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ASTRACT 

 

Objective.  The objective of this research was to develop a muscle-driven biomechanical model 

of the human head-neck system that could be used to simulate neck movements under muscle 

control.  This model can further be modified to enable input from an external stimulus, such as 

EMG data. 

Summary of background data.  Utilizing computer aided design (CAD) and dynamic 

simulation software programs, the Joint Implant Biomechanics Laboratory at The University of 

Tennessee Health Science Center developed a virtual model of the human cervical spine to 

simulate the in vitro biomechanical experiments.  This in vitro model did not include any muscle 

components and was unable to simulate any active muscle contribution to head-neck movement.  

However, the model served well as a platform from which to develop a dynamic musculoskeletal 

head-neck model that could include muscle involvement.  

Methods.  The development of the current head-neck model was based on a previous in vitro 

model of the sub-axial cervical spine that was developed within the rigid body dynamic 

simulation program, Visual Nastran 4D.  Interconnecting joints, including intervertebral discs, 

facet joints, ligaments, and the C0-C1-C2 complex, were defined.  The primary neck muscles for 

axial rotation, lateral bending, extension, and flexion movements were defined, respectively.  For 

each specific movement, the model was driven by muscle length control using three different 

muscle sets: (1) all the inclusive primary muscles (“All muscles” mode), (2) only the primary 

muscles during a concentric contraction (“Concentric contraction muscles only” mode), and (3) 

only the primary muscles during an eccentric contraction (“Eccentric contraction muscles only” 
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mode).  The simulation results obtained from these three modes were compared to the in vivo 

published data.  

Results.  Simulation results from the muscle model for axial rotation and flexion were 

comparable to the in vivo data in each of the three muscle mode sets.  For extension and lateral 

bending movement, only the results from the “All muscles” mode matched the in vivo data.  

There were no significant translations that occurred in the upper cervical spine region, which was 

in agreement with the published literature.  

Concluding discussion.  A computational model of the human head-neck musculoskeletal 

system was developed that simulated the dynamic motion response under physiologic head 

movements.  The motion-driven model provided excellent replication of in vivo vertebral 

kinematics.  A similar response occurred for the muscle-driven model when the groups on both 

sides were activated.  Although there was no significant involvement of the extensor muscles 

during flexion, the forward flexor muscles played an important role during extensional head 

movement.  In the future, the model can be used to explore muscle control strategies within the 

“Virtual Muscle” program to simulate EMG muscle force activation conditions.   
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1.  Introduction 

 

Since the cervical spine region is a frequent site of injury in the spinal column, research 

in human neck biomechanics remains one of the most challenging areas in human 

musculoskeletal system.3,25  There are four types of biomechanics models: physical model, in 

vivo model, in vitro model, and computer model, developed over time to study the cervical 

spine.25  Ahn3 summarized several features of computer models that make them more attractive 

than other cervical spine research models.  Compared to other cervical spine research models, the 

advantages of computer models are: (1) computer models can provide information that cannot be 

easily obtained by other models, such as internal stresses or strains,16,26 (2) computer models can 

be used repeatedly for multiple experiments with uniform consistency, which lowers the 

experimental cost,16 and (3) validated computer models can simulate different situations easily 

and quickly.8,12  

 The Joint Implant Biomechanics Laboratory at The University of Tennessee Health 

Science Center has developed an in vitro human cervical spine model to investigate the different 

effects of different surgical techniques (e.g., disc arthroplasty, fusion instrumentation).3  The in 

vitro human cervical spine computer model served as a virtual laboratory simulator for 

kinematics and kinetics testing.  Due to the unavailability of muscle components, the in vitro 

could not simulate the active muscle motion response.  Furthermore, only the cervical vertebrae 

from C2 to C7, and the interconnecting joints between these two vertebrae, were included in 

their in vitro model.  As a result, their model did not include the attachment site for the muscles, 

especially for those muscles that attach to the skull, ribcage, or upper cervical vertebrae.  
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However, the model developed by Ahn3 served well as the platform from which to further 

develop a musculoskeletal head-neck model.     

 In order to fully understand the movement of the head-neck complex, the next step in the 

Biomechanics Lab is to add muscles to the in vitro model.  Once developed, a musculoskeletal 

head-neck simulation model can provide a better understanding of the complex cervical spine 

biomechanics and a platform for future model development that integrates muscle excitation 

functions.  The objective of this study was to develop a simulation model of the human head-

neck complex that included muscles.  One aspect of the dynamic muscle model could be used to 

simulate common head movements, i.e., axial rotation, lateral bending, extension, and flexion 

under muscle control.  Although the muscle excitation functions are not available from the 

Biomechanics Lab, an EMG-driven model would be developed in the future to estimate muscle 

forces and neck moment in vivo.20  

 Chapter 2 gives anatomic background information about the human cervical spine and a 

review of current computational head-neck models.  Chapter 3 includes the methodology section 

that describes soft tissue definition of the upper cervical spine region, neck muscle development, 

and the method employed to obtain the driving force (muscle length-time relationship) for this 

head-neck model.  Chapter 4 presents the simulation results, including the muscle length-time 

relationship, and the motion response of each segment.  Chapter 5 highlights the findings from 

this study, and discusses the limitations of this study are also presented.  Lastly, the conclusions 

and future work are provided in Chapter 6.  

