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ABSTRACT 
 
 
The human lumbar spine has been the subject of biomechanical study for many 

decades owing to the numerous medical cases resulting in the development of various 
corrective surgical procedures and medical devices intended to relieve patient discomfort. 
Spinal biomechanics is a broad field containing but not limited to the in vitro study of 
cadaveric tissue utilizing testing platforms used to apply motion- or load-profiles to tissue 
in the investigation of the various kinetic or kinematic responses, respectively. The 
particular arena field of this research concerns the field of robotics as it applies to testing 
platforms and how they are applied to lumbar spine biomechanical testing. 

 
The in vivo spine is subject to six degrees of freedom (DOF) of motion as a 

consequence of the applied loads of surrounding musculature which apply component 
loads in 6 DOF. However current in vitro standard protocols apply isolated loads 
primarily in the anatomical planes. Although the primary goal of in vitro testing may not 
be the simulation of in vivo circumstances, the accurate recreation of the in vivo loading 
environment would reveal much regarding the passive biomechanics of the spine. To 
accomplish such a goal, it would be ideal to utilize a platform capable of providing 6 
DOF of controlled mobility as well as capable of apply controlled load in those 6 DOF. 

 
The Musculoskeletal Research Laboratory has developed such a system. The 

system’s load-control capabilities were validated by simulating two standard 
biomechanical protocols, the pure moment and the ideal follower load on 6 L4-L5 single 
motion segment units. The robotic performance of the system was evaluated by 
measuring the tracking errors during testing, or the difference between experimental 
forces being applied and the forces commanded by the custom motion programs executed 
during protocol simulation. The biomechanical data that were recorded and compared to 
the literature for validation were rotational range of motion in the sagittal plane and 
anatomical point translation. Translation data proved to be difficult to compare 
effectively to the literature due to the sparseness of comparable numbers. There was also 
interest in the platform’s ability to control protocols. To test this hypothesis, three 
different biomechanical protocols were simulated and there biomechanical results were 
compared: pure moment, ideal follower load, and trunk weight. 

 
The system provided stable, good load-control during combined motions 

involving all 6 DOF. The tracking errors observed were low compared to other published 
robotic biomechanical platforms. The mean combined flexion-extension rotational range 
of motion in the sagittal plane for the pure moment protocol, the ideal follower load, and 
the trunk weight protocols were 8.2°(±2.5°), 7.6°(±2.9°), and 7.4°(±2.8°), respectively. 
There were statistically significant differences in the absolute translational data across the 
protocols but when comparing relative changes due to flexion and extension only, there 
were no significant differences across protocols. 

 
In conclusion to this research the custom robotic biomechanical testing platform 

developed and validated in the current study adequately provides the capabilities of 6 
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DOF coordinated motion and 5 DOF coordinated load-control. It was sufficient to 
simulate the standard spine biomechanical test protocols of pure moment and ideal 
follower load on single segments. It was also a good tool for comparing the effects of 
particular protocols on the passive biomechanics of human cadaveric tissue. To the 
author’s knowledge, this is the first publication of a fully robotic system adequately 
controlling a non-zero dynamic force vector while a bending protocol was being applied 
to a human spinal segment. This research was limited to the sagittal plane and single 
lumbar spine motion segment units. 
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CHAPTER 1.    INTRODUCTION 
 
 

The centerpiece support mechanism of the human body is the spine, 
simultaneously providing protection for the spinal cord and structural support while 
enabling mobility for mechanical activity.1 The consequences of compromises in spinal 
health frequently include pain, some level of disability, imperative physical therapy, 
medication, and often surgery.2 As the population increases and ages, spine-related 
medical cases grow in frequency and the basis builds for mandated improvements in 
current remediating techniques.3 In order to solve the problem of compromised spinal 
health one must first understand the baseline of spinal health and optimal performance. In 
this case, a thorough knowledge of the kinematic behavior of the spine is required to 
understand the effects of specific conditions, injuries, and surgeries. That knowledge is 
also foundational for proper design of functional spinal implants made for injury 
prevention and tissue replacement.2,4 

 
In vivo loads on the spine are complex and impossible to measure without 

compromising tissue with invasive measurement equipment.5 So instead of simulating in 
vivo loading scenarios, early biomechanists investigated fundamental structural 
properties. Promoting repeatable methodologies which could produce data for 
quantitative comparison between laboratories and testing platforms, the idea of “isolated” 
loading was applied across the field of ‘bench-top’ biomechanical testing.6 Conventional 
spinal biomechanics focused on applying singular bending moments on the spine while 
holding all other forces and moments to zero in what is called a ‘Pure’ Moment (PM) 
protocol. Variations of this protocol incorporate the coordinated application of 
compressive load7 to increase stability8,9 and to simulate muscle forces10,11 thus taking 
steps from what was initially a structural property study towards in vivo load recreation. 
One of the most popular variations is called the Follower Load (FL) protocol (Section 
2.4).12 The PM and FL protocols are considered the gold standard testing protocols in 
spine biomechanics because data from these protocols are used in tissue resection studies 
investigating soft tissue component contributions,13 in surgical procedure and implant 
investigation studies,14,15 and in mathematical model development.16,17,18,19 These 
protocols offer repeatable methodologies with typical results, and there are many 
different mechanisms20 of application but there are also downsides. 

 
The PM protocol has reduced the physiological loading environment to a uni-

planar testing procedure for the sake of repeatability and comparability, however these 
compromises raise concern. Physiologic spinal motion occurs in multiple planes and 
involves many different component forces.1,2,4,21,22 Furthermore testing an implant to 
investigate its potential in vivo performance by applying a protocol that, rather than 
recreating in vivo conditions, simplifies and isolates loads, would likely reveal data that 
are inconclusive with regards to in vivo performance.14 Also, although the FL is a step 
toward closing the gap, further limitations exist at the platform level where application 
mechanisms limit certain motions and the controllability of applied forces,6,9 not to 
mention the lack of a concrete empirical benchmark for in vitro recreation of in vivo 
loads. While many current approaches are well-established, well-documented, and well-
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understood, the arena of robotics may offer substantial improvements to biomechanical 
testing in repeatability, controllability, and protocol innovation. 

 
The use of robotics in biomechanical testing has been long established.23 Now 

many researchers employ robotic testing platforms, some of which are custom built10,18 
while some are purchased and then modified for biomechanical testing.6,24,25 A frequently 
imitated platform characteristic in the robotic biomechanical testing community is real-
time load-control (RTLC). This mechanism for protocol application involves the use of 
force and moment data as feedback and will be defined more precisely in later Section 
2.4.2. However to the author’s knowledge, there has been limited published application 
of load-controlled robotic platforms outside the simulation of gold standard 
biomechanical protocols. 

 
The next step in robotic biomechanical testing is to develop a platform validated 

in gold standard protocols with the capability of enabling development of innovative 
protocols while overcoming conventional robotic testing platform limitations. A more 
general purpose for this development is to close the gap between the in vivo and in vitro 
environments. 

 
The first objective of this thesis was to introduce a methodology for applying a 

dynamic force vector utilizing a novel robotic biomechanical testing apparatus. The 
chosen application of this method was the robotic simulation of an ideal FL (the standard 
non-pure moment testing protocol for which a force of constant magnitude but dynamic 
direction is requisite). The second objective of this thesis was to quantitatively compare 
two gold-standard protocols, PM and ideal FL and one novel protocol involving the 
intentional application of shear in combination with compression. The spinal kinematic 
characterizing metrics used to compare the protocols were flexion/extension rotational 
range of motion (RROM) and anatomical point translation (APT), a novel quantity used 
for comparison of a single L4-L5 spinal motion segment. 
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CHAPTER 2.    BACKGROUND 
 
 

Chapter 2 is comprised of four sections. Section one addresses the anatomy of the 
spine with specific attention to the lumbar region. Section two discusses the basic 
mechanics of the spine. Section three generally describes the kinematics of the lumbar 
spine and section four introduces biomechanical testing and its relevant application to the 
study of the lumbar spine. 

 
 

2.1 Anatomy of the Spine 
 

The human spine, running from the base skull to the coccyx is comprised of 25 
separate vertebral bodies arranged in a columnar fashion and divided into four sections 
denoted by four different curvatures: the cervical lordosis, the thoracic kyphosis, the 
lumbar lordosis, and the sacral kyphosis.2 Figure 2.1 identifies these regions and displays 
the number of vertebrae in each section, seven cervical bodies, twelve thoracic bodies, 
five lumbar bodies, and eight to nine sacrococcygeal bodies which are displayed as a 
single body because they are typically fused together.22,26 The spine can be broken down 
into functional units which are composed of two adjacent vertebral bodies, the conjoining 
intervertebral disc (IVD), and the surrounding ligaments and muscles, hereafter referred 
to as a motion segment unit (MSU).27 
 
 
2.1.1 The Vertebra 
 

The vertebrae, of which an example may be found in Figure 2.2, are the bony 
structures of the spine to which ligaments and muscles via tendons attach. Biologically 
these structures are responsible for the protection of the spinal cord and are partially 
responsible for the nutrition of the IVDs which are primarily avascular (Section 2.1.2). 
Mechanically, vertebrae are responsible for transferring load while providing stability 
and guiding motion. The form of the anterior portion (body) primarily addresses load 
displacement while the structures of the posterior portion mainly deal with motion 
guiding. The body is contacted superiorly and inferiorly by the cartilaginous endplates of 
IVDs through which the vasculature of the cancellous bone of the body is able to deliver 
nutrients to the disc. Lumbar vertebrae have relatively large bodies when compared to 
cervical and thoracic vertebrae, a characteristic mainly attributed to the greater loads 
borne by these bodies.2,4,27 

 
The posterior structures of a vertebra include the pedicle, lamina, transverse 

processes, spinous process, and the zygapophyseal joints (facets). The left and right 
pedicles connect the lamina to the posterior portion of the vertebral body creating the 
vertebral foramen through which the spinal cord runs along the entire length of the 
spine.2 The transverse and spinous processes act as moment arms for the attachment of 
muscles and ligaments.4 
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Figure 2.1 The human spine 
 
The lateral (left) view displays the four curves of the spine that act as regional definitions 
which are otherwise more difficult to discern in the posterior (right) view. Adapted with 
permission from J. Butler, J. W. Hole, R. Lewis and D. Shier, 2002. Hole's human 
anatomy & physiology, 9th ed. McGraw-Hill, Boston, p 156.26
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Figure 2.2 A vertebral body 
 
Superior (top) view adequately shows the delineation between the vertebral body and the 
posterior structures. Lateral (bottom) view shows the alignment of the superior and 
inferior articular processes. Reprinted with permission from E. C. Benzel, 2005. Spine 
surgery : Techniques, complication avoidance, and management, 2nd ed. Churchill 
Livingstone, Philadelphia, Pa., p 78.28 
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The facet joint between adjacent vertebrae is comprised of the superior vertebra’s 
inferior articulating surface and the inferior vertebra’s superior articulating surface. This 
synovial joint glides on articular cartilage guided by meniscus-like fat pads, within a 
highly innervated capsule rendering this joint a functional proprioceptor as well as a 
source of pain. The joint mechanically provides stability by limiting motion in extension, 
lateral bending, axial rotation, and vertebral body translation with respect to adjacent 
bodies (Section 2.2.5), but allowing coupled motion between lateral bending and axial 
rotation.2 
 
 
2.1.2 The Intervertebral Disc 
 

The IVD is situated between the bodies of two adjacent vertebral bodies and 
functions by absorbing and dispersing compressive and shear loads between vertebrae 
(Section 2.2.1). It is divided into three sections, the nucleus pulposus, annulus fibrosis, 
and the cartilaginous endplate4 as seen in Figure 2.3. The fibers that make up these three 
sections, however, are not distinctly demarked and are continuous across boundaries.29 
The disc is anatomically the same at every level but varies in shape and size, conforming 
to neighboring vertebral bodies which are subject to different loading scenarios.2  

 
The nucleus pulposus is a hydro-gelatinous matrix of proteoglycans, loose type II 

collagen fibrils, water, ions, and trace cellular particulates. The proteoglycans utilize 
characteristic negative charges to attract ions creating an osmotic gradient and 
subsequently drawing in water through osmosis.30 This influx of water and the 
hydrophilic nature of the proteoglycans pressurize the disc. This capsule-like design of 
the disc allows it to convert axial force to radial force functioning as a shock absorber. 
Disc pressure is directly related to applied forces and nuclear water content, the latter of 
which depends on factors like physical activity, injury, gender and age. A decrease in 
disc pressure does not fully hinder load distribution capabilities but does significantly 
affect motion and proper function. 

 
The annulus fibrosis is made up of concentric sheets of type I and type II collagen 

fibers aligned obliquely to the longitudinal axis of the spine in a nearly orthogonal, 
alternating fashion. Annulus fibers attach to the cartilaginous endplates superiorly and 
inferiorly with the exception of the outermost Sharpey Fibers, which attach directly to the 
calcified ring apophysis of the adjacent vertebral bodies. The fibers encapsulate the 
nucleus material facilitating pressurization and absorbing the radially converted force by 
resisting in tension (Section 2.2.1). 

 
The cartilaginous endplates are remnants of fibrocartilaginous growth plates from 

childhood. They are porous in structure, facilitating nutrient transport. And they cap the 
annular capsule superiorly and inferiorly, connecting annular fibers to the vertebral 
bodies.2 
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Figure 2.3 The intervertebral disc 
 
A non-scaled example of an IVD.  
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2.1.3 Ligament 
 

A ligament is a fibrous connective tissue that serves to connect bone to bone and 
function by limiting or guiding motion. Ligaments can only withstand tensile forces and 
are made of collagen fibers, which resist tensile forces greatly, and elastin fibers, which 
elongate slowly affording mobility. Ligaments are generally unidirectional and will 
buckle under compressive loads. The ligaments involved in the lumbar spine are 
represented in Figure 2.4. 

 
Two primary ligaments run the full length of the spine, the anterior longitudinal 

ligament (ALL) and the posterior longitudinal ligament (PLL). Both ligaments are broad 
ligaments loosely attaching to the periosteum of vertebral bodies and strongly attaching 
to the annular tissue. The ALL runs along the anterior of the column of vertebral bodies 
while the PLL runs along the anterior surface of the vertebral foramen on the posterior 
surface of the column of vertebral bodies. 

