized with thermoresponsive poly-NIPAAm and acrylic acid using emulsion 
photopolymerization to make nanogels that possess both thermoresponsive, 
biodegradable and charge properties. The strategy behind designing poly(NIPAAm-co-
DEXlactateHEMA) based nanogel delivery system is to combine the merits of 
biodegradable nature and nano-sized particulate properties. The degradation property of 
the nanogels matrix can be used to modulate the release of encapsulated drugs for an 
extended period of time and helps to avoid the removal of the empty device after 
treatment. The nanogels will be thermoresponsive and exhibit a phase transition above 
lower critical solution temperature (LCST~32°C) and becomes more hydrophobic 
because of the strong hydrophobic interactions between the Poly-NIPAAm chains. The 
thermoresponsive property of the nanogels makes them more hydrophobic at a 
physiological temperature and this slows down the water penetration into the system and 
thereby lowers the degradation rate and controls the drug release. Meanwhile, the nano-
sized dimensions impart the advantages of nanoparticulate systems such as transporting 
drugs across biological barriers, improving drug stability and bioavailability at the targets 
[18, 37, 81-86]. Additionally, incorporation of carboxylic functional groups through the 
addition of acrylic acid imparts charge onto the nanoparticles which can assist in the 
internalization of the nanoparticles and can be used for further conjugation with a ligand. 
Hence, in an attempt to minimize the constraints and disadvantages of conventional 
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ocular drug delivery systems, a contemporary poly(NIPAAm-co-DEXlactateHEMA) 
nanogels based sustained drug delivery systems could be very promising. 
 

ii) β -cyclodextrin-poly(β-amino ester) (CD-p-AE) nanoparticles for brain 
delivery: This polysaccharide-based biomaterial (β-cyclodextrin (CD)-based 
nanoparticles) was formed by combining poly(β-amino ester), which contains ester bond 
and amine units with acrylated β-CD. CD-p-AE nanoparticles are cross-linked, 
hydrolytically degradable, and catatonically charged, and contains β-CD units. 
Incorporation of β-cyclodextrin (β-CD) into the nanoparticle structure facilitates the 
loading of hydrophobic drugs and thereby expected to improve the solubility of the 
hydrophobic drugs. The biodegradable property of poly(β-amino ester) can be tuned to 
control the release rate. Introducing cationic charge onto the nanoparticles was 
considered as an effective approach to enhance the permeability across BBB [87, 88]. 
 
 

Dissertation Outline 
 

Different types of biodegradable polymeric biomaterials based on polyesters or 
polysaccharides were developed for loading and release of drugs to meet the unmet 
medical needs. Basic preliminary preclinical proof of concept studies were also 
conducted to investigate the potential applicability of the developed biomaterials in their 
designed applications. 
 

Chapter 2 tested the sub-hypothesis 1 that injectable in situ depot system with 
balanced biodegradable polymers and solvents can be developed as an effective delivery 
system for sustained release of contraceptives such as levonorgestrel for five months or 
longer after single SubQ injection through a 23G needle. The background section of this 
chapters covers a comprehensive literature review on injectable long-acting 
contraceptives. A series of ISD formulations were designed by employing unique 
strategies which include the use PLGA, PLA with different biodegradable properties, and 
blends of these polyesters, use solvent mixtures of NMP, TEC, BB, and vary the 
polymer/solvent ratios, and various drug loadings. The formulations are evaluated for 
viscosity, initial burst, in vitro and in vivo long-term release. The effect of different 
formulation parameters such as polymer concentration, polymer inherent viscosity, drug 
loading and solvent combination on the viscosity, injectability, in vitro release, in vivo 
initial burst of drug from ISD systems was evaluated. By tailoring the formulations 
parameters, ISD system with suitable injectability and initial burst was obtained. Future 
directions evolving from this work were suggested at the end of the section. 
 

Chapter 3 tested the objective that the polysaccharide-based nanoparticles with 
the tailored balance of hydrophilicity/hydrophobicity, and charge content can be used to 
assist the drugs to cross biological barriers such as ocular and blood-brain barriers and 
sustain the release as well. Depending on the need of the therapeutic application, two 
types of polysaccharide-based nanoparticles were investigated for their drug delivery 
feasibility which includes: (a) poly(NIPAAm-co-DEXlactateHEMA) nanogels for the 
potential delivery of hydrophilic peptide (insulin) across ocular barriers for the treatment 
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of Diabetic Retinopathy. (b) β -cyclodextrin-poly(β-amino ester) nanoparticles as 
potential drug carriers to enhance the solubility and BBB permeability of 17-AAG to 
treat Alzheimer’s disease. Future directions pertaining to this work were recommended at 
the end of the chapter. 
 

Chapter 4 describes the conclusions of the thesis, identifying the end results of 
this work in relation to the overall goal of the thesis. 
 

In the Appendix (Tables A-1 through A-5, and Figures A-1 through A-5), 
complete details of the study testing the impact of ionizable modifiers 2-
(Dimethylamino)ethyl methacrylate (DMAEMA) on mechanical, thermal and hydration 
properties of the Poly(HEMA)-based hydrogels was given. The addition of ionic species 
such as DMAEMA at low mol% (5 mol%) into poly(HEMA) hydrogels has significantly 
altered the mechanical, thermal and hydration properties of the hydrogels. Hydration 
properties can be altered by the hydrophobicity/ hydrophilicity & hydrogen bond forming 
ability of the added cationic modifiers. 
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CHAPTER 2.    INJECTABLE IN SITU FORMING DEPOT SYSTEMS FOR 
LONG-ACTING CONTRACEPTION* 

 
 

Background 
 
 
Long-acting Reversible Contraceptives 
 

Birth control is still a major concern worldwide. The most common approach to 
controlling fertility to prevent unintended pregnancy is oral administration of birth 
control pills. However, this method suffers from limitations such as daily ingestion of 
pills, needs continuous user attention, and daily variations in blood concentrations of the 
drug leading to unwanted side effects [89]. Alternatively, a long-term, systemic, 
controlled delivery of contraceptive drugs is beneficial, and is gaining attention in 
preventing pregnancy, as well as in postmenopausal therapy because of the advantages 
such as: convenient and don't require daily action, provides continuity of drug supply, 
avoids the variability in absorption and metabolism associated with oral therapy, 
minimize the fluctuations in blood concentration thereby lowering the side effects, and 
cost effective on overall usage [90, 91]. Further, there is less chance of over/under-dosing 
with the sustained release dosage form regimen, and patient compliance with a multi-day, 
-week, or - month sustained release regimen is superior to frequent oral dosing. 
 

Long-acting reversible contraceptives (LARCs) are birth control methods that 
provide contraception over a prolonged period (months to years) without the need of user 
activity and are proven to be most effective in lowering the rates of unintended 
pregnancies [92]. There is a wide gap in terms of therapeutic duration among the 
currently available LARCs on the market. LARCs based on preformed implants that are 
available on the market such as Implanon®, Nexplanaon®, Norplant®, Implanon® and 
Sino-Implant® offer extended and effective contraception for up to 3-7 years. However, 
such long duration is undesirable for some women, and these preformed implants are not  
 
 
-------------------- 
* Parts of this chapter were adapted or reprinted with permission from                            
(i) “Pharmaceutical research. Long-acting injectable hormonal dosage forms for 
contraception. 32(7). 2015. p. 2180-2191. Wu, L., Janagam, D. R., Mandrell, T.D., 
Johnson, J.R., Lowe, T.L. © Springer Science + Business Media New York 2015. With 
permission of Springer.” (ii) “Development and validation of sensitive LC/MS/MS 
method for quantitative bioanalysis of levonorgestrel in rat plasma and application to 
pharmacokinetics study. 1003. Ananthula, S., Janagam, D. R., Jamalapuram, S., Johnson, 
J. R., Mandrell, T. D., Lowe, T. L. Journal of Chromatography B. p. 47-53. © 2015 
Elsevier B.V., with permission from Elsevier.” (iii) “Janagam, D. R., Wang, L., 
Ananthula, S., Johnson, J. R., Lowe, T. L. (2016). An accelerated release study to 
evaluate long-acting contraceptive levonorgestrel-containing in situ forming depot 
systems. Pharmaceutics, 8(3), 28. © 2016 by the authors; licensee MDPI.”  
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biodegradable, so they need to be removed by an experienced clinician at the end of the 
treatment [93]. On the other hand, the injectable LARCs (Cyclofem®, Lunelle® and 
Depo-Provera®), which are aqueous suspensions of drug microcrystals, can provide 
contraception for 1-3 months and this short term contraception can increase flexibility to 
women [94]. Injectable LARCs are increasingly used for preventing unintended 
pregnancies as they are reversible, can be used on-demand, easy to use and do not require 
surgical implantation and removal. They have shown 96% effectiveness with a typical 
use [94]. More than 40 million women worldwide use injectable contraceptives [30]. 
However, because of the short reinjection intervals, the current choice of injectable 
contraceptives require women to return to their health-care provider for at least four to 12 
times a year [31]. This frequent clinic visits could result in discontinuation due to users’ 
difficulty in complying with the multiple injection schedules, especially in resource-
limited areas in developing nations. In spite of their high popularity, typical use brings 
about much lower adequacy. In substantial part, this difference reflects challenges in 
adherence to the preventive regimen and low rates for long-term continuation. 
Additionally, presently available long-acting contraceptives do not address women’s 
needs or specifications which may be due to either low compliance, poor accessibility or 
high cost [31-34]. Therefore, there is still an unmet need for injectable contraceptives 
which can provide contraception for five months and up to one year after a single 
injection so that better adherence and continuation rates can be achieved [31, 34]. 
Including this new alternative into the current contraceptive choices will offer great 
flexibility, expand contraceptive prevalence, and decrease the burden of patient load on 
small clinical facilities and community-based programs [31]. 
 
 
Injectable Long-acting Reversible Contraceptives 
 

In recognition of the potential advantages, significant efforts have been made in 
the past decades to develop injectable LARC dosage forms. Among those, the most 
common injectable dosage forms that were explored to achieve control release of 
contraceptive steroids are drug microcrystal suspensions, drug-loaded microsphere 
suspensions, and in situ forming depot (ISD) systems [95-98]. Each dosage form has its 
advantages and limitations which are summarized in Figure 2-1. However, only drug 
microcrystal suspension based dosage forms (Depo-Provera® and Depo-subQ Provera 
104®) are commercially available on the market for 3-month contraceptive protection. So 
far no microsphere or ISD based product has been approved for contraception.  
 

Drug microcrystals have advantages of low cost due to fewer process steps and 
materials involved, and using water as an administration vehicle, but needs reconstitution 
and are difficult to achieve sustained release of APIs for more than three months. 
Microspheres have the advantages of using water as a vehicle, and capability of achieving 
more than the three-month release of APIs due to the retarding effect of the polymeric 
matrix [99-109]. However, more often the microencapsulation processes involve the use 
of high temperature and organic solvents which may affect the stability of the 
therapeutics, and some toxic organic solvents might be trapped inside. Manufacturing can 
be difficult to produce on a large scale and is generally costly for well-defined  
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Long-acting Injectable Hormonal Contraceptive Dosage Froms

Steroidal Progestogens

• I Generation: progesterone, norethisterone, 
ethynodiol diacetate, norethynodrel, lynestrenol, 
medroxyprogesteroneacetate, and megestrol acetate 

• II Generation: levonorgestrel and norgestrel
• III Generation: desogestrel, gestodene, norgestimate, 

and etonorgestrel
• IV Generation: drospirenone, and dienogest
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Advantages

DisadvantagesDisadvantages
Commercial 
availability

Drug 
Microcrystal 
Suspensions

Drug-loaded 
Microsphere
Suspensions

In situ Forming 
Depot Systems

Low cost and 
simple to 
manufacture

Water as 
vehicle

Difficult to achieve sustained 
release for more than 3 months

Commercially available-
‘Depo Provera® 
Contraceptive Injection’ and 
‘depo-subQ provera 104®’ for 
3 month contraception

Low cost and 
relatively simple to 
manufacture

Water as 
vehicle

High cost to 
manufacture

Microsphere 
migration can 
be a concern

Not available 
commercially

Residues of organic 
solvents used in 
fabrication could be toxic

Not available 
commercially

Organic solvents 
as vehicles

Formed depots in vivo can 
be irregular in dimensions

Initial 
burst

Initial 
burst

Can achieve sustained release 
for more than 3 months

Need 
reconstitution

Broad 
particle size 
distribution

Need 
reconstitution

Can achieve sustained release 
for more than 3 months

No need 
reconstitution

 
 
Figure 2-1. Flow chart of the advantages, disadvantages, and commercial 
availability of injectable LARCs. 
 
Notes: Drug microcrystal suspensions, drug-loaded microsphere suspensions and in situ 
forming depot systems (ISD) are the widely studied injectable hormonal long-acting 
reversible contraceptive (LARC) dosage forms.  
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microspheres. Their storage often presents problems, and also need to be reconstituted at 
the time of injection. Because of the particle nature, microspheres fail to form a preferred 
continuous and nearly homogeneous, monolithic drug depot matrix. The possibility of 
microsphere migration from the site of injection might also be a concern [96]. In situ 
forming depots have advantages of simplicity of manufacture, no need for reconstitution, 
and versatility. However, they have disadvantages of using organic solvents as vehicles, 
forming depots in vivo with non-precise shapes and sizes, and requiring drugs with broad 
therapeutic windows [97, 110]. 
 

Drug Microcrystal Suspension 
 

The components in a drug microcrystal suspension dosage form are only API 
microcrystals and vehicle for injection (water). Thus, this dosage form is simple, easy and 
low cost to be manufactured. The microcrystal suspension dosage form can achieve 
longer therapeutic effects than the API alone (non-crystal form) due to the slow 
dissolution of the API from the drug crystals into the body fluid. When prodrugs are used 
to form the drug microcrystals, the combination of dissolution of the prodrugs from the 
crystals and subsequent hydrolysis/cleavage of the prodrugs into active entities controls 
the release of the API into the body fluid. Considerable efforts have been made to 
develop injectable suspensions of contraceptive steroidal progestogen microcrystals 
containing either the active drug or prodrug obtained via esterification of the hydroxyl 
groups of the active drug. Depending on the contraceptive API types and microcrystal 
sizes, up to three-month contraception can be achieved [111, 112]. For examples, 
medroxyprogesterone acetate, the most well-known steroid drug, has been formulated 
into injectable microcrystals for three-month contraceptive protection. It has been 
marketed as Depo-Provera® and Depo-subQ Provera 104® administrated by 
intramuscular and subcutaneous injections, respectively. Norethisterone enanthate, an 
ester of norethisterone (NET), has been developed as injectable microcrystals for two-
month contraception [112, 113]. Levonorgestrel has been formulated into prodrugs 
levonorgestrel cyclobutylcarboxylate and levonorgestrel butanoate (LNG-B) which have 
lower water solubility than LNG and have been studied in rats, rhesus and cynomolgus 
monkeys, and women [98]. Both the prodrugs could suppress ovulation for 5-6 months in 
women at a single dose of 50 mg in the form of microcrystal suspensions. LNG-B 
demonstrated better performance in terms of overall toxicity, pharmacokinetic profiles 
and pharmacodynamics effects in phase I clinical trials [98, 114]. Currently, several 
companies are developing LNG-B crystal suspensions for long-acting contraceptives 
[115, 116]. For example, CONRAD is trying to formulate LNG-B for preclinical and 
clinical studies aiming at contraception for 4 months after a single injection [116]. 
 

Polymer-based Drug Delivery Systems 
 

As discussed in the introduction (chapter 1), a significant emphasis was made in 
the recent years on innovation for improving the delivery of a drug by designing various 
polymer-based drug delivery systems. Polyester-based drug delivery systems have been 
extensively investigated for the long-term controlled delivery of contraceptive steroids 
[31]. Polyesters are the earliest and most widely investigated class of synthetic 
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biodegradable polymers for drug delivery applications and comprehensively reviewed 
[12-17, 117]. These are thermoplastic polymers with hydrolytically sensitive aliphatic 
ester linkages in the backbone. Poly(ε-caprolactone)(PCL) , poly(lactic acid)(PLA), 
poly(glycolic acid)(PGA) and their copolymers poly(lactic acid-co-glycolic acid)(PLGA) 
are some of the well-defined biomaterials with regards to design and performance [7]. 
Because of their adjustable physicochemical properties such as swelling and 
biodegradation kinetics, molecular interaction potential with embedded therapeutics, they 
offered several possibilities in the design of new drug delivery systems [118-121]. The 
common synthetic scheme to make poly(esters) is by ring-opening polymerization from 
the corresponding cyclic lactone monomers (shown in Figure 2-2). Polyesters 
predominantly undergo bulk erosion where the polymeric matrices degrade over the 
entire cross-section and show non-linear erosion kinetics [122]. Several reviews have 
been published on their degradation mechanisms [10, 122-127]. The major advantage of 
biodegradable polyester based drug delivery systems is that they provide a continuous 
delivery of the drug via diffusion or by polymer erosion to surrounding tissues, 
minimizing the variations in blood concentrations of the drug and offers maximum  
therapeutic efficiency at a minimum drug dose [128]. Most extensively studied injectable 
polymeric systems for long-term release of contraceptive include i) Polymer-based drug 
microspheres and ii) Injectable in situ forming depot (ISD) systems. 
 

Drug microsphere suspensions 
 

Microspheres made of polymers have the advantage of using water as a vehicle to 
form suspensions for long term (over months) sustained release of different drugs [129-
134]. Although no microsphere-based product was approved for contraception, long-
acting leuprolide injections are currently sold in the forms of both microspheres 
(LUPRON DEPOT®). Starting in the late 70s, injectable microsphere contraceptive 
systems have been developed for long-term contraception, pioneered by Beck and co-
workers using PLA (MW 90,000 Da), and/or PLGA (96:4, 92:8, 87:13 and 74:26; MW 
about 40,000 Da) to encapsulate NET via oil-in-water (o/w) emulsion/solvent 
evaporation process [135]. NET microcrystals were successfully encapsulated into PLA 
and PLGA microspheres by o/w emulsion and solvent evaporation technique. Afterwards, 
PLGA became the most popular polymer for fabricating microspheres to encapsulate 
contraceptive APIs including LNG, gestodene and ethinyl estradiol using o/w or w/o/w 
emulsion/solvent evaporation technique [99-102, 104, 106, 136, 137]. PCL is a second 
popular polymer for fabricating microspheres to encapsulate contraceptive APIs 
including LNG, ethinylestradiol, norgestrel, progesterone and β-estradiol using o/w or 
w/o/w emulsion/solvent evaporation technique [138-143]. The quality of microspheres 
depended on emulsion types, solvents, temperature, and surfactants/stabilizers. Through 
extensive investigation over past several decades, it has been acknowledged that many 
factors of microspheres such as their chemical and physical structure (composition, 
chirality and crosslinking density), drug loading and distribution, physical property (size, 
shape, size distribution, and molecular weight), and fabrication and sterilization processes 
significantly affects drug release profiles including release rate, duration of action and 
initial burst, and microsphere overall performance in vitro, in animals, and in humans 
[99, 102, 106, 135, 136, 141, 144-146].  
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Glycolide Poly(glycolic acid)

Lactide Poly(lactic acid)

Glycolide Lactide Poly(lactic-co-glycolic acid)

Caprolactone Poly(caprolactone)

+

 
 
Figure 2-2. Ring opening polymerization of selected cyclic lactones to give the 
corresponding polyester polymers. 
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The composition of the microspheres controls the biodegradation rate of the 
microspheres, and in turn, affects the contraceptive API release profiles from the 
microspheres. For example, as the hydrolytic degradation rate of the polymers PGA, PLA 
and PCL increased in the order of PGA > PLA > > PCL, the microspheres made of the 
triblock polymers consisting these three polymer blocks released LNG at a rate increasing 
with increasing the amount of the three polymer blocks in the order of PGA > PLA > > 
PCL [147]. PCL possessed a good permeability for steroidal drugs but undergoes slow 
biodegradation, resulting in the release of LNG from the PCL matrix to be controlled by 
diffusion [147-149]. On the other hand, PLA and PGA had a lower permeability to 
steroidal drugs but undergo homogeneous erosion, resulting in the release of LNG from 
the PCL matrix to be controlled mainly by erosion [147, 150]. The chirality of polymers, 
crosslinking density and drug loading of microspheres also play important roles in 
controlling contraceptive API release profiles. It was reported that microspheres 
composed of D, L-lactide caused more uniform release rate and less initial burst for 
progesterone and β-estradiol than those composed of L-lactide [141]. Microspheres with 
a higher amount of unencapsulated drug present on the surface would show higher initial 
burst [99, 136, 138]. When fabricated microspheres were not uniform, initial burst release 
was observed in the in vitro, in vivo and clinical evaluations of the microspheres for 
contraception [100, 101, 106, 140, 143, 151, 152]. Even though this initial burst release 
might be not very harmful to the users, it might cause API concentration beyond the 
therapeutic window and reduce the amount of API available for contraception and the 
duration of release [153-155]. Among the methods studied for minimizing the initial 
burst release, coating or core/shell structure is one of the most straightforward strategies 
[156, 157]. This additional layer of the shell could be created by a dipping, mixing or 
emulsion process [132]. It was reported that simply modifying the prototype NET-loaded 
PLGA microspheres by adding a polymer/chloroform solution into the suspension of the 
prototype microspheres in alcohol aqueous solution significantly reduced the initial burst 
and extended the release duration of NET for 40-50 days longer than the prototype 
microspheres with a similar size range and NET loading [158]. The reduced initial burst 
and extended release duration of NET from the modified microspheres was because the 
polymer coating layer added an additional barrier for the drug to diffuse/penetrate 
through. 
 

Microsphere size is effective means for modulating contraceptive API release 
kinetics [99, 135, 146] and as well as microsphere injectability [99]. Primarily, the size of 
microspheres determines the surface area to volume ratio, and thus directs the extent of 
surface available for releasing the contraceptive APIs through diffusion. Smaller 
microspheres have higher surface area to volume ratio and less diffusion path length for 
the APIs, and subsequently, result in quicker API release rate and shorter release 
duration. This effect was demonstrated in a study where the release rate of NET and 
progesterone increased with decreased size of PLGA [106] and chitosan [159] 
microspheres, respectively. The size of microspheres inversely affects the efficiency of 
the injectability: the bigger the size is, the more difficult the microspheres can be injected 
through clinically used needles. The optimal size range for yield and efficiency of 
injection is between 20 and 90 μm [99]. The mean size of microspheres can be controlled 
by the concentration of polymers used for fabricating the microspheres. The higher the 
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polymer concentration is, the higher the viscosity of the organic phase in emulsion 
droplets is, and thus the bigger the mean size is and the more contraceptive APIs are 
encapsulated into the microspheres [138, 142]. The molecular weight (MW) of the 
polymers used for fabricating microspheres is another important factor affecting 
contraceptive API release. The higher is the MW, the slower the polymers degrade and 
the longer the APIs are released [147]. For example, microspheres composed of PLGA 
with lower MW (12,000 Da) led to 35 day release of ethinyl estradiol, while PLGA with 
higher MW (70,000 Da) resulted in 105 day release of ethinyl estradiol [101, 102].  
 

Female baboons, rats, rabbits and mice have been used as animal models to 
evaluate serum API levels and contraceptive effect of microspheres after single 
intramuscular injection. Beck and co-workers evaluated their NET-loaded microspheres 
on female baboons. Their PLA microspheres (10 – 240 μm) could sustain the release of 
NET in female baboons for about 180 days, and the ovulation was inhibited through the 
6-month treatment period for all three dose levels tested: 75, 50, 25 mg of NET 
equivalent [135]. In vivo evaluation of their NET-loaded PLGA microspheres on baboons 
showed that the NET release duration was dependent on the particle size and the LA to 
GA ratios of PLGA polymers, and the release of NET presented a two-phase pattern 
[106]. Beck and co-workers also designed LNG–loaded PLGA(87:13) microspheres and 
found that the microspheres released LNG in baboons for up to 6 months with 3-6 month 
ovarian function suppression, depending on the dose level [99]. A biphasic release pattern 
was seen in LNG release from the microspheres in a similar way as the NET-loaded 
microsphere systems. In rat studies, LNG- or LNG and ethinylestradiol-loaded PLGA 
and PCL microspheres were found to maintain constant LNG blood level at 0.2-2 ng/mL 
for 15 weeks to 5 months [100, 101, 143]. In rabbit studies, it was found that 
progesterone was maintained a blood level of 1-2 ng/mL for about 5 months [159], 5 
months [160] and 20 days [161] by microspheres made of chitosan, casein and serum 
albumin, respectively [159, 160]; and LNG was maintained a blood level of 0.1-0.5 
ng/mL for 28 days by microspheres made of casein [104]. In mouse study, LNG- or LNG 
and estradiol-loaded poly(ethylene glycol-b-poly(D,L-lactide)) [162], gelatin [163] or 
poly(3-hydroxy butyrate) [164] microspheres showed 6 month, 50 day, and 1-3 month 
contraceptive effect, respectively. Phases I, II and II clinical trials have been conducted 
for the NET-loaded PLA and PLGA microspheres [107-109, 152, 165]. The phase I 
clinical trials [165] of these NET-loaded PLA microspheres (size range: 60-240 μm, or 
90-212 μm) in 63 women at three centers showed that the release of NET lasted for 6 
months after one intramuscular injection, while the serum levels of NET varied in 
proportion to the dose injected and the suppression of ovarian function was also highly 
dose dependent. Suppression of ovulation for 6 months could be achieved for doses 
ranging from 1.33 to 3.45 mg of NET/kg for NET-loaded PLA microspheres with size 
60-240 μm [106]. In order to avoid the build-up of PLA at the injection sites due to its 
slow degradation, Beck and coworkers designed the second generation NET 
microspheres using PLGA [152]. NET-loaded PLGA microspheres (63-90 μm or 90-106 
μm) fabricated from PLGA with 86%-88% LA and 14%-12% GA were clinically tested 
in women. Microspheres with sizes of 63-90 μm could suppress ovarian function for 3-4 
months at dose of 75 mg or 100 mg of NET, while the 90-106 μm microspheres 
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suppressed ovarian cyclicity for an average of 22 weeks with the shortest one of 14 
weeks and longest one of 26 weeks at similar dose levels [166, 167]. 
 

It would be reasonable to assume that well-defined polyester microspheres with 
core/shell structures and narrow particle size distribution could be fabricated to 
encapsulate the contraceptive APIs for reduced initial burst release and extended 
contraception period, although no attempts have been made in this direction.  
 

Injectable in situ forming depot systems 
 

The ability to inject a combination of drug and a biodegradable polymer in liquid 
form to a localized site and have the biodegradable polymer form a depot matrix 
entrapping the drug has a number of advantages. Some of these advantages include 100% 
loading efficiency, easy administration, few processing steps and relatively simple 
manufacturing process, potential for low cost, no need for reconstitution, prolonged 
delivery, completely biodegradable, and no need for surgical removal at the end of the 
treatment [168-172]. Because of these advantages, ISD systems have emerged as an 
attractive alternative to the preformed implants and microparticles in the field of 
parenteral sustained release formulations [170]. Other common terms that are used in 
literature for defining these systems include in situ forming implants or in situ gelling 
systems.  
 

ISD formulations are liquids before injection and transform in the body to a gel or 
solid depot at the site of injection. Various mechanisms can be used to trigger this 
solidification process which includes phase separation induced by pH [173-175], solvent 
exchange [176, 177] or temperature [178], and physical or chemical crosslinking [179], 
in situ solidifying organogels [180]. However, the phase separation based ISD systems 
involving solvent exchange have attracted considerable attention from the pharmaceutical 
industry because of its advantages compared to its counterparts, as they do not depend on 
critical temperature (for temperature-sensitive ISD systems), change in pH (for pH-
sensitive ISD systems), presence of ions (for charge-sensitive ISD systems) for the phase 
separation to form a depot [181]. Moreover, commercially available raw materials can be 
used for the development of these formulations (30, 99,100).  
 

Solvent exchange based ISD formulation is a solution or suspension containing 
drug and biodegradable polymers dissolved or dispersed in pharmaceutically acceptable 
water-miscible organic solvents, respectively [31, 170, 171, 182-184]. Upon injection 
into the tissue, this ISD system forms a solid depot of polymeric matrix at the injection 
site because of the phase separation (in situ polymer precipitation) by solvent exchange, 
as the water-miscible organic solvent diffuses into the surrounding aqueous medium 
while the aqueous body fluid penetrates into the organic phase [170, 181, 184, 185]. The 
drug entrapped in the depot is then slowly released out into the surrounding body fluid 
due to the degradation of the polymers and diffusion of the drug, goes into the systemic 
circulation and then reaches target sites. The biodegradable polymers will eventually 
completely degrade at the injection site over a period, and be cleared out from the body. 
Because of the complete biodegradation, the ISD system does not need any surgical 
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removal at the end of the treatment. This phenomenon of phase transition is explained by 
several other terms in the literature which include: “solvent induced phase inversion 
[181], in situ polymer precipitation [186, 187], solvent exchange [188], solvent/non-
solvent exchange [189], solvent removal [190], solvent-removal precipitation [186], non-
solvent induced phase separation [191], and liquid–liquid phase separation [192]”. 
Table 2-1 lists out the common solvents/plasticizers used in ISD formulations. The ISD 
technology has been developed for safe and efficient delivery of drugs in vivo for a 
various period of weeks to months [31, 170, 183, 193], to treat cancer, infections, 
hormonal disorders, pain, immunomodulation, neurological disorders and metabolic 
disorders [170, 194]. Several ISD systems are currently available as marketed products 
such as Eligard® and Atridox® [170]. However, as mentioned earlier no ISD product is 
available for contraception. 
 

Dunn et al. pioneered this concept in 1990 by employing biodegradable polyesters 
such as PLGA and PLA in water-miscible organic solvents such as NMP and DMSO 
(95,99,101). The concept of in situ depot formation was soon adopted to develop long-
acting injectable contraceptives (102,103). Dr. Shukla’s and Dr. Johnson’s group from 
the University of Tennessee Health Science Center (UTHSC) has been actively involved 
in the development of ISD formulations for sustained release of contraceptive APIs such 
as LNG and ethinylestradiol for long–acting contraception [195-197]. 
 

The studies were started with Precirol ATO 5 as a depot matrix, Labrafil 1944 CS 
as a solvent/plasticizer and LNG as an API for contraceptive [198]. The injectability of 
such systems was strongly dependent on the Precirol concentration and the size of the 
needle used. Lower maximum force for injection was observed for lower Precirol 
concentrations and larger gauge needles. The same trend was observed for the ISD 
systems developed from PLGA/PLA [199]. In vitro release kinetics demonstrated that the 
release rate of LNG from the resulting depots was affected by the Precirol concentrations 
used in the formulation and the LNG crystal sizes [198]. Moreover, zero order release of 
LNG was achieved up to 30 days in vitro for formulations containing 10 wt% Precirol, 
and 2 wt% LNG with drug crystal size of 6 μm [198]. In vivo investigation demonstrated 
that the durations of suppression on rat estrous cycles after single subcutaneous (SubQ) 
injection were significantly influenced by the LNG loading in the 10 wt% Precirol 
formulation with 20, 27 and 41 consecutive days for rats receiving 1 mL of the 
formulations containing 0.25, 0.50 and 2.00 wt% LNG loading, respectively [198]. These 
short contraception durations might be attributed to the fast degradation of the formed 
depots which disappeared in the injection sites around 35 to 45 days post-injection [198]. 
 

