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ABSTRACT 

 

 

 The choroid plexus (CP) is an epithelial-based structure localized within the brain 

ventricles and functions as the blood-cerebrospinal fluid barrier (BCSFB).  Under normal 

conditions, the CP is responsible for generating the cerebrospinal fluid (CSF) and 

regulating its components.  Abnormal CP function has been associated with 

neurodegenerative diseases, tumor formation in CP epithelia (CPe), and hydrocephalus.  

Despite the significant role of the CP in these disorders, little research has been done to 

characterize its functional properties and genetically dissect the pathways involved in 

normal CP development and disease.  For this study, we have utilized zebrafish, (Danio 

rerio), as a model system to better understand the genetic components of CP 

development. Their transparent nature and rapid ex utero development provide 

mechanisms to visualize CP formation that is not possible in other model systems.  By 

utilizing an enhancer trap line, Et(cp:EGFP)
sj2

 that expresses the enhanced green 

fluorescent protein (EGFP) in CPe, we have demonstrated that the zebrafish CP possesses 

barrier properties such as tight junctions, transporter activity, and regulating central 

nervous system (CNS) homeostasis.  After validating that the zebrafish CP is similar to 

higher vertebrates, we have initiated a genetic screen to answer questions such as: 1) 

what genes are needed for CP development, function, and maintenance, 2) what are the 

signaling pathways involved, and 3) how do these pathways interact with one another to 

form the BCSFB?  This study is the first to employ an unbiased approach using a forward 

genetic screen to genetically dissect the CP and identify genes essential for its formation 

and function.  As a result of this genetic analysis, we have confirmed 10 mutant lines 

with CP abnormalities.  The mutants generated in this study will be used in future 

investigations to elucidate specific genes and signaling pathways essential for CP 

development, function, and maintenance and will provide a better understanding of how 

genetic mutations contribute to CP-related diseases.  We have also mapped the gene for 

one mutant line, cp27.5, to Chromosome 21.  Using a combination of classical positional 

cloning and whole-exome sequencing (WES), we identified the mutated gene as 

squamous cell carcinoma antigen recognized by T cells (sart1).  sart1 plays a role in 

assembling the spliceosome, a multi-ribonucleoprotein complex essential for processing 

pre-mRNA. By characterizing cp27.5 mutants, we identified a number of proteins with 

altered expression levels and patterning primarily within the brain and eye.  Using 

RNA-Seq analysis, we also identified multiple genes up-regulated or down-regulated due 

to the sart1 mutation.  While sart1 itself was up-regulated, we also identified increased 

expression of genes involved in apoptosis such as tp53 and mdm2.  A loss of 

photoreceptors and lack of retinal lamination in mutants is related to a down-regulation of 

vision-related genes such as phosphodiesterase 6H, (pde6h) and opsin-1, 

short-wave-sensitive 1 (opn1sw1), both of which are expressed in photoreceptors.  Future 

studies will investigate the role of sart1 in splicing and the mechanisms involved in 

producing the phenotypes observed in cp27.5 mutants.    
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CHAPTER 1.    INTRODUCTION 

 

 

Central Nervous System Barriers 

 

 Central nervous system (CNS) barriers serve as protective and regulatory 

mechanisms that allow the brain and spinal cord to remain in a homeostatic environment 

and function efficiently.  While these structures prevent harmful components from 

entering CNS tissues, they can also create obstacles for efficient drug delivery.  Each 

barrier consists primarily of tight junction and transporter proteins that function to either 

restrict entry into or transport components across the barrier.  These proteins are localized 

to endothelial or epithelial cells depending on where the barrier is localized.  While the 

focus of this study is on the choroid plexus (CP) or blood-cerebrospinal fluid barrier 

(BCSFB), understanding the function of other CNS barriers is essential due to their 

interdependence with one another in maintaining a homeostatic environment throughout 

the CNS.  Brief descriptions of these barriers are presented in the following paragraphs.   

 

 

Blood-Brain Barrier 

 

 To date, four CNS barriers have been described (Liddelow, 2011); three of which 

are represented in Figure 1-1.  The most studied is the blood brain barrier (BBB) which 

is comprised mainly of endothelial cells that express tight junction and transporter 

proteins to create a barrier between blood and brain tissue.  Additional cell types 

contributing to this barrier include astrocytes, pericytes, microglia, and neurons to 

collectively form the neurovascular unit (Abbott et al., 2010).  The BBB develops by 

embryonic day 11 in mouse (Abbott et al., 2010) and is formed by birth (Saunders et al., 

2000).  Previous studies have shown that signaling mechanisms, such as the 

Wnt/β-catenin pathway, are essential for BBB development and results in increased 

expression of the tight junction protein Claudin 3 (Liebner et al., 2008).  Disruption of the 

BBB is associated with pathologies such as Alzheimer’s disease, multiple sclerosis, 

epilepsy, and brain tumors.  In Alzheimer’s disease, patients have reduced cerebral blood 

flow and reduced glucose uptake by the brain vasculature (Bell and Zlokovic, 2009).  

Multiple sclerosis involves the recruitment of immune cells across the BBB into the brain 

resulting in CNS inflammation, while epileptic patients may exhibit a temporary opening 

of the BBB during an attack (Abbott et al., 2002).  Utilizing the BBB as a drug delivery 

route has proven to be a challenge due to a number of transporters expressed on the 

endothelial cells that not only inhibit drug uptake, but also aid in drug resistance by 

pumping them out of the brain and back into circulation (Bronger et al., 2005).  Future 

studies investigating mechanisms that restore a disrupted BBB or temporarily modulate it 

for drug delivery will prove to be invaluable for treating these pathologies.    
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Figure 1-1. Central Nervous System Barriers. 

 

The BBB is formed between brain endothelial cells and the surrounding brain tissue 

consisting of cells such as astrocytes and neurons.  The ependymal layer creates a 

transient barrier between the CSF and the brain.  The BCSFB consists of the CP epithelia 

(CPe) that forms a barrier between the CSF and fenestrated blood vessels.  The 

meningeal barrier is localized to the outer surface of the brain (not shown). 
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Meningeal Barrier 

 

 Another barrier is the meningeal cover surrounding the outer surface of the brain.   

It consists of three layers, the dura mater, the leptomeninges containing the arachnoid  

membrane, and the pia mater (Decimo et al., 2012).  The subarachnoid space is a region 

enclosing the CSF that spans between the arachnoid and pia layers.  Although not as well 

characterized as the BBB, it plays an important role in regulating the exchange between 

the blood vessels in the pia layer and the cerebrospinal fluid (CSF) localized to the 

subarachnoid space.  The meninges originate from the neural crest cells (Mack et al., 

2009). Early in development, this layer is called the inner endomeninx later forming the 

pia-arachnoid, and the outer ectomeninx forms the dura and cranial bones (Mack et al., 

2009).  The meningeal layer also plays an important role in the development of the 

cortex.  It can secrete retinoic acid that regulates neuron production by influencing 

neuroepithelia to become neurons (Siegenthaler et al., 2009) and bone morphogenic 

protein (BMP)7 to regulate corpus callosum development in the brain (Choe et al., 2012).  

Subarachnoid hemorrhaging can occur in this layer.  These hemorrhages can be caused 

by a traumatic injury or as a result of too much or too little CSF production, coagulation 

disorders, or vascular deformities (Mack et al., 2009).  Pneumococcal meningitis is 

another condition commonly associated with the meninges where infections of 

Streptococcus pneumoniae can infect the brain and result in inflammation of the 

subarachnoid space (Barichello et al., 2013). 

 

 

Neuroependymal Cell Layer 

 

 The neuroependyma or ependymal cells line the brain ventricles and form a 

barrier between the brain and CSF.  However, unlike the BBB which contains tight 

junctions between endothelial cells, the neuroependymal cells have “strap junctions” 

creating a primitive barrier during development (Saunders et al., 2000).  It also aids in 

brain formation by secreting the BMP inhibitor Noggin and promoting neural stem cells 

within the subventricular zone to differentiate into neurons (Lim et al., 2000).  

Ependymal cells arise from glial precursor cells and express glial fibrillary acidic protein 

(GFAP) in early development (Del Bigio, 1995).  The cells possess junctions at eight 

weeks in humans, but still lack microvilli and cilia at this stage.  Later, as cilia start to 

form on the apical or CSF side of the cell, they begin to move and function to transport 

the CSF in the direction of bulk flow (Del Bigio, 1995).  These cells have also been 

shown to have secretory function by expressing granulophysin, a membrane protein 

found in transport vesicles,  They also play a role in transporting and inactivating 

neuropeptides by expressing receptors for these molecules and producing enzymes that 

inhibit neuropeptide activity (Del Bigio, 1995).  In addition, ependymal cells are related 

to diseases such as ependymomas, a type of glial cell tumor, that can arise within the 

spinal cord or along the brain ventricles (Hasselblatt, 2009).    
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Blood-Cerebrospinal Fluid Barrier 

 

 The final barrier and the focus of this dissertation is the BCSFB.  This barrier 

consists of the CP which contains fenestrated blood vessels and epithelial cells between 

blood and CSF.  It is localized to the brain ventricles where CSF is stored.  In mammals, 

there are four brain ventricles: third, fourth, and two lateral ventricles, each containing a 

CP.  Multiple signaling pathways have been implicated in CP development such as Sonic 

hedgehog (Shh) (Huang et al., 2009; Nielsen and Dymecki, 2010), BMP (Currle et al., 

2005), and Notch signaling (Irvin et al., 2004) which are discussed in more detail in 

Signaling Pathways and the Choroid Plexus on pg. 7.  Similar to the BBB, the BCSFB 

is involved in a number of pathologies including Alzheimer’s disease, multiple sclerosis 

(Wolburg and Paulus, 2010), and hydrocephalus (Wodarczyk et al., 2009).  CP 

papillomas and carcinomas can also arise primarily in infants and young children 

(Wolburg and Paulus, 2010).  How the CP contributes to these conditions is discussed in 

Choroid Plexus and Disease on pg. 9. 

 

 

Background of the Choroid Plexus 

 

 

Historical Overview 

 

 The CP was first documented by Herophilus, an ancient Greek physician, who 

described the CP of the lateral brain ventricles (Dohrmann, 1970).  He observed that it 

resembled a fetal membrane or ‘chorioid’ resulting in its final name ‘choroid plexus 

(Dohrmann, 1970).   In 1543, the morphology of the CP in the lateral ventricles was 

described in De Fabrica by Vesalius (Dohrmann, 1970).  The CP of the fourth and third 

brain ventricles were later recognized in 1664 by Willis and in 1695 by Ridley, 

respectively (Dohrmann, 1970).  This structure was originally believed to house an 

animal’s spirit, although future experiments done by Paul Ehrlich and Edwin Goldmann 

in the late 19th and early 20th century discovered its barrier function in regulating CNS 

homeostasis (Dziegielewska et al., 2001; Wolburg and Paulus, 2010).  The role of the CP 

in CSF production was first suggested by Willis in 1664, and in 1855, Luschka developed 

the “vesicular theory” of the CP as a secretory organ (Mortazavi et al., 2014).  These 

historical insights have paved the way for our current thinking of the CP, not only as a 

structure responsible for CSF production, but also as a potential therapeutic agent or 

target in disease (see Protection and Repair of the Brain on pg. 5).   

 

 

Choroid Plexus Function 

 

 

 CSF Production.  Not only is the CP responsible for forming the BCSFB, but a 

major role of the CP is to produce and secrete the CSF.  Humans can produce as much as 

580 ml of CSF per day and can take up to nine hours to replace this volume as it 

circulates (Oreskovic and Klarica, 2010).  A number of transporters and aquaporin 
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channels expressed on both apical and basal sides of the CPe release ions and water into 

the brain ventricle to generate the CSF (Brown et al., 2004).  The apical and basal sides 

of the cell differ in the types of ion transporters expressed, creating an osmotic gradient 

that releases ions and water into the ventricular space.  Examples of ion transporters 

expressed on the apical surface include Na
+
-K

+
 ATPase and Na

+
-2Cl-K

+
 cotransporters, 

while the basal side express Na
+
 coupled HCO3- transporters and K

+
-Cl

-
 cotransporters 

(Brown et al., 2004).   

 

 CSF is produced first by a passive influx of plasma filtrate from the bloodstream 

into the interstitial space.  Then, active transport mechanisms such as carbonic anhydrase, 

converts water and CO2 into H
+ 

and HCO3-, allowing for the exchange of these ions with 

Na
+
/ Cl

- 
transporters on the basolateral side.  This influx of Na

+
/ Cl

-
 into the cell then 

activates transporters on the apical membrane to release Na
+
, Cl

−
, HCO3

−
 and K

+
 ions in 

an ATP-dependent manner.  This creates an osmotic gradient which then stimulates 

aquaporin channels to secrete water towards the ventricular space thereby producing CSF 

(Sakka et al., 2011).  In general, the CSF has lower concentrations of K
+
, compared to 

concentrations of Na
+
 and Cl

- 
(Sakka et al., 2011).  In addition to ions, there are other 

components such as glucose and amino acids found in the CSF although at much lower 

concentrations compared to plasma.  Overall protein in the CSF is also significantly 

reduced compared to the high levels of protein expressed in plasma (Brown et al., 2004).  

The route of CSF flow starts in the lateral ventricles, flows through the interventricular 

foramina into the third ventricle, through the cerebral aqueduct to the fourth ventricle, 

and then enters the subarachnoid space through the foramen of Magendie.  Once in the 

subarachnoid space, CSF flows down into the spinal cord or is reabsorbed into the 

bloodstream (Sakka et al., 2011).   

 

 

 Protection and Repair of the Brain.  Because the CP produces the CSF, it 

allows the brain to be maintained in a buoyant environment aiding in protection from 

injury.  The CP can also expresses cytokines in situations of injury or disease that results 

in an inflammatory response (Dragunow, 2013).  While the traditional role of the CP is to 

produce CSF and regulate CNS homeostasis, new insights have suggested that it may be 

therapeutically relevant.  The CP has been identified as the gatekeeper for allowing 

immune cells such as leukocytes into the CSF which ultimately allows easier access to 

the brain.  Specific cytokines such as interferon-γ activate the CP (Schwartz and Baruch, 

2014) and cell adhesion molecules such as vascular cell adhesion molecule-1 and the 

enzyme CD73 each contribute to the extravasation of immune cells across the barrier 

(Shechter et al., 2013).  The CP has been shown to aid in an anti-inflammatory response 

by allowing the trafficking of monocytes into the CSF and migrating to areas of injury 

along the spinal cord (Shechter et al., 2013).  The CP also secretes a number of growth 

factors, such as insulin-like growth factor-II and transforming growth factor-β that aid in 

the development and repair of the brain.  Studies have shown that insulin-like growth 

factor-II is secreted into the CSF follow damage to the brain and transforming growth 

factor-β levels increase in response to brain ischemia (Chodobski and 

Szmydynger-Chodobska, 2001).  Neuron formation is also influenced by growth factors 

that regulate progenitor cells and their patterning (Redzic et al., 2005).  Because the CP 
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secretes a number of growth factors, it has been suggested that epithelial cells 

transplanted into an injured brain could promote regrowth of surrounding tissue (Emerich 

et al., 2005; Thanos et al., 2010).  In fact, studies have shown that grafted CP cells into a 

damaged spinal cord resulted in regeneration of nearby neurons (Ide et al., 2001).  Recent 

studies have also investigated ways to encapsulate these cells for transplantation (Thanos 

et al., 2010).  

 

 Before we can better understand how the CP is deregulated or altered in disease, 

we need to understand the mechanisms governing its normal development and function.  

For example: while the recent proposal of using CPe for transplantation to aid in brain 

repair is promising due to its secretion of a number of growth factors (Emerich et al., 

2005), a more comprehensive understanding of genetic and molecular pathways 

regulating this phenomenon is needed in order to prevent off target effects from this type 

of therapy.  Conceivably, the lack of research investigating genetic components of CP 

development and function is not that this barrier is considered less important than the 

BBB, but that the ability to efficiently study this structure in a living system is hindered 

due to its internal localization within the brain ventricle.  While the systems discussed in 

Choroid Plexus Model Systems on pg. 10 provide a snapshot or reconstruction of how 

the CP develops and functions; the development of this structure has seldom been 

visualized in a living system nor has it been genetically dissected. 

 

 

Choroid Plexus Development  

 

 The CP develops starting at six weeks gestation in humans and embryonic day 11 

in mice (Bill et al., 2008).  In humans, the stages of CP development have been classified 

by the amount of glycogen present in the cells, which may serve a nutritive role in the 

developing brain (Dohrmann, 1970).  Glycogen is absent during the initial and final 

stages, but is abundant in CPe during intermediate periods (Dziegielewska et al., 2001).  

Glycogen accumulation also seems to correspond to periods of cell division within the 

epithelia (Sturrock, 1979).  Historical electron microscopy studies have identified two 

types of CPe termed light and dark (Sturrock, 1979).  Studies have shown that both are 

epithelial cells, but there may be functional discrepancies between them.  Dark cells have 

a denser cytoplasm, more ribosomes and rough endoplasmic reticulum, and have thinner, 

longer microvilli compared to light cells (Dohrmann, 1970; Ormandzhieva, 2010).  

 

 After neural tube closure, the neuroepithelium, from which the CP is derived, 

begins to migrate into the ventricles starting around seven weeks gestation (Mortazavi et 

al., 2014; Strazielle and Ghersi-Egea, 2000).  The neuroepithelia is initially 

pseudostratified tall columnar epithelium at this stage.  As it differentiates, it becomes 

cuboidal and acquires microvilli by around week 17 and maintains this morphology for 

12 weeks (Strazielle and Ghersi-Egea, 2000).  At around week 29, the cells can be 

cuboidal or squamous and have central or basal nuclei (Mortazavi et al., 2014).  The CP 

of the fourth ventricle develops first followed by the lateral and third ventricles 

(Dziegielewska et al., 2001).  Early in development, these structures are referred to as the 

diencephalic CP (dCP) of the third ventricle, telencephalic CP (tCP) of the lateral 
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ventricles, and myelencephalic CP (mCP) of the fourth ventricle (Bill et al., 2008; 

Strazielle and Ghersi-Egea, 2000).  Wnt3a is highly expressed within the developmental 

regions that give rise to the dCP, tCP and mCP, including the diencephalic dorsal 

midline, the cortical hem, and the rhombic lips, respectively (Louvi et al., 2007).  The 

cortical hem arises from neuroepithelium.  Wnt signaling within this region becomes 

up-regulated as the CP starts to develop.  Studies have shown that decreased Wnt 

expression in the cortical hem of mutant mice results in a loss of tCP development 

(Grove et al., 1998).  Also at the cortical hem, genes such as Hes1, 3, and 5 and 

neurogenin 2 play a role in CP epithelial fate (Imayoshi et al., 2008).  Studies have 

demonstrated that Hes genes can repress neurogenin 2 and promote CP epithelial cell 

fate, while neurogenin 2 can also block Hes expression and promote Cajal-Retzius cell 

differentiation.  Cajal-Retzius cells are neurons that aid in neuronal migration and are 

also derived from the cortical hem (Imayoshi et al., 2008). 

 

 The tCP of the lateral ventricles has been perhaps the most widely studied in 

terms of its development.  This may be because models used to study the CP, such as the 

opossum Monodelphis domestica, possess lateral ventricles that develop postnatally 

(Liddelow et al., 2010).  A previous study demonstrated by injecting bromodeoxyuridine 

(BrdU) into developing M. domestica, that the tCP grows from the root outward toward 

the tip of the CP and originates from the base of the ventricular wall where 

neuroependymal cells are present (Liddelow et al., 2010).  They observed that the number 

of CPe increase dramatically in early postnatal stages around P3-P5, but that this rate 

begins to decrease after these time points.  Another interesting finding is that although 

neuroepdendyma continue migrating outwards as new cells are added, they no longer 

undergo mitosis after they have differentiated into CPe (Liddelow et al., 2010).  

 

 Studies performed in M. domestica demonstrate that even in early development, 

the CP is functional (Liddelow et al., 2009).  By injecting different molecular weight 

dextrans either into the peritoneal cavity or CSF at early stages, size-selectivity was 

observed regarding passive permeability across the BCSFB in both directions (blood to 

CSF and CSF to blood).  Protein concentration within the CSF is significantly higher in 

early development than in adult stages with many proteins such as albumin and 

transferrin that are believed to aid in brain development (Gato et al., 2004).  While it 

might seem reasonable to assume the barrier is not formed at this stage, therefore 

allowing larger molecules such as proteins to penetrate the barrier, studies have 

demonstrated that tight junctions are already present at these early stages (Liddelow et 

al., 2011).  By injecting bovine fetuin, the protein was observed to be transported across 

the barrier by only a specific subset of cells in the CP and is transferred in a 

unidirectional manner; it cannot be transported from the CSF into the bloodstream, but 

only from blood into CSF (Liddelow et al., 2009).   

 

 

Signaling Pathways and the Choroid Plexus 

 

 Developmental signaling pathways such as Shh (Huang et al., 2009; Nielsen and 

Dymecki, 2010), BMP (Currle et al., 2005), and Notch (Irvin et al., 2004) have been 
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found to contribute to CP formation.  Shh is a morphogen involved in many aspects of 

dorsal-ventral patterning and its signaling promotes proliferation of precursor cells in the 

cerebellum (Huang et al., 2009).  Recent evidence has shown that Shh also plays a role in 

the outgrowth of the CP into the brain ventricle and is highly expressed with the CPe 

themselves (Huang et al., 2009; Nielsen and Dymecki, 2010).  These studies showed that 

Shh secreted by CPe can act on nearby germinal zones termed the lower rhombic lip 

which houses CP progenitor cells (Nielsen and Dymecki, 2010).  Shh promotes 

proliferation of these cells to form the mature CP.  Studies have also demonstrated that 

Shh secreted by CPe can act on nearby pericytes that help coordinate the outgrowth of the 

fenestrated vasculature associated with the BCSFB (Nielsen and Dymecki, 2010).   

 

 While Shh is the major contributor to ventral development, BMPs are the primary 

factors associated in dorsal patterning.  BMP expression localized to the dorsal roof plate 

is present within the embryonic dorsal midline, an embryonic patterning center involved 

in CP development (Currle et al., 2005).  BMPs can activate or repress transcription 

factors Msx1 or Lhx2 respectively to specify CP development (Imayoshi et al., 2008).  In 

vitro studies have shown that BMP4 alone can influence neuroepithelial progenitor cells 

to differentiate into CPe (Watanabe et al., 2012).  Other BMPs such as BMP12, also 

known as Gdf7, have been demonstrated in fate map studies to be activated within 

neuroepithelial cells of the dorsal midline which later differentiate into the CP.  These 

studies demonstrate that removing Gdf7 before the CP is induced results in no CP 

development.  Ablating Gdf7 later in development once the CP has been induced to form 

from neuroepithelia results in a reduced CP except for the posterior region of the tCP 

(Currle et al., 2005).   

 

 CP development and maintenance is also regulated by Notch signaling.  Notch 

has been shown to be involved in organizing roof plate signaling where the dorsal 

midline is localized and organizing interactions between the roof plate and neural cells in 

the rhombic lip (Broom et al., 2012).  This organizing region also signals for the roof 

plate to induce the expression of a common marker of the CP, transthyretin (ttr), a 

thyroid hormone binding protein (Broom et al., 2012).  Additional studies have shown 

that the membrane bound Notch ligand, delta-like 3 has overlapping expression patterns 

with ttr in the CP up until around embryonic day 12.5 and that mutated delta-like 3 

results in a smaller CP of the fourth ventricle (Sparrow et al., 2002).  Notch2 expression 

has been identified within CPe and Jagged1, a ligand of Notch signaling, is localized to 

CP vasculature.  Similarly, as described for Shh signaling, it has been suggested that 

Notch2 may also interact with Jagged1 at the vasculature to coordinate CP development 

(Irvin et al., 2004).  Notch2 is also localized to the microvilli of CPe and its inhibition 

results in microvilli malformation suggesting an addition role of Notch2 in CP 

maintenance (Tanaka et al., 2007).   

 

 Growth factors also influence CP homeostasis.  Members of fibroblast growth 

factor receptor (FgfR) family are expressed in CP and one ligand, Fgf2, is expressed in 

CPe in early development and adult stages (Greenwood et al., 2008).  Evidence has 

demonstrated that Fgf2 is not implicated in CPe proliferation (Greenwood et al., 2008), 

but appears to be involved in regulating CSF production.  Exogenous Fgf2 results in 
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more epithelia possessing properties of dense, dark cells as described in Choroid Plexus 

Development on pg. 6 with reduced secretory function (Gonzalez et al., 2010).   

 

 While the role of Wnt3a was discussed previously in Choroid Plexus 

Development, other members of the Wnt pathway also act as a patterning cues for CP 

development including Wnt5a, 7a, and 2b, expressed in the telencephalon within the 

organizing cortical hem (Grove et al., 1998).  In early development, Wnt-1 is involved 

along with the transcription factor Otx2 in patterning the midbrain-hindbrain boundary of 

the neural tube.  These two genes overlap in their expression, but Wnt-1 extends in the 

caudal direction and Otx2 is more rostral (Bally-Cuif et al., 1995).  Recently, Otx2 has 

been shown to be essential not only in early CP development, but also in maintenance.  A 

loss of Otx2 in mice at embryonic day 9 resulted in a loss of CP formation in all brain 

ventricles.  However, a loss of Otx2 later in development caused only the CP of the fourth 

ventricle to have a smaller size, whereas the CP of the lateral and third ventricles was not 

affected (Johansson et al., 2013).  While multiple signaling pathways, such as those 

presented here, have shown to be essential for CP development and function, how these 

pathways interact with one another to generate the CP and downstream components 

involved in these pathways warrants further investigation. 

 

 

Choroid Plexus and Disease 

 

 A number of diseases and conditions are associated with the CP including CP 

carcinomas and papillomas (Wolburg and Paulus, 2010), hydrocephalus (Wodarczyk et 

al., 2009), epilepsy (Suzuki et al., 2008), multiple sclerosis (Vercellino et al., 2008), and 

Alzheimer’s disease (Alvira-Botero and Carro, 2010).  Recent studies have shed light on 

the fact that the CP undergoes anatomical and physiological changes when these 

conditions are present.  For example, disruption of the BCSFB in multiple sclerosis 

results in inflammation and leakage of T lymphocytes into the CSF (Vercellino et al., 

2008; Wolburg and Paulus, 2010), and in Alzheimer’s disease patients, the CP has 

decreased function in amyloid beta plaque clearance (Alvira-Botero and Carro, 2010; 

Wolburg and Paulus, 2010).  For an extensive list of these pathologies and their 

association with the CP please see Emerich et al. (Emerich et al., 2005).  There are also 

genetic variations that occur in the CP with these conditions, although not much is known 

regarding the mechanism of these genetic pathways and how they become disrupted in 

disease.  A few examples include: myoclonin1 protein which is developmentally 

expressed in the CP and is mutated in epileptic patients(Suzuki et al., 2008), 

Twist-related protein-1 and constitutively active Notch 3 which promote invasion and 

cell proliferation in CP tumors (Wolburg and Paulus, 2010), and Polycystin-1 deficiency 

that results in hydrocephaly (Wodarczyk et al., 2009).  A loss of genes in the CPe such as 

p73, FoxJ1, and E2f5 can also result in hydrocephalus (Greenwood et al., 2008).  The 

CP’s role in regulating protein composition in the CSF is crucial in maintaining CNS 

homeostasis.  An increase of protein in the CSF has been correlated with conditions such 

as schizophrenia, stroke, and depression (Liddelow et al., 2011). 
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Choroid Plexus Model Systems 

 

 Previous studies have used a variety of model systems to gain insights into CP 

formation and function.  In vitro cell culture models are used typically to investigate 

transport mechanisms across the barrier or to measure transepithelial resistance (TER).  

Studies have shown that these cultured cells mimic what is found in vivo by possessing 

microvilli on the apical surface, expressing tight junction proteins, and demonstrating 

basolateral to apical transport across the membrane (Angelow et al., 2004).  

Double-chamber culture models provide a more physiological environment containing 

blood, epithelial, and CSF layers (Monnot and Zheng, 2013; Spuch and Carro, 2011).  In 

addition, whole-tissue experiments have been done by dissecting the CP from rat or 

dogfish shark and maintaining the tissue in a CSF-like media (Baehr et al., 2006; Reichel 

et al., 2008; Villalobos et al., 2002).  By incubating the intact CP with fluorescent organic 

ions, such as fluorescein(Villalobos et al., 2002) and Texas Red(Reichel et al., 2008), 

these studies have been able to uncover the mechanisms involved in the transport of 

organic ions; for example, whether it is active or passive and whether it is Na
+
 or 

K
+
- dependent (Baehr et al., 2006).  While in vitro systems provide benefits for 

understanding the CP’s role at the cellular level, they do not provide a suitable 

developmental model to study how epithelial cells migrate over time to form the mature 

CP and do not allow for a comprehensive genetic analysis.   In addition, as other studies 

have shown, other cell types such as pericytes or fenestrated capillaries can influence or 

respond to signals, such as Shh secreted by CPe, indicating the importance of maintaining 

the microenvironment in these studies (Nielsen and Dymecki, 2010).  