 
Other spinal ligaments cross single MSUs: facet capsular ligaments, ligamentum 

flavum, the intertransverse ligaments, and the interspinous and supraspinous ligaments. 
Facet capsular ligaments connect the articulating processes across the joint, defining the 
formation of the synovial capsule. The ligamentum flavum runs along the posterior of the 
vertebral foramen and is commonly referred to as the most flexible ligament in the body.2 
The intertransverse ligaments connect right and left transverse processes superiorly and 
inferiorly to the corresponding processes on adjacent bodies. The interspinous and 
supraspinous ligaments connect spinous processes of adjacent bodies. 
 
 

2.2 Mechanics of the Spine 
 
 
2.2.1 Mechanics of an IVD 
 

As mentioned before, the IVD acts as a shock absorber as seen in Figure 2.5B. 
The hydrostatic pressure generated by the nucleus and contained within the annulus 
converts axial loads normal to the endplate into radial loads, distributing them about the 
annular fibers which then experience tension. This tension allows fibers that would 
otherwise buckle under compression to limit mobility of the disc in a fashion that 
stabilizes the spine under commonplace loading scenarios such as supporting body 
weight.4 

 
The IVD also acts as a stabilizer under lateral and sagittal bending. The anatomy 

of the disc facilitates stability during compression via redirecting forces to be borne via 
tension, but the fibers of the disc also function to withstand tension on the disc. This is 
apparent in the application of bend as seen in Figure 2.5B, where one side of the disc 
experiences compression while the other experiences tension. This allows the disc to not 
only act as a compressive shock absorber but as a rotational stabilizer.2 Various ligaments 
and the facet joints also act to limit and guide motion.4,22  
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Figure 2.4 Various ligaments of the spine 
 
Reprinted with permission from E. C. Benzel, 2005. Spine surgery : Techniques, 
complication avoidance, and management, 2nd ed. Churchill Livingstone, Philadelphia, 
Pa., p 78.28 
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Figure 2.5 Basic IVD mechanical response to loads 
 
In response to compressive loads (A) the nucleus pulposus contained within the annulus 
fibrosis redirects the compressive load radially, placing the annular fibers in tension, 
whereas in response to bending moments (B) the nucleus and annulus work together to 
resist the load, with one side of the annulus in tension from the vertebral bodies and the 
other side in tension from the nucleus. 
 
Source: A. A. White and M. M. Panjabi, 1990. Clinical biomechanics of the spine, 2nd 
ed. Lippincott, Philadelphia. 
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2.2.2 Mechanics of the Lumbar Spine 
 

The in vivo loading conditions of the lumbar spine are complex but commonly 
simplified. The main consideration is the mass of the trunk weight supported by the 
spine. In most instances the trunk’s center of mass (COM) is anterior and superior to the 
lumbar spine but, depending on body type and weight, it can be located elsewhere. This 
mass is acted upon by gravity and is represented by the force (FBW) displayed in Figure 
2.6A. The perpendicular distance between FBW and the instantaneous point of reaction 
(IPR) within the joint dictates the moment. The postural muscles attached to the posterior 
structures of the vertebrae play a part in counteracting this moment along with the IVD. 
The curvature of the spine causes each MSU to see a different moment value.2,4,31 

 
Not only does this body mass force apply a moment to the lumbar MSUs but 

forces as well. Within the scope of a single level, as in Figure 2.6B, the body mass force 
has an axial component directed normally through the mid-plane of the disc (FN) and a 
shear component parallel to the mid-plane of the disc (FS). The magnitudes of these 
components are affected by the mass of the trunk and the angle of the mid-plane of the 
disc with respect to the global horizontal plane (θ), which determines the direction of 
gravity. These component forces can by calculated by using Equations 2.1 and 2.2: 

 
FN = FBW cos θ                                            (Eq. 2.1) 

 
FS = FBW sinθ                                             (Eq. 2.2) 

 
When considering the sagittal plane, for instance, theta may change by flexion or 

extension, affecting the magnitude of the shear component as well as the direction of that 
shear in the global perspective. When considering the local, disc-oriented perspective, the 
shear component is always directed along the mid-plane of the disc and therefore never 
changes direction, only magnitude. It is important to note however that under bending, 
the magnitude of the shear force component changes, suggesting a possible change in 
response to load.4 

 
The shear force causes the translation of a superior vertebral body with respect to 

the inferior one, biomechanically referred to as listhesis.2 This quantitative metric for 
measuring spine kinematics is notable for its absence in comparative literature 
concerning spine biomechanics. Drastic listhesis is a behavior that is related to spinal 
instability2 suggesting the reason that there is limited published data on specific quantities 
in healthy MSUs. 

 
 

2.3 Kinematics of the Lumbar Spine 
 

Kinematics is the area of mechanics involved the study of motion of rigid bodies 
without specific concern for the causal loads. In spinal biomechanics there is debate 
between the perspectives used to address those loads but it is nevertheless important to 
note that motion is caused by load. Spine kinematics will henceforth be discussed   
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Figure 2.6 Simplified mechanics of the spine 
 
The gravitational force (FBW) applied to the COM (A) is directed vertically in the global 
force reference frame. It induces a rotational moment (M = FBW * d) at each MSU level 
(B). The vertical force has components normal (FN) and parallel (FS) to the disc at a 
specific level whose magnitudes are functions of body weight and disc angle (θ). The 
rotational moment and component forces are different at each level because of variations 
in moment arm (d) and disc angle (θ). The spinal segment in B has been rotated in order 
to exaggerate the disc angle and increase the shear force component for functional 
visibility. The spine image was adapted with permission from J. Butler, J. W. Hole, R. 
Lewis and D. Shier, 2002. Hole's human anatomy & physiology, 9th ed. McGraw-Hill, 
Boston, p 156.26 
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regarding vertebral bodies as rigid bodies while motion is characterized by the position of 
the mobile superior (top) body with respect to the fixed inferior (lower) body. Spinal 
MSUs possess six degrees of freedom (DOF) of motion as seen in Figure 2.7. They are 
accounted for as three translational degrees along three orthogonal axes and three 
rotational degrees about those same three axes. Each degree of mobility has a specific 
characteristic response to load and some degrees have coupling effects due to vertebral 
geometry. The mechanisms governing response to load involve soft and hard tissues 
rendering the response dynamic and characteristically viscoelastic. These factors generate 
parameters in profiles of motion with respect to load like the neutral zone and effect the 
overall range of motion (ROM) in specific DOF.4 
 
 
2.3.1 Neutral Zone 
 

The neutral zone (NZ) in any degree of freedom is defined by Panjabi as the 
region of rotation between the neutral position and the point of spinal resistance to 
physiological motion first encountered during bending. The NZ is theoretically the region 
of motion that has low resistance, requiring small magnitudes of load to cause motion. 
This is a common metric for comparison of data in publications9,21 however the 
quantitative definition of such a parameter may not be appropriate. Although the NZ is 
considered in cases of degenerative disc disease, trauma, and surgery it was originally 
defined in a manner that leaves room for significant error due to the large difference 
between the in vitro loading scenarios used to define this parameter and the in vivo 
loading environment.32 Due to the limitations of conventional apparatuses used in 
biomechanical testing (Section 2.4.1) the current definition of this metric possesses an 
aspect of subjectivity.9 

 
There is also suggestive evidence that the theoretical NZ of a relatively healthy, 

ligamentous spinal MSU is a much smaller region and approaches non-existence under 
simulated in vivo loading scenarios. Panjabi does go on to suggest a difference between 
passive and active NZs, the latter involving resting muscles, the former being exhibited 
by cadaveric tissue. He also comments on their differences that active NZs would likely 
be smaller than passive NZs measured in vitro.4 However this does not diminish the 
opportunity for a more objectively quantitative definition for NZ. 

 
 

2.3.2 ROM 
 

In response to loads ROM does not change the same way NZ changes but the two 
are not unrelated. ROM is easily defined as the distance between the two most extreme 
points of displacement in either translation or rotation. It is a metric used in medical 
diagnoses and is the most commonly used metric of comparison in spinal biomechanics. 
A common practice is to compare pre- and post-surgical procedure ROM values of a 
cadaveric specimen.2,4,6,9,14,16,21,22,33,34,35,36,37,38,39,40 
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Figure 2.7 Spinal MSU degrees of freedom 
 
Adapted with permission from A. A. White and M. M. Panjabi, 1990. Clinical 
biomechanics of the spine, 2nd ed. Lippincott, Philadelphia, p 25.4 
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2.4 Biomechanical Testing 
 

Biomechanical testing of the spine is conducted in many laboratories across the 
world utilizing various mechanisms for investigations. Main goals of spinal biomechanics 
include obtaining better understanding of the in vivo mechanical properties and kinematic 
characteristics of the spine and determining the direct and indirect as well as immediate 
and prolonged effects of certain pathologies and surgical procedures on those properties 
and characteristics.7,9,21,24,25,41,42,43 Unfortunately, directly observed in vivo data are 
remarkably sparse, commending in vitro biomechanical testing.7,14 
 
 
2.4.1 Flexibility versus Stiffness Testing 
 

In 1988 Panjabi et al. developed a demarcation within biomechanical testing. 
Testing is separated by the primary independent variable, but not necessarily by the 
means of application. Protocols applying load and measuring displacement (translational, 
rotational, or both) would be flexibility tests while protocols actuating displacement and 
measuring reactive loads would be stiffness tests. There is still debate among researchers 
over which methodology is more appropriate.6 One advantage of flexibility testing is that 
it possesses greater control over the complex loading environment of the spine, enabling 
testing platforms to produce typical data which are comparable across platforms, between 
laboratories, and between multi- and single-segment studies. 

 
However this greater control has been applied in a limited fashion, mainly in the 

isolation of single loads, as in pure moment (PM) testing, where all forces and moments 
are targeted to 0 N and 0 Nm, respectively, with the exception of one planar 
moment.24,25,44 Also, flexibility protocol expansion via the introduction of combined 
loads still leaves supporters of stiffness testing resolute in their claim that controlling 
displacement yields better simulation of in vivo scenarios. Stiffness supporters argue that 
flexibility tests do not simulate the in vivo environment, and therefore cannot provide 
clinically relevant data on the behavior of the spine.4,31 The novel application of the not 
so novel field of robotics in the arena of biomechanical testing has the potential to offer 
researchers the control of flexibility testing and the realistic aspect of stiffness testing 
closing the gap between in vitro testing and in vivo conditions. 

 
 

2.4.2 Robotics in Biomechanical Testing 
 

Robotic testing platforms have been applied in the area of biomechanics nearly 
twenty years.10,24,25,37,38,44,45 Many of these platforms have attempted to perform 
flexibility testing by applying PMs to spine segments and MSUs. A primary tool 
developed for conducting these tests is load-control. Load-control in many concepts is 
simply varying load and measuring displacement. 

 
For the rest of this thesis load-control will be defined as such: the use of force and 

moment measurements as commanded targets and as direct feedback for actuating 
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mechanisms in real-time, meaning there is no discernible iterative step. While some 
laboratories claim load-control similar to this definition in reality they utilize positional 
data as feedback applying complex plant stiffness algorithms used to calculate a 
subsequent iterative displacement to obtain a desired force profile.25,45,46 This mechanism 
applies stiffness testing principles and mechanisms to produce kinematic data that 
resembles data obtained from flexibility testing. Published data on true RTLC exist but it 
is sparse and limited in application, only being validated in PM.24,44 

 
The Musculoskeletal Research Laboratory (MRL) at the University of Tennessee 

Health Science Center (UTHSC) houses a custom-built, robotic, Cartesian, 
biomechanical test platform operating with 6 RTLC DOF as seen in Figure 2.8. It has 
been validated in flexibility testing of lumbar spine segments.47 Its robotic performance 
competes with the best published robotic biomechanical testing platforms and produces 
data that are comparable to published lumbar spine data.47 This testing platform will 
henceforth be referred to as the Cartesian Robotic Biomechanical Tester (CRBT). 
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Figure 2.8 Custom built robotic biomechanical testing platform 
 
The testing platform has six fully controlled DOF. The specimen is mounted on the 
manually mobilized table, which is locked during testing. The mobile gimbal then 
attaches to the “free” end of the specimen. For platform hardware and specifications, see 
Appendix A. 
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CHAPTER 3.    ROBOTIC APPLICATION OF A DYNAMIC RESULTANT 
FORCE VECTOR USING REAL-TIME LOAD-CONTROL: SIMULATION 

OF AN IDEAL FOLLOWER LOAD 
 
 

The following text will comprise a technical note on a new methodology for 
applying a dynamic load vector to a lumbar spine segment and will validate the universal 
ability to apply a dynamic load vector during biomechanical tests with the CRBT. 
 
 

3.1 Introduction 
 

In vivo spinal loading conditions are comprised of dynamic force vectors.4 And 
although biomechanics has sought to isolate loading conditions for repeatable 
methodologies6 there still exists a need to close the gap between in vitro tests and in vivo 
circumstances where possible to better understand spine kinematics. In order to 
accurately test cadaveric tissue and any analogues, it would be advantageous to utilize a 
system capable of applying dynamic force vectors. Several currently used systems solve 
this problem with various cable-deadweight platforms.6,9 While current applications 
succeed at applying forces, some being indeed dynamic in nature, the area of robotics can 
provide some improvements in controllability and precision in applying those forces. 

 
In order to mimic the in vivo condition of non-segmented motion, a form of load-

control is best suited for providing contiguous and dynamic load. Previous load-control 
attempts have applied incremental displacement in position-control to achieve specified 
load targets requiring complex matrices of plant stiffness and intensive calculation.25 
Other attempts invoke genuine load-control, driving actuators directly with force error 
determined by commanded force targets.24,44,45 However these few attempts at robotic 
load-control have been limited to maintaining zero-load conditions, and even then some 
have large tracking error (TE) values.24,45 

 
A robotic system comprised of independent axes operating in force or position-

control in coordination with the ability to apply a dynamic force vector is not unheard 
of,23 however the author is unaware of any such application to biomechanical testing. 

 
The objective of this paper was to introduce a methodology for applying a 

dynamic force vector utilizing a novel robotic biomechanical testing apparatus. The 
chosen employment of this method was the robotic simulation of an ideal FL, the 
standard non-PM testing protocol for which a force of constant magnitude but dynamic 
direction is requisite. To the author’s knowledge there has not been publication of a 
robotic, real-time load-control application of a non-zero load-vector during bending. This 
application not only sought to control a non-zero load vector during bending, but it also 
controlled a vector that was dynamic in its direction. 
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3.2 Materials and Methods 
 

Six fresh-frozen human cadaveric L4-L5 lumbar MSUs (male, mean age 44 ± 8.9 
years standard deviation (SD)) were radiographically pre-screened for degenerative disc 
symptoms and osteophytes obstructive to normal anatomic motion, harvested and cleaned 
of excessive soft tissue. The segments were potted in bismuth alloy (Cerrobend™) in 
specimen-specific, natural lordotic alignment referenced to the assumed horizontal 
cranial endplate of L1, as seen in Figure 3.1, and then frozen until testing. The specimens 
were caudally fixed within the platform and cranially attached to the Cartesian 
manipulator. 