In order to achieve longer contraception protection after a single injection, 
polyesters such as PLGA (various ratios of LA to GA) and PLA with a different intrinsic 
viscosity (molecular weight) were evaluated as the depot matrix [199, 200]. The effects 
of varying drug loading, polymer concentration, polymer inherent viscosity and 
copolymer composition on in vitro release of LNG were studied. Increasing the LNG 
loading from 1 to 8% w/w increased the cumulative amount of LNG released in vitro on 
day 30 from 1.195 to 3.4045 mg per gram of formulation made from PLGA50:50. The 
cumulative amount of LNG released on day 30 decreased from 2.06 to 0.628 mg per 
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Table 2-1. Common solvents (plasticizers) and their key features. 
 
Solvent Structure Viscosity (cP @ 

25°C) 
Water miscibility 

(mg/mL) 
N- methyl-2-
pyrrolidone (NMP) N

CH3

O

 

1.65 [157] 1000 [201] 

Demthyl sulfoxide 
(DMSO) S

CH3 CH3

O

 

1.99 [155] miscible [202] 

Benzyl benzoate 
(BB) 

 

8.292 [203] practically 
insoluble [201] 

Triethylcitrate 
(TEC) 

 

35.2 [156] 57 [175] 

Benzyl alcohol 
(BA) 

OH

 

5.05 [204] 35 [163] 

Glycofurol 

 

8–18 [160] miscible [202] 

Triacetin 

 

17 [164] 64 [201] 

Ethyl Acetate (EA) 

CH3 CH3

O

 

0.45 [169] 82.3 [205] 
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gram of formulation when PLGA50:50 concentration increased from 20 to 80% w/w. 
Increasing the PLGA50:50 inherent viscosity from 0.15 to 1.07 dL·g-1 decreased the 
cumulative amount of drug released on day 30 from 14.17 to 0.935 mg per gram of 
formulation. In vitro drug release rate was found to decrease with increasing proportion 
of lactide in lactide-glycolide copolymers. Drug release from the system was due to a 
combination of diffusion and polymer degradation. ISD systems prepared from 
PLGA50:50/NMP (33:67 w/w) with different LNG contents were further investigated in 
vivo on Sprague-Dawley albino female rats for contraceptive effect after SubQ injection. 
The duration of in vivo activity of the LNG released from the in situ formed depots was 
evaluated by monitoring the estrous cycles of the female rats. The sizes of the in situ 
formed depots decreased with time, and the depots disappeared completely from the 
injection site between day 45 and 70 after injection. Formulations containing 2 and 4% 
w/w LNG suppressed the rat normal estrous cycles for 65.5 and 103.5± 8.5 days at a dose 
level of 1 ml·kg-1, respectively [199, 200]. The formulation containing 2 wt% of LNG in 
32.67 wt% PLGA (inherent viscosity of 0.59) and 65.34 w% NMP was further evaluated 
on Japanese quails with Depo-Provera® as a control [206]. The dose level was 40 mg API 
equivalent per kg and the injection site was the left pectoral musculature. Quails treated 
with the LNG-containing ISD system stopped laying eggs for 67 ± 4.1 days, while 
resume ovarian recrudescence (evidenced by egg laying) on day 59 after treatment (one 
bird; range, 59-70 days). For the birds treated with Depo-Provera®, two of seven birds 
stopped egg-laying for 19 and 49 days, respectively, while for the other five birds, the 
average duration of not egg-laying was 5.8 ± 2.3 days (range, 2- 8 days). The 
contraceptive duration observed on these quail was consistent with that observed in rats 
for the same formulation [199, 206]. The formulation containing 4 wt% LNG was further 
evaluated at the dose level of 40 mg/kg body weight (equivalent to 1 mL·kg-1 body 
weight) on Feline Queens via subcutaneous injection [207]. Blood and fecal samples 
were collected weekly for the first 5 weeks to build the baselines. Initial treatment 
injections were given at the beginning of week 6, and all queens received a second 
injection with the same dosage at the beginning of week 16 (68 days after initial 
treatment). The results demonstrated that the follicular activity and estrogen secretion in 
the domestic cats could be suppressed for at least 36 weeks after the two injections of the 
formulation [207]. 
 

Based on the above in vivo evaluations, cottontop tamarins, a small new world 
nonhuman primate, were used to further evaluate the contraceptive effect of the PLGA-
based formulations [208]. The formulation was slightly modified to contain 24 wt% 
PLGA50:50 as the depot matrix and 72 wt% NMP/triethyl citrate (TEC) (90:10, v:v) as 
the solvent, and denoted as F1. The F1 formulation was subcutaneously injected into 
cottontop tamarins at an LNG dose level of 45.53 ± 2.52 mg/kg. The normal ovarian 
cycle of the cottontop tamarin was suppressed for 102.0±20.9 days indicated by the fecal 
PdG and E1C concentrations. In order to extend the suppression duration, the type and 
intrinsic viscosity of the polyester used in the formulation were adjusted to increase the 
viscosity of the formulation and slow the degradation of the in situ formed depots. 
Another two formulations were obtained: formulation F2 containing 4 wt% LNG, 8 wt% 
PLGA50:50, 8wt% PLGA85:15, 8wt% PLA and 72wt% NMP/TEC(90:10); and 
formulation F3 contained 4 wt% LNG, 4.8 wt% PLGA50:50, 19.2 wt% PLA and 72wt% 



 

22 

NMP/TEC (9:1). After subcutaneously injected at LNG dose levels of 46.60 ± 3.30 (for 
F2) and 48.08 ±3.39 (for F3) mg/kg, the F2 and F3 formulations suppressed the normal 
ovarian cycles of cottontop tamarins for 120.4 ±46.0 days and 134.8 ±32.8 days, 
respectively. With the further modification of the formulation F3 including increasing 
LNG content from 4 wt% to 6 wt%, reducing the weight percentage of the mixture 
solvent NMP/TEC (9:1) from 72 wt% to 70 wt%, a formulation F4 was obtained. After 
subcutaneously injected at the LNG dose levels of 71.89 ±8.90 mg/kg, the F4 formulation 
extended the suppression of the normal ovarian cycles of cottontop tamarins to 198.8 
±70.3 days. However, both the F3 and F4 formulations did show some initial burst. The 
initial burst release could reduce the API available for the contraceptive, in other words, 
the release duration could be longer if the initial burst release could be eliminated. 
Additionally, the polymeric solution formulations had problems with relatively broad 
duration of the contraception. It has been documented that the initial burst release and/or 
duration of the API release could be adjusted by varying the polymer/solvent ratio, using 
a blend of polymers with different end groups, molecular weight, and degradation 
properties, and adjusting the hydrophobicity/hydrophilicity of the solvents [194, 209]. It 
has been reported that zero-order release of LNG was achieved in vitro from ISD systems 
containing PLA (MW 11,000) and a mixture of benzyl benzoate and benzyl alcohol for 3 
months with almost no initial burst and less than 40% of loaded LNG released out after 3 
months [210]. Moreover, in order to minimize the initial burst release, the API could also 
be encapsulated into microparticles and then dispersed/suspended in the ISD systems 
[209, 211]. It has been demonstrated that by encapsulating naltrexone base in PLA 
microparticles prepared via melting/fusion/grounding process, the in situ forming 
PLGA/NMP depot systems dispersed with these naltrexone/PLA microparticles showed 
significantly reduced initial burst compared with the PLGA/NMP systems loaded with 
naltrexone base [209]. 
 
 
Summary 
 

Overall, the previous efforts to develop polymer-based injectable LARCs have 
generated a lot of positive data supporting the feasibility of long-acting injectable 
contraceptives for more than 3 months’ contraceptive protection after one intramuscular 
or subcutaneous injection. However, not many reached the market, and there are not 
many efforts to continue such investigations with a targeting goal of commercializing the 
products for contraception. Therefore, there is still an unmet need for affordable 
injectable LARCs which can provide contraception for more than three months to one 
year after a single shot so that better adherence and continuation rates can be achieved. 
 
 

Hypothesis and Specific Aims 
 

The long-term goal of the project in chapter 2 was to develop injectable dosage 
forms for sustained release of contraceptives for prevention of unintended pregnancies 
for six months or longer after a single injection. The immediate objective was to design 
and develop LNG containing injectable ISD system for contraceptive effect for five 
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months after a single injection. The ISD formulation contains the drug LNG, 
biodegradable polyesters, and a vehicle for injection. LNG is a synthetic levorotatory 
hormone that is widely used as a contraceptive to prevent unwanted pregnancy in females 
[212-216], also used as an API for the development of long-acting contraceptives Sino-
implant® and Jadelle [34, 217]. It has very limited solubility in water (2.05 mg·L-1) which 
offers to ensure prolonged release. It is superior to medroxyprogesterone regarding bone 
loss [1, 2]. The design and development plan for ISD systems is given in Figure 2-3. 
 

The hypothesis of the project in chapter 1, which was the sub-hypothesis 1 of the 
overall hypothesis of the dissertation, was that injectable in situ depot system with 
balanced biodegradable polymers and solvents can be developed as an effective delivery 
system for sustained release of contraceptives such as levonorgestrel for five months or 
longer after single SubQ injection through a 23G needle. The specific aims of the project 
include: 
 

Specific Aim 1: Design and conduct in vitro optimization and characterization of 
LNG-containing ISD formulations. The ISD formulations containing PLGA, PLA as a 
polymer matrix, LNG as an API, and NMP and its mixture with TEC, acetyl triethyl 
citrate (ATEC), benzyl benzoate (BB), benzyl alcohol (BA), ethyl acetate (EA) were 
prepared. The optimization parameters included polymer type/molecular 
weight/viscosity/degradation, polymer/solvent ratio, LNG content, injectability, and in 
vitro acyline release kinetics in PBS (pH 7.4) and accelerated conditions.  
 

Specific Aim 2: Evaluate in vivo safety, pharmacokinetics and contraceptive effect 
of LNG-containing ISD systems in rats. ISD formulations that were injectable through the 
23G needle and shown stable in vitro depot integrity, and long-term in vitro LNG release 
(≥ 3 months) were injected SubQ into female Sprague-Dawley (SD) rats. Their safety, 
one day short-term and 6-month long-term pharmacokinetics and contraceptive effects 
including suppression of estrous cycle were evaluated. 
 
 

Materials and Methods 
 
 
Chemicals and Reagents 
 

Levonorgestrel (>99.99%) was provided by Family Heath International (FHI360).  
Levonorgestrel-D6 (LNG-D6) was purchased from Hexonsynth (Middle Sex, UK). Ester-
terminated poly(D, L-lactic-co-glycolic acid) (50:50) with an inherent viscosity (iv) of 
0.55-0.75 dL/g was purchased from Lactel Absorbable Polymers (Birmingham, AL). 
Ester-terminated poly(D, L-lactide) with iv 0.40-0.50 and 0.60-0.80 dL/g were purchased 
from Lakeshore Biomaterials (Birmingham, AL) and Evonik (Birmingham, AL), 
respectively. Blank rat plasma was ordered from Bioreclamation IVT, USA. The 
following chemicals and solvents were obtained from Fisher Scientific (Pittsburgh, PA): 
TEC, NMP, BB, BA, ATEC, EA, sodium chloride (crystalline/certified ACS), sodium 
hydrogen phosphate (98+%), potassium phosphate monobasic (extra pure 99+%),  
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• Polylactic acid (PLA)
• Poly(lactic-glycolic acid) 

acid (PLGA) PLGA)

Biodegradable 
Polymers

•N-methylpyrrodine (NMP)
•Benzyl benzoate (BB)
•Triethyl citrate (TEC)
•Acetyl triethyl citraye (ATEC)
•Benzyl Alcohol (BA)
•Ethyl Acetate (EA)

Pharmaceutically 
acceptable Solvents

• Levonorgestrel
(LNG)

Drug

Drug-Polymer solution/ suspension injected 
through 21-23 gauge needles into the body 
where it forms a biodegradable depot/implant

Achieve robust near constant LNG plasma 
concentration and contraceptive effect 
with no or minimal initial burst for 6-12 
months

Advantages
• Easy administration
• FDA approved materials
• Easy to manufacture, fewer 

processing steps than 
microspheres 

• Potential for low cost

• No reconstitution necessary
• Long-acting contraception
• Completely degradable
• No surgical removal needed
• 100% loading efficiency

In situ solid 
depot formation

ISD Formulation

23G needle

 
 
Figure 2-3. Design and developmental plan of injectable ISD dosage forms. 
 
Notes: ISD formulation is a solution or suspension containing LNG and biodegradable 
polymers (PLA or PLGA) dissolved or dispersed in pharmaceutically acceptable water-
miscible organic solvents (NMP, BB, TEC, ATEC, BA, EA), respectively. Upon 
injection into the tissue, this ISD system forms a solid depot of polymeric matrix at the 
injection site because of the phase separation (in situ polymer precipitation) by solvent 
exchange. The LNG entrapped in the depot is then slowly released out into the 
surrounding body fluid due to the degradation of the polymers and diffusion of the drug, 
goes into the systemic circulation and then reaches target sites 
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potassium chloride, water (HPLC grade), acetonitrile (HPLC grade), methanol (HPLC 
grade), ethanol (HPLC grade), hexane, formic acid, and Tween 20. 
 
 
Preparation of Formulations 
 

The formulations with composition listed in Table 2-2 and Table 2-3 were 
prepared as follows: LNG was weighed and added to the mixture solvent of NMP/TEC or 
NMP/BB (9:1 v/v) in a 20 mL vial. The vial was vortexed at 500 rpm until LNG was 
dissolved. Weighed PLGA-50:50 and PLA polymers were then added and vortexed at 
500 rpm until a uniform solution was obtained. 
 
 
In Vitro Evaluation 
 

Viscosity Measurements 
 

Shear viscosity of the formulations was measured by using the cone and plate 
geometry technique by flow procedure on an AR-G2 rheometer, TA Instruments, Waters 
Corporation, (New Castle, USA), and the results analyzed by TA universal analysis 2000 
software. All measurements were performed at 25 °C with a 20 mm stainless steel cone 
with 1° Cone angle, TA Instruments, Waters Corporation, (New Castle, USA) at a gap 
of26 μm. The sample was allowed to equilibrate for 5 min at 25 °C before measurements 
were conducted. Shear viscosities were measured in the range of shear rate from 0.001 –
1000 s-1 and then in descending order. The slope of the curve shear stress vs. shear rate 
was calculated to get the average shear viscosity of the solutions that exhibited plastic 
flow. The experiments were repeated thrice, and the results were shown as mean ± SD. 
 

In Vitro Release Study 
 

Real-time (long-term) in vitro release study 
 

The formulations were injected (400 μL) through a syringe into a PTFE mold 
having a cylindrical cavity of 12.5 mm in diameter and 5 mm in depth. The mold was 
then transferred into a 500 mL jar, and 400 mL PBS (pH 7.4) release medium was 
carefully added to the jar. The jar was then placed into a 37 C shaking incubator 
(MaxQ800, Thermo Scientific, Waltham, MA) and constantly shaken at 50 rpm. At 
selected time points over a 6-month period, 1 mL of the release medium was collected for 
drug analysis using HPLC (see Section 2.3.4 for details), and then the entire medium was 
replaced with fresh PBS (pH 7.4) to maintain the sink condition. Each formulation was 
run in triplicates for the studies. 
 

Accelerated release study 
 

The 64 and 96 formulations were selected for conducting a short-term in vitro 
release study the same way as for the long-term in vitro release study as described 
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Table 2-2. The composition of set-1 ISD formulations. 
 

Formulation 
# 

PLGA 50:50 
wt % 

PLG 85:15 
wt % 

PLA 
wt % 

PLA 
wt % 

PLA 
wt % 

LNG 
wt % 

Solvent (9:1) 
wt % 

 iv-0.63 iv-0.63 iv-0.25 iv-0.47 iv-0.63   
64-Tamrin 4.7    18.8 6 70.5 NMP/TEC 

55   12  12 4 72 NMP/BB 
56   12  12 4 72 NMP/BA 
57   12  12 4 72 NMP/ATEC 
61   12  12 4 72 NMP/EA 
62   12  12 4 72 NMP/TEC 
67  12.2 12.2   2.5 73.1 NMP/TEC 
68  12.2 12.2   2.5 73.1 NMP/BB 
96 4.1   20.3  2.5 73.1 NMP/BB 
97 4.1   20.3   73.1 NMP/BB (8:2) 
98 4.1   20.3   73.1 NMP/BB (7:3) 
99 4.1   20.3   73.1 NMP/TEC (7:3) 
100 4.1   20.3   73.1 NMP/ATEC (7:3) 

 
Notes: Units of inherent viscosity (iv): dL·g-1; molecular weights (based on GPC) of polymers according to the certificate of analysis 
are PLA (iv-0.25): 27 kDa; PLA (iv-0.47): 67 kDa; PLA (iv-0.63): 102 kDa. 
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Table 2-3. The composition of set-2 ISD formulations. 
 

Formulation PLGA 50:50 PLA PLA LNG Solvent (9:1) 
 iv-0.63 iv-0.47 iv-0.63 wt% wt% 
# wt% wt% wt%   

64-Tamrin 4.7  18.8 6 70.5 NMP/TEC 
96 4.1 20.3  2.5 73.1 NMP/BB 
96j 4  20 2.5 73.5 NMP/TEC 
96k 4  16 2.5 77.5 NMP/TEC 
96l 4  12 2.5 81.5 NMP/TEC 
96m 4  20 4 72 NMP/TEC 
96n 4  16 4 76 NMP/TEC 
96o 4  12 4 80 NMP/TEC 
96p 4 4 16 4 72 NMP/TEC 
96q 4 8 12 4 72 NMP/TEC 
96r 4 16 4 4 72 NMP/TEC 

96zz 4 16 4 4 72 NMP/EA 
 
Notes: Units of inherent viscosity (iv): dL·g-1; molecular weights (based on GPC) of 
polymers according to the certificate of analysis are PLA (iv-0.25): 27 kDa; PLA (iv-
0.47): 67 kDa; PLA (iv-0.63): 102 kDa. 
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previously in Section 2.3, except for that the release conditions were the four conditions 
listed in Table 2-4 instead of PBS (pH 7.4) at 37 C and the study was over a two week 
period instead of long-time period (conditions designed by Dr. Wang). The correlations 
between the release kinetics and mechanisms of LNG from ISD systems (64 and 96) 
under real-time and accelerated conditions were established. The best-correlated 
condition was used to conduct the short-term (24 h) accelerated release study during the 
screening of the set-2 formulations. 
 

HPLC Measurements 
 

The collected release medium samples were analyzed for LNG content using 
HPLC (Shimadzu Scientific Instruments, Inc. Columbia, MD) installed with a reverse 
phase column BDS Hypersil C-18, 3 μm, 100x4.6 mm. Acetonitrile (ACN)/0.01% formic 
acid in water (65:35 v/v) was used as a mobile phase. The flow rate was set at 0.8 
mL·min-1, and the detection wavelength was 245 nm. The injection volume was 50 μL. 
The column temperature was kept at 25°C. The standards for calibration were 0.070, 
0.100, 0.250, 0.500, 0.750, 1.00, 2.50 μg·mL-1 of LNG dissolved in PBS (pH 7.4 
correlation coefficient was R2>0.99). The cumulative release amount of LNG was 
calculated from the LNG concentrations determined in the samples. 
 
 
In Vivo Evaluation 
 

LC-MS/MS Method Development and Validation for Analysis of LNG in Rat 
Plasma 
 

Liquid chromatography (LC) was performed on a UPLC system (Shimadzu 
Corporation) consisting of a binary pump, column oven, and degasser units. 10 μL of 
sample extracts were injected into the reversed-phase Luna C18 (2) column (50 x 2.0 mm 
i.d., 3 μM; Phenomenex, Torrance, CA, USA) by using an autosampler (Eksigent, part of 
AB SCIEX). Acetonitrile/water mixture (70/30, v/v) containing 0.01% formic acid was 
used as a mobile phase and was pumped at a flow rate of 0.3 mL·min-1.  Total run time 
was 3 min for each sample injection. The column temperature was kept at 25 °C. The LC 
elute was introduced into the Applied Biosystems Triple Quad™ 4500, a triple-
quadrupole tandem mass spectrometer equipped with turbo spray ionization source, for 
quantification of the analytes in positive ion mode (ESI+). Detection of the analyte ions 
was performed in a multiple reaction monitoring mode and transitions of m/z 
313.10→245.10, and 319.10→251.10 were used for LNG and LNG-D6, respectively. 
Analyst®1.6.2 software was used for processing the data. The detailed experimental 
conditions are: ion spray voltage 4500 v, collision gas 8 psi, temperature 500 °C, 
collision energy 23v, entrance potential 10v, collision exit potential 12v, declustering 
potential 81v, curtain gas 40 psi, ion spray gas I 60 psi and ion spray gas II 60 psi  
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Table 2-4. Release testing conditions used for accelerated in vitro release method 
development. 
 

Condition PBS 
(% v/v) 

Ethanol 
(% v/v) 

Tween 20 
(% w/v) 

pH Temperature 
(°C) 

A 100% 0 0 7.4 50 
B Adjusted to 100% 25% 0 7.4 50 
C Adjusted to 100% 25% 0.5% 7.4 50 
D Adjusted to 100% 25% 0.5% 9.0 50 
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Preparation of standard and quality control samples 
 

For the LNG calibration standard solution preparation, LNG was accurately 
weighed and dissolved in the mixture of methanol and water (50/50, v/v) to obtain a stock 
solution with a concentration of 1 mg·mL-1. This stock solution was then diluted with 
methanol/water (50:50, v/v) mixture to obtain working stock solutions at concentrations 
5, 10, 25, 50, 100, 250 and 500 ng·mL-1. Furthermore, these working stock solutions 
were diluted 10 times with blank rat plasma to obtain working standard solutions at 
concentrations 0.5, 1, 2.5, 5, 10, 25 and 50 ng·mL-1.Quality control samples for LNG 
were also prepared from a separate set of working stock solutions as mentioned above at 
three concentrations 0.5 (low; LLOQ), 5 (medium; MLOQ) and 50 (high; HLOQ) ng·mL-

1. Being the structural analog of LNG, LNG-D6 was used as an internal standard (IS). A 
stock solution of LNG-D6 was prepared in a mixture of methanol and water (50:50, v/v) 
to obtain the final concentration of 250 μg·mL-1. All the stock solutions were stored at -
20 °C and were brought to room temperature before use. 
 

Extraction procedure 
 

100 μL of rat plasma containing LNG and LNG-D6 was taken in a 
microcentrifuge tube, and 500 μL of hexane/ethyl acetate (80/20, v/v) mixture was added 
followed by vortexing for 3 min. The tubes were centrifuged at 10,000 x g at 4 °C for 10 
min. Supernatant organic phase containing the LNG and LNG-D6 was collected into 
another microcentrifuge tube and subjected to vacuum vaporization. The resultant residue 
was dissolved in 50 μL of reconstitution solvent methanol/water (50/50, v/v) mixture and 
vortexed for 2 min for proper mixing. In this process, 100 μL of rat plasma was 
concentrated to 50 μL resulting in increased sensitivity. From the extracted sample, 10 
μL was injected into the LC/MS/MS system for analysis. 
 

Matrix effect  
 

Matrix effect is the effect of rat plasma constituents on the ionization of LNG and 
LNG-D6. Due to the endogenous compounds from rat plasma, the ionization of an analyte 
can be suppressed or increased. It is determined by comparing the analyte peaks obtained 
from samples spiked in the solution of the rat plasma extracted by hexane/ethyl acetate 
(80/20, v/v) mixture(post-extracted spiked samples) with those spiked in mobile phase 
acetonitrile/water mixture (70/30, v/v) containing 0.01% formic acid (neat standard 
samples). Matrix effect was calculated at LLOQ (0.5 ng·mL-1), MLOQ (5 ng·mL-1) and 
HLOQ (50 ng·mL-1) concentrations (n=6) for LNG and at 25 ng·mL-1 (working 
concentration) for LNG-D6, using the Equation 2-1 listed below.  
 

           (Eq. 2-1) 
 

Specificity and sensitivity 
 

Blank plasma, and analyte LNG (LLOQ) and internal standard LNG- D6 spiked 
plasma samples were treated according to the extraction procedure mentioned above prior 
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to analysis by the LC/MS/MS. The chromatograms for the blank plasma and spiked 
plasma samples were compared to identify any peaks during the analysis. Specificity was 
evaluated by checking any significant interference in the chromatograms at the peak 
regions of LNG and LNG- D6. The LLOQ and Limit of detection (LOD) were defined at 
the lowest concentrations that resulted in a signal to noise(S/N) ratio of 10 and 3, 
respectively.  
 

Recovery efficiency 
 

The recovery efficiency(%RE) for the analyte LNG and internal standard LNG- 
D6 was calculated by comparing the peak areas of the LNG/LNG- D6 added into blank 
plasma and extracted using the extraction mixture solvent hexane/ethyl acetate (80/20, 
v/v) with those of LNG spiked directly into the extraction mixture solvent (post-extracted 
standard samples) at the three LNG QC (0.5, 5and 50 ng·mL-1) and one LNG- D6 
working (25 ng·mL-1) concentrations, using Equation 2-2 listed below: 
 

           (Eq. 2-2) 
 

Linearity 
 

Seven calibration standard concentrations in the range of 0.5 – 50 ng·mL-1 (0.5, 1, 
2.5, 5, 10, 25 and 50 ng·mL-1) were extracted and analyzed for drawing the calibration 
curve. The peak areas were calculated, and peak area ratios (Analyte/IS) were fitted to 
linear regression analysis using 1/x2 as a weighing factor. The concentrations of the 
samples were back calculated from the standard curve and were compared to deviation 
from the theoretical concentrations. The deviations should be within ±20% and ±15% for 
the LLOQ and other concentrations, respectively. The correlation coefficient (r2) for the 
calibration curve should be 0.99 or higher. 
 

Accuracy and precision 
 

Accuracy was determined as the percentage of the difference between the mean 
calculated concentration and the theoretical value, as shown in Equation 2-3 below: 
 

          (Eq. 2-3) 
 
Precision indicates the reproducibility and measures the closeness among the replicates.  
It was determined as the percentage of the standard deviation from the arithmetic mean of 
the calculated sample concentrations and expressed as the percent of the coefficient of 
variation (%CV), as shown in Equation 2-4 below: 
 

                      (Eq. 2-4) 
 
 
 



 

32 

Intra-day assay accuracy and precision 
 

Seven calibration standard samples with concentrations in the range of 0.5-50 
ng·mL-1 (0.5, 1, 2.5, 5, 10, 25 and 50 ng·mL-1) and three QC samples, LLOQ (0.5 ng·mL-

1), MLQC (5 ng·mL-1) and ULOQ (50 ng·mL-1) were prepared separately in 6 replicates, 
and analyzed for accuracy and precision measurements using chromatography for 3 
consecutive days. The accuracy should be within ±20% and ±15%forthe LLOQ and all 
the other concentrations, respectively. The %CV should not exceed 20% and 15% for the 
LLOQ and all the other concentrations, respectively. 
 

Inter-day assay accuracy and precision 
 

The data obtained above for the intra-day assay accuracy and precision were re-
analyzed for inter-day assay accuracy and precision using all three days’ data for each 
concentration (18 samples in total), and the results were reported. Both the accuracy and 
%CV should be within ±20% and ±15%forthe LLOQ and all the other concentrations, 
respectively. 
 

Stability 
 

Stability of the LNG in the rat plasma and final reconstitution solvent under 
specific experimental conditions was evaluated. Three QC samples with concentrations in 
the rat plasma, 0.5 (low), 5 (medium) and 50 ng·mL-1 (high) were prepared in 6 replicates 
for these studies. Long-term stability of LNG was investigated by measuring the accuracy 
after the QC samples were stored at -80 °C (storage condition) for 15 days and under 5 
cycles of the freeze-thaw process from -80 °C to room temperature. In process stability 
was tested after the QC samples were kept in the rat plasma at room temperature for 4 h. 
Post-operative stability was studied after the final processed samples were kept in the 
reconstitution solvent methanol/water (50/50, v/v) mixture at room temperature for 8 h at 
10 °C (autosampler injector temperature) for 24 h. LNG was considered to be stable if the 
percent change in concentration was within ±15%. 
 

LNG pharmacokinetics in rat 
 

To evaluate the applicability of the developed method, the SubQ pharmacokinetic 
profile of LNG in rats was determined. 2.5 month old female Sprague Dawley rats (n=6) 
were ordered and housed in plastic cages at controlled temperature (24±0.5 °C) and light 
controlled environment (12h light/12h dark). Rats were provided with normal rat chow 
and water ad libitum. All the experiments were approved by the University of Tennessee 
Institutional Animal Care and Use Committee (IACUC). Before the study was conducted, 
rats were anesthetized by isoflurane inhalation and 4mg of LNG in 400 μLNMP solution 
was injected subcutaneously into each rat. 200-250 μL of blood samples were collected 
from the experimental rats and put into Li-heparin coated blood collection tubes at 0.25, 
0.5, 1, 4, 8, 24, and 48 h time points post the injection. The tubes were centrifuged at a 
speed of 12,000 g for 10 min, and the obtained plasma samples were stored at -80 °C for 
further analysis. LNG was extracted from the plasma samples using hexane and ethyl 
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acetate solvent mixture as described in the above sections. The resulting solutions were 
diluted to the concentrations that fell in the standard curve concentration range. The 
pharmacokinetic parameters were calculated by non-compartmental analysis using 
Phoenix WinNonlin 6.3 (Certara, NJ). 
 

In Vivo Pharmacokinetic Study of Formulations 
 

All the rats were ordered from Harlan Laboratories (Indianapolis, IN, USA), and 
housed in metabolic cages under controlled temperature (24 ± 0.5 °C) and light 
environment (12 h light/12 h dark). They were permitted to move freely and provided 
with normal rat chow and water ad libitum. All the experiments were approved by the 
University of Tennessee Institutional Animal Care and Use Committee (IACUC). 
Female SD rats (~2.5 month old) with a heparin-coated polyethylene catheter inserted 
into each rat’s right jugular vein were used to determine the initial burst concentrations of 
LNG in the plasma (24 h study). Formulations were prepared and exposed to UV light in 
cell culture hood for 1 hour, and the desired amount of formulation was transferred into 
sterilized syringe with a 21G/23G needle. Before the study was conducted the rats were 
anesthetized by isoflurane inhalation and the selected formulations were injected 
subcutaneously into each rat. About 0.05–0.1 mL of blood was withdrawn through the 
indwelling catheter to clear the heparin in the line. Afterwards, another 0.20-0.25 mL of 
blood sample was collected through the catheter and put into Li-heparin coated micro-
centrifuge tubes at 0.25, 0.5, 1, 4, 8, and 24 h time points post the injection. After each 
blood sampling, the catheter was flushed with 0.25-0.5 mL of heparinized saline solution 
to prevent blood coagulation inside the catheter. Periodically the rats were supplemented 
saline to replace the fluid volume. 
 

Long-term studies were carried out on normal female SD rats. The rats were 
measured for body weight and anesthetized by isoflurane inhalation, and the formulation 
was then subcutaneously injected into rats at the flank place at a dose of 10 mg LNG. At 
pre-set time points, body weights of the rats were measured and about 0.2-0.3 ml blood 
was withdrawn from the tail vein of the rats under anesthesia. All blood samples were 
placed in Li-heparin coated micro-centrifuge tubes. The plasma samples were obtained 
by centrifuging the blood-containing micro-centrifuge tubes at a speed of 12,000 × g for 
10 min and then stored at −80 °C until analysis. All plasma LNG levels were analyzed 
according to the LC-MS/MS method described earlier. 
 