 

 Regarding in vivo models, there have been a variety of organisms used to analyze 

the CP at various stages of life.  Sheep, because of their significant CSF volume within 

the brain ventricles, have been used to study CSF composition and evaluate how fluid 

production and secretion change during aging (Chen et al., 2012; Chen et al., 2010).  This 

is relevant for understanding the CP’s role in age-related diseases such as Alzheimer’s 

disease, where the CP has been shown to function in beta-amyloid clearance (Gu et al., 

2014).  On the other hand, early CP development and size-selective barrier properties 

have been investigated using marsupials such as the opossum (Ek et al., 2003; Liddelow 

et al., 2009; Liddelow et al., 2010).  When opossum pups are born, their brain is more 

immature compared to other species with the CP just beginning to form, therefore 

providing an advantage in studying early developmental processes (Ek et al., 2003; Li et 

al., 1997; Liddelow et al., 2010).  Previous studies using this model have provided 

significant insight into the mechanisms regarding CP formation such as how epithelial 

cells present in early development still reside in later stages suggesting that the CP is not 

a structure with high rates of proliferation (Liddelow et al., 2010).  Marsupials have also 

been used to determine the transport of specific proteins across the barrier such as 

albumin (Knott et al., 1997) and transthyretin (Li et al., 1997).   

 

 Mice have provided a genetic model for investigating genes and signaling 

pathways important for CP development and maintenance.  A transcriptome study done 

in mice revealed that the CP expresses tight junctions, transporters, and neurotransmitter 

receptors.  Some of the more highly expressed genes were transthyretin, transferrin, and 
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genes involved in energy metabolism (Marques et al., 2011).  The study also showed that 

while the CP has a unique transcriptome signature, it most closely resembles the BBB 

(Marques et al., 2011).  Other transcriptome studies have demonstrated that the human 

and mouse CP are very similar in gene expression suggesting that they may also function 

in a similar manner (Janssen et al., 2013).  Recent microarray data comparing adult 

human and mouse CP showed that there are no genes in human that are not expressed 

mice, although a few genes in mice are not in human (Janssen et al., 2013).  The major 

difference between species in regard to CP function was that in mice, the CP is also 

responsible for carbohydrate metabolism and has a more significant role in development 

of the brain and eye (Janssen et al., 2013).  Also, a transcriptome analysis of the CP in 

early development compared to adults has shown that the expression in a large number of 

genes do not vary between ages suggesting that even early on, the CP is a functional 

organ (Liddelow et al., 2012). 

 

 Studies of the CP in teleosts are far fewer compared to the other models 

mentioned previously.  Teleosts have two identified CP structures, one in the third and 

one in the fourth ventricle (Garcia-Lecea et al., 2008).  Historically, the CP of the third 

ventricle is often referred to as the dorsal sac or saccus dorsalis (Obermüller-Wilén, 

1973).  In the 1970s, comparative anatomical electron microscopy studies done in the 

teleost Leuciscus rutilus demonstrated that the dorsal sac and the hindbrain CP in the 

fourth ventricle are similar with one another, and also resemble the CP in mammals 

(Obermüller-Wilén, 1973).  These studies found tight junction proteins and microvilli 

within the epithelia, and identified coated vesicles for transporting proteins 

(Obermüller-Wilén, 1973).  While the models discussed in the preceding paragraphs 

provide a snapshot or reconstruction of how the CP develops and functions; the 

development of this structure has seldom been visualized in a living system nor has it 

been genetically dissected. 

 

 

Background of the Zebrafish Model 

 

 We suggest zebrafish as a practical teleost model to study the CP because of 

advantages such as small size, transparent nature, rapid ex utero development, and 

genetic tractability (Goldsmith and Jobin, 2012).  As discussed, in the following sections, 

they also possess CNS structures similar to mammals.  Comparable to the dogfish shark 

(Villalobos et al., 2002), the CP in zebrafish lies over the brain ventricle providing an 

“inside out” model that allows for live imagining of its development in real time.  Besides 

being an excellent developmental model system, zebrafish are also known for being 

genetically tractable.  Forward genetic screens are commonly used in zebrafish due to 

easy maintenance and large numbers of offspring.  In the following sections, the 

historical rise of zebrafish as model system, a discussion of their CNS attributes, and their 

use in developmental and genetic studies is described. 
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Historical Overview 

 

 Zebrafish, (Danio rerio), is a relatively new vertebrate model system that has 

recently gained momentum in the field of development and genetics (Grunwald and 

Eisen, 2002; Stemple and Driever, 1996).  Originating from streams and rivers in India 

(Arunachalam et al., 2013), zebrafish began to be used for scientific research in the 1960s 

when George Streisinger used them to study recessive mutations in genes responsible for 

vertebrate nervous system development (Grunwald and Eisen, 2002).  Zebrafish possess 

multiple characteristics that made them an attractive model for these early developmental 

and genetic studies.  One advantage is that zebrafish are vertebrates having CNS 

structures similar to mammals.  They also grow rapidly outside of the mother and have a 

heartbeat by 24 hours post fertilization (hpf).  Their generation period is around 3-4 

months.  Zebrafish are transparent during larval stages allowing development to be 

observed in real time.  Because of their small size and large number of offspring, they are 

also ideal for high-throughput small molecule and genetic screens (Grunwald and Eisen, 

2002; Stemple and Driever, 1996).  In 1976, Streisinger, along with a colleague Charline 

Walker also developed methods for generating homozygous diploid embryos to discover 

recessive phenotypes. This was done by activating eggs with ultra-violet light-treated 

sperm, (which does not contribute genetic information), and suppressing the first mitotic 

cleavage in the egg (Grunwald and Eisen, 2002).  These findings were published in 

Nature in 1981 (Streisinger et al., 1981).  In addition to Streisinger, others also began 

using zebrafish as a model, such as Charles Kimmel who first used zebrafish to study 

neurons and brain structure (Grunwald and Eisen, 2002; Kimmel et al., 1991).  Later in 

1993, large-scale forward genetic screens for embryonic patterning and development 

were initiated in Tubingen, Germany by Christiane Nüsslein-Volhard and in Boston, 

Massachusetts by Marc Fishman (Grunwald and Eisen, 2002).  It was reported that 

around 4,000 phenotypes were identified that were embryonic lethal.  In 1996, an entire 

issue of Development was published covering forward genetic screens in zebrafish from 

Boston and Tubingen (Nusslein-Volhard, 2012).  It was stated that more than 400 new 

genes were identified from these efforts (Nusslein-Volhard, 2012).  In more recent years, 

the zebrafish genome has been sequenced making it easier to identify genes from these 

mutants.   

 

 

Zebrafish Central Nervous System 

 

 Previous studies have confirmed that zebrafish possess CNS barriers, such as the 

blood-brain barrier (BBB) with functional properties similar to mammals, and a dCP and 

mCP that constitute the BCSFB (Bill et al., 2008; Garcia-Lecea et al., 2008; Jeong et al., 

2008; Xie et al., 2010).  The CSF in zebrafish is localized within the forebrain, midbrain 

and hindbrain ventricles.  These structures are annotated in Figure 1-2.  The development 

of the zebrafish CNS is similar to other vertebrates in that it arises from the neural plate 

on the dorsal region of the embryo (Wilson et al., 2002).  However, the mechanism of 

neural tube formation differs in teleosts.  The zebrafish neural plate forms a solid 

structure first called the neural keel and later hollows out to form a neurocoel as the cells 

begin to break away from the center of the tube (Blader and Strahle, 2000).  This is in 
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Figure 1-2. The Zebrafish Forebrain, Midbrain, and Hindbrain Ventricles 

Relative to the CP. 

 

A dorsal confocal image with bright field overlay (A) and fluorescence (B) of a zebrafish 

at 4 dpf with a intraventricular injection of a 2 mega-dalton (MD) rhodamine dextran 

(red).  The yellow overlay is due to GFP expression in the dCP and mCP and the 

rhodamine dextran injection.  (C) and (D) are similar images as (A) and (B) except from 

a lateral view.  H: Hindbrain, M: Midbrain, F: Forebrain.  Arrowhead: dCP, Arrows: 

mCP.  Scalebars are 50µm.   
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contrast to other vertebrates where neural folds form at the lateral edge of the neural plate 

that later fuse to form the neural tube.  Signals such as BMP have also been demonstrated 

to be essential for neuroectoderm differentiation in zebrafish.  BMPs induce the ectoderm 

towards an epithelial fate rather than neuronal fate.  Zebrafish mutants such as 

snailhouse, which have a mutation in BMP7 and develop a larger neural plate due to 

defective BMP signaling (Blader and Strahle, 2000).  Shh signaling which is secreted by 

the notochord underlying the neural tube plays a role in patterning ventral neurons.  In 

specific mutants for Shh in zebrafish, the motor neurons continue to develop normally, 

but lateral floorplate cells are absent.  Mutations in other components of the zebrafish 

pathway such as Gli2, a downstream component of Shh, do not affect floorplate 

development.  This differs from mice with mutant Gli2, which do not develop a floorplate 

at all (Blader and Strahle, 2000).  The differences in these mutants across species may be 

due to the genome duplication event in zebrafish where additional genes may compensate 

for another gene’s loss of function.  The zebrafish spinal cord is similar to other 

vertebrates with motor neurons localized to ventral regions and sensory neurons arise 

from the roof plate (Blader and Strahle, 2000).   

 

 Once the neural tube has formed, cells begin to divide asymmetrically with apical 

cells differentiating into neurons.  Basal cells in the neural tube express high levels of 

Notch and replace the apical cells, while the differentiated neurons possess low Notch 

activity (Schmidt et al., 2013).  The zebrafish brain develops rapidly and by 28 hpf 

resembles the brain of other vertebrate embryos (Schier et al., 1996).  However, the 

zebrafish brain appears to be inside-out, because as the telencephalon begins to develop, 

it folds outward with the proliferative zones on the outer surface.  In mammals, the neural 

tube evaginates, so that the dividing cells are more internal (Schmidt et al., 2013).  The 

same holds true for the zebrafish ependymal cells which are found at the top and 

dorsolateral regions of the brain ventricle in the telencephalon (Schmidt et al., 2013).  As 

is discussed in Zebrafish as a Model for Choroid Plexus Development on pg. 15, the 

CP is also found on the outer surface of the brain.   

 

 A number of zebrafish mutants have been discovered from large-scale forward 

genetic screens having defects in various aspects of brain development.  These mutations 

affect dorsal-ventral/ anterior-posterior patterning, midbrain-hindbrain boundary 

formation, neurogenesis, brain ventricle inflation, and brain and notochord morphology 

(Schier et al., 1996).  Additional mutants have also been identified for genes involved in 

brain ventricle formation and inflation such as Na
+
K

+ 
ATPase in the snakehead mutant 

revealing that circulation is required for ventricle expansion as the brain develops 

(Lowery and Sive, 2005). 

 

 While some aspects of brain development and morphology in zebrafish may differ 

compared to mammals, zebrafish do possess CNS barriers similar to other vertebrates.  In 

recent years, a number of studies have described the zebrafish BBB demonstrating that it 

has barrier properties similar to those found in other vertebrates, such tight junctions and 

transporters.  One of the earlier studies demonstrated that the zebrafish BBB expressed 

the tight junction Claudin-5 (Cldn5) and Zonula Occludens-1 (ZO-1) which are known 

markers of barrier properties (Jeong et al., 2008).  Another common marker of the BBB is 
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the multidrug resistance transporter-1, (MDR1).  Zebrafish also have Mdr1 expression 

that localizes to the brain vasculature and is already present as early as 2 dpf (Umans and 

Taylor, 2012).  In 2010, a transgenic line was created expressing GFP in the plasma to 

monitor BBB permeability in zebrafish.  Using this line, they found that the vasculature 

of the brain and eye are functional at around 3 dpf based on the presence of GFP retained 

within the vasculature (Xie et al., 2010).  Studies have also demonstrated that within the 

zebrafish, neuroepithelial cells lining the brain ventricle express Cldn5 that is essential 

for maintaining its barrier properties between the CSF and the brain.  A loss of Cldn5 

resulted in reduced ventricle expansion and increased permeability between cells (Zhang 

et al., 2010).   

 

 

Zebrafish as a Model for Choroid Plexus Development 

 

 In recent years, there have been two studies using zebrafish to analyze CP 

development and identify signaling pathways involved in its formation (Bill et al., 2008; 

Garcia-Lecea et al., 2008).  These two studies generated distinct enhancer trap lines 

expressing the green fluorescent protein (GFP) in the dCP and mCP.  The enhancer trap 

lines were generated using the Tol2 transposase system (Urasaki et al., 2006), a molecular 

tool commonly used in zebrafish for generating enhancer trap or transgenic lines.  

Typically, constructs are injected into single-celled embryos and contain a fluorescent 

reporter to visualize integration of the construct.  Once the embryos are raised to 

adulthood, their offspring can be screened to look for germline transmission of the 

transgene.   

 

 The zebrafish enhancer trap lines, referred to as Gateways and Et
Mn16

, provide a 

first-hand look into how the CP develops over time in a living organism simply by 

monitoring GFP expression.  In Gateways, they detected GFP as early as 24 hpf and at 36 

hpf observed a sheet of cells near the midline called the tela choroidea (TC).  These cells 

combine to form the mCP between 72-144 hpf (Garcia-Lecea et al., 2008).  

Transplantation experiments in embryos demonstrated that the CPe originated from 

neural crest cells of rhombomere 5 (Garcia-Lecea et al., 2008).  Utilizing the transparent 

nature of zebrafish larvae, they were also able to visualize the surrounding vasculature as 

the CP develops simply by incubating the larvae in Cell Trace™ Bodipy® TR methyl 

ester (Garcia-Lecea et al., 2008).  In our studies, we have observed by intravenously 

injecting fluorescent tracers into 4 dpf larvae that the overlying vasculature around the 

CP does not possess barrier properties as observed by lack of the BBB marker, glucose 

transporter 1 (Glut1) within the vasculature (refer to Zebrafish CP Possesses 

Transporter Activity on pg. 35 and Figure 1-3).  This confirms what has been found in 

mammals where the vasculature in the CP does not have barrier properties, is fenestrated, 

and connected by covering structures called diaphragms (Ormandzhieva, 2010).  To 

determine the signaling pathways essential for proper CP development, previous studies 

on the zebrafish CP utilized transgenic lines with defects in Notch and Shh signaling and 

crossed them with Gateways.  Using time-lapse imaging, they monitored what affects 

these pathways had on the developing CP.  Defects in Notch signaling caused the cells to 

differentiate early resulting in a region of GFP- negative cells along the ventricle and the  
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Figure 1-3. Vasculature Surrounding the CP Does Not Possess Barrier Properties. 

 

(A) A 70 kilo-dalton (kD) albumin tracer (blue) was injected intravenously into the 

Et(cp:EGFP
)sj2

 line at 4 dpf .  GFP is expressed in the dCP (arrowhead) and mCP 

(arrow).  The brain vasculature is expressing mCherry (red) under the control of the BBB 

maker glut1.  (B) A magnified image of the mCP (green) and the surrounding fenestrated 

vasculature in blue/dashed line.  BBB vasculature is shown in red.  Scalebars are 50 µm. 

 

 

GFP-positive cells forming smaller dispersed aggregates rather than one compact 

structure.  Loss of Shh signaling resulted in fewer numbers of cells and activation of 

apoptosis in CPe (Garcia-Lecea et al., 2008). 

 

 A similar analysis was done using the Et
Mn16 

line.  This line forms a rounded CP 

structure by 5 dpf.  They also visualized vascular development utilizing a genetic 

approach by crossing it with Tg(gata1:dsRed) and identified that the vasculature 

surrounding the CP originates from the dorsal longitudinal vein (Bill et al., 2008).  Using 

a chemical approach by treating larvae with the Notch inhibitor DAPT, the CP was found 

to be larger overall, thereby also demonstrating the importance of Notch signaling in CP 

development.  A genetic analysis looking at more specific roles of Notch signaling was 

done by injecting morpholinos knocking down expression of a number of Notch receptors 

and ligands (Bill et al., 2008). 

 

 Few studies have identified genes specifically expressed in the CP.  A recent 

study identified a secreted protein called Clusterin specifically expressed in the CP of the 

developing zebrafish (Jiao et al., 2011).  This localization is similar to mice in that for 

early development, low levels of Clusterin are detected throughout the brain, but the 

highest expression resides in the CP (Jiao et al., 2011).  Clusterin, which aids in 

aggregation, has be associated with an increased risk of Alzheimer’s disease a plays a 

role in the clearance of amyloid (Aβ) peptide (Lambert et al., 2009; Thambisetty et al., 

2010).  Using the Gateways transgenic line discussed previously and two-color 

fluorescent in situ hybridization, Clusterin expression was detected in some of the 

GFP-positive cells of the intact CP (Jiao et al., 2011).  Another advantage of using 

zebrafish in this study was that they were able to answer an outstanding question of 

whether the role of Clusterin was regulated by IGF signaling.  Because of their small size 

and large numbers of offspring per clutch, they aliquotted 30 to 50 zebrafish embryos per 
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condition onto a 24-well plate, added an IGF-IR inhibitor to the embryo media, and 

determined by in situ hybridization that clusterin mRNA was not affected by IGF 

signaling(Jiao et al., 2011). 

 

 

Zebrafish Genetic Screening Strategies  

 

 Zebrafish mutagenesis screens can be performed using a variety of approaches.  

The first step in performing a mutagenesis screen is treating the organism with a mutagen 

that will introduce mutations into the genome.  Ideally, this mutation would also be 

introduced into the germ cells, so that it is carried throughout successive generations.  A 

typical mutagen used in zebrafish screens is N-ethyl-N-nitrosourea (ENU) which 

introduces point mutations into the genome.  It has been reported that ENU will introduce 

germ line mutations for one in every 1 x 10
5
 base pairs (de Bruijn et al., 2009).  The 

efficiency of ENU mutagenesis also depends on how many rounds of treatment and how 

long the organism is exposed to the mutagen.  Other compounds have been used such as 

Ethyl methanesulphonate (EMS); however the potency is not as efficient as ENU in 

zebrafish.  Additionally, more non-specific methods can be used such as X-ray, ionizing 

radiation, and trimethylpsoralen; however, these can induce small to large deletions or 

translocations which may result in mutations in multiple genes at a specific locus (Patton 

and Zon, 2001).   

 

 After mutagenizing the parental generation, the next step is to determine what 

type of screen will be performed.  Typically, in forward genetics, diploid screens are used 

where embryos are screened for recessive mutations in the F3 generation.  This involves 

mating numerous siblings within F2 families until a mutation is identified in 

approximately 25% of the F3 offspring.  This strategy is demonstrated in Figure 1-4.  

Another approach is to generate gynogenetic homozygous diploid embryos using either 

heat shock or early pressure treatment.  This strategy using ultraviolet-irradiated sperm to 

activate the egg, does not contribute genetic information.  After activation, embryos can 

undergo early pressure treatment where meiosis II is inhibited as the spindles are broken 

down and the egg retains both sister chromatids as it progresses through mitosis (Patton 

and Zon, 2001).  Heat shock can also be performed where the first mitosis resulting in 

haploid embryos.  The second mitosis then occurs resulting in homozygous diploids at all 

loci, however, these embryos have a decreased survival rate compared to those with early 

pressure treatment.  Haploid screens are primarily used to look at early developmental 

stages or patterning since haploid embryos typically do not live past 3 dpf (Patton and 

Zon, 2001).  A limiting factor to these genetic screening strategies is that they only screen 

for genes that produce an identifiable phenotype.   

 

 Enhancer screens are typically performed to identify the expression patterns for 

classes of genes in a cell or tissue specific manner.  In zebrafish, they are initiated by 

inserting transposons such as Tol2 or Sleeping Beauty into the genome (Korzh, 2007).  

Transposons are DNA fragments that can change positions within the genome.  In the 

case of inserting a transposable element into the zebrafish DNA from another species 

such as Tol2 from medaka fish, an enzyme called transposase is used to allow the insert  
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Figure 1-4. Schematic Diagram of an ENU F3 Forward Genetic Screen. 
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to jump to different regions of the genome.  This strategy provides easy identification of 

where the transposon is inserted by using reporter genes, such as GFP, under the 

regulation by a weak promoter to be detected in specific regions regulated by these 

enhancers (Korzh, 2007).   

 

 For retroviral insertions or insertional mutagenesis screens, fragments of DNA are 

randomly inserted into the genome and act as a mutagen.  These inserted retroviral DNAs 

can disrupt exons by introducing premature stop codons, or causing nonsense mediated 

decay (Sivasubbu et al., 2007).  Insertion into an intron can result in gene silencing or 

alternative splicing.  Another possibility is that the intron insertion has no effect on the 

wild-type transcript resulting in hypomorphs or only a partial loss of gene function 

(Sivasubbu et al., 2007).  This may pose a problem for this screening method since it is 

reported that around 70% of retroviral insertions are in introns (Sivasubbu et al., 2007).  

Another obstacle in these studies has been identifying a retrovirus with strong expression 

(Sivasubbu et al., 2007).  Nonetheless, this method has been utilized as a rapid screening 

strategy to identify genes involved in zebrafish embryonic development without the need 

for positional cloning (Allende et al., 1996; Amsterdam et al., 1997; Gaiano et al., 1996).  

 

 

Using Zebrafish for Genetic Analysis  

 

 A major hurdle in forward genetics has been the time and effort it takes to map a 

gene, with some genes even being deemed “unmappable” due to their position along a 

chromosome.  However, the zebrafish genome [1.5 giga bases (Gb)] has now been 

sequenced making gene identification much easier.  Access to the zebrafish genome 

assemblies such as Zv8 or more recently Zv9, is also provided through database websites 

such as Ensembl (Flicek et al., 2014).  In recent years, whole genome and exome 

sequencing have been utilized in zebrafish providing an alternative and more rapid way 

to identify the gene mutation (Kettleborough et al., 2013; Ryan et al., 2013).  In the 

following paragraphs, traditional and innovative strategies for discovering causative 

genes are described along with the advantages and disadvantages of each approach.  

 

 

 Positional Cloning.  Positional cloning is the method typically used to identify 

mutated genes from mutants isolated in forward genetic screens.  Previous methods for 

detecting these genes included chromosome walking by using large genomic libraries of 

DNA constructs inserted into bacterial artificial chromosomes (BACs) and sequencing 

them to look for mutations (Zhou and Zon, 2011).  Today, with the sequenced zebrafish 

genome, this strategy is no longer necessary.  The method of positional cloning or genetic 

mapping is based on the process of recombination between chromosomes and identifying 

polymorphic regions within the genome (Zhou and Zon, 2011).  Polymorphisms are 

regions of repetitive DNA sequences that are unique to that genome.  The idea is that 

once the original zebrafish strain is outcrossed into a polymorphic strain (having a 

genetic backgrounds that differ from one another), the rate of recombination should be 

high in areas distant from the gene carrying the mutation and low as the distance from the 

mutation decreases (Zhou and Zon, 2011).  This is because the mutation is only found in 
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the original strain.  Also, because mutants are selected based on a specific phenotype, all 

mutants should have the same genetic sequence at that locus.  Recombination events can 

be analyzed by gel electrophoresis where, at the site near the mutation, the majority of 

mutants should only have a single band representing recombination events near zero at 

this location.  The genes amplified in this region are said to have genetic linkage to the 

mutated gene (Zhou and Zon, 2011).  This process has become more convenient in recent 

years as mapping panels have been generated containing 192 primer pairs amplifying 

simple sequence length polymorphisms throughout the genome (Henke et al., 2013).   

 

 After outcrossing the original line into a polymorphic strain and identifying 

heterozygous pairs in the next generation, the first step in positional cloning is to perform 

bulked segregant analysis.  The goal of this step is to find a map position or the 

chromosome containing the mutation.  This is typically done by having a pool of 

wild-type and a pool of mutant DNA from multiple zebrafish larvae and amplifying the 

DNA with polymorphic markers designed throughout the entire genome.  Once a 

chromosome has been identified, the process of high resolution genetic mapping, using 

individual wild-type and mutant DNA samples and additional polymorphic markers for 

that chromosome, is done to define a critical interval (Zhou and Zon, 2011).  Once an 

interval is defined containing a region of candidate genes, these genes can be sequenced 

to see if they contain the mutation.  While this strategy does provide a way to identify the 

mutant gene, it is often time consuming and can be difficult to identify the gene if it is 

near the telomere where multiple recombination events occur.   

 

 

 Whole Genome and Exome Sequencing.  To overcome this obstacle, new 

technologies using next-generation sequencing (NGS) are being used to rapidly identify 

genetic mutations.  Whole genome sequencing (WGS) is a method that amplifies the 

entire genome, including non-coding regions.  This approach is similar to bulked 

segregant analysis in positional cloning in that pools of wild-type and mutant DNA are 

used for sequencing.  Alternatively, only mutant DNA can be used and compared to a 

reference genome, but this may produce false positive hits (Henke et al., 2013).  After 

sequencing, the data is analyzed by identifying small nucleotide polymorphisms (SNPs) 

and screening for homozygous regions within the mutant DNA.  This process of 

homozygosity-by-decent involves looking for regions within the genome with decreased 

levels of heterogeneity and reduced levels of SNPs (Bowen et al., 2012).  Depending on 

the coverage efficiency, heterozygous regions within the genome should increase as it 

moves away from the mutation (Henke et al., 2013).  Since most disease causing 

mutations occur within the coding regions of the gene and sequencing the entire genome 

can results in large amounts of unused data, an alternative approach is whole-exome 

sequencing (WES).  WES, which utilizes similar strategies as WGS, provides better 

coverage of sequence reads by sequencing only exons within the genome.  A number of 

genes in zebrafish mutants originating from forward genetic screens have been identified 

using this technique (Kettleborough et al., 2013; Ryan et al., 2013). 
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 RNA-Seq Analysis.  A final approach in genetic mapping is RNA-Seq analysis.  

This technique is similar to WES sequencing in that it only sequences the coding regions 

or RNA and provides better coverage than WGS (Miller et al., 2013).  In addition, 

RNA-Seq determines the amount of transcript in the sample.  This technique is useful for 

comparing gene expression levels between wild-type and mutant and determining if other 

genes are affected by the mutation in the target gene (Miller et al., 2013).  While 

RNA-Seq provides better coverage due to the smaller size of the targets, certain aspects 

remain that may be a hindrance for identifying the mutation such as identifying mutations 

affecting splice sites and the inability to detect weakly expressed transcripts (Ryan et al., 

2013).  Identifying the gene containing the causal mutation is similar to the previously 

mentioned strategies.  Homozygous regions have an allele frequency of 1, with 1 being 

the highest frequency.  The average allele frequency on the linked chromosome reaches 

the highest frequency at the mutated locus (Miller et al., 2013).  Discovering genetic 

pathways critical for CP development and function and the mutations that contribute to 

disease is now possible due to the expansion of innovative methods utilizing in vivo 

model systems such as the zebrafish, and breakthroughs in genetic technologies such as 

WES and RNA-Seq.   
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CHAPTER 2.    CHARACTERIZATION OF THE ZEBRAFISH CHOROID 

PLEXUS 

 

 

Introduction 

 

 Previous studies using zebrafish examined the involvement of Shh and Notch 

signaling in CP development (Bill et al., 2008; Garcia-Lecea et al., 2008).  However, 

these studies do not analyze functional CP barrier properties such as tight junctions and 

transporters.  Here, we generated an enhancer trap line, Et(cp:EGFP)
sj2

, that expresses 

enhanced green fluorescent protein (EGFP) specifically in epithelial cells of the dCP and 

mCP.  Using this enhancer trap line, we visualized its development in vivo and 

demonstrated that several components of the zebrafish CP are comparable to human and 

that it is functional in regulating entry into the CSF from the bloodstream.  The goal of 

this study was to further establish zebrafish as a model to study CP development by 

demonstrating barrier properties similar to other vertebrates and to generate tools to 

characterize CP mutants identified in future studies. 

 

 

Central Nervous System Barrier Properties 

 

 CNS barriers possess physical and chemical properties to regulate homeostasis 

within the brain.  The physical barrier consists not only of the cells themselves, whether it 

be endothelium or epithelium, but also specialized proteins such as tight junctions and 

adherens junctions that substantially impede macromolecules or xenobiotics from 

penetrating between adjacent cells (Zlokovic, 2008).  Chemical composition of the brain, 

blood, and CSF is regulated by numerous transporters expressed on both sides of the cell 

membranes that regulate the entry of hydrophilic molecules, proteins, and nutrients that 

cannot cross the barrier by diffusion (Zlokovic, 2008). 