 
The testing platform was comprised of a custom-built, Cartesian, RTLC Gantry 

system with six fully controlled DOF and a six-axis force-moment sensor (FMS) (Model 
45E15A4-I63-AF JR3 Inc., Woodland, CA). Three harmonic drive motors comprising a 
roll-pitch-yaw (lateral bending, flexion-extension, axial rotation) gimbal assembly were 
suspended in series from three servo-actuated orthogonally oriented x-(anteroposterior 
(AP)), y-(lateral), and z-(craniocaudal (CC)) translational axes which, collectively 
comprised a single Cartesian manipulator.10  The three translational axes comprised a 
stationary global coordinate system (GCS), to which all translational data were 
referenced. The FMS was rigidly mounted between the gimbal and cranial end of the 
specimen. The FMS also presented a local, mobile coordinate system (FMS-CS) in which 
all forces and moments were defined. Further use of these coordinate systems will be 
explained in the data processing segments. 

 
All axes were controlled via an open-architecture, PID gain controller (UMAC 

Delta Tau Data Systems Inc., Chatsworth, CA) utilizing cascaded control loops and 
custom coded motion programs. A custom calibration algorithm was employed in real-
time to correct for changes in FMS readings due to gravitational forces on attached pots 
and fixtures such that the platform directly controlled loads applied to the specimen. 
Complex equations for operation can be found in Appendix B. Each axis could operate 
utilizing position-control or load-control but regardless of that mechanism all movements 
were coordinated. 

 
The ideal FL protocol is described in detail in Section 4.2 as a part of a full-length 

manuscript. This chapter was intended to be a short communication or technical note and 
as such the detailed explanation of the imitated protocol was cut in order to save words. 
For the sake of this section it is merely important to understand that when concerning a 
single MSU an ideal FL is applied normal to the disc, functionally minimizing any shear 
forces with respect to the disc. 

 
The midline of the disc as defined by Figure 3.2 functions as the direction for 

ideal FL vector which is normal to the disc as shown in Figure 3.3.9 During sagittal 
bending the mid-plane of the disc rotates half as much as the cranial body therefore 
requiring the load vector to change direction while maintaining constant resultant 
magnitude.9,12 To input this dynamic load condition sagittal plane rotation was 
programmed to operate under constant velocity position-control while lateral and axial  
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Figure 3.1 Sagittal plane potting alignment 
 
The assumed horizontal cranial endplate (A) defines the angle of the disc with respect to 
the potting material (B). This angle is taken into account in the motion programs for 
controlling forces as well as any slight potting misalignments. See Appendix C for 
detailed motion programs. The spine image was adapted with permission from J. Butler, 
J. W. Hole, R. Lewis and D. Shier, 2002. Hole's human anatomy & physiology, 9th ed. 
McGraw-Hill, Boston, p 156.26 
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Figure 3.2 Midline of the disc definition 
 
An example sagittal radiographic image of a potted specimen exhibits the location of the 
corners of the endplates adjacent to the L4-L5 IVD. Cross-disc lines (red) were drawn 
and marked to form the line indicating the midline (red) of the disc which had an angle 
(β) with respect to the GCS (blue) horizontal while under no load. The xdisc- and zdisc-axes 
are also denoted in green, forming the static βGCS (green), the coordinate system into 
which the APT data were transformed. The location of the anatomic tracking point when 
the specimen was under no load acted as the origin of the βGCS. 
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Figure 3.3 Ideal FL application to single MSU 
 
The component forces (Fx and Fz) (within  the FMS-CS, white) are dependent on the 
magnitude of the commanded resultant force (FR), the specimen specific sagittal potting 
angle (β), and the mobile flexion/extension angle (B). The resultant force remains normal 
to the also mobile mid-plane of the disc (defined by the DCS, red), which rotates at half 
the rate of the cranial pot because it is defined as the mid-plane between the mobile, 
cranial and stationary, caudal endplates of the L4-L5 disc.9 Also note the anatomic 
tracking point (green circle) used to define the displacement metric. The GCS is in blue.  
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rotation axes operated in load-control to zero moment. All three linear axes operated 
under load-control with lateral forces controlled to a zero set point. A load magnitude of 
400N was chosen for simulation.48,49,50 At 0.2° increment of sagittal rotation commanded 
FMS forces were thus programmed using Equations 3.1 and 3.2: 

 
𝐹𝑥 = 400 sin(𝐵 2⁄ − 𝛽)                                      (Eq. 3.1) 

 
𝐹𝑧 = 400 cos (𝐵 2⁄ − 𝛽)                                      (Eq. 3.2) 

 
where B is the flexion/extension angle and β is the angle of the mid-plane of the disc with 
respect to the top pot as seen in Figure 3.3. The resultant force was intended to have a 
constant magnitude when the force was referenced within the coordinate system defined 
by the midline of the disc (DCS). This coordinate system was a mobile coordinate system 
that was dependent on the sagittal rotation angle (B). Based on the convention used to 
define the midline of the disc, the DCS rotated half as much at the FMS-CS in the sagittal 
plane during the test. Transforming the FMS-CS component forces to the DCS ideally 
would, in the case of the FL, make the DCSX force component non-existent and make the 
DCSZ component 400 N. 

 
To ensure applied forces did not build up initial moment artifacts a load vector 

was applied by sequentially applying Fz and Fx component forces while constraining 
flexion-extension rotation. Observed sagittal moment values in this state were due to the 
offset of net reactive specimen forces with respect to the FMS force reference frame 
(FRF). The FRF was transformed in the FMS-CSX and FMS-CSZ directions to null these 
values and subsequent moment values were determined with respect to the newly located 
reference frame for all tests. 

 
Specimens were mounted in the testing platform and manipulated to an unloaded 

state that delineated neutral angular orientation. The tissue was preconditioned by 
applying a flexion-extension PM protocol (all forces and non-sagittal moments 
commanded to 0 N and 0 Nm, respectively) to an 8 Nm end-limit three times at a rate of 
0.35°/sec. The load vector was then applied to each specimen, which were subsequently 
extended and flexed (without pause) three times to an 8 Nm end-limit at a rate of 
0.35°/sec while the load vector was maintained in magnitude and direction with respect 
to the mobile mid-plane of the disc. Specimens were wrapped in moistened cloth to 
prevent tissue dehydration during testing. 

 
Rotational, translational, force, and moment data were recorded at 10 Hz for 

analysis from the third bending cycle. Translational and rotational data along with 
fixturing and radiographic measurements were used to calculate the Cartesian translation 
data of the anterior-most point of the superior vertebral body's inferior endplate as noted 
in Figures 3.2 and 3.3. RROM and Cartesian displacement were analyzed under no load 
and neutral, flexed, and extended conditions with load. The observed AP and CC forces 
were combined to determine the resultant applied force for error calculation. 
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The translational values were transformed from the GCS to a coordinate system 
(βGCS) that was defined by the specimen specific sagittal disc angle when the specimen 
was under no load defined by the variable (β). This coordinate system was a stationary 
coordinate system that acted a functional rotation of the GCS by the angle β. The rotated 
system was defined to emphasize the difference between shear (AP and Δxdisc) motion 
and compression (CC and Δzdisc) motion. The xdisc-axis was parallel to the midline of the 
disc and the zdisc-axis was normal to the midline. The origin of the coordinate system was 
the location of the aforementioned anatomic tracking point when the specimen was under 
no load. 

 
Using pixel counting software (Image-J National Institute of Health) a sagittal x-

ray image of the potted specimen was analyzed to determine the orientation of the 
midline of the disc. The anterior- and posterior-most points of the cranial and caudal 
endplates were located. Two cross-disc lines were drawn between the anterior points and 
posterior points. A single line was then drawn between the midpoints of the cross-disc 
lines. This line was designated to be the midline of the disc and is best displayed in 
Figure 3.2. The angle of this line was measured in relation to the assumed level bottom 
of the bottom pot to determine potted disc angle as seen in Figure 3.3. These 
measurements were conducted for every specimen with a 64 pixel per inch resolution. 
 
 

3.3 Results 
 

Force and moment values read by the FMS during a single test are exemplified in 
Figures 3.4 and 3.5. Average TEs across all specimens are displayed in Table 3.1. The 
average TE for the resultant force (FR) was 1.28 N (±1.55 N SD) off the commanded 
force (400 N) across all specimens. Generally, the zero-commanded axes were held 
within a ±0.1 Nm range for moments and ± 1 N range for forces with maximum 
deviations not exceed ±0.5 N and ±5 Nm. Greater deviations from commanded values 
occurred when extension and flexion reversed direction however these deviations 
occurred outside the range of analysis. 

 
The average RROM values for extension and flexion were 2.6° (±1.2° SD) and 

5.0° (±1.7° SD), respectfully. The average APTs in the sagittal plane as result of initial 
loading, extension, and flexion were broken up into x-components and z-components in 
the βGCS. The data can be found tabularized in Table 3.2 and graphically represented in 
Figure 3.6. The flexibility curve for a single specimen exhibits standard hysteresis 
behavior seen graphically represented in Figure 3.7. This data is often quantitatively 
evaluated in the literature, but due to the lack of standardized methods and frequent use 
of subjective methods, this data have been confined to evaluation in the qualitative arena. 
The platform was able to apply a load vector dynamic in direction and constant in 
magnitude.  
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Figure 3.4 Graphical representation of applied forces 
 
Lateral shear (Fy) and resultant force (FR) were commanded to constant values of 0 N and 
400 N, respectively. It is dangerous, however, to define AP shear and CC compressive 
force as (Fx and Fz) because of the nature of their relationship involving the 
flexion/extension moment. Therefore, forces in the x- and z-direction will be referred to 
as Fx and Fz, respectively.  RROM and displacement data were collected for analysis at 
instances FL load without bending or 0 Nm (a), 8 Nm  extension (b), and 8 Nm flexion 
(c).The data were collected at a frequency of 10 Hz. 
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Figure 3.5 Graphical representation of applied moments 
 
The lateral bending (Mx) and CC torsion (Mz) bending moments were commanded to 0 
Nm, therefore they are difficult to notice while flexion/extension (My) is easily noted. 
RROM and displacement data were collected for analysis at instances of FL load without 
bending or My = 0 Nm (a), 8 Nm extension (b), and 8 Nm flexion (c). The data were 
collected at a frequency of 10 Hz. The sagittal moment overshoot was commanded to 
prevent any force error related to bending direction turnaround from affecting data 
analysis. 
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Table 3.1 Mean commanded force TE 
 

Tracking Error Quantities Fx (N) Fy (N) Fz (N) Mx 
(Nm) 

Mz 
(Nm) FR (N) 

Mean Tracking Error 0.8 0.6 1.2 0.03 0.03 1.3 
SD of Mean TE ±0.4 ±0.3 ±0.6 ±0.00 ±0.00 ±0.6 
Avg. SD of TE for Single Test ±0.8 ±0.4 ±1.6 ±0.02 ±0.02 ±1.6 

 
The first row is the mean absolute value of the force TE at every data collection instance 
for all specimens. The second row is the SD of the means from individual specimen. The 
third row is the average SD of an individual specimen’s mean absolute value of the force 
TE at every data collection instance. These data represent average instantaneous TEs in 
the system during testing and are subject to the effects of noise and system 
controllability. 
 
 
 
Table 3.2 Mean anatomical point translation in sagittal plane 
 
Analysis Point Xavg (SD) mm Zavg (SD) mm 
0 Nm No-Bend (a) -0.2 (±0.3) -0.6 (±0.2) 
8 Nm Extension (b) -1.0 (±0.6) 0.6 (±0.4) 
8 Nm Flexion (c) 0.9 (±0.8) -2.5 (±0.9) 

 
The average APTs noted in Figure 3.2 as tracked in the coordinate system defined by the 
mid-plane of the disc while the MSU is under no force or moment load. The x-axis is 
parallel to the sagittal mid-plane of the disc and the z-axis is normal to the mid-plane. 
The origin is determined by the location of the anatomical tracking point in the unloaded 
position. The three data analysis points (a, b, and c) match up with the points mentioned 
in Figures 3.3 and 3.4.  
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Figure 3.6 Anatomical point translation as result of loading and bending 
 
The data displayed are the APTs noted in Figure 3.2 in the βGCS. The origin is 
determined by the location of that point in the unloaded position. The crosses denote the 
averages and the boxes represent ±1 SD in both axes respectively. 
  

-4.0 

-3.5 

-3.0 

-2.5 

-2.0 

-1.5 

-1.0 

-0.5 

0.0 

0.5 

1.0 

1.5 

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 

Z D
is

c (
m

m
) 

XDisc(mm) 

Initial Loading (0 Nm) 

Extension (8 Nm) 

Flexion (8 Nm) 



 

29 

 
 
 
Figure 3.7 Rotational motion with respect to applied flexion/extension moments 
 
400 N ideal FL vector applied during ±8 Nm flexion/extension test. The typical 
flexion/extension flexibility graph displays path-dependent hysteresis as well as the 
typical NZ that is qualitatively defined by the two heels. This graph is meant purely for 
qualitative evaluation and comment, not data analysis. 
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3.4 Discussion 
 

One objective of this paper is to introduce a methodology for applying a dynamic 
force vector by robotically simulating an ideal FL protocol, during which a force of 
constant magnitude but dynamic direction is prescribed. Properties relating to robotic 
performance and tissue behavior were investigated: TEs, RROM, angular flexibility, and 
APT. 

 
Due to the novelty of our system a limited amount of comparable data exists in 

the literature.24,44,45 Because of the direct load-feedback controlled nature of the platform, 
the load-control system clocks at 4.4 kHz, remarkably fast compared to other published 
systems.44 The average TEs for the zero-commanded axes (lateral shear, lateral bending, 
and CC rotation) were 0 N (2.12 N SD) and 0 Nm (0.08 Nm & 0.10 Nm SD), 
respectively as seen in Table 3.1. More notable TEs occurred in the axes bearing non-
zero force commands (AP shear, compression, & calculated FR) however the TEs are 
negligible in the usual case (<0.5%) and small in worst cases (<5%) when compared to 
the commanded force targets. Our TEs are beyond satisfactory when compared to 
“unconstrained” axes TEs in robotic biomechanical testing literature: ±25N and 
±10Nm45, ±6N and ±1Nm24, and  <1N and <0.05Nm RMS error44. Typically non-robotic 
test platforms do not present TEs for comparison. 