Vaginal Cytology 
 

Periodically the rats were examined for estrous cycle progression by vaginal 
cytology. At intermittent pre-set weeks, vaginal smears were taken from each rat in the 
groups in the morning at approximately the same time of the day to minimize the 
incidence of transitional and missed stages. Cells from the vaginal cell lining were 
collected by flushing the vagina by introducing 0.3-0.4 mL of normal saline into the 
opening of the rat vagina using eye droppers and gently aspirating the content for four 
times with the same drop of saline to collect more cells. The resulting cell suspension is 
placed on a clean slide fixed and stained with a Diff-Quick solution and observed 
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microscopically. The reproductive cycle (estrous cycle) of female rats is characterized as 
proestrus, estrus, metestrus and diestrus. Three types of cells could be recognized: round 
and nucleated ones are epithelial cells; irregular ones without nucleus are the cornified 
cells, and the little round ones are the leukocytes. The proportion of them was used for 
the determination of the estrous cycle phases [218]. 
 

Fertility Study 
 

Female rat fertility study was conducted after the end of the treatment (when the 
drug levels were stopped detecting in vivo). The rats were housed in standard cages 
grouped as two female rats and one male rat in each cage. Vaginal smears were collected 
and evaluated for the stage of estrous. At the time of insemination, females were 
separated from the male rats, and body weights were measured every alternative day 
(This study was conducted by our lab member Dr. Ananthula). 
 
 

Results and Discussion 
 
 
Screening of Set-1 ISD Formulations 
 

Although long-acting ISD systems have proven to be effective, the major 
limitations associated with these systems are injectability and high initial burst 
[194]. Most of these ISD systems are high viscous fluids and need a lower (thicker) 
gauge needle (such as 18G/19G) for injection, which will be painful and limits the patient 
compliance [194]. Attempts made to lower the viscosity of the fluids would usually result 
in an increase in the initial burst and may also compromise the long-term drug release. A 
high initial burst would lead to a loss of a major percentage of the drug during initial few 
hours’ post injection and result in a smaller proportion of the total drug load left in the 
system/depot for long-term release. This high initial release may also lead to toxic levels 
of the drug in the plasma.  
 

Therefore, the three key attributes that were considered during the formulation 
optimization are: 

 
• Low viscosity so that it can be injected through 23 G needle 
• Low initial burst 
• Long-term release profile for at least 5 months 

 
Previously an ISD formulation (# 64) was used to evaluate the feasibility of using 

LNG as an effective contraception option for cottontop tamarins, and the results 
demonstrated that subcutaneous LNG depot injection (64 formulation) was an effective, 
reversible contraceptive option for the management of cotton-top tamarins [197]. 64 
formulation has shown promising potential by demonstrating long-term in vivo 
suppression of ovarian cycle in cottontop tamarins for 6 months. However, the limitation 
associated with this formulation is its high viscosity which makes it difficult to inject 
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through 23 G needle. Therefore, formulation 64 was chosen as the base ISD formulation 
on which further design and optimization were carried out to achieve an ideal and robust 
lead formulation that would satisfy the requirements of injectability, initial burst, and 
long-term release profile. In the earlier study, LNG was loaded into 64 formulation and 
directly injected in vivo in cottontop tamarins, and the drug levels were detected only in 
the feces [197]. Thus, no in vitro characterization data was available for 64 formulation in 
terms of viscosity, injectability, in vitro release, and in vivo initial burst, and long-term 
profiles of the drug levels in the plasma. Therefore, 64 formulation was selected to 
characterize further in this study along with other formulations for the viscosity, 
injectability and in vivo profile in rats to get a better understanding of the formulation and 
guide the optimization and development process. 
 

In this project, to addresses some of the limitations of the ISD systems such as 
injectability, and initial burst in a unique and promising way, an initial set of formulations 
(set-1) were designed using a rationale approach of incorporating PLA alone or 
combining a blend of PLGA/PLA with different inherent viscosities, using solvent 
combination NMP and other hydrophobic co-solvents, and varying the ratios of polymer, 
as well as the solvent for dissolving the LNG, and varying drug ratios (Table 2-2). The 
PLGA polymer concentration used in Atrigel® based marketed ISD formulations 
(Eligard®) is in the range of 33-44 wt% (in NMP), based on therapeutic duration (1-6 
months), but such a high polymer percentage makes them difficult to be injected through 
a thinner needle (21-23 G). To maintain the viscosity low, the polymer concentration 
during the study was adjusted around 24 wt%. However, lowering the polymer 
percentage in ISD formulations would usually result in high burst and reduced 
therapeutic duration. Therefore, to compensate this and achieve low initial burst and 
extended release profile, a hydrophobic polymer PLA with a high inherent viscosity (or 
MW) is incorporated in the preparations either alone or in combination with PLGA 50:50 
or 85:15. Because of its hydrophobic nature, PLA degrades at a slower rate and absorbs 
less water than PLGA [15]. Among set-1 formulations (Table 2-2) that were designed: 
one subset of formulations (55, 56, 57, 61 and 62) exclusively contained PLA as the 
polymer, while the polymer composition in another subset (96, 97, 98, 99, 100) contained 
a blend of PLA and PLGA. Mixing two polymers of different MWs permits the control of 
the timing associated with degradation release [219]. NMP is used as the primary solvent 
(at least 70% of the solvent) in the formulations because of its low viscosity, established 
safety profile, and use in commercial products for human use [181, 190]. Hydrophobic 
solvents such as TEC, BB, BA, ATEC are used as co-solvent in the formulations, as it 
was reported in the literature that the low affinity (hydrophobic) solvents in the polymer 
solutions would slow down the solidification rate and increase the chance for a more 
uniform release over an extended time period, lower initial burst, and uniformly dense 
depot morphology with a smaller pore size [181, 194]. However, the hydrophobic 
solvents such as TEC (35.2 cP) and BB (8.3 cP) are viscous solvents than NMP (1.65 cP) 
and increasing the percentage of co-solvent (e.g., TEC, BB) would increase the viscosity 
of the formulations, therefore the levels were adjusted to 10-30 wt% of the solvent. The 
drug loading was lowered from 6% to 2.5-4% to avoid any potential drug solubility 
issues with long-term storage. The initial screening of the set-1 formulations for the 
manual injectability has shown that all formulations can be injected through 23 G needle, 
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while 64 formulation can only be injected through 21 G needle. The formulations that 
contained higher proportions of co-solvent (20 and 30%) showed slight difficulty 
compared to the formulations that contained 10% of the co-solvent. 
 

In Vitro Release of ISD Formulations Set-1  
 

The majority of in vitro drug release studies for the ISD systems have been 
conducted using variants of the sample-and-separate methodology. The studies were 
conducted by either injecting the formulation directly into a release medium or dialysis 
membrane which is then placed in a release medium, or holding the pre-formed gel or 
depot in a retainer including dialysis membrane [12]. However, the method of injecting 
the ISD formulation directly into the release medium usually generate depots of irregular 
shapes, which in turn results in unpredictable in vitro drug release. The dialysis method is 
dependent on the permeation of a drug across the dialysis membrane [32] and sometimes 
does not work for the release of certain drugs. Therefore, to avoid the potential issues 
mentioned above, in this study a simple and inexpensive in vitro release technique was 
developed for the screening of the formulations using a cylindrical mold made of 
polytetrafluoroethylene (PTFE) with defined geometry (2.5 mm in diameter and 5 mm in 
depth) to study in vitro drug release kinetics from injectable ISD systems. The 
formulations were injected into the mold and then immersed in the release medium in a 
glass jar (Figure 2-4), and the drug would diffuse out from the top surface into the 
release medium in a controlled manner. Though this method might not mimic well the in 
vivo drug release profile, it was sufficient and effective for achieving the objective of this 
study which is to screen formulations at early development stage. 
 

The cumulative percentage release of LNG from the set-1 ISD formulations for 
two months is given in Figure 2-5. Apart from 64 formulation, two formulations (55, 96) 
were selected (one from each subset) to continue the long-term release study. The 
rationale for choosing these two formulations was that they had shown slowest LNG 
release profile in vitro, and favorable injectability compared to the other formulations. As 
55 formulation contained only PLA while 96 formulation has contained a blend of PLA 
and PLGA, selection of these formulations also help to investigate the effect of the 
polymer composition (i.e. using either PLA alone or a blend of PLA/PLGA) on long term 
release. The composition of the three formulations (55, 64 and 96) along with their 
viscosity and injectability values is given in Table 2-5. Viscosity data has demonstrated 
that 55 and 96 formulations have shear viscosities 0.64±0.04 Pa.s and 0.67±0.05 Pa.s, 
respectively, and can be injected through 23 G needle, while the 64 formulation has a 
higher shear viscosity of 1.71±0.01 Pa.s and shown injectability through 21 G needle. 
Even though the overall polymer percentage is similar in all three formulations, the 
higher viscosity of 64 could be attributed to the differences in terms of drug concentration 
or loading (6% vs 4%/2,5%), PLA polymer inherent viscosity (0.63 vs 0.47), and co-
solvent (TEC vs BB). However, the primary factor that resulted in an increased viscosity 
of the 64 formulation could be the higher inherent viscosity (high MW) of the polymer 
(PLA – 0.63 i.v.) used in the formulation. Figure 2-6 shows the long-term percent 
cumulative in vitro LNG release and release rate from the ISD formulations 55, 64, and 
96 at 37 °C in PBS (pH 7.4).  
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Depot

Release Medium

 
 
Figure 2-4. Teflon mold holding the depot for in vitro LNG release studies. 
 
Notes: The ISD formulations were injected into the Teflon mold (2.5 mm in diameter and 
5 mm in depth) and then immersed in the jar containing release medium for in vitro 
release studies. At selected time points the release medium was sampled, and complete 
medium was replaced with fresh medium to maintain sink conditions 
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Figure 2-5. In vitro cumulative LNG release percentage from set-1 ISD 
formulations. 
 
Notes: The set-1 formulations (Table 2-2) were tested for in vitro release for a period of 
about 2-months. 55 (open diamond), 64 (open circle), and 96 (open triangle) formulations 
showed slowest in vitro profile and were selected for long-term evaluation. 
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Table 2-5. The composition and viscosity of the 55, 64 and 96 formulations. 
 

F# PLGA50:50 
(iv-0.63) 

wt% 

PLA 
(iv-0.25) 

wt% 

PLA 
(iv-0.47) 

wt% 

PLA 
(iv-0.63) 

wt% 

LNG 
wt% 

Solvent (9:1) 
wt% 

Shear 
viscosity 

Pa.s 

Injectability 
gauge 

55 
 

12 12  4 73.1 NMP/BB 0.64±0.04 23 
64 4.7   18.8 6 70.5 NMP/TEC 1.71±0.01 21 
96 4.1  20.3  2.5 73.1 NMP/BB 0.67±0.05 23 

 
Notes: Units of inherent viscosity (iv): dL·g-1; molecular weights (based on GPC) of polymers according to the certificate of analysis 
are PLA (iv-0.25): 27 kDa; PLA (iv-0.47): 67 kDa; PLA (iv-0.63): 102 kDa. 
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Figure 2-6. In vitro cumulative LNG release (A), and in vitro LNG release amount 
per day (B) from the ISD formulations. 
 
Notes: The release of LNG from 55 (diamond), 64 (circle) and 96 (triangle) ISD 
formulations in PBS medium (pH 7.4) at 37 °C. The complete composition of the 
formulations listed in Table 2-2. Each point represents the mean±SE, n=3.  
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The in vitro release of LNG from ISD formulations showed a slight initial burst 
phase followed by near zero order release. The burst effect in the initial phase of the 
release is commonly observed with ISD formulations and is dependent on the phase 
inversion dynamics during the solidification of the matrix, as well as the drug-polymer 
interaction [184, 220]. Following this initial phase, the release of LNG was slow, and less 
than 10% of LNG release from the depot formulations was observed over a 6-month time 
period. The observed initial burst and the overall percent cumulative LNG release at the 
end of five months in vitro release were low, and this can be attributed to the release 
model used in this study where the drug release from the Teflon mold is only limited to 
the single surface. When the formulations are in the near zero order release stage, 55, 64 
and 96 released about 4-18 μg, 2-9 μg, and 3-18 μg LNG per day, respectively, after dose 
normalization. The differences in the release profile could be attributed to the differences 
in the composition of the formulations regarding the polymer type, inherent viscosity of 
the PLA polymer, drug loading, and co-solvent. 55 and 96 formulations, which have a 
greater percentage of smaller inherent viscosity PLA polymers, showed faster release 
profile compared to the 64 formulation which has higher inherent viscosity PLA. In the 
literature, it was explained that a polymer with lower inherent viscosity could get 
hydrated and swell better, and thus could release drug faster [221]. The in vitro depots of 
formulations 55 and 96 were significantly porous compared to the depot of 64 
formulations. Figure 2-7 shows the pictures of in vitro depots of the formulations at two 
months. The order of porosity was 55 > 96 >> 64. The in vitro depots of 55 and 96 
formulations have shown signs of disintegration starting at 3 and 4 months, respectively. 
The depot of 55 showed quick disintegration and resulted in complete loss at about 4 
months, while the depot of 96 was disintegrated by 5 months. Even through the depot of 
55 constitute 100% PLA (more hydrophobic than PLGA), but the higher porosity and 
faster disintegration of the depot of 55 over 96 could be attributed to the presence of 
lower inherent viscosity PLA polymer. 50% of the polymer concentration used in 55 
formulation was of lower inherent viscosity PLA (0.25 iv), while the polymers used in 96 
formulation were of higher inherent viscosity (PLGA-0.63/PLA-0.47 iv). On the other 
hand, the depot of the 64 formulation remained intact until the end of the study (~6.5 
months). The high amount of PLA with a higher inherent viscosity (0.63) used in 64 
formulation might have shown slow degradation and extended the release for a longer 
time. 
 

To understand the release mechanisms of LNG from the depots made of 55, 64 
and 96 formulations, all the release data in Figure 2-6 were fitted using empirical power 
law (Korsmeyer–Peppas Model, Equation 2-5) [40] as shown below: 
 

             (Eq. 2-5) 
 

Where Mt and M∞ are the amounts of drug released at time t and infinite (in this 
study the initial drug amount was used as M∞), respectively, Mt/M∞ is the fraction of drug 
released at time t, k is the rate constant related to diffusion coefficient, and n is the release 
exponent related to release mechanism. The correlations between n value and release 
mechanisms are: n < 0.5, non-Fickian diffusion due to increasing hydrophobicity with 
time; n = 0.5, Fickian diffusion; 0.5 < n < 0.1, anomalous (combination of Fickian and 
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55 64 96

 
 
Figure 2-7. In vitro depot pictures of ISD formulations 55, 64 and 96 in Teflon 
molds after two months release study. 
 
Notes: The porosity of the in vitro depots formed by the 55, 64, and 96 formulations was 
in the order of 55 > 96 > >64, and this order was correlated to the molecular weights of 
the polymers used in the formulations. 
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Case II diffusion) diffusion; n = 1, Case II diffusion due to polymer chain relaxation; and 
n > 1, Super Case II diffusion due to polymer chain relaxation [40,41]. The Equation 2-5 
has frequently been used to analyze the drug release from several modified polymeric 
drug delivery systems including both swellable and non-swellable systems [41,42]. The 
fitting parameters determined by the linear regression of log (percent cumulative release) 
against logt in for the LNG release from the depots made of 55, 64 and 96 formulations 
are given in Table 2-6. The release exponent n values ranged from 0.46 to 0.69 
suggesting different release mechanisms for the formulations 55, 64 and 96. The 
evaluation of these three formulations was further continued to preclinical studies in rats 
to study the long-term in vivo LNG release. 
 

LC-MS/MS Method Development and Validation for Analysis of LNG in Rat 
Plasma 
 

To conduct the preclinical pharmacokinetic studies of the LNG-loaded ISD 
formulations in rats, a sensitive and reliable bioanalytical method is needed to detect the 
in vivo drug concentrations. LC/MS/MS technique is a rapid, selective and sensitive 
analysis method that has been widely used for quantifying the concentration of a broad 
range of drugs in the plasma. There are several reports in the literature about using 
LC/MS/MS for detecting LNG from human plasma [222-225], environmental water, and 
sewage effluent [226-229]. However, there is no report about using LC/MS/MS for 
detecting LNG from small animal plasma. The method for detecting LNG from human 
plasma used the relatively large amount of plasma about 0.5-1 mL. This volume of 
plasma is difficult to be obtained from small animals such as mice and rats. Hence, a 
highly sensitive LC/MS/MS analytical method with a lower limit of quantification 
(LLOQ) in the nanomolar or ng/mL range needs to be developed. Therefore, a sensitive 
LC/MS/MS method was developed for bioanalysis of LNG over a concentration range of 
0.5-50 ng·mL-1 using limited volume (100 μL) of rat plasma. The liquid-liquid extraction 
method was employed to extract LNG from rat plasma as it is a fast and convenient way 
for the extraction especially when a large number of samples are needed to be analyzed in 
short period of time. The liquid-liquid used in this study was the mixture of hexane and 
ethyl acetate which is relatively inexpensive and can be easily applied in both academic 
and industry settings. For reasonable accuracy and precision, the deuterated analog of 
LNG (LNG-D6) was used as an internal standard (IS) for quantification of the samples as 
it has similar functional groups and the boiling point as LNG and is not a natural 
component of rat plasma. LNG was rapidly eluted and detected in the chromatogram in 
less than one minute. The developed method was validated for matrix effect, specificity, 
recovery efficiency, accuracy, precision, linearity and stability of the analyte LNG and 
published [230]. The validated method was further used to study the pharmacokinetics of 
LNG after SubQ injection in rats. 
 

LC/MS/MS method development 
 

Various sample pre-treatment or extraction methods were investigated to remove 
interfering compounds from rat plasma. Organic solvents such as methanol, hexane, ethyl 
acetate, chloroform, ether with different hydrophobicity and ratios were used to develop 
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Table 2-6. Fitting parameters determined by the linear regression of log(Mt/M∞) 
against logt in Power law for the LNG release from the depots made of 55, 64 and 96 
formulations. 
 

Formulation Korsmeyer-Peppas (Mt/M∞= k.tn ) 
# R2 n 
55 0.99 0.69 
64 0.97 0.63 
96 0.99 0.46 
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the liquid-liquid extraction procedure along with the evaluations for matrix effect, 
recovery efficiency, and reproducibility. Hexane/ethyl acetate (80/20, v/v) mixture was 
found to be efficient in terms of low matrix effect, high recovery percentile, and good 
peak reproducibility. Hexane/ether (70/30, v/v) mixture was also found to have good 
peak resolution and extraction efficiency. However, it had an issue with peak 
reproducibility due to the volatile nature of ether under the experimental conditions. 
 

For better peak resolution and shorter run time, solvents such as methanol, 
acetonitrile and water were tested as mobile solvents in different combinations and 
concentrations. Better resolution of peaks was achieved with acetonitrile/water (70/30, 
v/v) mixture at a flow rate of 0.3 mL·min-1. Moreover, the addition of 0.01% formic acid 
in the mobile phase helped to obtain the smallest peak width and better peak asymmetry. 
To optimize ESI conditions for LNG and LNG- D6, scans were conducted in positive ion 
detection mode. The full scan mass spectrum of LNG was shown in Figure 2-8, revealing 
a peak at m/z 313.10 correlated to protonated LNG ion [M+H]+, and other peaks 
correlated to fragmented ions which were obtained after the collision of the protonated 
ion. The fragmented ions 109.10 and 245.10 were used for specificity and sensitivity 
testing. The fragmentation m/z 313.10 → 245.10 was used for identification of LNG and 
further quantification.  
 

Specificity 
 

The specificity was fully evaluated by screening the chromatograms of the blank 
plasma samples collected, plasma samples spiked with LNG and IS LNG- D6, and plasma 
samples collected from rats subcutaneously injected with LNG. Figure 2-9 illustrated 
representative LC/MS/MS chromatograms and demonstrated the absence of any 
chromatographic or mass spectrometric interference in the collected blank rat plasma 
samples. The retention time for the analyte LNG and IS LNG- D6 were between 1.9 to 
2.0 min. No interference peaks were observed in any of the samples at the LNG and 
LNG- D6 retention times due to endogenous matrix components, indicating the efficient 
specificity of the conditions. 
 

Limits of detection and quantification and linearity 
 

In this work, the LOD and LLOQ for LNG extracted from 100 μL of rat plasma 
were quantified to be ~0.2 and 0.5 ng·mL-1 respectively. In the literature, there is no 
LC/MS/MS method reported for detecting LNG from small animal plasma although there 
are some papers on LC/MS/MS methods for detecting LNG from human plasma. Among 
the papers for detecting LNG from human plasma, LLOQ values of 0.265 [224], 0.25 
[225], 0.1[222] and 0.05 ng·mL-1[223] were reported. Even though these LLOQ values 
for human plasma were lower than the LLOQ obtained in this work for rat plasma, they 
required five to ten times amount of plasma (500-1000 μL vs. 100 μL) which would be 
difficult to be obtained from small animals. Furthermore, the lowest LLOQ value 0.05 
ng·mL-1 for human plasma was obtained by using solid phase extraction procedure [223] 
which was much more labor intensive than the simple liquid-liquid extraction procedure 
used in this work. Therefore, the existing LC/MS/MS methods for detecting LNG from 
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Figure 2-8. The product ion mass spectrum of the LNG at m/z 313.10. 
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Figure 2-9. Representative chromatograms of LNG and internal standard (LNG-
D6). 
 
Notes: (a) Blank plasma sample collected from a rat, (b) purchased plasma sample spiked 
with LNG and IS- LNG-D6, and (c) plasma sample collected from a rat after 
subcutaneously injected with LNG (spiked with IS). 
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human plasma were not suitable for detecting LNG from small animal plasma. The 
LC/MS/MS method developed in this work is a new and highly sensitive method for 
detecting LNG from small animal plasma. The calibration lines showed good linearity 
(with r2 =0.9996 ±0.003) over the concentration range 0.5-50 ng·mL-1 within six 
regression curves with high reliability and reproducibility. A typical regression equation 
(n=6) was y= (0.0515±0.0025) x + (0.0807±0.0079) and a characteristic calibration curve 
for LNG was shown in Figure 2-10. From the graph, the concentrations of the standard 
plasma samples were back-calculated for estimating the level of accuracy. Based on the 
calculations, it was found that the accuracy percentage for the back-calculated 
concertation of each calibration standard was within the acceptable ±20% and ±15% 
limits for the LLOQ and all the other plasma standard samples, respectively. Table 2-7 
lists the characteristic calibration data for LNG. 
 

Accuracy and precision 
 

Seven standard samples 0.5, 1, 2.5, 5, 10, 25 and 50 ng·mL-1 (Table 2-8 and 
Table 2-9) along with three QC samples LQC (0.5 ng·mL-1), MQC (5 ng·mL-1) and HQC 
(50 ng·mL-1) (Table 2-9) were tested for intra-day and inter-day accuracy and precision. 
All the standard samples showed 90.88-110.33%, 88.67-107.09% and 86.09-104.16% 
intra-day accuracy and 0.38-5.59%, 0.66-3.09% and 0.36-3.62% intra-day CV on Day 1, 
2 and 3, respectively (Table 2-8). They also showed 92.97-107.03% inter-day accuracy 
and 0.91-8.82% inter-day CV for 3 consecutive days (Table 2-8). The QC samples LQC, 
MQC and HQC had 112.60%, 96.31% and 107.00% intra-day accuracy and 2.52%, 
0.96% and 0.71% intra-day precision, respectively; and 105.27%, 86.75% and 100.32% 
inter-day accuracy and 2.20%, 1.64% and 0.67% inter-day precision, respectively (Table 
2-10). The QC sample intra-day and inter-day accuracy and precision (CV) were within 
±20% for LLOQ and ±15% for all the other concentrations, indicating satisfactory quality 
assurance for the accuracy and precision. 
 

Matrix effect  
 

The matrix effect was calculated for the three LNG QC samples LQC (0.5 ng·mL-

1), MQC (5 ng·mL-1) and HQC (50 ng·mL-1) and internal standard LNG- D6 (25 ng·mL-1, 
given in Table 2-11). The matrix factors were 0.95, 0.96, and 0.96 for the LQC, MQC, 
and HQC samples, respectively, indicating that there was 4~5% chance of ion 
suppression due to the matrix. At the same time, matrix factor for the internal standard 
was 0.97, indicating a 3% ion suppression effect. 
 

Recovery efficiency 
 

Based on the pre-extracted and post-extracted plasma standards, the recovery 
efficiency was found to be 90.80-92.65% for the three LNG QC samples LQC (0.5 
ng·mL-1), MQC (5 ng·mL-1) and HQC (50 ng·mL-1) and 96.76 % for the internal standard 
LNG- D6 (Table 2-11). Being non-polar in nature, hexane/ethyl acetate mixture (80/20, 
v/v) was efficient to extract the hydrophobic LNG and LNG- D6 with little interference of 
the matrix components.  
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Figure 2-10. Representative calibration curve for LNG in rat plasma. 
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Table 2-7. Linearity and summary of calibration curves for LNG in rat plasma 
(n=6) with back-calculated concentrations. 
 

Concentration 
ng·mL-1 

Mean calculated 
concentration 

ng·mL-1 

SD Mean 
accuracy 

% 

SD CV 
%    

0.5 0.466 0.022 93.2 4.43 4.75 
1 1.02 0.049 102.2 4.91 4.80 

2.5 2.46 0.093 98.2 3.71 3.78 
5 5.20 0.250 104.0 5.01 4.81 
10 10.3 0.358 103.4 3.58 3.47 
25 24.9 0.613 99.6 2.45 2.46 
50 49.5 0.952 99.0 1.90 1.92 
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Table 2-8. Intra-day assay accuracy and precision determination of LNG 
standards in rat plasma for 3 consecutive days (n=6). 
 

Day Concentration 
ng·mL-1 

Mean calculated 
concentration 

ng·mL-1 

SD Mean 
accuracy 

% 

CV 
% 

1 0.5 0.465 0.026 93.00 5.59 
1 1 1.103 0.011 110.33 1.02 
1 2.5 2.272 0.036 90.88 1.60 
1 5 4.865 0.067 97.31 1.39 
1 10 10.983 0.078 109.83 0.71 
1 25 25.033 0.379 100.13 1.51 
1 50 50.648 0.191 101.30 0.38 
2 0.5 0.472 0.015 94.47 3.09 
2 1 0.968 0.020 96.80 2.09 
2 2.5 2.217 0.015 88.67 0.66 
2 5 4.776 0.058 95.51 1.22 
2 10 10.709 0.076 107.09 0.71 
2 25 24.679 0.213 98.72 0.86 
2 50 49.782 0.441 99.56 0.89 
3 0.5 0.499 0.018 99.80 3.62 
3 1 0.937 0.025 93.70 2.67 
3 2.5 2.495 0.047 99.79 1.89 
3 5 4.304 0.016 86.09 0.36 
3 10 10.416 0.103 104.16 0.99 
3 25 24.517 0.259 98.07 1.06 
3 50 49.974 0.232 99.95 0.46 
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Table 2-9. Inter-day assay accuracy and precision determination of LNG 
standards in rat plasma (n=18). 
 

Concentration 
ng·mL-1 

Mean calculated 
concentration 

ng·mL-1 

SD Mean 
accuracy 

% 

CV 
% 

0.5 0.479 0.018 95.76 3.74 
1 1.003 0.088 100.28 8.82 

2.5 2.328 0.147 93.11 6.32 
5 4.648 0.301 92.97 6.48 
10 10.703 0.284 107.03 2.65 
25 24.743 0.264 98.97 1.07 
50 50.135 0.455 100.27 0.91 
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Table 2-10. Accuracy and precision for LNG QC samples in rat plasma. 
 

Day Concentration 
ng·mL-1 

Mean calculated 
concentration 

ng·mL-1 

SD Mean 
accuracy 

% 

CV 
% 

Intra-day (n=6) 0.5 0.563 0.014 112.60 2.52 
Intra-day (n=6) 5 4.816 0.046 96.31 0.96 
Intra-day (n=6) 50 53.498 0.382 107.00 0.71 
Inter-day (n=18) 0.5 0.526 0.012 105.27 2.20 
Inter-day (n=18) 5 4.338 0.071 86.75 1.64 
Inter-day (n=18) 50 50.160 0.338 100.32 0.67 
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Table 2-11. Matrix effect and recovery efficiency results of LNG QC samples and 
LNG-D6. 
 

Analyte 
 

Concentration 
ng·mL-1 

Peak area  
Matrix 
factor 

 
Recovery 
efficiency 

% 

Spiked in 
methanol 

Spiked 
before 

extraction 

Spiked 
after 

extraction 
LNG 0.5 (LQC) 1.47E+04 1.27E+04 1.40E+04 0.95 90.80 
LNG 5 (MQC) 8.91E+04 7.98E+04 8.62E+04 0.96 92.65 
LNG 50 (HQC) 6.13E+05 5.50E+05 5.94E+05 0.96 92.64 
LNG-D6 25 6.42E+04 6.05E+04 6.26E+04 0.97 96.76 
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Stability 
 

Lack of stability results in non-reproducible outputs during the analysis. Hence, 
the stability of the analyte during the experimental conditions, from the stage of storage 
to chromatography analysis is necessary. In this stability study, five experimental 
conditions were used for three LNG QC samples LQC (0.5 ng·mL-1), MQC (5 ng·mL-1) 
and HQC (50 ng·mL-1) and the results were shown in Table 2-12. Long term stability 
mean accuracy of LNG stored at -80 °C (storage condition) for 15 days and under 12 
cycles of freeze-thaw process from -80 °C to room temperature was 111.07%, 95.65%, 
and 98.60%; and 108.53%, 97.45% and 100.17% for LQC, MQC, and HQC samples, 
respectively. In-process stability mean accuracy of LNG stored in the reconstitution 
solvent methanol/water (50/50, v/v) mixture at room temperature for 4 h was 113%, 
96.72% and 104.25% for LQC, MQC, and HQC samples, respectively. Postoperative 
stability mean accuracy of LNG after keeping the final processed samples at room 
temperature for 8 h at 10 °C (autosampler injector temperature) for 24 h was 102.93%, 
91.57%, and 98.15%; and 114.4%, 102.72% and 105.76% for LQC, MQC, and HQC 
samples, respectively. All the QC samples showed 91.57-114.4% stability mean accuracy 
values in the acceptable quality limit under the five experimental conditions. 
 

Application to pharmacokinetic study in rats 
 

The developed LC/MS/MS method was successfully applied to quantify LNG 
concentration in the rat plasma after LNG in 400 μL NMP solution (4 mg/rat) was 
subcutaneously injected into female SD rats (n=6). The calculated LNG concentrations in 
rat plasma were graphed as a function of time for two days of pharmacokinetics study, as 
shown in Figure 2-11. The pharmacokinetic parameters of LNG were calculated by non-
compartmental analysis and listed in Table 2-13, which showed that Cmax, AUC(0-48hrs), 
t1/2, Vd/F and CL/F were 229.17±49.23 ng·mL-1, 888.85±229.17 ng·h·mL-1, 22.07 ± 
4.97 h, 424.94 ± 130.29 L·kg-1, and 16.36 ± 3.12 L·h-1·kg-1, respectively. The t1/2 
obtained here was well in agreement with the literature reported t1/2 (23 h-1) obtained by 
radioimmunoassay [231]. 
 