 

 

Claudin Proteins Regulate Paracellular Transport 

 

 The major classes of tight junctions include four-membrane spanning proteins 

such as claudins and occludins, and single-membrane spanning proteins such as junction 

adhesion molecules (JAMS) (Gunzel and Yu, 2013).  Others have suggested that while 

each class of tight junction protein is important, Claudins appear to have the most 

significant role in regulating barrier permeability (Gunzel and Yu, 2013).  Claudins are 

expressed at the most apical portion of the cell and interact with Claudins on adjacent 

cells (Figure 2-1).  In mammals there have been around 24 types of proteins identified 

(Krause et al., 2009).  A single cell can express multiple different types of Claudins while 

interacting with either the same or different type of Claudin on the adjoining cell (Furuse 

et al., 1999). 

 

 Krause et al. (2009) describes the Claudin protein structure found in mammals.  

While Claudins are characterized by two extracellular loop domains (ECL1 and ECL2),  
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Figure 2-1. Claudin Proteins Regulate Paracellular Permeability. 

 

Modified with permission.  English, D.P., and Santin, A.D. (2013). Claudins 

Overexpression in Ovarian Cancer: Potential Targets for Clostridium Perfringens 

Enterotoxin (CPE) Based Diagnosis and Therapy. International journal of molecular 

sciences 14, 10412-10437.  
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they also contain around seven N-terminal amino acids, and 25-55 C-terminal amino 

acids (Krause et al., 2009).  ECL1 is primarily responsible for the barrier properties of 

Claudins.  This loop contains two cysteines that aid in ECL1 formation and mutations of 

these amino acids lead to increased barrier permeability (Gunzel and Yu, 2013).  It is 

likely that these two cysteines together form disulfide bonds in the protein structure 

(Gunzel and Yu, 2013).  ECL1 also contains positive and negative charges causing pore 

formation in certain types of Claudins which allows small molecules to traverse the 

barrier (Krause et al., 2009).  Claudins can be grouped into pore-forming and barrier 

forming tight junctions.  Pore-forming Claudins consist of Claudins 2, 7, 10, 15, and 16 

while barrier-forming proteins include Claudins 1, 5, 11, and 14 (Krause et al., 2009).  A 

combination of these two Claudin classes expressed at CNS barriers can affect TER with 

pore-forming Claudins decreasing TER and barrier-forming Claudins increasing TER 

(Anderson and Van Itallie, 2009).   

 

 A study using zebrafish to investigate Claudin 5 (Cldn5) function in brain 

ventricle expansion concluded that the ECL2 domain plays a role in tightening of the 

barrier (Zhang et al., 2010).  ECL2 is responsible for forming trans Claudin-Claudin 

interactions (Gunzel and Yu, 2013).  A review by Anderson et al. proposed a two 

pathway model for permeability where molecules less than 4 angstroms (Å) can penetrate 

depending on size and charge of the Claudins expressed within a cell.  This pathway is 

most likely regulated by ECL1.  Another pathway for molecules larger than 4 Å is 

regulated by contacts between cells and may be controlled by ECL2 (Anderson and Van 

Itallie, 2009).  Claudins also contain a Post synaptic density protein/Drosophila disc large 

tumor suppressor/Zonula occuludens-1 protein (PDZ) domain at the C terminus.  This 

sequence allows it to interact with PDZ domains on scaffolding proteins within the cell 

such ZO-1 (Zlokovic, 2008).  ZO-1 interacts with filaments such as actin which then 

holds Claudin proteins in place within the membrane (Gunzel and Yu, 2013). 

 

 In regards to Claudin expression in CNS barriers, the BBB and BCSFB differ in 

the types of Claudins expressed.  Claudin-5 is a tight junction largely localized to 

endothelial cells of the BBB.  A study performed by Nitta et al. in 2003 generated 

Claudin-5 deficient mice which died within ten hours after birth.  They discovered that a 

loss of Claudin-5 does not affect blood vessel morphology overall, but that in the brain, 

the BBB becomes more permeable to smaller molecules less than 800 daltons (Da) (Nitta 

et al., 2003).  Zebrafish also express Cldn5 and have two paralogues, Cldn5a and 5b.  

Cldn5 expression has been identified in zebrafish brain endothelial cells starting at 2 dpf, 

but is not expressed within the tail vasculature (Xie et al., 2010).  cldn5a mRNA is 

expressed within the midbrain, hindbrain ventricles and retina (Xie et al., 2010; Zhang et 

al., 2010), while cldn5b is expressed primarily within brain vasculature (Xie et al., 2010).  

Both cldn5a and b are expressed within the hyaloid vasculature of the eye (Xie et al., 

2010).  Other studies in zebrafish, as described previously in Zebrafish Central Nervous 

System on pg. 12, have identified Cldn5a expression within the neuroepithelial cells of 

the developing brain that aid in ventricle expansion.  Although tight junction expression 

has not been identified specifically in the zebrafish CP, studies in other model systems 

have shown that multiple Claudins are expressed within this structure such as Claudin-1, 

2, 5, and 11 (Lippoldt et al., 2000; Wolburg et al., 2001).  A genetic analysis in mouse 
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discovered that cldn-1, 3-18 and 23 were present at some level in the CP and that cldn2 

becomes up-regulated in the adult CP (Liddelow et al., 2012).  Because cldn2 is classified 

as a pore-forming Claudin, this may be why the CP is considered to be more of a 

secretory organ and have lower TER than the BBB, which has higher expression of the 

barrier-forming cldn5 (Johanson et al., 2011).      

 

 

Transporter Proteins Control Transcellular Permeability 

 

 While numerous transporter families are expressed throughout the CNS, this 

section will focus on two types of transporters and their expression in the CP, Organic 

anion transporters (OATs) and MDRs.  OATs, whose structure is shown in Figure 2-2, 

are expressed throughout the body in organs such as brain, kidney, and placenta and are 

responsible for the transport of small hydrophilic organic anions (Roth et al., 2012).  

They typically contain twelve transmembrane domains, glycosylation sites, and 

phosphorylation sites for kinases such as protein kinase C (PKC) (Burckhardt and Wolff, 

2000) whose activation can inhibit transport activity (Sekine et al., 2006).  In the CP, 

OAT3 is expressed on the apical cell membrane and functions to remove waste from the 

CSF into the bloodstream where it is ultimately excreted (Sykes et al., 2004).  It is also 

expressed in the kidney where it transports organic anions such as para-aminohippuric 

acid (PAH), estrogens, and bile salts (Sykes et al., 2004).  The transport of these organic 

anions is Na
+ 

-dependent and coupled with the transport of dicarboxylates (Sweet et al., 

2003)  A known substrate of OAT3 in the CP is fluorescein, a small organic green 

fluorescent tracer.  Fluorescein appears to be specific to OAT3 transport in that null 

OAT3 mice have no uptake of fluorescein in the CP (Keep and Smith, 2011).     

 

 MDRs play an important role in regulating CNS homeostasis and protecting the 

brain from harmful xenobiotics.  However, as their name implies, they are also major 

contributors to drug resistance.  These ATP-dependent transporters contain two to three 

transmembrane domains and two nucleotide binding domains.  The transmembrane 

domains play a role in recognizing and aiding in transport of hydrophilic molecules 

across the plasma membrane (Chang, 2003).  MDRs are further classified into short and 

long forms.  Long forms can contain as many as17 membrane spanning domains such as 

Multidrug resistance-associated protein 1 (MRP1), shown in Figure 2-3, two Walker 

motifs that aid in ATP binding, and a conserved region called the “C” motif that is 

involved in hydrolyzing ATP.  Short forms are similar except for containing only 12 

membrane spanning domains (Deeley et al., 2006).  Unlike OAT3 expressed on the apical 

membrane, MRP1 is expressed on the basolateral membrane of the CP and functions to 

transport substrates from CSF into the bloodstream (Keep and Smith, 2011).  A widely 

known substrate of MRP1 is the anti-cancer drug etoposide.  Studies performed in MRP1 

knockout mice observed an increased accumulation of etoposide within the CSF 

indicating that this transporter has a significant role in drug distribution in the CNS 

(Wijnholds et al., 2000).  
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Figure 2-2. Organic Anion Transporters Control Transcellular Entry and Exit.  

 

Modified with permission.  Sweet, D.H., Bush, K.T., and Nigam, S.K. (2001). The 

organic anion transporter family: from physiology to ontogeny and the clinic. American 

journal of physiology Renal physiology 281, F197-205.  
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Figure 2-3. MRP1 Plays a Role in Drug Resistance at the BCSFB. 

 

Modified with permission.  Deeley, R.G., Westlake, C., and Cole, S.P. (2006). 

Transmembrane transport of endo- and xenobiotics by mammalian ATP-binding cassette 

multidrug resistance proteins. Physiological reviews 86, 849-899. 
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Materials and Methods 

 

 

Fish Lines and Maintenance 

 

 Zebrafish were maintained at 28.5° on a 14 h light/dark cycle.  Embryos used for 

imaging or screening F3 larvae were initially collected in egg water (0.03% Instant 

Ocean) containing 0.02% methylene blue and treated at 24 hpf with 0.003% 

1-phenyl-2-thiourea (PTU) (Sigma) to prevent pigment formation.  Zebrafish were 

maintained in accordance with established protocols and regulations of the St. Jude 

Children’s Research Hospital and Institutional Animal Care and Use Committee.  

 

 

Generation of the Et(cp:EGFP)
sj2 

Line 

 

 To generate the Et(cp:EGFP
)sj2

 line, EGFP was released from the pEGFP-N1 

vector (Clontech) by BamHI and NotI digestion and inserted into the pTRE-Tight vector 

(Clontech). The Tetracycline Response Element (TRE)-tight:EGFP fragment was 

released by XhoI and ClaI digestion and inserted into the pT2AL200R150G vector 

(Urasaki et al., 2006).  Approximately 30 pg of the resulting T2 (TRE-tight:EGFP) 

plasmid DNA was co-injected with 30 pg of in vitro–transcribed Tol2 transposase mRNA 

into single-cell embryos of the AB strain. The embryos were raised to adults and 

screened for germline transmission by examining their offspring for EGFP expression.  

 

 

Fluorescent Tracer Injections 

 

 To observe transporter activity in the CP, Et(cp:EGFP)
sj2

 larvae at 4 dpf were 

anesthetized in 0.02% tricaine and injected intravenously into the common cardinal vein 

with approximately 1-2 nL of 100 µM rhodamine 123 (Sigma-Aldrich) using a 

micromanipulator and a pneumatic picopump (World Precision Instruments).  

Immediately after the injections, larvae were embedded in 1.2% low-melting-point 

agarose (Invitrogen) made in egg water.  Larvae were imaged on a Nikon C1Si confocal 

microscope and analyzed using Nikon EZC1 3.91 software.   

 

 To study CP function, Casper larvae (lacking melanocytes and iridophores) 

(White et al., 2008) were anesthetized in 0.02% tricaine and intravenously injected into 

the common cardinal vein with approximately 0.3-2 nL of 10 mg/mL rhodamine- and 

fluorescein-labeled dextrans at 2, 3, and 4 dpf.  Fluorescent tracers included a 3-kDa 

fluorescein dextran, a 10-kDa rhodamine dextran, and a 40-kDa anionic fluorescein 

dextran (Invitrogen).  Immediately after the injections, larvae were laterally embedded in 

1.2% low-melting-point agarose made in egg water.  To observe tracer permeability into 

the brain ventricle, time-lapse images were collected every 2 min for 1 h with a Nikon 

AZ100 microscope equipped with a shutter (Sutter Instruments) and analyzed with Nikon 

NIS-Elements 3.2 software.  Et(cp:EGFP)
sj2

 larvae were also injected intravenously with 
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the 10-kDa rhodamine dextran at 2 and 4 dpf and imaged on a Nikon C1Si confocal 

microscope with Nikon EZC1 3.91 software. 

 

 To visualize brain ventricle morphology in wild-type and mutant Et(cp:EGFP)
sj2

 

larvae at 4 dpf, PTU-treated zebrafish were anesthetized and intraventricularly injected 

with approximately 1.8 nL of 40-kDa fluorescein-labeled dextran as described previously 

(Gutzman and Sive 2009).  Larvae were imaged dorsally immediately after the injection, 

using a Nikon SMZ1500 epifluorescence stereoscope and Nikon NIS-Elements 3.1 

software.  Ventricle injections of rhodamine 123 and fluorescein were performed as 

described previously (Gutzman and Sive 2009) in Casper larvae at 4 dpf and imaged on a 

Nikon C1Si confocal microscope with Nikon EZC1 3.91 software. 

 

 

Fluorescein Treatment 

 

 Casper and Et(cp:EGFP)
sj2

 larvae  were incubated for 4 h in the dark with 50 µM 

fluorescein (Fluka).  Larvae were briefly rinsed 12 times in egg water, anesthetized in 

0.02% tricaine, and embedded in 1.2% low-melting-point agarose.  After 30 min, larvae 

were imaged using a Nikon SMZ1500 epifluorescence stereomicroscope and analyzed 

with Nikon NIS-Elements 3.1 software. 

 

 

Statistical Analysis of Tracer Permeability 

 

 Three regions of interest (ROIs) with areas of 0.02 mm
2
 were selected in both the 

heart and the brain ventricle.  Using the NIS-Elements 3.2 software, the mean 

fluorescence intensity, which served as a read-out for tracer permeability into the brain 

ventricle, was measured for each ROI over a 1 h period.  Using Microsoft Excel, the 

average of the mean fluorescence intensity for the 3 ROIs in the heart and the 3 ROIs in 

the brain ventricle was calculated for each sample.  An overall average was then 

calculated for the mean fluorescence intensity in the heart and the ventricle for all trials 

(n = 7).  The dataset of the mean fluorescence intensity in the heart and ventricle was 

normalized to give values between 0 and 1. 

 

 The ratio of the fluorescence intensity in the ventricle to that in the heart was 

calculated at the 30-min time point when the leakiest tracer reached saturation.  The ratio 

was then normalized against the tracer having the greatest mean intensity in the ventricle 

at 30 min.  A one-way ANOVA test was performed in Microsoft Excel to determine 

whether there was a significant difference in fluorescent intensity between the tracers and 

developmental time points.  A Tukey’s post-hoc test was performed to determine which 

tracers were statistically significant to one another at each developmental time point.  A 

significance value of α = 0.05 was used, and P values were calculated using the 

GraphPad software P value calculator.  Error bars were based on the mean of seven 

observations using standard error. 
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Immunohistochemistry (IHC) 

 

 Larvae were anesthetized in 0.02% tricaine and fixed in 4% paraformaldehyde 

(PFA) (Electron Microscopy Sciences) at 4° overnight and washed the next day in 1x 

phosphate buffered saline (PBS) (Calbiochem).  Samples were sunk in 30% sucrose/PBS 

at 4° overnight.  Larval and 1-month-old brain tissues were embedded in Optimal Cutting 

Temperature (O.C.T.) Compound (Tissue-Tek), frozen on dry ice, and stored at -80°.  

Tissues were sectioned using a Leica CM 1950 cryostat.  Sections were washed in PBS 

for 5 min followed by three 5 min washes in PBST [PBS/ 0.03% Triton X-100 (Sigma)].  

Sections were incubated in blocking buffer [PBST with 5% goat serum (Gibco) and 1% 

BSA (Sigma)] for 3 h at room temperature.  Primary antibodies were incubated at 4° 

overnight followed by secondary antibody incubation for 2 h at room temperature.  

Sections were washed in PBST four times for 15 min after primary and secondary 

antibody incubations.  Primary antibodies included rabbit anti-GFP (1:500; Invitrogen), 

mouse anti-GFP (1:500, Life Technologies), rabbit anti-ZO-1 (1:25, Invitrogen), rabbit 

anti-Glut1 (1:200, Novus Biologicals), and mouse anti-Zpr1 (1:100; ZIRC).  Secondary 

antibodies included Alexa Fluor goat anti-rabbit 488 (1:200; Invitrogen) and Alexa Fluor 

goat anti-mouse 555 (1:200; Invitrogen).  Antibody dilutions were prepared in blocking 

buffer.  Sections were counterstained with 1 µg/mL 4’, 6-diamidino-2-phenylindole 

(DAPI) (Roche) for 1 min, rinsed briefly in PBS, and mounted with Fluoromount 

(Electron Microscopy Sciences).  Images were taken on a Nikon AZ100 microscope and 

analyzed using NIS-Elements AR 3.2 software.   

 

 

Whole Mount IHC 

 

 Embryos were incubated in egg water with 0.003% PTU to prevent pigment 

formation.  At 4 and 6 days postfertilization (dpf), larvae were anesthetized in 0.02% 

tricaine and fixed in 4% PFA overnight.  The next day, samples were washed in 1x PBS 

followed by 1x PBST and treated with 20 µg/mL Proteinase K (New England Biolabs) 

for 15 min.  The reaction was stopped by adding 10% lamb serum (Gibco) followed by 

additional washes in PBST.  Samples were blocked with 10% lamb serum for 1-4 h and 

incubated in primary antibody at 4° overnight.  Samples were washed the next day in 

PBST and incubated in secondary antibody at 4° overnight.  Antibodies used included 

rabbit anti-GFP (1:100; Invitrogen), mouse anti-GFP (1:200; Life Technologies), rabbit 

anti-ZO-1 (1:50; Invitrogen), rabbit anti-Glut1 (1:100, Novus Biologicals), mouse 

anti-Zpr1 (1:50; ZIRC), mouse anti-Cldn5 (1:100; Invitrogen), Alexa Fluor goat 

anti-rabbit 488 (1:200; Invitrogen) and Alexa Fluor goat anti-mouse 555 (1:200; 

Invitrogen).  Additional washes in PBST were done the following day and stored in 1x 

PBS.  Samples were embedded in 0.8% low-melting point agarose (Invitrogen) made in 

1x PBS and imaged on Nikon C1Si laser scanning confocal microscope.  Z-stacks were 

compiled to create maximum intensity projection images using Nikon NIS-Elements 3.1 

imaging software. 
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Live Confocal Imaging 

 

 Confocal imaging was performed on a Nikon C1Si confocal microscope and 

analyzed using Nikon EZC1 3.91 software.  Scans of DIC and GFP images were acquired 

using a 20x objective at 4 µm intervals to create a z-stack maximum intensity projection 

image.  To observe CP development, larvae were collected at approximately 30 hpf and 

prepared for imaging as described above.  Z-stack images were acquired every 30 min 

over a 65 h period.  Using NIS-Elements AR 4.0 software, images were smoothed and 

z-stacks were compiled to create an enhanced depth of focus (EDF) image.   

 

 

Results  

 

 

Generation and Characterization of the Zebrafish CP Enhancer Trap Line 

Et(cp:EGFP)
sj2

 

 
 

In the process of producing a tetracycline-inducible transgenic line, we 

fortuitously generated the zebrafish CP line by an enhancer trap effect.  To generate this 

line, we co-injected a T2 (tetracycline response element (TRE)-EGFP) construct with 

Tol2 transposase mRNA into single-cell zebrafish embryos.  The TRE-EGFP construct 

integrated into an enhancer region regulating the CP.  The insertion was transmitted to 

subsequent generations, thereby creating a stable line termed Et(cp:EGFP)
sj2

.   

 

 GFP expression was specifically localized to the dCP in the third ventricle and the 

mCP in the fourth ventricle at 3dpf (Figure 2-4A).  Unlike mammals, the zebrafish CP is 

localized outside the brain allowing for easy visualization of CP development.  As 

mentioned in the two previous zebrafish CP studies, the mCP in teleosts exists as a layer 

of GFP positive cells directly below the epithelium near the roof of the fourth ventricle 

and the dCP is at the most dorsal portion of the third ventricle (Bill et al., 2008; 

Garcia-Lecea et al., 2008) allowing CP development to be easily visualized in the 

zebrafish due to its “inside-out” morphology. 

 

 We also detected GFP expression in the heart and swimbladder.  The 

swimbladder consists of epithelial cells and has been compared to the mammalian lung 

(Winata et al., 2009).  GFP expression along the lining of the swimbladder is shown in 

Figure 2-5.  Using time-lapse confocal microscopy, GFP expression was detected in a 

subset of dCP cells as early as 30 hpf (see Appendix A. SupplementalMovie1).  We 

found that the mCP epithelial cells migrated from the outer rhombomeres into the 

midbrain-hindbrain boundary as described previously (Garcia-Lecea et al., 2008) and also 

anteriorly from the developing spinal cord.  These cells increase in GFP intensity as they 

coalesce to form a compact structure by approximately 72 hpf.  There were no additional 

changes in CP morphology by 96 hpf.  We also observed a few GFP positive spots in 

other areas of the head and eyes.  However, after staining Et(cp:EGFP)
sj2 

larvae at 3 dpf 

with a GFP antibody, we only observed labelling within the dCP, mCP, and swimbladder 

(Figure 2-6).    
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Figure 2-4. The Et(cp:EGFP)
sj2

 Line Expresses GFP in the dCP and mCP.   

 

(A) Confocal image of the dorsal anterior view of 3 dpf  Et(cp:EGFP)
sj2

 larvae 

expressing GFP in the dCP and mCP.  (B) Whole-mount immunohistochemical staining 

of Et(cp:EGFP)
sj2

 larvae at 6 dpf.  GFP in green labels the dCP and mCP, and Zpr-1 

shown in red labels the pineal gland and photoreceptors.  The yellow overlay 

demonstrates the interaction between the pineal gland and dCP. The solid and dashed 

lines across the dCP and mCP in the inset image indicate approximate regions where 

sections were taken for Figure 2-4C-D.  (C) Transverse section through the dCP of 6 dpf 

Et(cp:EGFP)
sj2

 larvae stained with GFP, DAPI, and Zpr-1.  (D) Transverse section 

through the mCP of 6 dpf  Et(cp:EGFP)
sj2

 larvae stained with GFP and DAPI.  (E) 

Transverse section through the dCP of a 1-month-old Et(cp:EGFP)
sj2

 zebrafish stained 

with GFP and Zpr-1.  (F) Transverse section through the mCP of a 1-month-old 

Et(cp:EGFP)
sj2

 zebrafish stained with GFP.  Abbreviations: dCP, diencephalic CP; mCP, 

myelencephalic CP; F, forebrain; H, hindbrain; GFP, green fluorescent protein; DAPI, 4’, 

6-diamidino-2-phenylindole.  For all images: filled arrowhead, dCP; open arrowhead, 

pineal gland; arrow, mCP.  Scale bars are 50 µm.  
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Figure 2-5. GFP Is Expressed in the Swimbladder of Et(cp:EGFP)
sj2

. 

 

(A) Et(cp:EGFP)
sj2 

larvae at 3 dpf expresses GFP in the dCP (arrow), mCP (arrowhead), 

and swimbladder.  Dashed box is magnified in (B) showing GFP lining the cells of the 

swimbladder. dCP, diencephalic choroid plexus; mCP, myelencephalic choroid plexus.  

Scale bars are 50 µm.   
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Figure 2-6. GFP Expression Is Restricted to the dCP, mCP, and Swimbladder.   

 

Lateral confocal fluorescent image (A) and merged image (B) of Et(cp:EGFP)
sj2

 larvae at 

3 dpf.  GFP expressed in the mCP (arrow), and swimbladder (arrowhead).  Dorsal 

confocal fluorescent (C) and merged image (D) of Et(cp:EGFP)
sj2 

larvae at 3 dpf.  GFP is 

expressed in the mCP (arrowhead) and dCP (arrow).  dCP, diencephalic choroid plexus; 

mCP, myelencephalic choroid plexus.  Scale bars are 50 µm.   
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 To gain further insight into the location of the CP in relation to other CNS 

structures, we used whole-mount IHC to stain Et(cp:EGFP)
sj2

 larvae with a Zpr-1 

antibody labeling cone photoreceptors of the eye and the pineal gland.  In other teleosts 

and mammals, the pineal gland directly interacts with the CP of the third ventricle 

(Omura et al., 1985; Skinner and Malpaux, 1999).  Although the dCP is distinct from the 

pineal gland, we found a close association between the two structures (Figure 2-4B).  

Transverse sections showed the dCP positioned beneath the pineal gland (Figure 2-4C).  

Additional transverse sections through the mCP showed a cluster of GFP-positive 

epithelial cells directly beneath the skin surface (Figure 2-4D).  GFP expression in the 

dCP and mCP was retained throughout development and at later stages, as shown in an 

one-month-old Et(cp:EGFP)
sj2

 (Figure 2-4E and 2-4F). 

 

 To further demonstrate that this is indeed the CP, we cut sections from adult 

brains and identified GFP expression in a structure historically referred to as the saccus 

dorsalis (Figure 2-7).  This structure is analogous to the mammalian CP of the third 

ventricle and the developmental dCP in zebrafish.  The saccus dorsalis in rainbow trout 

(Salmo gairdneri), has been described as a folded monolayer of epithelium that develops 

out of the diencephalic roof plate (Jansen et al., 1976).  Because the saccus dorsalis has 

also been described to partially cover the pineal stalk (Tsuneki, 1986), similar to what we 

show in Figure 2-4B, we conclude that this is the CP of the third ventricle in zebrafish.   

 

 

Zebrafish CP Expresses the Tight-Junction Claudin 5 and Zonula Occludens-1 

 

 The mammalian CP expresses many tight-junction proteins such as claudins 

(Kratzer et al., 2012; Lippoldt et al., 2000), occludens (Lagaraine et al., 2011) and 

junction adhesion molecules (Lagaraine et al., 2011) to create a physical barrier between 

the blood and CSF.  To demonstrate that the zebrafish CP express tight junction proteins 

similar to mammals, we studied Cldn5 expression due to accessibility to an antibody that 

cross-reacts with zebrafish Cldn5 (Xie et al., 2010; Zhang et al., 2010).  As predicted, 

whole-mount IHC analysis revealed Cldn5 expression at the cell membrane of zebrafish 

CPe (Figure 2-8).  Cldn5 expression was also observed in the eyes, blood vessels, and 

neighboring ependymal cells (Figure 2-8B and 2-8C).  In addition, we analyzed ZO-1, 

another tight junction protein expressed in CNS barriers.  Not surprisingly, whole mount 

IHC revealed ubiquitous ZO-1 expression (Figure 2-9A-C).  However, transverse 

sections through the mCP acquired at a higher magnification demonstrated 

co-localization with the GFP positive cells of the CP indicating that along with Cldn5, 

ZO-1 is also present at the BCSFB (Figure 2-9D).   

 

 

Zebrafish CP Possesses Transporter Activity 

 

 In mice, multidrug resistance transporters, such as MRP1, are expressed on the 

basolateral side of CPe and regulate drug accumulation in the CSF (Wijnholds et al., 

2000).  In addition to drug transport, MRP1 and MDR1, efflux fluorescent dyes such as 

rhodamine 123 (Saengkhae et al., 2003).  To the best of our knowledge, no previous  
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Figure 2-7. The Adult Et(cp:EGFP)
sj2 

Expresses GFP in the Saccus Dorsalis. 

 

Sagittal sections through adult brains were labelled with rabbit anti-GFP antibody (green) 

and counterstained with DAPI (blue). (A-B) shows GFP expression in the adult CP of the 

third ventricle, also known as the saccus dorsalis in teleosts.  Dashed-line boxes refer to 

magnified images shown in (C-D).  Scale bars are 100 µm.   
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Figure 2-8. The Zebrafish CP Possesses the Tight Junction, Claudin 5. 

 

(A) Whole-mount immunohistochemical staining of Et(cp:EGFP)
sj2

 larvae at 4 dpf with 

GFP labeling the dCP and mCP.  (B) Whole-mount immunohistochemical staining with 

Claudin 5 antibody (red) showed expression in the eye (arrow), surface vessels 

(arrowhead), and CP.  (C and C`) Overlay of GFP and Claudin 5 staining revealed 

Claudin 5 expression surrounding the perimeter of CPe and ependymal cells.  Examples 

of ependymal cells are shown with an asterisk (*).  Images in (A) and (B) taken at 20× 

magnification and (C) at 40× magnification.   
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Figure 2-9. ZO-1 and Glut1 Expression in the CP.   

 

(A) Dorsal confocal imaged of Et(cp:EGFP) larvae at 4 dpf with GFP expression (green) 

in the dCP (arrow) and mCP (arrowhead).  (B) Dorsal confocal imaged of Et(cp:EGFP) 

larvae at 4 dpf with ubiquitous ZO-1 expression (red) throughout the head and eyes.  (C) 

Merged image of GFP and ZO-1 expression with dCP (arrow) and mCP (arrowhead).  

Dotted line is representative of the section through the mCP in (D).  (D) Transverse 

section through the mCP shows ZO-1 expression (red) co-localizes with GFP expression 

(green) in the mCP (yellow).  (E) Dorsal confocal imaged of Et(cp:EGFP) larvae at 3 dpf 

with GFP expression (green) in the dCP (arrow) and mCP (arrowhead).  (F) Dorsal 

confocal imaged of Et(cp:EGFP) larvae at 3 dpf with ubiquitous Glut1 expression (red) 

throughout the head and eyes.  (G)  Merged image of GFP and Glut1 expression with 

dCP (arrow) and mCP (arrowhead).  (H) Transverse section through the mCP shows 

Glut1 expression (red) on the surface and brain vasculature (arrow) and GFP expression 

(green) in the mCP (arrowhead).  Scale bars in (A) and (E) are 50 µm and in (D) and (H) 

25 µm.     
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studies have demonstrated transporter function in zebrafish CP.  To determine whether 

transporters contribute to the BCSFB at the zebrafish CP, we intravenously injected 

rhodamine 123 into the Et(cp:EGFP)
sj2

 line at 4 dpf  and observed its accumulation 

within the CPe (Figure 2-10A-C).  After injecting rhodamine 123 into the brain 

ventricle/CSF, we also observe accumulation in CPe (Figure 2-11A-D) indicating that 

independent of what interface the rhodamine 123 resides (whether blood or CSF), the dye 

is transported by the CP.   

