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ABSTRACT 
 
 
 Reverse genetics methods, particularly the production of gene knockouts and 
knockins, have revolutionized the understanding of gene function. High throughput 
sequencing now makes it practical to exploit reverse genetics to simultaneously study 
functions of thousands of normal sequence variants and spontaneous mutations that 
segregate in intercross and backcross progeny generated by mating completely sequenced 
parental lines. To evaluate this new reverse genetic method we resequenced the genome 
of one of the oldest inbred strains of mice DBA/2J the father of the large family of 
BXD recombinant inbred strains. We analyzed ~100X whole-genome sequence data for 
the DBA/2J strain, relative to C57BL/6J, the reference strain for all mouse genomics and 
the mother of the BXD family. We generated the most detailed picture of molecular 
variation between the two mouse strains to date and identified 5.4 million sequence 
polymorphisms, including, 4.46 million single nucleotide polymorphisms (SNPs), 0.94 
million insertions/deletions (indels), and 20,000 structural variants. We systematically 
scanned massive databases of molecular phenotypes and ~4,000 classical phenotypes to 
detect linked functional consequences of sequence variants. In majority of cases we 
successfully recovered known genotype-to-phenotype associations and in several cases 
we linked sequence variants to novel phenotypes (Ahr, Fh1, Entpd2, and Col6a5). 
However, our most striking and consistent finding is that apparently deleterious 
homozygous SNPs, indels, and structural variants have undetectable or very modest 
additive effects on phenotypes. 
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CHAPTER 1.    INTRODUCTION 
 
 

INTRODUCTION TO GENOMIC MEDICINE 
 
 Genetic variation modulates virtually all aspects of phenotypic variation, 
including physiological and behavioral differences, susceptibility to diseases, and 
differences in drug responses among individuals within and between populations [1-5]. 
Identification of the sets of causal genetic variants is fundamental to a better 
understanding of molecular mechanisms underlying the heritable fraction of phenotypic 
variation. This, in turn, is important for developing more rational, mechanistic, and 
individualized strategies for therapeutic intervention. 
 
 The last decade has seen a significant shift from family-based linkage studies to 
genome-wide association studies [6-8]. The advent of high-throughput genotyping 
technology has enabled fast and accurate detection of genotypes for large numbers of 
known markers in large human cohorts. This, along with development of advanced 
statistical approaches (and ample funding), has propelled a series of systematic gene-to-
disease association studies. To date, genetic association studies have reliably linked 
thousands of sequence variants (mainly SNPs) to a wide-variety of Mendelian and 
common complex diseases [9,10]. 
 
 The dramatic reduction in the cost of high-throughput sequencing and 
computational resource required to analyze the data, has also enabled large scale 
sequencing efforts with the aim of comprehensive profiling genetic and transcriptomic 
differences between case and control cohorts [11-13]. The acquisition, integration and 
interpretation of multi-omic data including genomics and its derivatives
transcriptomics, proteomics and metabolomics have been successful in the discovery of 
biomarkers for diagnostic, preventative and therapeutic purposes. These rapid 
developments are facilitating the clinical adoption of genomic medicine the 

genetic profile [14-16]. Considering the rate at which sequencing technology is outpacing 
[17], characterizing genomic variation from personal genome sequencing 

will be as affordable as an X-ray scan. Phase I of genomic medicine is already having an 
impact on healthcare by offering genome-based diagnostic approaches for the prediction 
of disease risks, prediction of drug response, accurate molecular classification of disease, 
and early detection of diseases. 
 
 

IDENTIFICATION OF DISEASE RISK FACTORS THEN AND NOW 
 
 Genetic mapping approaches to identify disease risk factors have evolved largely 
during the last three decades [18,19]. This is mainly due to advances in the definition of 
chromosomal markers, and in related sequencing technologies. Advanced study-designs 
and statistical methods have shifted the focus of genetic research from studying rare 
disorders within families, to studying common and complex disorders segregating within 
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large populations. The new methods have allowed us to dissect the genetic architecture of 
complex disorders including the identification of the causal genomic loci, estimation of 
the disease heritability, estimation of effect sizes of different loci and their non-additive 
interactions. 
 
 
Linkage analysis 
 
 The earlier breakthroughs in linking genotype with phenotype involved studies of 
Mendelian disorders that can be mapped to a single gene and a single mutation. These 
studies were often family-based and used linkage analysis to define the candidate 
chromosomal region, followed by positional cloning to narrow down the candidate region 
to a causal gene. Genetic variation within families was used to construct linkage maps, 
and risk loci and genes were mapped to a particular chromosomal location by testing for 
co-segregation with small panels of markers often just a few hundred. The first 
successful application of this approach identified genomic loci responsible for an X-
linked phagocytic disorder chronic granulomatous disease (CYBB) [20]. This was soon 
followed by identification of the loci and ultimately genes responsible for other genetic 
disorders including Duchene muscular dystrophy (DMD) [21], cystic fibrosis (CFTR) 
[22], Huntington disease (HTT) [23,24], polycystic kidney disease (PKD1, PKD2 and 
PKHD1) [25-27] , phenylketonuria (PAH)[28], albinism (TYR) [29] and many more. 
Currently, Online Mendelian Inheritance in Man (OMIM) catalogues 4,500 human 
disorders for which the underlying genetic mutations are known 
(http://omim.org/statistics/entry). 
 
 The success of linkage analysis and positional cloning was mainly limited to the 
identification of high-penetrance monogenic variants that mainly disrupt the structure of 
proteins such as huntingtin [30]. However, most genetic disorders including 
cardiovascular diseases, diabetes and neurodegenerative diseases are actually the result of 
combination of inherited variants in multiple genes that have small or moderate effects 
and that often do not modify protein structure at all [31]. For example, a recent study has 
identified 108 loci that are significantly associated with schizophrenia none of which 
produce known protein differences [32]. For these types of complex polygenic diseases, 
family-based linkage studies often suffer from unavailability of family of multiple 
generations or sufficient numbers of genetically informative families, particularly for 
late-onset diseases such suffers 
from poor genetic resolution (typically on the order of a few centimorgans). Additionally, 
for polygenic disorders it is highly unlikely that every family will be segregating for the 
same collection of causal variants (genes) and combining data may adversely affect the 
linkage analysis.  
 
 
Genome wide association studies 
 
 The development of the common disease/common variants hypothesis in mid-
1990s led to the idea of genome-wide association studies (GWAS) [33,34]. This 
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hypothesis predicts that common disease-causing alleles will be found in all human 
populations which manifest a given disease. In other words, common complex diseases 
could be accounted for by a few common variants (minor allele frequency > 5%) with 
moderate effects. This led to large-scale human genotyping initiatives such as the 
International HapMap Project [35,36] to catalog common genetic variants that are 
segregating within and between human populations. The Phase III of this project 
genotyped 1.6 million common single nucleotide polymorphisms segregating in 11 
human populations, representing multiple ethnicities. Another large-scale genomics 
initiative, 1000 Genomes Project, has been using a combination of whole-genome 
sequencing, deep exome sequencing, and dense microarray genotyping to establish the 
most detailed catalogue of genetic variants (minor allele frequency > 1%) in human 
populations [2,5]. The third phase of 1000 Genomes Project has just finished and 
generated a haplotype map of 84.7 million SNPs, 3.6 million short insertions and 
deletions (indels), and more than 60,000 larger deletions segregating in 26 human 
populations [37]. 
 
 A typical GWAS examines a large number of common genetic variants (500,000 
to five million SNPs) in a large number of case and control individuals to identify alleles 
associated with a trait or disease. Typically, thousands of individuals are genotyped in 
both case and control groups. Allele frequencies for genotypes (SNPs) between two 
groups are compared to reveal genotypes that are overrepresented in cases compared to 
controls and therefore likely to be associated with disease risk variants. The first 
successful GWAS study investigated age-related macular degeneration (AMD) to 
identify variants in complement factor H (CFH) as major risk factors [6]. Since then, 
there has been a deluge of GWA studies (GWASs) that have identified thousands of 
statistically significant SNPs associated with common diseases including coronary artery 
disease [38], type 1 and 2 diabetes [8,39,40], bipolar disorder [41], hypertension [7,42] 
and many more. Currently, the GWAS catalogue [9] at NHGRI-EBI 
(http://www.ebi.ac.uk/gwas/) consists of over 2,000 GWAS publications linking nearly 
4,500 statistically significant loci (p < 10-8) to over 500 human traits and diseases. 
Extensive cataloguing of common variants and high-throughput genotyping has made 
GWAS a well-established method to identify genetic variants for the complex diseases. 
 
 Unlike family-based studies GWAS offers the advantage of exploiting unrelated 
individuals, making the task of data collection much easier. However, population-based 
studies are confounded by population stratification presence of systematic difference in 
allele frequencies between subpopulations due to their different ancestry. As a result, any 
SNP with a considerable variation in its frequency between different subpopulations 
could be spuriously associated with the disease of interest if these subpopulations 
themselves considerably differ in the prevalence of the disease [43]. A number of 
statistical approaches have been developed to capture and control for the complex 
population structures in GWAS [44-48]. 
 
 
  



 

4 

Electronic medical records 
 
 The last decade has also seen rapid growth in efforts to implement electronic 
medical records (EMRs) systems in large health care systems. EMR data sets contain rich 
and diverse medical information including patient history, diagnoses, prescribed 
medications, and quantitative data from many possible clinical tests. The structured and 
unstructured information (free-text clinical notes) in EMRs can be extracted using the 
defined International Classification of Diseases, version 9 and 10-CM codes [49-51] and 
natural language processing approaches. Longitudinal EMR datasets have been used for 
observational-based healthcare research to improve patient care [52,53]. 
 
 
Phenome-wide association study (PheWAS): advantages and challenges 
 
 Lately, EMR-derived phenotypes have been linked with genotypes to perform 
phenome-wide association study (PheWAS) [54-59]. Large scale biorepositories such as 
the electronic Medical Records and GEnomics (eMERGE) network [60-65] have been 
systematically integrating massive EMR datasets (phenotypes) and DNA biorepositories 
(genotypes) for high throughput genome-to-phenome research. 
 
 Unlike GWAS that uses a phenotype-to-genotype approach, PheWAS uses a 
reverse genetic approach to perform genotype-to-phenotype association. It starts with a 
known genetic variant and tests for its association over a wide spectrum of clinical 
phenotypes derived from EMRs. The first proof-of-principle PheWAS study was 
published in 2010 by Denny et. al [59]. They selected five known disease-associated 
SNPs (previously identified by GWAS) and genotyped a cohort of 6,005 patients for 
these SNPs. Each of these SNPs was then associated with hundreds of disease codes that 
comprised the phenome. The PheWAS recaptured four of the five known SNPs-disease 
associations and also found novel associations with other diseases. For example, a SNP 
(rs3135388) that was previously associated with multiple sclerosis was also found to be 
associated with erythematous conditions. Several recent studies have successfully 
exploited PheWAS to identify novel SNP-disease associations [54,57,59,64,66,67]. 
Whereas GWAS focuses on only one disease at a time, PheWAS has the ability to 
measure genetic associations with potentially thousands of traits and diseases 
simultaneously, enabling systematic detection of genetic variants with pleiotropic effects 
[56,58,67]. This can aid in the repurposing of approved drugs and save enormous amount 
of time, money and efforts that go into the therapeutic development and testing process. 
For example, variants in TNFSF11
disease. Denosumab, a monoclonal antibody that targets TNFSF11 is currently marketed 
for the treatment of postmenopausal osteoporosis, but it may also be considered for 

[68]. 
 
 A prerequisite of conducting a PheWAS is the availability of massive phenome 
data. As a result, all PheWAS studies have exploited disease phenotypes derived from 
EMR datasets. However, in practice PheWAS can be applied to any well-characterized 
cohort that have been extensively genotyped and for which deep phenomes have been 
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assembled, such as the Framingham Heart Study cohort or the Avon Longitudinal Study 
of Parents and Children cohort [69-74]. As I show below it is also possible to conduct a 
PheWAS using deeply phenotyped cohorts of model organisms. 
 
 

GENETIC ASSOCIATION STUDIES IN MOUSE MODEL SYSTEMS 
 
 The laboratory mouse has been extensively used as a model organism to dissect 
the genetic architecture of complex phenotypes and disorders. Studying complex 
phenotypes in mouse offers several advantages over human. First, it is practical to 
acquire cellular and molecular traits from disease-relevant tissues and cell types. Second, 
it is possible to replicate experiments in reference cohorts (also known as reference 
panels or reference populations), which is impossible in humans except for in cases of 
monozygotic twins. Third, it is easy to control the environment and model gene
environment (GXE) interactions in mice [75]. Fourth, despite strong functional effects, 
the minor allele frequencies are often too low in the human population to attain sufficient 
statistical power and significance in large association studies. In contrast, most of murine 
crosses have been derived from two inbred strains, and as a result allele frequencies are 
close to 0.5. Fifth, it is possible to perform knockins, knockouts, and knockdowns in mice 
to identify the causal gene from the list of candidate genes. Lastly, genetic research in 
humans has added complexities including confidentiality constraints and higher ethical 
limitations on experimental protocols. Genomic information derived from human 
participants especially those in diseased groups is sensitive, and strict guidelines and 
policies (http://grants.nih.gov/grants/guide/notice-files/NOT-OD-07-088.html) must be 
followed to protect the privacy and confidentiality of participants and their descendants 
[76]. However, one of the main disadvantages of murine cohorts is that linkage 
disequilibrium is typically at least an order of magnitude larger than in humans. As a 
result, mapping studies using currently available murine populations often identify large 
genomic regions with tens to hundreds of candidate genes. 
 
 
Mapping populations in mouse model systems 
 
 Mice cohorts, including F2 intercrosses and backcrosses, heterogeneous stocks 
[77], sets of recombinant inbred (RI) strains (e.g., BXD [78], LXS [79], and the 
Collaborative Cross [80]) have been extensively used for mapping of both Mendelian and 
complex traits. These crosses differ greatly in their genetic diversity, mapping power, and 
resolution [81,82]. RI strains are generated by intercrossing two or more parental inbred 
strains, followed by repeated sibling matings for at least 20 generations. The repeated 
mating of siblings for 20 generations or more generates fully inbred strains. Each RI 
strain represents a unique and fixed chromosomal mosaic of the parental genomes. Once 
all members of a large set of RI strains have been fully inbred and genotyped, then the set 
can be used as an immortal and genetically defined resource a genetic reference panel. 
The historical disadvantage of RI strains was their limited numbers and modest power 
and precision of associated QTL studies. Throughout most of the 1990s there were fewer 
than 30 strains per family. Now however, three mouse RI GRPs consist of 60 to 150 
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strains each (n ~150 for BXD, n ~ 60 for LXS, and n ~100 for the Collaborative Cross) 
[79,83]. The main disadvantage of RI strains is not QTL mapping power or precision, but 
steadily rising costs of acquisition and maintenance of large numbers of strains. 
 
 
BXDs a replicable experimental cohort for genomic medicine studies 
 
 The BXD family is made up of ~150 RI strains (some still in progress) that 
descend from intercrosses between C57BL/6J and DBA/2J strains (Figure 1-1). 
Currently, they are the largest and oldest RI set available [84]. In chapter 2, I have 
compared the genome sequences of the parental strains of the BXDs to identify ~5 
million sequence variants that are segregating in this family. 
 
 The BXD genetic reference panel has been used to study higher-order complex 
traits in diverse research domains including neurobiology, physiology, pharmacology and 
immunology since the mid-1970s and genetics of gene expression since the early 2000s. 
As a result, they have the largest coherent multiscalar phenotype data set (aka 
"phenome") for any segregating population, consisting of 5000 diverse phenotypes 
(www.genenetwork.org) and many gene expression data sets. Because these strains are 
genetically immortal they can be used as a replicable experimental cohort for 
personalized genomic medicine studies. The genetic immortality enables assembly of 
deep phenomes for the same set of individuals (strains) over time. Additionally, matched 
cohorts can be raised in under different environments to study gene-by-environment 
interactions. Approximately 120 BXD progeny lines have now been extraordinarily well 
genotyped (30 more in progress) and can be exploited to relate sequence variants to 
phenotypic differences. 
 
 Over the last three decades, the BXD family has been exploited mainly using the 
forward genetic approach such as QTL mapping. This approach starts with heritable 
differences in phenotypes and defines loci and causal variant. A few recent achievements 
using this approach include identifying Ubp1 for blood pressure [85], Aplp for 
hypophosphatasia [86], and Mrps5 for longevity [87]. In contrast, a reverse genetic 
approach such as PheWAS starts from known sequence variants and identifies 
downstream phenotypic effects. A few recent achievements include Comt for a number of 
neuropharmocological traits [88] and Per3 for stress/anxiety traits [89]. The availability 
of a comprehensive catalogue of genetic variants linked to the deep phenome datasets 
make BXDs highly practical to perform the first PheWAS (genome-wide reverse genetic 
scan) using a model organism. 
 