In Vivo Evaluation of the Selected ISD Formulations (55, 64 and 96) 
 

Following the in vitro assessment of the ISD formulations, the 55, 64 and 96 
formulations have been chosen for SubQ administration into the right flank of rats at 10 
mg per rat (roughly 40 mg/kg) for in vivo evaluation. Figure 2-12 illustrates the long-
term plasma LNG profiles of the formulations 55, 64 and 96 starting from day 1 to day 
210. 55 and 96 formulations released LNG constantly resulting in rat plasma 
concentration of 1-3 ng·mL-1 (n=8) up to 3 and 5 months, respectively and even extended 
to 7 months in two rats. On the other hand, 64 formulation released LNG continuously 
resulting in rat plasma concentration 0.5-3 ng·mL-1 (n=8) for 7 months or longer. Similar 
to the in vitro release results, 64 formulation showed sustained release in vivo, which 
could be due to the denser depot and slower degradation of the higher molecular weight 
(103 kDa) PLA polymer in 64 formulation. The in vivo study showed that the 
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Table 2-12. Stability of LNG QC samples at the various experimental condition. 
 

Condition 

 LQC  MQC  HQC 
 Calculated 

concentration 
mean ± SD 

ng·mL-1 

Mean 
accuracy 

% 
 

 Calculated 
concentration 

mean ± SD 
ng·mL-1 

Mean 
accuracy 

% 
 

 Calculated 
concentration 

mean ± SD 
ng·mL-1 

Mean 
accuracy 

% 
 

Freezer (-80 °C)  0.555 ± 0.032 111.07  4.783 ± 0.139 95.65  49.300 ± 0.110 98.60 
Freeze & Thaw (5 cycles)  0.543 ± 0.021 108.53  4.873 ± 0.136 97.45  50.087 ± 1.280 100.17 

In the rat plasma at room 
temperature for 4 h 

 0.565 ± 0.026 113  4.836 ± 0.074 96.72  52.127 ± 1.300 104.25 

In the reconstitution solvent 
stored at room temperature for 8 h 

 0.515 ± 0.024 102.93  4.578 ± 0.235 91.57  49.077 ± 1.612 98.15 

In the reconstitution solvent 
stored in injector at 10 °C for 24 h 

 0.572 ± 0.031 114.4  5.136 ± 0.100 102.72  52.879 ± 0.578 105.76 
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Figure 2-11. LNG concentration in rat plasma (n = 6) as a function of time after 
SubQ injection of LNG solution in NMP (16 mg·kg-1). 
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Table 2-13. Pharmacokinetic parameters of LNG in rat plasma (n=6) after SubQ 
injection of LNG in NMP solution (16 mg·kg-1). 
 

Parameters AUC(0-48hrs) 
ng∙h·mL-1 

Cmax 
ng·mL-1 

Tmax 
h 

t1/2 
h 

CL/F 
L·h-1·kg-1 

Vd/F 
L·kg-1 

Average 888.85 229.17 0.25 22.07 16.36 424.94 

SD 200.54 49.23 
 

4.97 3.12 130.29 
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Figure 2-12. Plasma concentration of LNG (long-term levels) as a function of time 
after SubQ injections of ISD formulations. 
 
Notes: The LNG containing ISD formulations 55 (open diamond), 64 (open circle), and 
96 (open triangle) were injected subcutaneously into female SD rats at dose of 10 mg per 
rat (~40 mg.kg), and the plasma samples were analyzed for LNG levels over a period of 
~7 months. Each point represents the mean±SE (n=8). 55 and 96 formulations showed 
the robust release of LNG for 3 and 5 months, respectively while 64 formulation released 
LNG continuously for 7 months or longer. 
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formulations maintained drug levels above the threshold (~0.2 ng·mL-1) to maintain the 
contraception in rats for prolonged time [232]. No significant swelling or abscessation 
was observed at the injection site; further, histology study of the injection site at the end 
of the study did not reveal any significant interactions. Monitoring the rat weights during 
the treatment period showed that the rats injected with LNG gained more weight than the 
control rats (Figure 2-13), and this behavior was consistent with the LNG-induced 
weight gain data in humans [233]. Both 96 (5 months) and 64 (> 7 months) formulations 
have successfully outperformed the current existing injectable contraceptives (3 months) 
in terms of therapeutic duration. Further, LNG is superior to medroxyprogesterone (API 
in Depo-Provera) regarding the bone loss [1, 2]. Therefore, injectable contraceptives of 
LNG stands as a promising alternative to the existing injectable LARCs. 
 

Apart from the pharmacokinetic evaluation, the efficacy of the formulations was 
also examined by studying the vaginal secretions of the rats injected with LNG. Unmated 
lab female rats show cyclic changes in the vaginal cytology through the span of the 
estrous cycle, and these progressions are biological markers of variances in the release of 
the ovarian hormones. In most non-pregnant lab rats, a complete cycle of such changes 
happens each 4 or 5 days [234]. Figure 2-14 shows the cyclic changes in the estrous 
cycle represented by the vaginal cytology images. Normal estrous cycle progression in 
rats is 4 day (M D P E M) or 5 day (D D P E D or M D D E M). Periodical examination 
of the vaginal secretions of the rats after injecting with the formulations revealed that the 
rats were acyclic indicating that formulations successfully suppressed the normal estrous 
cycles in the rats. Figure 2-15 shows representative images of vaginal cytology after 
injecting the formulation (96) for consecutive days showing acyclic progression. The 
group of rats injected with 96 formulation was selected, and the vaginal examination was 
continued after five months to demonstrate if the LNG-loaded ISD formulation effects 
are reversible in the rats after the end of the treatment. The results revealed that the rats 
resumed estrous cycles after clearance of the LNG indicating that the effects of the 
formulations are reversible. Further, when these female rats were co-caged with male rats 
for fertility study, the results demonstrated that 6 out of 8 rats become pregnant (#96) 
after clearance of the LNG at about 8 months after initial injection suggesting the return 
of fertility after the treatment. 
 

Initial In Vivo Burst Study of 64 and 96 Formulations 
 

One of the primary limitations of ISD formulations is the initial burst, so it is 
essential to analyze the initial burst drug levels in plasma for ISD formulations. As 55 
formulation showed poor long-term in vivo performance, only 64 and 96 formulations 
were selected to conduct the in vivo initial burst study. A short-term pharmacokinetic 
study was conducted where the drug levels were detected immediately during the early 
time intervals within 24 h after injecting the formulations (64 and 96). The initial burst 
levels of the formulations were detected and compared to the data obtained by injecting 
LNG solution alone (in NMP), (Figure 2-16). The Cmax, Tmax and AUC(0-24h) of the drug 
solution and formulations is given in Table 2-14. LNG solution in NMP without the 
polymers has resulted in a Cmax of 231.7±17.8 ng·mL-1 and AUC(0-24h) of 725.4 ± 45.5 
ng·hr·mL-1 (n=6) at a dose of 4 mg per rat (roughly 16 mg/kg), while the presence of 
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Figure 2-13. Changes in body weights of rats subcutaneously injected with ISD 
formulations. 
 
Notes: The LNG containing ISD formulations (n=8) 55 (open diamond), 64 (open circle), 
and 96 (open triangle) were injected subcutaneously into female SD rats at a dose of 10 
mg per rat (~40 mg.kg) and the body weights monitored over a period ~7 months. The 
control rat weights are represented by cross mark (n=2). Each point represents the 
mean±SE. The rats injected with LNG showed increased weight gain compared to the 
control. 
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Proestrus Estrus

Metestrus Diestrus  
 
Figure 2-14. Four stages of rat estrous cycle and characteristic features. 
 
Notes: Proestrus (P) - nucleated epithelial cells; Estrus (E) - anucleated cornified cells; 
Metestrus (M) -leukocytes, cornified, and nucleated epithelial cells; Diestrus (D) - 
leukocytes 
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Figure 2-15. Representative image of the cycle progression in rats injected with 
formulation (F-96). 
 
Notes: Cycle Progression: DDDDDDPEMDDDDDD, representing acyclic. 
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Figure 2-16. Plasma concentration of LNG (initial burst levels) in female SD rats 
as a function of time over 24 h after SubQ injection of ISD formulations and control 
LNG. 
 
Notes: LNG solution: 4 mg LNG in 400 μL NMP (square, n=6); 64 formulation (circle, 
n=5), and 96 (triangle, n=3) formulations containing 10 mg LNG. Each point represents 
the mean±SE. Formulations showed a significant suppression of Cmax and AUC(0-24h) 
compared to the control LNG solution. 
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Table 2-14. Pharmacokinetic parameters of LNG solution in NMP, 64 and 96 
formulations in rat plasma after SubQ injection. 
 
Formulation 
# 

Injection dose 
mg·Kg-1 

Cmax 
ng·mL-1 

Tmax 
h 

AUC(0-24 h) 
ng·hr·mL-1 

LNG in NMP (n=6) 16 231.7±17.8 0.29±0.04 725.4±45.5 
64 (n=5) 40 20.8±7.88 0.35±0.06 35.6±9.13 
96 (n=3) 40 103.6±2.88 0.33±0.08 319.0±20.2 
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polymers in the formulation has significantly suppressed the amount of LNG release into 
the systemic circulation even though the dose (10 mg/rat) was 1.5 times higher compared 
to the LNG solution. 64 and 96 formulations resulted in a Cmax of 20.8±7.9 ng/mL (n=5), 
and 103.6± 2.9 ng·mL-1 (n=3), respectively, meanwhile the AUC(0-24h) were found to be 
35.6±9.13 and 319.0±20.2, respectively. 64 formulation has shown significant lower 
burst (5 times lower Cmax) compared to the 96 formulation, and the reduced initial burst 
might be due to the altered phase inversion dynamics [184, 220] as a result of increased 
polymer molecular weight (102 kDa vs 63 kDa), drug loading (6% vs 2.5%), injection 
volume (160 μL vs 400 μL), and change in solvent (NMP/TEC vs NMP/BB), but the 
primary factor is assumed to be the polymer MW. Polymer MW is a critical parameter 
that can affect the drug release and it is reported in the literature that increased polymer 
molecular weight has shown a significant lower burst because of the formation of the 
denser structure of the depot [184, 235, 236]. On the other hand, the lower molecular 
weight PLA used in 96 formulation resulted in reduced viscosity (0.67±0.05 Pa.s vs. 
1.71±0.01 Pa.s for 64) causing more faster release of organic solvent and LNG, which 
might lead to a fast phase inversion type depot formation having greater porosity and fast 
release [237]. Other factors that may have involved for the initial burst in vivo for the 
formulations is the interstitial pressure/compressive forces exerted on the depot by the 
surrounding tissue environment which forces the solvent and drug to efflux out fast 
increasing the rate of depot formation in vivo [185, 238]. Although the polymer 
percentage (~24%) used in the prototype formulations is lesser than that employed in 
Eligard® (33-44%), still the formulations showed promising in vivo burst profile, 
suggesting that the use of polymer blend has a favorable effect. Additionally, the use of 
polymer blend and low polymer concentration (24%) has enabled to incorporate high 
molecular weight polymer into the formulations to achieve low burst while maintaining 
the favorable injectability (21/23G). 
 

Summary of the observations based on the in vitro and in vivo evaluation of the 
formulations 55, 64, and 96 from set-1 formulations is given in Figure 2-17. Formulation 
64 showed at least 7 months’ in vitro and in vivo LNG release with its in vitro depots 
maintaining integrity until the end of the study, and has shown low in vivo burst. The 55 
formulation could last only for 3 months in vitro and in vivo. 96 formulation showed 5 7 
month LNG in vitro and in vivo release profile, with detectable LNG concentration in 3 
rats at 7 months post injection, but has shown 5.5 times higher in vivo burst LNG levels 
than 64 formulation. This promising data indicated that a formulation in between 64 and 
96 would probably achieve robust 6-7 month LNG release, with better injectability and 
low initial burst. 
 
 
Design of Formulation Set - 2 
 

The major difference in composition between the 64 and 96 formulations is PLA 
intrinsic viscosity (0.63 vs. 0.47) or MW and amount (18.8% vs. 12%), solvent type 
(NMP/TEC vs. NMP/BB) and LNG amount (6% vs. 2.5%). In order to improve the 
formulation release duration, injectability, and lower the burst following optimization 
strategies have been adopted:  
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Low viscosity formulation (23G needle)
Lasted till 3 months in vivo

Low viscosity formulation (23G needle)
Lasted till 5 months in vivo

High initial burst

High viscosity formulation (23G needle)
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Low initial burst
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Figure 2-17. Key results summary of 55, 64 and 96 ISD formulations. 
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• Started with the 96 formulation and replaced the PLA (iv 0.47) in the 96 
formulation with PLA (iv 0.63, higher viscosity/MW, the polymer used in the 64 
formulation) at 3 different weight amounts: 20%, 16%, and 12%.  

• Replaced BB solvent in the 96 formulation with TEC (solvent used in the 64 
formulation) or ethyl acetate (EA, studies showed that EA maintained good in 
vitro gel integrity and drug release profile [239]) 

• Increased the drug loading to 4% (but maintained below 6% to avoid any 
solubility issues).  

• Kept the PLA polymer amount (~20%) as 64, but used a blend of PLA (iv 0.47) 
and PLA (iv 0.63). 

 
In Vitro Accelerated Release Study 

 
Conducting the real-time release under physiological conditions (PBS, pH 7.4) 

can take months to years depending on the required drug release duration (Figure 2-6), 
which is laborious and expensive. Therefore, a fast and reliable accelerated in vitro 
release method that can predict the real-time release in a short time is needed to save time 
and money [11,12]. Unfortunately, although several accelerated in vitro release methods 
have been developed for PLGA or PLA-based microspheres and preformed implants 
[12], but there is no accelerated in vitro release method for injectable ISD systems 
reported in the literature yet. Studies were conducted to develop an accelerated in vitro 
drug release method for LNG-loaded ISD systems for rapid screening/ differentiation/ 
optimization of long-acting contraceptives, and also provide some guidance that can be 
useful for the development of accelerated release methods for ISD systems in general.  
 

The selection of appropriate stress conditions for accelerating the drug release is 
dependent on the nature and composition of the formulation, stability of the drug and 
release medium, release mechanisms, and requirements related to the sampling interval 
and duration of the study [14]. In this work, different combinations of four conditions of 
release media including: (a) temperature [11,14–27]; (b) presence of organic solvents 
such as alcohol, acetone, acetonitrile as co-solvents [12,15,28]; (c) presence of 
surfactants [18,28–31], and (d) pH [12,15,16] were used to develop an accelerated in 
vitro drug release method for screening ISD systems for long-term release of LNG for 
contraception. The correlations between the release kinetics and mechanisms of LNG 
from ISD systems under real-time and accelerated conditions were established [240]. 
 

Accelerated (short-term) in vitro release 
 

96 and 64 formulations were used as control formulations for developing the 
accelerated release condition. As the real-time in vitro LNG release took months (Figure 
2-6) to be conducted, four different release conditions were explored as listed in Table   
2-4 to develop an accelerated short-term (2 weeks) release method that would correlate 
well with the real time long term release so that it can be used for screening ISD systems 
for sustained release of LNG. The accelerated release profiles of the formulations 96 and 
64 at four different conditions tested are shown in Figure 2-18I, II, respectively. 
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Figure 2-18. Short-term (accelerated) in vitro LNG release from formulations 96 
(I) and 64 (II) at four accelerated conditions. 
 
Notes: (A) PBS, pH 7.4, 50 °C (filled diamond); (B) 25% ethanol in PBS, pH 7.4, 50 °C 
(filled square); (C) 25% ethanol in PBS, 2% Tween 20, pH 7.4, 50 °C (cross mark); (D) 
25% ethanol in PBS, 2% Tween 20, pH 9, 50 °C (filled triangle). Each point represents 
mean±SD, n = 3). 
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Under elevated temperature alone (condition A: PBS, pH 7.4, 50 °C), Figure       
2-18I, II show that only 3.2% and 0.97% of LNG was released from the formulations 96 
and 64, respectively, during 14 days. These amounts were slightly higher than those 
corresponding amounts, ~2.97% (96) and ~0.47% (64), at 37 °C (Figure 2-6). When the 
release was conducted at elevated temperature, the drug release rate would increase as the 
drug diffusion and polymer degradation rate increased with temperature [11,15–22,34]. 
However, at elevated temperature, the polymer’s mobility also increased, which could 
cause a decrease in the drug release rate as the polymer movement could change the 
depot surface morphology and cause surface pore closure [11]. Possibly due to the 
competing effects mentioned above, the overall drug release rates from the two 
formulations did not increase too much when the temperature was increased from 37 to 
50 °C. Further investigation is needed to test this hypothesis. 
 

To achieve a higher LNG release rate, the temperature could be further increased. 
However, to avoid any potential high temperature related stability concern of the drug, 
we set the release temperature at 50 °C and explored the effects of additional parameters 
such as addition of organic solvent ethanol (condition B), and addition of ethanol and 
surfactant Tween 20 (condition C) in the release media on the drug release rate. Organic 
solvents such as alcohol, acetone, and acetonitrile added to the release medium as co-
solvents were reported to accelerate drug release due to the swelling property of the 
hydro-alcoholic solvent which could cause the morphological changes such as surface 
pitting and pore formation of depots with time (hydro-alcoholic effect) [12,15,28]. As 
ethanol is more environmentally friendly than acetone and acetonitrile, we chose ethanol 
as a co-solvent for the accelerated release study. Surfactants such as Tween 20, Brij 35P, 
Triton X-100 could form micelles in the release medium to extract out the hydrophobic 
drug loaded in the depot so that the drug would be released faster from the depot 
[28,35,36]. In this accelerated release study, we chose ethanol as a co-solvent and Tween 
20 as a surfactant. Figure 2-18I (96B),II (64B) showed that replacement of 25% of the 
release medium with ethanol did not cause much change in the LNG release rates from 
the two formulations 96 and 64 during the initial three days; the LNG release slowly 
increased during days 3 to 7, and the LNG release increased significantly during days 7 to 
14 and about 9-fold on day 14. These results suggested that the hydro-alcoholic effect did 
not work so well to accelerate LNG release during the first 3 days. To study if the further 
addition of surfactant would accelerate more LNG release, we added Tween 20 at 2 wt% 
in the release media and found that the addition of Tween 20 did not have much effect on 
the LNG release from formulations 96 and 64 during the first 7 and 5 days, respectively; 
decreased the LNG release from formulation 96 during 7–14 days, however, it increased 
the LNG release from formulation 64 dramatically after day 5 (Figure 2-18I(96C), 
II(64C)). The different effects of Tween 20 on LNG release from 96 and 64 formulations 
could be due to the differences in the porosities of the depots at condition C, which led to 
variation in the amount of Tween 20 micelles formed in the polymer matrix. The depot 
formed from 96 formulation probably generated more and faster pores than that from 64 
formulation (similar to the real-time conditions, Figure 2-7) as the corresponding 
inherent viscosities of the PLA used for the 96 and 64 depot preparation were 0.47 and 
0.63 dL/g, respectively. The more porous 96 depot may have allowed more surfactant to 
come inside the depot to form more micelles to hold more drug inside the depot. As a 
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result, the addition of surfactant Tween 20 would have caused a significant amount of 
micelles formed inside the depot formed from 96 formulation so that LNG was released 
less from the depot under condition C than condition B after 7 days. The above 
interpretations of the results need further investigation. 
 

As the three accelerated conditions A, B and C were unable to cause fast release 
during the first three days, then the pH of the release medium was increased from 7 to 9 
(condition D). Figure 2-18I, II show that the release of LNG from both the 96 and 64 
formulations was significantly increased during the first three days under condition D in 
comparison to the other three conditions A, B, and C. The reason was probably due to the 
faster degradation of PLGA/PLA in the depot caused by alkaline pH 9, which was 
already well documented in the literature [37,38]. After 3 days, LNG was continuously 
released under condition D with amount about 8–10 times on day 14 than under condition 
A (pH 7.4); and higher and lower under condition D than condition C (pH 7.4, 25% 
ethanol, 2% Tween 20) after three days for formulations 96 and 64, respectively. These 
results were probably due to the balance of the polymer degradation and micelle 
formation inside and outside the depots. 
 

The long-term goal of this study was to develop injectable formulations for 
sustained release of contraceptives for five months to years. Due to the intended long 
term release, the real-time 4–6 months in vitro release in Figure 2-6 and the accelerated 
2-week release in Figure 2-18 did not reach 80% LNG release, but instead reached <10% 
and <35%, respectively. According to FDA recommendation, an in vitro release should 
be conducted until the time point when 80% or higher or a plateau of drug release is 
attained [39]. However, the objective of the study was to identify an accelerated release 
condition that could be used to differentiate formulations during early formulation 
screening stage quickly rather than to develop a standard in vitro release protocol. The 
identified accelerated release condition D for a period of 2-week release study was 
sufficient and effective to achieve this objective. 
 

Release kinetics and correlation between accelerated and real-time releases 
 

To understand the release mechanisms of LNG from formulations 96 and 64 in 
real-time and accelerated conditions, all the release data in Figure 2-18 were fitted using 
empirical power law (Korsmeyer–Peppas Model, Equation 2-5) [40]. Table 2-15 lists 
the parameters k, n and coefficient of determination (r2) after fitting the release curves of 
96 and 64 formulations in Figures 2-6 and 2-18 using Equation 2-5. 
 

The release curves in Figures 2-6 and 2-18 could be fitted well by Equation 2-5 
with r2 ≥ 0.94 except for 64B and 64C which had slightly lower r2 values of 0.86 and 
0.88, respectively. The n values ranged from 0.22 to 1.59 suggesting different release 
mechanisms under the four accelerated conditions for the formulations 96 and 64. The 
conditions A, B, and C either slightly increased (96A, 64A, 64B, and 64C) or decreased 
(96B and 96C) the release rate constant k. The condition D significantly increased the k 
values by about ~10.2 and ~5.8 times for formulations 96 and 64, respectively, but well 
mimicked the release kinetics under real time condition for the two formulations with the 
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Table 2-15. Fitting parameters determined by the linear regression of log (Mt/M∞) against logt in Equation 2-5 for the LNG 
release from the depots made of formulations 96 and 64 under real time and four accelerated release conditions. 
 

Formulation 
(Release 
condition) 

Power law (Korsmeyer–Peppas model) 
r2 (Coefficient of 
determination) k (Rate constant) n (Release 

exponent) 
96(A) 0.96 1.62 0.22 
96(B) 0.94 0.50 1.59 
96(C) 0.97 0.57 1.15 
96(D) 0.99 9.23 0.41 
96 (long-term) 0.99 0.90 0.46 
64(A) 0.99 0.26 0.52 
64(B) 0.86 0.41 0.97 
64(C) 0.88 0.49 1.24 
64(D) 0.97 1.28 0.64 
64 (long-term) 0.97 0.22 0.65 
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similar fitting linearity (r2 = 0.99 for both 96D and 96; r2 = 0.97 for both 64D and 64) and 
release mechanisms (n = 0.41 and 0.46 for 96D and 96, respectively; n = 0.64 and 0.65 
for 64D and 64, respectively). These results are visually illustrated in Figure 2-19 (I, II). 
 

To further correlate the short- and long-term LNG releases, the times required to 
achieve the same amounts of LNG to be released from the formulations 96 and 64 under 
condition D (days) and real-time (months) are shown in Figure 2-20 [26,34]. Excellent 
correlations between the release times under condition D and real-time were obtained 
with r2 = 0.98 and 0.99 for formulation 96 and 64, respectively. These results suggested 
that the condition D was able to reduce the release time significantly compared to the 
real-time, and allows for the prediction of LNG long-term release from ISD systems in a 
short period. Therefore, condition D was used to screen the set-2 formulations for initial 
in vitro release screening. 
 

Screening of Set-2 ISD Formulations 
 

Various formulation variables were investigated to reduce the undesired burst. In 
each experiment, the standard formulations 96 and 64 were repeated as a reference for 
comparing viscosity (injectability) and initial drug release, respectively. Initially the 
formulations (96j- 96o) were screened for shear viscosity and the initial release in 24 
hours at accelerated condition D. The results showed that lowering the polymer 
concentration from 24% (96j, 96m) to 20% (96k, 96n) to 16% (96l, 96o) has resulted in a 
significant decrease (at least 2 fold) in the viscosity (Figure 2-21A) of the formulations. 
However, lowering the polymer percentage has led to significant increase in the initial 
release compared to the 64 formulation (Figure 2-21B). Thus, the polymer concentration 
played a significant role in the ISD formulations. A higher polymer concentration led to a 
more viscous solution, which might have delayed the polymer precipitation and resulted 
in a less porous polymer matrix with a slower drug release [241]. On the other hand, 
increasing the drug loading from 2.5% (96j/96k/96l) to 4% (96m/96n/96o) lead to 
increase in the viscosity(~1.2 to 2 fold) and a decline of the injectability of the 
formulations, and the extent of increase is more prominent in case of the formulations 
that had high polymer percentage (96j vs. 96m). At low polymer percentages, the drug 
release rate was increased with increased drug loading which was consistent with the 
literature [194]. However, in the case of formulations with high polymer percentage 
(24%), increased loading has resulted in decreased initial release rate. This opposite 
pattern could be attributed to significantly increased viscosity (~ 2 fold) of the 96m (4% 
LNG) formulation compared to the 96j (2.4% LNG), which might have decreased the rate 
of phase inversion dynamics and slowed the initial release [241].  
 

It was observed that the formulations that showed promising release profile as 64 
are 96j and 96m. This suggested that 24% of the polymer may be needed to get the 
desired slow release profile as 64 formulation in vivo. However, injectability at such high 
polymer percentage is a drawback. Therefore, keeping the polymer percentage (24%) and 
PLA amount (20%) constant, the higher inherent viscosity PLA (0.63 iv; 103 kDa MW) 
was substituted with a lower inherent viscosity PLA (0.47 iv; 67 kDa MW) at various 
proportions to design 96p, 96q, and 96r formulations. Higher drug loading is favored in  
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Figure 2-19. Power law kinetics (plot of log percent release vs. log of time in days) 
of formulations. 
 
Notes: 96 (I; triangle) and 64 (II; circle) in real-time (open symbols) and accelerated 
(filled symbols) release condition D. Each point represents mean±SD, n=3 
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Figure 2-20. Correlation of accelerated (short-term) release at condition D with 
real-time (long-term) release testing of formulations 96 (I; triangle) and 64(II; 
circle). 
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Figure 2-21. Shear viscosity (A) and LNG in vitro release in accelerated condition 
D (B) of different ISD formulations. 
 
Notes: Polymer percentage: 24% in (96j, 96m); 20% in (96k, 96n), 16% in (96l, 96o). 
Complete composition listed in Table 2-3. Each point represents the mean±SD, n=3. 
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terms of injection volume, as it would result in a smaller injection volume at the same 
dose. Therefore, 4% LNG was loaded into the formulations instead of 2.5% and tested for 
the shear viscosity. Figure 2-22 shows the shear viscosities of the 96p, 96q, and 96r 
formulations. The 96r formulation has a viscosity of (0.75±0.02 Pa.s), similar to that of 
96 formulation (0.65±0.05 Pa.s) and can be easily injected through 23 gauge needle.  
 

Another formulation 96zz was prepared by replacing the TEC in 96r formulation 
with ethyl acetate. The rationale for designing 96zz is that EA could increase not only the 
hydrophobicity of the preparation but also decrease the viscosity. Further, earlier studies 
from our group showed that EA maintained good in vitro gel integrity and drug release 
profile [239]. Replacement of TEC with EA has resulted in a decrease in the mean 
viscosity of the formulation from 0.75 to 0.66 Pa.s. Apart from the low viscosity, another 
desirable attribute of these 96r and 96zz formulations is that both formulations showed 
slower release rate of LNG than 64 formulation during the initial accelerated in vitro 
release study (Figure 2-23). The order of in vitro LNG release rate during the initial 4 
hours was 96zz < 96r < 64. 
 

Both 96r and 96zz formulations which have shown injectability through the 23G 
needle and promising in vitro release profile were selected for in vivo burst study and 
injected SubQ into the rats at a dose of 10 mg LNG. Figure 2-24 shows the comparison 
of plasma LNG concentration as a function of time in first 24 h after injecting the 
formulation 96r, 96zz, and 64. The Cmax, tmax, and AUC(0-24h) of 96r and 96zz were 
estimated and given in Table 2-16. The Cmax and AUC(0-24h) of LNG for the formulations 
were in the order of 64 < 96r < 96zz. The initial release of LNG from 96r, 96zz and 64 in 
vivo was opposite to that observed in vitro. This difference could be attributed to the 
differences in the in vitro and in vivo conditions and the physiochemical characteristics of 
the formulations. During in vitro studies, as the formulation was injected into the mold 
and placed in the jar containing release medium, no external forces were acting on the 
depot. On the other hand, when the ISD formulation was injected in vivo, a high amount 
of shearing forces from the surround tissue environment will be acting on the depot. 
These surround forces could exert a squeezing on the depot expelling the solvent quickly 
in comparison to the in vitro depots which experience no external forces. Another factor 
could be related to the viscosity of the formulations. The Cmax of the formulations was 
increased with a decrease in the viscosity of the formulation, which could be due to 
higher rate of phase inversion dynamics with decreased viscosity leading to faster initial 
release [241]. Although 96r and 96zz formulations have similar composition except for 
co-solvent (TEC vs EA), a significant difference (2.7 fold) in the Cmax was observed 
between 96r and 96zz. EA has more 1.44 times higher water miscibility and 77.9 fold 
lower viscosity than TEC. Because of the high water miscibility (1.4 fold) and significant 
low viscosity (77.9 fold) of the co-solvent EA compared to TEC, the solvent mixture 
NMP:EA (96zz) might have left the system rapidly compared to the NMP:TEC (96r) 
mixture during in vivo conditions because of tissue compressive forces. This fast 
diffusion of the solvent along with dissolved drug might have resulted in the higher initial 
release of LNG in vivo for 96zz formulation compared to 96r. The 96r formulation has 
shown promising in vivo profile close to 64 formulation. To this end, the optimized 
formulation 96r has favorable attributes which include injectability through a 23G needle  
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Figure 2-22. Shear viscosities of 64, 96, 96p, 96q, and 96r formulations. 
 
Notes: LNG Loading and polymer percentage in formulations (96p, 96q, and 96r) is 4% 
and 24%, respectively. However, the formulations varied in the polymer composition. 
Complete composition listed in Table 2-3. Each point represents the mean±SD, n=3. 
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Figure 2-23. Shear viscosity (A) and LNG in vitro release in accelerated condition 
D (B) of the formulations 64, 96, 96r and 96j. 
 
Notes: The difference between 96r and 96zz is the co-solvent (TEC vs EA). Complete 
composition listed in Table 2-3. Each point represents the mean±SD, n=3. 
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Figure 2-24. LNG Plasma concentration measured in rats as a function of 
time after SubQ injection of 64, 96r, 96zz formulations. 
 
Notes: Dose: 40 mg∙kg-1. The difference between 96r and 96zz is the co-solvent (TEC vs 
EA). Each point represents the mean±SE, n=3-5. 
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Table 2-16. Pharmacokinetic parameters of 96r and 96zz formulations in rat 
plasma after 24 hours post SubQ injection. 
 