 

 Another transporter that is highly expressed in the CP is OAT3 (Keep and Smith, 

2011) and fluorescein is taken up by the transporter on the apical side of CPe in a 

Na
+
-dependent manner (Sykes et al., 2004).  Because fluorescein is a 

low-molecular-weight green fluorescent dye, we soaked Casper zebrafish in 50 µM 

fluorescein to observe accumulation in the CP.  The dye was ingested in the gut, but also 

entered the circulation and concentrated in the dCP and mCP (Figure 2-10D and 2-10E).  

Fluorescein injected into the brain ventricle had a similar pattern of accumulation in the 

mCP and dCP (Figure 2-11E-H).  Additionally, we looked at transporters such as Glut1.  

Glut1 is a well-known marker of the BBB (Cullen et al., 2011; Daneman and Rescigno, 

2009; Dermietzel et al., 1992; Klepper and Voit, 2002; Zlokovic, 2008).  However we did 

not observe its expression within the zebrafish CP (Figure 2-9E-H).   

 

 

Zebrafish CP Possesses Size-Selective Barrier Properties 

 

 To date, there have been no studies on paracellular barrier properties of the 

zebrafish CP (Abdelilah-Seyfried, 2010).  To examine the function of the zebrafish CP in 

regulating passage from the bloodstream into the CSF, we intravenously injected 

fluorescently labeled dextrans of various molecular weights into Casper at 2, 3, and 4 dpf.  

Time-lapse imaging at 2 dpf, before the CP has fully developed, showed that 3-kDa 

fluorescein and 10-kDa rhodamine dextrans leaked from the bloodstream into the brain 

ventricle, whereas little to no 40-kDa fluorescein dextran escaped from the bloodstream 

into the ventricle (Figure 2-12A).  By 3 dpf, there was still a significant difference with a 

P value of < 0.0001 between the 3-kDa and 10-kDa dextrans and the 40-kDa dextran; 

however, the overall permeability was lower at 3 dpf compared to 2 dpf (Figure 2-12B).  

By 4 dpf, when the CP was fully formed, there were no significant differences between 

the individual tracers (Figure 2-12B). Intravenous injection of the 10-kDa dextran into 

Et(cp:EGFP)
sj2

 larvae at 2 dpf showed leakage into the brain ventricle as the CP 

continued to develop.  Once the CP formed by 4 dpf, the dextran did not accumulate 

within the brain ventricle (Figure 2-13A).  In addition, the 3-kDa and 10-kDa dextrans 

were significantly more permeable at 2 dpf (P < 0.0001) compared to 3 dpf and 4 dpf, but 

there was no significant difference in permeability for the 40-kDa dextran (Figure 

2-13B).   
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Figure 2-10. The Zebrafish CP Possesses Transporter Properties. 

 

(A) Live imaging of Et(cp:EGFP)
sj2

 larvae at 4 dpf showed GFP expression in the CP. 

(B,C) Accumulation of rhodamine 123 in the dCP (arrowhead) and mCP (arrow).  (D) 

Side view of live Casper zebrafish treated at 4 dpf with 50 µM fluorescein for 4 h showed 

accumulation of fluorescein (represented in green) in the dCP (filled arrowhead) and 

mCP (arrow) along with the gut (asterisk), and lateral line (open arrowhead).   (E) Similar 

image as in (D) except for dorsal view showing accumulation in the dCP (filled 

arrowhead), mCP (arrow), and overlying vasculature (open arrowhead).   Abbreviations: 

dCP, diencephalic CP; mCP, myelencephalic CP; E, eye; OV; Otic vesicle.  Scale bar is 

50 µm.   
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Figure 2-11. Rhodamine 123 and Fluorescein Ventricle Injection Demonstrates 

Transporter Activity in the CP. 

 

Dorsal fluorescent (A) and merged (B) confocal image of 4dpf Casper larvae with 

Rhodamine 123 (red) injection into the brain ventricle.  The rhodamine 123 concentrates 

within the mCP (arrowhead).  Rhodamine 123 also can fluoresce green and co-localizes 

with red emission (not shown).   Lateral fluorescent (C) and merged (D) confocal image 

of 4dpf Casper larvae with Rhodamine 123 (red) injection into the brain ventricle.  The 

rhodamine 123 concentrates within the mCP (arrowhead) and dCP (arrow). Dorsal 

fluorescent (E) and merged (F) confocal image of 4dpf Casper larvae with fluorescein 

(green) injected into the brain ventricle.  Fluorescein concentrates within the mCP 

(arrowhead) and dCP (arrow).  Lateral fluorescent (G) and merged (H) confocal image of 

4dpf Casper larvae with fluorescein (green) injected into the brain ventricle.  Fluorescein 

concentrates within the mCP (arrowhead) and dCP (arrow).  Abbreviations: mCP, 

myelencephalic choroid plexus; dCP, diencephalic choroid plexus.  Scale bar is 50 µm. 
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Figure 2-12. The Zebrafish CP Is Functional and Possesses Size-Selective 

Properties. 

 

Casper zebrafish were intravenously injected with fluorescent tracers at 2, 3, and 4 dpf to 

identify tracer leakage from blood into the CSF. (A) The top panel shows severe leakage 

of the 3-kDa fluorescein dextran into the brain ventricle (inset) at 2 dpf, minor leakage at 

3 dpf, and little, if any, dextran penetration at 4 dpf.  The bottom panel shows 

permeability of the 10-kDa rhodamine dextran at 2 dpf (inset), which decreases by 4 dpf. 

The 40-kDa fluorescein dextran was the least permeable at each developmental time 

point.  Images were taken at 1h post-injection.  (B) A one-way ANOVA shows that the 

3-kDa fluorescein dextran and the 10-kDa rhodamine dextran are significantly more 

permeable (i.e., greater mean fluorescence intensity) than the 40-kDa fluorescein dextran 

at 2 dpf and 3 dpf.  By 4 dpf, there was no significant difference in fluorescence intensity.  

Measurements are expressed as mean ± SE (standard error) for n=7; ****p < 0.0001. 

Abbreviations: Rhod, rhodamine dextran; Flour, fluorescein dextran.  Scale bar is 50 µm. 
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Figure 2-13. The Zebrafish CP Becomes Size-Selective as It Develops.   

 

(A) Et(cp:EGFP)
sj2 

larvae were intravenously injected with a 10 kDa rhodamine-dextran 

and the CP was imaged dorsally by confocal microscopy.  At 2dpf, the CP is not fully 

developed as observed by GFP expression and the 10 kDa rhodamine-dextran inundates 

the brain ventricle.  By 4dpf, the CP is fully formed and the 10 kDa rhodamine-dextran is 

retained within the vasculature and does not enter the brain ventricle.  (B) A One-Way 

ANOVA analysis revealed that the 3 kDa fluorescein dextran and 10 kDa rhodamine 

dextran have a significantly higher fluorescent intensity in the brain ventricle (i.e. more 

permeable) at 2dpf compared to 3 and 4dpf.  There is no significant difference between 

developmental time points for the 40 kDa fluorescein dextran.  Measurements are means 

±SE for n=7; ****p<0.0001.  Scale bar is 50 µm. 
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Discussion 

 

 The goal of our study was to establish zebrafish as a functionally relevant model 

to study CP development.  Although the CP has been studied in various in vivo and in 

vitro models (Dohrmann, 1970; Strazielle et al., 2003), the developmental and genetic 

aspects of this structure remain poorly understood largely due to the lack of innovative 

strategies and functionally relevant systems (Saunders et al., 2008).  Also, other 

vertebrate models do not easily allow for CP development to be visualized in real time.  

To overcome this limitation, we created an enhancer trap zebrafish line, Et(cp:EGFP)
sj2

 

expressing EGFP within the dCP and mCP.  Using this line, CP development was easily 

observed in a live vertebrate by monitoring EGFP expression. 

 

 Previous studies have also generated enhancer trap lines in zebrafish expressing 

GFP in the CP (Bill et al., 2008; Garcia-Lecea et al., 2008).  However, there are 

variations within these lines, including the subsets of cells expressing GFP.  For example, 

in the Et
Mn16

 line (Bill et al., 2008), only a subset of cells of the mCP express GFP.  The 

SqET33-E20 (Gateways) line (Garcia-Lecea et al., 2008) has additional GFP expression 

in the rhombomeres.  In our study, there was specific GFP expression in the dCP, mCP, 

and swimbladder.  In regards to GFP expression in the swimbladder, studies have shown 

that Shh is expressed in the epithelial cells lining the swimbladder (Winata et al., 2009).  

Interestingly, the CP of other vertebrates has also been compared to the mammalian lung 

in a study by Nielsen and Dymecki (2010) demonstrating that Shh is required for the 

synchronized outgrowth of the CP and fenestrated vasculature, similar to the need for Shh 

in the coordinated outgrowth of the lung (Nielsen and Dymecki, 2010).  Since the 

zebrafish swimbladder has been compared to the mammalian lung (Winata et al., 2009), 

this suggests that there are common underlying developmental pathways, such as Shh, 

required in both the CP and swimbladder and the GFP expression in this enhancer trap 

line may be regulated by one of these developmental cues.  

 

 By performing confocal time lapse imaging on the Et(cp:EGFP)
sj2 

line, we 

observed a few GFP positive spots in the head and eyes.  We attributed these green spots 

to the high gain we used to acquire the time-lapse.  Because we start the imaging before 

the CP has formed, we increased the gain normally used to acquire snapshot images at 3 

dpf in order to insure that we had sufficient exposure to capture GFP positive cells as 

they develop into the CP.  The variations in other enhancer trap lines may be due to 

transgenic DNA constructs integrating into different regions of the genome.  As seen with 

the other zebrafish CP enhancer trap lines, we could not identify the enhancer element 

regulating GFP expression, likely because of the enhancer’s ability to act at remote 

distances upstream or downstream of the target gene.   

 

 We have demonstrated BCSFB properties in zebrafish by identifying tight 

junction proteins and transporter activity.  We have shown Cldn5 and ZO-1 expression 

within the CP.  Identifying these tight junctions confirms what is known in the literature 

where ZO-1 interacts with Claudins to anchor them within the cell membrane (Brown 

and Davis, 2002; Stamatovic et al., 2008).  Using our Et(cp:EGFP)
sj2

 line, we 

demonstrated that the zebrafish CP possess a chemical barrier that transports and 
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concentrates rhodamine 123 and fluorescein in the CPe.  Rhodamine 123 directly 

interacts with MRP1 and MDR1 in an ATP-dependent manner (Daoud et al., 2000; 

Shapiro and Ling, 1998).  Because previous studies have shown the specificity of 

rhodamine 123 to MDRs, similar drug transporters are likely expressed in the zebrafish 

CP.  Studies in mice have identified known transporters of rhodamine 123 such as MRP1 

to be localized at the basolateral side of CP epithelia and keep drugs out of the CSF 

(Keep and Smith, 2011; Wijnholds et al., 2000).  Our findings also confirm that 

transporters are present in the zebrafish CP by showing that: when coming from the 

bloodstream, rhodamine 123 accumulates within the CP and is prevented from entering 

the CSF.  Likewise, when injected directly into the CSF, the CP functions in removing 

rhodamine 123 from the fluid as is also shown by dye accumulation within CP epithelia.  

 

 OAT3, also known as solute carrier family 22 group 8 (Slc22a8) is expressed in 

the kidney, intestine, retinal pigment, brain, and CP (Sweet et al., 2003).  Its function has 

been commonly studied by treating isolated mouse CPe cells with fluorescein and 

incubating them in artificial CSF.  A loss of OAT3 results in reduced fluorescein 

accumulation (Sweet et al., 2003).  A model system using intact CP from the dogfish 

shark demonstrated Na+-dependent accumulation of fluorescein in the epithelia via OATs 

(Villalobos et al., 2002).  Our real-time studies also showed in vivo fluorescein 

accumulation within the CPe, which was indicative of transport activity.  Although the 

current zebrafish genome database contains two annotated Oat proteins zfOat 

(NP_996960) and zfOatX (NP_004781) (Aslamkhan et al., 2006), there are no expression 

data for these genes.  Future studies will investigate whether specific Oats are expressed 

in the zebrafish CP and contribute to fluorescein transport.  Additionally, while we did 

not observe Glut1 expression within the zebrafish CP, a recent review by Keep and Smith 

mention that the BBB, not the BCSFB is the major source of glucose transport into the 

brain due to its close proximity to the brain itself and that the CP has only a minor role in 

this process (Keep and Smith, 2011).   

 

 We demonstrated barrier function in the zebrafish CP by intravenously injecting 

fluorescent tracers of different molecular weights and observing permeability across the 

CPe into the CSF.  Once the CP fully formed by 4 dpf, the smallest tracer tested, a 3-kDa 

fluorescein dextran, was no longer permeable across the BCSFB as it was in earlier 

developmental stages.  This result indicated a tightening of the barrier as it develops.  

There appears to be a correlation between CP formation and decreased permeability, 

suggesting that a physical barrier is preventing molecule entry rather than being cleared 

by a CSF drainage pathway.  For example, this is demonstrated when we injected the 

40-kDa tracer into the bloodstream on day 4 and never observed tracer accumulation 

within the ventricle throughout the course of the time-lapse.  Rather than suggesting that 

the tracer is being cleared from the ventricle by CSF flow, we observed that the tracer 

never entered the ventricle in the first place.  This indicated to us that a physical barrier is 

preventing the dextran from crossing the barrier.  Had we observed accumulation of the 

dextran within the CSF/brain-ventricle after injection, and then observed a decrease in the 

amount of tracer in the ventricle over time, then we would suggest that CSF flow is the 

contributing factor.  In immature brain barriers, it has been reported that the accumulation 

of molecules within the CSF is not due to increased permeability of the barrier but 
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reduced CSF flow (Saunders et al., 2008).  In contrast, more mature brain barriers have 

increased CSF flow that limits the accumulation of molecules within the ventricular space 

(Saunders et al., 2008).  Our study showed that after CP formation, there was no tracer 

penetration into the ventricle indicating that a decrease in tracer accumulation in the brain 

ventricle was not attributable to an increase in CSF clearance, but barrier properties of the 

CP.  The decrease in barrier permeability as the CP develops establishes the zebrafish CP 

as a functioning organ with size-selective barrier properties. 

 

 

Conclusion 

 

 In summary, the goal for this investigation was to establish zebrafish as vertebrate 

model to study the CP.  By characterizing the CP in zebrafish, we have demonstrated that 

it not only possesses barrier properties similar to mammals, such as have tight junctions 

and transporter activity, but also functions in regulating entry into the CSF from the 

bloodstream and transporting molecules out of the CSF.  These findings will pave the 

way for future investigations using zebrafish as a model for CP development and function 

while providing tools for investigating barrier properties in mutants with CP 

abnormalities.   
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CHAPTER 3.    FORWARD GENETIC SCREEN IDENTIFIES CHOROID 

PLEXUS MUTANTS 

 

 

Introduction 

 

 Although the CP of the lateral brain ventricles was documented several centuries 

ago by Herophilus, (Dohrmann, 1970; Dziegielewska et al., 2001), there has been little 

research aimed towards genetically dissecting the pathways essential for CP formation 

and function.  To identify zebrafish with gene mutations specific to CP development, we 

performed a small-scale ENU-mutagenesis screen using Et(cp:EGFP)
sj2 

 and identified 

10 recessive mutant lines.  These mutants were classified into five categories on the basis 

of EGFP expression and mCP morphology.  We hypothesize that this unbiased approach 

will uncover novel genes and pathways essential for CP development. The cloning and 

characterization of these mutants will provide important insights into the genetic 

mechanisms regulating CP formation and function in health and disease.  

 

 Forward genetic screens have been performed in various multicellular organisms 

such as plants (Meinke and Sussex, 1979), flies (Nusslein-Volhard and Wieschaus, 

1980), worms (Sin et al., 2014), zebrafish (Driever et al., 1996), and mice (Hrabe de 

Angelis et al., 2000; Nolan et al., 2000) and have been very successful in discovering 

genes involved in embryonic patterning, organ development, and behavior (Horvitz, 

1999; Muto et al., 2005; Stemple and Driever, 1996).  The genetic plant model 

Arabidopsis thaliana, is a useful model system due to its small genome and minor 

amount of repetitive sequences (Page and Grossniklaus, 2002).  Mutants in A. thaliana 

have been screened for phenotypes such as leaf or flower morphology, and in doing so; a 

number of genes have been identified such as those involved in biosynthetic pathways 

(Yang et al., 2011).  Thomas Hunt Morgan was the first to use the fruit fly Drosophila 

melanogaster; a genetic model system having only four chromosomes and easily 

identifiable phenotypes such as eye color or wing vein patterning (St Johnston, 2002).  

Utilizing this model for forward genetic screening identified genes such as Hedgehog, 

which was found to play a role in segment polarity (Nusslein-Volhard and Wieschaus, 

1980).  These findings later resulted in Christiane Nüsslein-Volhard and Eric Wieschaus 

being awarded a Nobel Prize for their work (St Johnston, 2002).    

 

 Another classical genetic invertebrate model is the nematode Caenorhabditis 

elegans.  This simple organism is excellent for studying nervous system development 

having only 302 neurons that are easily tracked using fluorescent reporter lines 

(Jorgensen and Mango, 2002).  In addition to a nervous system, they also have muscles, 

epidermis, reproductive structures, and a gastrointestinal tract (Jorgensen and Mango, 

2002).  Sydney Brenner was the first to suggest using C. elegans as a genetic model 

system and he along with John Sulston and Robert Horvitz went on to receive a Nobel 

Prize for their work (Moller, 2002) identifying genes involved in the cell death pathway 

such as ced-3 (Ellis and Horvitz, 1986), correspond to Caspase-1 in mammals 

(Thornberry, 1997).  Forward genetic screens, including large-scale ENU mutagenesis 

screens can also be performed in vertebrate models such as mice (Kile and Hilton, 2005).  
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Genome-wide analyses have identified important genes such as Min (multiple intestinal 

neoplasia), also known as Adenomatous Polyposis Coli (APC), where young mice who 

inherit a dominant mutation in this gene are predisposed to developing adenomas in the 

intestine (Moser et al., 1990; Su et al., 1992).  Mouse embryos can be difficult to screen 

in utero, however embryonic lethal mutations have been identified (Garcia-Garcia et al., 

2005).  While mice provide an advantage by greatly mimicking human development, 

large numbers of offspring for screening and the ability to visualize internal organs in real 

time is limited in this system. 

 

 Zebrafish have long been known for their usefulness in forward genetic screening 

as described in Zebrafish Genetic Screening Strategies on pg. 17.  While many of these 

early studies focused on embryonic patterning or organ development, genetic screens in 

zebrafish can also be used to identify behavioral patterns.  In 2005, a genetic screen was 

published that identified mutants with visual behavior defects using screening tools such 

as optokinetic response to monitor eye movement patterns and identify vision 

abnormalities (Muto et al., 2005).  In regards to CNS development, genetic screens have 

also been used in isolating zebrafish with defects in brain ventricle development (Lowery 

et al., 2009).  By injecting fluorescent dyes into the brain ventricles, they were able to 

categorize four classes of brain ventricle mutants based simply on morphological 

development.  Interestingly, related genes identified in these mutants also grouped 

together in these four classes indicating that screening based on morphology is a good 

indicator for identifying classes of genes later on in genetic mapping (Lowery et al., 

2009).  While a few genes and signaling pathways have been identified to be essential in 

CP formation as mentioned in Signaling Pathways and the Choroid Plexus on pg. 7, 

the CP would greatly benefit from an unbiased approach to discover genes essential for 

its development and function.  Because the CP is visible and accessible in live transgenic 

zebrafish models, mutants can be easily identified by screening for GFP expression and 

patterning. As we demonstrate in the following study, zebrafish can be used to discover 

phenotypes in a particular cell type or tissue by screening for fluorescence intensity and 

patterning throughout development.  

 

 

Materials and Methods 

 

 

ENU Mutagenesis and Forward Genetic Screening 

 

 Twenty Et(cp:EGFP)
sj2

 males were treated three times with 3 mM ENU (Sigma) 

for 1 h each at weekly intervals as described previously (de Bruijn et al., 2009; Pelegri, 

2002).  After one month, ENU-treated males were mated to Et(cp:EGFP)
sj2

 females to 

produce the F1 generation.  F1 pairwise crosses were performed to produce F2 families.  

F2 families that did not contain at least four male/female pairs were sacrificed.  Pairwise 

crosses for each F2 family were done at least six times if possible to identify F3 offspring 

with homozygous recessive mutations.  F2 pairs deemed heterozygous for a recessive 

mutation were maintained in miniboxes for use in genetic mapping experiments.  To 

screen for CP mutants, F3 larvae were anesthetized at 4 dpf and visualized using a Nikon 
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SMZ1500 epifluorescence stereomicroscope to identify abnormal EGFP expression or 

patterning in the CP.  A mutant line was confirmed if approximately 25% of the total 

offspring displayed a CP phenotype.  

 

 

Live Confocal Imaging and Time-Lapse Movies 

 

 Scans of DIC and GFP images were acquired on a Nikon C1Si confocal 

microscope using a 10x and 20x objectives at 4 µm intervals to create a z-stack maximum 

intensity projection image.  To compare CP development, wild-type and mutant larvae 

were imaged on a Nikon C1Si confocal microscope beginning at 54 hpf with images 

acquired every 30 min over a 48 h period.  Supplemental movies run for the 48 h period 

except for SupplementalMovie6, which runs for 42 h (SupplementalMovies1-7).  All 

images were analyzed using NIS-Elements AR 4.0 software.   

 

 

Results 

 

 

Forward Genetic Screen Identifies CP Mutants 

 

 We initiated a small-scale forward genetic screen to identify mutants with CP 

abnormalities.  This screen focused primarily on mCP defects.  Table 3-1 shows the 

numbers of fish generated from this screen.  Briefly, twenty F0 Et(cp:EGFP)
sj2

 males 

were mutagenized with ENU.  One month after treatment, ENU efficiency was tested by 

mating the males to Casper and screening for nacre or roy phenotypes (lacking 

melanocytes and iridiphores, respectively).  Approximately 1 in 250 (0.4%) larvae 

showed the nacre or roy phenotype.  The mutagenized males were mated with 

Et(cp:EGFP)
sj2

 females to generate 409 F1 fish.  Adult F1 pairs were mated together or 

with non-mutagenized Et(cp:EGFP)
sj2

 fish to produce 224 F2 families.  Of the F2 families, 

73 contained sufficient numbers to screen 4-6 pairs for mutants in the F3 generation.  We 

set up 1330 F2 × F2 crosses (including re-crosses), with 421 crosses producing F3 

embryos.  Larvae were screened at 4 dpf to identify CP defects based on GFP expression 

patterns.  In total, we generated 16,339 F3 embryos and screened 12,196. 

 

 We identified 24 mutant lines with 10 recessive mutant lines having CP 

deformities.  In addition to CP phenotypes, each of the10 recessive lines had other defects 

such as heart edema, small eyes, and small head.  While several of the mutants exhibited 

brain necrosis, many did not develop necrosis until after the CP already started to form.  

A description of the onset of brain necrosis for each line is listed in Table 3-2.  We found 

spontaneous mutants that had normal morphology overall, but severely abnormal or no 

CP (Figure 3-1).  Spontaneous mutants can occur due to random errors in DNA 

processing such as DNA replication that result in arbitrary mutations being introduced 

into the genome (Moore et al., 2006).  In addition, we found many mutants (some 

recessive and some spontaneous) with severe brain necrosis, but normal CP development.  

These mutants are shown in Figure 3-2.  The 10 CP mutants we describe in the following  
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Table 3-1. Number of Zebrafish Generated from the Forward Genetic Screen. 

 

Generation Fish (n) 

G0 males mutagenized 20 

G0 males survived 9 

F1 409 

F2 families started 224 

F2 families screened 73 

F2 × F2 crosses 1330 

F2 families that spawned 421 

F3 embryos screened 12,196 

Mutant lines identified 24 

Mutant lines maintained 10 
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Table 3-2. Characterization of Et(cp:EGFP)
sj2

 Mutants Generated from the Forward Genetic Screen. 

 

Class Alleles Map 

Position 

dpf Other Phenotypes (at 4 dpf) Fluorescein 

Transport 

Onset of 

Brain 

Necrosis  

Initial 

Circulation 

Loss 

I: reduced GFP 

expression,  

dispersed epithelia, 

and irregularly 

shaped CP 

cp26.3
a
 

 

 

 

 

 

cp140.2 

ND 

 

 

 

 

 

ND 

2–3 

 

 

 

 

 

2 

No swimbladder; brain and tail 

necrosis; brain ventricle 

hemorrhaging; faint heartbeat; no 

circulation;  no midbrain–hindbrain 

ventricle boundaries 

 

Small head; small eyes; no 

swimbladder; heart edema; brain 

necrosis; faint heartbeat and 

circulation; slightly larger forebrain 

and wider midbrain ventricle 

 

Accumulates 

within third 

ventricle 

 

 

 

Increased 

uptake; 

accumulates 

within brain 

ventricle 

3 dpf 

 

 

 

 

 

4 dpf 

3 dpf 

 

 

 

 

 

4 dpf 

II: normal GFP 

expression, smaller 

epithelia aggregates, 

and irregularly 

shaped CP 

cp9.6 

 

 

 

 

 

 

cp79.6 

 

LG 4 

 

 

 

 

 

 

ND 

 

2 

 

 

 

 

 

 

2 

Small head; small eyes; no 

swimbladder; heart edema; 

occasional hydrocephalus; brain 

necrosis; no circulation; no distinct 

forebrain or midbrain and severely 

reduced hindbrain 

 

Small head; small eyes; no 

swimbladder; heart edema; many  

still in chorion; brain necrosis; 

hemorrhaging around heart; slow 

heartbeat; little to no circulation; 

wider midbrain ventricle 

 

Increased 

uptake; 

accumulates 

within brain 

ventricle 

 

 

Dispersed 

punctate 

staining on 

the dorsal 

ventricle 

surface 

2 dpf 

 

 

 

 

 

 

4 dpf 

4 dpf 

 

 

 

 

 

 

3 dpf 
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Table 3-2. (Continued). 

 

Class Alleles Map 

Position 

dpf Other Phenotypes (at 4 dpf) Fluorescein 

Transport 

Onset of 

Brain 

Necrosis  

Initial 

Circulation 

Loss 

III: normal 

GFP 

expression, 

smaller 

epithelia 

aggregates, and 

expanded CP 

 

cp79.8 

 

 

 

 

 

cp151.2 

ND 

 

 

 

 

 

ND 

2 

 

 

 

 

 

2-3 

Small head; and eyes; no 

swimbladder; brain necrosis; 

hemorrhaging around heart; 

decreased heartbeat and circulation; 

wider midbrain ventricle 

 

Small head; small eyes; no 

swimbladder; brain necrosis; minor 

swelling around head; occasional 

hemorrhaging around heart; smaller 

forebrain and no defined midbrain 

 

Increased 

uptake; 

accumulates 

within brain 

ventricle 

 

Increased 

uptake; 

accumulates 

within brain 

ventricle 

4 dpf 

 

 

 

 

 

4 dpf 

3 dpf 

 

 

 

 

 

4 dpf 

IV: variable 

GFP 

expression, 

smaller 

epithelia 

aggregates, and 

expanded CP 

 

cp27.5 

 

 

 

 

 

 

 

cp44.10 

LG 21 

 

 

 

 

 

 

 

ND 

2 

 

 

 

 

 

 

 

2 

Small head; small eyes; no 

swimbladder; brain necrosis; heart 

edema; small arched body; curved 

tail;  hydrocephalus; occasional 

hemorrhaging in brain ventricle; 

heartbeat, but little to no circulation; 

no defined ventricle boundaries 

 

Small head; small eyes; no 

swimbladder; brain necrosis; heart 

edema; small arched body; curved 

tail;  hydrocephalus; occasional  

Increased 

uptake; 

accumulates 

within brain 

ventricle 

 

 

 

Increased 

uptake; 

accumulates 

within brain  

2 dpf 

(localized 

to 
forebrain) 

 

 

 

 

 

2 dpf 
(localized 

to 

forebrain) 

 

3 dpf 

 

 

 

 

 

 

 

4 dpf 
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Table 3-2. (Continued). 