 
The ideal FL as applied to a single MSU is applied normal to the midline of the 

disc. Numerous investigations have been conducted regarding the effects of variations in 
load vector magnitude, direction, location and path on flexibility and RROM, however 
the mechanisms for load application are similar: guided cables which direct the 
gravitational force on a deadweight.6,7,8,9,12,20 

 
Several limitations plague this mechanism. Cable guides cause the loading vector 

to be oblique to the mid-plane of the disc during bending resulting. They also cause more 
artifact shear forces by gradually redirecting and misaligning tensile forces and leaving 
them to be resolved by the disc.  Cable-driven testing apparatuses are also often used to 
apply static or quasi-static, non-physiologic motion profiles resulting in ligamentous 
relaxation.6,9 In answer to these limitations, the methodologies developed in this study 
provide solutions. Forgoing cables or guides, the platform maintained the direction of the 
load vector normal to the disc mid-plane during contiguous bending motion creating no 
artifact shear forces and mimicking physiologic bending motion. 

 
The RROM results observed in this study were consistent with data from 

conventionally applied FL found in literature.6,9,12 And although the moment-angle 
graphs representing angular flexibility were not quantitatively evaluated, typical 
hysteresis was observed along with the characteristic heels separating the NZ from the 
“elastic zone.”4,51,52 The literature lacks sufficient APT data for comparison. It is 
therefore assumed that because observed RROM and flexibility data agrees with 
literature the translational data, though unparalleled, is acceptable as well. 
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The system as it was used in this endeavor did not operate without compromises. 
Force TEs were greatest at flexion/extension direction reversals therefore slight moment 
overshoot was commanded to ensure that analyzed data were not affected heavily by TE. 
Also literature suggests that the location of the balance point from which reactive forces 
originate within the tissue changes under bending.6,9,40 The FRF transform used to negate 
moments caused by force couples in this study remained stationary with respect to the 
FMS. This however is not a limitation of the platform, but rather a simplification of 
protocol for the sake of preliminary investigation. Due to the dispensing of cables and 
guides, the robotic simulation of ideal FL is at this time relegated to single segments, a 
limitation born in exchange for non-sagittal expansion potential. 

 
In light of a few compromises success and still greater potential exists. Future 

work involves making a load vector dynamic in direction as well as magnitude. Also, the 
aforementioned compromises are not limitations of the platform: FRF transforms have 
the potential to be mobile and the application of adaptive robotic performance parameters 
may result in better robotic performance. However, testing was achieved well within 
acceptable bending rates while being contiguous, without utilizing the platform’s 
adaptive capabilities, and without a dynamic model of the specimen. Conclusively, a 
methodology for applying a dynamic load vector in coordination with bending was 
successfully developed. Simulation in non-sagittal planes is on the horizon. 
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CHAPTER 4.    EFFECT OF LOAD ON KINEMATIC BEHAVIOR OF HUMAN 
LUMBAR SPINE DURING FLEXION-EXTENSION: COMPARISON OF 

ROBOTICALLY APPLIED PURE MOMENT, IDEAL FOLLOWER LOAD, 
AND NOVEL TRUNK WEIGHT PROTOCOLS 

 
 

4.1 Introduction 
 

Spinal biomechanics investigators have used many different platforms to 
implement various in vitro loading protocols on cadaveric tissue in order to better 
understand the spine’s natural kinematic behavior and the effects of myriad spinal 
instrumentation and corrective surgeries. Very seldom in the literature is there thorough 
comparison between different protocols or different testing platforms. And when 
comparisons are published, the metrics used to define kinematic characteristics are 
limited and potentially ineffective at identifying differences in the biomechanics observed 
during various protocols applied by various platforms, resulting in contradictions in the 
literature.6,7,14,16,18,20,24,25,31,36,43,44,51,52,53,54,55 

 
Two current standard protocols for biomechanical spine testing are the PM and 

the FL protocols.13,14,15,16,17,18,19,20 The PM protocol ideally applies single plane bending 
and no other forces while the FL protocol ideally applies compressive forces normal to 
IVDs during single plane bending.12 Platforms use various mechanisms to apply 
prescribed loads: cables and pulleys56,57, or controller-driven actuators orthogonally 
nested as a gimbal,10,37 combined in series,24,25,58 or in parallel as a hexapod44,45 and 
almost all incorporate a multi-axis FMS and some form of a contact- or non-contact 
position tracking measurement system.59 The metrics based on data from differing 
platforms used to characterize kinematic response to applied loads are primarily angular 
rotation and flexibility which are subject to various levels of limitation and error 
determined by platform capabilities.20  

 
Certain protocols and platforms are more prone to specific limitations than others. 

For instance, the PM protocol ideally involves the application of a single moment while 
all forces and other moments are constant at 0 N and 0 Nm, respectively. The 
controllability of certain platforms can result in the application of unwanted or “artifact” 
forces and moments during a test.45 Similar artifact forces and moments plague the 
application of a FL where artifact shear forces can be found in the unaccounted for loads 
on the disc.6 Furthermore, with regard to the conventional application of an FL protocol, 
the cables and guide conformation limit the application of the protocol to bending in the 
sagittal plane, although sometimes laboratories misapply this load.60 These limitations 
however do not encompass the plethora limitations and errors involved with various 
platforms and protocol applications. Nonetheless there exist numerous different platforms 
for applying biomechanical protocols. 

 
One of the primary inspirations for this chaos of engineering is the question, 

“Does load affect the spine?” Panjabi et al. (1977)21 found that load increased lateral and 
sagittal angular flexibility. However Miller and Skogland (1980)61 and Janevic et al. 



 

33 

(1991)62 found that when platform adjustments were made load decreased lateral and 
sagittal angular flexibility. Still further, Cripton et al. (2000)6 found that the load-spine 
kinematic relationship is dependent upon unintended “artifact” moments and shear while 
Patwardhan et al. (2003)9 concluded that load magnitude affects flexibility as well as 
RROM. The literature suggests that load affects the spine but the exactitude of the effect 
is suspect when considering the various protocols and method adjustments used to obtain 
quantitative evidence that is debatable at best.6,9,21,61,62 

 
The literature is not entirely inconclusive but the fidelity of its conclusions 

provides room for improvement. For example numerous observations in literature are 
founded on the extrapolation of ideas (like the ideal FL) into protocol methodologies 
outside the initial domain of that particular idea’s intended use (the sagittal plane).60,63 
The literature has also historically been fixed on particular metrics for biomechanical 
evaluation. Unfortunately the primary metrics have offered little to no statistically 
significant differences in biomechanical protocol and platform comparisons when 
intuitive and sometimes observable differences are apparent. There is also growing 
concern for how shear may affect kinematic response due to the fact that it is present in 
vivo.2 To the author’s knowledge, most published protocols attempt to either minimize 
forces or mimic ideal FL, which calls for only compression. A gap in the literature exists 
for investigation into the effect of intentional shear in combination with compression on 
spinal kinematics. 

 
The objective of this study was to quantitatively compare two standard protocols, 

PM and the ideal FL and a trunk weight (TW) protocol involving the intentional 
application of shear in combination with compression by their effects on the kinematics 
of a single L4-L5 spinal MSU. The spinal kinematic characterizing metrics used to 
compare the protocols were flexion/extension RROM and APT, a quantity novel in its 
use for comparison. It was hypothesized that additional compressive and shear load 
would decrease RROM9 and that shear load will produce statistically significant 
differences in displacement. 
 
 

4.2 Materials and Methods 
 

Six fresh-frozen human cadaveric L4-L5 lumbar MSUs (male, mean age 44 ± 8.9 
years SD) were radiographically pre-screened for degenerative disc disease symptoms, 
harvested and cleaned of excessive soft tissue. The segments were potted in bismuth alloy 
(Cerrobend™) in specimen-specific, natural lordotic alignment referenced to the assumed 
horizontal cranial endplate of L1 as in Figure 3.1. The specimens were caudally fixed 
within the platform and cranially attached to the Cartesian manipulator. 

 
The testing platform was comprised of a custom-built, Cartesian, RTLC Gantry 

system with six fully controlled DOF and a six-axis FMS (Model 45E15A4-I63-AF JR3 
Inc., Woodland, CA).  Three harmonic drive motors comprising a roll-pitch-yaw (lateral 
bending, flexion-extension, axial rotation) gimbal assembly were suspended in series 
from three servo-actuated orthogonally oriented x-(AP), y-(lateral), and z-(CC) 
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translational axes which, collectively comprised a single Cartesian manipulator.10 The 
FMS was rigidly mounted between the gimbal and cranial end of the specimen. 

 
All axes were controlled via a PID gain controller (UMAC Delta Tau Data 

Systems Inc., Chatsworth, CA) implicating custom coded programs, which prescribed 
targeted loading scenarios. Each axis could operate utilizing position- or force-feedback 
but regardless of that mechanism all movements were coordinated. A custom calibration 
algorithm was employed in real-time to correct for changes in FMS readings due to 
gravitational forces on attached pots and fixtures such that the platform directly 
controlled loads applied to the specimen. 

 
Specimens were mounted in the testing platform and manipulated to an unloaded 

state that delineated neutral angular orientation. The tissue was preconditioned by 
applying a flexion-extension PM protocol (all forces and non-sagittal moments 
commanded to 0 N and 0 Nm, respectively) to an 8 Nm end-limit three times. The 
flexion/extension motor was driven in position-control to ensure a constant bending rate 
of 0.35°/sec during all tests while all other motors operated in load-control. To ensure 
applied forces did not build up initial moment artifacts a 400 N resultant load vector was 
applied normal to the disc by sequentially applying Fz and Fx component forces while 
constraining flexion-extension rotation. The magnitudes of those component forces were 
determined by trigonometric equations which will be elaborated on in the following 
paragraphs. Observed sagittal moment values in this state were due to offset net reactive 
specimen forces with respect to the FMS FRF. The FRF was transformed in the FMS-CSX 
and FMS-CSZ directions to null these values and subsequent moment values were 
determined with respect to the newly located reference frame for all tests.  

 
Two unique loading scenarios were simulated: the ideal FL and the novel TW 

load. The development of the FL was in response to a problem exhibited by in vitro 
testing of multi-segment spine specimen. Compressive magnitudes of in vivo magnitudes 
would cause the spine to collapse or bend over. Patwardhan et. al (1999)12 addressed this 
issue by guiding the compressive force tangentially along the lumbar curvature of the 
spine through the theoretical ICR of each disc. Subsequently the ideal FL would apply a 
force normal to the midline of the disc with minimal shear forces.9 When regarding the 
coordinate systems established within this research, an ideal FL would be a combination 
of Fx and Fz that resulted in a force vector with a direction normal to the midline of the 
disc at all times. 

 
The FL has been conventionally applied by connecting deadweight to the cranial 

body of specimen with cables. The cables were then run through eyelets that are 
connected to the lateral sides of the vertebral bodies of the specimen. The vertical 
location of those eyelets was typically in the middle of each body while the horizontal 
location for each eyelet was dependent on specimen specific radiographic images used to 
approximate the ICR. The locations of each eyelet would dictate the “path” of the FL. 
Eventually the methodology for path creation evolved, incorporating empirical path 
optimization. The load is applied to the cable and the horizontal locations of the eyelets 
were altered until minimal changes in flexion/extension or lordosis as result of the 
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deadweight were read by non-contact markers on all bodies. This mechanically meant 
that when the path was determined by the optimal location of the eyelets (primarily 
variable horizontally), the deadweight would be applying the smallest net moment to the 
specimen, while the specimen was in a specific posture.9,12 

 
This methodology, although commonly accepted, presents a few limitations. One 

is that the location of the eyelets remains constant through bending. Patwardhan et. al 
(1999) observed that optimization of path is posture dependent or in other words, the 
optimal horizontal location of the eyelets changes. This means that the cables apply 
unwanted or “artifact” moments during flexion and extension.  Also the optimal path 
minimizes any artifact moments from the deadweight that would cause change in 
flexion/extension or lordosis, but there are still shear forces applied to each disc resulting 
from the redirection of the tensile forces in the cables. Although the compressive FL 
theoretically minimizes shear forces at each disc, the practical application of the protocol 
is than ideal contrary to the force vectors’ supposed alignments being normal to the 
midline of each disc. These are but a few limitations of the conventional application of 
the FL protocol. 

 
In this research some key features of the ideal FL were used to found the 

simulation of the ideal FL. One of the primary focuses was that the ideal FL vector would 
be applied perpendicularly to the mid-plane of the disc as depicted in Figure 3.2.9 During 
sagittal bending the mid-plane of the disc rotates half as much as the cranial body. This 
required the load vector to change direction with respect to the FMS which was providing 
control feedback for the motors responsible for maintaining a constant resultant 
magnitude.9 Therefore, at 0.2° increments of sagittal rotation, AP and CC forces were 
commanded by Equation 3.1 and 3.2 where B is the angle of the top body and β is the 
angle between the mid-plane of the disc and the top pot. A load magnitude of 400N was 
chosen for simulation48,49,50 while the Y-axis, lateral and axial rotation axes targeted 0 N 
and 0 Nm, respectively. All of these forces were read and consequently applied at the 
point of the FRF transform determined for each specimen upon mounting. 