Formulation Injection dose Cmax Tmax AUC(0-24 h) 
# mg·Kg-1 ng·mL-1 h ng·hr·mL-1 

96r (n=3) 40 29.0 ± 6.39 0.20± 0.02 149.14 ± 12.19 
96zz (n=5) 40 79.0 ± 11.1 0.25± 0.08 231.22 ± 33.07 
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(close to 96 formulation), and slow in vitro release, and low initial in vivo burst (close to 
64 formulations). The lead formulation 96r has great potential to show a long-term in 
vivo LNG release. 
 
 

Conclusions 
 

A series of LNG-containing ISD formulations were designed by employing 
unique strategies which include the use PLGA, PLA with different biodegradable 
properties, and blends of these polyesters, use solvent mixtures of NMP, TEC, BB, EA 
and with varying polymer/solvent ratios, and drug loadings. This study has investigated 
and effect of formulation variables on injectability, in vitro release and in vivo initial 
burst of LNG-containing ISD systems. 

 
In the process, new methods have been developed and reported for detecting LNG 

in rat plasma, and for accelerated in vitro release of LNG from ISD formulations for rapid 
screening. The details and the finding from these two new methods are:  
 
• A simple and sensitive LC/MS/MS method for quantitative bioanalysis of 

levonorgestrel in rat plasma was developed and validated and applied to 
pharmacokinetics study of LNG in rats. LNG was successfully extracted and 
quantified in rat plasma using the presently developed LC/MS/MS method, and 
the resultant mass spectra was satisfactory in terms of identification, least 
interference from matrix components and better quantification. The developed 
liquid–liquid extraction method using hexane/ethyl acetate (80/20, v/v) mixture 
was fast and efficient in terms of matrix effect and recovery efficiency. Moreover, 
this technique required a small amount of rat plasma (100 μL) unlike any 
previously reported methods which used 0.5–1 mL of human plasma. Calibration 
curve was successfully constructed within a concentration range of 0.5–50 ng·mL-

1. The developed method was successfully validated for specificity, accuracy, 
precision and stability. Furthermore, this validated method was successfully 
applied to study LNG pharmacokinetics after single SubQ injection of LNG alone 
and LNG-containing ISD formulations in rats.  

• An accelerated release study to evaluate long-acting contraceptive LNG-
containing ISD systems was developed. In summary, elevated temperature, 
addition of alcohol and surfactant, and change of the pH of the releasing medium 
to basic could result in an increase in the drug release rate of ISD systems, due to 
higher degradation of the depot polymers, increase of the porosity of the depot 
matrices, and thus fast diffusion of the drug out of the depots. The developed 
accelerated release condition D (25% ethanol in PBS, 2% Tween 20, pH 9, 50 °C) 
shortened the 4-5 month real-term LNG release from formulations 96 and 64 in 
PBS (pH 7.4) at 37 °C to days without changing the drug release mechanisms. 
The developed accelerated release method has significance not only in helping 
rapid screening of formulations for the development of ISD-based contraceptives 
containing LNG, but also for providing guidance for the development of 
accelerated in vitro release testing methods for ISD systems in general. 
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The summary of the key findings during the screening and optimization of ISD 
formulations for contraception that were outlined in this chapter:  
 
• During the initial screening, the formulations 64 and 96 suppressed the rat normal 

estrous cycles for 5 and ≥7 months, respectively after one SubQ injection. No 
significant swelling or inflammation was observed at the site of injection. After 
the end of the treatment, a rapid return of fertility was observed in rats. The 
prototype injectable ISD formulations (64 and 96) studied for long-acting 
contraception exceeded the current commercial products Depo-Provera®/Depo-
subQ Provera 104® in terms of duration (≥ 5 vs. 3 months), and Eligard® in terms 
of needle size (21-23 vs. 18-20 G). However, 96 formulation with promising 
injectability showed significantly higher burst compared to 64 formulation. 
Therefore, the optimization process was further continued to get a balance 
between injectability and initial burst. 

• The shear viscosity and injectability of the formulations was found to be 
proportional the polymer concentration, polymer inherent viscosity (or MW), and 
drug loading. In vitro LNG release studies demonstrated that polymer 
concentration and polymer inherent viscosity were the critical variables 
controlling the in vitro release. Decrease in polymer concentration (from 24% to 
14%), or polymer inherent viscosity (from 0.63 to 0.47) in formulations with 
similar composition has resulted in a decrease in shear viscosity (~ 3 to 7 fold), 
increased injectability (23 G needle), but showed faster in vitro LNG release.  

• Formulations with TEC as secondary solvent showed a low initial burst in vivo 
compared to the similar formulations EA as co-solvent. 

• The initial in vivo burst of LNG release was found to vary as a function of 
polymer concentration, polymer inherent viscosity, and co-solvent used in the ISD 
formulation.  

• The formulations with the optimum balance between the injectability (23 G 
needle) and the LNG release was obtained with a total polymer concentration of 
24%, a solvent combination of NMP/TEC and a shear viscosity between 0.7-1 
Pa.s. The optimized lead formulation 96r designed by a unique blend of PLGA 
and PLA polymers with different molecular weights has shown favorable 
injectability (23G) and in vivo initial burst, and has a high chance that it can show 
a promising long-term in vivo LNG release. The optimized formulation will serve 
as better candidates in terms of injectability and burst release and can be further 
investigated for long-term release and stability studies. 

 
In conclusion, the results have demonstrated that the injectable ISD formulations 

can serve as an effective means of administering LNG with minimal tissue toxicity for 
long-term contraception suggesting that the designed ISD formulations have great 
potential for developing future robust and affordable injectable LARC products that 
could improve access to family planning around the globe. 
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Future Work 
 

There is a high possibility that the optimized formulation (96r) could show a 
promising long-term in vivo LNG release. Therefore, the future work of this project 
include: i) conducting long-term in vivo PK studies with the 96 r formulation in rats to 
evaluate the extended release profiles of the LNG for five months, vaginal cytology, 
fertility study and in vivo safety, ii) continuation of the formulation optimization iii) 
developing a protocol for the terminal sterilization of the formulations, iv) evaluation of 
the stability of lead formulations upon storage, v) scale-up of lead formulations 
 
  



 

85 

CHAPTER 3.    POLYSACCHARIDE-BASED NANOPARTICLES FOR DRUG 
DELIVERY ACROSS OCULAR/BLOOD-BRAIN BARRIERS  

 
 

Background 
 

Since past few decades, several new chemical entities have been discovered as 
potent therapeutics for treating various diseases. In spite of the potency, more often their 
efficacy is still hampered by the inability to reach the target site of action [35, 36]. These 
hurdles for the effective therapy of drug molecules (small or biologicals) could be 
attributed to the physicochemical properties of the drug molecules and the various 
barriers imposed by the body [242]. The human body possess various external (e.g. skin, 
intestine) and internal (bloodstream, the cytoplasm of tissue) physiological barriers which 
constitute the interface between different physiological environments so that a selective 
compartmentation is made for the effective regulation of distinct physiological functions 
in the body [242]. These act as a boundary between inside and outside of units such as a 
cell (e.g. cell membrane) or organ (e.g., cornea of the eye, BBB of brain) and usually 
permit the entry of oxygen and some key solutes, maintain water homeostasis and restrict 
the entry of other components and foreign materials [243]. They control the impact of 
external environment on the human body [35, 242] 
 

Although these barriers are body’s natural defense mechanism against foreign 
invaders, unfortunately, they pose significant hurdles to the drug therapy. Drugs need to 
traverse several physiological barriers to reach the target site to achieve effective drug 
concentration levels [36]. For instance, skin is the biggest obstruction to the topical drug 
delivery, while an epithelial layer of the GIT blocks the entry of drugs given orally. Even 
when administered via the parenteral route, drugs still need to overcome many barriers, 
either in blood or at the site of action. For example, the BBB and blood-retinal barrier 
(BRB) are the tightest barriers which prevent the entry of drugs from the bloodstream 
into the central nervous system and internal ocular tissues, respectively [243, 244]. In 
addition to the physiological (physical) barriers, another category of biological barriers 
that impede the drug activity are the biochemical and chemical barriers such as enzymatic 
degradation and elimination, the presence of efflux transporters [245-247].  
 

For a drug to show its therapeutic activity, it is essential to overcome the 
physiological barriers and achieve desired concentrations at the target site [36]. These 
barriers may comprise of a single (e.g., intestinal epithelium) or multiple (e.g., skin, 
cornea) layers of cells that regulate the nutrients, electrolytes, and water exchange while 
restricting the entry of microbes, toxins, and antigens. The epithelial or endothelial cells 
which constitute the barrier have unique elements that promote barrier function, including 
apical-basolateral polarity and intracellular tight junctions. Two common pathways by 
which drugs cross these cellular layers are transcellular (through the cells), paracellular 
(between the cells) pathways. Transcellular drug transport is referred to the transportation 
of the drug across the membrane through penetration through the cell layer. The main 
mechanisms by which drugs penetrate through the cell layer are: (a) Passive diffusion - 
represents the primary mechanism where the drug molecules from outside of the cell 
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surface diffuse into the cells through the cell membrane spontaneously because of the 
concentration gradient; (b) Carrier-mediated diffusion - is the movement of molecules 
across the cell membrane with the help of some special transmembrane carrier molecules 
(or transport proteins) that are embedded in the cell membrane. This process can take 
place with (facilitated diffusion) or without (active transport) the need for energy 
consumption; (c) Vesicular transport: is a transcellular transportation mechanism in 
which the cell membrane frames a small pit that gradually encloses extracellular material 
to form a vesicle and then internalize them into the cell. The process is called endocytosis 
when the material is taken into the cell, exocytosis (reverse of endocytosis) when the 
material is exited out of the cell, and transcytosis when the material is transported across 
the cell. Paracellular drug transport is referred to the transportation of the drug across the 
membrane/barrier through the junctions between the cells. This process can be initiated 
by concentration (passive diffusion) or hydrostatic pressure (filtration) gradient across the 
layer. Paracellular transport between epithelial/endothelial cells is regulated by structures 
at cell-cell contact sites known as tight junctions [248]. All these transport mechanisms 
are regulated, different substances move using various aspects of trans/paracellular 
routes. Each of these pathways can be targeted to alter barrier function and enhance the 
drug permeability [249].  
 

Some of the important physiological barriers that pose hurdles to drug transport 
are the intestinal epithelium, skin, ocular barriers, and blood-brain barrier. The barriers of 
interest to this project (ocular and blood-brain barriers) are discussed in detail below:  
 
 
Ocular Barriers 
 

The structure of the eye and ocular barriers for drug delivery is illustrated in 
Figure 3-1. Clinically, the anterior segment diseases/disorders are more often treated by 
using eye drops, or ointments, while the posterior eye segment diseases are treated by eye 
drops, or intravitreal injection/implantation. Local therapy via topical, periocular or 
intravitreal administrations is more favorable over the therapy via systemic 
administration such as oral and intravenous administrations to manage ocular diseases. 
The first reason is that the eye has much less blood vessels and blood flow than the whole 
body blood circulatory system so that the amount and rate of drugs to be cleared through 
local eye administration is much less than through systemic administration. The second 
reason is due to the presence of blood-aqueous barrier (BAB), and BRB which limits the 
drug penetration from the systemic circulation into the anterior and posterior segment of 
the eye, respectively. 
 

Routes of Administration and Ocular Barriers 
 

Several routes of administration for drugs to treat eye diseases include topical, 
intracameral, periocular routes (such as subconjunctival, sub-Tenon’s, retrobulbar), 
intravitreal and systemic routes. Depending on the routes of administration, one or more 
ocular barriers need to be circumvented for drugs to reach the disease/action sites in the 
eye. Table 3-1 lists the routes of administration and their associated advantages and 
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Figure 3-1. The structure of the anterior segment of the eye and ocular barriers 
for drug delivery. 
 
Notes: A) Tear film barrier: Main components of the tear film include mucins, water, and 
lipid, and acts a defensive barrier to the foreign-object access to the cornea and 
conjunctiva. B) Corneal barrier: avascular and comprised of three major layers which are 
epithelium (multiple layers stacked on each other), stroma and endothelium (single 
layer). Acts as a barrier preventing the drug absorption from the lacrimal fluid into the 
anterior chamber after the topical administration. C) Conjunctival barrier: mucous 
membrane consisting of conjunctival epithelium (2-3 layers thick), and an underlying 
vascularized connective tissue. Acts a barrier to the topically administered drugs, and 
relatively inefficient compared to the corneal barrier. D) Blood-aqueous barrier: located 
in the anterior segment of the eye. Formed by the capillary endothelium in the iris, and 
the ciliary epithelium which both contain tight junctions. The barrier is relatively 
inefficient compared to the BRB, and small molecules can reach the aqueous humor by 
permeation through fenestrated capillaries in the ciliary processes. E) Blood-retinal 
barrier (BRB): located in the poster segment of the eye. Formed by the retinal pigment 
epithelium (outer BRB) and the endothelial membrane of the retinal blood vessels (inner 
BRB), both contain tight junctions. The tight junctions restrict the entry of the drugs from 
the blood (systemic) into the retina/aqueous humor. 
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Table 3-1. Administration routes for delivering drugs to the anterior segment of the eye. 
 

Route of administration Advantages Limitation 
Topical simple, convenient, self-administrable 

and noninvasive administration; 
avoiding the blood-aqueous barrier; no 
first-pass metabolism 

short contact time of drug on the 
ocular surface; low efficiency and 
low bioavailability due to corneal and 
conjunctival barriers, tear clearance, 
and nasolacrimal drainage 

Intracameral avoiding the cornea, conjunctiva, and 
blood-aqueous barrier; no first-pass 
metabolism; high efficacy; high 
bioavailability 

usually need reconstitution; correct 
dosing and preparation are critical. 

Subconjunctival easy and minimally invasive 
administration; avoiding the cornea and 
blood-aqueous barrier; no first-pass 
metabolism; good efficacy; good 
bioavailability; sustained release 

conjunctival blood and lymphatic 
clearance 

Intravitreal direct delivery to the back of the eye; 
surpass all the barrier; sustained release 
(intravitreal implants) 

highly invasive; inherent potential 
complications such as hemorrhage, 
cataract, endophthalmitis, and retinal 
detachment; rapid clearance 

Systemic convenient to deliver a large dose of 
the drug; noninvasive; avoiding the 
cornea 

low bioavailability due to systemic 
absorption and blood-aqueous 
barrier; first-pass metabolism 
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limitations. In the following, we will discuss the details of the routes of administration 
and related ocular barriers. 
 

Topical Administration 
 

Topical administration is the simplest, convenient, self-administrable, non-
invasive, and most dominant drug administration route for the management of eye 
diseases/disorders. It is a local drug delivery method, avoiding the blood–aqueous barrier, 
and the side effects and first-pass metabolism that may occur in some systemically 
administrated drugs. Drugs administrated through the topical route are usually formulated 
into eye drops. Depending on the formulation and drug’s physiochemical characteristics, 
the drugs can reach various external (cornea, conjunctiva sclera) and internal (iris, ciliary 
body, aqueous humor, vitreous humor, retina) sites in the eye after topical instillation 
[250]. However, only 1-7% of the administered drugs can reach the intraocular tissues 
due to the tear film, cornea and conjunctiva barriers and another obstacle such as 
lachrymal drainage, tear drainage and tear turnover [246, 251, 252]. Tear film is the first 
obstacle faced for topically administered drugs. It consists of three layers: an outermost 
lipid layer, a thicker aqueous middle layer and an innermost mucin layer (Figure 3-1A). 
Due to the fast turnover rate and time of tear film, the topically administered eye drops 
are quickly washed away and drained into nasolacrimal duct after instillation [253]. 
Cornea is the second ocular barrier limiting the penetration of exogenous substances into 
the eye. It is composed of five layers: epithelium, Bowman’s membrane, stroma, 
Descemet’s membrane, and endothelium (Figure 3-1B). The layers which form 
substantial barriers to drug penetration are: epithelium, stroma and endothelium. The 
superficial corneal epithelium is composed of multiple layers of stratified squamous non-
keratinized epithelial cells. It limits the permeation of hydrophilic drugs through the 
cornea due to the hydrophobicity of the epithelium and the presence of tight junctional 
proteins between the corneal epithelial cells [250, 254]. The inner layer next to the 
corneal epithelium is stroma. The stroma is comprised of glycosaminoglycans and 
collagen fibrils in lamellar structures, and has hydrophilic environment. It restricts the 
penetration of lipophilic drugs through the cornea [250]. The innermost layer of the 
cornea is monolayer corneal endothelium composed of hexagonal-shaped endothelial 
cells. This corneal endothelium is leakier than the epithelium and allows the penetration 
of macromolecules into the aqueous humor on the other side [250]. Overall, cornea acts 
as a physical barrier to hydrophilic drugs due to the superficial corneal epithelial layers; 
and to lipophilic drugs due to the stroma. Besides the cornea route, topically administered 
drugs can be absorbed into the eye through non-cornea route: the conjunctiva/sclera 
pathway as the conjunctiva has a large surface area than the cornea (17 vs. ~ 1 cm2) [251, 
252, 255, 256]. Conjunctiva is a rate-limiting barrier for permeation of water-soluble 
drugs [257, 258] due to rapid drug elimination by conjunctival blood and lymphatic flow 
(Figure 3-1C). After escaping from the conjunctival elimination, drugs penetrate through 
the sclera to inner ocular tissues (trans-scleral pathway).  
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Intracameral Administration 
 
Intracameral administration is a method for direct injection of drugs into the 

anterior chamber in the anterior segment of the eye [259]. It is a local drug delivery 
method, avoiding the side effects and the first-pass metabolism that may occur in some 
systemically administrated drugs. It also avoids the cornea, conjunctiva and blood-
aqueous barriers. Therefore, intracameral injection can deliver drugs to the eye relatively 
easily with high efficiency and was expected to achieve 300 to 600 times aqueous humor 
drug level than topical application [260, 261]. After intracameral injection, the 
mechanism for drugs to reach the inner ocular tissues was via diffusion and the bulk flow 
of aqueous humor. However, intracameral antibiotics usually need reconstitution 
including dilution and other special preparations which require sterilization, non-
preservatives, and proper concentration and dose. If incorrect dosing and preparation 
occur, corneal endothelial toxicity and toxic anterior segment syndrome become 
significant concerns [261, 262]. 
 

Subconjunctival Administration 
 

Subconjunctival administration (periocular routes) places drugs in the 
subconjunctival space around the outside of the sclera, and then drugs penetrate through 
the sclera into the eye. This route is safer and less invasive and effective for delivering 
drugs to the eye, avoiding the cornea and blood–aqueous barriers, and the side effects and 
the first-pass metabolism that may occur in some systemically administrated drugs. It is a 
local drug delivery method, and can offer sustained drug delivery depending on 
formulations or devices. Through this route, the primary pathway to reach the retina is via 
sclera and underlying choroid–Bruch’s layer and retinal-pigment epithelium (RPE). The 
sclera is the white outer elastic and microporous tissue layer comprised of proteoglycans 
and closely bundled collagen fibers, containing about 70% water. The pathway for drugs 
to diffuse across sclera is through the interfibrillar fluid media of the gellike 
proteoglycans. Sclera has large surface area and relatively high permeability than cornea, 
and the transscleral permeation mainly depends on the size of the drug molecules rather 
than their lipophilicity [250, 263, 264]. However, the subconjunctival route  has 
limitation of possible loss of drugs to the systemic circulation due to the drainage via the 
conjunctival blood and lymphatic vessels [263, 265]. 
 

Intravitreal Administration 
 

Intravitreal administration is a highly invasive route that provides the direct 
approach for delivering medications to the back of the eye with a greater probability of 
achieving effective drug concentrations in the posterior tissues while lowering the risk of 
systemic exposure. Several of the current therapeutics (eg. Avastin, Lucentis, 
Dexamethasone) relies on intravitreal administration for treating posterior eye diseases. 
Although intravitreal route is very advantageous as it overcomes all the ocular barriers 
and allows direct entry of drugs into the back of the eye, it suffers from various inherent 
potential complications such as hemorrhage, cataract, endophthalmitis, and retinal 
detachment. Because of its invasive nature, it lacks the patient compliance. Moreover, 
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drugs administered directly into the vitreous humor undergo rapid elimination. To avoid 
multiple injections, intravitreal sustained release systems such as implants, microspheres, 
liposome can be used. However, intravitreal implants too suffer from similar 
complications as intravitreal injections. 
 

Systemic Administration 
 

Systemic administration can deliver drugs to the anterior segment and posterior 
segment of the eye, but with low bioavailability due to the presence of the BAB, and 
BRB. The two layers that comprise the BAB are the endothelium of the iris/ciliary blood 
vessels and the nonpigmented epithelium of the ciliary body (Figure 3-1D) [266]. BRB is 
located in the poster segment of the eye. As the retina is in contact with the highly 
vascularized chordal tissue which has fenestrated capillaries, there are two BRBs. It is 
formed by the retinal pigment epithelium (outer BRB) and the endothelial membrane of 
the retinal blood vessels (inner BRB), both contain tight junctions (Figure 3-1E). The 
outer BRB is a monolayer of tightly joined RPE and separates the posterior side of the 
retina from the choroid. Both outer and inner BRBs have tight junctional complexes and 
limit the penetration of blood-borne components into the aqueous humor/retina. 
However, both the layers are expressed by wide range of selective transporters for the 
solutes. In order to achieve therapeutic levels of drugs in the internal ocular tissues, high 
doses are necessary. High doses can cause adverse systemic side effects so that systemic 
administration route is rarely used to treat eye disease/disorders. 
 
 
Blood Brain Barrier* 
 

BBB is the protective interface that separates the brain from the systemic 
circulation and this barrier has several common features as outer BRB (the retinal 
endothelium, Figure 3-1E). Anatomically, the BBB is composed of endothelial cells 
which are lining the cerebral microvessels and buttressed by astrocyte and pericyte cells 
(Figure 3-2) [267, 268]. The BBB functions as a physical barrier due to tight junctions 
between the adjacent endothelial cells, a selective ‘transport barrier’ due to specific 
transport systems on the luminal and abluminal membranes of the endothelial cells, and a 
‘metabolic barrier’ due to the presence of intracellular and extracellular enzymes [269-
272]. The tight junctions are composed of three integral membrane proteins including 
claudin, occludin, and junction adhesion molecules, and a number of cytoplasmic 
accessory proteins including ZO-1, ZO-2, ZO-3, cingulin, etc. [267, 269]. Fully 
developed tight junctions serve as a gatekeeper to restrict the paracellular transport across 
the BBB. The transport systems are influx and efflux transporters. The influx transporters  
 
 
------------- 
* Adapted with permission from “Pharmaceutical research. Overcoming the blood-brain 
barrier in chemotherapy treatment of pediatric brain tumors. 31(3). 2013. p. 531-540. Wu, 
L., Li, X., Janagam, D. R., Lowe, T.L. © Springer Science + Business Media New York 
2013. With permission of Springer.”  
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Figure 3-2. Anatomy of the blood-brain barrier (BBB). 
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include solute carrier superfamily facilitating brain uptake of glucose, amino acids, ions,  
and other nutrients; while the efflux transporters are ATP-binding cassette (ABC) efflux 
transporters such as P-glycoproteins and multidrug resistance-associated proteins [273], 
which efflux lipophilic toxins including many therapeutics away from the brain to reduce 
the penetration of these molecules into the brain. The intracellular and extracellular 
enzymes are monoamine oxidase and cytochrome P450 (CYP1B1), and ectoenzymes, 
respectively, responsible for inactivating many neuroactive and toxic compounds in the 
BBB [267, 272, 274]. While the three physical, transport and metabolic barriers allow 
nutrients in the blood stream and waste generated in the brain to cross the intact BBB, 
they prevent or limit non-selected substances to penetrate the intact BBB and get into the 
brain. It has been well-known that 98% of small molecule drugs with a molecular weight 
smaller than 400 Da including many chemotherapeutics such as carboplatin, vincristine, 
cyclophosphamide, cisplatin, methotrexate and etoposide cannot cross the intact BBB to 
get into the brain. Almost 100% of large molecule drugs with a molecular weight greater 
than 400 Da also cannot penetrate the intact BBB by themselves [270].  
 

Strategies for Circumventing the BBB 
 

The strategies to circumvent/overcome the limitation of the BBB could be 
categorized into i) by-passing the BBB by directly administrating therapeutics into the 
brain, ii) disrupting the BBB by temporarily opening the tight junctions in the BBB, iii) 
active transport across the BBB by exploiting transport mechanisms associated with the 
BBB, and iv) by-passing the BBB by directly delivering therapeutics to the brain through 
intranasal nose to brain route [38, 50, 275-277].  
 

By-passing the BBB 
 

Drugs could be directly administrated into the central nerve system (i.e. brain and 
spine), thus bypassing the BBB and blood-cerebrospinal fluid (CSF) which are 
formidable obstacles faced by systemic administrated (e.g. oral and intravenous) drugs. 
Intrathecal administration and convection-enhanced delivery are mainstays of such 
administration methods (Figure 3-3). For intrathecal administration, drugs are injected 
into the fluid-filled space in spine via a needle or under the scalp via an outlet catheter 
connected to the ventricles (Figure 3-3A) [278-280]. Compared to systemic 
administration in which the whole body acts as a sink for the administrated drugs, the 
intrathecal administration needs much lower drug dose to achieve higher drug 
concentrations in the brain due to the small volume of CSF (about 150 ml). Moreover, as 
the drugs are administrated behind the BBB and thus the BBB is not a concern or 
obstacle for administration through this method. Intrathecal drug administration has been 
used in the management of brain diseases such as brain tumors for several decades [279, 
281-285]. One disadvantage for intrathecal administration is that intrathecal drug 
administration can result in non-targeted drug distribution, inhomogeneous dispersion, 
and ineffective volume of drug distribution due to drug molecular weights and infuscate 
diffusivities.  
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Figure 3-3. Intrathecal administration (A); Convection-enhanced delivery (B). 
 
Notes: Intrathecal administration and convection-enhanced delivery are the methods that 
directly administer the drugs into the central nerve system (i.e. brain and spine), thus 
bypassing the BBB and blood-cerebrospinal fluid (CSF) [280, 286, 287]. 
 
  



 

95 

Convection-enhanced Delivery (CED) 
 

CED is another regional drug administration method introduced by Oldfield and 
his associates to overcome the limitations for intrathecal administration [286]. In CED, 
intracranial catheters are connected to target sites to deliver therapeutics under a 
continuous pressure gradient over periods of hours to days and thus enhance the 
distribution of drugs by convection rather than diffusion (Figure 3-3B) [288]. This 
method allows delivery of high concentration of drugs directly into diseased sites in the 
brain and the adjacent parenchyma, thus eluding the BBB and limiting systemic toxicity. 
Small molecule drugs, macromolecules, and even nanocarriers have been successfully 
method allows delivery of high concentration of drugs directly into diseased sites in the 
brain and the adjacent parenchyma, thus eluding the BBB and limiting systemic toxicity. 
Small molecule drugs, macromolecules, and even nanocarriers have been successfully 
delivered into the brain using CED [286-290]. CED has been employed in the clinic and 
clinical trials to manage brain diseases [288-293]. For instance, in the case of treating 
cancer, positive response and tumor regression have been observed in the clinical studies 
using CED to administer drugs [293, 294]. Even though CED, and intrathecal injection 
are effective in delivering drugs into the brain, these two administration methods are 
invasive in general. 
 

Disrupting the BBB 
 

The BBB can be disrupted by osmotic means, vasoactive substances, and focused 
ultrasound [295-304]. The disruption induced transiently opens the BBB and thus allows 
therapeutics, which are generally prevented from entering the brain, to pass this barrier 
and get into the brain tissues. In the osmotic BBB disruption approach, a hypertonic 
solution is infused into the arterial blood to cause brain microvascular endothelial cells in 
the BBB transiently and reversibly shrink so that the tight junctions in the BBB is 
transiently opened to allow the entrance of hydrophilic therapeutics into the brain [295]. 
Mannitol is the most widely used hyperosmotic agent for this osmotic BBB disruption. In 
the clinic, osmotic BBB disruption has been used to deliver chemotherapeutics into the 
brain for decades [298, 305-309]. However, this osmotic BBB disruption is global, non-
selective disruption covering both diseased areas and normal brains region. This 
nonselective opening of the BBB may allow the entrance of other substances which 
might lead to adverse effects as seizures and chronic neurological changes [310]. A 
delayed recovery of the BBB also increases the risk of neurotoxicity [310]. These 
stimulated researchers and clinicians to seek methods to open the BBB at the diseased 
lesions selectively. Vasoactive substances were found to be capable of stimulating 
receptors preferentially expressed in the brain tumor vascular vessels over normal brain 
vessels and thus initiate second messenger systems that induce reversible opening of the 
tight junctions in the brain tumor vascular vessels [310]. This unique property was 
exploited by researchers and clinicians to open the BBB at the diseased sites selectively 
[297, 310-313].  
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Active Transport across the BBB 
 

It has recently been recognized that therapeutics could be successfully delivered 
into the brain after intravenous injection by crossing the BBB without the need of 
disrupting the BBB. The methods that have been developed are to utilize the transport 
mechanisms found in the BBB to rationally design drugs and/or drug delivery systems to 
enhance drug permeability across the BBB. The transport mechanisms exploited include 
the transcellular lipophilic pathway responsible for the uptake of some lipid-soluble 
agents, carrier-mediated transcytosis for the transport of glucose, amino acids, purine 
bases, nucleosides, choline and other substances, receptor-mediated transcytosis for 
certain proteins such as insulin and transferrin, and adsorptive-mediated transcytosis for 
native plasma proteins such as albumin [267]. Especially, in the recent 15 years 
nanocarriers such as polymeric micelles [314], dendrimers [315], polymer-drug 
conjugates [316, 317], polymeric nanoparticles [318], liposomes [319-321], and 
inorganic nanoparticles including gold [322], mesoporous silica [323-325] and 
superparamagnetic iron oxide (SPIO) [326, 327] were investigated. In some cases, cell 
penetrating peptides such as TAT (trans-activator of transcription) or receptor targeting 
molecules such as transferrin, OX26 (anti-transferrin receptor IgG2a antibody) have also 
been conjugated to the nanocarriers to enhance drug penetration through the BBB after 
intravenous injection as transferrin receptor is expressed on the BBB [328-330].  
 

Intranasal Nose to Brain Delivery 
 

In the recent years, several reports have been published on the intranasal nose to 
brain delivery where the olfactory region of the nasal mucosa located on the roof of the 
nasal cavity that provides a direct connection between nose and brain was exploited for 
delivering drugs to the brain [331-333]. Advantages of this route include non-
invasiveness, circumvention of the BBB, escape hepatic first-pass metabolism, simple, 
and convenience of administration. Therapeutics have been shown to reach the central 
nervous system through the olfactory neuroepithelium located at the loft of the nasal 
cavity, by trigeminal nerve systems and olfactory nerve pathways [331-333]. 
 
 
Nanoparticle-based Drug Delivery 
 

In an attempt to surpass the limitations associated with the aforementioned 
barriers, considerable investigation has been done for improving the efficacy of drugs in 
vivo and such attempts resulted in the design, study and use of nanoparticulate drug 
delivery systems, such as biodegradable polymeric nanoparticles [334], nanocapsules 
[335], liposomes [336], dendrimers [62-66], micelles [314], inorganic nanoparticles [78]. 
Various nanoparticles with their structures are illustrated in Figure 3-4. Currently, one of 
the most interesting fields of research in drug delivery is the design of nanoparticles 
capable of delivering the therapeutics to the right site predictably over time [38, 49, 50, 
275-277, 315, 317, 321, 337-342]. These are submicron sized systems (1-1000 nm) 
containing the encapsulated drugs intended for administration [18]. Because   
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Figure 3-4. Nanocarriers for brain drug delivery. 
 