 

Class Alleles Map 

Position 

dpf Other Phenotypes (at 4 dpf) Fluorescein 

Transport 

Onset of 

Brain 

Necrosis  

Initial 

Circulation 

Loss 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

hemorrhaging around heart; 

heartbeat, but little to no circulation; 

no forebrain or midbrain and 

irregularly shaped hindbrain 

ventricles 

 

 

 

 

  

V: normal GFP 

expression, 

compact 

epithelia, and 

enlarged CP 

 

 

cp26.6
b 

 

 

 
 

 

cp105.2
b 

ND 

 

 

 

 

 

ND 

4 

 

 

 

 

 

4-5 

Rounded head, protruding lower jaw; 

no swimbladder; edema around 

heart, eyes, and gut; faint heartbeat 

and circulation; normal brain 

ventricle 

 

Rounded head, protruding lower jaw; 

no swimbladder; severe edema 

around heart, eyes, and gut; faint 

heartbeat and circulation; slightly 

smaller hindbrain ventricle 

N/A 

 

 

 

 

 

N/A 

N/A 

 

 

 

 

 

N/A 

4 dpf 

 

 

 

 

 

6 dpf 

 
a  

observations recorded at 3dpf; 
b 
observations recorded at 5dpf.  ND, not determined; N/A, not applicable.  Onset of Brain Necrosis 

and Initial Circulation Loss are observed up to 4 dpf. 
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Figure 3-1. Spontaneous Mutants with Normal Body Morphology but 

Absent/Abnormal CP. 

 

(A) Wild-type (top) and mutant (bottom) 4 dpf larvae from cp147.1.  (B) Lateral view of 

wild-type cp147.1 larvae.  Arrowhead refers to the mCP.  (C) Lateral view of mutant 

cp147.1 larvae.  Arrowhead refers to presumptive mCP although it is absent at 4 dpf.  (D) 

Dorsal brightfield view of cp50.1 mutant at 4 dpf.  (E) Magnified brightfield image of 

cp50.1 mutant.  Slight hemorrhage is present near the third ventricle (arrowhead).  (F) 

Dorsal fluorescent image of cp50.1 mutant.  Arrowhead refers to presumptive mCP, 

although it is absent at 4 dpf.  (G) Dorsal fluorescent image of a spontaneous larva at 5 

dpf with a larger dCP (arrowhead) and mCP (arrow) but normal overall body 

morphology.  Scale bars are 50 µm. 
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Figure 3-2. Spontaneous and Recessive Mutants with Normal CP Morphology. 

 

Mutants have severe heart, eye and gut edema with little or no heartbeat and circulation 

and brain necrosis; however dCP and mCP appear normal in GFP intensity and CP 

morphology.   Figure shows dorsal view in brightfield (A) and in fluorescence (B) of a 

spontaneous Et(cp:EGFP)
 sj2

 larvae from cp49.3 at 4dpf.  In (A), eye edema is 

represented by an open arrowhead.  In (B), the dCP is represented by a filled arrowhead 

and an arrow is pointing at the mCP.  Lateral view in brightfield (C) and fluorescence (D) 

of cp49.3larvae at 4dpf.  In (C) heart edema is shown by an open arrowhead and an 

asterisk represents edema in the gut.  In (D), the arrow represents the mCP.  (E-H) shows 

larvae from cp50.3.  We identified around 15% mutant.  (E) Dorsal brightfield image of 

cp50.3 mutant larvae at 4 dpf.  (F) Dorsal fluorescent image of cp50.3 mutant larvae at 4 

dpf.  dCP (arrowhead) and mCP (arrow) shown for each mutant.  (G) Lateral brightfield 

image of cp50.3 mutants at 4 dpf.  (H) Lateral fluorescent image of cp50.3 mutant larvae 

at 4 dpf.  dCP, diencephalic choroid plexus; mCP, myelencephalic choroid plexus.  Scale 

bar is 50 µm. 
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paragraphs were named based on the original F2 family and pair number within that 

family.  No mutants were adult viable and most did not survive past 4 dpf, except for 

cp26.6 and cp105.2, which lived until 5 dpf and 6 dpf, respectively.  cp27.5 and cp44.10 

mutants displayed similar phenotypes; however, complementation analysis showed that 

they were not in the same complementation group.  On the basis of GFP intensity, 

epithelial localization, and overall CP morphology, we identified five classes: (1) mutants 

with reduced GFP expression, dispersed epithelial cells, and irregularly shaped CP; (2) 

mutants with normal GFP expression, small epithelial aggregates, and irregularly shaped 

CP; (3) mutants with normal GFP expression, small epithelial aggregates, and expanded 

CP; (4) mutants with variable GFP expression, small epithelial aggregates, and expanded 

CP; and (5) mutants with normal GFP expression, compact epithelial cells, and enlarged 

CP.   

 

 To further classify these mutants, we analyzed brain ventricle morphology and 

transporter activity in the CP.  To examine brain ventricle morphology, we injected a 

40-kDa fluorescein dextran into the ventricle of Et(cp:EGFP)
sj2

 mutants that were GFP 

negative by outcrossing the mutant lines to the wild-type TL strain, and selected based 

upon other phenotypic traits.  Fluorescein transport was used as a secondary assay to 

measure transporter activity in the CP and overall permeability as described previously in 

Fluorescein Treatment on pg. 29. 

 

 

 Class I Mutants Have Reduced GFP Expression, Dispersed Epithelial Cells, 

and Irregularly Shaped CP.  Class I comprised 2 mutant lines cp26.3 and cp140.2, 

which had reduced GFP and dispersed epithelial cells, resulting in an irregularly shaped 

mCP (Figure 3-3).  The cp26.3 mutants were observed starting at late 2 dpf to early 3 

dpf.  By 3 dpf, the mutants had a very faint heartbeat, no circulation, and developed heart 

edema.  Although these mutants had relatively normal body morphology except for the 

absence of a swimbladder, they developed severe necrosis and did not survive beyond 3 

dpf.  The necrosis was localized primarily within the head region.  Although the majority 

of the cp26.3 mutants exhibited hemorrhaging within the brain ventricle, there was no 

ventricle expansion.  The mutants had normal hindbrain ventricle morphology, but 

ventricles were slightly smaller than those of wild-type larvae.  They also had little to no 

midbrain and forebrain ventricles (Figure 3-3E-F`).   

 

 Based upon additional phenotypes such as small head and eyes, cp140.2 mutants 

were identifiable at 2 dpf.  CP development was monitored by time-lapse confocal 

imaging over a period of 48 h, starting at 54 hpf for wild-type larvae (see Appendix A. 

SupplementalMovie2) and cp140.2 mutants (see Appendix A. SupplementalMovie3).  

GFP intensity was reduced and there were defects in cell coalescence, resulting in a CP 

with discrete boundaries.  The overall body morphology of cp140.2 mutants was similar 

to that of wild-type larvae but smaller in size and lacked the swimbladder.  The mutants 

developed heart edema but maintained a heartbeat and circulation until 4 dpf.  They also 

exhibited brain necrosis by 4 dpf, but there was no hemorrhaging within the brain 

ventricle or ventricle expansion.  cp140.2 mutants had normal hindbrain and broader  
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Figure 3-3. Class I Mutants Have Reduced GFP Expression, Dispersed Epithelial 

Cells, and Irregularly Shaped CP.   

 

(A) Dorsal image of 3 dpf wild-type cp26.3 larvae at 20× magnification. (A’) Lateral 

image of 3 dpf wild-type cp26.3 larvae at 10× magnification. (B) Dorsal image of 3 dpf 

mutant cp26.3 larvae at 20× magnification. (B’) Lateral image of 4 dpf mutant cp26.3 

larvae at 10× magnification.  (C) Dorsal image of 4 dpf wild-type cp140.2 larvae at 20× 

magnification. (C’) Lateral image of 4 dpf wild-type cp140.2 larvae at 10× magnification.  

(D) Dorsal image of 4 dpf mutant cp140.2 larvae at 20× magnification. (D’) Lateral 

image of 4 dpf mutant cp140.2 larvae at 10× magnification. (E) Bright-field image of 3 

dpf wild-type cp26.3 larvae after ventricle injection of the 40-kDa fluorescein dextran. 

(E’) Fluorescent image of 3 dpf wild-type cp26.3 larvae after ventricle injection of the 

40-kDa fluorescein dextran.  (F) Bright-field image of 3 dpf mutant cp26.3 larvae after 

ventricle injection of the 40-kDa fluorescein dextran. (F’) Fluorescent image of 3 dpf 

mutant cp26.3 larvae after ventricle injection of the 40-kDa fluorescein dextran.  (G) 

Bright-field image of 4 dpf wild-type cp140.2 larvae after ventricle injection of the 

40-kDa fluorescein dextran. (G’) Fluorescent image of 4 dpf wild-type cp140.2 larvae 

after ventricle injection of the 40-kDa fluorescein dextran.  (H) Bright-field image of 

4dpf mutant cp140.2 larvae after ventricle injection of the 40-kDa fluorescein dextran. 

(H’) Fluorescent image of 4 dpf mutant cp140.2 larvae after ventricle injection of the 

40-kDa fluorescein dextran.  Images in (A)–(D’) were acquired by confocal microscopy, 

and those in (E)–(H’) were acquired by fluorescent stereoscopy.  Scale bar is 50µm. 
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midbrain ventricles, but less defined and slightly larger forebrain ventricles than that of 

wild-type larvae (Figure 3-3G-H`).   

 

 

 Class II Mutants Have Normal GFP Expression, Small Epithelial 

Aggregates, and Irregularly Shaped CP.  Class II comprised lines cp9.6 and cp79.6 

(Figure 3-4).  The cp9.6 mutants were isolated at 2 dpf, based on the brain necrosis. 

Time-lapse imaging showed cell migration toward the dorsal midline to form the mCP; 

however, the cells formed smaller aggregates, resulting in a misshapen CP (see 

Appendix A SupplementalMovie4).  These mutants also had a small head and eyes, no 

swimbladder, heart edema, and brain necrosis.  By 4 dpf, they continued to have a 

heartbeat but slow circulation. Also, brain ventricle expansion or hydrocephaly occurred 

in some mutants by late 3 dpf to 4 dpf.  Ventricular morphology revealed no forebrain or 

midbrain ventricle (Figure 3-4E-F`).  The hindbrain ventricle appeared smaller in size 

than that of wild-type larvae.   

 

 cp79.6 mutants were identified at approximately 2 dpf and had a small head and 

eyes, no swimbladder, heart edema, and many mutants never hatched out of the chorion.  

By 4 dpf, the mutants had a very slow heartbeat, little to no circulation, brain necrosis, 

and hemorrhaging around the heart.  Time-lapse imaging revealed that the epithelial cells 

were initially dispersed and similar to those of the cp140.2 mutants (see Appendix A 

SupplementalMovie5).  Although the cells became more compact over time, the final 

CP had internal regions with no GFP expression, suggesting that the cells formed smaller 

aggregates rather than a compact structure.  Although these mutants had a defect in CP 

development, overall brain ventricle morphology was normal, except for a larger 

midbrain ventricle as seen in cp140.2 (Figure 3-4G-H`)    

 

 

 Class III Mutants Have Normal GFP Expression, Small Epithelial 

Aggregates, and Expanded CP.  Class III comprised 2 mutant lines cp79.8 and cp151.2, 

which had normal GFP expression but dispersed cell aggregates, resulting in an expanded 

CP (Figure 3-5).  Both mutants had a small head and eyes, heart edema, no swimbladder, 

and brain necrosis.  The cp79.8 mutants were isolated by 2 dpf.  By 4 dpf, mutants 

showed hemorrhaging in the heart and most had a decreased heartbeat and circulation.  

Brain ventricle morphology was relatively normal and resembled that of cp79.6 mutants 

(Figure 3-5E-F`).   

 

 The cp151.2 mutants were identified at approximately late 2 dpf to 3 dpf.  

Although their overall body morphology was fairly normal but smaller in size, by 4 dpf, 

these mutants developed minor swelling around the head and occasionally exhibited 

hemorrhaging around the heart, but continued to have a heartbeat and circulation.  CP 

development over time showed normal GFP intensity, but the initial localization of CPe 

was more expanded than that of wild-type larvae (see Appendix A. 

SupplementalMovie6).  Although the cells did coalesce, they tended to form smaller 

aggregates rather than migrating together to form a compact CP.  Also, toward the end of 

the 48 h time course, cell death occurred within the epithelium.  Although the CP was  
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Figure 3-4. Class II Mutants Have Normal GFP Expression, Small Epithelial 

Aggregates, and Irregularly Shaped CP.   

 

(A) Dorsal image of 4 dpf wild-type cp9.6 larvae at 20× magnification. (A’) Lateral 

image of 4 dpf wild-type cp9.6 larvae at 10× magnification. (B) Dorsal image of 4 dpf 

mutant cp9.6 larvae at 20× magnification. (B’) Lateral image of 4 dpf mutant cp9.6 

larvae at 10× magnification.  (C) Dorsal image of 4 dpf wild-type cp79.6 larvae at 20× 

magnification. (C’) Lateral image of 4 dpf wild-type cp79.6 larvae at 10× magnification.  

(D) Dorsal image of 4 dpf mutant cp79.6 larvae at 20× magnification. (D’) Lateral image 

of 4 dpf mutant cp79.6 larvae at 10× magnification. (E) Bright-field image of 4dpf 

wild-type cp9.6 larvae after ventricle injection of the 40-kDa fluorescein dextran. (E’) 

Fluorescent image of 4 dpf wild-type cp9.6 larvae after ventricle injection of the 40-kDa 

fluorescein dextran.  (F) Bright-field image of 4 dpf mutant cp9.6 larvae after ventricle 

injection of the 40-kDa fluorescein dextran. (F’) Fluorescent image of 4 dpf mutant cp9.6 

larvae after ventricle injection of the 40-kDa fluorescein dextran.  (G) Bright-field image 

of 4 dpf wild-type cp79.6 larvae after ventricle injection of the 40-kDa fluorescein 

dextran. (G’) Fluorescent image of 4 dpf wild-type cp79.6 larvae after ventricle injection 

of the 40-kDa fluorescein dextran.  (H) Bright-field image of 4 dpf mutant cp79.6 larvae 

after ventricle injection of the 40-kDa fluorescein dextran. (H`) Fluorescent image of the 

4 dpf mutant cp79.6 larvae after ventricle injection of the 40-kDa fluorescein dextran.  

Images in (A)–(D’) were acquired by confocal microscopy, and those in (E)–(H’) were 

acquired by fluorescent stereoscopy. 
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Figure 3-5. Class III Mutants Have Normal GFP Expression, Small Epithelial 

Aggregates, and Expanded CP.   

 

(A) Dorsal image of 4 dpf wild-type cp79.8 larvae at 20× magnification. (A’) Lateral 

image of 4 dpf wild-type cp79.8 larvae at 10× magnification. (B) Dorsal image of 4 dpf 

mutant cp79.8 larvae at 20× magnification. (B’) Lateral image of 4 dpf mutant cp79.8 

larvae at 10× magnification.  (C) Dorsal image of 4 dpf wild-type cp151.2 larvae at 20× 

magnification. (C’) Lateral image of 4 dpf wild-type cp151.2 larvae at 10× magnification.  

(D) Dorsal image of 4 dpf mutant cp151.2 larvae at 20× magnification. (D`) Lateral 

image of 4 dpf mutant cp151.2 larvae at 10× magnification. (E) Bright-field image of 4 

dpf wild-type cp79.8 larvae after ventricle injection of the 40-kDa fluorescein dextran. 

(E`) Fluorescent image of 4 dpf wild-type cp79.8 larvae after ventricle injection of the 

40-kDa fluorescein dextran.  (F) Bright-field image of 4 dpf mutant cp79.8 larvae after 

ventricle injection of the 40-kDa fluorescein dextran. (F’) Fluorescent image of 4 dpf 

mutant cp79.8 larvae after ventricle injection of the 40-kDa fluorescein dextran.  (G) 

Bright-field image of 4 dpf wild-type cp151.2 larvae after ventricle injection of the 

40-kDa fluorescein dextran. (G’) Fluorescent image of 4 dpf wild-type cp151.2 larvae 

after ventricle injection of the 40-kDa fluorescein dextran.  (H) Bright-field image of 4 

dpf mutant cp151.2 larvae after ventricle injection of the 40-kDa fluorescein dextran. 

(H’) Fluorescent image of 4 dpf mutant cp151.2 larvae after ventricle injection of the 

40-kDa fluorescein dextran.  Images in (A)–(D’) were acquired by confocal microscopy, 

and those in (E)–(H’) were acquired by fluorescent stereoscopy. 
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expanded, there appeared to be one large ventricle near the hindbrain rather than distinct 

midbrain–hindbrain boundaries.  There was also very low accumulation of 40-kDa 

fluorescein within the forebrain ventricle (Figure 3-5G-H`).   

 

 

 Class IV Mutants Have Variable GFP Expression, Small Epithelial 

Aggregates, and Expanded CP.  Class IV comprised 2 mutant lines cp27.5 and cp44.10 

(Figure 3-6).  The GFP expression in these mutants varied between cells having normal 

GFP intensity and those with lower expression.  Similar to Class III mutants, cp27.5 and 

cp44.10 also formed clusters of cells rather than a single compact structure, which 

resulted in an expanded CP (Figure 3-6).  For cp27.5, CP formation over time showed a 

pattern of development similar to that of cp151.2; however, GFP intensity varied 

throughout the CP (see Appendix A. SupplementalMovie7).  Both cp27.5 and cp44.10 

were identified at 2 dpf and displayed small heads, small eyes, and no swimbladder.  

Other unique features were a significantly smaller and arched body, expanded ventricles 

or hydrocephaly by 3 dpf, and tails that curved to the side by 4 dpf.  Additional 

phenotypes at 4 dpf included brain necrosis and heart edema.  The mutants had a 

heartbeat at 4 dpf, but little to no circulation.  Also, there was occasional hemorrhaging in 

the brain ventricle for cp27.5 and near the heart for cp44.10.  These mutants exhibited the 

most severe defects in terms of brain ventricle morphology among all the classes.  cp27.5 

had one large ventricle with no clearly defined forebrain, midbrain, and hindbrain 

boundaries (Figure 3-6E-F`).  cp44.10 had a smaller, irregularly shaped hindbrain, but 

the 40-kDa fluorescein could not penetrate into the midbrain or forebrain ventricles  

(Figure 3-6G-H`).   

 

 

 Class V Mutants Have Normal GFP Expression, Compact Epithelial Cells, 

and Enlarged CP.  Class V comprising 2 mutant lines cp26.6 and cp105.2, exhibited the 

least severe CP phenotype, and survived longer than other mutant classes.  The CP 

appeared relatively normal compared with that of wild-type larvae, although it was larger 

in size (Figure 3-7).  Also, both mutants had a rounder head and a protruding lower jaw.  

The cp26.6 mutant was isolated by 4 dpf.  Mutants had no swimbladder and had edema in 

the heart, eyes, and near the presumptive swimbladder.  They also had a faint heartbeat 

and circulation by 4 dpf.  For cp26.6 mutants at 4 dpf, the brain ventricle morphology 

was normal, but more closely resembled wild-type larvae at 3 dpf (Figure 3-7E-F`).  

Also, cp105.2 mutants had a slightly smaller hindbrain ventricle compared to wild-type  

(Figure 3-7G-H`).  The cp105.2 mutants were isolated by late 4 dpf to 5 dpf, based on 

the absence of a swimbladder.  The CP initially appeared normal, but became larger as 

the mutants developed severe heart and eye edema.  Though the swimbladder was absent, 

severe edema was localized to this region.  The heartbeat and circulation began to 

diminish by late 5 dpf to early 6 dpf.   
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Figure 3-6. Class IV Mutants Have Variable GFP Expression, Small Epithelial 

Aggregates, and Expanded CP. 

 

(A) Dorsal image of 4 dpf wild-type cp27.5 larvae at 20× magnification. (A’) Lateral 

image of 4 dpf wild-type cp27.5 larvae at 10× magnification. (B) Dorsal image of 4 dpf 

mutant cp27.5 larvae at 20× magnification. (B’) Lateral image of 4 dpf mutant cp27.5 

larvae at 10× magnification.  (C) Dorsal image of 4 dpf wild-type cp44.10 larvae at 20× 

magnification. (C’) Lateral image of 4 dpf wild-type cp44.10 larvae at 10× magnification.  

(D) Dorsal image of 4 dpf mutant cp44.10 larvae at 20× magnification. (D’) Lateral 

image of 4 dpf mutant cp44.10 larvae at 10× magnification. (E) Bright-field image of 4 

dpf wild-type cp27.5 larvae after ventricle injection of the 40-kDa fluorescein dextran. 

(E’) Fluorescent image of 4 dpf wild-type cp27.5 larvae after ventricle injection of the 

40-kDa fluorescein dextran.  (F) Bright-field image of 4 dpf mutant cp27.5 larvae after 

ventricle injection of the 40-kDa fluorescein dextran. (F’) Fluorescent image of 4 dpf 

mutant cp27.5 larvae after ventricle injection of the 40-kDa fluorescein dextran.  (G) 

Bright-field image of 4 dpf wild-type cp44.10 larvae after ventricle injection of the 

40-kDa fluorescein dextran. (G`) Fluorescent image of 4 dpf wild-type cp44.10 larvae 

after ventricle injection of the 40-kDa fluorescein dextran.  (H) Bright-field image of 4 

dpf mutant cp44.10 larvae after ventricle injection of the 40-kDa fluorescein dextran. 

(H’) Fluorescent image of 4 dpf mutant cp44.10 larvae after ventricle injection of the 

40-kDa fluorescein dextran.  Images in (A)–(D’) were acquired by confocal microscopy, 

and those in (E)–(H’) were acquired by fluorescent stereoscopy. 
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Figure 3-7. Class V Mutants Have Normal GFP Expression, Compact Epithelial 

Cells, and Enlarged CP. 

 

(A) Dorsal image of 4 dpf wild-type cp26.6 larvae at 20× magnification. (A’) Lateral 

image of 4 dpf wild-type cp26.6 larvae at 10× magnification. (B) Dorsal image of 4 dpf 

mutant cp26.6 larvae at 20× magnification. (B’) Lateral image of 4 dpf mutant cp26.6 

larvae at 10× magnification.  (C) Dorsal image of 4 dpf wild-type cp105.2 larvae at 20× 

magnification. (C’) Lateral image of 4 dpf wild-type cp105.2 larvae at 10× magnification.  

(D) Dorsal image of 4 dpf mutant cp105.2 larvae at 20× magnification. (D’) Lateral 

image of 4dpf mutant cp105.2 larvae at 10× magnification. (E) Bright-field image of 4 

dpf wild-type cp26.6 larvae after ventricle injection of the 40-kDa fluorescein dextran. 

(E’) Fluorescent image of 4 dpf wild-type cp26.6 larvae after ventricle injection of the 

40-kDa fluorescein dextran.  (F) Bright-field image of 4 dpf mutant cp26.6 larvae after 

ventricle injection of the 40-kDa fluorescein dextran. (F’) Fluorescent image of 4 dpf 

mutant cp26.6 larvae after ventricle injection of the 40-kDa fluorescein dextran.  (G) 

Bright-field image of 4 dpf wild-type cp105.2 larvae after ventricle injection of the 

40-kDa fluorescein dextran. (G’) Fluorescent image of 4 dpf wild-type cp105.2 larvae 

after ventricle injection of the 40-kDa fluorescein dextran.  (H) Bright-field image of 4 

dpf mutant cp105.2 larvae after ventricle injection of the 40-kDa fluorescein dextran. 

(H’) Fluorescent image of 4 dpf mutant cp105.2 larvae after ventricle injection of the 

40-kDa fluorescein dextran.  Images in (A)–(D’) were acquired by confocal microscopy, 

whereas those in (E)–(H’) were acquired by fluorescent stereoscopy. 
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Fluorescein Assay to Determine CP Transport  

 

 To determine if the CP could transport fluorescein in the mutants, GFP negative 

larvae were treated at 3 dpf with 50 µM fluorescein as described in the characterization 

study.  For cp26.3, fluorescein tended to accumulate toward the anterior part of the brain 

and no fluorescein accumulated within the CP (Figure 3-8E).  Fluorescein did not 

accumulate in the CPe in the cp140.2 mutant, but was localized throughout the brain 

ventricle.  These mutants also had a higher overall fluorescein uptake than wild-type. 

(Figure 3-8M).  cp9.6 mutants also exhibited a higher overall uptake of fluorescein than 

wild-type and concentrated within the brain ventricle, gut, and heart.  There was no 

distinct accumulation within the CP (Figure 3-8F).  For cp79.6, the overall uptake of 

fluorescein was comparable to wild-type.  We observed very faint punctate accumulate of 

fluorescein within the general area of the CP indicating possible transport (Figure 3-8N).  

 

 Class III mutants (cp79.8 and cp151.2) had increased uptake of fluorescein 

compared to wild-type and both had accumulation within the brain ventricle, gut, and 

heart.  No fluorescein accumulated within the CPe (Figure 3-8G and 3-8O).  A similar 

phenotype was observed in Class IV mutants (cp27.5 and cp44.10) in that they also had 

increased uptake of fluorescein concentrated within the brain ventricle, gut, and heart, but 

no localization within CPe (Figure 3-8H and 3-8P). We were not able conclude whether 

Class V mutants (cp26.6 and cp105.2) demonstrated transport activity using this assay 

because of the inability to confidently identify GFP negative mutants at 3 dpf and 4 dpf.  

Once we identified mutants by late 4 dpf- 5 dpf, fluorescein was rapidly cleared by the 

gut and was not distributed throughout the embryo (data not shown). 

 

 

Discussion 

 

 To characterize mutants in our study, we examined not only GFP expression in 

the CP but also ventricle morphology and transporter activity.  Previous studies have 

grouped zebrafish brain ventricle mutants into four categories: midline separation defects, 

reduced ventricle size, midbrain and hindbrain abnormalities, and absence of lumen 

inflation (Lowery et al., 2009).  Because none of our CP mutants exhibited a phenotype at 

24 hpf, we did not expect to see defects in midline separation as described in Lowery et 

al. (2009) (Lowery et al., 2009).  CP mutants such as cp79.6 and cp140.2 have a brain 

ventricle that closely resembles a normal larva at 2 dpf (Lowery et al., 2007), indicating 

that these mutants may have a developmental delay and not necessarily a brain ventricle 

defect.  Also, cp140.2 mutants at 3 dpf are similar to wild-type larvae at 2 dpf in that 

fluorescein accumulated within the brain ventricle rather than concentrating within CPe 

as it does normally on day 3.  Many mutants exhibited an increased overall uptake of 

fluorescein, which may indicate defects in the skin epithelial barriers as well resulting in 

greater permeability to absorb small molecules from their surroundings. 

 

 While mutants exhibit little to no heart beat and circulation when screened on day 

4, as described in Table 3- 2, the majority of mutants do have a strong heart beat and 

rapid circulation indistinguishable from wild-type prior to this time point.  The initial  
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Figure 3-8. Fluorescein Assay Determines CP Transport Activity in Mutants. 

 

(A-D) and (I-L) Wild-type larvae treated at 3 dpf with 50 µM fluorescein.  (E) cp26.3 

mutant at 3 dpf.  (F) cp9.6 mutant at 3 dpf.  Inset image is acquired at the same exposure 

to the corresponding wild-type in (B).  (G) cp79.8 mutant at 3 dpf.  Inset image is 

acquired at the same exposure to the corresponding wild-type in (C).  (H) cp27.5 mutant 

at 3 dpf.  Inset image is acquired at the same exposure to the corresponding wild-type in 

(D).  (M) cp140.2 mutant at 3 dpf.  (N) cp79.6 mutant at 3 dpf.  Punctate accumulation of 

fluorescein in the brain ventricle is shown with an arrowhead.  (O) cp151.2 mutant at 3 

dpf.  Inset image is acquired at the same exposure to the corresponding wild-type in (K).  

(P) cp44.10 mutant at 3 dpf.  Inset image is acquired at the same exposure to the 

corresponding wild-type in (L).  The larger images for F, G, H, O, and P were taken at a 

lower exposure compared to the corresponding wild-type in order to visualize where the 

fluorescein was concentrating throughout the larvae.  Scale bar is 50 µm.   
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onset of circulation loss describes when we first observed mutants with decreased or no 

circulation.  Not all of the mutants had circulation loss at the same time, but the onset 

describes when we observed the first mutant from a spawn having no circulation.  

Because most of the mutants began to have decreased heartbeat and circulation at 4 dpf, 

after the CP has already developed, we conclude that other factors are regulating CP 

formation.  However, we cannot rule out that circulation is required for CP maintenance.  

We also do not attribute the lack of blood flow to abnormal CP development because we 

identified spontaneous mutants with a normal CP but no circulation as shown in Figure 

3-2.  Because many mutants continued to have a heartbeat and circulation at 3 dpf, which 

are factors essential for brain ventricle expansion (Lowery and Sive, 2005), we did not 

expect ventricle expansion defects in these mutants.  While ventricle morphology varied 

between lines, all had expanded ventricles.   
 