 
The TW load is similar to FL in its requirement of a dynamic vector of constant 

magnitude, however it is dissimilar because of its disc mid-plane shear component. Due 
to the in vivo angulation of the L4-L5 disc, the weight of the trunk applies a shear force 
across the disc as displayed in Figure 2.6. Therefore the direction of TW force vector 
was intended to be static with respect to the GCS in efforts to simulate gravity. Instead of 
remaining normal to the mid-plane of the disc the vector remains vertically oriented 
within the GCS as in Figure 4.1. At 0.2° increments of sagittal rotation commanded FMS 
forces were thus programmed using Equations 4.1 and 4.2: 

 
𝐹𝑥 = 400sin(𝐵)                                             (Eq. 4.1) 

 
𝐹𝑧 = 400 cos(𝐵)                                            (Eq. 4.2) 

 
Resultant load magnitudes were maintained from the FL protocol. 
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Figure 4.1 Ideal TW application to lumbar MSU 
 
The component force (Fx and Fz) as seen in Figure 3.2 are not present here because FR = 
Fz and Fx = 0 N. However they are similarly dependent on the magnitude of the 
commanded resultant force (FR) and the mobile flexion/extension angle (B) but not the 
specimen specific sagittal potting angle (β). Based on Equations 4.1 and 4.2 the resultant 
force remains normal or vertical to the horizontal plane of the GCS (blue). For example, 
as L4, the FMS and the Cartesian manipulator flex forward the commanded Fx (0 N here) 
will increase in positive magnitude while Fz decreases. Also note the anatomic tracking 
point (green circle) used to define the displacement metric. The FMS-CS is in white and 
the DCS is in red. 
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The loaded specimens were flexed and extended to 8 Nm three times then 
offloaded for a final PM bending protocol of three 8 Nm flexion-extension cycles. 
RROM data from the third preconditioning PM cycle and the third final PM cycle were 
informally inspected for differences greater than 0.2°. None were observed. 

 
Rotational, translational, force, and moment data were recorded at 10 Hz for 

analysis from the third bending cycle of each test. Translational and rotational data along 
with fixturing and radiographic measurements were used to calculate the Cartesian 
displacement data of the anterior-most point of the superior vertebral body's inferior 
endplate as noted in Figure 4.1. RROM and Cartesian displacement were analyzed under 
no load, neutrally loaded, 8 Nm flexed and 8 Nm extended conditions. The observed Fx 
and Fz forces were combined to determine the resultant applied force for TE calculation. 

 
The RROM data were used to quantify the differences between protocols by a 

commonly accepted method53 while the translational data offered another perspective. 
 All data were tested for normality using the Pearson’s Chi squared test: measured 
RROM and transformed anatomic position tracking displacements analyzed at the three 
specified analysis points, neutral, extension, and flexion. Repeated-measures analyses of 
variance were used to discern differences across protocols in RROM and translational 
data. Greenhouse-Geisser estimations of ε were applied to the DOF where appropriate. 
For post hoc analysis paired t-tests compared protocols utilizing the Sidak correction to 
the level of significance (α) accounting for multiple comparisons. Average load TE was 
calculated to evaluate robotic performance. 
 
 

4.3 Results 
 

FMS values were used to calculate resultant force (FR) values and accompanying 
TEs. Examples of force and moment performance during a test of each protocol are 
exemplified in Figures 4.2 through 4.4. Average force and moment TEs for all protocols 
were below 2.0 N and 0.05 Nm, respectively. The mean resultant force (FR) TE during 
FL and TW protocols was less than 0.5% of the targeted value (400N). Average SDs of 
TEs for single axes during individual tests were calculated and displayed in Table 4.1. 
Load-controlled axes were controlled within maximum envelopes of ±5 N or ±0.2 Nm of 
their targets. Flexion/extension reversals caused greater TEs necessitating slight 
commanded sagittal bend overshoot to allow the analyzed results to bear minimal error as 
seen in Figures 4.2B through 4.4B. 

 
It is important to note in the PM forces graph (Figure 4.2A) that the scatter 

present represents the combined effects of system noise, system controllability, and FMS 
resolution. The FMS is an analogue tool with a specific sensitivity which was used to 
calculate the resolutions of each of the 6 axes: Fx and Fy = 0.06 N, Fz = 0.11 N, Mx, My, 
and Mz = 0.006 Nm. It is therefore safe to say that the controllability of the system is not 
adversely affected by the resolution of the FMS. 
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Figure 4.2 Graphical representation of applied forces and moments during PM 
protocol 
 
The various forces (A) were commanded to 0N. The moments (B) are represented with 
the lateral bending (Mx) and CC torsion (Mz) moments commanded to 0 Nm. The 
flexion/extension moment (My) is more easily noticed because it was not being 
commanded to 0 Nm. RROM and displacement data were collected for analysis at 
instances of no bending or My = 0 Nm (a), 8 Nm extension (b), and 8 Nm flexion (c). The 
data was collected at a frequency of 10 Hz.  
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Figure 4.3 Graphical representation of applied forces and moments during FL 
protocol 
 
Force (A) in lateral shear (Fy) and resultant force (FR) were commanded to constant 
values of 0 N and 400 N, respectively. It would be potentially confusing, however, to 
define AP shear and CC compressive force as (Fx and Fz) because of the nature of their 
relationship involving the flexion/extension moment. They were respectively commanded 
by Equation 3.1 and 3.2.The moments (B) are represented below with the lateral bending 
(Mx) and CC torsion (Mz) moments commanded to 0 Nm. The flexion/extension moment 
(My) is more easily noticed because it was not being commanded to 0 Nm. RROM and 
displacement data were collected for analysis at instances of no bending or My = 0 Nm 
(a), 8 Nm extension (b), and 8 Nm flexion (c). The data was collected at a frequency of 
10 Hz. 
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Figure 4.4 Graphical representation of applied forces and moments during TW 
protocol 
 
Force (A) in lateral shear (Fy) and resultant force (FR) were commanded to constant 
values of 0 N and 400 N, respectively. It would be potentially confusing, however, to 
define AP shear and CC compressive force as (Fx and Fz) because of the nature of their 
relationship involving the flexion/extension moment. They were respectively commanded 
by Equations 4.1 and 4.2.The moments (B) are represented below with the lateral 
bending (Mx) and CC torsion (Mz) moments commanded to 0 Nm. The flexion/extension 
moment (My) is more easily noticed because it was not being commanded to 0 Nm. 
RROM and displacement data were collected for analysis at instances of no bending or 
My = 0 Nm (a), 8 Nm extension (b), and 8 Nm flexion (c). The data was collected at a 
frequency of 10 Hz.  
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Table 4.1 Mean commanded force tracking error 
 

Mean Tracking Error Fx 
(N) 

Fy 
(N) 

Fz 
(N) 

Mx 
(Nm) 

My 
(Nm) 

FR 
(N) 

Pure Moment 0.6 0.7 0.4 0.03 0.03 NA 
(0.2) (0.3) (0.1) (0.00) (0.00) NA 

((0.6)) ((0.5)) ((0.4)) ((0.02)) ((0.02)) NA 
Follower Load 0.8 0.6 1.2 0.03 0.03 1.3 

(0.4) (0.3) (0.6) (0.00) (0.00) (0.6) 
((0.8)) ((0.4)) ((1.6)) ((0.02)) ((0.02)) ((1.6)) 

Trunk Weight 1.0 0.8 1.4 0.03 0.03 1.4 
(0.2) (0.2) (0.5) (0.00) (0.00) (0.4) 

((1.0)) ((0.5)) ((1.6)) ((0.02)) ((0.03)) ((1.4)) 
 
The first value is the mean absolute value of the force TE at every data collection 
instance for all specimens. The second value marked by single parentheses is the SD of 
the means from individual specimen. The third value marked by double parentheses is the 
average SD of an individual specimen’s mean absolute value of the force TE at every 
data collection instance. The measurements taken directly from the FMS (Fx, Fy, Fz, 
Mx,and My) were compared to respective targets in the FMS-CS while FR was compared 
to a 400 N target in the DCS. These data represent average instantaneous TEs in the 
system during testing and are subject to the effects of noise and system controllability. 
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RROM was normalized to the sagittal bend angle where no moment was present. 
No statistically significant difference between protocols was evident. Moment-angle 
flexibility graphs demonstrate typical hysteresis but no remarkable trends in flexibility 
variation were found. Sagittal plane displacement due to loading and bending was 
determined by tracking the anterior corner of the inferior endplate of L4 in the βGCS. 
Graphical representation of APT data in Figure 4.5 shows mean and SD translational 
values resulting from initial loading, extension, and flexion. Mean independent axis 
translations were compared for statistical significance between protocols. Statistically 
significant differences are noted in Table 4.2. 
 
 

4.4 Discussion 
 

The objective of this study was to quantitatively compare three spine testing 
protocols using a RTLC testing apparatus. A novel testing protocol was introduced. The 
new protocol incorporating intentional shear was compared to the current standard 
protocols by the RROM and APT. 

 
Results of this study are limited to male spines with mild degenerative changes. 

The specimen used in this study came from a relatively young age group and showed no 
radiographic signs of degenerative changes. Protocol sequence was not randomized and 
although the author noted no effects of the loading sequence. 

 
Robotic application of these protocols is new in biomechanics, specifically the 

methodology of RTLC of motors. Those laboratories that have developed non quasi-static 
load-control have employed platforms in the application of PM protocols, targeting 0 N 
and 0 Nm for non-bending axes.24,44,52 In comparison with the literature, the present study 
TEs for the PM protocol are excellent. The TE values for the loaded protocols compete 
with and in some cases best the lowest TEs of other robotically applied PM protocols in 
the literature.24,44,45,52,58 Although a few other laboratories have employed robotics to 
apply biomechanics protocols with RTLC,44 none, to the author’s knowledge, have used 
the capability to apply a load vector. Fewer still have had success comparable applying 
PM with acceptably low TEs.24,45,52,58 Also this system requires no complex model 
describing the control environment for operation.25 

 
Combined flexion/extension RROM data observed in this study are consistent 

with those reported in literature.48,49,56,57,64 And although publications presenting 
separated flexion/extension RROM data are sparse and such reports often utilize 
subjective means for delineation, the data from this study are consistent with those values 
as well. A trend of decreasing RROM was observed when load was applied in FL and 
TW protocols as seen in Figure 4.6. Similarly this trend is exemplified by Cripton et 
al.(2000)6 and Patwardhan et al.(2003)9 both of whom concluded that angular decrease in 
RROM is dependent on the magnitude of the applied load. It is possible that 400 N was 
insufficient to illicit a statistically significant difference in RROM. The decrease in 
RROM is perhaps due to increase in internal disc pressure resulting in stiffer mechanics 
or the impingement of the articulating surfaces of the facets.4,12,35  
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Figure 4.5 Mean anatomical point translation in different protocols 
 
The data displayed are the APTs noted in Figure 3.2 in the coordinate system defined by 
the unloaded disc where the x-axis is parallel to the disc and the z-axis is normal to it. 
The origin is determined by the location of that point in the unloaded position. The bold 
data points denote the averages and the boxes represent ±1 SD in both axes respectively. 
Three general groupings of data points represent extension (top-left quadrant), loading 
(around origin), and flexion (bottom right quadrant). 
 
Notice that although the loading of the specimen shows significant difference in 
translation between protocols that the flexion/extension translation is less significantly 
different suggesting a robust kinematic behavior of the joint during bending, performing 
similarly under load to its behavior under no load. 
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Table 4.2 Mean anatomical point translation 
 
Analysis Parameter Mean (mm) SD (mm) Statistical Significance 
Loading1 PM X (ai) 0.0 0.0 c1:p=0.046 
 FL X (bi) -0.2 0.3 c1:p=0.016 
 TW X (ci) 1.1 0.7 a1, b1 
 PM Z (di) 0.0 0.0 e1:p=0.003, f1:p=0.012 
 FL Z (ei) -0.6 0.2 d1 
 TW Z (fi) -0.4 0.2 d1 
Extension2 PM X (ai) -0.8 0.4 c2:p=0.058 
 FL X (bi) -1.0 0.6 c2:p=0.003 
 TW X (ci) 0.1 0.9 a2, b2 
 PM Z (di) 1.2 0.5   
 FL Z (ei) 0.6 0.4   
 TW Z (fi) 0.7 0.3   
Flexion3 PM X (ai) 1.3 0.7 c3:p=0.020 
 FL X (bi) 0.9 0.8 c3:p=0.004 
 TW X (ci) 2.5 0.9 a3, b3 
 PM Z (di) -2.0 0.7 e3:p=0.035 
 FL Z (ei) -2.5 0.9 d3 
 TW Z (fi) -2.3 0.8  

 
The anatomic point being tracked is the anterior-most point of the inferior endplate of the 
top body denoted by Figure 3.2. The point is being tracked through the βGCS. Statistical 
significance, when present, is described by noting the case between which there is a 
difference and the corresponding p-value. The null hypothesis was rejected and 
subsequently statistically significant differences were accepted at p<0.05. The right 
column lists the cases between which the pertinent row exhibits a statistically significant 
difference along with the associated p-value. Nearly significant differences were listed as 
well. 
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Figure 4.6 Mean flexion-extension RROM of different protocols 
 
RROM was measured by analyzing the sagittal plane rotation at 8 Nm flexion/extension 
moments while the flexion/extension angle was normalized to the position with 0 Nm 
flexion/extension. There was no statistically significant difference between the protocols 
however a trend of decreasing RROM as result of added loading was present.  
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Flexibility data are commonly reported in literature as the instantaneous slope of 
the moment-angle curves of a bending test at key points in the bend.9,20,62 Commonness 
aside, the published methodologies for discerning this data are remarkably cryptic and 
seemingly subjective flagging this metric as potentially problematic when considering it 
for protocol comparison. Therefore, author has relegated comments on flexibility to the 
qualitative realm. The curve presented in Figure 4.7 shows typical flexion/extension 
flexibility shape with hysteresis. Although variation in curve shape was protocol 
dependent, no trend was universal enough to merit quantitative investigation.  