Notes: Nanocarriers for brain delivery [343]: a. Polymeric micelles: core-shell nanosized 
structures formed by a spontaneous self-assembly of polymers as a result of ionic or 
hydrophobic interactions between polymer chain segments [314]; b. Dendrimers: 
macromolecules with highly branched 3D structure offering a high degree of surface 
functionality and versatility [315]; c. Polymer-Drug conjugates: nano-sized and multi-
component constructs with therapeutics and targeting ligands covalently attached to the 
polymer chains [316, 317]; d. Polymeric nanoparticles: submicron sized particles 
prepared from pre-synthesized polymers or through in-situ polymerization from 
monomers/macromers directly [318]; e. liposomes: spherical and self-closed lipoidal 
vesicles (unilamellar or multilamellar) of colloidal dimensions formed as result of self-
assembly of phospholipids in an aqueous media into closed bilayered structures [319-
321]; and f. inorganic nanoparticles: nanosized inorganic core including gold [322], 
mesoporous silica [323-325] and SPIO [326, 327], coated with polymers and conjugated 
with targeting and imaging agents on the surface [344, 345]. Reprinted with permission. 
Wu, L., et al., Overcoming the blood-brain barrier in chemotherapy treatment of 
pediatric brain tumors. Pharmaceutical research, 2014. 31(3): p. 531-540.  
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nanoparticles are small-sized with large surface area and can be made of many types of 
safe materials (such as synthetic biodegradable polymers, natural biopolymers, lipids) 
with multi-functional surface groups, they possess outstanding advantages such as: i) can 
pass through the smallest capillary vessels; ii) potential of cellular internalization of drug; 
iii) hold significant advantages in transporting drugs across biological barriers; iv) 
reducing drug clearance in the path by protecting drugs from degradation and 
metabolism, and improving drug stability and bioavailability at the target site; v) 
sustained drug release which consequently leads to reduction in dosage frequency, 
resulting in better patient compliance; vi) reduced incidence of toxicity and side 
effects,;vii) maintaining long shelf-life; viii) biocompatible and biodegradable. [18, 37, 
81-86].  
 

Among various nanoparticles, polymeric nanoparticles are gaining increasing 
attention and have been extensively studied for imaging, diagnosis and drug delivery due 
to their superior properties over others [37-43]. Therapeutics are loaded into the 
nanoparticles by adsorption, entrapment, and covalent attachment. They are released 
from the nanoparticles by desorption, diffusion, drug dissolution and polymer erosion, or 
some combination of these mechanisms. They can be optimized to have higher 
permeability across the specific barriers and/or prolonged contact time with the tissue 
surfaces by adjusting their properties such as particle size, surface charge, and surface 
chemistry [346, 347]. Meanwhile, targeted delivery can also be achieved by conjugating 
specific targeting moieties to the nanoparticles [67, 348-351]. Since the polymeric 
nanoparticles can be made of various types of materials, have large surface areas, and 
multi-functional surface groups these systems hold a great promise and were widely 
explored for transporting therapeutic agents across various biological barriers such as the 
ocular/blood-brain barriers. Various biodegradable polymers that have been used for the 
preparation of these nanoparticles are polysaccharides (chitosan, dextran, and hyaluronic 
acid), polyesters (PLA, PLGA, PCL), PVA, polyacrylic acid family, proteins or 
polypeptides (such as gelatin), etc. Among them, polysaccharides are the most popular 
biopolymers used for the fabrication of the nanoparticles for drug delivery because of 
their wide availability in nature, low-cost processing, biocompatibility, biodegradability, 
non-toxicity, hydrophilicity and bioactivity [18, 352].  
 
 
Polysaccharide-based Nanoparticles for Drug Delivery to the Eye and Brain 
 

Polysaccharides are long chain carbohydrate molecules where the 
monosaccharide units are linked through a glycosidic linkage which undergoes enzymatic 
degradation. Most common sources of polysaccharides are plant (starch, cellulose, 
carboxyl methyl tamarind, pectin), animal (chitosan, chitin, hyaluronic acid), microbial 
(dextran, pullan, gellan gum, xanthan gum), algae (alginate, agar). Table 3-2 lists out 
some of the commonly used poly-, oligosaccharide polymers, and their structures. They 
have a large number of reactive functional groups varying in a chemical composition and 
having a broad range of molecular weight thus contributing to their diversity in structures 
and properties. Common hydrophilic groups present in the polysaccharides are hydroxyl, 
carboxyl, and amino groups. These functional groups in polysaccharides can form  
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Table 3-2. Chemical structures of various polysaccharides that were used for 
drug delivery. 
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Table 3-2. (Continued.) 
 

Name Chemical structures 

Dextran Sulfate 

 

Gum Cordia Natural anionic gum (Structure N/A) 
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hydrogen bonds with mucosa. Thus, their mucoadhesive nature depends on the non-
covalent bond forming ability [353]. These bioadhesive polymers are used as carriers as 
they could prolong the residence time of the drugs. Besides the mucoadhesive property, 
nature-originated polysaccharides such as chitosan and its derivatives, dextran, alginate, 
hyaluronic acid, gum cordia, and carboxymethyl tamarind kernel polysaccharide, 
cyclodextrins (Table 3-2) possess other appealing properties such as acceptable 
biocompatibility, excellent in vivo tolerance [354-356], biodegradability [357], and 
ability to enhance drug membrane permeability both in vitro [358] and in vivo [359]. 
Certain polysaccharides possess some special characteristic capability to recognize 
special cell types, enabling to design targeted drug delivery systems through receptor-
mediated endocytosis, while others can be effectively modified with different polymers 
and utilized as a part of the drug delivery systems. The combination of these properties 
makes polysaccharides versatile biopolymers for drug delivery to the eye and brain [18, 
67, 68, 349, 360-373]. Also, availability of new synthetic routes can be adopted to easily 
modify polysaccharides or synthesize oligosaccharide units, tunable biodegradability by 
structural modification, and ability to fabricate suitable structures such as nanoparticles, 
make them one of the most important and extensively studied natural biomaterials for 
nanoparticle-based drug delivery applications [352, 374-376]. Initial studies were mainly 
focused on evaluating chitosan-based nanoparticle carriers, and in the long run more 
number of polysaccharides (dextran, pectin, gum cordia, carboxymethyl tamarind kernel 
polysaccharide, hyaluronic acid, mannan, maltodextrins, and pullan) have emerged for 
the formulation of nanoparticles thereby increasing the versatility of nanoparticle carriers 
in terms of category and function [18, 346, 377-383]. A brief discussion is given below 
about the polysaccharides of interest to this project which includes Dextran and 
Cyclodextrins. 
 

Dextran is one of the widely investigated natural polysaccharide that has been 
successfully used for drug delivery applications due to its excellent biocompatibility, 
biodegradability, hydrophilicity, and nonfouling properties [384-388]. Dextran is 
enzymatically degradable by dextranases present in various parts of the human body. For 
more than five decades dextran has proven its clinical safety as antithrombotic agents and 
as substitutes for plasma volume expansion [385]. It is produced industrially on a large 
scale, and there are many varieties of dextran polymers that are commercially available in 
wide range of MWs and with relatively narrow MW distribution. The degree of 
branching in this polysaccharide can be as small as 0.5%, making them suitable for 
scientific studies [385]. Apart from being water soluble, dextran polymers are also stable 
under slightly acidic and basic conditions, and also possess a large number of hydroxyl 
functional groups for conjugation [385]. Recently, several reports have been published on 
altering the dextran properties to make various detrain graft polymers via various 
chemical modifications for specific applications, for example, polymeric drug delivery 
systems and hydrogels [388-391]. Although dextran has been widely investigated for 
various drug delivery applications, only limited number of papers have been published on 
dextran-based nanoparticles for drug delivery to the eye or brain [372, 392-396]. 
Chaiyasan et al. synthesized hybrid nanoparticles made of chitosan and dextran sulfate 
with around 400 nm particle size and around 40 mV zeta potential, which were stable in 
the presence of lysozyme for at least 4 h and showed at least 60 min prolonged adherence 
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to the ex vivo porcine corneal surface [372]. Phenylboronic acid surface functionalized 
poly(D,L-lactide)-b-dextran nanoparticles were investigated by Liu et al. for ocular 
delivery, and the results demonstrated that nanoparticles were nontoxic and can sustain 
the drug (cyclosporine A) release for 5 days in vitro [397]. Dextran polymer was also 
used as a stabilizer during the nanoparticle preparation [398]. Alonso et al. found that 
PBCA nanoparticles made with dextran 70 kDa as the stabilizer has shown statically 
significantly increased drug concentrations in the cornea and aqueous humor compared to 
the other nanoparticle formulations made with other stabilizers (Synperonic F 68 and 
sodium lauryl sulfate) and the control amikacin sulfate drug solution [334]. Delgado et al. 
studied dextran and protamine-based solid lipid nanoparticles as potential non-viral 
vectors for ocular gene delivery and found that the vectors were able to transfect corneal 
cells after topical application. Here dextran was used to form polyplex with the protamine 
and then combined with SLN to obtain dextran–protamine–DNA–SLN hybrid non-viral 
vectors [393]. Another group studied the hybrid nanoparticle design based on cationized 
gelatin and the polyanions dextran sulfate for ocular gene delivery, and the results 
showed that nanoparticles were nontoxic to the corneal cells and were able to protect the 
DNA from degradation by DNase I [394]. Dextran was also successfully used in making 
nanoparticles with magnetite for imaging the BBB breakdown after experimental 
hyperosmotic disruption [392]. Further, following this BBB disruption, when the 
magnetite-dextran nanoparticles were injected into the carotid artery, they have 
penetrated into the brain tumor [396]. Although dextran has been studied for making 
nanoparticles for ocular delivery, to the best of author’s knowledge no report has been 
published on dextran-based nanoparticles that can cross the ocular barriers and sustain the 
drug release at the back of the eye. Therefore, in this project, the dextran polysaccharide 
was modified to improve the properties and practicability of polymeric nanoparticles for 
ocular drug delivery applications with the potential to overcome the ocular barriers. The 
modifications or the procedure include i) hydrolytically degradable component was 
incorporated into the dextran polymer chain by grafting with PLA units; ii) polylactide 
grafted dextran was then copolymerized with NIPAAm and acrylic acid (AA) using 
emulsion photopolymerization to from poly(NIPAAM-co-DEXlactateHEMA) nanogels. 
The addition of NIPAAm and AA imparts thermoresponsive and anionic nature 
(carboxylic groups) to the nanogels. Because of the amphiphilic nature of the dextran-
lactide, the nanogels were synthesized in an entirely aqueous solution without the need of 
surfactants and organic solvent. The size, charge, and degradability of this dextran-based 
nanogels can be easily tuned by altering the composition. 
 

Another polysaccharide-based material used in this work was derived from β-CD. 
Cyclodextrins are cyclic oligosaccharides consisting of 6 (α-CD), 7 (β-CD) or 8 (γ-CD) 
glucopyranose units, which form a hydrophobic inner cavity and hydrophilic outer 
surface. The size of this inner hydrophobic cavity is the significant determinant as to 
which cyclodextrin is utilized as a part of complexation. The interior cavity size of β-CD 
was found to be the most appropriate size suitable to accommodate many of the drugs. β-
CD and its derivatives have a unique property of forming inclusion complexes with 
hydrophobic drugs and increase the drugs’ water solubility [399, 400]. The β-CDs have 
been extensively used in eye drops for improving the solubility of the drugs, and improve 
their bioavailability. β-CD also offer a number of hydroxyl surface functional groups for 
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further conjugation or alteration via various chemical modifications for specific 
applications. β-CD and its derivatives have been widely used in various drug 
formulations such as eye drops, nasal spray, and oral and parenteral preparations to 
increase the solubility and stability of hydrophobic drug molecules and reduce their 
irritancy/toxicity. Additionally, several studies have reported the use of synthetic β-CD-
based polymers units for the drug delivery applications [87, 370, 401, 402]. Although 
drug/cyclodextrin complexes have been widely employed in the past, incorporating them 
into nanoparticles seems to bring significant advantages. In ocular application, 
sulfobutylether-β-cyclodextrin was used to make hybrid nanoparticles with chitosan to 
form inclusion complexes with econazole nitrate to increase the water solubility of 
econazole nitrate. The resulting econazole nitrate-containing complexes showed 
improved bioavailability and prolonged 8 hours’ steady antifungal effect while econazole 
nitrate solution could provide antifungal effect for only 3 hours which also dramatically 
decreased with time [370]. Tao et. al. demonstrated that hydroxypropyl-β-CD during the 
fabrication of puerarin-PLGA nanoparticles has improved the solubility and entrapment 
efficiency of the puerarin, and also proposed that nano-carriers or cyclodextrin inclusion 
complex enhanced the penetration of drug across the BBB [403]. Gill et. al from our 
group has earlier modified β-CD to generate cationic quaternary ammonium -β-CD (QA- 
β-CD) nanoparticles for potential drug delivery across BBB [87]. When doxorubicin was 
loaded into these nanoparticles, they enhanced the permeability of doxorubicin across the 
in vitro BBB model and masked its cytotoxicity to the endothelial cells of the BBB [87]. 
As biodegradable polymers can achieve sustained drug release and polyamine can 
enhance drug permeability across the BBB, another β-CD-based poly(β-amino ester) 
(CD-p-AE) nanoparticles were designed, which contains ester bond and amine, into β-CD 
[50]. These nanoparticles also showed sustained release of doxorubicin and showed 
enhanced permeability across in vitro BRB models. The β-CD based nanoparticles have 
demonstrated promising potential as drug carriers for brain delivery [50]. In this study, 
(CD-p-AE) nanoparticles was selected for conducting the in vivo studies to evaluate the 
potential for delivering 17-AAG to the brain. 
 
 
Diabetic Retinopathy 
 

Diabetic retinopathy (DR) is a chronic eye disease and one of the most frequent 
complications of diabetes. DR is affecting 60–75% of persons with diabetes and is the 
leading cause of visual impairment in working-age Americans [404]. Retinal neuronal 
damage and increased vascular permeability occurs in early phases of diabetes and may 
lead to clinically noticeable vascular changes [404]. Insulin has been investigated as a 
potential therapeutic option to protect the retinal neurons from apoptosis and prevent the 
neuronal degeneration [405-407]. Studies showed that intensive systemic insulin therapy 
lowers the risk of retinal neural apoptosis in diabetic rats, and systemic glycemic control 
with systemic insulin treatment lowers the risk of the development and progression of DR 
in diabetic human subjects (Diabetes Control and Complications Trial, 1994). However, 
the degree of systemic insulin treatment is restricted by the risks of hypoglycemia, 
including seizures and unconsciousness [4]. Therefore, there is a need for long-term local 
delivery of insulin to the retina. Our group has attempted to address this need by 
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developing insulin-loaded biodegradable chemically cross-linked poly(NIPAAm-co-
DEXlactateHEMA) hydrogels for local delivery of insulin in the eye after 
subconjunctival administration [408]. Previous work from our group demonstrated that 
Humalog® (insulin lispro) could be continuously released from subconjunctivally 
implanted hydrogels for one week and showed a reduction of DNA fragmentation in the 
retinas of diabetic rats [409]. Even though the hydrogels can continuously release insulin 
at the subconjunctival space, insulin still needs to cross the sclera and the BRB and to 
access the retina by itself and faces the issue of low bioavailability in the retina. 
Therefore, there is a need for an effective drug carrier that can enhance the permeability 
of insulin across various ocular barriers. Nanoparticles show great promise for 
transporting drugs across biological barriers, reducing drug clearance, and improving the 
bioavailability of drugs at targets [36]. However, no nanoparticle has yet been developed 
to deliver drugs across the BRB effectively. 
 
 
Alzheimer’s Disease 
 

Alzheimer’s disease (AD) is the most common form of dementia characterized by 
progressive memory loss and cognitive dysfunction [410]. According to Alzheimer's 
Association report 2016, more than 5 million people are living with AD in the United 
States, and a new case is expected to develop every 66 seconds. AD is the 6th leading 
cause of death in Americans [411]. The disease development mechanisms of AD are still 
not entirely clear [412]. However, AD is characterized by the potentially neurotoxic 
aggregation of β-amyloid (Aβ) peptide and tau protein within the brain, and their 
deposition as amyloid plaques and neurofibrillary tangles (NFTs) [413, 414]. Common 
therapeutic approaches in case of AD treatment include lowering the brain concentrations 
of Aβ and tau or inhibiting their aggregation [414]. The selective neuronal loss observed 
in AD, coupled with the growing body of evidence that chaperone protein heat shock 
protein 90 (Hsp90) inhibitors can clear protein inclusions (e.g. alfa-synuclein and tau) 
and rescue degenerating neuronal cells, has supported a therapeutic role for Hsp90 
inhibitors in treating AD [415-418]. 17-Allylamino-17-demethoxygeldanamycin 
(17AAG), an Hsp90 inhibitor, have poor water solubility and short half-lives, do not or 
hardly cross the BBB, and can cause toxicity and side effects at the high dose. Though 
local invasive (direct injection/infusion) is effective in delivering drugs to the brain but 
has been associated with risk of infection, high neurosurgical cost and a limited delivery 
area in brain [45]. There is an unmet clinical need to develop effective methods to 
enhance the BBB permeability of 17-AAG and sustain the release of 17-AAG in the brain 
to treat AD. According to a review of drugs for AD states that “successful treatment of 
AD will require drugs that can negotiate the BBB”[419].  
 
 

Objective 
 

Although there are several nanoparticles made of various materials such as 
polyesters (poly(D,L-glycolide-co-lactide) [44], poly(lactic acid) [45-47], poly(ε-
caprolactone)[48, 49]); poly(amino ester)[50], lipid [liposomes [51-54], niosome [55, 56], 
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solid lipid [57, 58]); polyamines [59-61], polyethyleneimine [420, 421]; polylysine [422] 
and dendrimers [62-66]; polysaccharide (chitosan [67-70] and hyaluronic acid [70]); 
polyalkylcyanacrylate [71-74]; albumin [75-77], and inorganic metals [78], however 
there are certain limitations associated with each of these nanoparticles. For instance, the 
polyester nanoparticles have shown to achieve sustained drug release, but not reported to 
cross the biological barriers themselves without the need to be conjugated or coated with 
some specific functional moieties [44-49]. Liposomes, solid lipid nanoparticles, 
dendrimers, surfactant-coated PBCA nanoparticles were reported to be able to cross the 
barrier; however, they cannot achieve sustained release and also can have toxicity issues 
[57, 73, 79, 80]. The other nanoparticles have not been reported to be able to either 
sustain drug release or cross the barrier without the need to be conjugated or coated with 
some specific functional moieties. Therefore, there is still an unmet need to develop 
nanoparticles that can carry drugs across the ocular/blood-brain barriers and sustain the 
release of drugs to treat chronic ocular and brain diseases such as DR and AD. The 
primary objective of this work was to develop biodegradable polymeric biomaterials for 
drug delivery across ocular and blood-brain barriers for treating in the eye and brain, 
respectively. For this purpose two types of new nano-sized, cross-linked, hydrolytically 
degradable, and charged polysaccharide-based particles were prepared for drug delivery 
to the eye and brain which include a) poly(N-isopropyl acrylamide-co-dextran-lactate-2-
hydroyethyl methacrylate) [also referred to as Poly(NIPAAm-co-DEXlactateHEMA)] 
nanogels, and β -cyclodextrin-poly(β-amino ester) (CD-p-AE) nanoparticles. These 
materials combine the merits of biodegradable nature, charge, and nano-sized particulate 
properties. The degradation property of the polymeric matrix can be used to modulate the 
release of encapsulated drugs for an extended period of time and helps to avoid the 
removal of the system after treatment. Meanwhile, the surface charge and nano-sized 
dimensions impart the advantages of nanoparticulate systems such as internalization into 
the cells, transporting drugs across biological barriers, improving drug stability and 
bioavailability at the targets [18, 37, 81-88]. Additionally, the surface functional groups 
of these nanoparticles can be used for further conjugation with a ligand. Hence, in an 
attempt to minimize the constraints and disadvantages of conventional drug delivery 
systems for eye and brain treatment, a contemporary poly(NIPAAm-co-
DEXlactateHEMA)/ (CD-p-AE) nanoparticles based sustained drug delivery systems 
could be very promising. 
 
 
 Biodegradable Poly(NIPAAm-co-DEXlactateHEMA) Nanogels for Ocular Delivery 

for the Treatment of DR 
 
 
Hypothesis and Specific Aims 
 

The long-range goal of this project in chapter 3 was to develop novel 
poly(NIPAAm-co-DEXlactateHEMA) nanogels for long-term release of insulin across 
the ocular barriers for treating retinal diseases. Another advantage of choosing 
poly(NIPAAm-co-DEXlactateHEMA) nanogels is that they are hydrophilic in nature and 
offer the flexibility of aqueous loading of insulin thereby improving the drug stability. 
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The immediate objective was to develop subconjunctivally injectable biodegradable 
nanogels with similar composition to the earlier hydrogels that can have the potential to 
enhance the permeability of the drugs, such as insulin, across ocular barriers and also 
sustain the release of drugs to treat ocular diseases like DR. 
 

The hypothesis of this project in chapter 3, which was the sub-hypothesis 2 of the 
central hypothesis, was that the subconjunctivally injectable nanogels composed of 
DexlactateHEMA and NIPAAm can cross the ocular barriers for the potential delivery of 
drugs such as insulin to diabetic retinopathy. 
 

Specific Aim 1. Prepare and characterize poly(NIPAAm-co-DEXlactateHEMA) 
nanogels. A series of thermoresponsive and biodegradable nanogels with different 
hydrophobicity, hydrophilicity, crosslinker amount, surface charge and particle size were 
synthesized in water.  
 

Specific Aim 2. Assess in vitro cytotoxicity, in vitro and ex vivo permeability of the 
poly(NIPAAm-co-DEXlactateHEMA) nanogels. The synthesized nanogels were tested for 
their cytotoxicity on human fetal retinal pigmented epithelial (hfRPE cells). Ex vivo 
permeability of the nanogels was evaluated using in vitro BRB model of adult retinal 
pigmented epithelial cells (ARPE-19) grown on polyester Transwell filter. Porcine sclera 
and cornea were used as ex vivo ocular barriers. 
 
 
Material and Methods 
 

Chemicals and Reagents 
 

Dextran (MW -15,000 g·mol-1) was purchased from Polysciences, Inc., 
Warrington, PA. The following materials were obtained from Sigma–Aldrich, Inc (St. 
Louis, MO): NIPAAm, 2-hydroxyl methacrylate (HEMA), 4-(N,N-diethylamino) 
pyridine (DMAP), N,N’-carbonyl diimidazole (CDI), L-lactide, stannous octoate 
(SnOct2), tetrahydrofuran (THF), dimethyl sulfoxide (DMSO), fluorescein isothiocyanate 
(FITC), 5-(4,6-dichlorotriazinyl) aminofluorescein (5-DTAF), FITC-dextran (MW - 70 
kDa, and 4 kDa), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). 
All the chemicals were used as received. Deionized distilled water was used in all the 
experiments. 
 

Synthesis and Characterization 
 

DEX-lactateHEMA macromer with different degree of polymerization (DP) and 
degree of substitution (DS) was synthesized according to the previously published 
procedure by adjusting the feeding ratios of the corresponding precursors [423]. The 
structure is given in Figure 3-5. The lactide chain length (DP) of the lactate unit controls 
the hydrolytic degradation, and the number of lactide chains on dextran (DS) in the DEX-
lacateHEMA macromer controls the degree of crosslinking (swelling) in the nanogel, 
respectively. The DP and DS of the macromer were calculated based on the 1H NMR 
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Figure 3-5. The structure of dextran macromer (DEX-LacateHEMA). 
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spectra. In present work, the DEX-LactateHEMA macromer of DP/DS - 5/5.5 was 
synthesized and used in the preparation of nanogels.  
 

Poly(NIPAAm-co-DEXlactateHEMA) nanogels were synthesized by UV-
initiated free radical emulsion polymerization method. A prepolymer solution was 
prepared by dissolving NIPAAm/DEXlactateHEMA at different weight ratios: 7/2, and 
6/3 in DI water while stirring in RBF at 200 rpm at 45°C with nitrogen bubbling. Later, 
10 mol% (with respect to NIPAAm) of anionic charge modifier acrylic acid (AA) was 
added to the prepolymer solution. The UV initiator 0.066% wt% Irgacure 2959 dissolved 
in DI water was added dropwise, and then the mixture was exposed to UV light at 1 
W/cm2 for 1 h under constant stirring at 200 rpm (at 45°C and N2 purging). The scheme 
of synthesis is given in Figure 3-6. The obtained emulsion was cooled down to room 
temperature and dialyzed against the large (10-fold) volume of DI water for 4 h using 50 
kDa molecular cutoff cellulose dialysis tubes. The reason to use short 4 h for the dialysis 
was to limit the nanogel degradation during the dialysis process. The purified nanogel 
product was then freeze dried, and FTIR confirmed the synthesis. 
 

DTAF-labeled nanogels were prepared as follows. DTAF (10 mg) and the 
nanogels (250 mg) were dissolved in DMSO (0.3 mL) and sodium carbonate buffer (0.1 
mol ·L-1, 5 mL, pH 9), respectively. The DTAF solution was added dropwise into the 
nanoparticle solutions with stirring. The reaction was carried out overnight at 4 °C. The 
final solution was dialyzed with MWCO 50 kDa membrane against deionized water 
while changing the outer water every 8 h for 24 h and freeze-dried. 
 

The hydrodynamic size and zeta potential of the nanogles were measured at a 
concentration of 200 μg·mL-1 in PBS at 37°C using dynamic light scattering (DLS) 
(Zetasizer NS, Malvern, United Kingdom). An average was taken from three 
measurements.  
 

Cell Culture 
 

Human-fetal retinal pigment epithelial cells (hfRPE) and adult retinal pigmented 
epithelium cells were seeded in T25 flasks at a density of 8000–12,000 cells cm2, and 
cultured in Dulbecco’s Modified Eagle Medium (DMEM-F12) containing 10% fetal 
bovine serum (FBS), vitamins, essential amino acids, and penicillin/streptomycin at 37 C 
with 95% humidity and 5% CO2. The medium was changed every other day. The cells 
were harvested with trypsin (0.05% trypsin with 0.4 mM EDTA) when they were 80% 
confluent.  
 

In Vitro Cytotoxicity of the Nanogels  
 

Cytotoxicity of the nanogels to hfRPE cells was examined by an MTT cell 
viability assay. The cells were seeded at a density of 7,500 cells per well in a 96-well 
plate containing 150 μL media at 37 C for 24 h. The nanogels and the degradants after 
one week of incubation of nanogels in the medium at 37°C were then incubated with the 
cells for 48 h. Wells containing cells alone were used as a control. 20 μL of MTT  
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Figure 3-6. The synthesis scheme of poly(NIPAAm-co-DEXlactateHEMA) 
nanogels. 
 
Notes: A prepolymer solution in DI water was exposed to UV light while stirring in RBF 
at 200 rpm at 45°C under nitrogen bubbling. Poly(NIPAAm-co-DEXlactateHEMA) 
nanogel structure reprinted with permission. Huang, X., et al., Novel nanogels with both 
thermoresponsive and hydrolytically degradable properties. Macromolecules, 2008. 
41(22): p. 8339-8345. © 2008 American Chemical Society. 
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solution (5 mg MTT/mL PBS) was added to each well and incubated for 4 h at 37 °C and 
5% CO2. The medium was then removed completely from the wells without disturbing 
the cells, and 150 μL of DMSO was added to each well. The plate was covered with foil 
and placed on the rocking platform for 15 mins to dissolve the formazan crystals in 
dimethyl sulfoxide. The absorbance of the reduced form of the MTT was measured at 
570 nm using a microplate reader ((BioTek Instruments, Inc., Winooski, VT, USA) with 
background subtraction. The sample and control samples were measured in 
quadruplicate, and the relative cell viability (%) was calculated as percentage absorbance 
of the samples relative to the absorbance of the untreated control cells.  
 

In Vitro Permeability across ARPE-19 Monolayers  
 

Confluent ARPE-19 monolayers were constructed on coated polyester Transwell 
inserts (24 well-plate, 0.4 μm pore size). Briefly, ARPE-19 cells were seeded on the 
insert at 50,000 cells·cm-2 and grown at 37 °C with 95% humidity and 5% CO2 in a cell 
culture incubator. The medium was changed as usual until the transepithelial electrical 
resistance (TEER) values reached the plateau to get the confluence ARPE-19 monolayer 
as the in-vitro RPE model (Figure 3-7). 
 

DTAF-labeled nanogels or FITC-dextran control (Mw = 70 kDa) was dispersed or 
dissolved in the culture medium and added to the apical chamber of each well at 1 mg·ml-

1. The transport experiments of nanogels from the apical to the basal direction at 37 °C 
was conducted for four hours. At selected time points (0, 15, 30, 60, 90, 120, 150, 180, 
210, 240 min), 30 μL of the medium was sampled from the basal/receiver chamber and 
replaced with 30 μL of fresh medium. In the end, 30 μL media was sampled from both 
the apical and basolateral chambers. The fluorescence of the aliquots was quantified by 
using microplate reader (BioTek Instruments, Inc., Winooski, VT, USA) at 430 nm of 
excitation and 530 nm of emission wavelengths. The permeability (P0) of the 
components across the ARPE-19 monolayer was calculated as below [38, 424]: 
The flux of the DTAF-nanogels or control FITC-dextran from the apical side of the tissue 
layer to the basolateral direction was measured. “Flux is defined as the amount of solute 
crossing a plane of the unit surface area, which is normal (perpendicular) to the direction 
of transport, per unit time” [425]. The apparent flux (J) or permeation rate was calculated 
from the slope (ΔFr/Δt) of the linear region of the plot of the cumulative fluorescence (Fr) 
of the permeant FITC-4k dextran transported across the membrane into the receptor 
chamber versus time (t) divided by the effective diffusion surface area (Ad). The apparent 
permeability coefficient (P0) was calculated based on the flux of the system (J) divided 
by the concentration (fluorescence) difference between the donor and receiver chamber 
(Equation 3-1). Typically, the concentration (fluorescence) in the receiver chamber is 
significantly smaller than the donor chamber, the concentration of the receiver chamber is 
considered as zero, and the concertation in the donor chamber is obtained by dividing 
donor cell fluorescence (Fd) with the volume of the donor chamber (Vd). 
 

           (Eq. 3-1) 
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Figure 3-7. Experimental set-up for in vitro permeability. 
 
Notes: After the formation of an ARPE-19 monolayer on the porous transwell inserts, the 
nanogels suspension was added to the apical chamber and the medium from the receiver 
chamber was sampled at selected time points and analyzed for the nanogels. The 
experiment was conducted at 37 °C. 
 
  



 

112 

AFM Measurements 
 

After the in vitro permeability experiment, the medium from the receiver chamber 
was collected and was dialyzed against DI water for 4h and freeze-dried. To confirm the 
permeation of the nanoparticles, the freeze-dried contents from the receiving chamber 
was investigated for the presence of particles by using Atomic Force Microscopy. 