 



 3

2.  Literature review 

 

This chapter covers three main topics: (1) functional anatomy of human cervical spine, (2) 

kinematics of human cervical spine, and (3) current status in computer modeling of the human 

head-neck complex.  

 

2.1 Functional anatomy of human cervical spine 

 

A thorough knowledge of human cervical spine functional anatomy is essential to 

develop a computational model to study spinal kinetics and kinematics.  The human cervical 

spine is the upper part of the spine, which supports the head and protects the spinal cord.  Axial 

rotation, lateral bending, extension, and flexion are the four main motions of the head-neck 

complex.  The basic anatomy of the cervical spine, including the vertebrae, ligaments, facet 

joints, and muscles, is summarized below.  

 

2.1.1 Vertebrae 

 

The human cervical spine consists of seven vertebrae, referred to as C1 through C7.  The 

upper cervical spine consists of occiput (C0), atlas (C1), and axis (C2), and is also called the 

occipito-atlanto-axial complex (C0-C1-C2).39  At the base of the skull, the occiput (C0) 

articulates on the atlas (C1) through the convex occiput condyles (OC) (Figure 2-1).11  The atlas 
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Figure 2-1: Vertebrae of the upper cervical spine. (A) Atlas (C1). (B) Axis (C2).  (Adapted 
from Clark et al. and used with permission.  Clark CR, ed. The Cervical Spine: The cervical 
spine research society. 3rd ed. Philadelphia: Lippincott- Raven Publishers, 1998.) 
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(C1) is a ring-like structure with anterior and posterior arches where the articular facets and 

transverse processes are located.  However, it lacks a vertebral body and a spinous process.  The 

axis (C2) is characterized by an odontoid process or dens where aoex is rostral from the C2 body 

to articulate with the posterior aspect of the anterior arch of C1.  The C0-C1-C2 complex is the 

most complicated joint of the skeleton, both anatomically and kinematically.11,41  The atlanto-

occipital (C0-C1) joint lies between the atlas and the occipital condyles of the skull.  Between 

the atlas and the axis, three atlanto-axial (C1-C2) joints occur. Two lateral atlanto-axial joints 

intervene between the associated facets of the atlas and axis located immediately adjacent to the 

lateral masses of each vertebra.  A median atlantoaxial joint is also present between the dens of 

the axis and the anterior arch of the atlas.  The lower cervical spine is distinct from the upper 

cervical spine and consists of similar vertebrae from C3 to C7.  Each vertebral body in this 

region has vertebral arch and three processes (one spinous process and two transverse processes) 

for muscular and ligamental attachment and articulation (Figure 2-2).11  The upper end plate 

surface is concave from side to side and convex in an anterior-posterior direction, while the 

lower end plate surface is convex from side to side and concave in an anterior-posterior direction.   

 

2.1.2 Joints and ligaments 

 

The intervertebral disc joints, facet joints, and unconvertebral joints consist of joints 

linking the two adjacent vertebrae in the lower cervical spine region.  The intervertebral disc is a 

fibrocartilaginous joint and allows for six degrees of freedom between two intervertebral bodies.  

However, there are no discs between axis (C2), atlas (C1), and occiput (C0).  The uncovertebral 

joints, situated on either side of the discs, are small synovial joints located on each side of the 
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Figure 2-2: Typical vertebral body of the lower cervical spine.  (A) Cranial view. (B) Lateral 
view.  (Adapted from Clark et al. and used with permission.  Clark CR, ed. The Cervical Spine: 
The cervical spine research society. 3rd ed. Philadelphia: Lippincott- Raven Publishers, 1998.) 
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disc.  The facet joints are synovial joints formed by the corresponding articular facets of adjacent 

vertebrae and are enclosed by joint capsules.   

Ligaments in the spine protect the spinal cord by allowing spinal motion within the 

physiologic limits and preventing excess motion.  They contain tough flexible collagen rich 

fibers.  The ligaments in the lower cervical spine are shown in Figure 2-3.35  The anterior 

longitudinal ligament (ALL) attaches to the anterior surface of the cervical vertebra body and 

runs parallel to the length of the spine.  The posterior longitudinal ligament (PLL) is located on 

the posterior aspect of the vertebra body and runs in the direction of the length of the spine.  The 

interspinous ligament and the ligamentum flavum (LF) are located between adjacent spinous 

processes and adjacent laminae, respectively.  The capsular ligament encloses the facet joint.  

The ligaments in the upper cervical spine are different from those in the lower region (Figure 2-3 

B).  The anterior occipito-atlantal membrane (AA-OM) and posterior occipito-atlantal membrane 

(PA-OM) are the continuations of anterior longitudinal ligament (ALL) and ligamentum flavum 

(LF), respectively.  They attach between the skull and the C1 vertebral body.  The transverse 

ligament is a strong horizontal ligament.  The apical ligament and the alar ligament hold the dens 

anteriorly.  