 

GENE EXPRESSION AS MOLECULAR PHENOTYPES 
 
 Sequencing of large cohorts has now become fairly straightforward. However, 
generating variant data for thousands of individuals has limited predictive value unless 
integrated with a wide-spectrum of phenotype data. Large-scale phenotyping especially 
of the clinical traits is still intractable due to high cost, difficult implementation, and  
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Figure 1-1. Derivation of the BXD family 
 

Notes. The parental strains are crossed to generate F1 progenies consisting of genetically 
identical individuals. F1 individuals are intercrossed to generate F2 individuals. In the F2 
population, each individual has a unique genotype due to the recombination of the alleles 
from the heterozygous F1 parents. Repeated sibling mating is performed for 20 
generations to generate inbred strains.  
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ethical restrictions. An alternative is to use molecular phenotypes including transcript, 
protein and metabolite abundances and their modifications to study the genetic basis of 
differences in disease risk. Gene expression levels are highly replicable and reproducible 
and have been widely used as reliable prognostic indicators of diseases [90-92]. Genetic 
linkage and association studies on gene expression levels have demonstrated high 
heritability [93] indicating that genetic variants often confer disease risks by affecting 
gene expression. 
 
 The analyses of complex phenotypes in the pre-genomic era focused on coding 
variants including nonsense, missense, and frameshifts variants, but GWAS studies 
conducted over the last decade have demonstrated that a large majority (>90%) of 
trait/disease-associated variants are located in non-coding regions of the human genome 
[9]. These non-coding variants act by modulating gene expression, and they are the major 
causes of variation in susceptibility to complex diseases [94-96]. Similar to classical 
phenotypes, gene expression can exhibit Mendelian or multigenic inheritance patterns 
and are therefore amenable to association studies. The control of expression is usually 
genetically complex (polygenic) and large numbers of other genes and sequence variants 
can potentially influence expression of the target transcript or protein. For example a 
group of cooperating transcription factors may control expression of a key transmitter 
receptor or an ion channel. These effects give rise to so-called trans eQTLs that map far 
from the target gene itself usually on different chromosomes (Figure 1-2a). In contrast, 
expression of mRNAs may also be controlled by sequence variants that are in or very 
near to the parent gene itself (Figure 1-2b). For example, a polymorphism in a promoter, 
enhancer, splice acceptor site, or the 3' UTR of a gene may produce differences in 
transcriptional rates, mRNA stability, or ratios of alternative transcripts. When mapping 
the expression of mRNAs or proteins, this type of genetic "self-control" produces so-
called cis-acting QTLs or cis eQTLs [97]. In short, cis eQTLs are first-order local effects, 
whereas trans eQTLs are second-order distant effects. 
 
 

CURRENT STATUS OF GENOMIC MEDICINE 
 
 Current successes of genomic medicine include clinical diagnosis of monogenic 
diseases and disorders, improved therapeutic efficacy and safety of drugs, drug 
repurposing, and molecular characterization of cancers to select more effective 
treatments. However, with the exception of above mentioned clinical applications, 
genomic medicine has yet to be embraced to the extent that was initially anticipated 
following completion of Human Genome Project [98]. Here we discuss a few examples 
of how the early phase of genomic medicine is impacting healthcare. 
 
 
Better diagnoses and early interventions 
 
 Diagnostic kits that allow screening of genetic carriers for disorders including 
breast and ovarian cancer (BRCA1 and BRCA2) [99-102], colon cancer (MLH1, MSH2, 
MSH6 and PMS2) [103-106], melanoma (CDKN2A) [107], rheumatoid arthritis  
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Figure 1-2. Linkage maps of cis and trans eQTLs in mouse hippocampus 
 
Notes. (a) Gabrg2 expression is controlled by a trans eQTL on Chr 5 at 138 Mb (LOD = 
3.94 on the Y axis). The Gabrg2 gene itself is located on Chr 11 at 41 Mb (triangle on X 
axis). (b) In contrast, Grin2b expression is controlled by a cis eQTL with a peak LOD 
score of 16.73 located on Chr 6 at 135 Mb. This location corresponds precisely to the 
location of the Grin2b gene (triangle). The horizontal lines provide genome-wide 
significance thresholds for the QTL determined by permutation analysis (upper <.05 and 
lower <.63). All data here were generated in GeneNetwork (www.genentwork.org) using 
the BXD mouse Hippocampus Consortium M430v2 (Jun06) PDNN array data set 
(GeneNetwork.org, accession number GN112, n = 67, probe sets 1418177_at and 
1457003_at). 
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(HLA-DR4) [108], cystic fibrosis (CFTR) [22], and thrombophilia (FV, FII, MTHFR) 
[109-111] have been widely used to guide preventive care. For example, prophylactic 
mastectomy or oophorectomy is recommended to predisposed individuals and has shown 
to reduce the risk of cancer by 90-95% in women [112]. Similarly, genetic screenings are 
available for prenatal and newborns to detect birth defects and genetic diseases including 
cystic fibrosis, severe combined immunodeficiencies, phenylketonuria, tyrosinemia, 
sickle cell anemia, hearing loss, and congenital heart defects. Currently, testing of 32 core 
disorders and 26 secondary disorders is recommended by the U.S. Department of Health 

isorders in 
Newborns and Children [113]. 
 
 
Drug response and dosage 
 
 Diagnostic kits based on pharamacogenomic markers that type the cytochrome 
P450 family a major subset of all drug metabolizing enzymes in liver  have been 
designed to determine therapeutic strategies and effective dosage. For example, CYP2D, 
a member of the cytochrome P450 gene family, is responsible for the metabolism of 
approximately 25% of all clinically used drugs including codeine, oxycodone and 
tramadol (pain), tamoxifen (breast cancer), dextrometorphan and quinidine (neurological 

 disease), atomoxetine (Attention-
deficit/hyperactivity disorder), citalopram and desipramine (depression), and 
fluvoxamine (obsessive compulsive disorders) [114]. Copy number variants (CNVs) in 
CYP2D6 control variation in drug response among individuals [115]. Individuals with 
multiple copies of CYP2D6 are ultra-rapid metabolizers. They quickly convert codeine 
into morphine and may experience potentially dangerous opioid effects. In contrast, poor 
or slow metabolizers suffer from poor analgesia. 
 
 
Accurate classification and customized treatment plans for cancers 
 
 High throughput sequencing can accurately determine driver mutations or genes 
associated with heterogeneous cancers and aid in a better understanding of disease 
pathology, as well as customization of treatment plans. Screening mutations in non-small 
cell lung cancer related genes including EGFR, ALK, HER2, KRAS, BRAF, and PI3KCA 
helps select targeted therapies based on the driver mutations [116]. For example, 
Dabrafenib, an inhibitor of the BRAF protein has shown to be effective against lung 
cancer associated with mutated BRAF gene [117]. Targeted treatments based on driver 
mutations have shown to increase survival rates compared to non-targeted treatments 
[118,119]. 
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BIOINFORMATIC CHALLENGES FOR GENOMIC MEDICINE 
 
 
Processing and managing of high-throughput sequence data 
 
 High throughput sequencing offers several advantages relative to array-based 
genotyping or expression assays. First, unlike genotyping arrays, whole genome 
sequencing is not limited to interrogating only known sequence variants. Similarly, RNA-
sequencing (RNA-seq) enables expression quantification of novel transcripts that are not 
represented on arrays. Second, whole genome sequencing makes it possible to detect 
large and complex structural variants. These variants are not as common as SNPs but 
have significant effects on expression. However, there is a high bioinformatics overhead 
required to store and process sequencing data. Sequencing a mammalian genome at 100x 
coverage can easily generate up to half a terabyte of raw sequence data. Moreover, size of 
the intermediate data generated during the analysis can get nearly double the original 
size. Thus, large-scale storage infrastructure and high network bandwidth connection are 
essential for massive sequencing projects. Better compression methods to minimize 
storage costs are an area of active research. New compression methods including CRAM, 
Goby and HDF5 [120-124] to store genomic alignments have been developed. However, 
they have not been fully embraced by the next-generation sequencing community due to 
their incompatibility with most of the current analysis tools. Unlike arrays, the 
computational workflows for high throughput sequencing data analysis are too intensive 
to be performed on a desktop computer and require high performance computing clusters 
with hundreds of processors. Adaption of cloud computing strategies has been on the rise 
and enables users to customize hardware and computational power based on the project 
requirements. 
 
 
Interpretation of the functional impact of the genomic variants 
 
 Functional interpretation of genetic variants is crucial to prioritize candidate 
variants in association studies. Functional interpretation of coding variants is relatively 
straightforward and their impact can be assessed by annotating them against known gene 
models. However, our ability to interpret the impact of non-coding regulatory variants is 
highly limited despite their known roles in various diseases [95,96]. Early studies to 
evaluate the impact of non-coding variants mainly exploited sequence conservation 
across multiple species to quantify likely evolutionary constraints on the variant position 
[125-130]. Genome wide scans using position weight matrices [131] have also been used 
to identify if variants overlap any known transcription factor binding motifs. However, 
Schmidt and colleagues have observed large interspecies differences in transcriptional 
factor binding regions [132]. Additionally, short matrices have low sequence specificity 
and may identify numerous false positive binding sites across the genome [133]. Recent 
studies have adopted multi  and integrated omics approaches that incorporate a wide 
range of annotations to evaluate functional impact of non-coding variants. Khurana and 
colleagues [134] used allele frequencies of sequence variants from 1000 Genomes Project 
[2] to distinguish deleterious variants from the neutral variants. They proposed that the 
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neutral variants have higher derived allele frequency at the population level and 
deleterious variants get removed by purifying selection. They then overlapped this 
information with functionally non-coding elements identified by Encyclopedia of DNA 
Elements (ENCODE) project to identify functionally important non-coding variants. 
Combined Annotation Dependent Depletion (CADD) and Genome Wide Annotation of 
Variants (GWAVA) are machine learning based approaches that work along the same 
line by integrating diverse resources to identify functional non-coding variants [135,136]. 
Recently, large numbers of genome-wide studies have successfully integrated high-
throughput omic measurements, including gene expression and epigenetic variation data 
to increase the power for discovery of causal genes and to better understand the possible 
molecular and cellular mechanisms of the disease [137-140]. 
 
 

ORGANISATION OF THE DISSERTATION 
 
 The work presented in this dissertation is a genome-wide reverse genetics 
analysis. We have exploited a large family of recombinant inbred mouse strains the 
BXD cohort to perform a phenome-wide association study to investigate genome-to-
phenome relations at multiple scales from mRNA and protein levels to disease risk, 
behavior, and environmental interactions. 
 
 The second chapter explores the genomic variation between parental strains of 
BXDs using deep (~100X) sequence data of the DBA/2J inbred strain. This analysis 
revealed considerable genomic variation including ~4.46 million SNPs, ~0.94 million 
indels, and 20k structural variants segregating in the BXD family. 
 
 The third chapter examines the functional impact of genomic variation on gene 
expression using transcriptomic data from isogenic hybrids (C57BL/6J X DBA/2J F1s). 
This analysis revealed that cis acting variation in expression is pervasive and is detected 
in roughly 50% of all assayable genes in liver. Genes exhibiting high allelic differences 
in expression in conjugation with high-impact coding variants should be key molecular 
resources for reverse genetics analysis. 
 
 The fourth chapter examines the functional impact of genomic variation on a wide 
spectrum of high-order phenotypes [141,142] and molecular phenotypes across multiple 
tissues [86,142,143]. We successfully replicated almost all of the known genome-to-
phenome associations in BXDs, and also identified a few novel associations. We 
exploited a large human clinical cohort the Vanderbilt BioVU cohort  for validation 
and cross species translation of the novel associations. We demonstrate that phenome 
scans can be effective at linking sequence variants to a range of phenotypes and can be 
used to identify novel genome-to-phenome relations or validate hypothesized 
associations from independent studies. 
 
 Finally, the fifth chapter summarizes and discusses the main results of my 
dissertation. 
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CHAPTER 2.    SEQUENCING AND CHARACTERIZATION OF THE DBA/2J 
MOUSE GENOME 

 
 

SYNOPSIS 
 
 The DBA/2J mouse is one of the oldest and widely used inbred strains. It exhibits 
many unique anatomical, physiological, immunological and behavioral phenotypes. In 
addition, it is one parent of the large BXD family of recombinant inbred (RI) strains a 
widely used murine genetic reference population. The genome of the other parent of this 
BXD family C57BL/6J has been sequenced and serves as the mouse reference 
genome. We sequenced and analyzed the genome of DBA/2J to generate a 
comprehensive catalogue of ~5.4 million sequence variants, relative to the reference 
genome. These variants segregate in the BXD family, presently comprising of 120+ RI 
strains. The variant data can be exploited to initiate reverse genetic analysis of complex 
traits, particularly by exploiting high-impact variants including nonsense, frame-shift, 
splice-site, radical missense, copy number, and large insertion and deletion that 
differentially affect members of the BXD family. The variant catalogue is also essential 
for unbiased alignment of RNA-seq and ChIP-seq data generated using BXD strains and 
any other cross involving DBA/2J as a parental strain. 
 
 

INTRODUCTION 
 
 The DBA inbred strain has the distinction of being the oldest of all inbred strains. 
It was first developed by C.C. Little in 1909 by inbreeding from a stock of mice 
segregating for coat color. During 1929-1930, DBA substrains were crossed to establish 
new substrains including DBA/1 and DBA/2. The DBA/2 strain was transferred to G. B. 
Mider in 1938, and subsequently transferred to the animal facilities of Jackson 
Laboratory (J) and National Institute of Health (N) in 1948 and 1951 respectively. Since 
then, they have been maintained separately as DBA/2J and DBA/2N lines (Figure 2-1). 
 
 DBA/2J is one of the most widely used inbred strains and exhibits many unique 
anatomical, physiological, immunological and behavioral phenotypes. A number of these 
phenotypes closely mimic human diseases and disorders. A few well known age-related 
phenotypes are progressive eye abnormalities and hearing loss are caused by mutations in 
Gpnmb [144], and Tyrp1 [145,146] and Cdh23 [147,148] genes respectively. The unique 
characteristics of DBA/2J are often contrasted with those of the C57BL/6J inbred strain 
that serves as the mouse reference genome. The two strains are genetically highly 
divergent and show a wide variety of phenotypic differences. For example, C57BL/6J 
and DBA/2J have high and low susceptibility to diet-induced atherosclerosis [149-151]; 
high and low preference for alcohol and morphine [152-158]; high and low resistance to 
influenza infection [159-161]; low and high bone mineral density [162-165]; low and 
high susceptibility to audiogenic seizures [166-169]. The high levels of genetic and 
phenotypic variation between these strains have made them highly favorable to be used 
for genetic linkage studies. Starting in early 1970s, Benjamin A. Taylor at the Jackson  
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Figure 2-1. DBA/2 breeding history 
 
Notes. DBA/2 is the oldest inbred strain and originated as part of breeding efforts by C. 
C. Little around 1930. The DBA/2 strain was transferred to G. Burroughs Mider in 1938, 
and subsequently transferred to the animal facilities of Jackson Laboratory (J) and 
National Institute of Health (N) in 1948 and 1951 respectively. Since then, numerous 
DBA/2 substrains were created by separation and breeding by different vendors, leading 
to genetic drift. These nearly identical lines create a valuable genetic resource for 
studying the downstream effects of spontaneous and naturally occurring mutations. 
Information regarding substrain derivation dates was compiled from individual vendor 
Web sites. 
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laboratory started intercrossing C57BL/6J and DBA/2J to produce the BXD family of 
recombinant inbred strains [170]. Since the early-1970s, the BXDs have been used 
extensively to study the genetic basis of complex traits [84]. They have also been used to 
study the genetic basis of gene expression since the early 2000s after the advent of high-
throughput expression arrays. BXDs are currently the largest (120+ lines and expanding 
to ~150) and the best phenotyped genetic reference population. More than 5,000 
phenotypes for these strains have been measured and published, and all of these 
phenotypes are accessible at GeneNetwork (www.genenetwork.org). 
 
 Whole genome sequencing now makes it practical to exploit reverse genetics to 
simultaneously study functions of thousands of sequence variants that segregate in 
intercross and backcross progenies generated by mating completely sequenced parental 
lines [171] the BXDs being a prime example. However, the analysis of high-
throughput short read data to discover sequence variants is computationally challenging, 
and susceptible to errors associated with mapping artifacts and sequencing chemistry. We 
followed the best practices for variant discovery to provide the accurate and most detailed 
picture of molecular variation between these two genomes to date. In this chapter, we 
describe a comprehensive and high confidence catalogue of SNPs, indels, and structural 
variants for the DBA/2J mouse strain, the father of the BXD family, relative to 
C57BL/6J, the reference strain for all mouse genomics and the mother of the BXD 
family. We annotated the sequence and structural variants against mouse gene models to 
assign functional consequences. The detailed catalogue of genetic variation segregating 
in the BXD family is essential to 1) link high-impact variants with high-order phenotypic 
differences; 2) correct for allelic bias in RNA-seq and ChIP-seq read mapping; 3) assay 
differential expression of alleles in isogenic heterozygous F1 individuals. 
 