Ex Vivo Permeability across Porcine Ocular Tissues 
 

Porcine sclera and corneal tissues were separated from the freshly isolated porcine 
eyeballs within two hours are prepared for the ex vivo permeability experiments 
immediately. The tissues were carefully mounted in the side-by-side perfusion devices 
(Figure 3-8). Side-by-side diffusion cells are known as Valia-Chien Cell apparatuses 
(Permegear, Inc., Hellertown, PA, USA) were used to conduct the permeability study. 
The apparatus consisted of two glass chambers; each had an outlet for sampling and a 
port for heater circulator. The membranes isolated were placed in the spherical joints of 
Valia-Chien Cell apparatuses, and a clamp is placed on the spherical joints to hold the 
membrane in place. Immediately after the tissue was clamped, both chambers were filled 
with Glutathione Bicarbonate Ringer’s Solution (pH 7.2-7.4). The solution in each 
chamber was gently stirred using a small Teflon-coated magnetic stir bar for the 
homogenous distribution of the solutes. The FITC-dextran/DTAF nanogels was dissolved 
in the media for the ocular tissues and added to the donor chamber at 1 mg·mL-1. The 
chambers were maintained at 34°C by circulating warm water through them. Passive 
transport of the FITC-dextran across the sclera and cornea tissues was carried out at 34°C 
over 4 h period of time. 200 μL of the samples was taken out from the receptor chamber 
as a function of time and replaced with 200 μL of fresh medium. The TEER values of the 
ocular tissues were monitored through the whole permeability studies to check the 
integrity of the membrane. The fluorescence intensities in the solutions sampled from the 
donor and receptor chambers were quantified using a fluorescence microplate reader 
(BioTek Instruments, Inc., Winooski, VT, USA) and the permeability (P0) of the samples 
across the sclera and cornea tissues were calculated as described earlier.  
 
 
Results and Discussion 
 

Synthesis and Characterization of Nanogels 
 

Previously, Huang et. al from our group has published a report [426] on the 
synthesis of a series of poly(NIPAAm-co-DEXlactateHEMA) nanogels via thermo-
initiated polymerization from DEXlactateHEMA macromer and NIPAAm monomers at 
various feeding ratios of the macromer and NIPAAm. In the earlier synthesis method, a 
high temperature (70°C) and long reaction time were used for the synthesis of nanogels. 
However, use of such harsh conditions may not be suitable for loading of protein drugs as 
they may get denatured at high temperatures. To avoid such harsh conditions, in the 
current synthesis procedure a slightly modified technique was used by shifting from the 
thermo-initiated polymerization to a milder UV initiated photo emulsion polymerization 
using Irgacure 2959 as an initiator instead of KPS. This procedure offered the flexibility  
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Figure 3-8. Experimental set-up for ex vivo permeability. 
 
Notes: After mounting the freshly isolated porcine ocular tissue (sclera/cornea), the 
medium was added to both the chambers. The DTAF-nanogels suspension was added to 
donor chamber, and the medium from the receiver chamber was sampled at selected time 
points and analyzed for the fluorescence. 
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of fabricating the poly(NIPAAm-co-DEXlactateHEMA) nanogels under mild conditions 
such as low temperature and short reaction, aiming at in situ aqueous loading of protein 
drugs (insulin) for ocular drug delivery. Also, the initiator Irgacure 2959 solution has 
been widely used for in situ polymerization in vivo and does not cause eye irritation 
according to the MSDS [408]. 
 

Table 3-3 shows the average hydrodynamic radii and zeta potential of the 
nanogels in PBS at 37 °C for two types of nanogels synthesized (72A and 62A). The size 
of the nanogels was within 70-87 nm, and no significant difference was observed 
between two types of nanogels. Both the nanogels showed a zeta potential around -10 
mV and the negative zeta potential observed on the nanogels could be attributed to the 
ionization of carboxylic acid groups of the acrylic acid introduced into the nanogels at pH 
7.4, as well as any carboxylic groups resulted due to partial degradation of ester bonds of 
lactide units. Similar to particle size, no significant difference was observed in zeta 
potential among the two nanogels. Prior studies in the literature have suggested that 
charged polymers (both cationic and anionic charge) could potentially interact with tissue 
surface proteins such as mucins through hydrogen bonding or other electrostatic 
interactions and render them mucoadhesive [427]. Also, it is reported that the presence of 
carboxylic functional groups in the nanoparticles helps in the permeability by various 
cellular internalization mechanisms [428, 429]. Because of these advantages, the charged 
component with a carboxylic functional group (acrylic acid) was incorporated into the 
nanogels. Another rationale for adding carboxylic acid groups is that functional moieties 
like targeting ligand and drugs could be easily conjugated to the nanogels. 
 

As the nanogels are intended for ocular delivery, the cytotoxicity of these 
nanogels to hfRPE cells (part of the BRB) was tested using MTT assay. MTT assay is the 
most widely used colorimetric technique to check the cell viability in vitro [408]. The 
underlying principle of MTT assay is that mitochondrial reductase in viable cells with 
active metabolism convert the tetrazolium into a purple colored formazan product which 
shows absorbance near 570 nm. Therefore, any metabolic dysfunction in the cells caused 
by toxic substances leads to reduced activity of the mitochondrial enzymes which in turn 
decreases the conversion of MTT to formazan. The cell viability is expressed as the 
percent relative absorbance of the treated cells to the untreated control cells. In vitro 
cytotoxicity studies of the synthesized nanogles showed that no matter whether the 
nanogels (72A and 63A) were incubated with the hfRPE cells directly for 48 h or they 
were degraded in the culture medium for one week and then the cells were exposed to the 
degraded solution (72A-D, and 63A-D) for 48 h, the viability of the treated cells was 
close to 100% of control values at concentrations 0.1, 0.5, and 1 mg·ml-1 (Figure 3-9). 
These results indicated that both the nanogels and their degradation products are non-
toxic to cultured hfRPE for at least 48 h, and the nanogels have the potential for further in 
vivo evaluation. 
 

In Vitro Permeability of Nanogels 
 

In order to test the nanogels for potential ocular delivery applications, an in vitro 
ARPE-19 monolayer was constructed on Transwell interest as the in vitro blood-ocular  
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Table 3-3. Composition, particle size and zeta potential of the nanogels. 
 

Notation NIPAAm/ 
DEXlactateHEMA 

(w/w ratio) 

Charge modifier 
(acrylic acid/AA) 

10 mol% wrt 
NIPAAm 

Size 
(nm) 

Zeta 
potential 

(mv) 

72A 7/2 x 73.65±4.55 -10.53 ± 0.57 

63A 6/3 x 83.99±3.25 -10.36 ± 0.76 
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Figure 3-9. Cell viability of the nanogels to hfRPE cells, to nanogels and 
degradants. 
 
Notes: The cell viability was determined by MTT assay after 48 h exposure to either 
nanogels (63A, 72A) /degradants of the nanogels (63_D, 72_D). 63A/63A_D (A) and 
72A/72A_D (B). (Mean ± SD, n=4) 
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barrier model. The plateau TEER value obtained for the confluent monolayer was 
160±10 ohm·cm2. The permeability was measured by examining the transport of DTAF-
labeled nanogels from the apical to the basolateral side of the in vitro RPE monolayers. 
RPE monolayer is part of BRB that separates the outer surface of the neural retina from 
the choroid. Because of the presence of tight junctions the RPE forms a strong barrier; 
however, it is capable of a number of specialized transport processes. Figure 3-10A, B 
shows the transport and permeability across the in-vitro ARPE-19 monolayer for the two 
types of nanogels and dextran-70k control at 1 mg·mL-1. Compared with the control 
dextran-70k, the nanogels have a significantly higher permeability (≥35 fold) across the 
in vitro BRB model. Meanwhile, no statistically significant difference was observed 
between the two types of nanogels in terms of in vitro permeability. TEER values of the 
ARPE-19 monolayers before and after the permeability studies remained similar 
confirming the integrity of the membrane during the study. To further confirm if the 
detected fluorescence in the receiver chamber is from the nanogels or any leaked DTAF 
dye, the medium from the receptor chambers was collected to analyze for the presence of 
nanoparticles by AFM and the representative AFM images from the 63A receptor 
chamber (Figure 3-10C) confirm the presence of anionic nanogels. As the pore of the 
paracellular pathway between the cells is very small, because of the larger hydrodynamic 
size of the nanogels (>75 nm) in PBS (pH 7.4), it is very unlikely that the nanogels can 
cross the in vitro BRB model by a paracellular pathway. Further, the presence of tight 
junction restricts the paracellular entry of solutes. Therefore, the negative zeta potential, 
carboxylic functional groups, nano-sized particle nature might have helped the nanogels 
to cross the RPE cell monolayer through transcellular route by various mechanisms such 
as endocytosis/exocytosis mechanisms [346, 430-432].  
 

Ex Vivo Permeability of Nanogels across Porcine Ocular Tissues 
 

The nanogels were further evaluated for their penetrating capacity across porcine 
ocular tissues (i.e. sclera, and cornea) mounted in side-by-side perfusion devices. 
Figure 3-11 showed the permeability of both prototype nanogels and dextran-70k control 
across porcine sclera and cornea. Compared with the control dextran-70k, both 63A and 
72A nanogels have a significantly higher permeability (at least four-fold) across the 
sclera and cornea tissues. Similar to the in the in-vitro permeability study, no statistically 
significant difference was observed between the two types of nanogels. Because of the 
similar particle size and zeta potential, both 63A and 72A nanogels might have behaved 
in a similar way in terms of permeability across in vitro and ex vivo ocular barriers. 
Further studies needed to be conducted to understand the transport mechanisms of these 
nanoparticles. 
 

Permeability of Porcine Ocular Tissues at Different Stages of Development 
 

The prevalence of DR is more common in elderly population, and as aging causes 
a multitude of changes in biological membrane properties, it is important to investigate 
the permeability of ocular tissues at different stages of development for understanding 
physiological conditions of the eye and developing strategies (such as nanocarriers) to 
enhance drug permeability across these tissues for treating many ocular diseases.  
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Figure 3-10. In vitro transport (A) and permeability (B) of nanogels (63A, 72A) and 70kDa-dextran across ARPE-19 cell 
monolayer; AFM image of the nanoparticle from the receptor chamber (C). 
 
Notes: Nanogels showed higher (at least ~35-fold) permeability than control dextran across in vitro ARPE-19 monolayer, and the 
AFM results confirmed the presence of nanogels in the receiver chamber. (Mean ± SE, n=4, p<0.05). 
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Figure 3-11. Comparison of nanogels permeability across ex vivo piglet sclera (A) 
and cornea (B). 
 
Notes: Nanogels showed higher permeability (at least ~4-fold) across ex vivo porcine 
sclera and cornea. (n=3, p<0.05). 
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Therefore to understand the ocular permeability with aging a short study was conducted 
where the permeability differences of the porcine sclera and the cornea at different stages 
(preterm, normal term, adult) of development was examined ex vivo using a fluorescent 
probe FITC-dextran-4k. Figure 3-12 and Figure 3-13 illustrate the thickness and 
permeability of the ocular tissues, respectively. The sclera became thicker with the 
growth of pigs from preterm to normal-term to the adult stage, while the transscleral 
permeability was decreased with age. In case of the cornea, it was observed that the 
normal-term cornea has a similar thickness and permeability as the pre-term porcine 
cornea, but at the adult stage, the thickness increased and the permeability was 
significantly lowered. The permeability of the porcine cornea and sclera showed to be 
dependent on the developmental stage of the pig. 
 
 
Conclusions 
 

Poly(NIPAAm-co-DEXlactateHEMA) nanogels were successfully synthesized 
using photopolymerization under mild temperature. In vitro cytotoxicity evaluation of 
these nanogels showed that high cell viability could be retained after incubating the 
nanogels with hfRPE cells at up to 1 mg·ml-1 for 48 h, indicating that the nanogels were 
not toxic to the cells tested. The nanogels were highly permeable across the ARPE-19 
monolayers as compared with the controls dextran-70k. Further, ex vivo permeability of 
the nanogels showed they were at least four-fold more permeable than the control 
dextran-70k. In addition, it was found that the development stages of pigs affect the 
permeability of ocular tissues depending on the tissue types. These results could provide 
insight into designing drug carriers to enhance drug permeability across ocular tissues at 
different development stages. 
 
 
Future Work 
 

The future work of Poly(NIPAAm-co-DEXlactateHEMA) nanogels include - i) 
optimization of the nanogels for loading and sustained release of insulin; ii) evaluation of 
in vitro and ex vivo permeability of the nanogels evaluation of insulin-loaded nanogels; 
iii) investigation of in vivo safety, biodistribution and efficacy of the insulin-loaded 
nanogels for DR. The permeability differences with age can be understood by further 
continuing the work to evaluate morphological properties of the membranes across 
different stages of development. 
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Figure 3-12. Comparison of the thickness of porcine sclera (A) and cornea (B) at 
different stages of development. 
 
Notes: Preterm (28 week preterm piglets), the normal-term (one-week old normal-term 
piglets), Adult Pigs (3-3.5 month old adult pigs). (Mean ± SE, n=4-sclera, 3-cornea), p < 
0.05). Thickens of porcine sclera was observed to be increased with increase in the age. 
However, in case of the cornea, no increase was observed between the preterm and 
normal, but the thickness of adult cornea increased significantly. 
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Figure 3-13. Comparison of ex vivo permeability of porcine sclera (A) and cornea 
(B) at different stages of development. 
 
Notes: Preterm (28-week preterm piglets), the normal-term (one-week old normal-term 
piglets), Adult Pigs (3-3.5 month old adult pigs). (Mean ± SE, n=4-sclera, 3-cornea; p < 
0.05). The permeability of porcine sclera was observed to be decreased with increase in 
the age. However, in case of the cornea, the preterm and normal showed similar 
permeability, but the permeability of adult cornea decreased significantly. 
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 Beta-cyclodextrin-poly(β-amino ester) (CD-p-AE) Nanoparticles as Drug Carriers 
to Enhance BBB Permeability of 17-AAG to Treat AD 

 
 
Hypothesis and Specific Aims 

 
Our group has developed and characterized CD-p-AE nanoparticles for the 

potential application of drug delivery across BBB [50]. Incorporation of β-cyclodextrin 
(β-CD) into the nanoparticle structure facilitates the loading of hydrophobic drugs and 
thereby expected to improve the solubility of the hydrophobic drugs. Earlier reported 
studies showed that CD-p-AE nanoparticles were nontoxic, hydrolytically degradable, 
very permeable to the in vitro BBB, and sustained the release of a hydrophobic drug 
doxorubicin. The long-range goal of this project in chapter 3 was to develop 17-AAG 
loaded CD-p-AE nanoparticles for AD treatment. The immediate objective was to 
investigate the feasibility of biodegradable -CD-based nanoparticles containing tertiary 
amine groups for enhancing the BBB permeability and efficacy of 17-AAG in AD 
treatment.  
 

The hypothesis of this project in chapter 3, which was the sub-hypothesis 3 of the 
overall hypothesis of the dissertation, was that the nanoparticles composed of β-
cyclodextrin and poly(β-amino ester) segments can enhance the solubility and BBB 
permeability of Hsp90 inhibitors such as 17-AAG to treat Alzheimer's disease. 
 

Specific Aim 1: Prepare and evaluate in vitro drug release of 7-AAG-loaded β-
cyclodextrin-poly(β-amino ester) nanoparticles. CD-p-AE nanoparticles were 
synthesized through Michael addition of acrylated -CD macromer and 1,4-butanediol 
diacrylate with an amine molecule such as N, N-dimethylethyldiamine. 17-AAG was 
loaded into the nanoparticles, and the release studies were carried out in PBS (pH 7.4) at 
37 °C. 
 

Specific Aim 2: Evaluate in vivo efficacy of 17-AAG-loaded β-cyclodextrin-
poly(β-amino ester) nanoparticles. The 17-AAG-loaded CD-p-AE nanoparticles were 
injected into mice through iv route, and the drug levels in the brain and activation of 
Hsp70 was studied and compared to the drug alone. 
 
 
Material and Methods 
 

Chemicals and Reagents 
 

The following materials were obtained from Sigma-Aldrich, Inc., St. Louis, MO: 
β- CD, acryloyl chloride (96%), anhydrous 1-methyl-2-pyrrolidinone (NMP), dimethyl 
sulfoxide-d6 (DMSO-d6, 99.9%), 1,4-butanediol diacrylate, N,N-dimethyl 
ethylenediamine, chloroform, ethyl acetate, phosphate buffered saline (PBS, pH 7.4), 
N,N-dimethylformamide (DMF, HPLC grade), DTAF. 17-AAG was obtained from LC 
Laboratories. All these chemicals were used as received without further purification 
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unless otherwise noted. Dialysis membrane (molecular weight cutoff (MWCO) 
12000−14000 Da) was bought from Spectrum Laboratories. Polyester Transwell inserts 
(24 well-plate, 0.4 μm pore size) were obtained from Costar (Cambridge, MA). 
 

Preparation of 17-AAG-loaded CD-p-AE Nanoparticles 
 

CD-p-AE nanoparticles were synthesized according to the Michael addition of 
Acrylated CD Macromer and 1,4-butanediol diacrylate with an amine N, N-
dimethylethyldiamine by following previously published procedure [50]. The synthesized 
CD-p-AE nanoparticles were confirmed by using 1H-NMR. Five parts of CD-p-AE 
nanoparticles was dissolved with 1 part of 17-AAG in ethanol and incubated overnight at 
room temperature. The resulting solution was diluted with water and freeze dried to 
obtain the 17-AAG loaded nanoparticle. The size and zeta potential of the nanoparticles 
was measured by using Malvern Zetasizer. 
 

17-AAG In Vitro Release 
 

The release of 17-AAG from CD-p-AE nanoparticles was conducted in PBS (pH 
7.4) at 37 °C using the dialysis method. Briefly, 17-AAG loaded CD-p-AE nanoparticles 
were dispersed in PBS (pH 7.4) at 1 mg·ml-1, and then loaded into dialysis membrane 
tubing (MWCO 12 -14 kDa). The sealed membrane tubing was immersed into PBS (pH 
7.4) release medium (400 mL) in a tube at 37 °C. At each scheduled time point, entire 
release medium was replaced with the fresh medium to maintain the sink conditions. The 
sampled release medium was analyzed for 17-AAG by using LC-MS/MS.  
 

In Vivo Studies of 17-AAG-loaded CD-p-AE Nanoparticles 
 

To investigate the efficiency of nanoparticles in enhancing the BBB permeability 
of 17-AAG, a study was conducted where a group of wild-type C57BL/6 was injected 
with 17-AAG alone and 17-AAG loaded CD-p-AE nanoparticles at a dose equivalent to 5 
mg drug. After 24 hours of injection, the mice were sacrificed, and the brain samples 
were isolated to study the concentration of 17-AAG in the brain. The brain tissue was 
placed in cryopreservation vials and preserved by snap freezing using liquid nitrogen, and 
stored at 80 °C until analysis. Brain tissues were homogenized in water (1:2, tissue: 
buffer) prior to analysis using LCMS [15]. To evaluate the efficiency of drug loaded 
nanoparticles in improving the efficacy of 17-AAG, another group of wild-type C57BL/6 
mice were selected and injected with 17-AAG alone and 17-AAG loaded CD-p-AE 
nanoparticles at a dose equivalent to 2.5 and 5 mg drug. The mice were sacrificed post 24 
h injection, and a western blot analysis was performed according to the previously 
described procedure to study the expression of Hsp70 in the brain [433]. The drug was 
extracted using protein precipitation by ACN, and the reconstituted samples were 
analyzed by LC-MS/MS. LC was performed on a UPLC system (Nexera XR, Shimadzu 
Corporation) consisting of a binary pump, column oven, degasser units, and autosampler 
units. 10 μL of sample extracts were injected into the reversed-phase Luna C18 (2) 
column (50 × 2.0 mm i.d., 3 μ; Phenomenex, Torrance, CA, USA). Acetonitrile/water 
mixture (70/30, v/v) containing 0.01% formic acid was used as a mobile phase and was 
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pumped at a flow rate of 0.3 mL.min−1. Total run time was 4.5 min for each sample 
injection. The column temperature was kept at 25 ◦C. The LC elute was introduced into 
the Applied Biosystem Triple QuadTM 5500, a triple–quadrupole tandem mass 
spectrometer equipped with turbo spray ionization source, for quantification of the 
analytes in negative ion mode (ESI+). Detection of the analyte ions was performed in a 
multiple reaction monitoring modes and transitions of m/z 584.4 → 305.2, and 615.3 → 
474.4 were used for LNG and 17-DMAG (IS), respectively. Analyst® 1.6.2 software was 
used for processing the data. The detailed experimental conditions are: ion spray voltage 
4500 v, collision gas 7 psi, temperature 550 ◦C, collision energy -38 v, entrance potential 
-10 v, collision exit potential -17 v, declustering potential -15 v, curtain gas 20 psi, ion 
spray gas I 40 psi and ion spray gas II 40 psi. 
 
 
Results and Discussion 
 

17-AAG Loading and Release from CD-p-AE Nanoparticles  
 

Our collaborators work on 17-AAG showed that it was effective in attenuating the 
synaptic toxicity induced by soluble Aβ and memory impairment in mice [433]. 
However, 17AAG has poor water-solubility and blood-brain barrier permeability, which 
are potential problems for clinical construction and hurdles for its clinical application 
[434]. Preliminary results from earlier studies by Gil ES et. al from our group  
demonstrated that CD-p-AE nanoparticles do not affect the integrity of the in vitro BBB 
models, and the nanoparticles have much higher permeability than dextran control across 
the in vitro BBB models [50]. Therefore, CD-p-AE nanoparticles were selected to 
investigate the feasibility of using this system as a drug carrier for improving the 
solubility and permeability of the 17-AAG for AD treatment. The CD-p-AE nanoparticles 
were synthesized according to the previously published procedure [50], and 17-AAG was 
loaded at 16.67%. The average hydrodynamic size and zeta of the CD-p-AE 
nanoparticles were 74.01 ± 1.7 nm and +14.5 ± 1.04 mv, respectively. Solubility testing 
studies demonstrated that loading of 17-AAG into the CD-p-AE has enhanced the 
solubility of the drug by at least 20 times. Beta-cyclodextrin is known to increase the 
solubility of the hydrophobic drugs by their ability to form reversible inclusion 
complexes with the drugs by taking the drug moieties into the central cavity of the 
cyclodextrin by displacing water [435]. This complexation effectively encapsulates the 
drugs within the cyclodextrin, rendering them water-soluble [435].  
 

Figure 3-14 shows that release of 17-AAG from the CD-p-AE nanoparticles. The 
initial burst release during first 24 h could be attributed to any excess or free surface drug 
that was not loaded into nanoparticles. After the initial burst, a slow drug release was 
observed for at least 8 days. Earlier reported studies showed that the CD-p-AE 
nanoparticles showed a gradual degradation for more than one month, and this slow 
degradation rate might contribute to the long release time for 17-AAG. Additionally, the 
favorable hydrophobic interaction between 17-AAG and CD-p-AE nanoparticles might 
be strong enough to limit the dissociation of 17-AAG from the nanoparticles leading to 
the sustained 17-AAG release [50].   
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Figure 3-14. In vitro release of 17-AAG from CD-p-AE nanoparticles. 
 
Notes: CD-p-AE nanoparticles released about 30% of the drug in the initial 24 hours, 
followed by a sustained release for at least 9 days. Data represent the mean±SD (n=3). 
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In Vivo Studies of 17-AAG-loaded CD-p-AE Nanoparticles 
 

Earlier studies on in vitro permeability of CD-p-AE nanoparticles showed that the 
nanoparticles were very permeable (≥1.6 fold) to the in vitro BBB models (BBMVEC 
and HBMVEC monolayers) compared to the dextran control, and the results suggested 
that the nanoparticles have a high chance of delivering drugs across BBB. Therefore, to 
demonstrate the ability of CD-p-AE nanoparticles in improving the permeability of 17-
AAG, a preliminary in vivo study was conducted where the 17-AAG-loaded 
nanoparticles and 17-AAG alone in 5% DMA were injected intravenously into the mice 
(dose 5 mg·kg-1) and the brain tissues concentrations of the drug were estimated after 24 
hr. The results showed that CD-p-AE nanoparticles were able to achieve 2-fold higher 
brain concentration of 17-AAG compared to the drug alone (Figure 3-15). Also, an 
efficacy study was conducted where induction of heat shock response by 17-AAG alone/ 
17-AAG-loaded nanoparticles (5 & 2. 5 mg·kg-1) was measured by estimating the levels 
of Hsp70 in the cortex. Results demonstrated that 17-AAG conjugated with nanoparticles 
induced more heat shock response compared with 17-AAG alone, as evidenced by 
increased Hsp70 protein level (Figure 3-16). This enhanced activity could be attributed 
to the increased drug levels in the brain. The data suggested that CD-p-AE nanoparticles 
did increase the accumulation and efficacy of 17-AAG in the brain, which might result 
from the fact that the nanoparticles enhanced the permeability of 17-AAG through the 
BBB. The presence of cationic polyamine group and β-CD might have helped the 
nanoparticles to cross the BB through carrier-mediated transport [87]. About the transport 
mechanism of CD-p-AE nanoparticles across the BBB, the assumption is that  
adsorptive-mediated transcytosis (AMT) may be involved in the process because of 
favorable electrostatic interactions between the positive surface charge of CD-p-AE 
nanoparticles and negative charges on the endothelial surface of the BBB [88, 436]. 
However, further studies are needed to confirm these assumptions. 
 
 
Conclusions 
 

CD-p-AE nanoparticles were synthesized and loaded with 17-AAG. Incorporation 
of 17-AAG into the nanoparticle structure has allowed improving the water solubility of 
the drug. CD-p-AE nanoparticles sustained the release of 17-AAG for at least one week 
in vitro. Crosslinking of β-CD with poly-AE enabled the fabrication of promising CD-p-
AE nanoparticles that showed increased permeability of the loaded drug 17-AAG across 
BBB by 2-fold, and resulted in enhanced expression of the Hsp70 protein in the brain. 
These results suggested that the developed CD-p-AE nanoparticles can be used as 
potential drug carriers for transporting the drug across the BBB to treat chronic diseases 
such as AD in the brain. 
 
 
Future Work 
 

The future work of CD-p-AE nanoparticles include, a) continue optimization of 
the CD-p-AE nanoparticles for enhanced water solubility and sustained release of  
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Figure 3-15. 17-AAG levels in the brain at 24 h following intravenous injection of 
17-AAG alone/17-AAG loaded CD-p-AE nanoparticles. 
 
Notes: Control: 17-AAG alone in 5% DMA (filled); Sample: 17-AAG-loaded CD-p-AE 
nanoparticles in 5% DMA (pattern); Injection dose: 5 mg·mL-1 equivalent to 17-AAG. 
Nanoparticles resulted in ~2-fold higher 17-AAG levels in brain compared to the 17-
AAG alone. Data represent the mean±SE (n=3 p<0.05).  
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Figure 3-16. Hsp70 levels in the brain at 24 h following intravenous injection of 17-
AAG alone/17-AAG-loaded CD-p-AE nanoparticles. 
 
Notes: 17: 17-AAG in 5% DMA; 17+N: 17-AAG-loaded CD-p-AE nanoparticles in 5% 
DMA. Injection doses: 2.5 and 5 mg·mL-1 equivalent to 17-AAG. Nanoparticles resulted 
in higher expression of Hsp 70 levels in cortex compared to the 17-AAG alone. 
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17-AAG; c) Modification by active targeting to direct more socially to the target site and 
minimizing the exposure to other tissues; b) Assessment of in vitro bioeffects, in vivo 
safety, biodistribution, pharmacokinetics and bioeffects of systemically injected 17-
AAG-loaded CD-p-AE nanoparticles. 
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CHAPTER 4.    CONCLUSIONS 
 
 
 Polymer-based drug delivery systems can significantly influence the overall 
performance of a drug by altering various parameters such as concentration, location, and 
duration in vivo. In this way, it gives a promising approach to minimize the side effects, 
increase the overall therapeutic efficacy of the drug, and improve patient compliance and 
adherence. Despite the advances in using different drug delivery systems for various 
medical applications, still, there are certain conditions which lack effective and compliant 
delivery systems. One of such unmet medical needs was identified to be the affordable 
injectable LARCs that can provide contraception for five months to one year, and the 
other requirement was the need for drug carriers that can enhance the permeability of the 
drugs across the biological barriers and sustain the release as well. 
 

The main objective of this research has been to develop biodegradable polymeric 
biomaterials in different forms for long-acting contraception and drug delivery to the eye 
and brain. This has been achieved by fabrication of polyester-based ISD systems for 
sustained release of LNG for long-acting contraception (chapter 2), and polysaccharide-
based nanoparticles for sustained drug delivery across the biological barriers (chapter 3). 
 

The following is the summary of the project of LNG-containing ISD systems for 
long-acting contraception (chapter 2): 

 
 A simple, fast and sensitive LC/MS/MS method for quantifying levonorgestrel 

(LNG) in rat plasma was developed, fully validated and successfully applied to 
PK study of LNG injected SubQ in rats. Rat plasma of 100 μL, liquid–liquid 
extraction and LLOQ 0.5 ng·mL-1 were used for the method development. 

 An accelerated release method for the evaluation of ISD formulations that can 
effectively correlate the months of long-term release in a short time such as days 
or weeks was developed. 

 The prototype formulations (64 and 96) have suppressed the rat normal estrous 
cycles for at least 5 months after one SubQ injection, and a rapid return of fertility 
was observed after the end of the treatment. 

 The optimized lead formulation 96r [4% LNG, 4% PLGA (0.63 iv), 16% PLA 
(0.47 iv), 4% PLA (0.63 iv), 72% NMP/TEC (9:1)] designed by unique strategy 
has shown favorable injectability (23 G) and a low in vivo initial burst, and has a 
high chance that it can show a promising long-term in vivo LNG release.  

 Overall, the results demonstrated the injectable ISD formulations can serve as an 
effective means of administering LNG for long-term reversible contraception 
suggesting that the designed ISD formulations have great potential for developing 
future robust and affordable injectable LARC products that could improve access 
to family planning around the globe.  

 
The summary from the project of polysaccharide-based nanoparticles for 

sustained drug delivery across the biological barriers (chapter 3) are: 
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 The developed dextran-based poly(NIPAAm-co-DEXlactateHEMA) nanogels 
were nontoxic, and were highly permeable than dextran-70 kDa control across the 
in vitro ARPE-19 monolayers (~35-fold), ex vivo porcine sclera and cornea (at 
least 4-fold). 

 The developed β-CD-based CD-p-AE nanoparticles sustained the release of 17-
AAG in vitro for at least one week, and showed increased permeability of the 
loaded drug 17-AAG across BBB by 2-fold, and resulted in enhanced expression 
of the Hsp70 protein in the brain cortex. 

 Overall, the developed nanoparticles have shown great potential for delivering the 
drugs to the eye and brain. 