 The mutants identified in our screen will provide the tools necessary to investigate 

several genes associated with CP development and barrier function.  After isolating 

defective genes in these mutants, we can begin to define the correlation between the 

mutated gene and the phenotypic abnormalities we observed.  Although we identified 

mutants with brain necrosis, we do not contribute necrosis alone is a factor responsible 

for abnormal CP development and believe that these processes can be unrelated.  This is 

supported as shown in Figure 3-2, where larvae with brain necrosis developed a normal 

CP.  Furthermore, for the mutants we characterized further, we did not observe the onset 

of necrosis until after the CP had already started to develop for many of the lines, or if 

necrosis was present, it was not near the mCP itself.  We also found larvae that had 

normal morphology overall, but a severely abnormal or absent CP as shown in Figure 

3-1 indicating again that necrosis is not the sole mechanism responsible for abnormal CP 

development and that specific pathways exist in regulation its formation and function.  

We expect some of the genes we identify will be specifically related to a CP defect rather 

than pleiotropy that results in an overall severely abnormal animal.  Pleiotropy is where a 

mutation in one gene can cause multiple phenotypes (Lobo, 2008) 

 

 Recent discoveries have shed light on the importance of the CP and its 

contribution to disease.  For example, transcriptome analysis during early development 

revealed that the CP expresses numerous genes essential for CP function, including those 

for tight junctions, transporters, and metabolic function (Liddelow et al., 2012), 

protecting the brain from potentially harmful insults (Kratzer et al., 2013).  The mutants 

identified in our study will be used to identify genes essential for maintaining epithelial 

barrier integrity as well as genes essential for initial barrier formation.  Reverse genetics 

studies have shown that transcription factors such as Otx2 aid in CP development and 

maintenance (Johansson et al., 2013).  Also, augurin, a protein encoded by the esophageal 

cancer related gene-4 (Ecrg4) and thought to act as a tumor suppressor, has a higher 

expression in the CP than other tissues.  Interestingly, morpholino knockdown of Ecrg4 

in zebrafish results in increased CNS cell proliferation and hydrocephaly (Gonzalez et al., 

2011).  Additional studies in zebrafish showed that the clusterin gene, which encodes a 

secreted glycoprotein that aids in aggregation and contributes to Alzheimer’s disease by 

co-localizing with plaques (Thambisetty et al., 2010), is similar to its human counterpart 

and is expressed in the dCP and mCP (Jiao et al., 2011).  Demonstrating similarities in 
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gene expression in zebrafish and human CP is important when considering the use of 

zebrafish as a disease model for CP-related conditions.  Ultimately, the genes discovered 

from these mutants will provide a better understanding of the genetic and molecular 

mechanisms involved in CP formation and function and provide new insights into how 

these normal processes become altered in disease. 

 

 

Conclusion 

 

 Forward genetic screening is a powerful tool to uncover genetic processes 

essential for development and/or maintenance of specific cell types, tissues, or overall 

morphology of an organism.  We have performed the first forward genetic screen to 

identify mutants with CP defects using GFP as a readout to observe its development over 

time.  Using this unbiased approach, we discovered 10 recessive mutant lines with CP 

phenotypes.  While these mutants also exhibit other abnormalities, we have provided 

evidence that specific pathways essential for CP development do exist by discovering 

mutants with normal morphology and no CP or mutants with severe abnormalities, but 

normal CP development.  Future studies will investigate whether the genes responsible 

for the recessive mutant phenotypes are specific to the CP and play a role in its 

development, function, and maintenance.  
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CHAPTER 4.    POSITIONAL CLONING AND WHOLE-EXOME SEQUENCING 

(WES) IDENTIFIES SART1 AS DEFECTIVE GENE IN CHOROID PLEXUS 

MUTANT 

 

 

Introduction 

 

 The spliceosome consists of a complex network of proteins and small nuclear 

ribonucleoproteins called snRNPs that remove introns from precursor messenger RNA 

(pre-mRNA) to form mature mRNA.  Although the process of splicing was discovered 

more than thirty years ago (Matera and Wang, 2014), the mechanisms of spliceosome 

assembly and splicing regulation are not well understood.  Over 100 proteins have been 

identified in regulating spliceosome assembly or function (Jurica and Moore, 2003).  

Understanding the role these proteins play in splicing is important because a number of 

disorders, such as retinitis pigmentosa (RP) (Tanackovic et al., 2011), amyotrophic lateral 

sclerosis, spinal muscular atropy (Tsuiji et al., 2013) , and chronic lymphocytic leukemia 

(Rozovski et al., 2013) can occur as a result of mutations in splicing factors.   

 

 Here we present a mutation in one of these proteins, squamous cell carcinoma 

antigen recognized by T-cells (sart1), which was discovered from the forward genetic 

screen in zebrafish identifying mutants in CP development.  This mutant line previously 

referred to as cp27.5, not only has defects in CP development but also ventricle 

expansion, eye formation, and CNS and epithelial barrier permeability.  Mutants are 

embryonic lethal dying around late day 4.  We genetically mapped the mutation from 

cp27.5 using bulked-segregant analysis and identified a critical interval along 

Chromosome 21.  We identified the gene as sart1 using WES, which has recently been 

utilized as an effective and time-efficient strategy to identify mutations in lines 

discovered from zebrafish forward genetic screens (Kettleborough et al., 2013; Ryan et 

al., 2013).  Using this approach, we discovered that sart1 has a point mutation containing 

a G to A transition at the donor site of exon 12. We also confirmed by mRNA rescue that 

sart1 is the gene responsible for the phenotypes we described previously in cp27.5 

mutants. 

 

 

Materials and Methods 

 

 

Genomic DNA Isolation 

 

 Adult zebrafish were anesthetized in 0.02% tricaine (Sigma-Aldrich) and tail 

clipped.  As the fish recovered in system water, the tail clip was immediately immersed 

into 50 µL digest buffer (0.2 M NaCl, 10 mM Tris 8.0, 5 mM EDTA, 0.1% SDS, 0.1 

mg/ml Proteinase K).  Samples were incubated overnight at 50⁰.  After brief 

centrifugation, 450 µL of 100% ethanol (EtOH) was added.  Samples were centrifuged at 

21,130 g or 15,000 rpm for 10 min, the supernatant was removed, and 500 µL of 70% 

EtOH added to wash the pellet.  Samples were centrifuged at 21,130 g or 15,000 rpm for 
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5 min.  After removing the supernatant, the samples were stored at room temperature for 

about 30 min to evaporate excess EtOH.  The DNA pellets were resuspended with 50 µL 

of TE buffer (10 mM Tris and 1 mM EDTA, pH 8.0). 

 

 For zebrafish larvae, wild-type and mutants were anesthetized, separated into 1.5 

mL eppendorf tubes, and immersed in 1 mL 100% methanol (MeOH) (Sigma-Aldrich).  

Samples were stored at -20° overnight.  The following day, individual wild-type and 

mutant larvae were transferred into 0.5 mL tubes and the excess MeOH removed.  Once 

all the MeOH evaporated, 10 µL of digest buffer (same as above) was added to each tube.  

Samples were incubated overnight at 50°.  DNA was isolated as described above for 

adults except the volume of 100% EtOH and 70% EtOH was 180 µL and the volume of 

TE buffer was 25 µL. 

 

 

Positional Cloning 

 

 After identifying a mutant line, the Et(cp:EGFP)
sj2

 F2 heterozygous parents were 

each outcrossed to the polymorphic TL strain.  From this outcross, heterozygous hybrid 

adults were isolated based their offspring with the recessive mutant phenotype.  The 

wild-type and mutant offspring from these heterozygous hybrids were collected and their 

DNA was extracted (see above).  A genome scan using 192 polymorphic Z-markers was 

performed with DNA pooled from 30 wild-type and 30 mutant larvae as previously 

described (Muto et al., 2005).  Wild-type and mutant DNA was amplified using the 

Accuprime Taq DNA Polymerase System (Invitrogen).  The resulting PCR products were 

analyzed for genetic linkage by agarose gel electrophoresis.  For fine genetic mapping, 

individual wild-type and mutant DNA was amplified using Platinum PCR Supermix 

(Invitrogen). Z-markers used for genetic mapping were acquired from the zebrafish 

genome database at http://www.ensembl.org/index.html (Flicek et al., 2014).  Additional 

markers were designed by examining the Ensembl genome browser for polymorphic 

regions in the genome (Flicek et al., 2014). 

 

 

Whole-Exome Sequencing and Analysis 

 

 cp27.5 wild-type and mutant larvae (20 each) were collected in MeOH at 3 dpf.  

The 20 larvae were generated from 3 different heterozygous parents.  DNA was extracted 

and using the MagAttract HMW DNA kit (Qiagen) following the manufacturer’s 

instructions.  Values for DNA concentration and purity were obtained by a ND-1000 

NanoDrop Spectrophotometer and Qubit assay.  Concentration was adjusted to the 

required 3 µg/120 µL for sequence capture.  Sequence capture and sequencing was done 

by the Genome Sequencing Facility Hartwell Center for Bioinformatics and 

Biotechnology at St. Jude Children’s Research Hospital.  Paired end 100 cycle 

sequencing was run on a HiSeq 2500 using TruSeq SBS v3 chemistry according to the 

manufacturer’s instructions (Illumina, San Diego, CA.).  From the sequencing results, we 

had coverage of all exons with at least 20x coverage for 80% of the regions and average 

coverage of the target regions was even higher. 

http://www.ensembl.org/index.html
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 From the raw sequencing data, the quality control, read mapping and variant 

calling were performed using CLC Genomic Workbench v6.5 (CLC Bio, Denmark). In 

brief, the reads were trimmed against the sequencing adapters and only reads with a 

sequencing quality greater than 20 and a read length greater than 50 bp were retained. 

The filtered reads were then aligned to the zebrafish reference genome sequence (Zv9 

assembly, 2010), and the lists of single-nucleotide variants (SNV) and indels were 

generated. To identify the causative mutation responsible for the phenotype, we 

compared the variants of mutant with those of wild type, and a region enriched with 

mutant-specific homozygosities was observed at a peak of homozygosity scores defined 

by the percentage of mutant-specific homozygous variants within a 1-Mb window across 

the genome. A candidate mutation was further pinpointed by screening the region for 

nonsense and essential splice mutations.  A diagram of the WES workflow and analysis is 

represented in Figure 4-1.  

 

 

sart1 RNA Rescue 

 

 cDNA from 3 dpf wild-type larvae was amplified using the AccuPrime Taq DNA 

Polymerase System to produce a ~2.5 kb fragment of sart1 open reading frame (ORF).  

After analyzing the PCR product on a 1% gel, the product was cut out of the gel and 

purified using the QIAquick Gel Extraction kit (Qiagen).  Molecular cloning was done to 

insert the sart1 fragment into the PCRII TOPO vector using the PCRII TOPO TA cloning 

kit dual promoter (Life Technologies) and transformed into TOP 10F’ chemically 

competent E. coli (Invitrogen).  Plasmid DNA was purified using the DNA Miniprep kit 

(Qiagen).  The plasmid was then cut using EcoRV and Spe1 restriction enzymes (New 

England BioLabs) to release the sart1 fragment.  The pCS2
+
 vector was cut using SnaB1 

and Xba1 and a ligation reaction was performed to insert sart1 into the pCS2
+
 vector.  

After molecular cloning of pCS2
+
:sart1, DNA was purified using the DNA Miniprep Kit 

(Qiagen).  Purified DNA was linearized using Not1 (New England BioLabs) and 

incubated at 37° for 2 h.  RNase A was added to the reaction and incubated at 37° for 5 

min. 

 

 Following the protocols as outlined in the mMessage machine kit (Ambion), 

transcription-quality plasmid DNA was prepared and RNA was synthesized from the 

linearized DNA plasmid.  The RNA quality was analyzed on a 1% agarose gel and the 

quantity was measured using a ND-1000 NanoDrop Spectrophotometer.  For the rescue, 

approximately 150 pg of sart1 mRNA was injected into single-cell embryos produced 

from sart1 heterozygous parents.  Embryos were observed daily to look for rescue of the 

mutant phenotype.  A scoring system based on the phenotype at 4 dpf was used to 

determine the rescue efficiency.  Larvae were scored as wild-type, mutant, or abnormal.  

Embryos were considered abnormal if there was an observable defect that did not 

resemble a wild-type or mutant phenotype.  After scoring the larvae based on phenotype, 

samples were also collected and genotyped using PCR and Sanger DNA sequencing to 

determine how many mutant larvae were rescued.  The percentage rescued was based on 

the number of mutants (based on genotype) that had wild-type phenotypes.  Abnormal  
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Figure 4-1. Schematic of WES Sequencing Workflow and Analysis. 
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phenotypes for mutants were considered a partial rescue since most “abnormalities” were 

minor compared to phenotypes of uninjected mutants, such as reduced head size or slight 

heart edema.   

 

 

Results 

 

 

Positional Cloning and Whole-Exome Sequencing of cp27.5 Identifies Mutation in 

sart1 

 

 To identify the mutated gene for cp27.5, we performed genetic mapping using 

192 polymorphic markers distributed evenly across the genome.  For cp27.5, we 

identified markers z2363 and z15891 by bulked segregant analysis to map the mutation to 

chromosome 21.  Within this critical interval, we identified the marker z9233 and found 

no recombinants out of 48 meioses.  We then tested additional polymorphic markers and 

counted the number of recombinants on either side of z9233 to refine the critical interval.  

By testing polymorphic markers, BX530031.5 and BX530023.5, selected from the 

zebrafish genome as published in Ensembl Zv9 (Flicek et al., 2014), we narrowed the 

region to ~0.4 Mb.  In total, we analyzed 450 meioses.  A map of the defined critical 

interval is represented in Figure 4-2.  Genes within this region include: sart1 

(NM_001002673.1), rin1a (XP_697152.1), slc29a2 (NM_001012501.2), and dpp3 

(NM_001002683.1). 

 

 After defining the critical interval using positional cloning, we utilized WES 

technology to identify the gene and type of mutation.  We performed WES on cp27.5 

mutants and their wild-type siblings. Using this technique, we isolated a point mutation in 

sart1 containing a G to A transition at the donor site of exon 12.  Upon sequencing 

wild-type and mutant cDNA, we discovered the retention of intron 12 that contained a 

TAA premature stop codon (Figure 4-3).   

 

 

sart1 mRNA Rescues Mutant Phenotype  

 

 To verify sart1 as the causal gene resulting in the phenotypes seen in cp27.5 

mutants, a rescue experiment was done by injecting sart1 mRNA into single-celled 

embryos and observing them at 4 dpf to look for rescue.  We screened 462 uninjected and 

375 sart1 mRNA injected larvae.  While overexpression of sart1 mRNA in wild-type 

embryos did not cause any overt phenotype, sart1 mRNA was able to rescue defects seen 

in mutants such as abnormal CP development, heart edema, curved body, and survived 

past 4 dpf.  Some larvae survived as late as 8 dpf.  From this rescue, we quantified the 

results and found that, based strictly on phenotype, the number of mutants for uninjected 

controls was 23.3%, while mutant larvae from a spawn injected with sart1 mRNA was 

1.5% (Table 4-1).    
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Figure 4-2. Positional Cloning Defines Critical Interval on Chromosome 21. 

 

A critical interval was defined on Chromosome 21 using positional cloning.  For bulked 

segregant analysis, the polymorphic marker z9233 demonstrated linkage having zero 

recombinants identified out of 450 meiotic events.  Additional markers were analyzed 

both proximal and distal to z9233 to define a critical interval of approximately 0.4 Mb.  

The numbers of recombinants on the proximal side are shown in regular type and those 

distal to z9233 are shown in bold italic font.  sart1 lies within the contig sequence 

BX530031.5.    
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Figure 4-3. WES Identifies a Point Mutation in sart1. 

 

In (A), the blue peak is representative of the highest homozygosity score where mutants 

are homozygous within this defined loci along Chromosome 21.  This finding is further 

demonstrated in the panel below where the reference genome contains a guanine (G) (in 

orange) at this position and all mutants have an adenine (A) (in green).  An adenine is 

present in a portion of the wild-type sequence due to the fact that wild-type siblings may 

be heterozygous for the mutation.  (B) and (C) confirm that the gene containing the 

mutation is sart1 as shown by a point mutation at the end of exon 12 (red asterisk) in (B).  

(C) DNA Sanger Sequencing of cp27.5 wild-type and mutant cDNA confirms the GA 

transition and reveals the retention of intron 12 and introduction of a premature stop 

codon (TAA).   
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Table 4-1. sart1 mRNA Rescues Mutant Phenotypes. 

 

Samples Total Number Screened Morphologically Mutant 

(%) 

No Injection Control 462 23.3% 

sart1 mRNA 375 1.5% 

 

 

 To confirm that cp27.5 mutants were among those rescued, we collected 

uninjected cp27.5 wild-type and mutant larvae and sart1 mRNA injected larvae and 

sequenced individual DNA.  We sequenced a total of 90 larvae with 20% of those having 

a mutant genotype.  Not surprisingly, we identified mutants with wild-type phenotypes as 

represented in Figure 4-4.  Some mutants appear to have complete rescue as shown in the 

lower right-hand panel, while others had slight heart edema, smaller head size and 

somewhat larger CP compared to wild-type (presented in two upper panels under Rescue 

in Figure 4-4).  Sequencing results are quantified in Figure 4-5.  Based on the 

sequencing data, we identified 10% of mutants we scored as having a wild-type 

phenotype.  The other 10% were scored as abnormal or having only a partial rescue.  

However, even partially rescued mutants are far more phenotypically normal compared to 

uninjected mutants shown in the middle panel of Figure 4-4.   

 

 

Discussion 

 

 A recent study has cited that more than 9,000 mutants have been discovered as a 

result of forward genetic screens in zebrafish, but many of the mutants have not been 

further studied and 62% of them are uncloned (Obholzer et al., 2012).  This is because of 

the limitations involved in positional cloning including time, money, and effort it takes to 

identify the gene (Obholzer et al., 2012).  Hundreds of PCRs and sequencing of multiple 

candidate genes is sometimes necessary to identify the mutation.  Other times, the gene is 

never identified simply because of its location along the chromosome, such as near the 

telomere where multiple recombination events can occur.  New technology with next 

generation sequencing is redefining the way genes and their mutations are discovered.  

WES has been used for many studies in humans and animal model systems.  In human 

samples, sequences can be compared between parents and their children to isolate de 

novo mutations, between unrelated persons to identify new variations of the same gene, 

or a sequenced region within the genome can be compared between multiple persons 

within the same family to look for variations of a particular gene (Bamshad et al., 2011).  

These studies have identified genes related to a number of human conditions including 

hearing loss, cardiovascular disease, and cancer.  An extensive list of the mutations 

related to these conditions is presented by Rabbani et al. (Rabbani et al., 2014).   

 

 In a recent study, WES was used in zebrafish to identify the gene mutation for 

four mutants all of which were characterized by having kidney cysts.  Using this 

approach, they were able to identify the genes and types of mutations, including 

nonsense, splice site, and missense mutations for all four mutants (Ryan et al., 2013).  A  
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Figure 4-4. sart1 Rescues Mutant Phenotypes. 

 

Dorsal bright field and fluorescent images are shown for three uninjected wild-type, three 

uninjected mutant, and three sart1 injected mutant larvae in the left, middle, and right 

panels, respectively.   Injection of sart1 mRNA resulted in mutants with phenotypes 

similar to wild-type larvae.  The three rescued mutants represent a range of phenotypes 

we observed after sart1mRNA injection.  Scale bars are 100µm for bright field images at 

3× magnifications and 50µm for fluorescent images acquired at 9 × magnifications. 
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Figure 4-5. Quantification of sart1 Rescue. 

 

Sequencing a total of 90 cp27.5 wild-type and mutant larvae identified 20% with a 

mutant genotype.  Of the total number of mutants 10% were scored as wild-type and 10% 

were scored as abnormal based on phenotype.  The 10% abnormal were considered to be 

partially rescued.  Error bars are based on the mean of 3 rounds of injections using 

standard error. 
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unique study by Kettleborough et al. identified protein coding genes in zebrafish by 

performing WES on the F1 generation and isolating nonsense and splice site mutations 

(Kettleborough et al., 2013).   

 

 WES offers an advantage over WGS in that it can provide better coverage of the 

genome.  Coverage is described as the number of times the genome is sequenced and can 

be calculated as follows in Equation 4-1: 

 

                                                             C=LN/G           (Eq. 4-1) 

 

Where C is coverage, G is the haploid genome length, L is the read length, and N is the 

number of reads.  This equation is also known as the Lander/Waterman equation (Lander 

and Waterman, 1988).  Although WGS usually has 4x coverage or less, we had 20x 

coverage or greater for our samples using WES.  While WES is improving, there are still 

setbacks that can occur with this strategy.  For example, a gene may be undetected if it is 

novel and unrecognized by the exome capture, there may be poor coverage of that region, 

or incorrect variants might be recognized if the reads become incorrectly mapped or 

unaligned (Bamshad et al., 2011).    

 

 In our current study, we found that WES provided a significant advantage in 

regards to the reduced time required to identify the gene and the type of mutation.  By 

first defining the critical interval using positional cloning, we were able to validate WES 

as a suitable method for identifying genes in zebrafish since both strategies isolated the 

same genomic region.  However, had we not performed WES, traditional mapping 

strategies would have required additional time and effort sequencing multiple genes 

within the critical interval.  Studies in mice have also shown that by using course genetic 

mapping to identify the chromosome location followed by WES significantly reduces the 

“validation burden” and helps to eliminate more false positives from the data (Fairfield et 

al., 2011). 

 

 For our study, we decided to sequence both mutant and wild-type siblings and 

align the sequences to the Ensembl ZV9 reference genome (Flicek et al., 2014) rather 

than compare mutants to the reference genome alone.  While this approach is more costly 

by having two samples, we were able to more efficiently circumvent any nucleotide 

changes that may simply be polymorphic to the strain.  In addition, the DNA used for 

sequencing was from larvae whose parents had been outcrossed into a polymorphic 

strain.  This step creates greater diversity throughout the genome except at the locus 

containing the mutation, since the phenotype caused by the gene was specifically selected 

for after outcrossing. In scoring for homozygous regions, some wild-type samples also 

contained an adenine as seen in the mutants.  This is because the wild-type sibling DNA 

also contained heterozygous carriers for the mutation.  Comparing homozygous wild-type 

and homozygous mutant siblings may provide a more obvious map position of the 

mutation. 

 

 Additional validation of sart1 as the target gene was done by performing mRNA 

rescue experiments.  Injections of mRNA into single-cell embryos prevented forebrain 
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necrosis at 2 dpf which is the earliest detectable phenotype in cp27.5 mutants.  Although 

mRNA rescue is transient and is not sustained far past 4 dpf in zebrafish, we were able to 

rescue phenotypes that begin at 3–4 dpf such as heart edema, small head and eyes, 

reduced heartbeat and circulation.  Mutants also had a longer lifespan than their 

uninjected siblings.  Important to this study, we were also able to restore normal CP 

development.  From this analysis, a number of wild-type larvae were scored as abnormal.  

Abnormal phenotypes for wild-type larvae may be due to off target effects of the 

injection.  Also, when sequencing wild-type and mutant DNA from sart1 mRNA 

injections, we identified only 20% as mutant rather than the 25% predicted by Mendelian 

genetics.  We attributed the decreased percentage due to damaged embryos from 

microinjection that may not have survived past early development. For uninjected 

samples, we observed between 23-25% mutant.  Since this gene was identified from a 

genetic screen for the CP, future studies will determine whether sart1 is directly affecting 

CP formation and investigate potential pathways sart1 may be activating or suppressing 

that contribute to CP development and function.  Because sart1 is involved in formation 

of the spliceosome that converts precursor mRNA into mature mRNA, defects in the 

splicing process may produce altered transcripts that result in defective translation and 

formation of proteins necessary for CP formation.  The lack of coalescence in CPe may 

be due to alternative splicing in transcripts encoding for tight junction or adherens 

proteins or signals involved in cell survival and migration. 

 

 

Conclusion 

 

 Supplemental to previous publications, our current study endorses the use of WES 

in zebrafish by identifying the gene sart1precisely within the critical interval we defined 

previously by positional cloning.  We confirmed WES data using Sanger DNA 

sequencing to sequence wild-type and mutant cDNA.  In doing so, we identified a 

retained intron and the introduction of a premature stop codon in mutant samples.  Using 

mRNA rescue, we identified 10% of mutants having wild-type properties with another 

10% partially rescued.  These experiments further validated that sart1 is the gene 

responsible for the mutant phenotype.  Future studies will characterize sart1 mutants to 

define its role in CNS development and WES will be used to map the gene for additional 

mutants from the genetic screen described in Chapter 3. 
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CHAPTER 5.    CHARACTERIZATION OF SART1 MUTANT REVEALS 

UP-REGULATION OF GENES INVOLVED IN APOPTOSIS AND 

DOWN-REGULATION OF VISION-RELATED GENES 

 

 

Introduction 

 

 Sart1 also known as U4/U6.U5 tri-small nuclear ribonucleoprotein-associated 

protein 1, HAF in mouse, and Snu66 in yeast, is a complex protein involved in U4/U6.U5 

tri-snRNP recruitment to the spliceosome (Makarova et al., 2001).  Sart1 has two protein 

forms. One is an 800 amino acid sequence located in the nucleus of proliferating cells and 

contains a leucine zipper motif suggesting it may bind to DNA (Shichijo et al., 1998).  

Another 259 amino acid protein is synthesized by a -1 frame shift in an internal 

ribosomal entry site that has been shown to be expressed in the cytosol in squamous cell 

carcinomas (Shichijo et al., 1998).   

 

 In addition to splicing, Sart1 has been implicated in a number of different 

processes such as cell cycle arrest and apoptosis.  It has been suggested as a target for 

gene therapy due to its activation of apoptosis and its role as an antigen recognized by 

cytotoxic T lymphocytes (CTLs) in certain types of cancer (Hosokawa et al., 2005).  

More recently, Sart1 has been shown to contribute to drug resistance in cancer cells.  

Silencing of this gene resulted in increased apoptosis in colorectal cancer cells in 

response to 5-Fluorouracil and SN38 drug treatment (Allen et al., 2012).  Similarly, Sart1 

has been shown to aid in Mcl1 activity, a pro-survival factor and contributor to drug 

resistance in cancer (Laetsch et al., 2014).  Knockdown of Sart1 caused Mcl1-dependent 

neuroblastoma cells to become more responsive to treatment (Laetsch et al., 2014).   

 

 While splicing genes are thought to be ubiquitously expressed, recent evidence 

suggests that certain components of the spliceosome may be temporally or spatially 

regulated.  Studies have identified spliceosome components such as U2 that have high 

RNA levels specifically in the cerebellum and mutations in this gene result in 

neurodegeneration (Jia et al., 2012).  In zebrafish, we observed that sart1 is expressed 

specifically in the brain and is actually up-regulated in sart1 mutants providing further 

evidence that splicing components may be regulated or expressed in specific tissues and 

may result in tissue-specific phenotypes.   

 

 Using RNA-Seq analysis, we identified that sart1 itself is up-regulated due to the 

mutation described previously in Chapter 4.  It also results in up-regulation of genes 

essential to the apoptotic pathway such as tp53 and mdm2.  Conversely, this mutation 

causes genes regulating eye development and function to be down-regulated.  This 

analysis confirmed our observations of increased cell death observed in the brain and 

eyes and lack of retinal lamination in these mutants.  We also observed an up-regulation 

of other components of the spliceosome such as U6 SnRNA-Associated Sm-Like Protein 

(lsm7) and pre-mRNA processing factor 31 (prpf31), which may indicate a compensation 

mechanism due to defects in sart1 function.   
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 While previous studies have identified the major role of Sart1 as recruiting the 

U4/U5/U6 tri-snRNP to the spliceosome, understanding how Sart1 regulates the 

expression of other genes will reveal how spliceosome components not only play a role in 

splicing, but also other cellular processes such as apoptosis and the cell cycle and 

conditions such as degeneration and cancer. 

 

 

Materials and Methods 

 

 

Reverse Transcriptase-PCR (RT-PCR) 

 

 Larvae were collected on ice in 50 µL Trizol (Life Technologies) and stored 

at -80° until use.  Samples were homogenized with a dounce for 30 s.  Additional Trizol 

was added to bring the final volume to 100 µL.  Samples were mixed and incubated at 

RT for 5 min.  Chloroform was added (0.2 mL for every 1 mL of Trizol) and samples 

were mixed and incubated at RT for 5 min.  Samples were centrifuged at 4° at 12,000 x g 

for 15 min.  The top aqueous layer was transferred to a new tube.  Isopropanol (0.5 mL 

for every 1 mL of original volume of Trizol) and 2 µL of glycogen were added to the 

clear aqueous solution followed by mixing and incubating a RT for 5 min.  Samples were 

centrifuged at 4° at 12,000 x g for 10 min.  Isopropanol and chloroform were removed 

leaving a RNA pellet.  The pellet was washed in 100 µL 75% ethanol.  Wash volumes 

were the same as the original Trizol volume.  Samples were centrifuged at 4 at 7,500 x g 

for 5 min.  Ethanol was removed and the pellet was air-dried for 20 min or until excess 

ethanol evaporated.  RNA was resuspended in 20 µL nuclease-free water. 