 

MATERIALS AND METHODS 
 
 
Genomic data for DBA/2J 
 
 We downloaded sequencing data for DBA/2J from the European Nucleotide 
Archive, accession numbers ERP000044 and ERP000927 [172]. It consists of eleven 
paired-end libraries sequenced on the Illumina GAII. Average read lengths and insert-
sizes varied between 54 100 nt and 150 600 nt respectively. We also downloaded 
sequencing data from the Sequence Read Archive, accession number SRP001135 [173]. 
This data was generated at UCLA as a part of the DBA/2J sequencing study at UTHSC. 
It consists of three paired-end libraries sequenced on the Illumina GAII with read length 
of 100 nt and insert-sizes between 250 350 nt. 
 
 
Read alignment and post-alignment processing 
 
 We organized and processed the sequencing data at multiple levels including raw 
data for each sequencing lane, aligned reads for each library and combined aligned reads 
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for the DBA/2J samples. A variety of post-processing steps were performed on the data 
in a sequential manner to improve the alignment and accuracy of variant calls. 
 
 
 Lane level. Reads were trimmed to remove low quality base calls (q < 20) using 
Trimmomatic [174] and trimmed reads shorter than 40 nucleotides were removed. Reads 
were aligned to the C57BL/6J reference genome (mm10) using Burrows Wheeler Aligner 
(BWA version 6.1) [175] with default parameters to generate sequence alignment/map 
(SAM) files [176]. SAM files were converted to binary SAM (BAM) format and their 
headers were appropriately modified to include generic information such as lane 

http://picard.sourceforge.net). Base qualities of aligned reads were recalibrated using 
Genome Analysis Toolkit (GATK, v2.1- [177]. This tool 
empirically models errors in assignment of base qualities by the sequencing machine and 
generates new qualities that are highly accurate. 
 
 
 Library level. All lanes (BAMs) for each library were merged into one BAM file 

 PCR duplicate reads (those that map to the same genomic 
location as a pair) except the one with the highest sum of base qualities were flagged 

the result of library amplification and 
should not be considered as independent evidence supporting a variant call. Additionally, 
PCR-induced errors can easily propagate to subsequent duplicate reads causing spurious 
SNPs. 
 
 
 Sample level. BAM files for each library were combined together to create a 
master file 
to perform local realignment of reads around indels from the Mouse Genome Project 
[172] as well as putative indels identified by GATK. Reads aligning on the edges of 
indels in the reference genome often aligned with mismatches due to the fact that the 
penalty for opening a gap is higher than that of incorporating a mismatch. Local 
realignment of reads around indel removes spurious SNP calls due to this alignment 
artifact. 
 
 
Variant calling pipeline 
 
 
 SNPs and indels. 

in the variant call format (VCF). Reads with bitwise flag (0x704) that include reads 
flagged as 1) duplicates (0x0400), 2) failed QC (0x0200), 3) non-primary alignment 
(0x0100), and 4) unmapped (0x0004) were not considered for variant calling. GATK 

-bfh 4000 -rbs 1000000 -dcov 500 --
heterozygosity .0001 --genotype_likeli
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-C 50 -d 1000 -E -Q 20 -
default parameters. We only selected variants that were jointly identified by GATK and 
SAMtools  
 
 
 Structural variants. Structural variants were identified using three different 
approaches including split-read, discordant read pairs, and uneven distribution in the read 
depth. 
 
 
 Split-read. Pindel (version 0.2.4) [178] -v 500

-pairs where one read is 
uniquely aligned and its mate read could only be aligned partially. The split-alignment of 
the read indicates that it either overlaps deletion breakpoints or contains one end of an 
insertion. 
 
 
 Discordant read pairs. BreakdancerMax (version 1.1) [179,180] was run with the 

c 3 m 10000000 q 25 r 3 h 
inversions. It uses anomalous read pairs that either do not align in concordance with the 
library design or align considerably closer or farther than the expected insert sizes. 
 
 
 Uneven distribution of read depth. Copy Number Detector (CND, version 1.3) 
[181] was run with the default settings. CND is exclusively designed to detect copy 
number gains and losses in homozygous diploid organisms, such as inbred mouse strains. 
It uses both the coverage of sequence reads, and the rate of apparent heterozygous SNPs 
(paralogous sequence variants) to determine CNV gains and losses. 
 
 
Variant filtering pipeline 
 
 In-house Python scripts were used to filter raw variant calls based on multiple 
criteria. These filters removed low-quality variants due to alignment artifacts and 
sequencing errors. They include number of reads supporting the variant, alignment 
quality of reads supporting the variant, quality scores of variant calls by sequencer etc. 
DBA/2J is a fully inbred strain and we therefore only retained homozygous SNPs and 
indels. Structural variants that were supported by less than three libraries were removed. 
Variant quality thresholds of 30 and 50 were used to filter Pindel and Breakdancer variant 
calls respectively. We removed structural variants that overlapped low complexity 
regions including centromere, telomere and assembly gaps in the reference genome. The 
genomic coordinates of these regions were obtained from the UCSC Table browser [182] 
(mm10). Python scripts along with the default filtering parameters that were used to filter 
raw variants calls from various variant detection tools including GATK, Samtools, Pindel 
and BreakDancerMax can be downloaded here: 
https://github.com/ashutoshkpandey/Variants_call 
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Variant annotation pipeline 
 
 We used SnpEff [183] to perform functional annotation of SNPs and indels, and 
categorize them into nonsense, splice-site, frameshift and missense SNPs. The annotation 
was performed against mouse gene models from Ensemble (version 69) and RefSeq 
(downloaded in October 2012). An in-house Python script 
(https://github.com/ashutoshkpandey/Annotation/blob/master/Grantham_score_calculator
.py) was used to generate Grantham scores to predict the impact of the amino acid 
substitution due to missense mutation. Missense variants categor

-2 (version 
2.2.2) [184] with default HumDiv model to predict the impact of the amino acid 
substitution. Mouse annotation and sequence database for Polyphen-2 were prepared by 
downloading mouse Uniprot (version 2012_11) [185] and PFAM (downloaded in 
November 2012) [186]. Missense variants predicted to be 'probably damaging' or 
'possibly damaging' were defined as deleterious. 
 
 
Experimental validation for variants 
 
 SNPs and indels were selected for validation by traditional Sanger sequencing. 
Primers were designed using Primer3 (http://frodo.wi.mit.ed/primer3/). PCR assays were 
performed using 5 ng DBA/2J genomic DNA, 10 pmol each of forward and reverse 
primer in 50 μl. The following cycle parameters were used: 95 °C for 4 min, 35 cycles of 
95 °C for 30 s, 55 °C for 30 s and 72 °C for 1 min, and 72 °C for 5 min. PCR products 
were purified with 2 μL ExoSAP IT (Invitrogen Corporation). Sanger sequencing was 
performed using an ABI 3730. 
 
 

RESULTS 
 
 
Whole genome sequencing and alignment 
 
 The DBA/2J mouse genome was sequenced to a depth of 90-fold coverage by the 
Illumina HiSeq 2000 sequencing platform. 14 paired-end libraries with different insert-
sizes ranging between 150-600 nt were sequenced to generate 4.08 billion reads (374 
billion nucleotides). The sequencing reads were aligned against the GRCm38 reference 
genome (mm10), followed by base recalibration, flagging of duplicates reads and local 
realignment of reads around indels (Figure 2-2). A total of 3.56 billion reads were 
aligned onto the reference genome, and 92% of the aligned reads were properly paired. 

gaps and regions of low complexity (ambiguous read alignment). Around 90% and 80% 

22 percent of the total aligned reads were not considered towards coverage analysis 
because they belonged to one of the following categories: PCR duplicates, reads with low 
base quality, and reads with low mapping quality.  
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Figure 2-2. Variant discovery workflow 
 
Notes. Sequence data is organized and processed at three levels including raw read data 
for each sequencing lane, aligned reads for each library, and combined reads for each 
sample. The first step involves quality control assessment, alignment to the GRCm38 
reference genome (mm10), and post-processing of the aligned data. In the second step, 
the combined aligned data is used to identify SNPs, indels, and structural variations, 
which are further quality filtered and functionally annotated. 
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Detection and distribution of SNPs and indels 
 
 We generated a catalogue of over 5.4 m high confidence sequence variants 
(Figure 2-3) including 4.46 m single nucleotide polymorphisms (SNPs) and 0.94 m 
insertions and deletions (indels). On average, there is one sequence variant present for 
every 500 bases in the reference genome. The ratio of transitions to transversions is 2.1:1 
(3.02 m/1.44 m) which is strikingly similar to that observed in recent human studies 
particularly from the 1000 Genomes Project [2]. This indicates that majority of genetic 
variation between the two strains are spontaneous and neutral in nature. Indels are 
distributed evenly with respect to the parental genomes and the ratio of insertions (0.45 
m) to deletions (0.49 m) is close to 1. 
 
 We assigned functional consequences to the sequence variants against RefSeq 
gene models. As expected, over sixty-percent (3.25 m) of variants including SNPs and 
indels are located in intergenic regions. A total of 1.77 m SNPs are located within genes, 
including introns (92.00%), exons (2.22%), 3' UTRs (1.74%), and 5' UTRs (0.30%). 
Approximately 32k and 34k SNPs are located within 2Kb of flanking region upstream 
and downstream of genes. Similarly, a total of 0.38 m indels are located within genes, 
including introns (93.20%), exons (0.39%), 3' UTRs (2.03%) and 5' UTRs (0.22%). 7.8k 
and 8k indels are located within upstream and downstream regions. The ~0.45 m 
insertions range in size from 1 bp to 33 bp and ~0.49 million deletions range in size from 
1 bp to 55 bp. As expected, small indels are more frequent than large indels. The majority 
of small indels 65 % of the all insertions and 70% of all deletions are 1 to 3 bp in 
length. Point indels account for 45% of insertions and 41% of deletions (Figure 2-4). 
 
 Variant density varies greatly across the genome (Figure 2-3). For example, a 
distal region of chromosome 1 from 170 Mb to 176 Mb known to be enriched for a 
number of behavioral and expression quantitative trait loci (QTLs) [187] has a high 
divergence rate (~5000 variants/Mb), whereas a 35 Mb region from 31 Mb to 66 Mb in 
the middle of chromosome 10 has a very low divergence (~30 variants/Mb). The 
unevenness in variant distribution can be attributed to complex history of the laboratory 
strains and the retention of long intervals that are almost identical by descent [188,189]. 
 
 
Functional consequences of coding SNPs and indels 
 
 
 Missense variants. We identified 39,268 exonic SNPs including 32,871 SNPs 
that are located in protein-coding genes. Of 32,871 coding SNPs, 21,976 are synonymous 
whereas 10,895 are nonsynonymous (missense, Supplementary Table 2-1). These 
10,895 missense SNPs are located in 4,271 protein-coding genes. A total of 2,073 amino-
acid substitutions (19.0% of missense SNPs) have potentially deleterious effects on 
function of 1,401 proteins based on analysis by PolyPhen2. Similarly, 1,760 substitutions 
(16.15%) have potentially deleterious effects on function of 1,275 proteins based on 
Grantham matrix scores. Five hundred and eighty five substitutions in 502 proteins are 
jointly identified to be deleterious. Proteins in the joint set are enriched for gene  
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Figure 2-3. Distribution and density of sequence and structural variants along the 
DBA/2J genome 
 
Notes. Moving inward from the outer circle, arcs in circle 1 denote chromosomes. Circle 
2, SNP density with 100kb window (black is the lowest density and orange is the highest 
density). Circle 3, Indels density with 100kb window. Circle 4, Structural variants. Circle 
5, CNVs, blue (outward) denotes loss of CNVs and green (inward) denotes gain of 
CNVs. 
  



 

22 

 

 
 

Figure 2-4. Distribution of indel lengths 
 
Notes. The X-axis represents size of the indel and the Y-axis represents number of indels 
in thousands. Indels only up to 50 bp in length were considered for this analysis. As 
expected, the frequency of indels decreases with length. 
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ontology (GO) terms including sensory perception of chemical stimulus, olfactory 
receptor activity and neurological system process (Benjamini p < 10-5). A large subset 
(20%) of the joint set includes olfactory, taste, and vomeronasal receptors. 
 
 
 Nonsense variants. We identified 66 SNPs, including 50 stop gains and 16 stop 
losses that affect a total of 63 genes. On manual inspection, we excluded five of these 
SNPs as nonsense variants due to ambiguous gene models and annotation error. 
Therefore, the final number of nonsense SNPs is 61, including 47 stop gains and 14 stop 
losses that affect a total of 58 genes (Supplementary Table 2-1). Forty-percent (n=25) 
of nonsense mutations result in protein variants with less than 10 % length differences 
compared to the reference protein. Eleven only differ by one to four amino acids in 
length. We also predicted that 33 nonsense mutations would produce truncated transcripts 
and 28 nonsense mutations would result in nonsense-mediated decay of the variant 
transcripts. We detected the two known nonsense mutations in Gpnmb [144] and Ahr 
[190]. DBA/2J is the only mouse strain out of 29 mouse strains (Mouse Genomes Project 
[172]) that has acquired a premature stop codon (CGA to TGA, rs47598337) in exon 4 of 
thirteen exons long Gpnmb resulting in a truncated transcript that presumably undergoes 
nonsense mediated decay. Expression variation in Gpnmb maps significantly to the 
location of the gene itself (Figure 2-5a). The nonsense variant in Gpnmb is a major 
contributing cause of pigment dispersion type glaucoma in DBA/2J [144]. 
 
 
 Splice-site variants. We identified 242 SNPs and indels that changed conserved 
bases at splice sites. We manually examined these variants and affected genes, and 
excluded 46 of these variants due to non-coding gene types and incorrect gene models. 
The final number of splice-site variants is 196 affecting 191 genes (Supplementary 
Table 2-1). An example is a C to T mutation (rs30117984) in the acceptor site of C-type 
lectin domain family 7 member A gene (Clec7a). Expression variation in Clec7a maps 
significantly to the location of the gene itself (Figure 2-5b). This splice site variant has 
been associated with susceptibility to infection with Coccidioides species [191]. 
 
 
 Frameshifts and inframe indels. 735 small insertions and 770 small deletions 
are located within exons. Of these, 453 including 209 insertions and 244 deletions are 
located in protein-coding genes. Indels in coding sequence can be highly disruptive, 
especially when they introduce frameshift mutations resulting in abnormally short or 
abnormally long altered polypeptides. A subset of 99 small coding indels including 44 
insertions and 55 deletions in 98 genes are predicted to result in frame shift mutations 
(Supplementary Table 2-1). An example is 'TA' deletion (rs241579076) in the 
hemolytic complement gene (Hc; chromosome 2 at 35.043208 Mb), that is associated 
with susceptibility to allergen- induced bronchial hyper-responsiveness [192] and 
intensified neurodegenerative responses [193]. Expression variation in Hc maps 
significantly to the location of the gene itself (Figure 2-5c). 
 
 The small coding indels are enriched in trinucleotides (multiples of three), which  
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Figure 2-5. Linkage maps of eQTLs for DBA/2J variants 
 
Notes. (a) Gpnmb expression in eye is controlled by a cis eQTL with a peak LOD score 
of 7 located on Chr 6 at 48.9 Mb. This location corresponds precisely to the location of 
the Gpnmb gene (solid triangle). The horizontal lines provide genome-wide significance 
thresholds for the QTL determined by permutation analysis (upper <.05 and lower <.63) 
(b) Clec7a expression in spleen is controlled by a cis eQTL with a peak LOD score of 
17.89 located on Chr 6 at 128.46 Mb (c) Hc expression in lung is controlled by a cis 
eQTL with a peak LOD score of 16.91 located on Chr 2 at 33.30 Mb (d) Combined 
eQTL mapping of Glo1, Btbd9 and Dnahc8 mRNAs in hippocampus. The eigenvalues 
associated with the first principal component maps with a LOD of ~28 to a CNV gain 
region spanning the above three genes in DBA/2J genome. Expression data used here 
were generated in GeneNetwork (www.genenetwork.org) using (a) BXD Eye M430v2 
(Sep08) RMA Database, (b) UTHSC Affy MoGene 1.0 ST Spleen (Dec10) RMA Exon 
Level Database, (c) HZI Lung M430v2 (Apr08) RMA Database and (d) UMUTAffy 
Hippocampus Exon (Feb09). 
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account for 78% (n=354) of total exonic indels including 165 insertions and 189 deletions 
(Figure 2-6, Supplementary Table 2-1). The trinucleotide indels are functionally not as 
severe as frameshift variants but they can still have a high functional impact on the 
structure and function of the protein. An example is an inframe deletion (rs220745914, 

 Cd44 gene that deletes two 
amino acids. 
 