 
To the author’s knowledge, APT data in the literature are determined by 

numerous methodologies that render the data incomparable. The lack of a standard APT 
measurement methodology causes the literature to lack a benchmark. The current study 
shows several significant differences amidst the APT data. However, when considering 
the change in APT data, the relative translation that is caused by bending in each protocol 
is quite similar across all protocols. In other words, the absolute APT data exhibits 
statistically significant differences at the analysis points between protocols, but the 
relative translations between the analysis points within each protocol are so similar that 
when relative translations are statistically evaluated, no significant difference exists 
across protocols. Therefore the statistical significance observed in translation due to 
different protocols may be attributed to the initial loading condition only, suggesting that 
the mechanics of the bending specimen are not significantly altered by either a 400 N 
purely compressive load or a 400 N load of slightly changing direction. However, further 
investigation may suggest that 400 N was merely an insufficient magnitude to elicit a 
significant change in L4-L5 sagittal plane bending mechanics. Further investigation into 
shear flexibility properties of this joint are merited, particularly with interest in how 
bending moment affects flexibility. The cause of the apparent flexibility of the joint 
during bending may be increased pressure in the disc4,12 or possibly the engagement of 
the facet joints and other intact ligaments.32,35,36 

 
The current objective in biomechanical testing protocols is to apply “isolated” 

moments and forces in order to develop repeatable data for quantitative comparison.6 The 
simplicity of isolated application is not derived by neglecting the complexity of in vivo 
loading circumstances. On the contrary, the simplicity is caused by the difficulties 
involved in recreating such a complex environment in a manner that is repeatable. This 
has resulted in a few protocols for measuring spine kinematics that are remarkably telling 
and useful. However it is still worthwhile to develop new protocols to better simulate the 
in vivo environment rather than hope that when researchers better understand the 
environment, perhaps the artifact loads which plague conventional platforms should turn 
out to be present in vivo, rendering them ingenious instead of unwanted.6 Current 
methods for protocol application are capable of applying new ideas, but not without 
difficulty. Even the most advanced load-control attempts are still only proven in PM 
application.24,44,45 For this reason, among others, a RTLC robotic testing platform was 
developed and employed in the intentional application of a force vector along with 
bending, regardless of the hypothesized difference it could make on spine kinematics. 
The TW protocol follows the logic that gravity acts upon mass situated above the spine 
and due to the anatomic angle of L4-L5 in most human beings that vertical force would  
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Figure 4.7 Single specimen sagittal bend flexibility comparison across protocols 
 
All  three protocols exhibited expected hysteresis characteristics when observing 
rotational flexibility.There was no drastic difference in most cases but in this example 
there is a trend of decreased flexibility in the NZ similar to the findings of Patwardhan et 
al.9 
 
Source: A. G. Patwardhan, R. M. Havey, G. Carandang, J. Simonds, L. I. Voronov, A. J. 
Ghanayem, K. P. Meade, T. M. Gavin and O. Paxinos, 2003. Effect of compressive 
follower preload on the flexion–extension response of the human lumbar spine. Journal 
of Orthopaedic Research 21, 540-546. 
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result in compression and shear. Although few significant differences between FL and 
TW were observed this protocol is still useful. Applying another component to the 
already proven protocols has the potential to change understood in vitro spinal 
kinematics, decreasing the gap between the bench top and the body. More specifically the 
TW protocol offers new observations into the biomechanics of the spine as they respond 
to shear forces. 

 
Conventional FL application as it is applied to full lumbar segments to fulfill its 

original purpose (to allow the spine to be stable at high compressive loads and not 
buckle)8,9,12 only operates in the sagittal plane. Although this parameter limits only those 
tests that utilize the original design for FL application (directed cable load) for full 
lumbar, numerous tests have been conducted involving single segments and non-sagittal 
mimicking of the FL. This study’s comparison involved many changes to conventional 
practice, therefore the author saw fit to limit application to the sagittal plane, however 
platform capabilities do not limit the application of load to any one plane. Also the FRF 
transformation was constant with respect to the mobile FMS throughout bending. This is 
an assumption against which there is suggestive evidence published in literature.65 
However the platform has the capability to apply an adaptive dynamic FRF. This 
capability will likely be investigated as to its implications. 

 
Potential further investigation using this testing platform includes but is not 

limited to: expanding the planes of bending, increasing the load magnitude, developing 
standard objective methods for evaluating spine stiffness, NZ, and the inflection point 
between flexion and extension, and finding the instantaneous center of rotation (ICR) 
during loading and bending. And although it is hypothesized the load magnitude of 400 N 
accounted for the lack of statistical significance, increasing the specimen pool would only 
better exemplify the population and potentially increase the likelihood of statistically 
significant differences. 
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CHAPTER 5.    CONCLUSIONS AND LIMITATIONS 
 
 

The first objective of this thesis was to develop a methodology for applying a 
dynamic force vector during a biomechanical test utilizing the novel robotic RTLC, 
biomechanical testing platform in the MRL at the UTHSC. As mentioned at the 
conclusion of Chapter 3, the performance results of the platform when compared to other 
robotic biomechanical testing platforms was excellent in the realm of TEs and 
controllability during non-zero targeted commands. Other published robotic testing 
platforms have only been tested in zero-targeted command protocols and have had 
limited success with the range of TEs that is considered reasonable. The single MSU (L4-
L5) biomechanical data observed in this study were comparable to data observed from 
other non-robotic, FL-based protocols. 

 
The second objective of this thesis was to quantitatively compare three 

biomechanical tests: PM, ideal FL, and TW protocols. With the aforementioned ability to 
apply a dynamic force vector during an isolated bending test, the platform robotically 
conducted the protocols excellently, with acceptable TEs and controllability. The three 
protocols were compared utilizing the metrics of RROM and APT, the latter of the two 
being novel in its use as a protocol comparison metric. Statistically significant differences 
were observed APT but not in RROM. However, the observations of Patwardhan et al. 
(2003)9 regarding a decrease in RROM due to applied compressive load were apparent in 
the current data. The use of 400 N as a resultant force magnitude, although deemed 
reasonable by literature,48,49,50 may not have been enough to illicit a statistically 
significant response. 

 
Some limitations exist in this research but they are not limitations of the CRBT. 

The point of reactive force within the MSU joint was held at a constant position with 
respect to the FMS and was specific to specimen. Although literature suggests that the 
IPR is mobile under sagittal bending,6,9,40 a simplification of procedure was deemed 
prudent in this initial attempt at protocol development. 

 
The use of single segment MSUs was also a limitation of this study. Much of the 

motivation for the development of the FL protocol was to find a mechanism for 
stabilizing the multi-MSU spine such that it would be able to bear in vivo load 
magnitudes in an in vitro testing environment.12 The various limitations of the FL 
protocol that followed were reasonably accepted so that a full lumbar spine could be 
tested under more appropriate loads without buckling. The fact that this study used single 
segments does not in any way devalue the data drawn from this study or denounce the 
protocol capabilities of the platform. However it should be noted that various difficulties 
inherent in the application of multi-segment FL were evaded by focusing on a single 
segment. 

 
As mentioned in Chapter 2, the CRBT possesses six independently controlled 

DOF, each having the capability of being driven in position- or load-control, and 
although they are driven independently, they can operate in coordination during motion 
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programs. The operation of the platform for this research did not take full advantage of 
the six DOF load-control capabilities. This is not necessarily seen as a limitation but 
rather as an operational preference. The constant velocity offered by position-control in 
the sagittal bending plane allowed for characteristic in vivo movement. Six DOF load-
control capabilities set the CRBT apart from most other robotic testing platforms and as 
such is an attribute worth mentioning, but not at the expense of the value of position-
control. 

 
The data from this thesis are also limited to the sagittal plane. Most conventional 

applications of FL are bound to this plane because of the arrangement of cables and 
guides. This therefore does not leave the limitation of this study to be unexpected. 
However this chosen limitation is not as a result of necessity. In applying protocols to 
single segments, the source of the limitation to one plane is removed and therefore should 
be noted that the limitation to the sagittal plane is yet another simplification. Expansion 
into other planes like lateral bending and CC axial rotation would require more complex 
algorithms to deal with the effects of coupled bending between those two anatomical 
planes,2,4 making the control of a resultant force vector a far more involved procedure. 
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CHAPTER 6.    RECOMMENDATIONS FOR FUTURE WORK 
 
 

The first recommendation for future work is to conduct a study on the IPR, 
correlated with the FRF applied in this research, within a single MSU as it changes 
during bending and torsion. This information would be invaluable when it comes to 
developing further spine models and IVD replacement implants. This study could be 
conducted in conjunction with developing more data sets for investigation of the ICR. 
Conclusions can also be made regarding the relationship between the IPR and the ICR. 

 
Another future work endeavor would be to develop a protocol that simulates FL 

and TW protocols but also utilizes all six of the CRBT’s DOFs of load-control rather than 
just five as in this research. This may involve implementing the adaptive capabilities of 
the PID controller to allow the Cartesian manipulator to control forces ably through the 
NZ of a spine where the plant flexibility of the tissue changes drastically. Developing 
systemic checks on motor speeds also may aid in the controllability of the CRBT while 
progressing through the NZ during bending or torsion. 

 
The most obvious future work endeavor would be to expand the application of 

protocols to non-sagittal planes. The CRBT’s six DOF capabilities suggest promise in 
fluid application of protocols in lateral bending and CC axial torsion for PM and 
protocols incorporating compressive loads normal to the IVD with limited use of 
position-control axes. But the CRBT also makes possible future investigations into planes 
not considered anatomically standard. Fully load-controlled coupled bending involving 
sagittal, lateral, and axial bends is one example of a potential application. The 
universality of this platform encourages expansion into previously untested realms of 
biomechanics. 

 
Also, if only for purely academic purposes, material properties of an MSU can be 

determined with relative ease using this system. Compressive and shear flexibility 
properties of an MSU with respect to bending would be a worthy data set to possess. The 
CRBT is a prime candidate for developing in vitro data sets to back computational 
models of single MSU and potentially full spines. 

 
Finally, expansion into other biomechanical joints presents opportunities for more 

use and provides broader needs for biomechanical testing. 
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APPENDIX A.    HARDWARE COMPONENTS AND SPECIFICATIONS 
 
 
Table A.1 Individual Linear Axis Hardware Specifications 
 
Feature X-axis Y-axis Z-axis 
Make/Model Parker MPP0922 

Servo Motor & 
5 mm Ball Screw 

Parker MPP0922 
Servo Motor & 

2 mm Ball Screw 

Exlar IX30 Linear 
Roller Screw 

Actuator 
ROMmax 673 mm 457 mm 279 mm 
Encoder Resolution <1.0 μm <1.0 μm <1.0 μm 
Accuracy ± 0.3 μm 0.2 μm 0.2 μm 
Continuous Load 2.5 kN 6.5 kN 5.0 kN 

 
The x- and y-axes are comprised of a commercially available servo motor and ball screw 
assemblies combined in-house with custom designed and machined parts. Encoder 
resolution, accuracy, and continuous load ratings are from manufacturer specifications. 
 
 
 
Table A.2 Individual Rotary Axis Hardware Specifications 
 
Feature Roll Pitch Yaw 
Make/Model Harmonic Drive 

FHA-25C-100-
US250-F5 

Harmonic Drive 
FHA-25C-100-

US250-F5 

Harmonic Drive 
FHA-17C-50-

US250-F5 
ROMmax ± 180° ± 180° ± 180° 
Encoder Resolution 13 arc-sec 13 arc-sec 26 arc-sec 
Accuracy 60 arc-sec 60 arc-sec 60 arc-sec 
Continuous Load 120 Nm 120 Nm 23 Nm 

 
Encoder resolution, accuracy, and continuous load ratings are from manufacturer 
specifications. 
 
 
 
Table A.3 JR3 Model 45E15A4-I63-AF Force Moment Sensor Specifications 
 
Feature Fx, Fy Fz Mx, My, Mz 
Capacity 444 N 888 N 50.8 Nm 
Resolution 0.06 N 0.11 N 0.006 Nm 
Accuracy ± 1.1 N ± 2.2 N ± 0.1 Nm 
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APPENDIX B.    FORCE/TORQUE CONTROL ALGORITHM 
 
 

The following text comprise the two compiled programmable logic commands 
(PLCC) that constitute the user definitions governing the variable characteristics of the 
cascaded control loop within the Delta Tau controller. Several variables will be without 
detailed definition however this text along with the UMAC user’s manual and Delta Tau 
Software Reference Manual should shed some light into the inner workings of the control 
system. 

 
Lines of code within the controller will be shown in the Courier New font. Any 

line of code that begins with a semicolon should be regarded as documentation meant for 
user clarification within the code. 

 
 

A.1 PLCC 0 
 

CLOSE 
DELETE GATHER 
DELETE TRACE 
 
; Define calibrated force and moment variables after 
calibration matrix multiplication. 
; Note: moment values must be M-variables because of 
incompatibility of P & L variables during computation 
although possible to make compatible, would be 
computationally complex and taxing 
#define Fxcts M3516   
#define Fycts M3517 
#define Fzcts M3518 
#define Mxcts M3519 
#define Mycts M3520 
#define Mzcts M3521 
 
; temporary P variables for taking raw input counts and 
converting to volts for matrix multiplication 
#define FxVolts P33   
#define FyVolts P34 
#define FzVolts P35 
#define MxVolts P36 
#define MyVolts P37 
#define MzVolts P38 
 
; rotation matrix of trig functions of gimbal angles for 
theoretical calculations for fixturing & pot weight forces 
#define Frx P40 
#define Fry P41 
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#define Frz P42 
 
; theoretical load cell readings for moments caused by 
gravity on fixturing including pot weight 
#define Max P43 
#define May P44 
#define Maz P45 
 
; measured values for force reference frame offset 
displacement with respect to the center of the load cell 
(units meters) 
#define frfdx P46 
#define frfdy P47 
#define frfdz P48 
 
; measured and empirical values for center of mass of 
fixturing and pot material displacement from load cell 
center 
;#define dxf P50  ;commented out b/c it equals zero 
;#define dyf P51  ;commented out b/c it equals zero 
#define dzf P52 
#define dxp P53 
#define dyp P54 
#define dzp P55 
 
; measured and empirical values for weight of fixturing and 
pots 
#define FIX P56 
#define POT P57 
 
;M4000->X:$351C,24,S 
;M3531->Y:$78202,24,S 
;M3531=M4000 
 
;L variable pointers to output registers of A/D board for 
LC1 
;formerly used output registers for ECT motors #9 - #14 
L9->Y:$78C00,8,16  ;formerly M3509 (X:$3509,24,S) 
L10->Y:$78C01,8,16 ;formerly M3510 (X:$350A,24,S) 
L11->Y:$78C02,8,16 ;formerly M3511 (X:$350B,24,S) 
L12->Y:$78C03,8,16 ;formerly M3512 (X:$350C,24,S) 
L13->Y:$78D00,8,16 ;formerly M3513 (X:$350D,24,S) 
L14->Y:$78D01,8,16 ;formerly M3514 (X:$350E,24,S) 
 
; Pointers assigned to free global registers to hold output 
(calibrated force values) from open servo 
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; These global free registers are set up in the ECT as 
source registers for parallel byte wide conversion of data 
; The values in these registers are to be passed to motor 
position registers for motors #16 to #21 for force 
feedback. 
M3516->Y:$10F0,0,24,S 
M3517->Y:$10F1,0,24,S 
M3518->Y:$10F2,0,24,S 
M3519->Y:$10F3,0,24,S 
M3520->Y:$10F4,0,24,S 
M3521->Y:$10F5,0,24,S 
 
;F Variable pointers to angles from gimbal 
F31->D:$20B  ;formerly M462 
F32->D:$28B  ;formerly M562 
F33->D:$30B  ;formerly M662 
 