 

 cDNA synthesis was performed using SuperScript® III Reverse Transcriptase 

(Life Technologies).  A mixture of 50 µM oligo dT, 10mM dNTP, and 8 µL of RNA 

product was incubated at 65° for 5 min and placed on ice for > 1 min.  A mixture of 10 x 

RT buffer, 25 mM MgCl2, 0.1 M DTT, RNAse Out, and Superscript III was added to the 

mix containing the RNA.  The reaction was incubated at 50° for at least 50 min.  The 

reaction was terminated by incubating at 85° for 5 min.  Samples were chilled on ice and 

1 µL of RNAse H was added to each reaction.  Samples were incubated at 37° for 20 min 

and then stored at -20°.  cDNA was diluted 1:5 in water for PCR.  RT-PCR was done 

using the AccuPrime Taq DNA Polymerase System (Invitrogen).  Primer sequences 

included sart1F1:5’-CGTTTTTAAGCCAAAGTCTGTGCTG-3’ and sart1R1: 

5’-CACCTCCTTCTTTCTCGTCATCCTT-3’.  Samples were analyzed on a 1% agarose 

gel. 

 

 

Whole Mount In Situ Hybridization 

 

 The RNA probe was synthesized from the PCRII TOPO vector containing the 2.5 

kb sart1 fragment as mentioned above using the DIG RNA Labeling Kit (SP6/T7) 

(Roche).  A probe for deltaC was also synthesized to use as a control.  The probes were 

purified using illustra Probe Quant G-50 micro columns (GE Healthcare) and 
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resuspended in 80 µL hybridization buffer.  Hybridization buffer was prepared as 

described in Thisse and Thisse (Thisse and Thisse, 2008).  Probes were analyzed on a 1% 

agarose gel to determine the quality of the RNA. 

 

 cp27.5 wild-type and mutant larvae were collected at 3dpf were anesthetized in 

0.02% tricaine and fixed in 4% paraformaldehyde (PFA) (Electron Microscopy Sciences) 

made in 1x Dulbecco’s PBS (Sigma, cat. no. D-5652) and Diethyl pyrocarbonate (DEPC) 

(Sigma Aldrich) -treated water.  Larvae were stored at 4° for 16 h.  Samples were then 

washed in 100% methanol (Sigma Aldrich) at room temperature for 15 min and stored in 

fresh methanol at -20° until use.  The following procedure was carried out in 1.5 mL 

Eppendorf tubes:  Samples were rehydrated to 1x PBT (phosphate buffered saline/ 0.1% 

tween 20 (Sigma) as described previously by Thisse and Thisse (Thisse and Thisse, 

2008).  Larvae were digested with 10 µg/mL Proteinase K (New England Biolabs) at 

room temperature for 30 min followed by treatment with 4% PFA for 20 min at room 

temperature.  After washing 4 times for 5 min in 1x PBT, larvae were prehybridized for 2 

h at 67° in 700 µL hybridization buffer.  Larvae were then incubated in 200 µL of 

hybridization buffer containing probe at 67° for approximately 48 h.  Probes were used at 

a 1:100 dilution.  After incubation, larvae were washed following the series described in 

Thisse and Thisse (Thisse and Thisse, 2008) except for the hybridization buffer/ 2x SSC 

series was done for 15 min each and the 0.2x SSC/ PBT series was done for 5 min each.  

Larvae were blocked in 2% lamb serum (Gibco) made in PBT at room temperature for 1 

h.  After blocking, larvae were incubated in anti-DIG antibody (Roche) at 1:5000 made in 

blocking buffer at 4° overnight.  Washes were carried out the next day as described in 

Thisse and Thisse (Thisse and Thisse, 2008).   

 

 To develop, 500 µL alkaline phosphatase buffer containing 

5-Bromo-4-chloro-3-indolyl phosphate/nitro-blue tetrazolium (BCIP/NBT) 

(Sigma-Aldrich) was added to the larvae in 12 well plates.  Larvae were incubated in the 

dark and observed periodically until a purple precipitate appeared.  The reaction was 

terminated by removing staining solution and adding 1x PBS/1 mM EDTA followed by 

washes in 1x PBS.  Samples were stored in >99% glycerol (Sigma-Aldrich) and imaged 

on a Nikon SMZ1500 epifluorescence stereomicroscope with Nikon NIS-Elements 3.1 

software.  All reagents were prepared following the protocol as described in Thisse and 

Thisse (Thisse and Thisse, 2008). 

 

 

Immunohistochemistry (IHC) 

 

 IHC was performed as described in on pg. 30.  Primary antibodies included rabbit 

anti-activated Caspase 3 (1:200; Cell Signaling), rabbit anti-Glut1 (1:200; Novus), mouse 

anti-SV2 (1:300; Developmental Studies Hybridoma Bank), mouse anti-Zpr1 (1:100; 

ZIRC), mouse anti-HuC/HuD neuronal protein (1:500; Life Technologies), and rabbit 

anti-S100β (1:1000; Dako).  Secondary antibodies included Alexa Fluor goat anti-rabbit 

488 (1:200; Invitrogen) and Alexa Fluor goat anti-mouse 555 (1:200; Invitrogen).  

Antibody dilutions were prepared in blocking buffer.  Sections were counterstained with 

1 µg/mL DAPI (Roche) for 1 min, rinsed briefly in PBS, and mounted with Fluoromount 
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(Electron Microscopy Sciences).  Images were taken on a Nikon C1Si laser scanning 

confocal microscope and analyzed using NIS-Elements AR 3.0 software.   

 

 

Whole Mount IHC 

 

 Whole mount IHC was performed as described on pg. 30.  Antibodies used 

included rabbit anti-GFP (1:100; Invitrogen), rabbit anti-activated Caspase-3 (1:100; Cell 

Signaling), mouse anti-Zpr1 (1:50; ZIRC), and mouse anti-Cldn5 (1:100; Invitrogen), 

Alexa Fluor goat anti-rabbit 488 (1:200; Invitrogen) and Alexa Fluor goat anti-mouse 555 

(1:200; Invitrogen).  Samples were imaged on Nikon C1Si laser scanning confocal 

microscope.  Z-stacks were compiled to create maximum intensity projection images 

using Nikon NIS-Elements 3.0 imaging software. 

 

 

Western Blot 

 

 An equal number of wild-type and mutant larvae were each collected in a 1.5mL 

Eppendorf tube, the embryo media removed, and stored at -80°C.  Homogenization 

buffer (2x) (Mini Complete tablet, Roche) containing 0.002% DNase (Ambion) was 

added and larvae were homogenized on ice.  Samples were removed from ice and 

SDS/gel loading buffer containing DTT was added to the homogenate.  Samples were 

then placed in boiling water for 5 min, cooled afterwards at RT, and centrifuged briefly 

before gel loading.  Samples and the Precision Plus Kaleidoscope Protein Standard ladder 

(BioRad) were run on a 4-15% polyacrylamide gel (BioRad) at 200V for 30’ at RT.  

Proteins were transferred to a nitrocellulose membrane using the Trans-Blot Turbo 

Transfer System (BioRad).  Following protein transfer, the nitrocellulose membrane was 

blocked in 5% milk for 1 hr.  Membranes were incubated in 5mL of primary antibody at 

4°C overnight.  The membrane was then washed in 1x Tris-buffered saline/0.1% Tween 

(TBST) at RT and incubated in 20mL of secondary antibody for 1hr at RT.  After 

incubation, the membranes were washed in 1x TBST and imaged using LI-COR Odyssey 

1393 and Odyssey Infrared Imaging System Version 3.0.  Primary antibodies included 

rabbit anti-p53 (1:500; GeneTex) and mouse anti-actin (1:1000; Sigma Aldrich).  

Secondary antibodies included goat anti-rabbit IRDye ® 680 (1:20,000; LI-COR) and 

goat anti-mouse IRDye ® 800 CW (1:15,000; LI-COR). 

 

 

Doxycycline Treatment 

 

 cp27.5 wild-type and mutant larvae were treated at 24 hpf with 50 µg/mL 

doxycycline (ClonTech).  Larvae were observed at 3dpf to look for GFP expression in the 

CNS and imaged using a Nikon SMZ1500 epifluorescence stereoscope and Nikon 

NIS-Elements 3.1 software.   
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Fluorescent Tracer Injections 

 

 Wild-type and mutant cp27.5 larvae were anesthetized in 0.02% tricaine and 

co-injected intravenously into the common cardinal vein with approximately 1.8 nL of 10 

mg/mL 3-kDa Cascade blue dextran, 10-kDa rhodamine dextran, and a 40-kDa anionic 

fluorescein dextran (Invitrogen).  Injections were performed using a micromanipulator 

and a pneumatic picopump (World Precision Instruments).  Immediately after injection, 

larvae were embedded in 1.2% low-melting-point agarose (Invitrogen) made in egg 

water.  Larvae were imaged within 30 min post-injection on a Nikon C1Si confocal 

microscope and analyzed using Nikon EZC1 3.91 software. 

 

 

RNA-Seq  

 

 RNA was extracted as described before (see RT-PCR pg. 81) from wild-type and 

mutant cp27.5 larvae at 72 hpf.  Samples were submitted to the Genome Sequencing 

Facility Hartwell Center for Bioinformatics and Biotechnology at St. Jude Children’s 

Research Hospital for QC and quantification analysis and sequencing.  Approximately 

500 ng total RNA was used to generate libraries with the TruSeq RNA v2 kit according 

to the manufacturer’s instructions (Illumina, San Diego, CA.).  PolyA-selected RNAs 

from wild-type and mutant zebrafish were sequenced using Illumina HiSeq 2500.  The 

raw 100-bp pair end reads were mapped to zebrafish genome (Zv9) using STAR (Dobin 

et al., 2013).  Duplicated reads were marked using Picard (http://picard.sourceforge.net/). 

The detailed mapping statistics are listed in Table 5-1.  Considering genome duplication, 

FPKM (fragments per kilobase of exon per million fragments mapped) for each RefSeq 

gene was calculated as following: first fragments mapped to each exon region of a gene, 

regardless of their genomic location, were marked and summed up as the gene counts.  

The final FPKM value for the gene was calculated as shown in Equation 5-1: 

 

                                     FPKM = Fgene*1000*1000,000/(Fallexon*Lgene) (Eq. 5-1) 

 

Where Fgene is the total fragments mapped to a gene, Fallexon is total fragments mapped to 

exonic region in Zv9, and Lgene is size of unique exonic bases for the gene.  Differential 

expression analysis was done using purely fold change between the mutant and wild type 

cells.  GO analysis was done using DAVID (Huang, 2009a, b) with differentially 

expressed genes that have moderate expression level (FPKM>0.1). 

 

 

Quantitative Real Time PCR (qRT-PCR) 

 

 RNA was extracted from nine cp27.5 wild-type and nine cp27.5 mutant larvae 

and cDNA was synthesized using the same method as described in RT-PCR on pg. 81.  

RNA concentrations were normalized between wild-type and mutant prior to DNAse I 

treatment.  Samples were treated with DNAse I (Ambion) and 10x Reaction buffer made 

in DEPC water at 37˚ for 15 min followed by treatment with 25 mM EDTA (Ambion) at 

http://picard.sourceforge.net/
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Table 5-1. Mapping Statistics of RNA-Seq Data. 

 

Sample Reads Mapped NonDupMapped Mpd% Dup% 

cp27.5 

Wild-type 

61515460 58536062 45999884 95.16 21.42 

cp27.5 

Mutant 

99288072 94481824 74744636 95.16 20.89 

 

Mdp (mapped); Dup (duplicate). 

 

 

65˚ for 15 min to inactivate DNAse I.  Samples were then placed on ice for 1 min.  After 

cDNA was synthesized, 20 ng of cDNA was used per reaction for quantitative real-time 

PCR (qRT-PCR).  Primers were designed using NCBI Primer-BLAST and prepared at 

500 nmol..  qRT-PCR was performed using SYBR ® Green PCR Master Mix (Life 

Technologies) on a 7500 Fast Real Time PCR machine (Applied Biosystems) and 

analyzed using 7500 Software v2.0.6.  Relative gene expression was calculated using the 

Delta Delta CT (ddCt) method relative to the reference gene β-actin.  A bar graph 

showing the normalized fold change in mutant compared to wild-type was made in 

GraphPad Prism.  Error bars are based on the mean of 3 rounds of injections using 

standard error.  The primer templates used for each gene are found in Table B-1.   

 

 

Results 

 

 

sart1 mRNA Is Maternally Derived and Expressed in the Zebrafish Brain 

 

 To determine when sart1 is expressed, we performed RT-PCR using cDNA from 

day 0 to day 5 wild-type samples.  We observed sart1 expression for each time point and 

also established that sart1 is maternally derived based on its expression at day 0 (Figure 

5-1A).  Because we observed phenotypes primarily within the head and eye region in 

cp27.5 mutants, we were curious to determine whether sart1 is spatially or temporally 

regulated within these regions or ubiquitously expressed.  We looked at three 

developmental time points to determine sart1 expression: 48 hpf when we begin to 

observe mutant phenotypes, 72 hpf, and 96 hpf when mutants begin to deteriorate.  Using 

whole-mount in situ hybridization, we observed sart1 localized in the head at 48 hpf 

(Figure 5-1B).  This expression was consistent throughout development although it 

appeared to become less prominent in this region by 96 hpf (Figure 5-1B).  We also 

wanted to see whether there were differences in expression between cp27.5 wild-type and 

mutant.  While sart1 was seen in the head at 72 hpf for both wild-type and mutant, sart1 

was more highly expressed in mutant compared to wild-type (Figure 5-1C).  We do not 

contribute increased expression to increased permeability of the probe in mutant due to 

the fact that the positive control, deltaC, was not intensified in mutants (Figure 5-2).  

Interestingly, deltaC expression which is normally localized in the brain and eyes was 

disordered and reduced in cp27.5 mutants.   
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Figure 5-1. RT-PCR and Whole Mount In Situ Hybridization Identifies sart1 

Expression.     

 

(A) RT-PCR shows sart1 expression from day 0 to day 5 in zebrafish larvae including a 

water negative control (-).  (B) Whole mount in situ hybridization shows sart1 expression 

localized to the brain at 48 hpf, 72 hpf, and 96 hpf.  (C) Whole mount in situ 

hybridization shows localization and relative expression levels of sart1 incp27.5 

wild-type and mutant larvae at 72 hpf.  Images are ordered as lateral view at low 

magnification, lateral view at high magnification, and dorsal view at high magnification 

for both antisense (left column) and sense (right column).  Scale bars are 50 µm.   
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Figure 5-2. deltaC Expression Is Disordered in cp27.5 Mutants.   

 

Whole mount in situ hybridization using deltaC as a control probe identified disordered 

expression in cp27.5 mutants (bottom panel) compared to wild-type (top panel).  In 

wild-type, deltaC is localized to the retina proliferative zone and brain ventricular zone.  

deltaC intensity is decreased in cp27.5 mutant.  While the probe does label the ventricular 

zone and eyes, the patterning is altered in mutant.  Scale bars are 50 µm. 
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sart1 Mutants Have Altered Protein Expression of Brain and Eye Markers Along 

with Increased Activated Caspase 3 

 

 Because sart1 expression was localized to the brain we wanted to determine if 

there were other proteins in this region whose expression may be affected by sart1 

up-regulation.  Using IHC, we looked at Zpr1, a marker that labels the pineal gland in the 

brain and photoreceptors in the eye.  cp27.5 mutants had little to no Zpr1 expression in 

the eye (Figure 5-3A and 5-3B).  Counterstaining with DAPI revealed that retinal 

lamination was also absent.  However, Zpr1 expression was present in the pineal gland in 

mutants indicating that not all Zpr1 expression was affected by sart1 (Figure 5-4).  

Another protein, SV2, that labels synaptic vesicles in the brain and eye, was also affected.  

Not surprisingly, mutants had no SV2 expression in the eye (Figure 5-3C and 5-3D).  

However, SV2 was present in the brain and appeared to be slightly increased compared to 

wild-type.   

 

 Because we did not detect expression of Zpr1 and SV2 in the eye and because 

mutations in splicing factors have previously been shown to contribute to retinal 

degeneration, (Chen et al., 2014; Yin et al., 2011) we hypothesized that cells in the eye 

may be undergoing apoptosis.  To test this hypothesis, we used an activated Caspase-3 

antibody.  While no activated Caspase-3 was detected in cp27.5 wild-type larvae (Figure 

5-3E), it was significantly expressed throughout the eye of cp27.5 mutants (Figure 

5-3F).  Caspase-3 was also detected in the dorsal region of the brain near the ventricle 

(Figure 5-3F inset and Figure 5-5).  To determine if vasculature was affected, we used 

Glut1, to visualize blood vessels in the brain and eye.  While mutants do have blood 

vessel formation, they are not as numerous and extensive as those seen in wild-type 

(Figure 5-3G and 5-3H).  We also examined neuronal markers such as HuC labeling 

neurons and S100β detecting astrocytes.  HuC could be detected in mutant brain, but little 

if any was present in the eye (Figure 5-3I and 5-3J).  Because the original line from 

cp27.5 was generated using the Tet-On system containing a HuC promoter driving GFP 

expression, we confirmed these results by treating wild-type and mutant larvae with 

doxycycline to induce neuron-specific GFP expression.  As seen with the HuC antibody, 

the brain and spinal cord contain HuC expression in wild-type and mutant, but there is 

little to no expression in the eye for mutants (Figure 5-6).  For S100β, we detected 

expression in the brain and eye of wild-type larvae (Figure 5-3K), but detected little if 

any expression in mutant (Figure 5-3).  Overall, these findings suggested that sart1 is 

affecting expression of genes specifically expressed in the eye and occasionally in the 

brain, ultimately resulting in cell death.  

 

 

sart1 Mutants Have Increased Permeability in the Brain Ventricle 

 

 Although there appeared to be a reduced number of blood vessels in the brain, we 

wanted to examine whether reduced vasculature led to increased permeability throughout 

the larva.  We injected fluorescent tracers of different molecular weights intravenously 

into wild-type and mutant at 2 dpf and looked for leakage.  Because the increased 

permeability may be size-selective, we co-injected a 3-kDa cascade blue, a 10-kDa 
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Figure 5-3. IHC Characterizes cp27.5 Mutants. 

 

IHC identifies additional abnormalities in protein expression in cp27.5 mutants at 3 dpf.  

All sections are counterstained with DAPI (blue).  Zpr1 (red) labels photoreceptors in the 

eye which are present in wildtype (A) but not in mutant (B).  SV2 labels synaptic vesicles 

within the brain and as seen within the inner plexiform layer of the eye in wild-type (C).  

SV2 is present in the brain, but absent in the eye in mutant (D).  Caspase 3 is not 

expressed in wild-type (E), but is prominent in the eyes in mutant (F).  Mutant brain also 

contains punctate Caspase 3 expression (inset).  Glut1 is noticeably expressed in brain 

and eye vasculature in wild-type (G), but mutants have faint Glut1 expression in brain 

vasculature (arrows) and eye (H).  HuC is expressed in neurons throughout the brain and 

eye in wild-type (I).  HuC is expressed in the brain in mutant; however it is not as 

organized as wild-type and only remnants of HuC are detected in mutant eye. (J) S100β 

labels astrocytes in the brain and eyes in wild-type (K), but is greatly reduced and 

sporadic in the brain and eyes of mutant (L).  Scale bars are 50 µm.   
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Figure 5-4. Zpr1 Is Expressed in the Pineal Gland in cp27.5 Mutants. 

 

(A) Wild-type cp27.5 larvae at 4 dpf with GFP (green) in the dCP (open arrowhead) and 

mCP (arrow) and Zpr1 expression (red) in the pineal gland (filled arrowhead) and eyes.  

(B) Mutant cp27.5 larvae at 4 dpf with GFP (green) in the dCP (open arrowhead) and 

mCP (arrow) and Zpr1 expression (red) in the pineal gland (filled arrowhead).  Mutants 

have no Zpr1 expression in the eye.  dCP, diencephalic choroid plexus; mCP, 

myelencephalic choroid plexus.  Scale bar is 50 µm.    
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Figure 5-5. Activated Caspase-3 Is Expressed in cp27.5 Mutant Brain. 

 

Whole mount IHC with activated Caspase-3 antibody reveals expression in the dorsal 

midline and eye in cp27.5 mutants (right column).  Activated Caspase-3 was not detected 

in cp27.5 wild-type (left column). Scale bars are 50 µm. 
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Figure 5-6. Doxycycline Induces GFP in the CNS of cp27.5 Larvae. 

 

cp27.5 larvae
 
treated with doxycycline induces the TetON system using the HuC 

promoter resulting in GFP expression throughout the CNS.  Wild-type larvae (shown on 

left and upper sides) express GFP in the brain, spinal cord, and eyes.  Mutant larvae 

(shown right and bottom sides) express GFP in the brain and spinal cord but little to no 

expression in the eyes.  Scale bars are 50 µm.   
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rhodamine, and a 40-kDa fluorescein dextran.  While the 3-kDa and 10-kDa tracers 

leaked into the brain ventricle in wild-type, it did not penetrate into the brain itself or 

surrounding areas.  In mutants, these tracers entered the brain ventricle, but they were not 

confined to the ventricle and leaked into nearby tissues (Figure 5-7A-D).  In wild-type, 

the 40-kDa tracer was retained within the vasculature (Figure 5-7E-F).  Because this 

tracer remained within the blood vessels, we were able to observe reduced vasculature 

throughout the brain and abnormal vascular patterning around the eye in cp27.5 mutants.  

However, this phenotype was restricted only to these regions.  Vascular patterning and 

permeability along the tail was normal (Figure 5-7G-H).  

 

 

RNA-Seq Analysis Identifies Up-Regulated Apoptotic Genes  

 

 To determine what genes are affected by this specific mutation in sart1, we 

performed an RNA-Seq analysis and looked for up or down-regulation of genes 

throughout the zebrafish genome by comparing cp27.5 wild-type and mutant RNA 

expression levels.  The complete analysis is found in Appendix B. SupplementalFile1.  

Because Sart1 is involved in spliceosome assembly, a process that occurs ubiquitously in 

all cell types, we expected to identify dysregulation of genes involved in a number of 

processes.  Because the entire RNA-Seq data is too extensive to be described here, we 

have reported in the following paragraphs only the genes we confirmed to be up or 

down-regulated by qRT-PCR (Table 5-2).  The fold change normalized to β-actin for 

each gene is found in Figure 5-8.  For a more widespread look at the genes analyzed by 

RNA-Seq and their relative expression, please refer to Table B-2.   

 

 From the RNA-Seq analysis, we identified up-regulation of sart1 in mutants, thus 

confirming the whole mount in situ hybridization data showing elevated sart1 expression 

in the brain compared to wild-type.  As mentioned previously, sart1 has been 

demonstrated to be involved in apoptosis where it appears to play a duel role by inducing 

cell cycle arrest(Hosokawa et al., 2005), but also aiding in drug resistance in cancer cells 

(Laetsch et al., 2014).  One of the more highly up-regulated genes was tp53.  While the 

tp53 transcript was up-regulated, we were also interested to see whether p53 protein was 

increased.  By performing Western blot analysis, we observed that both wild-type and 

mutant had a faint band at the predicted protein size of 42 kDa.  However in cp27.5 

mutants, a larger and highly expressed band was detected closer to 50 kDa, and another 

band, while not as prominent, was detected to be greater than 50 kDa.  These bands are 

faintly present in wild-type samples perhaps due to heterozygous siblings in the wild-type 

pool (Figure 5-9).  We also observed an increase in mdm2 expression, which acts as an 

inhibitor of tp53 by ubiquitinating p53 and targeting it for degradation.  Alternatively, a 

feedback loop can occur where p53 can in turn activate Mdm2 (Zhao et al., 2014).  

During cellular stress, the cell death pathway is initiated causing p53 levels to increase 

and Mdm2 levels to decrease.  As a result of decreased Mdm2, p53 initiates mdm2 

transcription. As Mdm2 levels then increase, Mdm2 in turn acts to inhibit p53 (Zhao et 

al., 2014).  In addition, we detected increased expression of another interesting gene 

clusterin (clu).  Studies in zebrafish have observed clusterin expression specifically  
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Figure 5-7. Fluorescent Tracer Injections Reveal Increased Permeability in 

Mutants. 

 

cp27.5 wild-type and mutant larvae were intravenously injected with a mixture of a 

3-kDa Cascade blue dextran, 10-kDa Rhodamine dextran, and 40-kDa Fluorescein 

dextran at 2 dpf.  (A) Wild-type injected with 3-kDa Cascade blue dextran has tracer 

permeable to the brain ventricle (arrow), but is restricted from the brain and eye 

(asterisks).  (B) Mutant injected with 3-kDa Cascade blue dextran has tracer retained in 

the brain ventricle (arrow), but also leaks into the surrounding tissue (asterisks).  (C) 

Wild-type injected with 10-kDa Rhodamine dextran has tracer permeable to the brain 

ventricle (arrow), but is also restricted from the brain and eye (asterisks).  However, the 

10-kDa Rhodamine dextran is more restricted to the brain vasculature compared to the 

3-kDa Cascade blue (arrowhead).  (D) Mutant injected with 10-kDa Rhodamine dextran 

has tracer permeable to the brain ventricle (arrow), but also leaks into the surrounding 

tissue (asterisks) and is not restricted to the brain vasculature as seen in wild-type 

(arrowhead).  (E) Wild-type injected with 40-kDa Fluorescein dextran has little to no 

tracer leakage into the brain ventricle (arrow) and is restricted from entering the brain and 

eye (asterisk).  The tracer is also retained within the brain vasculature (arrowhead).  (F)  

Mutant injected with 40-kDa Fluorescein dextran has tracer slightly permeable to the 

brain ventricle (arrow), but not as severe compared to the 3-kDa Cascade blue and 

10-kDa Rhodamine dextrans.  The tracer does not appear to leak into the brain, eye, or 

surrounding tissue as severely as the smaller tracers; however, there is still absence of the 

tracer retained within the brain vasculature (arrowhead).  (G) Merged image of wild-type 

larvae co-injected with all three tracers. (H) Merged image of mutant larvae co-injected 

with all three tracers.  Tracers are retained within the peripheral tail vasculature in 

mutants comparable to wild-type (arrowheads).  Scale bars are 50 µm.   
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Table 5-2. Up-Regulated and Down-Regulated Genes Confirmed by qRT-PCR. 

 

Gene Accession Number log2(MUT-WT) 

from RNA-Seq 

Fold Increase 

from 

qRT-PCR 

Normalized 

for 

qRT-PCR 

sart1 NM_001002673 3.35 1.64 0.64 

tp53 NM_131327 4.22 3.14 2.14 

mdm2 NM_131364 4.07 2.99 1.99 

clu NM_200802 3.76 3.61 2.62 

cldn5a NM_213274 3.42 1.20 0.20 

mmp9 NM_213123 8.38 61.99 61.01 

prpf31 NM_200504 3.71 2.75 1.76 

lsm7 NM_001048006 3.71 3.22 2.23 

pde6h NM_200785 -16.92 0.00 -1.00 

opn1sw1 NM_131319 -7.29 0.00 -1.00 

crx NM_152940 -1.71 0.05 -0.95 

actb1 NM131031 0.71 1.00 0.00 
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Figure 5-8. qRT-PCR Confirms Up-Regulated or Down-Regulated Genes from 

RNA-Seq Analysis.  

 

RNA-Seq analysis was confirmed using qRT-PCR.  Fold changes were normalized to 

β-actin which was set to zero.  The majority of genes are up-regulated including sart1, 

apoptotic genes (tp53, mdm2, clu), tight junctions (cldn5a), extracellular matrix enzymes 

(mmp9), and spliceosome factors (lsm7, prpf31), while vision-related genes are 

down-regulated (pde6h, opn1sw1, crx).  Measurements are expressed as mean ± SE 

(standard error) for n=3 from mutant samples. 
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Figure 5-9. Western Blot Analysis Reveals a Larger, More Highly Expressed p53 

in cp27.5 Mutant. 

 

Both cp27.5 wild-type and mutant express p53 with a protein size of 42 kDa (red).  

However, cp27.5 mutants also highly express a p53 protein that is absent in wild-type 

(arrow).  Protein levels were normalized to β-actin (green).     
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within the choroid plexus (Jiao et al., 2011).  It acts as a chaperone and is a pro-survival 

gene in its secreted form by binding to Bax and preventing Bax from traveling to the 

mitochondria (Trougakos et al., 2009).  In its nuclear form, which originates from 

alternative splicing, it acts as a pro-death gene by promoting cell death in a Caspase-3 

independent manner (Leskov et al., 2003; Trougakos et al., 2009).   