 
Functional consequences of non-coding SNPs and indels 
 
 The vast majority of sequence variants are non-exonic and a particularly 
interesting subset of these non-coding variants may modulate transcription [194]. 
Sequence variants in the cis regulatory elements, including transcription factor binding 
sites, enhancers and microRNA binding sites affect gene expression. Recently, 
the mouse Encyclopedia of DNA Elements (ENCODE) consortium 
(http://www.nature.com/encode website) generated and published a plethora of sequence 
data that explores the genomic landscape of such elements in diverse mouse tissues [195]. 
Over 80% of 5.4 m variants had no potential functional impact based on mouse 
ENCODE data, but the remaining 20% (0.93 m) variants potentially affect one or more 
cis acting elements. Around 3% of them affect DNase I hypersensitive regions that mark 
open chromatin. ~15% of variants affect histone modifications including H3K36me3, 
H3K4me1, H3K4me2, H3K4me3 (active enhancers) and H3K27me3, H3K9me3, and 

variants in microRNA target sites. microRNA play a vital role in the regulation of gene 
expression by either translation inhibition or transcript degradation [196]. Three hundred 
and fifty variants disrupt 284 microRNA binding or target sites. Additionally, 36 variants 
are located within 31 mature microRNA coding sites in the microRNA primary 
transcripts. 
 
 
Functional consequences of large structural variants 
 
 To identify structural variants, we used a combination of three different 
approaches including anomalous read-pairs, split-read and non-uniform read depth. 
 
 
 Split read approach. Pindel exploits reads with split alignment to identify exact 
breakpoints of the SVs. We detected ~2,919 insertions and ~14,486 deletions. The 
insertions range from over 50 bp to 31 kb and deletions range from over 50 bp to 32 kb. 
One hundred and eighty three indels affect exons or UTRs in 148 genes (Supplementary 
Table 2-2). An example is a 230 nucleotides deletion (chr16:18.407299-18.407528) in 

atechol-O-methyltransferase (Comt). This deletion variant has been 
associated with differences in the expression of genes involved in glutamatergic and 
GABAergic systems [88]. Additionally, it has also been associated with higher order 
phenotypes including sensitivity to dopamine receptors antagonist haloperidol and 
chloradiazepoxide, an allosteric modulator of GABA-A receptors [88].  
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Figure 2-6. Distribution of lengths of coding indels 
 
Notes. The X-axis represents size of the indel and the Y-axis represents number of indels. 
As expected, the coding indels are enriched in trinucleotides (multiples of three) that 
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 Anomalous read-pairs. BreakDancerMax exploits read pairs with highly deviant 
insert sizes to identify SVs. We detected ~5,147 insertions and 28,025 deletions. The 
insertions range from over 100 bp to 0.5 kb and deletions range from over 100 bp to 976 
kb. Five hundred and one indels affect exons or UTRs of 340 genes (Supplementary 
Table 2-2). An example is 0.66 Mb deletion (chr6:89.678881-90.331580) of large set of 
16 vomeronasal receptors (V1r) in the DBA/2J genome. Deficient pheromone responses 
in mice have been associated with a significant reduction of male to male and maternal 
aggressiveness compared to controls [197]. 
 
 
 Read depth. CND exploits genomic regions with highly deviant read depth or 
coverage to identify copy number variants (CNVs). We detected 7,615 CNVs, including 
6,189 gains and 1,426 losses. Gains and losses have an average length of 3.3 kb and 4.3 
kb respectively. Gains range from over 2 kb to 177 kb, and losses range from over 2 kb to 
343 kb. A vast majority of copy number variants (~70%) affect intergenic regions. Of 
copy number gains relative to the C57BL/6J genome, 157 cover 215 genes completely 
(Supplementary Table 2-2). Of the losses, 40 cover 54 genes completely. An example is 
a copy number gain variant (chr17:30.443984-30.928714 Mb) that duplicates three genes 
entirely, including glyxolase 1 (Glo1), BTB domain containing 9 (Btbd9), and dynein 
axonemal heavy chain 8 (Dnahc8) in DBA/2J. Expression variation in these genes maps 
significantly to the location of the CNV (Figure 2-5d). The increased expression of Glo1 
in brain due to the CNV has been associated with anxiety-like behavior in mice 
[198,199]. GO enrichment analysis of the 269 that have been deleted or duplicated in 
their entirety revealed a significant enrichment (Benjamini-Hochberg P <0.01) of genes 

of these genes includes major histocompatibility complex genes (H2), killer cell lectin-
like receptors (Klra), and genes associated with sensory perception including olfactory 
and vomeronasal receptors. 
 
 
DBA/2J private variants 
 
 To obtain a list of private DBA/2J SNPs and indels, we compared DBA2/J 
variants with variant calls from 17 diverse strains of mice that were sequenced as a part 
of the Mouse Genome Project [172]. We classify a variant as private to DBA/2J only if 
all the other strains carry homozygous reference alleles at the variant site. We identified 
69,554 private SNPs and 32,176 private indels in DBA/2J. They contribute to 1.5% and 
3.42% of the total number of SNPs and indels in DBA/2J. Nearly half of the private SNPs 
(49%) and indels (46%) are located within intergenic regions. Three hundred and seventy 
three of the private SNPs result in non-synonymous mutations in 255 genes. Six private 
SNPs result in premature stop codon including 2310035K24Rik, Gm5592, Gpnmb, 
Klk1b8, Nbeal2, and Zfp277. Six private indels introduce frameshift variants including 
4930523C07Rik, Adam33, Caln1, Kif17, Tgif2, and Zfp354a. 
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False positive rate detection 
 
 We resequenced 30 nonsense variants and 62 randomly selected missense variants 
using traditional Sanger sequencing to assess the false positive rates (FPR) of variants. 
We validated 27 nonsense variants and 60 missense variants an FPR of 10% and 3.23% 
respectively. We also resequenced 20 splice-site variants and all of them were confirmed 
as true variants. We resequenced 13 frameshift variants and 11 of them were validated, 
indicating a false positive rate of 15.38%. Finally, we performed PCR-based validation of 
40 predicted large structural variants. A total of 32 indels were validated, a ~20% false 
positive rate for detecting large indels. 
 
 

DISCUSSION 
 
 The goal of this work has been to identify sequence and structural variants 
between the parental strains of the BXD family. To achieve this goal, we analyzed the 
DBA/2J genome at ~90X coverage using Illumina sequencing platform. We identified 
~4.46 million SNPs, ~0.94 million indels, and ~20,000 high confidence SVs. The 
comprehensive catalog of sequence and structural variants that we uncovered provides an 
unprecedented resource with which to study the functional impact of naturally occurring 
sequence variants in a remarkably large and stable set of BXD lines. An interesting 
subset of high-impact functional variants can be utilized to initiate genome-wide reverse 
genetic analysis of complex traits such as PheWAS. Variant calls including SNPs, indels 
and SVs are available via a mirror of the UCSC genome browser 
(ucscbrowserbeta.genenetwork.org). 
 
 The genome of the DBA/2J strain has already been sequenced twice at lower 
coverage, initially by Celera Genomics [200] at about 1.3X using conventional Sanger 
sequencing, and by Mouse Genomes project (MGP) [172] at about 23X using almost 
precisely the same short read technology we have exploited. For this study, we combined 
sequence data from the MGP with our short-read data to enhance the sequence coverage. 
We compared high-confidence variant calls from our analysis with DBA/2J variant calls 
from the MGP [172]. We found an overlap of 4,621,903 variants including 4,056,910 
SNPs and 564,993 indels (Figure 2-7). Of non-overlapping variants 941,379 and 487,796 
were exclusively identified by our analysis and MGP respectively. We recalled 90% of 
SNPs and 87% of the indel calls from the MGP. We also added 469,212 novel SNPs 
including 1,297 non-synonymous SNPs and 472,167 novel indels. Our analysis 
substantially increased the number of known indels from 0.63 m to 1.1 m. This was 
expected as we used higher sequence coverage (100x vs. 50x) and longer reads (100 nt 
vs. 50 nt) compared to the MGP project. Longer reads generate more variant calls with 
higher acuracy [201] due to their higher alignability and mapping quality especially in 
low complexity regions. Longer reads also allow bigger gaps during alignments and are 
therefore more efficient in detecting relatively larger indels. Similar observations were 
made when raw (unfiltered) variant calls including high and low confidence variants were 
compared. 
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Figure 2-7. Comparison of DBA/2J variant calls between our data (UTHSC) and 
MGP 
 
Note. The left and the right Venn diagrams compare filtered SNPs and indels 
respectively. 
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CHAPTER 3.    GENOMIC ANALYSIS OF ALLELE-SPECIFIC EXPRESSION 
IN THE MOUSE LIVER 

 
 

SYNOPSIS 
 
 Genetic differences in gene expression contribute significantly to phenotypic 
diversity and differences in disease susceptibility. In fact, the great majority of causal 
variants highlighted by genome-wide association are in non-coding regions that modulate 
expression. In order to quantify the extent of allelic differences in expression, we 
analyzed liver transcriptomes of isogenic F1 hybrid mice. Allele-specific expression 
(ASE) effects are pervasive and are detected in over 50% of assayed genes. Genes with 
strong ASE do not differ from those with no ASE with respect to their length or promoter 
complexity. However, they have a higher density of sequence variants, higher functional 
redundancy, and lower evolutionary conservation compared to genes with no ASE. Fifty 
percent of genes with no ASE are categorized as house-keeping genes. In contrast, the 
high ASE set may be critical in phenotype canalization. There is significant overlap 
between genes that exhibit ASE and those that exhibit strong cis expression quantitative 
trait loci (cis eQTLs) identified using large genetic expression data sets. Eighty percent of 
genes with cis eQTLs also have strong ASE effects. Conversely, 40% of genes with ASE 
effects are associated with strong cis eQTLs. Cis-acting variation detected at the protein 
level is also detected at the transcript level, but the converse is not true. ASE is a highly 
sensitive and direct method to quantify cis-acting variation in gene expression and 
complements and extends classic cis eQTL analysis. ASE differences can be combined 
with coding variants to produce a key resource of functional variants for precision 
medicine and genome-to-phenome mapping. 
 
 

INTRODUCTION 
 
 Genetic variation contributes greatly to phenotypic diversity and differences in 
disease susceptibility by altering the structure and expression levels of proteins. The 
analysis of complex phenotypes in the pre-genomic era focused on coding variants, 
especially including nonsense, missense, and frameshift mutations. However genome-
wide association studies conducted over the last decade have demonstrated that a great 
majority (>90%) of trait/disease-associated variants are located in non-coding regions. 
These non-coding variants primarily act by modulating gene expression, and they are the 
major cause of variation in susceptibility to complex diseases [94-96]. 
 
 Sequence variants that affect gene expression can act in cis or in trans. Cis-acting 
variants represent first-order local control of gene expression that is specific to each 
individual haplotype. For example, sequence variants in transcription factor binding sites 
may affect expression of cognate genes on the same chromosome. Cis-acting variants are 
key to understanding heritable variation in disease risk, and serve as direct targets for 
diagnosis and treatment of diseases. Cis-acting variants can, of course, also have second-
order distal or trans effects. A small subset of cis-modulated transcripts consists of 
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master trans-regulators (for example, transcription factors, miRNAs) that control the 
abundance of large numbers of downstream target genes on both sets of chromosomes. 
Hence, identification of cis-modulated transcripts serves as an key molecular resource for 
reverse genetics studies that focus on downstream consequences of altered expression. 
 
 Currently, two genome-wide approaches can be employed to identify cis-acting 
variation in expression. The first approach, known as expression quantitative trait locus 
(eQTL) mapping, performs classical genetic linkage analysis of expression usually for an 
entire transcriptome or proteome. This approach has been widely applied to study the 
effects of segregating variation on gene expression in yeast, mice, maize, and humans 
[97,142,202-204]. The largest study to date is the ongoing Genotype-Tissue Expression 
(GTEx) project that is generating a comprehensive resource of cis eQTLs for multiple 
tissues in a large human cohort [205,206]. The second approach, widely used in studies 
of model organisms, exploits rtPCR or RNA-seq to assay allele-specific expression 
(ASE) differences in isogenic heterozygous (F1) individuals [207-211]. RNA-seq can 
reliably distinguish mRNAs transcribed from the alternative alleles, and can be used to 
detect unequal production of the two alleles. A major advantage of isogenic F1 hybrids is 
that they provide a way to control for environmental and trans-acting influences. Both 
alleles are present within an identical environment and subjected to the same genetic 
background and regulatory networks. As a result, any expression differences between 
alleles in an isogenic F1 can be confidently attributed to genetic or epigenetic regulatory 
variant acting in cis [212-214]. 
 
 In this study we evaluate and compare the impact of cis-acting variation on 
expression in murine liver using both ASE and eQTL approaches. We exploit RNA-seq 
data from isogenic F1 hybrids and array data from a large set of recombinant inbred 
strains of mice the BXD cohort, and generate a molecular resource for genome-wide 
reverse genetics that focuses on downstream consequences of altered gene expression 
[88,171]. We address the following questions: 
 

 How do genes that exhibit ASE differ from those that do not? 
 How do the two approaches highlighted above compare in terms of 

detecting effects of local polymorphisms on expression? More 
specifically, are cis-modulated transcripts identified by eQTL mapping 
also consistently detected by ASE analysis? 

 How frequently do cis-acting variants that cause mRNA differences also 
cause differences in protein expression? 

 
 

MATERIALS AND METHODS 
 
 
RNAseq data for C57BL/6JxDBA/2J hybrids 
 
 We downloaded paired-end RNA-seq data from the European Nucleotide Archive 
(accession number ERP000591) for liver of C57BL/6JxDBA/2J F1 female hybrids 
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generated by crossing C57BL/6J females with DBA/2J males [172]. The data consist of 
transcriptome sequence from six biological replicates. We acquired a total of ~181 m 
read pairs (2x76 nt in length). We removed low quality reads and used the remaining 
~173 m read pairs for alignment. 
 
 
RNA-seq read alignment 
 
 We aligned RNA-seq reads to both the C57BL/6J reference genome (mm10 

tool (STAR, version 2.3.1a) [215] --
outFilterMultimapNmax 10 --
aligned in concordance with the library design, in particular read strand, were removed. 
We allowed a maximum insert size of 300,000 nucleotides (maximum intron length) to 
allow alignment of those read-pairs aligned to different exons. We selected read pairs for 
which both reads were uniquely aligned and for which each had less than six mismatches. 
If one member of a read-pair could not be aligned then we retained the other member 
only if it could be aligned uniquely. 
 
 
Calculation of allelic ratio 
 
 [176] and an in-house 
Python 
(https://github.com/ashutoshkpandey/ASE_prealignment/blob/master/Allele_specific_SA
M.py) script to assign reads to their parental allelic origin by comparing alignments to the 
C57BL/6J and the SNP-substituted DBA/2J genome. If reads were aligned to both 
genomes then we required them to map at the same locations. Those reads that 
overlapped SNPs were assigned to their parental allele origin. To ensure that differential 
expression was not due to amplification by PCR during library preparation, we removed 
all potential PCR duplicates except for the single read with the fewest mismatches using 

uplicates tool (version 1.78). We calculated allelic ratios for each SNP 
defined as the ratio of number of reads assigned to the reference allele (B) to the total 
number of aligned reads (B+D). 
 
 
Definition of ASE using chi-square test 
 
 For each SNP we used an interquartile range (IQR) method to identify outlier 
allelic ratios from the set of F1 replicates. Outlier ratios were located outside the [Q1  
1.5(IQR) and Q3 + 1.5(IQR)] range where Q1 and Q3 represent first and third quartiles 
and IQR is calculated as Q3  Q1. Reads from replicates showing concordant allelic 
ratios were merged and allelic ratios were recalculated. We used the chi-square goodness 
of fit test to determine allelic imbalances for a given SNP. For a SNP showing an allelic 
imbalance, the ratio will deviate from 0.5. We defined genes as having an allele-specific 
expression difference if they contained one or more SNPs with an allelic imbalance at an 
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FDR threshold of less than 0.1 [216]. We also required the expression fold difference to 
be >1.25. 
 
 
Array expression data and eQTL mapping 
 
 We used an Affymetrix data set (Mouse 430 v2.0 array) consisting of liver gene 
expression data for 40 genetically diverse BXD strains (GeneNetwork.org accession 
GN310, 
http://genenetwork.org/webqtl/main.py?FormID=sharinginfo&GN_AccessionId=310). 
We performed robust multichip analysis (RMA) preprocessing and rescaled values to 
log2 and stabilized the variance across samples [217]. We used QTL Reaper, mapping 
code that uses the method of Haley and Knott for eQTL analysis [218], and a set of 3,200 
markers. We excluded probe sets located on X and Y chromosomes (~2,500 probe sets). 
Locations of probe sets were identified using custom annotation files. Similarly, we 
performed pQTL mapping on expression data from 172 proteins [219]. This data can be 
downloaded from Genenetwork.org (accession GN490, 
http://www.genenetwork.org/webqtl/main.py?FormID=sharinginfo&GN_AccessionId=4
90). To identify Affymetrix probes that overlapped sequence variants, we first aligned 
probe sequences against the mouse reference genome (mm10) using BLAT [220], and 
then compared genomic coordinates of probes for overlap with sequence variants. 
 