Open PLCC 0 
Clear 
 
; 1. zero raw A/D board readings (Fx, Fy, Fz, Mx, My, Mz) 
and convert to volts(A/D input is bipolar so 32767 cts = 
zero force). 
; 2. conversion to volts necessary for 6x6 calibration 
matrix multiplication.   
; (Note: input has been shifted by 5 bits by multiplying by 
32:1048675=32*32768) 
; (Note: (32*L9-1048576)/104857=(L9-32768)/3276.78 
 
FxVolts=(ITOF(L9)-32768)/3276.78 ;formerly (32*L9-
1048576)/104857  
FyVolts=(ITOF(L10)-32768)/3276.78 ;formerly (32*L10-
1048576)/104857 
FzVolts=(ITOF(L11)-32768)/3276.78 ;formerly (32*L11-
1048576)/104857 
MxVolts=(ITOF(L12)-32768)/3276.78 ;formerly (32*L12-
1048576)/104857 
MyVolts=(ITOF(L13)-32768)/3276.78 ;formerly (32*L13-
1048576)/104857 
MzVolts=(ITOF(L14)-32768)/3276.78 ;formerly (32*L14-
1048576)/104857 
 
; rotation matrix of trig functions of gimbal angles for 
theoretical calculations for fixturing & pot weight forces 
Frx=(SIN(F31/8533331)*SIN(F33/4266664)-
COS(F31/8533331)*SIN(F32/8533331)*COS(F33/4266664)) 
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Fry=(COS(F31/8533331)*SIN(F32/8533331)*SIN(F33/4266664)+SIN
(F31/8533331)*COS(F33/4266664)) 
Frz=(COS(F31/8533331)*COS(F32/8533331)) 
 
; Theoretical calculations for fixturing & pot weight 
forces based on gimbal angles and center of mass 
displacements in newton meters 
Max=-dzf*FIX*Fry-dzp*POT*Fry 
May=dzf*FIX*Frx+dzp*POT*Frx 
Maz=dxp*POT*Fry-dyp*POT*Frx 
 
;1.  Each line below has matrix multiplication to yield 
force output in lbs or inch pounds 
;2.  A conversion to Newtons (x 4.448) or Newton meters (x 
0,112984) is done at the end of each line 
;3.  A factor is multiplied last to convert back to counts.  
I believe this factor is arbitrary and can be used as 
;   the motor axis scaling factor for newtons to 
counts.  For force I used approximately 17 lbs per volt 
input which  
;    converts to 1387 counts/newton including multiplying 
by 32 to maintain that 5 bit shift.  Note the ECT entries 
for parallel  
;    conversion and feedback for motors 16 to 21 do not 
have bit shifts.  I think this is because it has already 
occurred 
;    in the first ECT conversions from the A/D board to 
motors 9 to 14.  
 
Fxcts=(-75.282*FxVolts-(FIX+POT)*Frx)*1387 
Fycts=(-75.763*FyVolts-(FIX+POT)*Fry)*1387 
Fzcts=(152.967*FzVolts+(FIX+POT)*Frz)*693.5 
Mxcts=(-8.521*MxVolts-
Max+(frfdy*(M1862/66575.8)+frfdz*(M1762/133151.5)))*12292 
  ;checked correct 2012.09.27 
Mycts=(-8.562*MyVolts-May-
(frfdz*(M1662/133151.5)+frfdx*(M1862/66575.8)))*12292  
 ;checked correct 2012.09.27 
Mzcts=(-8.575*MzVolts-Maz-(frfdx*(M1762/133151.5)-
frfdy*(M1662/133151.5)))*12292  ;checked correct 
2012.09.27 
 
CLOSE 
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A.2 PLCC 2 
 

; measured and empirical values for weight of fixturing and 
pots 
#define BOT P58 
#define BFIX P59 
 
; temporary P variables for taking raw bottom load cell 
input and converting to volts for matrix multiplication 
; (Note: 5 bit shift applied to simulate transition through 
ECT) 
#define FxVolts2 P60 
#define FyVolts2 P61 
#define FzVolts2 P62 
#define MxVolts2 P63 
#define MyVolts2 P64 
#define MzVolts2 P65 
 
; bottom load cell output values after calibration matrix 
manipulation units are in Newtons and Newton-meters 
; (Note: there is a zeroing factor at the end of the 
calibration matrix that nulls out permanent fixturing) 
; formerly P66-P71, THEN M3550-M3555 
#define Fx2 M3550 
#define Fy2 M3551 
#define Fz2 M3552 
#define Mx2 M3553 
#define My2 M3554 
#define Mz2 M3555 
 
; L variable pointers to raw analogue signal from second 
load cell (250 lb) 
L22->Y:$78D02,8,16 ;formerly M4022 
L23->Y:$78D03,8,16 ;formerly M4023 
L24->Y:$78E00,8,16 ;formerly M4024 
L25->Y:$78E01,8,16 ;formerly M4025 
L26->Y:$78E02,8,16 ;formerly M4026 
L27->Y:$78E03,8,16 ;formerly M4027 
 
; theoretical load cell readings for moments caused by 
gravity on fixturing including pot weight on load cell 2 
#define Max2 P100 
#define May2 P101 
;Maz2 always equals zero because the second load cell never 
moves 
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;measured values for force reference frame offset 
displacement with respect to the center of the load cell 
(units meters) 
#define frfdx2 P103 
#define frfdy2 P104 
#define frfdz2 P105 
 
; measured and empirical values for center of mass of 
fixturing and pot material displacement from load cell 
center (units meters) 
#define dxf2 P106 
#define dyf2 P107 
;#define dzf2 P108  ;commented out b/c it does not 
affect moment adjustment (units meters) 
#define dxp2 P109 
#define dyp2 P110 
;#define dzp2 P111  ;commented out b/c it does not 
affect moment adjustment (units meters) 
 
; Pointers assigned to free global registers to hold output 
(calibrated force values) from open servo 
; These global free registers are set up in the ECT as 
source registers for parallel byte wide conversion of data 
; The values in these registers are to be passed to motor 
position registers for motors #16 to #21 for force 
feedback. 
M3550->X:$107FA,0,24,S 
M3551->X:$107FB,0,24,S 
M3552->X:$107FC,0,24,S 
M3553->X:$107FD,0,24,S 
M3554->X:$107FE,0,24,S 
M3555->X:$107FF,0,24,S 
 
OPEN PLCC 2 CLEAR 
; 1. zero raw readings from load cell 2 (250 lb)and convert 
to volts(A/D input is bipolar so 32767 cts = zero force). 
; 2. conversion to volts necessary for 6x6 calibration 
matrix multiplication.   
;(Note: input must be shifted by 5 bits to simulate ECT 
therefore multiplied by 32:1048675=32*32768) 
 
FxVolts2=(ITOF(L22)-32768)/3276.78 ;formerly (32*L22-
1048576)/104857  
FyVolts2=(ITOF(L23)-32768)/3276.78 ;formerly (32*L23-
1048576)/104857  
FzVolts2=(ITOF(L24)-32768)/3276.78 ;formerly (32*L24-
1048576)/104857 
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MxVolts2=(ITOF(L25)-32768)/3276.78 ;formerly (32*L25-
1048576)/104857 
MyVolts2=(ITOF(L26)-32768)/3276.78 ;formerly (32*L26-
1048576)/104857 
MzVolts2=(ITOF(L27)-32768)/3276.78 ;formerly (32*L27-
1048576)/104857 
 
; Theoretical calculations for fixturing & pot weight 
forces based on gimbal angles and center of mass 
displacements in newton meters 
 
Max2=-1*(dyf2*BFIX+dyp2*BOT) 
May2=dxf2*BFIX+dxp2*BOT 
 
; 1.  Each line below has matrix multiplication to yield 
force output in lbs or inch pounds 
; 2.  A conversion to Newtons (x 4.448) or Newton meters (x 
0,112984) is done at the end of each line 
; (Note: If one of these outputs is to be used as feedback 
for a motor, it needs to be converted back into counts, 
which requires 
;        multiplication by 32 (5 bit shift) multiplied by 
the motor axis scaling factor for newtons to counts, 
whatever that may be. 
;Calibration matrix values for LC2 have been altered, 
forces were originally multiplied by 4.448 to convert from 
lbs to N. 
;and moments multiplied by 0.112984 to convert from ft-lb 
to Nm. those conversion factors have been folded into the 
;calibration matrix values to decrease the computational 
load 
 
Fx2=(-((171.826*FxVolts2)+(-0.249*FyVolts2)+(-
1.592*FzVolts2)+(-1.437*MxVolts2)+(-
3.936*MyVolts2)+(1.841*MzVolts2))-(-23.064))*616 
Fy2=(-((-
0.080*FxVolts2)+(170.478*FyVolts2)+(1.672*FzVolts2)+(3.852*
MxVolts2)+(-1.254*MyVolts2)+(0.382*MzVolts2))-(14.233))*616 
Fz2=(((8.078*FxVolts2)+(2.624*FyVolts2)+(378.311*FzVolts2)+
(3.327*MxVolts2)+(-5.578*MyVolts2)+(-11.796*MzVolts2))-(-
24.465)-BFIX-BOT)*313 
Mx2=(-
((0.047*FxVolts2)+(0.017*FyVolts2)+(0.022*FzVolts2)+(20.777
*MxVolts2)+(-0.013*MyVolts2)+(-0.602*MzVolts2))-(-1.986)-
Max2+(frfdy2*(Fz2)-frfdz2*(Fy2)))*5044 
My2=(-((-0.205*FxVolts2)+(0.169*FyVolts2)+(-
0.136*FzVolts2)+(-0.011*MxVolts2)+(20.823*MyVolts2)+(-



 

66 

0.307*MzVolts2))-(-0.077)-May2+(frfdz2*(Fx2)-
frfdx2*(Fz2)))*5044 
Mz2=(-((0.041*FxVolts2)+(-0.019*FyVolts2)+(-
0.037*FzVolts2)+(0.071*MxVolts2)+(-
0.150*MyVolts2)+(20.806*MzVolts2))-(-0.817)+(frfdx2*(Fy2)-
frfdy2*(Fx2)))*5044 
 
CLOSE 
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APPENDIX C.    CUSTOM MOTION PROGRAMS FOR PROTOCOLS 
 
 

The following text comprises examples of the three motion programs, Program 
14, 15 and 16, that were custom written for protocol execution. Several variables will be 
without detailed definition however this text along with the UMAC user’s manual and 
Delta Tau Software Reference Manual should shed some light onto the testins. 

 
Lines of code within the controller will be shown in the Courier New font. Any 

line of code that begins with a semicolon or double backslash (‘//’) should be regarded as 
documentation meant for user clarification within the code. 

 
 

B.1 Program 14 Pure Moment Pitch Position 
 
//THIS PROGRAM IS TO BE RUN AFTER 
PLC14_CB_Spine_PitchPos_ForceCtrl_.pmc 
//AND CONCLUDED WITH PLC15_CB_Spine_Conclude_PitchPos.pmc 
 
close ; Close any buffer opened 
delete gather ; Erase unwanted gathered data 
delete lookahead 
;undefine all - Erase coordinate definitions in all 
coordinate systems 
;&1DEFINE LOOKAHEAD 1500,20 
 
OPEN PROG 14 CLEAR ; Open buffer to be written 
 
;DEFINE P80 as off-sagittal angle, convention: left turn is 
negative, right turn is positive 
;oriented as clock placed atop head, clock face upwards 
(clockwise sign orientation) 
P80=0   ;off-sagittal angle, for only sagittal 
bending, P80=0, unit: degrees 
 
;DEFINE P3 as follower load force (units in Newtons) (ONLY 
NONZERO DURING ENDPLATE FL TEST) 
P3=0 
 
&2  ;Force/Torque Coordinate system 
FRAX(U,V,W,X,B,Z) 
LIN; Linear interpolation 
;INC; Incremental mode, moves are relative to last location 
ABS; Absolute mode, moves are relative to coordinate system 
grid 
TA 450 ; Acceleration time in msec 
TS 150 ; S-curve acceleration component in msec 
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&2%100  ;Feedrate Override value 
 
//=========================================================
============================= 
;this segment puts the MSU into the no load starting point 
utilizing P82 
;P82 is reset before it is utilized for the test in later 
whileloops 
FRAX(B) 
TM 1000 
P82=0 
IF (M2062>590000) 
 WHILE (M2062>0)  ; My ~0.5 Nm 
  B(P82) X 0 Z 0 U 0 V 0 W 0 
  P82=P82+.2 
 ENDWHILE 
 P82=P82-.2 
ELSE 
 IF (M2062<-590000) 
  WHILE (M2062<0)  ; My ~-0.5 Nm 
  B(P82) X 0 Z 0 U 0 V 0 W 0 
  P82=P82-.2 
  ENDWHILE 
  P82=P82+.2 
 ELSE 
  P82=(M562/(2777.777*32*96)) 
  U 0 V 0 W 0 
  F .4 
  X 0 Z 0 
  DWELL0 
 ENDIF  
ENDIF 
;==========================================================
============================*/ 
DWELL0 
//=========================================================
============================= 
;this segment conducts the force reference frame transform 
for single segment MSUs 
;under the conditions that the program is operating under 
position control in some capacity 
;(not full torque) AND that there is a desired applied 
load. Be sure to check the commanded position 
;control motor to ensure that the correct motor is being 
addressed (ex. B is the pitch motor) 
IF (P3!=0) 
  P49=M2062 
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  F(P3/12) 
  W (-P3*COS(M562/8533331-P116)) 
  DWELL1000 
  P46=0.0564*(M2062-P49)/M1862   
  DWELL1000 
  U (-P3*SIN(M562/8533331-P116)) 
  DWELL1000 
  P48=0.1128*(M2062-P49)/M1662 
  DWELL1000 
ELSE 
  F(20) 
  P46=0.003 
  P48=-0.111 
  U 0 V 0 W 0 
ENDIF 
;==========================================================
============================*/ 
DWELL0 
//=========================================================
============================= 
;this segment utilizes WHILELOOPS and Moment end limits 
under position control 
;altering feedrate and end limits may improve performance, 
test duration and specimen protection 
 