 
In conclusion, the hypothesis of the dissertation that different biodegradable 

polymeric biomaterials based on polyesters or polysaccharides can act as effective 
systems for long-acting contraception for five months or longer, and drug delivery to the 
eye and brain was accepted. While the initial objectives of this work were met, still 
extensive further in vitro and in vivo investigations need to be conducted with the 
developed biomaterials for optimization, and demonstration of the long-term therapeutic 
safety, efficacy; and scale-up potentials. Besides, the developed biodegradable 
biomaterials can be optimized to be a versatile drug delivery platform and could be 
employed for encapsulating other therapeutics for sustained systemic or local drug 
delivery. 
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APPENDIX.  MECHANICAL, THERMAL AND HYDRATION 
CHARACTERIZATION OF POLY (HEMA)-BASED HYDROGELS* 

 
 

Introduction 
 

Hydrogels are polymeric materials comprised of hydrophilic and hydrophobic 
components that assist in closely controlling physicochemical properties [437, 438]. They 
have made a significant contribution to the field of biomedical sciences through various 
applications such as delivery systems of therapeutics or as scaffolds for tissue 
engineering or to fill a defect [437, 439, 440]. Poly(2-hydroxyethyl methacrylate) 
[poly(HEMA)] based hydrogels have gained extensive attention because of their inherent 
biocompatibility, hydrophilicity, and synthetic flexibility. Synthesis of poly(HEMA) 
based hydrogels readily permits incorporation of various other components (such as 
monomers/prepolymers) containing unique functional groups for their use in novel 
industrial formulations and biomedical applications [441-444]. They have been used as 
constructs for the effective hosting of biomolecules, whole cell encapsulation, soft 
contact lenses and membranes that confer biocompatibility to in vivo biosensors. 
 

The physicochemical properties of the hydrogels such as mechanical, thermal and 
hydration characteristics are typically controlled through bifunctional crosslinking agents 
such as oligo- and poly- ethylene glycol diacrylates e.g. tetra(ethylene glycol) diacrylate 
(TEGDA), which, when added at varying concentrations, influence the modulus and the 
void volume through the cross-link density of the hydrogel [445, 446]. However, such 
crosslinks may, in addition, be virtual and thus arise from hydrogen bonding [447, 448], 
electrostatic interactions[449], polyplex formation [450] and molecular physical 
entanglements. The physicochemical properties of the hydrogel systems such as 
mechanical, thermal and hydration characteristics play a significant role in deciding the 
fate and overall functionally of the hydrogels. As these systems are implanted at various 
physiological locations in the body, it is important to mimic the local tissue mechanical 
environment and should be able to withstand the shear and compression forces excreted 
by the surrounded tissues. Inappropriate mechanical properties may lead to failure of the 
system. Thermal properties of the system such as glass transition temperature (Tg) are 
also critical for biomedical applications especially in terms of considerations of 
processing, handling quality and storage.  
 

Hydrogels have shown their potential as drug delivery systems for controlled 
release of biological therapeutics such as peptides and proteins, primarily due to their 
high hydrophilicity, tissue similarity and chance to tailor the drug release [439, 440, 451]. 
 
 
--------------- 
* Adapted with permission from (ii) “Partitioning of coomassie brilliant blue into 
DMAEMA containing poly(HEMA)-based hydrogels 72. Kotanen C.N., Janagam, D.R., 
Idziak, R., Rhym, L., Sullivan, R., Wilson, A.M., Lowe, T.L., GuiseppiElie, A. European 
Polymer Journal. p. 438-450. © 2015 Elsevier Ltd., with permission from Elsevier.” 
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Therapeutics can be loaded into the hydrogels either during the hydrogel synthesis (pre-
loading) or after the synthesis of hydrogels (post-loading). Pre-loading of biologics may 
expose them to various harsh conditions and crosslinking agents which may either 
damage the drugs or covalently graft them to the polymeric network [451-453]. Therefore 
post loading can be more favorable for loading of therapeutics specifically into the 
hydrogels to preserve their activity. Some of the commonly used post loading techniques 
are solvent sorption where the hydrogel is soaked in drug or drug/polymer, and drug gets 
into the system by driving forces such as swelling or partitioning in salt-rich phase, but 
these techniques has shown poor loading and fast washing out of the loaded drug [452, 
454-457]. Another alternative way of achieving post loading is by exploiting the 
reversible electrostatic interactions between the oppositely charged units such as 
immobilization of charged proteins in oppositely charged hydrogels at low ionic strength 
and released at physiological ionic strength. This post-loading technique has shown to be 
very promising in attaining high efficiency and controlled release of biologics [451].  
 

Poly(HEMA)-hydrogels can be readily molecularly engineered to contain a wide 
variety of pendant and crosslinking bioactive moieties that render them biologically 
responsive wherein the response of the hydrogel is triggered by recognition of a 
biological agent conferred by an immobilized biorecognition species. These hydrogels 
can be easily modified to possess a positive charge, and there are several negatively 
charged biomolecules that can have potential applications in bioactive poly(HEMA) 
hydrogels such as cell adhesive factors [458], heparin [459], DNA aptamers [460], 
plasmids [461], and antimicrobial peptides [462]. The cationic charge can be introduced 
into the poly(HEMA)-hydrogels by copolymerization with carcinogenic monomers such 
as dimethyl amino ethyl methacrylate (DMAEMA) or aminoethyl methacrylate (AEMA) 
and the hydrogels can be employed for encapsulating biomolecules by post-loading 
technique. However, incorporation of these additional components into the poly(HEMA) 
structure may affect the physicochemical properties of the hydrogels. Therefore, the 
objective of this study was to evaluate the impact of ionizable modifiers DMAEMA on 
mechanical, thermal and hydration properties of the poly(HEMA)-based hydrogels. 
 
 

Materials and Methods 
 
 
Chemicals and Reagents 
 

Octadecyltrichlorosilane (OTS), 2-hydroxyethyl methacrylate (HEMA), 
tetra(ethylene glycol) diacrylate (TEGDA, technical grade), oligo(ethylene 
glycol)(400)methacrylate (OEG(400)MA), N [Tris(hydroxymethyl)methyl]acrylamide 
(HMMA, 93%), polyvinylpyrrolidone (pNVP, Mw ~1,300,000), 2-(Dimethylamino)ethyl 
methacrylate (DMAEMA, 98%), the photo-initiator 2,2-Dimethoxy-2-
phenylacetophenone (DMPA, 99+%), and all other common solvents and buffers were 
purchased from Sigma-Aldrich Co. (St. Louis, MO, USA). HEPES buffer was prepared 
at 0.025 M and pH = 7.35. The HEMA, methacrylate, and diacrylate reagents were 
passed over an inhibitor removal column (Sigma-Aldrich) for removal of the 
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polymerization inhibitors hydroquinone and monomethyl ether hydroquinone before 
using them in the preparation of the hydrogel cocktail. Solutions were prepared in 
deionized water prepared by purifying distilled water through a Milli-Q® plus (Millipore 
Inc.) ultrapure water system.  
 
 
Synthesis of Poly(HEMA)-based Hydrogels 
 

The composition of the hydrogels is given in Table A-1. 5 mol% of charged 
modifiers either DMAEMA or AMEA were incorporated into the hydrogels. Our 
collaborators synthesized the hydrogels with and without the charge modifiers according 
to the procedure published [463]. The resulting structures are schematically illustrated in 
Figure A-1. 
 
 
Mechanical Characterization of Hydrogels 
 

Rheological and compression measurements were performed on poly(HEMA)-
based hydrogel formulated with and without 5 mol % DMAEMA. Samples were run 
using the simple parallel plate geometry on an AR-G2 Rheometer (TA Instruments). 
Following equilibration in deionized water, hydrogel samples ( =4.5 mm and t=1.0 mm) 
were first subjected to an oscillating strain sweep survey test to define the linear 
viscoelastic (LVE) region wherein the storage modulus (G′) and loss modulus (G″) were 
independent of the applied strain. The hydrogels were then subjected to a frequency ramp 
from 0.1 to 30 Hz at a constant strain (25%) from the LVE region while maintaining the 
temperature at 37 °C and the sampling rate of 10 points per decade. The resulting graph 
of G´ and G´´ over the range of frequency was created at the end of the procedure. 
 

The compression profiles of the equilibrated and swollen hydrogels were 
evaluated with the compression clamp using a Dynamic Mechanical Analyzer (DMA) 
Q800 (TA Instruments). The DMA was calibrated before each set of experiments, and the 
dimensions of the hydrogels were measured and recorded in the accompanying DMA 
software before testing. Starting at a normal force of 0.001N, the hydrogel was heated to 
37 °C and put under a force ramp of 0.25 N/min until the machine reached 8 N. After the 
force ramp was complete, a graph of the resulting stress/strain curve was produced. To 
determine Young’s modulus of the compressed hydrogel, the slope of the stress/strain 
curve was analyzed at a point where the profile was linear and most consistent. 
Compression profiles of the hydrogels under a compression ramp that went up to 18 N 
(maximum force) was used to determine the rupture force the hydrogels. 
 
 
Glass Transition Temperature (Tg) of the Hydrogels 
 

Tg of the hydrogels with and without 5 mol% DMAEMA was determined by 
thermal analysis using a DSC Q2000 (TA Instruments). Around 7 to 10 mg of dried 
hydrogel was cut, placed into individual hermetically sealed aluminum pans (Tzero  
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Table A-1. Monomer cocktail formulations for the preparation of varying mol% 
TEGDA crosslinked poly(HEMA)-based hydrogels prepared in triplicate. 
 

Crosslink density (mol%) Control DMAEMA 
modified 

AEMA 
modified 

HEMA 86 79 79 
TEGDA 1 3 3 
OEG(400)MA (n=10) 5 5 5 
HMMA 5 5 5 
pNVP 2 2 2 
DMAEMA/AEMA 0 5 5 
DMPA 1 1 1 

 
Notes: HEMA, 2-hydroxyethyl methacrylate; TEGDA, tetra(ethylene glycol) diacrylate; 
OEG, oligo(ethylene glycol) methacrylate; pNVP, polyvinylpyrrolidone; HMMA, N-
[Tris(hydroxymethyl)methyl]acrylamide; DMAEMA, 2-(dimethylamino)ethyl 
methacrylate; AEMA, 2-aminoethyl methacrylate; DMPA, 2,2-Dimethoxy-2-
phenylacetophenone.  
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AEMA

A B C

 

Figure A-1. Schematic illustration of the polymerized hydrogels. 

Notes: Control hydrogel (A), DMAEMA modified hydrogel (B), AMEA modified hydrogel (C). 
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hermetic lid, 901684.901; Tzero pan, 901683.901). Each sample was equilibrated at -20 
°C and run for two consecutive cycles at a heating rate of 10 °C/min from -20 °C to 200 
°C. The first heat cycle will assess the hydrogels’ properties in the as-molded condition 
and will erase the thermal history of the hydrogels. The second heat cycle will evaluate 
the inherent properties of the hydrogels. Three different drying methods were employed: 
Hydrogel samples were vacuum (23 inHg) dried at room temperature, vacuum dried (23 
inHg) at 80 °C, and freeze dried for overnight before the Tg measurements.  
 
 
Hydration and Water States Characterization 
 

The degree of hydration (DoH) of the hydrogels with and without 5 mol% 
charged modifier DMAEMA /AEMA in DI water at RT (22 °C) was determined by 
gravimetric analysis. Firstly, following overnight equilibration and the removal of excess 
surface water with lint-free paper (Kim wipes®), the weight of the fully hydrated 
hydrogels (HG) equilibrated in DI water was measured using an analytical balance (± 0.1 
mg). Hydrogel samples were then dried to constant weight using Freeze Dry System 
(Freezone 4.5, Labconco). The samples were further kept in the -80 °C freezer for 12 h 
then allowed to dry in the lyophilizer for 2 days at a pressure of 100 mtorr and -80 °C and 
the weight repeatedly measured to constant weight. Equation A-1 was used to calculate 
the percentage hydration is given below 
 

DOH (wt%) = 100%HG DG

HG

M M
M

                      (Eq. A-1) 

 
Where MHG is the weight of the hydrated hydrogel at equilibration, MDG is the 

weight of the dry hydrogel, MHG - MDG is the equilibrium water content (EWC) of the 
hydrogel 
 

The water states in the hydrated hydrogels containing 3 mol% TEGDA 
crosslinker with and without 5 mol% DMAEMA were measured and calculated using a 
differential scanning calorimeter (DSC) (Q2000, TA Instruments) equipped with a low-
temperature cooling module and using, the method previously reported with slight 
modification [19-21]. Briefly, the hydrated hydrogels in DI water with known DoH were 
surface wiped, weighed and sealed in individual hermetically sealed aluminum pans 
(Tzero hermetic lid, 901684.901; Tzero pan, 901683.901). Samples were equilibrated at –
40 °C and then heated up to 30 °C at a rate of 10 °C/min under constant purging of 
nitrogen at 50 mL/min. For each measurement, five samples were analyzed. The enthalpy 
of the endotherm, ΔHm, at 0 °C was obtained by integration of the endothermic peak 
using TA Universal Analysis software and normalized to the weight of the hydrated gel 
with a unit of J/g of hydrated gel. The deionized water was used as a reference and the 
melting enthalpies for freezing free water and freezing bound water were assumed to be 
the same as that of bulk water (ΔH0=334 J/g). Small differences in the enthalpies of the 
melting ice of different crystals were neglected. Ratio ΔHm/ΔH0 represents grams of 
freezable water per gram of the swollen hydrogel as shown in Equation A-2. 
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Wf
MHG

wt% = ΔHm
ΔH0

            (Eq. A-2) 
 
The amount of non-freezing bound water per gram of hydrated gel was taken as 

the difference between the DoH and the amount of freezing water per gram of hydrated 
gel using Equation A-3. 
 

           (Eq. A-3) 
 
 

Results and Discussion 
 

The presence of the hydrophobic but potentially ionizable 3° amine, DMAEMA, 
as a co-monomer at 5 mol% is expected to alter the mechanical and thermal properties of 
the poly(HEMA)-based hydrogel. Such change, reflected in the physicochemical 
properties of the hydrogels, may arise because of the altered structure, potential 
crosslinking and hydration characteristics of the hydrogel that is co-incident to the 
chemical modification of the backbone.  
 
 
Mechanical Properties of Hydrogels 
 

Figure A-2A. illustrates the LVE region of the hydrogels under oscillatory strain 
sweep. Figure A-2B shows the storage G′ and loss G″ moduli of the hydrogels with and 
without 5 mol% DMAEMA as a function of frequency. There was no difference between 
both the G′ and G″ of the two types of hydrogels over the entire frequency range from 0.1 
to 100 Hz. The G′ was always higher than G″ suggesting that the elastic behavior 
dominates the viscous behavior in these hydrogels, which is the typical characteristic of a 
hydrogel. Figure A-2B also shows that both the G′ and G″ increased linearly with 
increasing frequency, suggesting that the both types of hydrogels were in the rubbery to 
glassy transition stage and became stiffer with increasing frequency. Figure A-3 shows 
the stress-strain profiles resulted in the compression measurements of the hydrogels with 
and without 5 mol% DMAEMA. The addition of 5 mol% DMAEMA increased the onset 
stress and onset strain from 5±1kPa and 4.3±0.6% to 13±kPa and 7.1±1.1%, respectively 
(Figure A-3A). More significantly, the addition of 5 mol% DMAEMA increased the 
compression modulus three-fold, from 1.5± to 4.8± MPa (Figure A-3B). Incorporation of 
hydrophobic modifiers may increase the toughness of the hydrogels [464]. The results 
could be explained by the higher hydrophobicity of the DMAE moiety than the HE 
moiety acting to reduce the total free water content and hence compressibility. Also, the 
additional crosslinking caused by the hydrogen bond to DMAE and other components of 
the hydrogels such as HEMA or/and HMMA may also be a factor in increasing the 
compressibility (Figure A-3C). In combination, the results shown in Figures A-2A, B 
and A-3A, B confirm that the addition of 5 mol% DMAEMA did not change the 
viscoelastic shear properties of the hydrogels, but significantly increased the hydrogels’ 
resistance to compressive deformation.  
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Figure A-2. Shear storage modulus (G′) and shear loss modulus (G″) as a function 
of strain% (A) and frequency (B) for the hydrogels. 
 
Notes: Control hydrogels - no DMAEMA; Modified Hydrogels - 5 mol% DMAEMA. 
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Figure A-3. Stress-strain curve for hydrogels under compression (A); 
Compression modulus of hydrogels (B); Scheme representing the hydrogen bonding 
ability of DMAEMA (C). 
 
Notes: Control hydrogels - no DMAEMA; Modified Hydrogels - 5 mol% DMAEMA 
Compression modulus data represents mean±SD, n=3. Hydrogel structure reprinted with 
permission. 
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Glass Transition Temperature (Tg) of Hydrogels 
 

DSC was used to determine the glass transition temperatures (Tg) of the hydrogels 
with and without 5 mol% DMAEMA. The Tg values were obtained from the second heat 
cycle of the hydrogels dried through three different processes: vacuum (23 in Hg) at room 
temperature, vacuum (23 in Hg) at 80°C, and freeze drying are shown in Table A-2. The 
drying condition had a considerable influence on the measured Tg. For the hydrogels 
without 5 mol% DMAEMA, vacuum drying at 80 °C caused the Tg to shift to a higher 
temperature than the vacuum drying at room temperature, and the freeze drying shifted 
the Tg to an even higher temperature than the vacuum drying at 80 °C. For the hydrogels 
with 5 mol% DMAEMA, the vacuum drying at room temperature and the freeze drying 
produced a similar Tg, while the vacuum drying at 80 °C caused the Tg to shift to a higher 
temperature than the other two drying processes. The reason might be that the different 
drying processes resulted in the hydrogels having different amounts of residual water 
which acted as a plasticizer to decrease the Tg. The vacuum drying at 80 °C and freeze 
drying made the hydrogels drier (containing less water) than the vacuum drying at room 
temperature. Depending on the chemical structures of the hydrogels (with or without 
DMAEMA), the vacuum drying at 80 °C could cause the hydrogels to contain more or 
less water than freeze drying. However, irrespective of the drying condition, in all three 
drying processes it was observed the addition of 5 mol% of DMAEMA increased the Tg 
of the polymer.  
 

It is well known that the value of Tg depends on the mobility of the polymer 
chain, the more immobile the chain, the higher the value of Tg [465]. In this case, the 
primary factors that may have played a role in increasing the Tg of the polymer after 
incorporation of DMAEMA are: water content and cross-linking. It is reported in the 
literature that water acts as a plasticizer by reducing the interaction forces between the 
polymer chains-i.e., the hydrogen bonds and improve flexibility thereby lower Tg [466]. 
As DMAEMA is hydrophobic, replacement of 5 mol% HEMA with DMAEMA might 
have imparted hydrophobicity to the hydrogels and may have lowered the water content 
of the hydrogels and has increased Tg. Further, as increased crosslinking between the 
chains restricts the polymer mobility [467], the physical crosslinks formed by the 
hydrogen bonding between the DMAEMA and poly(HEMA) polymeric network might 
be another factor that caused the shift to higher Tg. To confirm these assumptions 
hydration studies and swelling studies were conducted with both modified and control 
hydrogels. 
 
 
Hydration and Water States within Hydrogels 
 

The physicochemical, transport and sorption properties of hydrogels are re 
expected to be strongly influenced by the amount of water and the distribution of this 
water among the many possible states within the hydrogel [468]. Therefore to study the 
effect of the modification on hydrogel properties, hydration studies were conducted. The 
DoH of the control and DMAEMA modified hydrogels obtained in water is presented 
Table A-3. The presence of 5 mol% DMAEMA dramatically alters the hydration
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Table A-2. The glass transition temperatures (Tg) from the second heat cycle for the hydrogels with and without 5 mol% 
DMAEMA under different drying processes. 
 

Hydrogel/  
Tg (°C) 

 Vacuum dry at room 
temperature 

 Vacuum dry at 80°C  Freeze dry 
 

 Onset Midpoint  Onset Midpoint  Onset Midpoint 
Control  47.14 67.78  69.57 75.60  80.02 89.73 
DMAEMA modified  79.47 99.99  102.80 111.06  85.87 98.19 

 
 



 

174 

Table A-3. The gravimetrically determined degree of hydration (DoH %) of the 
p(HEMA)-based hydrogels with and without DMAEMA. 
 
Hydrogels Dry gel, 

mg 
Hydrated gel, 

mg 
Degree of hydration, 

wt% 
Control 22.9 ± 0.6 41.6 ± 0.6 43.7 ± 1.3 
With 5 mol% DMAEMA 22.5 ± 0.8 34.4 ± 0.5 31.7 ± 1.2 
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characteristics of the p(HEMA)-based hydrogel, reducing its DoH from 43.7±1.28 to 
31.7±1.17. The hydrophobicity of DMAEMA significantly reduced the water intake into 
the hydrogels, and the modified hydrogels were less swollen compared to the control.  
To more deeply investigate the distribution of water states within these hydrogels, the 3 
mol% TEGDA crosslinker formulation possessing 0 mol% or 5 mol% DMAEMA was 
studied by DSC following equilibration in DI water or HEPES buffer. Water present in 
hydrated hydrogels is known to be present in three conditions, (i) freezable free water 
(Wff), (ii) freezable bound water (Wfb) (freezing point depressed), and (iii) and non-
freezable bound water (Wnfb) . The freezable free water Wff does not participate in any 
interaction with the polymer chains while the freezable bound Wfb water slightly interacts 
with the polymer chains. The sum of these two states of water is collectively named 
freezable water (Wf) which exhibits a phase transition at a temperature of 0 °C. On the 
other hand, the non-freezable bound water Wnfb interacts strongly with the polymer chains 
through hydrogen bonding and does not show any phase transition at 0 °C. The sum of 
the freezable water (Wf) and non-freezable bound water Wnfb normalized by the weight of 
the hydrated hydrogel at equilibration (MHG) equals to the degree of hydration DoH as 
shown below in Equation A-4. Thus, the DoH determined by DSC may be directly 
compared with the DoH obtained by gravimetry and is expected to be in close agreement. 
 

          (Eq. A-4) 
 

Figure A-4 shows that warming the frozen hydrated hydrogels containing 
hydrogels with and without 5 mol% DMAEMA resulted in a broad ice-melting 
endodermic peak at around 0 °C correlated to the freezable free water in each hydrogel. 
The endothermic peak is smaller for hydrogels containing 5 mol% DMAEMA suggesting 
less overall hydration. The broad peak at around 0 °C, representing freezable free water 
within the hydrogels, was split into two not so clearly resolved peaks which might be due 
to different ice structures of the freezable free water within the hydrogels [469]. Figure 
A-4 also shows that the 0 °C peak areas of the hydrogels with DMAEMA were 
significantly lower than those of the hydrogels without DMAEMA. Besides the peak at 
around 0 °C, the hydrogels without DMAEMA showed another relatively small broad 
peak at around -6 °C. This little broad peak could be due to the water that was loosely 
bound to the hydrogel polymer chains and could be frozen but at a temperature lower 
than 0 °C (depression of freezing point) [469-471]. Further observation showed that the 
small broad peak at around -6 °C was stronger in the hydrogels without DMAMEA that 
were equilibrated in HEPES buffer than the same hydrogel that was equilibrated in DI 
water, indicating that the buffer salts enhanced water to be bound to the polymer chains, 
consistent with the literature report [472]. As the areas of the endothermic peaks at 
around 0 °C and around -6 °C correlate to the freezable free water content and freezable 
bound water content, respectively, we further measured the peak areas and calculated the 
freezable water content which equals the sum of freezable free water content and 
freezable bound water content. By using Equation A-4, the non-freezable bound water 
content was calculated from the DoH obtained from the gravimetric measurements at 25 
°C and the freezable water content obtained from the DSC results of the hydrogels and 
listed the results in Table A-4. 
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Figure A-4. Endothermic curves of swollen hydrogels synthesized with and 
without 5 mol% DMAEMA. 
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Table A-4. Distribution of water content in the hydrogels possessing 0 or 5 mol % DMAEMA and equilibrated in DI water. 
 

Hydrogels 
 Degree of hydration DoH 

(wt%) 
 Freezable water  

(wt%) 

 Non-freezable bound water   
(wt%) 

 DI H2O HEPES  DI H2O HEPES  DI H2O HEPES 
Control  43.7 ± 1.3 43.4 ± 0.5  18.7 ± 1.4 18.6±0.3  25.0 ± 0.9 24.8 ± 0.6 
DMAEMA modified  31.7 ± 1.2 29.7 ± 1.1  5.5 ± 0.6 3.8 ± 0.5  26.2 ± 0.9 25.9 ± 0.9 
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Table A-4 shows that a small amount (5 mol%) of the hydrophobic DMAEMA 
can dramatically alter the hydration characteristics of cross-linked poly(HEMA). From 
the results it can be observed that the major part of the equilibrium water content in the 
hydrogels with and without 5 mol% DMAEMA is in non-freezable bound water state and 
the addition of 5 mol% DMAEMA did not have much influence on the non-freezable 
bound water amount. However, the addition of 5 mol% DMAEMA significantly 
decreased the amount of freezable water three-fold (18.7 ± 1.4 vs. 5.5 ± 0.6 in DI water; 
18.6 ± 0.3 vs. 3.8 ± 0.5 in HEPES buffer) and thus the total hydration (43.7 ± 1.3 vs. 31.7 
± 1.2 in DI water; 43.4 ± 0.5 vs. 29.7 ± 1.1 buffer), and also disturbed the loose binding 
between the water and the polymer chains causing the disappearance of the small peak at 
around -6 °C in Figure A-4. The reason might be because the non-freezable bound water 
is derived from water that is strongly bound to the polar hydroxyl groups of the 
poly(HEMA) repeat unit via hydrogen bonds [473] and since poly(HEMA) was the 
majority component with a similar amount in both types of hydrogels one may expect the 
non-freezable water content to be about the same. The freezable water is derived from the 
free or slightly bound water that resides within the nano-dimensioned pores of the 
hydrogels [474, 475]. The addition of 5 mol% DMAEMA could make the pores 
effectively smaller because of the physical crosslinking by hydrogen bonding with the 
poly(HEMA) and also the free water in the pores might have been repelled as the 
DMAEMA moiety [δDMAEMA = 27.92 (cal·cm-3)1/2] is more hydrophobic than the 
HEMA moiety [δHEMA = 31.2 (cal·cm-3)1/2] [476-478], as reflected in their respective 
solubility parameters, d, calculated from group contributions. The presence of the HEPES 
buffer did not affect the non-freezable bound water content in both the hydrogels with 
and without 5 mol% DMAEMA, and as well as the DoH and the freezable water contents 
in the hydrogels without DMAEMA. However, the presence of the HEPES buffer slightly 
decreased the DoH and the freezable water contents in the hydrogels with 5 mol% 
DMAEMA, probably due to the salting out effect as the DMAEMA is slightly positively 
charged at pH 7.4. The hydrogels without DMAEMA in both water and HEPES buffer 
had similar freezable water content but higher freezable bound water content in HEPES 
buffer (Figure A-4), suggested that the salts in the buffer redistributed the freezable 
water within the hydrogels. Further investigation is needed to better understand the exact 
mechanisms for the observed redistribution of water content within the DMAEMA 
hydrogels. However, there is an indication that this may arise from the unique 
mesostructure adopted by the amphiphilic nature of the hydrogel [479]. It is noteworthy 
that the DoH values at 25 °C in Table A-4 are similar to the corresponding 
gravimetrically determined DoH values at 37 °C (43.7 ± 1.3 and 31.7 ± 1.2% vs. 42 ± 1.4 
and 34 ± 1.2% in DI water; and 43.4 ± 0.5 and 29.7 ± 1.1% vs. 41.3 ± 0.8 and 33.1 ± 1.0 
in HEPES), suggesting that changing temperature from 37 °C to 25 °C did not 
appreciably affect the degree of hydration of the hydrogels. Reduced freezable water of 
gels containing DMAEMA are due to hydrophobicity and physical cross-linking [480, 
481] within the hydrogel via hydrogen bonding resulting in a tight network. The results 
were in agreement with the earlier assumption that the modification of hydrogels with 
hydrophobic cationic modifier DMAEMA altered the degree of hydration and water 
states of the hydrogels thereby affected the physicochemical properties of the hydrogels. 
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To understand the effect of a hydrophilic cationic modifier, 5 mol% AEMA was 
added instead of DMAEMA, and the hydration studies were repeated with AEMA 
modified hydrogels. Comparison of hydration characteristics of all the three hydrogels in 
DI water is given in Table A-5. The addition of 5 mol% AEMA to the control hydrogels 
did not resulted in any change in the equilibrium water content of the hydrogels but 
significantly decreased the bound water content in the hydrogels from 25.0 ± 0.93 to 16.5 
± 0.27, and increased the freezable water content from 18.7±1.43 to 27.8±0.95. Increased 
hydrophilicity of the AEMA hydrogels may have led to improved DoH of the gels 
compared to the DMAEMA hydrogels (44.3 vs. 31.7), however, the reason for lower 
bound water could be attributed to the hydrogen bonding of primary hydrogen atoms 
attached to the amine of the AMEA moiety with HEMA/HMMA units, thereby limiting 
the hydrogen bonding chances of water with HEMA/HMMA units in the polymer chain. 
This interference might have resulted in lowering the bound water content of the 
hydrogels after addition of AEMA (Figure A-5). This interpretation of the results needs 
further investigation. 
 
 

Conclusions 
 

The addition of cationogenic DMAEMA at low mol% (5 mol%) has significantly 
altered the mechanical, thermal and hydration properties of the hydrogels. The 
incorporation of 5 mol% DMAEMA into HEMA-based hydrogels did not alter the 
shearing modulus. However, this changed has resulted in an increase in the compression 
modulus and Tg of the hydrogels, owing to the hydrophobicity and physical crosslinking 
of the DMAEMA. The degree of hydration and the distribution of water within the 
hydrogels varied significantly depending on the hydrophobicity/hydrophilicity & 
hydrogen bond forming ability of the cationic modifier used in the gels thereby affecting 
the hydrogel properties. Freeze drying produced the most consistent drying condition. 
 
 

Future Work 
 

Some of the near future work on this project include - i) continuing evaluation of 
the AEMA modified hydrogels for the physicochemical properties for further 
understanding the influence of cationogenic modifiers with hydrophilic and hydrophobic 
characteristics; ii) evaluating the effect of inclusion of both AEMA and DMAEMA as 
cationic modifiers in the hydrogels; and iii) optimizing the hydrogels for loading and 
release of biomolecules for drug delivery applications. 
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Table A-5. Distribution of water content of hydrogel possessing 0 or 5 mol % 
DMAEMA or AEMA and equilibrated in DI water. 
 

Hydrogels DoH, wt% Wf, wt% Wnbf, wt% 
Control Hydrogel 43.7±1.28 18.7±1.43 25.0±0.93 
5 mol% DMAEMA 31.7±1.17 5.5±0.64 26.2±0.86 
5 mol% AEMA 44.3±1.15 27.8±0.95 16.5±0.27 
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Hydrogel with AEMA

Nitrogen charged at 
physiological pH

Hydrogen Bonding

“H” from water or of 
adjacent units of the 
polymeric chain

“O” from water or adjacent HEMA/HMMA units of polymeric chain 
“N” from adjacent AEMA units in polymeric chain 

 
 
Figure A-5. Scheme representing the possible hydrogen bonding between AEMA 
units with adjacent HMMA or HEMA units. 
 
Notes: The hydrogens on AEMA might have involved in H-bonding with HEMA or 
HMMA units on the hydrogel network and thereby limiting the bonding of water to gels; 
thereby minimizing the bound water content. Though the primary hydrogens of amine 
(AEMA) could also involve in hydrogen bonding with water molecules, but the bonding 
of these hydrogen's with HEMA/HMMA might be more predominant than bonding to 
water. Hydrogel structure modified with permission. 
APPENDIX A.  
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