 
Comparison between ASE and non-ASE genes (URLs) 
 
 We downloaded the liver-specific regulatory elements data from Ensembl 
Regulatory build (ftp://ftp.ensembl.org/pub/release-81/regulation/mus_musculus); see 
more details on this build here: 
http://www.ensembl.org/info/genome/funcgen/regulation_sources.html. For TFBS 
comparison we used data from MotifMap genome-wide maps of regulatory elements. 
The file was downloaded using the following link: 
(http://www.igb.uci.edu/~motifmap/motifmap/MOUSE/mm9/multiz30way/MotifMap_M
OUSE_mm9.multiz30way.tsv.bz2). A list of house-keeping genes was downloaded using 
the following link: http://www.tau.ac.il/~elieis/HKG. In order to compare for the 
evolutionary conservation between the ASE and non-ASE genes, we used GERP++ 
scores for mouse 
(http://mendel.stanford.edu/SidowLab/downloads/gerp/mm9.GERP_elements.tar.gz). We 
downloaded M. musculus and H. sapiens paralog data from Ensembl BioMart 
(www.ensembl.org/info/data/biomart.html) [221,222]. All the mm9 coordinates were 
converted to mm10 using UCSC liftOver utility. The counts/scores of cis-regulatory 
elements, TFBSs, DBA/2J sequence variants, and GERP++ scores were normalized by 
gene length before comparison. 
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Single marker analysis 
 
 We performed single marker analysis as an alternative to eQTL mapping to 
identify cis-modulation in expression. For each gene we selected its closest marker and 
classified BXDs by genotype (B allele or D allele) for that marker. We compared 
expression using a t-test and selected genes showing significant expression difference at 
an FDR of < 0.1. 
 
 

RESULTS 
 
 
DBA/2J specific reference genome 
 
 We substituted ~4.5 million DBA/2J SNPs (Chapter 1) into the reference genome 
(GRCm38/mm10) to create a customized DBA/2J genome for RNA-seq read alignment. 
A total of ~1.7 m SNPs are located within coding genes based on RefSeq annotation, 
including introns (95.59%), exons (2.30%), 3' UTRs (1.80%) and 5' UTRs (0.30%). 
These SNPs are distributed among 14,591 genes. SNPs in transcribed regions were used 
to discriminate between, and identify, the parental allelic origin (B vs D) of transcripts in 
isogenic F1 hybrids. 
 
 
Haplotype-aware alignment corrects for allelic bias in read alignment 
 
 We downloaded paired-end liver RNA-seq reads for six biological replicates of 
C57BL/6JxDBA/2J F1 females. We adopted a haplotype-aware alignment approach and 
aligned ~350 m (~175 m paired-end) reads against both the B and the customized D 
genomes (Methods). We used a SNP-directed approach to identify the allelic origin (B or 
D) of reads that aligned over heterozygous SNPs in the F1 samples. Only uniquely 
aligned reads were assigned to parental alleles. Approximately 0.27 m SNPs within genes 
(a great majority within exons) had at least one read. 
 
 RNA-seq read alignment suffers from allelic bias that disfavors reads containing 
sequence variants relative to the reference genome [223,224]. This bias generates lower 
read counts for non-reference alleles, and overestimates ASE differences. To evaluate 
bias, we examined allelic ratios defined as the number of reads with the reference allele 
(B) divided by the total number of reads (B+D). In the absence of bias, this ratio will have 
a symmetrical distribution and a mean of 0.5. For each of the F1 samples, ratios were 
well balanced, with nearly equal numbers of SNPs with high B or high D expression. 
Additionally, mean and median ratios were close to 0.5 indicating that the majority of 
SNPs exhibit small or undetectable ASE. We compared our results with a traditional 
approach involving alignment of reads against the reference genome and allowing for 
fewer mismatches (1 mismatch per 25 nt). This produced an artifactually high number of 
SNPs with high B expression (~ 3,000 B vs ~400 D, two-sided binomial p < 10-323) 
compared to the dual genome alignment (~2,325 B vs ~ 2,300 D, two-sided binomial p 
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value = 0.724, Figure 3-1a, b). The mean and median of allelic ratios using the standard 
approach were also skewed 0.69 (high B) and 0.68, respectively. This illustrates that the 
haplotype-aware alignment workflow is highly effective in reducing allelic bias due to 
read alignment. 
 
 
High correlation of allelic ratios across biological replicates 
 
 
biological replicates. Allelic ratios were highly correlated with an average Pearson 
correlation of 0.70 ± 0.02 for all pairs of replicates (n = 15). We merged data from 
biological replicates, but to minimize variation across replicates, we discarded reads from 
replicate with highly discrepant ratio (Methods). More than 90% of SNPs had closely 
matched ratios across four or more replicates and were retained for further analyses. We 
also checked the concordance of the polarity of ASE measured by neighboring (<75 
nucleotides) but independent SNPs. In the great majority of cases SNPs within the same 

136 
(6%) of 2,234 genomic features contained SNPs with opposite ASE polarity and the great 

n 
[225,226], and SNPs with opposite ASE polarity probably represent alternative 
polyadenylation sites [88]. The high correlation of allelic ratios across the replicates and 
the high concordance in polarity again demonstrate the accuracy of the haplotype-aware 
alignment workflow. SNPs located within copy number variants, large insertions and 
deletions or in close vicinity (< 75 nucleotides) to an indel can generate inaccurate ASE 
estimates due to alignment artifacts. As a result, these SNPs were removed from further 
analysis. Additionally, to ensure independent sampling we considered only one SNP of a 
SNP pair when SNPs were separated by less than 75 nucleotides. Of 21,166 SNPs with 

,358) SNPs were removed for one of these reasons. 
 
 
ASE differences in liver are common 
 
 We tested the null hypothesis of equal abundance of transcripts representing B 
and D alleles in isogenic F1 hybrids using a Chi-square Goodness of fit test (FDR < 0.1, 
Methods). On average we used ~650 reads per SNP to test for ASE. At a minimum 
threshold of 30 reads per SNP, we were able to test 15,808 SNPs in 3,589 genes 
(Supplementary Table 3-1). We detected significant ASE in 5,298 SNPs from 1,905 
genes (Supplementary Table 3-1, Figure 3-2). Most of these SNPs are contained within 

Supplementary Table 3-1). Seven percent are 
in introns and may represent unannotated exons or transcripts with unspliced or retained 
introns. We obtained comparable results when the minimum read threshold was increased 

(4,774 significant SNPs in 1,482 genes). Fifty-two percent (2,773 B vs 2,525 D) of SNPs 
have higher expression from the B allele. There is no difference in the distribution of 
average effect sizes for significant ASE between alleles (Figure 3-3). Over half of the 
SNPs with significant ASE differ by less than two fold; one-third differ two four folds;  
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Figure 3-1. Comparison of the allelic bias in read alignment between traditional 
and haplotype-sensitive approach 
 
Note. Distribution of allelic ratios in (a) traditional and (b) haplotype-sensitive alignment. 
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Figure 3-2. Distribution of cis-modulated genes in liver 
 
Notes. The outermost circle represents chromosomes. Moving in, the second circle 
represents a scatter plot of ~15,000 SNPs tested for ASE. The Y-axis represents the allelic 
ratio. SNPs with significant ASE are shown in red and blue, representing high expression 
of the B and the D allele respectively. SNPs with insignificant ASE are shown in green. 
These SNPs are located on or near the line representing an allelic ratio of 0.5. The third 
circle represents a scatter plot of ~40,000 microarray probe sets tested for cis eQTLs. The 
Y-axis represents the LOD scores of probe sets measured at the nearest marker (cis LOD). 
Cis B and the D allele are shown 
in red and blue respectively. Cis LOD scores of less than 3 are shown in green. The 
innermost circle represents a scatter plot of ~200 proteins tested for cis pQTLs. The Y-
axis represents the LOD scores of proteins measured at the nearest marker (cis LOD). 
Chromosomes X and Y were excluded.  



 

39 

 

 
 

Figure 3-3. Distribution of significant allelic ratios 
 
Notes. B>D B 
allele (left Y-axis). The right boxplot represents SNPs with high expression of the D allele 
(right Y-axis). The Y-axis represents allelic ratios. Outliers are not shown. 
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and the remaining one-sixth differ more than four-fold. We detected the known low D 
allele expression of aryl hydrocarbon receptor (Ahr) a transcription factor that controls 
xenobiotic metabolizing enzymes such as cytochrome P450 gene family [227]. Similarly 
we also detected the known low B allele expression of alkaline phosphatase (Alpl) a 
gene linked to hypophosphatasia [86]. 
 
 
Comparison between ASE and non-ASE genes 
 
 Genes with high or low levels of ASE may differ in length, complexity of 
promoters, sequence variant density, or evolutionary history. To explore these differences 
we selected a subset of 418 genes with very high ASE ratios (>1.5 fold) and a subset of 
465 genes with low or no ASE. All genes in both groups were required to have at least 
two independent SNPs that supported their categorization. We also required all SNPs to 
have more than 100 supporting reads roughly the top ten percentile. The average read 
depth for ASE and non ASE SNPs were 258 ± 180 and 262 ± 168. We defined each gene 

upstream and downstream. ASE genes do not differ from non-ASE genes in terms of total 
Table 3-1). They also do not differ in numbers 

of protein-coding transcripts (isoforms) or numbers of exons per transcript (Table 3-1). 
However, ASE genes have a higher functional redundancy (number of paralogs) 
compared to non-ASE genes (1.5 fold, p < 10-4, Table 3-1). 
 
 We also compared promoter complexity. There are no differences in the density 
of liver-specific cis-regulatory elements defined using mouse ENCODE data [228]. 
Similarly, there are no differences in the density of transcription factor binding sites 
defined using a comparative genomic approach [229] (Table 3-1). However, the subset of 
genes with no or low ASE are enriched (p < 10-46, hypergeometric test) in housekeeping 
genes [230]. In fact, nearly 50% of the non-ASE set are house-keeping genes. In contrast 
only 20% of the ASE set belong to this category. 
 
 Another distinguishing characteristic of the two sets is their density of sequence 
variants. The mean density in the non-ASE set is significantly different from the ASE set 
(4.59 ± 0.02 versus 8.20 ± 0.25 per Kb, p ~ 0.0, two-tailed t test). This suggests that 
genes in the non-ASE set are under comparatively stronger purifying selection. 
 
 To test whether ASE and non-ASE sets are subject to different levels of purifying 
selection (the elimination of deleterious sequence variants) we compared the strength of 
selective constraint (GERP++ scores) on genomic regions across 33 mammalian species 
[125,126]. The ASE gene set (201.33 ± 10.85) have significantly lower conservation 
scores than the non-ASE set (274.15 ± 13.26) indicating that they tolerate and accumulate 
more mutations; a subset of which are highly likely to modulate expression (p < 10-4, 
two-tailed t test, Table 3-1). 
 
 To evaluate if genes in ASE and non-ASE sets belong to different functional 
categories, we compared them for overrepresented gene ontology and KEGG pathway  
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Table 3-1. Comparison between ASE and non ASE genes 
 

Category ASE Non ASE P-value 
Gene length in Kilobase (Kb) 58 ± 40 63 ± 30 0.31 

 0.23 ± 0.03 0.25 ± 0.01 0.15 
 1.80 ± 0.08 1.87 ± 0.06 0.54 

Coding transcripts per gene 1.50 ± 0.05 1.65 ± 0.06 0.1 
Exons per transcript 12.40 ± 0.37 12.90 ± 0.29 0.31 
Cis-regulatory elements (Kb) 0.37 ± 0.01 0.34 ± 0.01 0.11 
Transcription factor binding sites (Kb) 1.61 ± 0.07 1.70 ± 0.07 0.38 
Sequence variants (Kb) 8.20 ± 0.25 4.59 ± 0.02 0.00000001 
Paralogs per gene 5.31 ± 0.36 3.56 ± 0.22 0.0000286 
Conservation score (Kb) 201.33 ± 10.8 274.15 ± 13.2 0.0000331 
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terms using DAVID functional annotation tool [231]. ASE genes are significantly 
enriched (Benjamini corrected p < 0.05) in genes associated with KEGG pathway terms 

 
 Non-

ASE genes are enriched in genes with gene ontology (GO) terms representing broad 

 
 
 To evaluate the effect of ASE on phenotypes we performed phenotype enrichment 
analysis [232] on mouse-mutant phenotypes [233] derived from Mouse Genome 
Informatics (MGI, www.informatics.jax.org/phenotypes.shtml). As noted above, ASE 
genes compared to non-ASE genes are enriched (unadjusted p < 0.01) for phenotypes 

induced morbid
(MP:0002078). 
 
 
Identification of cis eQTLs 
 
 We performed linkage-based eQTL mapping using a gene expression data set 
generated using liver samples from 40 BXD strains (Methods). Of the ~45,000 probe 
sets, we selected ~41,500 that have a uniquely assigned gene identifier. This subset 
represents ~19,000 genes. Cis eQTLs were required to have LOD scores greater than 3 

corresponds to a nominal p value of < 0.001 and is widely used to indicate a high 
probability of linkage. We detected a total of 1,907 cis eQTLs corresponding to 1,474 
genes (Supplementary Table 3-2). cis 
Snx6, Adi1, Cfh, Fbxo39, and St3gal4. 
 
 
Variant overlapping probes cause spurious cis eQTLs 
 
 SNPs and indels in probe sequences can influence hybridization kinetics and 
cause incorrect measurement of expression. Twenty-five percent of apparent cis eQTLs 
detected in the hippocampus are probably caused by variants in probes rather than by 
genuine differences in expression [207]. We identified 739 cis-modulated probe sets that 
overlap D variants. To evaluate how these variants affect the direction and size of 
additive effects for corresponding cis eQTLs, we compared cis eQTLs between probe 
sets with variants and probe sets without variants. Probe sets without variants were 
precisely balanced with respect to B versus D effects. In contrast probes with variants 
were highly imbalanced and ~70% were associated with high B expression. Of 408 cis 
eQTL genes represented by probes with variants, 193 could be compared with results 
from ASE analysis, and 149 genes showed the same direction of expression bias as ASE. 
A total of 1,215 genes were associated with cis eQTLs. 
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Cis-modulated genes from ASE and eQTL mapping overlap 
 
 We compared results from ASE with those from eQTL mapping. Of the 3,431 
genes that were jointly tested, 1,808 (~50%) and 867 (~25%) were identified as cis-
modulated by ASE and eQTL mapping, respectively. Six hundred and eighty-three genes 
were jointly identified as cis-modulated, a significant overlap (hypergeometric p < 10-73), 
and ~90% had the same effect polarity. One thousand one hundred and twenty-five and 
184 cis-modulated genes were exclusively identified by ASE and eQTL mapping 
respectively. In other words, roughly 80% of cis eQTLs also have ASE differences and 
~40% of ASE differences are associated with cis eQTLs. To investigate discrepancies, 
we compared LOD scores of jointly identified cis-modulated genes with those only 
identified by eQTL mapping. The joint set exhibit significantly higher LOD scores (p < 
10-5) (Figure 3-4). We further compared the RNA-seq read depth (expression) of these 
two groups and the joint set has significantly higher expression (three-fold difference, p = 
.03, Figure 3-5). This suggests that the ASE analysis lacks adequate read depth 
(statistical power) to detect allelic differences corresponding to cis eQTLs with 
comparatively low LOD scores. We performed an empirical power analysis (Figure 3-6) 
to illustrate dependency of ASE analysis on read-depth to detect allelic differences of 
different magnitudes. As expected, strong differences can be reliably detected with a 
relatively small number of reads and vice-versa. The joint set also has higher allelic 
expression differences compared to 1,125 genes identified only by ASE (p < 10-30) 
(Figure 3-7 cis eQTLs and this will 
reduce the number of cis eQTLs corresponding to genes with low ASE. We therefore 
performed single marker analysis at less stringent FDR < 0.1 (Methods) to identify cis-
modulated genes and compared them with the ASE gene set. The number of jointly 
identified genes increased from 683 
analysis, FDR < 0.1), and those exclusively identified by ASE were reduced from 1,125 
to 774. Thus a large fraction of disjoint between ASE and eQTL results are explained by 
the different statistical criteria and thresholds we used to define both ASE genes and cis 
eQTLs. 
 