 

 

RNA-Seq Analysis Identifies Up-Regulated Spliceosome Components  

 

 Previous studies have identified increased expression of spliceosome transcripts 

when another component of the spliceosome itself, or a protein involved in spliceosome 

assembly is defective (Chen et al., 2014; Jia et al., 2012).  Because Sart1 is involved in 

the recruitment of U4/U6.U5 tri-snRNP to the spliceosome, we wanted to observe 

whether additional factors involved in spliceosome assembly were also defective or 

up-regulated in order to compensate for possible defects in Sart1 function.  The first gene 

we confirmed by qRT-PCR was prpf31.  This gene is a member of the precursor RNA 

processing (PRP) genes and similar to sart1, it also plays a role in recruiting U4/U6.U5 

tri-snRNP to the spliceosome (Vithana et al., 2001).  Interestingly, mutations of prpf31 

are found in patients with RP, a degenerative disease of photoreceptors in the eye 

(Vithana et al., 2001).  We determined that prpf31 was up-regulated in cp27.5 mutants.  

We also observed up-regulation of a gene from another class of spliceosome components, 

lsm7.  Lsm7, which binds to U6 in the spliceosome is a member of a family of proteins 

called Sm proteins that are also involved in assembling major spliceosome factors (He 

and Parker, 2000).    

 

 

RNA-Seq Analysis Identifies Up-Regulated Claudin 5a and Matrix 

Metalloproteinase Protein (MMP9)  

 

 In characterizing cp27.5 mutants, we also observed defects in Cldn5 protein 

expression.  Whole mount IHC showed Cldn5 expression on the surface of the brain 

ventricle in mutants, however, we did not observe co-localization with CPe as seen in 

wild-type larvae (Figure 5-10).  The results also suggested increased Cldn5 protein in 

mutants.  Based on RNA-Seq and qRT-PCR data, we observed increased expression of 

cldn5a transcript in mutant, indicating that protein expression in the brain ventricle may 

also be up-regulated.  In a recent study, mmp9 was suggested to lead to Cldn5 

degradation at the BCSFB allowing for leukocytes entry into the CSF (Chiu and Lai, 

2013).  mmp9 is also said to be up-regulated in the CP in the presence of inflammation 

(Kratzer et al., 2013).  We observed a significant increase in mmp9 expression in cp27.5 

mutants; however, whether up-regulation is specific to the BCSFB requires further 

investigation. 
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Figure 5-10. Claudin 5 Is Expressed in cp27.5 Mutants, but Does Not Co-Localize 

with Choroid Plexus Epithelia. 

 

Whole mount IHC was performed on cp27.5 wild-type and mutant larvae at 3 dpf  In 

wild-type, the dCP (arrowhead) and mCP (arrow) express GFP (green).  Claudin 5 (red) 

is localized to the surface vasculature and co-localizes with the CP epithelia (yellow).  In 

mutant, the dCP is absent and the mCP consists of individual sporadic GFP positive cells 

(arrow).  Claudin 5 is expressed throughout the brain ventricle and surrounds CP 

epithelia, but does not co-localize with the cells as seen in wild-type.  Scale bar is 50 µm.   
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RNA-Seq Analysis Identifies Down-Regulation of Vision-Related Genes  

 

 The final class of genes we confirmed by qRT-PCR were those specific to the 

eye.  Because retinal degeneration has been shown as a result of splicing defects or  

mutations in spliceosome components (Chen et al., 2014; Tanackovic et al., 2011), we 

were interested to see if mutations in sart1 led to decreased expression of vision-related 

genes.  Cone-rod homeobox (crx) is a transcription factor found in photoreceptor cells 

and mutations in this gene have been associated with cone-rod dystrophy (Freund et al., 

1997).  We observed a dramatic decrease in crx expression, which is not surprising due to 

our IHC data showing a loss of photoreceptors in cp27.5 mutants.  We also looked at 

phosphodiesterase 6H (pde6h), a gene that encodes for the γ (gamma) subunit of a cyclic 

guanosine monophosphate phosphodiesterase specific to cone photoreceptors.  Mutations 

in this gene have been associated with achromatopsia, which is an inherited retinal 

dystrophy (Kohl et al., 2012).  pde6h was also down-regulated in cp27.5 mutants.  The 

final gene we analyzed was opsin-1, short-wave-sensitive 1 (opn1sw1), a gene specific to 

zebrafish expressed in ultraviolet cone photoreceptors (Aluru et al., 2014).  Opsins found 

in cone photoreceptors belong to G-protein-coupled receptors (GPCRs).  These receptors 

are important in light absorption so that the signal can be relayed to activate downstream 

components such as G-proteins, transducin, and phosphodiesterases (Aluru et al., 2014).  

Again, not surprisingly, due to its specific expression in the retina, opn1sw1 was 

down-regulated in cp27.5 mutants.  While here we provide a brief overview of specific 

genes identified from the RNA-Seq analysis and their response to the sart1 mutation, 

future studies will examine in more depth the role of sart1 in regulating the expression 

levels and patterning of these genes.  Suggested roles for sart1 are described in the 

Discussion below.   

 

 

Discussion 

 

 The current study describes a zebrafish mutant from cp27.5 with a point mutation 

in the splicing component sart1.  In addition to splicing, sart1 has been implicated in a 

number of different processes such as cell cycle arrest and apoptosis and has been 

suggested as a target for gene therapy due to its activation of apoptosis and its role as an 

antigen recognized by CTLs in certain types of cancer (Hosokawa et al., 2005).  More 

recently, sart1 has been shown to contribute to drug resistance in cancer cells (Allen et 

al., 2012; Laetsch et al., 2014).  The goal of this study was to characterize mutant sart1 

and determine what other genes are affected due to this mutation.  In doing so, we plan to 

discover the role of sart1 in overall cellular processes such as cell death; in addition to 

better understanding its traditional role at the transcriptional level in splicing. 

 

 One of the earliest phenotypes detected in these mutants was forebrain necrosis at 

approximately late 2 dpf.  Prior to this time point, mutants were undistinguishable from 

wild-type siblings.  The maternally derived transcript identified by RT-PCR was present 

on day zero and may explain why we were unable to isolate mutant embryos prior to 2 

dpf due to the contribution of wild-type sart1 from the mother.  Interestingly, by whole 

mount in situ hybridization and RNA-Seq analysis we determined that the point mutation 



 

103 

in sart1 results in an obvious up-regulation of the transcript.  Up-regulation of mutated 

splicing genes have been demonstrated in other studies such as prpf4, a gene encoding a 

protein that interacts with the U4/U6 di-snRNP and stabilizes the complex (Chen et al., 

2014).  A mutation from a proline to leucine in prpf4 led to its increased expression and 

also up-regulation of other splicing factors including sart1.  Similar to our study, they 

also detected a loss of photoreceptors in the zebrafish eye and a down-regulation of 

vision related genes such as opn1lw1, another opsin gene (Chen et al., 2014).    

 

 The loss of protein expression in genes found in the eye, such as Zpr1, SV2, HuC, 

and S100β, is not surprising due to previous studies showing that mutations in splicing 

factors can result in photoreceptor degeneration in diseases such as RP (Chen et al., 2014) 

where the most noticeable phenotype is a loss of photoreceptor cells (Mordes et al., 

2006).  A recent study cited that six genes related to splicing have been found to have 

mutations in patients with RP including PRPF31, PRPF8, PRPF3, PAP-1, SNRNP200, 

and PRPF6 and that these mutations are responsible for autosomal dominant RP in more 

than 12% of cases (Benaglio et al., 2014).  Of these genes, PRPF8, PRPF31, and PRPF3 

are involved in forming and recruiting the U4/U6.U5 tri-snRNP to the spliceosome 

(Mordes et al., 2006).  The exact cause of how mutations in splicing genes result in RP is 

still unknown; however, several models or hypotheses have been suggested.  Because 

photoreceptor cells require a high level of mRNA and protein synthesis due to a high 

turnover rate in cell types such as the rod outer segment, a haploinsufficiency model 

explains how losing a functional copy of the gene results in decreased mRNA processing 

and therefore decreased protein resulting in degeneration (Mordes et al., 2006).  Another 

hypothesis is that these mutations are specific only to photoreceptor cells and that the 

spliceosome is never activated in these cells due to mutations in genes essential for 

forming and recruiting the complex to pre-mRNA (Mordes et al., 2006).  How this 

splicing defect is specific to photoreceptors is proposed in a third model where it is 

believed that cofactors specific to photoreceptors act alongside the spliceosome to 

regulate splicing; however specific factors found only in photoreceptors have yet to be 

identified (Mordes et al., 2006).  A final hypothesis is that these mutations have a toxic 

effect on the cells due to a gain-of-function where the mutated splicing genes interfere 

with normal splicing in wild-type copies resulting in increased defective splicing and cell 

death even if the wild-type gene is present (Mordes et al., 2006).   

 

 A similar hypothesis was suggested by Jia et al. where mis-splicing due to 

mutations in U2, a major spliceosome component, results in a buildup of mis-spliced 

mRNA that translates into dysfunctional proteins.  Another hypothesis by Jia et al. 

proposes that introns retained within the mRNA sequence cause the spliceosome to 

remain at the intron rather than be released, resulting in alternative splicing and a toxic 

feedback loop where mRNA continues to be mis-spliced and cell death occurs (Jia et al., 

2012).  In addition to splicing factors, mutations in other genes such as crx encoding a 

transcription factor, and pde genes involved in phototransduction, both of which we 

identified as down-regulated in cp27.5, also contribute to RP (Mordes et al., 2006).   

 

 In cp27.5 mutants, we detected increased cell death within the eye as observed by 

activated Caspase 3 antibody staining.  However, from the RNA-Seq data, we also 
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detected up-regulation of tp53 and mdm2.  While up-regulation of tp53 explains the 

increased cell death found in the eye and brain, increased expression of mdm2 may 

indicate that it is trying to compensate for increased tp53 expression.  Alternatively, 

because of p53 up-regulation, Mdm2 may also be overexpressed due to the ability of p53 

to activate its expression.  Future studies will investigate whether Mdm2 is functional in 

inhibiting p53 protein and whether p53 is functional and activating Mdm2 and forming a 

negative feedback loop.  By Western blot, we were able to detect an alternative p53 

protein synthesized in cp27.5 mutants.  Based on these findings, we suggest that 

alternative splicing due to mutated sart1, causes additional p53 proteins to be synthesized 

in cp27.5 mutants that cannot be inhibited by Mdm2 thereby resulting in increased cell 

death (Figure 5-11).  As to why cell death is localized to the eye and brain has yet to be 

determined.   

 

 While we observed defects primarily related to the eye, sart1 was majorly 

expressed in the brain as demonstrated by whole mount in situ hybridization.  Because 

mRNA splicing occurs in every cell type, spliceosome genes are presumed to be 

ubiquitously expressed.  However, recent studies have suggested that these genes may be 

temporally or spatially regulated.  A previous study in mice with a U2 mutation resulted 

in the retention of introns in genes such as the cell adhesion molecule L1CAM, and 

caused specific phenotypes, such as neurodegeneration within the cerebellum (Jia et al., 

2012).  Similar to our findings in the zebrafish eye, mice also had activated Caspase-3 

protein expression in granule cells of the cerebellum.  This study identified that the 

mutant gene was most highly expressed in the cerebellum compared to other tissues (Jia 

et al., 2012).  This phenomenon may also occur in cp27.5 mutants as we detected a 

dramatic increase in sart1 mRNA within the mutant brain compared to wild-type.  We 

have supported this claim by demonstrating that this increase in expression is due to 

up-regulation of the transcript rather than increased permeability of the probe since 

deltaC expression was decreased in mutant.   

 

 cp27.5 was originally identified from a genetic screen isolating mutants with CP 

developmental defects.  Interestingly, one of the genes we identified from the RNA-Seq 

data was clusterin.  This gene has been demonstrated in recent studies to be expressed 

specifically within the zebrafish CP in early development (Jiao et al., 2011).  A more 

detailed description of this study was presented on pg. 16.  This finding is relevant to our 

analysis in that the nuclear form of clusterin has also been described to play a role in cell 

death (Leskov et al., 2003; Trougakos et al., 2009).  Future studies will investigate 

whether the nuclear form of clusterin is localized to the CP and contributes to cell death 

in cp27.5 mutants since the CP has dispersed GFP positive cells and never fully develops.  

Up-regulation of clusterin from the RNA-Seq analysis may prove this hypothesis to be 

true since alternative splicing of clusterin may cause inhibitors to no longer prevent its 

expression.  A lack of clusterin inhibition would then result in its overexpression and 

increased cell death.  Alternatively, as mentioned before, the secreted form of Clusterin 

can act as a pro-survival protein (Trougakos et al., 2009).  If the secreted protein is 

up-regulated in mutants, Clusterin may be acting in competition with pro-apoptotic genes 

such as p53 and compensating for cell death in the CP.  However, even though clusterin  
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Figure 5-11. Schematic Diagram for the Hypothetical Role of sart1 in Apoptosis. 

 

In wild-type, Sart1 acts to recruit the U4/U6.U5 tri-snRNP to the spliceosome complex 

where U1 and U2 are already bound to pre-mRNA at the 5’ splice site and branch point 

site, respectively.  Once the spliceosome is assembled, it processes pre mRNA by 

removing introns and producing mature mRNA transcripts for genes such as tp53 and 

mdm2.  Mdm2 inhibits p53 allowing for cell survival of photoreceptors.  In mutant, while 

the sart1 transcript is up-regulated, altered Sart1 protein may result in defective 

recruitment of U4/U6.U5 to the spliceosome thereby causing alternative splicing of p53 

and mdm2.  Alternative splicing may result in altered proteins such as Mdm2 which can 

no longer function to inhibit p53 activity.  In addition, alternatively spliced p53 

transcripts may result in proteins that can no longer be inhibited by Mdm2.  This 

phenomenon may lead to up-regulation of p53 and increased cell death in photoreceptors. 
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was found to be up-regulated at the transcript level, future studies will need to determine 

whether the functional protein is also increased.   

 

 Another protein we demonstrated to be expressed in the CP was Cldn5.  From the 

RNA-Seq data, we determined that cldn5a is also slightly up-regulated in cp27.5 mutants. 

While we were able to detect Cldn5 expression in mutants by whole mount IHC, future 

experiments will need to determine if this protein is actually functional.  Cldn5 appeared 

to be mis-localized in mutants due to an absence of its expression overlapping with GFP 

in CPe.  Another hypothesis is that a disruption of anchoring proteins that tether tight 

junctions to the plasma membrane, such as ZO-1, may also be disrupted resulting is 

mislocalization of Cldn5 to the cell membrane.  Additional evidence for defects in Cldn5 

was demonstrated by injecting fluorescent dextrans intravenously into cp27.5 larvae.  

Due to the developmental time point for analysis at 2 dpf, both wild-type and mutants had 

leakage into the brain ventricle since the CP had not yet developed.  However, mutants 

demonstrated increased permeability outside the ventricle where smaller tracers leaked 

into surrounding tissues suggesting defects in tight junctions.  Tracer studies also 

revealed abnormal vasculature in the CNS indicating that the sart1 mutation may strictly 

be CNS specific and not affecting tight junctions or vasculature of the periphery.  mmp9 

was also very highly up-regulated as confirmed by qRT-PCR.  As mentioned previously, 

mmp9 can result in the degradation of Claudin 5 at the BCSFB resulting in increased 

barrier permeability (Chiu and Lai, 2013).  The same phenomena may result as a 

downstream effect of mutated sart1 where overexpression of mmp9 causes 

mis-localization of Claudin 5 and increased barrier permeability and leakiness.   

 

 Interestingly the previous study mentions that up-regulation of mmp9 was 

dependent on the NF-κB pathway (Chiu and Lai, 2013).  We identified from the 

RNA-Seq data that nfkbiaa (nuclear factor of kappa light polypeptide gene enhancer in 

B-cells inhibitor, alpha a), a component of the NF-κB pathway, is one of the top 

up-regulated genes in mutant (see Table B-2).  This gene is also known as IkappaBalpha 

and acts as an inhibitor of the NF-κB signaling pathway (Correa et al., 2004).  Again, this 

may indicate compensatory mechanisms as a result of the sart1 mutation where inhibitors 

of the NF-κB pathway attempt to reduce MMP9 activity and restore Cldn5 to its normal 

expression.   

 

 While the genetic pathways downstream of sart1 in cp27.5 mutants have yet to be 

determined, the current study has revealed dysregulation of genes involved in apoptosis, 

splicing, vision, tight junctions, and matrix metalloproteinases.  RNA-Seq analysis has 

provided substantial insights into genes and potential pathways regulated by sart1.  This 

study and others have demonstrated that mutations in splicing machinery or proteins 

associated with the spliceosome have widespread affects in a number of signaling 

processes in addition to splicing defects.  Also, differences between phenotypes observed 

in the CNS versus periphery may suggest that sart1 regulates the expression of certain 

genes in a tissue-specific manner.   
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Conclusion 

 

 In conclusion, sart1 is a fascinating gene whose complex expression and function 

will provide interesting insights into cellular pathways for years to come.  We have 

discovered a zebrafish model with a mutation in sart1 that will aid in these future 

investigations.  By performing RNA-Seq, we have already identified numerous genes 

affected by this mutation.  Using IHC and Western blot, we have also identified defects 

in protein expression in a number of genes including those specific to brain and eye.  

Future studies will aim to answer the outstanding question of how genes expressed in 

multiple cell types, such as splicing-related genes, result in defects or abnormalities in a 

spatially or temporally tissue or cell-specific manner.  
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CHAPTER 6.    SUMMARY AND CONCLUSIONS 

 

 

 The current study had three primary goals: 1) to establish zebrafish as functional 

model to study CP development, 2) to perform a forward genetic screen identifying CP 

mutants, and 3) to discover the gene responsible for the phenotypes identified in cp27.5.   

 

 For the first aim, we have supplemented previous studies describing CP 

development in zebrafish by generating an enhancer trap line expressing EGFP within 

CPe.  This line we termed Et(cp:EGFP)
sj2 

allowed us to monitor CP formation over time 

and investigate its functional properties.  While we have demonstrated that zebrafish 

provide a suitable model for observing this process in a living system due to its rapid 

development and transparent nature in early stages, we have also shown that the zebrafish 

CP possess barrier properties and functions comparable to other vertebrates.  The CNS 

has long been known for its barrier components including tight junctions and transporters 

localized to the cell membrane.  These proteins create both a physical and chemical 

barrier, respectively, allowing for CNS homeostasis and protection from insult.  Here, we 

have shown that the zebrafish CP expresses the tight junction protein, Claudin 5 and its 

anchoring protein ZO-1.  While additional tight junctions have been shown to be highly 

expressed in the CP, antibodies against these proteins in zebrafish are difficult to acquire 

or do not exist.  With gaining popularity of the zebrafish model in recent years, access to 

commercially available antibodies for zebrafish may continue to increase allowing for 

additional tight junction proteins in the CP to be identified.    

 

 In addition to tight junctions, we provided evidence for transporter activity at the 

BCSFB.  While we were not able to identify antibodies that labelled transporter proteins 

in the CP, we did observe accumulation of fluorescent dyes including Rhodamine 123 

and Fluorescein.  These dyes are known substrates of transporters expressed in the CP 

such as Mrp1 and Oat3.  By injecting these tracers intravenously, we observed that the 

dyes can be transported from the fenestrated blood vasculature into the CPe signifying 

transporter localization at the basolateral surface of the epithelia.  Alternatively, by 

injecting tracers directly into the CSF in the brain ventricle, we observed accumulation in 

the CP suggesting that transporters are also localized to the apical membrane of CPe.  

Future studies will identify specific transporter expression at the CP and determine their 

localization within the cell membrane.  

 

 We also determined when the BCSFB forms in zebrafish.  By injecting 

fluorescent tracers conjugated to different molecular weight dextrans, we observed that 

the BCSFB acquires size-selective properties as it develops and forms by 4 dpf.  Using 

fluorescent tracers attached to various sized dextrans allowed for physical barrier 

properties to be determined since these molecules are transported between cells, not 

through them.  This characterization study using the  Et(cp:EGFP)
sj2 

line  has paved the 

way for future endeavors investigating the genes and signaling pathways essential for CP 

development, function, and maintenance by providing an in vivo model system with a 

BCSFB similar to other vertebrates and the ability to monitor barrier development over 

time.  
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 Zebrafish are also exceptional models for forward genetic screening.  After 

characterizing the CP in zebrafish, we performed a genetic analysis by mutagenizing the 

Et(cp:EGFP)
sj2  

line  and screened for mutants based on abnormalities in EGFP 

expression or patterning in the mCP.  We identified a number of spontaneous mutants 

with abnormalities outside of the CP such as heart and eye edema or smaller head size.  

However, for some of these mutants the CP developed normally.  Alternatively, we 

identified spontaneous mutants having normal overall development, but no CP formation.  

Isolating these classes of spontaneous mutants suggests that specific genetic pathways are 

governing CP development, function, and maintenance.  We also identified five classes 

of recessive mutants following Mendelian genetics with approximately 25% of the 

offspring containing CP abnormalities.  While these mutants were screened initially for 

defects in CP development, we observed additional phenotypes such as small head and 

eyes, heart and eye edema, or no swimbladder.   

 

 We were interested to determine whether the mutated genes from these lines were 

specific to the CP or whether they were ubiquitously expressed genes promoting global 

defects.  We performed genetic mapping experiments for the line cp27.5 due to its severe 

brain ventricle expansion in addition to CP defects.  We hypothesized that the gene may 

be specific to CSF production or regulation due to the expanded ventricle phenotype.  

Using traditional genetic mapping strategies such as positional cloning, we identified the 

mutation on Chromosome 21.  Since the sequencing of the zebrafish genome, positional 

cloning has become easier to define a critical interval due to polymorphic markers 

designed throughout the genome.  However, this strategy is often time consuming by 

sequencing multiple candidate genes and can be difficult to identify a map position based 

on recombination frequency.  For this study, we also employed an innovative approach 

using WES that identified the gene mutation based on isolating homozygous regions in 

the mutant genome.  Using this strategy, we identified a point mutation in sart1, a gene 

involved in spliceosome assembly.  We confirmed that sart1 was the gene responsible for 

the abnormalities observed in sart1 mutants by performing rescue experiments that 

restored the most of the mutants to normal or near normal phenotypes.    

 

 In characterizing cp27.5 mutants by in situ hybridization and RNA-Seq analysis, 

we identified that a G to A point mutation at the donor site of exon 12 results in 

up-regulation of sart1 specifically in the brain.  Increased expression of sart1 resulted in 

dysregulation of genes involved in a number of pathways and processes such as apoptotic 

and vision-related genes, and genes important for cell-cell interactions and splicing.  

Future studies will investigate the mechanisms of sart1 in regulating the expression levels 

and patterning of these genes and determine whether it plays specific role in CP 

development. 
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APPENDIX A. CHAPTER 2 AND CHAPTER 3 SUPPLEMENTAL MOVIES 

 

 

 All supplemental files are available via links on the ET/D access page. 

 

 

SupplementalMovie1 

 

 Confocal time lapse imaging of Et(cp:EGFP)
sj2 

larvae to observe CP 

development.  Time lapse was initiated at approximately 30 hpf and images were 

acquired every 30 min for 65 h.  The image is a dorsal view at 20× magnification.   

 

 

SupplementalMovie2 

 

 Confocal time lapse imaging of wild-type Et(cp:EGFP)
sj2 

larvae.  Time lapse was 

initiated at 54 hpf and images were acquired every 30 min for 48 h.  The image is a dorsal 

view at 20× magnification.   

 

 

SupplementalMovie3 

 

 Confocal time lapse imaging of cp140.2 mutant
 
larvae.  Time lapse was initiated 

at 54 hpf and images were acquired every 30 min for 48 h.  The image is a dorsal view at 

20× magnification.   

 

 

SupplementalMovie4 

 

 Confocal time lapse imaging of cp9.6 mutant
 
larvae.  Time lapse was initiated at 

54 hpf and images were acquired every 30 min for 48 h.  The image is a dorsal view at 

20× magnification.   

 

 

SupplementalMovie5 

 

 Confocal time lapse imaging of cp79.6 mutant
 
larvae.  Time lapse was initiated at 

54 hpf and images were acquired every 30 min for 48 h.  The image is a dorsal view at 

20× magnification.   

 

 

SupplementalMovie6 

 

 Confocal time lapse imaging of cp151.2 mutant
 
larvae.  Time lapse was initiated 

at 54 hpf and images were acquired every 30 min for 42 h.  The image is a dorsal view at 

20× magnification.  
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SupplementalMovie7 

 

 Confocal time lapse imaging of cp27.5 mutant
 
larvae.  Time lapse was initiated at 

54 hpf and images were acquired every 30 min for 48 h.  The image is a dorsal view at 

20× magnification.   
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APPENDIX B. CHAPTER 5 EXTENDED METHODS AND RESULTS OF 

RNA-SEQ ANALYSIS 

 

 

 All supplemental files are available via links on the ET/D access page. 

 

 

 RNA-Seq analysis is found in SupplementalFile1.  This analysis identifies a 

number of genes up-regulated and down-regulated due to a point mutation in sart1.  The 

file contains the list of genes with at least one read observed in either one of the samples 

(wild-type or mutant), genes expressed where the (FPKM>0.1) in both samples, gene 

ontology for biological processes and molecular function, the Kyoto Encyclopedia of 

Genes and Genomes (KEGG), and a list of up-regulated spliceosome-related genes. 

 

 The primers used for methods described in qRT-PCR on pg. 84 are listed in Table 

B-1, and the top ten up-regulated and down-regulated genes with a FPKM>0.1 as a result 

of the sart1 mutation are listed in Table B-2. 
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Table B-1. Primer Sequences for qRT- PCR. 

 

Gene Primer Primer Sequence (5`-3`) Tm GC

% 

Product 

Length 

sart1 Forward GTCGCAAACTCGCCAAAGAG 60.1 55 127 

Reverse TATGCTTGCCGCTTCTCCTG 60.5 55 

p53 Forward CTCTCCCACCAACATCCACT 59.0 55 178 

Reverse ACGTCCACCACCATTTGAAC 58.7 50 

mdm2 Forward AACCGAGGCAGACTACTGGA 60.3 55 105 

Reverse TCTGGAAGCCAATCAGCTCG 60.1 55 

clu Forward ACACCTCAAGTCTGCTCGAC 59.7 55 115 

Reverse CCTTTGGACATCACTGCCTG 58.8 55 

cldn5a Forward ATGCTGTCTGGCTGACCAAA 59.9 50 190 

Reverse CTTTCTGTTTTCGACGCGCT 59.8 50 

mmp9 Forward AGACTTGGAGTCCTGGCGTT 61.1 55 147 

Reverse ACGCTTCAGATACTCATCCGCTA 61.3 48 

lsm7 Forward ACATGCGAGATCCTGATGACC 59.9 52 84 

Reverse CAACAGACGTCCCTCGACAA 60.0 55 

prpf31 Forward GTCAAGCAGGTCAAGCCTCT 60.0 55 221 

Reverse GCTTGTCTGACTCTGCCACT 60.0 55 

pde6h Forward GACCACTCGCACCTTCAAGA 60.0 55 99 

Reverse ACAGTGATGTCTGTGCCGAG 60.0 55 

opn1sw1 Forward CGATTGCAGGTCTTGTGACG 59.6 55 195 

Reverse GACCCTCGGGAATGTATCTGC 60.3 57 

crx Forward CCATTATGCTGTGAACGGGT 58.3 50 84 

Reverse CTCGGAGTGGCTGGGTA 57.5 65 

actb1 Forward TGAATCCCAAAGCCAACAGAG 58.5 48 150 

Reverse TCACACCATCACCAGAGTCC 59.0 55  
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Table B-2. Top Ten Up-Regulated and Down-Regulated Genes from RNA-Seq 

with FPKM >0.1 in Both Samples. 

 

Name Gene Chromosome log2(MUT-WT) 

fibronectin 1b fn1b 1 4.6840 

TIMP metallopeptidase inhibitor 2b timp2b 3 4.6815 

jun B proto-oncogene b junbb 3 4.5556 

nuclear factor of kappa light 

polypeptide gene enhancer in 

B-cells inhibitor, alpha a 

nfkbiaa 20 4.5268 

insulin-like growth factor binding 

protein 1a 

igfbp1a 20 4.4076 

CCAAT/enhancer binding protein 

(C/EBP), delta 

cebpd 24 4.2910 

tumor protein p53 tp53 5 4.2233 

hepcidin antimicrobial peptide hamp 16 4.1544 

MDM2 oncogene, E3 ubiquitin 

protein ligase 

mdm2 4 4.0737 

clusterin clu 20 3.7648 

fibroblast growth factor binding 

protein 2b 

fgfbp2b 1 -2.3904 

parvalbumin 8 pvalb8 3 -2.5884 

transcobalamin like tcnl 5 -2.7405 

guanine nucleotide binding protein 

(G protein), gamma transducing 

activity polypeptide 1 

gngt1 19 -2.7876 

actinodin4 and4 14 -3.0036 

creatine kinase, mitochondrial 2a 

(sarcomeric) 

ckmt2a 10 -3.1316 

 zgc:73075 19 -3.3992 

 zgc:13622 7 -3.5883 

 zgc:73359 3 -3.8776 
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Table B-2. (Continued). 

 

Name Gene Chromosome log2(MUT-WT) 

matrilin 1 matn1 19 -5.4303 
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