FRAX(B) 
TM (2000/3) 
P81=P82    ;Pitch angle variable used within 
whileloop 
WHILE (M2062<9150000)  ; My ~7.75 Nm 
 B(P81) U(-P3*SIN(P81-P116)) V 0 W(-P3*COS(P81-P116)) 
 ;the angle about which the U & W commands hinge is the 
pitch angle incorporating the potted angle 
 ;subtracting the neutral angle of the spine MSU 
 P81=P81-.2 
ENDWHILE DWELL500 
 P81=P81+.2 
WHILE (M2062>-9150000)  ; My ~-7.75 Nm 
 B(P81) U(-P3*SIN(P81-P116)) V 0 W(-P3*COS(P81-P116)) 
 P81=P81+.2 
ENDWHILE DWELL500 
 P81=P81-.2 
WHILE (M2062<0)  ; My ~0 Nm 
 B(P81) U(-P3*SIN(P81-P116)) V 0 W(-P3*COS(P81-P116)) 
 P81=P81-.2 
ENDWHILE 
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;==========================================================
============================*/ 
DWELL0 
/*=========================================================
=============================+ 
;this segment is used in case the Nm end limit WHILELOOP 
segment doesn't work 
F .4 
B-4.6 U (-P3*SIN(-4.6)) W (-P3*COS(-4.6))  ;angles 
are found via investigation 
B 5.75 U (-P3*SIN(5.75)) W (-P3*COS(5.75)) ;angles are 
found via investigation 
B 0 U (0) W (-P3) 
;==========================================================
============================*/ 
DWELL500 
FRAX(U,V,W,X,B,Z) 
F (40) 
U 0 V 0 W 0 
DWELL0 
F(.4) 
X 0 Z 0 
//=========================================================
============================= 
;this segment puts the MSU into the no load starting point 
utilizing P82 
;P82 is reset before it is utilized for the test in later 
whileloops 
FRAX(B) 
TM 1000 
P82=(M562/(2777.777*32*96)) 
IF (M2062>590000) 
 WHILE (M2062>0)  ; My ~0.5 Nm 
  B(P82) X 0 Z 0 U 0 V 0 W 0 
  P82=P82+.2 
 ENDWHILE 
 P82=P82-.2 
ELSE 
 IF (M2062<-590000) 
  WHILE (M2062<0)  ; My ~-0.5 Nm 
  B(P82) X 0 Z 0 U 0 V 0 W 0 
  P82=P82-.2 
  ENDWHILE 
  P82=P82+.2 
 ELSE 
  P82=0 
  DWELL0 
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 ENDIF  
ENDIF 
;==========================================================
============================*/ 
P46=0 
P47=0 
P48=0 
CLOSE 
 
 

B.2 Program 15 Trunk Weight Pitch Position 
 
//THIS PROGRAM IS TO BE RUN AFTER 
PLC14_CB_Spine_PitchPos_ForceCtrl_.pmc 
//AND CONCLUDED WITH PLC15_CB_Spine_Conclude_PitchPos.pmc 
 
close ; Close any buffer opened 
delete gather ; Erase unwanted gathered data 
delete lookahead 
;undefine all - Erase coordinate definitions in all 
coordinate systems 
;&2DEFINE LOOKAHEAD 1500,20 
 
OPEN PROG 15 CLEAR ; Open buffer to be written 
 
;DEFINE P80 as off-sagittal angle, convention: left turn is 
negative, right turn is positive 
;oriented as clock placed atop head, clock face upwards 
(clockwise sign orientation) 
P80=0   ;off-sagittal angle, for only sagittal 
bending, P80=0, unit: degrees 
 
;DEFINE P3 as trunk weight force (units in Newtons) 
P3=400 
 
&2  ;Force/Torque Coordinate system 
FRAX(U,V,W,X,B,Z) 
LIN; Linear interpolation 
;INC; Incremental mode, moves are relative to last location 
ABS; Absolute mode, moves are relative to coordinate system 
grid 
TA 450 ; Acceleration time in msec 
TS 150 ; S-curve acceleration component in msec 
&2%100  ;Feedrate Override value 
 
//=========================================================
============================= 
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;this segment puts the MSU into the no load starting point 
utilizing P82 
;P82 is reset before it is utilized for the test in later 
whileloops 
FRAX(B) 
TM 1000 
P82=0 
IF (M2062>590000) 
 WHILE (M2062>0)  ; My ~0.5 Nm 
  B(P82) X 0 Z 0 U 0 V 0 W 0 
  P82=P82+.2 
 ENDWHILE 
 P82=P82-.2 
ELSE 
 IF (M2062<-590000) 
  WHILE (M2062<0)  ; My ~-0.5 Nm 
  B(P82) X 0 Z 0 U 0 V 0 W 0 
  P82=P82-.2 
  ENDWHILE 
  P82=P82+.2 
 ELSE 
  P82=(M562/(2777.777*32*96)) 
  U 0 V 0 W 0 
  F .4 
  X 0 Z 0 
  DWELL0 
 ENDIF  
ENDIF 
;==========================================================
============================*/ 
DWELL0 
//=========================================================
============================= 
;this segment conducts the force reference frame transform 
for single segment MSUs 
;under the conditions that the program is operating under 
position control in some capacity 
;(not full torque) AND that there is a desired applied 
load. Be sure to check the commanded position 
;control motor to ensure that the correct motor is being 
addressed (ex. B is the pitch motor) 
IF (P3!=0) 
  P49=M2062 
  F(P3/12) 
  W (-P3*COS(M562/8533331+P119-P116)) 
  DWELL1000 
  P46=0.0564*(M2062-P49)/M1862   
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  DWELL1000 
  U (-P3*SIN(M562/8533331+P119-P116)) 
  DWELL1000 
  P48=0.1128*(M2062-P49)/M1662 
  DWELL1000 
ELSE 
  F(20) 
  U 0 V 0 W 0 
ENDIF 
;==========================================================
============================*/ 
DWELL0 
//=========================================================
============================= 
;this segment utilizes WHILELOOPS and Moment end limits 
under position control 
;altering feedrate and end limits may improve performance, 
test duration and specimen protection 
 
FRAX(B) 
TM (2000/3) 
P81=M562/8533331    ;Pitch angle variable 
used within whileloop set to pitch angle when My =~0 Nm 
 
WHILE (M2062<9150000)  ; My ~7.75 Nm 
 B(P81) U(-P3*SIN(P81+P119-P116)) V 0 W(-
P3*COS(P81+P119-P116)) 
 ;the angle about which the U & W commands hinge is the 
pitch angle incorporating the potted angle 
 ;subtracting the neutral angle of the spine MSU 
 P81=P81-.2 
ENDWHILE DWELL500 
 P81=P81+.2 
WHILE (M2062>-9150000)  ; My ~-7.75 Nm 
 B(P81) U(-P3*SIN(P81+P119-P116)) V 0 W(-
P3*COS(P81+P119-P116)) 
 P81=P81+.2 
ENDWHILE DWELL500 
 P81=P81-.2 
WHILE (M2062<0)  ; My ~0 Nm 
 B(P81) U(-P3*SIN(P81+P119-P116)) V 0 W(-
P3*COS(P81+P119-P116)) 
 P81=P81-.2 
ENDWHILE 
P81=0 
;==========================================================
============================*/ 
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DWELL0 
/*=========================================================
=============================+ 
;this segment is used in case the Nm end limit WHILELOOP 
segment doesn't work 
F .4 
B-4.6 U (-P3*SIN(-4.6)) W (-P3*COS(-4.6))  ;angles 
are found via investigation 
B 5.75 U (-P3*SIN(5.75)) W (-P3*COS(5.75)) ;angles are 
found via investigation 
B 0 U (0) W (-P3) 
;==========================================================
============================*/ 
DWELL500 
FRAX(U,V,W,X,B,Z) 
F (40) 
U 0 V 0 W 0 
DWELL0 
F(.4) 
X 0 Z 0 
//=========================================================
============================= 
;this segment puts the MSU into the no load starting point 
utilizing P82 
;P82 is reset before it is utilized for the test in later 
whileloops 
FRAX(B) 
TM 1000 
P82=(M562/(2777.777*32*96)) 
IF (M2062>590000) 
 WHILE (M2062>0)  ; My ~0.5 Nm 
  B(P82) X 0 Z 0 U 0 V 0 W 0 
  P82=P82+.2 
 ENDWHILE 
 P82=P82-.2 
ELSE 
 IF (M2062<-590000) 
  WHILE (M2062<0)  ; My ~-0.5 Nm 
  B(P82) X 0 Z 0 U 0 V 0 W 0 
  P82=P82-.2 
  ENDWHILE 
  P82=P82+.2 
 ELSE 
  P82=0 
  DWELL0 
 ENDIF  
ENDIF 
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;==========================================================
============================*/ 
P46=0 
P47=0 
P48=0 
CLOSE 
 
 

B.3 Program 16 Follower Load Pitch Position 
 
//THIS PROGRAM IS TO BE RUN AFTER 
PLC14_CB_Spine_ForceCtrl.pmc 
//AND CONCLUDED WITH PLC15_CB_Spine_Conclude.pmc 
 
close ; Close any buffer opened 
delete gather ; Erase unwanted gathered data 
delete lookahead 
;undefine all - Erase coordinate definitions in all 
coordinate systems 
;&1DEFINE LOOKAHEAD 1500,20 
 
OPEN PROG 16 CLEAR ; Open buffer to be written 
 
;DEFINE P80 as off-sagittal angle, convention: left turn is 
negative, right turn is positive 
;oriented as clock placed atop head, clock face upwards 
(clockwise sign orientation) 
P80=0   ;off-sagittal angle, for only sagittal 
bending, P80=0, unit: degrees 
 
;DEFINE P3 as follower load force (units in Newtons) 
P3=400 
 
&2  ;Force/Torque Coordinate system 
FRAX(U,V,W,X,B,Z) 
LIN; Linear interpolation 
;INC; Incremental mode, moves are relative to last location 
ABS; Absolute mode, moves are relative to coordinate system 
grid 
TA 450 ; Acceleration time in msec 
TS 150 ; S-curve acceleration component in msec 
&2%100  ;Feedrate Override value 
 
//=========================================================
============================= 
;this segment puts the MSU into the no load starting point 
utilizing P82 
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;P82 is reset before it is utilized for the test in later 
whileloops 
FRAX(B) 
TM 1000 
P82=0 
IF (M2062>590000) 
 WHILE (M2062>0)  ; My ~0.5 Nm 
  B(P82) X 0 Z 0 U 0 V 0 W 0 
  P82=P82+.2 
 ENDWHILE 
 P82=P82-.2 
ELSE 
 IF (M2062<-590000) 
  WHILE (M2062<0)  ; My ~-0.5 Nm 
  B(P82) X 0 Z 0 U 0 V 0 W 0 
  P82=P82-.2 
  ENDWHILE 
  P82=P82+.2 
 ELSE 
  P82=(M562/(2777.777*32*96)) 
  U 0 V 0 W 0 
  F .4 
  X 0 Z 0 
  DWELL0 
 ENDIF  
ENDIF 
;==========================================================
============================*/ 
DWELL0 
//=========================================================
============================= 
;this segment conducts the force reference frame transform 
for single segment MSUs 
;under the conditions that the program is operating under 
position control in some capacity 
;(not full torque) AND that there is a desired applied 
load. Be sure to check the commanded position 
;control motor to ensure that the correct motor is being 
addressed (ex. B is the pitch motor) 
IF (P3!=0) 
  P49=M2062 
  F(P3/12) 
  W (-P3*COS(M562/8533331-P116)) 
  DWELL1000 
  P46=0.0564*(M2062-P49)/M1862   
  DWELL1000 
  U (-P3*SIN(M562/8533331-P116)) 
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  DWELL1000 
  P48=0.1128*(M2062-P49)/M1662 
  DWELL1000 
ELSE 
  F(20) 
  U 0 V 0 W 0 
ENDIF 
;==========================================================
============================*/ 
DWELL0 
//=========================================================
============================= 
;this segment utilizes WHILELOOPS and Moment end limits 
under position control 
;altering feedrate and end limits may improve performance, 
test duration and specimen protection 
 
FRAX(B) 
TM (2000/3) 
P81=P82   ;Pitch angle variable used within 
whileloop 
WHILE (M2062<9150000)  ; My ~7.75 Nm 
 B(P81) U(-P3*SIN(P81/2-P116)) V 0 W(-P3*COS(P81/2-
P116)) 
 ;the angle about which the U & W commands hinge is the 
pitch angle incorporating the potted angle 
 ;subtracting the neutral angle of the spine MSU 
 P81=P81-.2 
ENDWHILE DWELL500 
 P81=P81+.2 
WHILE (M2062>-9150000)  ; My ~-7.75 Nm 
 B(P81) U(-P3*SIN(P81/2-P116)) V 0 W(-P3*COS(P81/2-
P116)) 
 P81=P81+.2 
ENDWHILE DWELL500 
 P81=P81-.2 
WHILE (M2062<0)  ; My ~0 Nm 
 B(P81) U(-P3*SIN(P81/2-P116)) V 0 W(-P3*COS(P81/2-
P116)) 
 P81=P81-.2 
ENDWHILE 
P81=0 
;==========================================================
============================*/ 
DWELL0 
/*=========================================================
=============================+ 
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;this segment is used in case the Nm end limit WHILELOOP 
segment doesn't work 
F .4 
B-4.6 U (-P3*SIN(-4.6)) W (-P3*COS(-4.6))  ;angles 
are found via investigation 
B 5.75 U (-P3*SIN(5.75)) W (-P3*COS(5.75)) ;angles are 
found via investigation 
B 0 U (0) W (-P3) 
;==========================================================
============================*/ 
DWELL500 
FRAX(U,V,W,X,B,Z) 
F (40) 
U 0 V 0 W 0 
DWELL0 
F(.4) 
X 0 Z 0 
//=========================================================
============================= 
;this segment puts the MSU into the no load starting point 
utilizing P82 
;P82 is reset before it is utilized for the test in later 
whileloops 
FRAX(B) 
TM 1000 
P82=(M562/(2777.777*32*96)) 
IF (M2062>590000) 
 WHILE (M2062>0)  ; My ~0.5 Nm 
  B(P82) X 0 Z 0 U 0 V 0 W 0 
  P82=P82+.2 
 ENDWHILE 
 P82=P82-.2 
ELSE 
 IF (M2062<-590000) 
  WHILE (M2062<0)  ; My ~-0.5 Nm 
  B(P82) X 0 Z 0 U 0 V 0 W 0 
  P82=P82-.2 
  ENDWHILE 
  P82=P82+.2 
 ELSE 
  P82=0 
  DWELL0 
 ENDIF  
ENDIF 
;==========================================================
============================*/ 
P46=0 
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P47=0 
P48=0 
CLOSE 
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