 
Genetic variants affecting transcript abundance and protein abundance show poor 
overlap 
 
 We performed linkage based protein QTL (pQTL) mapping on liver proteomics 
data generated from a set of 38 BXD strains [219]. One hundred and seventy-two 
autosomal proteins involved in metabolism were quantified using a targeted mass 
spectrometry method. Only 7% (n = 12) are associated with cis pQTLs, including 
ABCB8, ACADS, ACOX1, ATP5O, BCKDHB, CAR3, DHTKD1, GCLM, MRI1, NNT, 
PM20D1, and TYMP (Figure 3-8, where a cis pQTL must have a LOD > 2 located 
within ±5 Mb of the parent gene). Not surprisingly, all of the cis pQTLs are also 
associated with significant ASE differences with matched polarity. Similarly, 8 of these 
cis pQTLs are linked to cis eQTLs with high LOD scores and with matched polarity. 
However, 39 genes with significant ASE and 18 genes with significant cis eQTL are not 
associated with cis pQTLs. For example, Ddah1 has significant ASE   
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Figure 3-4. Comparison of LOD scores 
 
Notes. Comparison of LOD scores from jointly identified cis-modulated genes (ASE and 
eQTL mapping, left boxplot) with those only identified using eQTL mapping (right 
boxplot). The Y-axis represents LOD scores. Outliers are not shown. 
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Figure 3-5. Comparison of RNA-seq read depth (log10) 
 
Note. Comparison of RNA-seq read depth (log10) from jointly identified cis-modulated 
genes (ASE and eQTL mapping) with those only identified using eQTL. 
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Figure 3-6. Empirical determination of read depth required to detect allelic 
differences of a given size 
 
Notes: Each circle represents a SNP. The X-axis represents the measured fold-difference 
and the Y-axis represents RNA-seq read depth (log10) for a given SNP. SNPs exhibiting 

0.01. The red and blue circles, combined, 
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Figure 3-7. Comparison of absolute allelic differences 
 
Notes. Comparison of absolute allelic differences from jointly identified cis-modulated 
genes (ASE and eQTL mapping, left boxplot) with those only identified using ASE (right 
boxplot). Outliers are not shown. 
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Figure 3-8. Comparison of cis-acting variation at transcript versus protein levels 
 
Notes. The X-axis and Y-axis represent LOD scores for genes and cognate proteins 
measured at their closest markers (cis LOD). A LOD of 2 (dashed line) roughly 
corresponds to a nominal p < 0.01. 
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(3 4 fold difference) and a strong cis eQTL (chr3:145 Mb, LOD ~ 14.5) favoring the B 
allele. However, the protein difference across BXDs does not map to the location of gene 
and protein difference between B and D alleles has a one-tailed p of 0.2 a reasonably 
strong negative result. This case is doubly interesting because variation in DDAH1 
protein maps as a trans pQTL (Chr7: 27.85 Mb, LOD ~ 2.5). 
 
 
Majority of aberrant alleles do not affect expression severely 
 
 Nonsense mediated decay (NMD) is a molecular surveillance mechanism that 
selectively degrades aberrant transcripts produced as a result of nonsense or splice-site 
variants [234-236]. NMD of aberrant transcripts should result in extreme allelic ratios 
(close to zero or one). However, over two-thirds of nonsense variants (transcripts) in 
human cell lines escape NMD through unknown mechanisms [237]. We measured allelic 
ratios for 12 nonsense variants (transcripts) and remarkably only two Gbp11 (0.05, high 
D) and Mug2 (0.90, high B) had extreme ratios across multiple SNPs. Interestingly, half 
of the stop codon losses identified in the B allele only add one to two amino acids to the 
variant proteins, including VMN2R79 (+1 amino acid), ADAM3 (+1), SPNS3 (+2), 
ZCCHC9 (+2), DLGAP5 (+2), and HOGA1 (+1). None of these transcripts have extreme 
allelic ratios. We found that a third of murine genes have one or more in-frame stop 
codons in close vicinity (<30 nucleotides) to the original stop codon. Tandem stop 
codons are also known to be conserved in yeast [238], and may provide a safeguard 
against stop codon losses. We also evaluated 36 splice-site variants and only five of these 
transcripts, including Cyp2c39 (0.02), Arhgef10 (0.03), Pik3c2g (0.05), Lox14 (~0.9), and 
Rpsa (0.99) had extreme ratios. 
 
 In conclusion a majority (> 85%) of presumed aberrant transcripts including 
nonsense and splice-site variants escape NMD. We speculate that the use of alternative 
stop codons or splice sites in the immediate vicinity of the primary mutation apparently 
prevents aberrant transcript production. 
 
 
Mechanistic insights into the basis of allele-specific expression quantitative and 
qualitative differences 
 
 Cis-acting variants affect expression in three major ways: (1) by modulating 
transcription rates and stability (mRNA abundance), (2) by modulating transcript 
processing (splicing and polyadenylation), and (3) by altering mRNA transport and 
storage [239]. Allelic ratios of SNPs that represent different regions of a transcript can be 
collectively analyzed and compared to provide mechanistic understanding of these 
alternative mechanisms. Multiple SNPs that have the same polarity and roughly the same 
magnitude of effect suggest variants in enhancers or transcription-factor binding sites that 
control transcript levels globally. For example, Gclm, a gene involved in the metabolism 
of dietary lipid [240], that also has a strong cis pQTL (LOD ~5) in liver with high 
expression of the B allele. All five SNPs have ASE with the same polarity. Another 
example is Nnt, a gene linked to insulin hypersecretion in the D parent [241], has a strong 
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cis pQTL (LOD ~8) in liver with high expression of the D allele. All eight SNPs exhibit 
significant ASE and with the same polarity (Figure 3-9a). 
 
 Neighboring SNPs located within 5
suggest allele-specific differential usage of alternate transcriptional initiation or 
polyadenylation sites. One example is Txndc9, a gene linked with colorectal cancer in 
humans [242]. This gene has multiple transcripts with alternative polyadenylation sites as 
demonstrated by multiple mRNAs in RefSeq and Ensembl gene models. Two SNPs 
located in exons 1 and 3 have significantly ASE with high B expression whereas eight 

Figure 3-9b) have high D expression suggesting 
allele-
data: probe sets in coding exons have high B expression w
have high D D allele harbors putative binding sites 
(PhastCons > 0.5 and mirSVR score < -0.3 [243]) for multiple miRNAs, including miR-
539, miR-96, miR-129-5p, that may explain overall low expression of the D transcript. 
Another example is Slc38a3, a glutamine transporter involved in ammonigenesis 
[244,245]. GenBank and Ensembl gene models demonstrate multiple transcripts that use 

high D Figure 3-9c). Two 
SNPs (rs30029220 and rs29646102 D 
expression whereas a SNP (rs3672647 B expression 
suggesting that the D  
 
 Finally, SNPs with opposite ASE polarity in different coding exons are probably 
caused by alternative exon usage or alternative splicing. For example, carbonic anhydrase 
3 (Car3), a gene linked to adipogenesis [246], has a strong cis pQTL (LOD ~5) with high 
expression of the D allele. Five SNPs located exclusively in a long isoform show 
significant ASE with high D 
UTR (Figure 3-9d). In contrast, 5 SNPs located exclusively in the short isoform have 
high B expression. 
 
 

DISCUSSION 
 
 Allele-specific expression differences are a major driver of phenotypic differences 
and variation in disease risk. We exploited RNA-seq and eQTL data sets to quantify the 
extent and intensity of cis-acting variation in expression in liver. After correcting for 
alignment bias, we achieved the expected symmetrical distribution of allelic differences. 
Well separated SNPs within single exons are highly concordant both in strength and 
polarity of effects. 
 
 Having dealt with these technical challenges, we were able to identify statistically 
significant ASE differences with minimum fold difference of 1.25x for nearly half of all 
assayed transcripts. This latter finding strongly supports recent work by Crowley and 
colleagues [204] demonstrating pervasive and high levels of ASE in brain and other 
tissues. In each F1 strain contrast, they detected significant ASE in 50% or more of all  
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Figure 3-9. Schematic examples of genes potentially associated with different 
categories of cis-regulatory mechanisms 
 
Notes. The Y-axis shows the allelic ratios of SNPs located within the gene. An allelic 
ratio greater than 0.5 (dashed line) represents high expression of the B allele. Examples of 
allele-specific regulation of (a) overall gene expression, (b) (c)  
UTR processing, and (d) isoform usage. 
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tested genes/transcripts at an FDR of 0.05. In total, 90% of testable genes exhibited ASE 
effects in at least one pair of strains. Lagarrigue and colleagues [214] detected somewhat 
less pervasive ASE effects (~20%) in liver of C57BL/6JxDBA/2J F1 animals, but this is 
most certainly a matter of lower RNA-seq read depth (statistical power), and a higher 
fold difference (1.5X) criterion they used to identify ASE. Of 2,256 genes, they only 
observed 383 genes with significant ASE. We are now able to address three questions 
posed in the introduction. 
 
 
Highly conserved genes have low levels of ASE 
 
 Do differences in the magnitude of ASE represent differences in complexity of 
expression control or in evolutionary history? To answer these questions we compared a 
group of genes with very low and very high ASE. We found no differences in the density 
of cis-regulatory elements, but genes with low ASE do appear to be under more intense 
purifying selection. Fifty percent of the non-ASE set are house-keeping genes [230] and 
are likely to evolve comparatively slowly [247,248]. In contrast, genes with high ASE are 
likely to have higher functional redundancy as estimated indirectly by numbers of 
paralogs, and they are also enriched in tissue-specific functions. In our study of liver they 
are involved in the metabolism of lipids, fatty acids, and xenobiotics. We speculate that 
high gene sets with higher ASE may function in tissue-specific pathways that tend to 
retain both higher numbers of paralogs and be under less evolutionary constraint. The 
comparatively high range of variation in expression of these genes may be crucial to 
conferring greater physiological tolerance to noise and environmental challenges. ASE 
may also be one of the genetic mechanisms that underlie the canalization of phenotypes 
[249,250] 
 
 
Poor overlap between variants affecting transcript and protein abundance 
 
 Transcript abundance has been shown to correlate only modestly with protein 
abundance. [219,251-254]. As expected, there is considerable disparity in allelic variation 
detected at mRNA and protein levels. A few of the cis eQTLs with very high LOD scores 

lly no cis pQTLs (LOD score < 1) are Ddah1, Gadd45gip1 and 
Aldh4a1. Fu and colleagues suggested an increased buffering at the level of proteins and 
metabolites, such that only a few genetic variants modulate major phenotypic variation 
and majority of them remain silent [255]. Factors that are known to contribute towards 
the disparity between mRNA and protein levels include post-transcriptional and post-
translational modifications [254], differences in half-lives [256], variability in mRNA 
expression level due to changes in cell-cycle [257]. 
 
 
Comparison between ASE and eQTL mapping results 
 
 We found significant overlap in cis-modulated genes identified by ASE and eQTL 
analysis, despite substantial differences between methods and assays. Eighty percent of 
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cis eQTL genes are also detected by ASE, and ~90% of them have the same polarity. The 
set of 683 genes identified by both methods have significantly higher LOD scores than 
the set of 184 genes identified only by eQTL mapping. In our work, when ASE methods 
fail to detect known eQTLs, this is almost certainly due to inadequate read depth 
(statistical power). High sampling error in RNA-seq data will affect power of ASE 
analysis especially for genes with low expression [82,258]. As shown above, high read 
depth is required to detect small allelic difference. A small fraction of presumed cis 
eQTLs can be local trans eQTL effects of neighboring genes. 
 
 The jointly identified set of ~650 genes has greater allelic differences than the set 
of 1,125 genes identified only by ASE. A large fraction of subtle allelic differences 
identified only by ASE may have been confounded by noise or epistatic trans-acting 
effects in the eQTL analysis. The small sample size of the BXD cohort used for the eQTL 
mapping may not have adequate statistical power to map weak cis eQTLs, especially in 
the presence of epistatic trans eQTLs. Additionally, the LOD threshold of greater than 3 
used to define cis eQTLs may be too stringent in this particular context. 
 
 To the best of our knowledge, Babak and colleagues [259] were the first to 
compare F1-derived ASE results with eQTL results from F2 intercrosses for adipose and 
islets samples. They found an 80% overlap between genes exhibiting ASE and genes with 
cis eQTLs. Lagarrigue and colleagues [214] found a 60% overlap between the methods. 
Hasin-Brumshtein and colleagues [260] performed a similar comparison in adipose tissue 
and reported relatively poor overlap (~20%), but as noted above, differences with our 
more concordant results are most likely cumulative result of differences in criteria and 
ratios of statistical power of ASE analysis using F1 hybrids and cis eQTLs analysis using 
large intercrosses. 
 
 As highlighted in the introduction, it is now clear that most common variation in 
phenotype and disease risk are linked to variants that modulate patterns of gene 
expression. ASE is a sensitive and a cost-effective method to detect cis-acting differences 
in expression. Environmental and trans-acting factors are fully controlled in isogenic F1 
individuals, and ASE analysis only requires a small F1 sample size. In this respect it has a 
clear advantage over eQTL analysis of segregating populations. However, many classical 
laboratory strains have been derived from ancestral stock with limited haplotype 
diversity. As a result, a large fraction of an F1 genome will be identical by descent (IBD) 
and genes in these regions cannot be interrogated using ASE. 
 
 Linkage-based eQTL analysis adds two important dimensions to an ASE study. 
First, it makes it possible to assign causality to specific variants using high-resolution  
mapping populations [88,89]. Second, eQTL analysis makes it possible to study the 
downstream effects of differential expression. These downstream effects are detected as 
trans eQTLs of other mRNAs or proteins. 
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ASE varies between different environments and genetic backgrounds 
 
 Estimates of ASE and cis eQTL will vary as a function of genetic background 
[204], tissue [172], environment [219], and sex [261]. For example, cis eQTLs effects can 
be strongly dependent on diet. The cis eQTL associated with Ndusf2 increases from LOD 
score of 2 in a mouse cohort on a normal chow diet to a LOD score of 6 in a cohort on a 
high fat diet [219]. For these reasons, one should not expect estimates of ASE in liver of 
one population or treatment to generalize. Nevertheless, many of the large ASE effects 
caused by strong cis-acting variants will often be well conserved across environments, 
cell types, and genetic backgrounds. For example, ASE effects due to copy number 
variants [199] [88], and nonsense mutations [262] 
will often produce strong and consistent ASE effects across many tissues and treatments. 
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CHAPTER 4.    SYSTEMATIC PHENOME-WIDE ASSOCIATION USING BXD 
RECOMBINANT INBRED STRAINS OF MICE TO TEST GENE FUNCTION 

AND DISEASE RISK 
 
 

SYNOPSIS 
 
 Phenome-wide association is a novel reverse genetic strategy to analyze genome-
to-phenome relations in human clinical cohorts. Here we test this approach using a large 
murine population segregating for ~5.5 million sequence variants, and we compare our 
results to those extracted from a matched analysis of gene variants in a large human 
cohort. For the mouse cohort, we amassed a deep and broad open-access phenome 
consisting of 4,230 metabolic, physiological, pharmacological, and behavioral traits, and 
more than 80 independent eQTL transcriptome, proteome, metagenome, and metabolome 
datasets by far the largest coherent phenome for any experimental cohort 
(www.genenetwork.org). We tested downstream effects of subsets of variants and 
discovered several novel associations, including a missense mutation in fumarate 
hydratase that controls variation in the mitochondrial unfolded protein response in both 
mouse and C. elegans, and missense mutations in Col6a5 that underlies variation in bone 
mineral density in both mouse and human. Unlike genome-wide association, negative 
results in a deep phenome scan can be informative. Downstream effects of allelic variants 
with presumed deleterious effects on protein structure or mRNA and protein levels are 
often small or undetectable. 
 
 

INTRODUCTION 
 
 Identifying sequence variants that control sets of linked phenotypes is 
fundamental to understanding the molecular basis of both Mendelian and complex traits 
[172,263-265]. A variety of reverse genetic approaches to induce loss- and gain-of-
function have been used to causally tie DNA variants to discrete phenotypes [266]. 
However, reverse genetics presents two challenges. The first is evaluating a potentially 
broad spectrum of phenotypes, biomarkers, and endophenotypes that are downstream of 
sequence variants at different stages of development and under different conditions. The 
second is evaluating the impact of these variants across different genetic backgrounds 
that influence trait penetrance. Phenome-wide association studies (PheWAS) have been 
developed recently to address both challenges [59,267]. In order to establish the first 
murine resource for phenome-wide association we have used a large cohort of strains
the BXD family that we generated by crossing two fully inbred strains C57BL/6J and 
DBA/2J. We have discovered novel genetic associations and have translated them to a 
clinical cohort through human PheWAS using electronic health record (EHR) data. The 
use of systematic phenome scanning provides an exemplar of an effective paradigm for 
genome-to-phenome mapping and the analysis of pleiotropic genetic effects. 
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MATERIALS AND METHODS 
 
 
C. elegans experiments 
 
 C. elegans were cultured at 20°C on nematode growth media agar plates seeded 
with bacteria. Strains were provided by the Caenorhabditis Genetics Center (University 
of Minnesota). The strains used were SJ4100 (zcIs13[hsp-6::GFP]), SJ4005 (zcIs4[hsp-
4::GFP] and dvIs70 [hsp-16.2p::GFP + rol-6(su1006)]. RNAi constructs were isolated 
from the RNAi feeding library (GeneService) and experiments were carried out using 
standard feeding methods. The identity of each RNAi clone was verified by sequencing. 
RNAi treatment was started from embryonic stage. GFP was monitored in day 1 adults. 
Worms were immobilized with 6 mM solution of tetramisole hydrochloride (Sigma) in 
M9 and imaged using Nikon DS-L2 fluorescent microscope. 
 
 
Organization and categorization of mouse phenome 
 
 The BXD Phenotype database has been amassed by literature review, direct data 
entry by our team, and by collaboration with many investigators. Data are reviewed prior 
to entry in GeneNetwork by the senior author. Phenotypes are currently split into fifteen 
broad phenotypic categories (www.GeneNetwork.org). Phenome curation and description 
was initiated by RWW and Dr. Elissa Chesler in 2002 by literature review and data 
extraction. The early work is described briefly in Chesler and colleagues [268,269]. We 
have used a controlled vocabulary and set of rules described here 
(http://www.genenetwork.org/faq.html#Q-22

figures and graphs. 
 
 
PheWAS analysis in mice 
 
 PheWAS were performed for a total of ~11,000 variants, including 10,895 
missense, 61 nonsense, 196 splice site, 99 frame shift mutations, and 215 CNVs The 
closest marker for each variant from a set of 3,804 genetic markers each representing a 
unique haplotype block was used to represent that variant in the PheWAS. A total of 84 
expression datasets were used for calculating the number of mRNA assays. Among these, 
16 datasets highlighted in grey were further used for molecular phenome scan analysis. 
Similarly, we used 4,236 classic phenotypes from GeneNetwork.org 
(www.genenetwork.org) to study the association between variants and phenotypes. We 
calculated the p value of the Pearson correlation between each marker (variant) and 4,236 
phenotypes and ~40,000 transcripts for the expression data. All p values of correlation 
were calculated as a two-tailed test, and the q values (false discovery rate; FDR) were 
calculated using QVALUE[270]. We used an FDR threshold of 0.01 for associations. The 
analyses were performed using in-house Python scripts, and the R statistical package. 
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PheWAS analysis using GeneNetwork.org 
 
 The PheWAS analysis can be performed in GeneNetwork 
(www.GeneNetwork.org) by simply following these three steps. We use an example of a 
missense variant (Chr2: 25,398,350) in Entpd2: Step 1: Find a marker closest to the high 
impact sequence variant of interest identified by our deep resequencing of the DBA/2J 
genome. We can search for the closest marker located on Chromosome 2 at 25.39 Mb by 

where 25 and 26 are the proximal and distal search regions on Chr 2 measured in 
megabases. This will return a list of markers mainly SNPs and microsatellites close to 
the high impact sequence variants in Entpd2. From the list of markers, we selected 
rs8250941, located within ~100 Kb of the high impact sequence variants. Step 2: 
Compute correlations between this marker and all ~4000 BXD phenotypes. In the case of 
rs8250941, GeneNetwork traits 10015 and 10014 are highly correlated with this marker 
and have logP association scores larger than 10. Traits that have peak association scores 
(LRS or LOD) that are very close to the location of sequence variants are candidate traits. 
Step 3: Compute correlations between the marker and all or a subset of relevant 
transcriptome or proteome data sets. This may produce large output tables with as many 
as 20,000 endophenotypes. However, these can be sorted easily by the position of the 
peak association score (click on column that is labeled Max LRS Location). When 
correctly sorted, this table will highlight those candidate mRNAs that presumably map to 
sequence variants at the Entpd2 locus. 
 
 
PheWAS in humans 
 
 PheWAS for human data was performed using 29,722 individuals with Illumina 
HumanExome array data identified as European ancestry in the EHR and by using 
Structure[271]. To define diseases, we mapped International Classifications of Diseases, 
9th edition, (ICD9) codes from the EMR into 1,645 possible PheWAS phenotypes using 
methods described previously[267]. PheWAS phenotypes aggregate like ICD9 codes 
together (e.g., type 2 diabetes codes as a specific phenotype), are hierarchical (e.g., 

 
and include logic to select controls for each case definition. We considered only 
phenotypes with at least 20 individuals for analysis, and required each case to have at 
least 2 ICD9 codes for a PheWAS phenotype to be considered a case (those with only 1 
code are neither a case nor a control). Each SNP-phenotype association test was run with 
PLINK[272] using logistic regression adjusted for age, sex, and the first three principal 
components as calculated by EIGENSTRAT using ancestry informative markers. 
Analysis was performed assuming an additive genetic model. These data were aggregated 
and analyzed using Perl scripts and the R statistical package. A total of 1501 phenotypes 
were considered, for a per-SNP Bonferroni correction of 0.05/1501=3.3x10-5. 
 
 We then performed PheWAS for missense SNPs for each of the target genes from 
the mouse PheWAS that had minor allele frequencies >1% and passed quality control 
filters of SNP call rate >95% and sample call rate >99% in unrelated samples. SNPs were 
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found for ENPTD2 (rs34618694), COL6A5 (rs1353613, rs79867908, rs12488457, 
rs113396273, rs35886424, rs1453241, rs1497312, rs11917356, rs76864445, 
rs16827497, rs16827168, rs819085, rs9883988, rs61744488), AHR (rs2066853), ALAD 
(rs1800435), and HDH3 (rs1043836). No SNPs were available for FH1. 
 
 

RESULTS 
 
 
Phenomes 
 
 Phenome data were generated using a large cohort of recombinant inbred 
strains the BXD family that was generated by crossing two fully inbred parents
C57BL/6J and DBA/2J. Members of the BXD family collectively segregate for all 
sequence variants that distinguish the two parents and in this cross these are by 
definition common variants. There are also interesting rare but still undefined alleles 
unique to each family member. The level of both genetic and phenotypic variation 
between parents and among the strains is high (Figure 4-1a). This BXD phenome 
includes ~4,500 quantitative metabolic, physiological, pharmacological, toxicological, 
morphometric, and behavioral phenotypes (Figure 4-1b). These traits are almost all 
quantitative (unlike electronic health care datasets) and have been systematically grouped 
into 15 major phenotype categories (www.GeneNetwork.org). We have also generated 
and assembled a large molecular phenome that includes expression phenotypes from ~90 
large open access expression quantitative trait locus QTL (eQTL) studies generated over 
the past decade (www.GeneNetwork.org). On average 1.5 × 106 mRNA, 1.7 × 104 

proteomic, and 6.8× 103 metabolomic assays are available per strain (Figure 4-1b). Most 
phenotypes vary markedly across strains within the family. For example, effect of high-
fat and low-fat diets on adult body weight varies substantially across genotypes (Figure 
4-1c). Similarly mRNA and protein expression of, for example, Bckdhb and many other 
mRNA, proteins, and metabolites vary greatly (Figure 4-1d) [219]. The online 
availability of well-organized classic and molecular traits from the BXD family (see 
www.genenetwork.org) provides the foundation for multiscalar phenome scans of any 
putatively functional sequence variant. 
 
 The human phenome used in this study is a large electronic health record (EHR)-
linked cohort, BioVU. BioVU currently contains >190,000 DNA samples linked to de-
identified medical records to provide a large, clinically-relevant human resource to study 
genotype-phenotype associations; 29,722 of these individuals have extant exome variant 
data, which was used for matched mouse-to-human PheWAS in this study. Informed 
consent was obtained from all human participants. 
 
 
Phenome-wide association analysis in mouse 
 
 The functionally important variants (i.e. nonsense, missense, splice site, 
frameshift, and CNVs) were selected for subsequent Phenome-wide association study  
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Figure 4-1. Overview of phenome data for the BXD cohort 
 
Notes. (a) Five pairs of isogenic BXD cohort strains BXD43 to BXD102. There are 
now approximately 100 readily available BXD strains and another 50 that are almost 
fully inbred. Almost all current phenome data is restricted to the parents, F1 hybrids, and 
BXD1 through BXD102. (b) Phenome data categorized by type, including classic 
phenotypes (top), metabolic and proteomic trait data (middle), and independent mRNA 
expression assays (bottom, n = 86 unique eQTL data sets). (c) Body weight data for BXD 
strains on high fat (gray) and low fat (black) diets. (d) Expression of Bckdhb mRNA and 
its protein in six tissues for the five BXD strains. 
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(PheWAS) analysis (Figure 4-2). We used 3,805 genotypes that represent distinct 
haplotype blocks in the BXD family to perform PheWAS against 4,230 classic traits as 
well as 602,746 endophenotypic traits from 16 distinct tissues. This analysis yielded ~14 
million genotype-to-phenome correlations and ~2.0 billion genotype-to-endophenotype 
correlations. A total of 95 genotypes are significantly associated with 321 phenotypes, 
corresponding to 108 phenotypic groups, at a stringent q value threshold of <.01 
(Supplementary Table 4-1). In addition, we performed differential expression analyses 
between the C57BL/6J and DBA/2J strains for each association by using transcripts from 
16 tissues and proteins from hippocampus. 
 
 We interrogated the associations for 11,466 functionally important variants, 
including 10,895 missense, 61 nonsense, 196 splice site, and 99 frame shift mutations, 
and 215 CNVs, by mapping these variants to the nearest genotype markers within ±1 Mb. 
We found 650 functionally important variants associated with 97 classic phenotypes, 
including 634 missense variants associated with 62 phenotypes. 
 
 
Examples of variant-phenome association 
 
 Among 321 classic phenotypic associations meeting a stringent q value threshold 
of < 0.01 (Supplementary Table 4-1), a few variants, such as those in Gpnmb, Comt and 
Ahr, have been associated previously with disease[88,146,273] using traditional forward 
genetics approaches, but the vast majority of variants have not been previously linked to 
any phenotype. Here, we provided four PheWAS examples, including three missense 
variants (Fh1, Col6a5, Entpd2), a nonsense variant (Ahr), and a CNV (a region covering 
both Alad and Hdh3). 
 
 The first example is a missense variant (A296T) in the fumarate hydratase 
mitochondrial enzyme located on chromosome 1 at 175.60 Mb (Fh1; Figure 4-3a). Fh1 
catalyzes the hydration of fumarate to malate in the tricarboxylic acid (TCA) cycle and 
has been linked to renal cell cancer[274]. The missense variant in the lyase 1 domain is 
associated with a ~1.4-fold effect on expression of Fh1 across many tissues, including 
midbrain, hypothalamus, striatum, and spleen (Figure 4-3b). This variant is strongly 
associated with Fh1 mRNA expression, as well as the expression of other mitochondrial 
genes, including Mrpl50, Sirt3 and Dlst (Figure 4-3c). Expression PheWAS shows that 
the Fh1 locus modulates mRNA expression levels of 113 mitochondrial proteins, in 
addition to 8 genes linked to renal necrosis, and 7 genes involved in mTOR signaling, 
consistent with the known role of FH1 in renal cancer. Interestingly, four mitochondrial 
genes, Hspd1, Hspa9, ClpX, and Lonp1 that all encode components of the mitochondrial 
unfolded protein response (UPRmt )[87] a still poorly characterized mitochondrial stress 
response pathway in mammals show strong association with Fh1 (Figure 4-3d). There 
is furthermore a significant correlation between Fh1 transcript levels and principal 
component scores of a group of UPRmt genes in mouse (Figure 4-3e). In contrast, no 
genes involved in the cytoplasmic heat shock response (HSR) or the ER unfolded protein 
response (UPRer) are associated with Fh1, indicating a selective association between Fh1 
and UPRmt in mammals (Figure 4-3d). To validate this association, we examined the  
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Figure 4-2. Experimental PheWAS analysis using the BXD cohort 
 
Notes. The list of strong sequence and structural variants were selected for phenome 
scanning. The Pearson product-moment correlation was used to calculate the association 
between variants and classic and molecular phenotypes from 16 tissues. FDRs were 
calculated based on p values using QValue method. We used a q threshold of < 0.01. 



 

62 

Figure 4-3. Association analysis for a missense variant in Fh1 
 
Notes. (a) Structure of the Fh1 gene showing lysate 1 and fumarase c domains, the latter 
of which contains a missense mutation. (b) Combined eQTL mapping of Fh1 mRNA 
across 15 tissues. The eigenvalues associated with the first principal component map to 
Fh1 with a likelihood ratio statistic (LRS) of >20. The solid red line represents genome-
wide significance. The yellow triangle indicates the genomic position of Fh1. Three 
peaks associated more specifically with single tissue types are labeled. (c) Manhattan plot 
of a expression phenome scan of molecular traits linked to the Fh1 locus in midbrain. In 
addition to Fh1 transcript, mRNAs for three mitochondrial-related genes (Mrpl50, Sirt3, 
and Dlst) are significantly associated with rs4136041. The y-axis shows the log10 q 
values of association, and the x-axis shows positions of 55,681 probe sets from Agilent 
SurePrint array. (d) QTL heat map of mRNAs involved in the unfolded protein response. 
The x-axis lists mouse chromosome numbers, compressed for illustrative purposes. Each 
horizontal line represents the QTL map for a single transcript in midbrain. Transcripts are 
grouped into three major categories genes involved in the canonical UPRmt, and those 
encoding chaperones and heat shock proteins (HSP) and those involved in unfolded 
protein responses in the endoplasmic reticulum (UPRer). The subset of UPRmt genes at 
the top are strongly modulated by the Fh1 locus on Chr 1 (the intense colors to the upper 
left). In contrast, none of the UPRer subsets are modulated by Fh1. (e) Principal 
component analysis (PCA) plot for six UPRmt transcripts (left panel). The first two 
components explain ~67% of the variance in Fh1 expression in hypothalamus. There is 
significant correlation between UPRmt expression and Fh1 (p = 5 × 10-8) (right panel). 
(f) Validation that fumarase hydratase selectively controls the UPRmt in C. elegans. The 
left-most pair of images demonstrates effects of the fum-1 RNAi knockdown on hsp-
6::gfp signal a marker of UPRmt induction. Top images are GFP fluorescence; bottom 
panels are matched differential interference contrast (DIC) image with GFP. The middle 
and right panels demonstrate that the fum-1 knockdown does not induce either the UPRer 
(hsp-4::gfp), or the cytoplasmic heat shock response (hsp-16.2::gfp). (g) Manhattan plot 
of a phenome scan. The phenome has been subdivided into 15 categories based on 
biological function or tissue type. The y-axis shows the log10 q values of ~4,230 
phenotypes, and the x-axis shows the 15 categories. 
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phenotypic impact of the highly conserved C. elegans Fh1 ortholog, fum-1 (86% 
sequence similarity) on unfolded protein responses. RNAi against fum-1 causes robust 
activation of the mitochondrial chaperone hsp-6::gfp reporter, indicative of the activation 
of the UPRmt (Figure 4-3f). The response was organelle-specific, and fum-1 RNAi does 
not induce either hsp-4::gfp or hsp-16.2::gfp, reporters for related to the UPRer or heat 
shock response, respectively (Figure 4-3f). Thus, in the BXD family, a decrease of 
fumarate hydratase leads to a specific mitochondrial phenotype, characterized by an 
UPRmt. 
 
 Fh1 is also associated with two candidate phenotypes: (1) T cell proliferation (GN 
ID 10237; q = 2.6x10-5), linked previously to mitochondrial function[275], and (2) 
dopamine metabolism after treatment with the mitochondrial toxin 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP, GeneNetwork identifier (GNID) 15151; q =0.005). 
Both traits are linked to Fh1 along with the control of mitochondrial components of a 
UPRmt pathway (Figure 4-3g). No extant human genotype data are yet available for 
FH the ortholog of Fh1. 
 
 The second example consists of a set of tightly linked missense variants in 
collagen 6A5 on chromosome 9 at 105.76 Mb (Col6a5, Figure 4-4a). Col6a5 is a 
variant-rich gene and contains 21 missense variants, including a radical substitution 
(R1778C). Quantitative RT-PCR shows higher expression of the D allele than the B allele 
in bone marrow (Figure 4-4b). As expected expression differences are strongly 
associated with Col6a5 locus in bone expression PheWAS (q = 3.5x10-4, Figure 4-4c). 
Unlike Fh1, the high density of linked variants in Col6a5 means that we cannot resolve 
effects of single SNPs, but the scan does define effects of B and D haplotypes for Col6a5 
across the phenome. We find that this polymorphic gene is associated with differences in 
bone mineral density (BMD; GN ID 16532; q =0.037) (Figure 4-4d) and quantitative 
micro-CT analysis confirms a marked difference in cortical BMD at the femoral midshaft 
between C57BL/6J (1069.6 ± 51.4 mgHA/cm3) and DBA/2J parents (1170.8 ± 39.8 
mgHA/cm3) (Figure 4-4e, Figure 4-4f). In humans, mutations in collagen VI are 
associated with a variety of musculoskeletal abnormalities[276]. We performed a 
matched PheWAS in human using the BioVU resource and linked rs113396273 in exon 3 
of COL6A5 (M56T) with osteopenia and other bone and cartilage disorders (p = 1.4x10-3; 
Figure 4-4g). Like rs113396273, the other SNPs tested in COL6A5 demonstrated similar 
patterns of associations including respiratory abnormalities and giant cell arteritis. 
 
 The third example involves missense variants R149Q and A297T in ecto-
nucleoside triphosphate diphosphohydrolase 2 (Entpd2; Figure 4-5a). These variants in 
the triphosphatase domain are linked to differences in mRNA (fold-difference = 0.6, p 
value <.03) and protein levels (fold-difference = 1.7, p <.01) (Figure 4-5b) and generate 
strong cis eQTLs in multiple tissues (e.g., lung, q = 4.9×10-9). A phenome scan highlights 
two enzymatic phenotypes: (1) Ca2+- and (2) Mg2+-stimulated ecto-ATPase activity 
(GN ID 10014 and 10015; q = 9.97×10-5 and .007) (Figure 4-5c). Both are direct 
measures of ATPase activity prima facie evidence that one or both of these SNPs are 
causal. In the BioVU human clinical cohort, rs34618694 in ENTPD2, is associated with 
microophthalmia (p = 2.4x10-4) and visual defects (p = 2.2x10-3; Figure 4-5d). 
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Figure 4-4. Association analysis for missense variants in Col6a5 
 
Notes. (a) Twenty missense variants in Col6a5 distributed across 10 von Willebrand 
factor A-type (vWFA) domains. (b) Differential mRNA expression of Col6a5 in tibias (n 
= 4) measured by rtPCR. The D haplotype (blue, right) has far higher expression than the 
B haplotype (green) relative to Gapdh. (c) Phenome scan of Col6a5 (rs13480398) across 
mRNA assays for femur. (d) Phenome scan of Col6a5 (rs13480398) across classic 
phenotypes. (e) Marked difference in bone density between C57BL/6J and DBA/2J 
parents. Femurs from 12-week-old mice were scanned using high-resolution micro-CT 

land). More highly mineralized areas 
are indicated in red. (f) Difference in material bone density (p = 0.02; two-tailed 

-test, n = 3). (g) Human phenome scan for association of Col6a5 
(rs113396273) across BioVU. 
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Figure 4-5. Association analysis for missense variants in Enptd2 
 
Notes. (a) Structure of the Entpd2 gene showing two missense mutations and GDA/CD39 
family domain. (b) Entpd2 expression differs at both the mRNA and protein levels 
between C57BL/6J and DBA/2J strains (n = 3 replicates/genotype). (c) Phenome scan of 
Entpd2. (d) Human phenome scan of ENTPD2 across thousands of clinical records using 
BioVU Denny et al. (2013). The SNP rs34618694 was selected for this scan. Three 
clinical traits related to eye diseases are highlighted. The red dotted line is at p < 0.01. 
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 The fourth example is a high impact nonsense variant a lost stop codon in the D 
allele of Ahr. Ahr is an important transcription factor that modulates P450 gene 
expression in response to xenobiotics such as dioxin[277]. Although the effects of this 
SNP on protein length are already known[190] (Figure 4-6a), the pleiotropic 
consequences of this mutation have not been evaluated. This variant is significantly 
associated with mRNA (q = 1.7×10-3; Figure 4-6b) and protein abundance of Ahr in liver 
(q = 0.0085; Figure 4-6c). Classic PheWAS linked this variant to the frequency with 
which cleft palates is induced by 2,3,7,8-tetrachlorodibenzofuran injection (GN ID 
10714; q = 3.2×10-3) (Figure 4-6d). Ahr variants have also been definitively linked to 
differences in locomotor activity[262]. Consistent with the results of the BXD PheWAS, 
a matched PheWAS in humans using BioVU links rs2066853 in AHR with cleft palate (p 
= 0.012; Figure 4-6e). 
 
 In the final example, we tested the effect of copy number variants on gene 
expression and phenotypes. A CNV region on chromosome 4:62.49-62.52 Mb that spans 
both Alad and Hdhd3 is interesting and involves a 4X expansion in strains with the D 
haplotype. The 30 kb CNV is otherwise identical by descent (Figure 4-7a). This CNV is 
linked with high variation in mRNA expression of Alad and Hdhd3 in multiple brain 
regions (Figure 4-7b, Figure 4-7c), lung (q = 2.1×10-7), eye (q = 1.3×10-10), and liver (q 
= 9.2×10-4). Quantitative proteomics of hippocampus confirms significant upregulation 
(ALAD 2.3-fold, p < 0.01, HDHD3 1.5-fold, p < 0.01). The CNV expansion of Alad and 
Hdhd3 is strongly linked to two classic phenotypes: pain response (GN ID 11307; q = 
7.8×10-3) and deoxycorticosterone levels in cerebral cortex (GN ID 12568; q = 2.6×10-4) 
(Figure 4-7d). A matched phenome scan in human demonstrates that rs1800435 in 
ALAD is associated with chronic pain (p = 2.2×10-2) (Figure 4-7e). 
 
 
Phenotypic resilience 
 
 One surprising finding is that a large proportion of genes with variants that we 
initially believe would have high phenotypic impact failed to associate with any classic 
phenotypes, or even with molecular endophenotypes. Among 41 confirmed nonsense 
variants with high predicted impacts, 12 nonsense variants failed to associate with any 
endophenotypes (across scans of 16 transcriptome data sets in different tissues) or with 
classic phenotypes at q < 0.01. Failure to detect associated phenotypes could be 
interpreted as false negative results or inadequate phenome coverage, but we suspected 
that most commonly this reflects molecular resilience that buffers the phenotype from 
apparently strong homozygous mutations. 
 
 

DISCUSSION 
 
 We have evaluated the phenotypic effects of a spectrum of genetic variants in a 
large mouse cohort by phenome-wide association. The variety and depth of phenotype 
data that we have assembled over the last decade for the BXD cohort make this the 
largest coherent multiscalar data set for any segregating population. Of course, there are  
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Figure 4-6. Association analysis for nonsense variant in Ahr 
 
Notes. (a) Structure of the Ahr gene showing three domains with a nonsense mutation and 
five missense mutations. The nonsense mutation (*805R) leads to loss of the stop codon, 
and the addition of 43 C-terminal amino acids. Dotted rectangle to the right is the 
extended coding region in the D haplotype. (b) Phenome scan of Ahr (rs3711448) across 
mRNA assays for liver. (c) Phenome scan of Ahr across classic phenotypes. Both AHR 
protein level and cleft palate induced by TCDF injection are strongly linked to Ahr. (d) 
Manhattan plot showing the association in human between SNP (rs2066853) in AHR and 
classic phenotypes. The cleft palate phenotype is also associate with AHR in human 
clinical cohorts. 
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Figure 4-7. Association analysis for CNV covering Alad and Hdhd3 
 
Notes. (a) The CNV region for Alad and Hdhd3 derived using read-depth information 
from genome sequencing. Red dots represent at least a two-fold increase in coverage 
compared to the reference genome. The x-axis shows the reference genomic position of 
the CNV. Two gene models (i.e. Hdhd3 and Alad) are shown in the CNV plot. (b and c) 
Rank ordered mean expression levels of Hdhd3 and Alad across 67 BXD strains, their 
parental strains, and F1 crosses. Expression values are normalized on a log2 scale (mean 
± SE). Strains with D alleles (red) have higher levels of Alad and Hdhd3 compared to B 
alleles (green). F1 hybrids (blue) are intermediate. The comparison between B and D 
alleles for Alad and Hdhd3 are shown in an inset boxplot. (d) The phenome scan of the 
BXD cohort highlights several interesting potential phenotypes including thermal 
nociception, brain deoxycorticosterone levels, and antigenic activity in the spleen. Two 
triangles represent pigmentation traits that we know they are associated with a variant in 
the linkage disequilibrium block. (e) Manhattan plot showing the association in human 
between a SNP (rs1800435) in ALAD and classic phenotypes. 
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an almost unlimited numbers of ways to extend this BXD phenome from much more 
extensive GXE studies to single cell omics, but at the current size, the phenome is 
certainly large enough to explore the utility of PheWAS in an experimental population. 
We demonstrate that phenome scans can be effective at linking sequence variants to a 
range of phenotypes and can be used to identify novel and unexpected genome-to-
phenome relations, or to validate hypothesized associations from independent studies. 
Coupling mouse and human PheWAS cohorts also shows great promise, and provides an 
efficient method to validate and translate key genome-to-phenome relations. 
 
 The novel associations demonstrated in this study provide insight into the genetic 
basis of complex traits and variation in disease susceptibility. The missense variant in 
Fh1 is a case in point. A variant in Fh1 is linked to the UPRmt, a protective stress 
pathway specific to mitochondria, and we confirmed that downregulation of fum-1, the C. 
elegans homolog of Fh1, activates the UPRmt. Various disturbances have been shown to 
induce the UPRmt, including treatment with paraquat, a pesticide that strongly induces 
reactive oxygen species[278], activation of mitochondrial biogenesis[87], overexpression 
of aggregation-prone mitochondrial proteins[279], and interference with electron 
transport chain protein expression and assembly[87,280]. Here, we show that a purely 
metabolic perturbation, such as induced by loss of function of the TCA cycle component, 
fumarate hydratase, can activate the UPRmt. While we have detected a single missense 
variant in Fh1, the molecular cascade that links Fh1 to other tricarboxylic acid cycle 
(TCA cycle) genes (e.g. Dlst, Sdha, Sdhb) and a UPRmt proteostasis regulatory loop 
requires additional analysis. 
 
 
Advantages and disadvantages of PheWAS 
 
 Recent work has demonstrated that phenome scans are a powerful way to link 
from sequence variants to sets of phenotypes in clinical cohorts [59,267]. Here we have 
extended this approach to a murine cohort for which we have been generating cellular 
and molecular traits from many tissue and cell types and for which we can generate data 
on gene-by-environment interactions [75,86,219]. Despite strong functional effects of 
variants in humans, the minor allele frequencies are often too low to attain sufficient 
sample size. Murine populations such as the BXDs, the Collaborative Cross, and 
heterogeneous stock typically have linkage disequilibrium that is at least an order of 
magnitude larger than in humans. Consequently, the assignment of specific causality may 
be erroneous. For example, in the BXD family about 20,000 protein coding genes and 
12,000 coding variants are distributed across ~4,000 haplotype blocks. Increasing the size 
and genetic diversity of a reference population and the number of recombination events 
can improve genetic resolution, but a more effective and meaningful solution, 
exemplified in this study, is to exploit other mouse cohorts and human cohorts for 
validation and cross-species translation. For example, by having multiple phenomes for a 
single species, along with matched databases of segregating sequence variants, it would 
become practical to rapidly test the replicability of genome-phenome relations. It may 
soon be practical to compare the BXD phenome with that of the Collaborative Cross and 
other large families of RI strains. Any cohort will only segregate for a subset of possible 
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sequence variants, and variants will often not be shared across populations or species. For 
this reason, conservation of gene function will be a more useful currency of exchange 
[281,282]. 
 
 While PheWAS has great potential, this approach faces several hurdles to more 
widespread application. The first is simply the technical and logistical challenge of 
generating a phenome. Intense collaborative efforts are a sine qua non even for the most 
tractable model organisms such as Drosophila [283]. The second is yet another example 
of the multiple testing problem: what is the appropriate correction given the size of the 
phenome and its structure? We have computed FDR q values at a conservative threshold 
and have aligned our results, when possible, with the BioVU clinical cohort. However, in 
both species, the selection of appropriate q values will depend on the purpose of studies 
and the relative costs of Type 1 and Type 2 errors. Effective solutions may require 
adjusting thresholds based on the scope and intent of studies, as well as prior information 
about gene-to-phenotype relations. Alignment of phenotype associations across both 
humans and mice, however, adds validity to both. Very large, densely genotyped or 
sequenced populations will be needed to more deeply interrogate the human phenome. 
The third problem is linkage disequilibrium. The intervals in which sequence variants are 
located is a critical factor in mapping its phenotype spectrum. Pleiotropy will be inflated 
as a function of gene density, SNP density, and haplotype block structure. Deconvolving 
contributions of linked polymorphisms will, in most cases, still require independent 
experimental validation and, when possible, PheWAS of human cohorts. 
 
 
Phenome resilience 
 
 We searched for molecular or functional consequences of ~12,000 coding variants 
segregating in the BXD family, and we were surprised that only a small fraction had 
strong effects on mRNA and protein expression, let alone on classic phenotypes. Initially, 
this observation was surprising to us. A first factor contributing to phenotypic resilience 
comes from the depth of the phenome  in fact some phenotypic differences will only be 
observed under certain environmental conditions. For example, functional effects of the 
well-known mutation in the Nnt gene will be much more pronounced under metabolic 
stress [219]. Phenotypic resilience can also be caused by the presence of in frame stop 
codons or splice acceptor or donor sites in the vicinity of the original disrupted site, 
which may generate almost normal and non-aberrant transcripts or proteins. Additionally, 
some of the negative results were due to incorrect gene models that generated spurious 
stop codons, but even after stringently filtering both sequence data and gene models, it is 
clear that many strong sequence variants are successfully buffered at intermediate 
levels[284-286]. These silent and negative results are highly useful in evaluating the 
reported impact of major alleles. An example is a splice site mutation in Cyp2c39 that 
inactivates this P450 enzyme and essentially eliminates expression. This mutation has no 
detectable impact on higher order phenotypes, a compelling negative result. An obvious 
explanation in this case is functional overlap with other members of the Cyp2c cluster, 
but we still do not have sufficient knowledge to understand the molecular basis of 
resilience. Another explanation is that combinations of deleterious variants in molecular 
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and developmental network will have much more notable phenotypic effects than isolated 
mutations. In retrospect, this buffering of genetic variation is not surprising. A large 
fraction of knockout mutations in mice and other well-typed species are viable and many 
of these do not have any known functional consequences [287,288]. 
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CHAPTER 5.    SUMMARY 
 
 
 In this dissertation, I have described and performed first phenome-wide 
association analysis (PheWAS) on a genetically diverse murine population. PheWAS is a 
novel reverse genetics approach to link sequence variants to a spectrum of phenotypes 
and diseases, and several studies have successfully used it on human clinical cohorts 
[59,267]. In order to extend the approach to an experimental cohort, I used a large 
population of BXD recombinant inbred strains, for which we generated, assembled, and 
annotated key genetic, genomics, proteomics, and phenome data.  
 
 In chapter 2, I explored the genetic variation between the parental strains of the 
BXD population by analyzing high-throughput sequence data for the DBA/2J strain. This 
study revealed that BXD progeny are segregating for considerable genetic variation 
including 4.46 million SNPs, 0.94 million indels, and 20,000 high confidence structural 
variants. The comprehensive annotation of these variants against mouse gene model 
(RefSeq) revealed that vast majority of them occur within intergenic (45%) and intronic 
(28%) regions. Around 40,000 variants occur within exons and a subset of which belongs 
to high-impact category including 61 nonsense, 196 splice-site, 99 frameshifts and 10,895 
missense mutations. The high-impact coding variants that I uncovered provide an 
unprecedented resource with which to establish genome to phenome relations in a 
remarkably large and stable set of BXD lines. 
 
 In chapter 3, I explored the functional impact of genetic variation on gene 
expression by performing allele-specific gene expression (ASE) analysis using liver 
RNA-seq data from isogenic F1 hybrids. This study revealed that cis acting variation in 
expression is pervasive and is detected in roughly 50% of all assayable genes. Over one-
third of them differ in expression greater than two-fold. This study also revealed that 
genes exhibiting strong ASE differences have a higher density of sequence variants, 
higher functional redundancy, and lower evolutionary conservation compared to genes 
with no ASE. Genes exhibiting high ASE differences in conjugation with high-impact 
coding variants (Chapter 2) should be key molecular resources for reverse genetics 
analysis.  
 
 In chapter 4, I exploited list of high-impact genetic variants (genes) that I 
generated in chapters two and three to perform a phenome-wide association study to 
investigate genome-to-phenome relations at multiple scales from mRNA and protein 
levels to disease risk, behavior, and environmental interactions. We also exploited a large 
human clinical cohort the Vanderbilt BioVU cohort  for validation and cross species 
translation of the novel associations. We successfully replicated almost all of the known 
genome-to-phenome associations in BXDs that were previously identified using forward 
genetics approach, and also identified a few novel associations. For example, we linked a 
missense mutation in fumarate hydratase that controls variation in the mitochondrial 
unfolded protein response in both mouse and C. elegans, and missense mutations in 
Col6a5 that underlies variation in bone mineral density in both mouse and human. 
However, downstream effects of allelic variants with presumed deleterious effects on 
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gene expression or protein structure are often small or undetectable. This may often be 
due to a lack of technical sensitivity and power or to phenotypic buffering. We 
demonstrate that phenome scans can be effective at linking sequence variants to a range 
of phenotypes and can be used to identify novel genome-to-phenome relations or validate 
hypothesized associations from independent studies. Coupling mouse and human 
PheWAS cohorts also shows great promise, and provides an efficient method to validate 
and translate key genome-to-phenome relations. 
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