 

2.1.3 Neck muscles 

 

There are three main functions of the neck muscles: (1) muscles protect the cervical spine, 

(2) muscles move the head and neck during the daily living activities, and (3) muscle reflexes 

stabilize the neck and head in a given posture.  Neck muscles are named according to their 

location, i.e., anterior muscles, lateral muscles, and posterior muscles.  Muscles usually appear 
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Figure 2-3: Cervical ligaments. (A) Lower cervical ligament. (B) Upper cervical ligament. 
(Adapted from Sances et al. and used with permission.  Sances A, Jr., Myklebust JB, Maiman DJ, 
et al. The biomechanics of spinal injuries. Crit Rev Biomed Eng 1984;11:1-76.) 
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symmetrically throughout the cervical spine.  When paired muscles work simultaneously 

(bilaterally), they either flex or extend the head and neck, or induce lateral bending or axial 

rotation.  The anterior muscles flex the cervical spine, and if they run obliquely and contract 

independently of the muscles on the opposite side, they will axially rotate the spine as well.  

Similarly, the posterior muscles in the back extend the spine when they contract, and if they run 

obliquely and contract independently of their counterpart on the opposite side, they will rotate 

the spine axially and bend the spine laterally.  As lateral muscles contract, they will bend the 

spine to the same side.  Furthermore, the neck muscles are categorized based on their functions 

as forward flexors (flexion), extensors (extension), rotators (axial rotation), and lateral flexors 

(lateral bending).  According to the general location of the muscles, forward flexor muscles and 

extensor muscles belong to the anterior muscle group, while the rotator muscles and lateral 

flexors belong to the lateral muscle group (Table 2-1).6 

 

Table 2-1: Vertebral muscle types according to function and their corresponding name 
according to the locations. 
 

Vertebral Muscles Types (Function) Vertebral Muscles Types (Location) 
Forward  flexors Anterior muscles 

Extensors Posterior muscles 
Rotators Lateral muscles 

Lateral flexors Lateral muscles 
Note: Modified from Bridwell K. Muscles of The Spine. 
Website:http://spineuniverse.com/displayarticale.php/article1272.html Access on Feb 27 2006. 
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2.2 Kinematics of the cervical spine 

 

 In this section, the range of motion of the cervical spine and the coupling motions are 

introduced.  The representative values of the ranges of rotation of the cervical joints, based on 

various studies, were taken from White and Panjabi (Table 2-2).41  Most of the axial rotation 

occurred in the region between C1 and C2, while C0-C1 allowed for most of the 

flexion/extension and very little axial rotation.  About 60% of the axial rotation of the entire 

cervical spine and occiput occured in the upper region (C0-C1-C2) and the remainder occurred in 

the lower region (C2-T1).  There was no significant translatory movement at the C0-C1-C2 

complex.  In the lower cervical spine, most of the flexion/extension occurred in the central 

region.   

 There are two main coupled movements in the lower cervical spine that are due to the 

spatial orientation of the facet joints and the uncovertebral joints.22  The first is that flexion is 

coupled with anterior translation and extension is coupled with posterior translation.  The second 

behavior is the coupled motion between lateral bending and axial rotation.  In the upper cervical 

spine, there is a significant coupling pattern where the axial rotation of C1 is associated with 

vertical translation.41 
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Table 2-2: Representative ranges of motion for in vivo rotation of the cervical spine.  

 Intervertebral joint motions (degree) 
Motion C0-C1 C1-C2 C2-C3 C2-C3 C3-C4 C4-C5 C5-C6 C7-T1 

One side lateral bending 5 5 10 11 11 8 7 4 

Combined flexion/extension 25 20 10 15 20 20 17 9 
One side axial rotation 5 40 3 7 7 7 6 2 

Note: Modified from White AA, Panjabi MM. Clinical Biomechanics of the Spine. 2nd ed. 
Philadelphia: J.B. Lippincott Company, 1990. 
 

2.3 Current computer modeling techniques of the human head-neck 

complex 

 

 Current biomechanical neck models are categorized according to the modeling techniques: 

finite element models (based on small deflection theory) and rigid multi-body dynamic models.  

An obvious advantage of the finite element approach is it allows for a more detailed 

representation of geometry and material properties of the cervical spine.42  Several finite element 

neck models have been published in the past decade.19,37,48  In the multi-body dynamic neck 

models, the head and vertebral bodies are modeled as rigid bodies while the interconnecting 

tissues, such as intervertebral discs and facet joints, are represented by different joints or spring-

damper elements.3,14,39  Compared to the finite element neck models, multi-body dynamic 

models are computationally more efficient in the simulation of kinematics and dynamics 

responses.5,39  

Over the past few years, multi-body biomechanical neck models3,14,15,17,39,40 have been 

widely used in many fields, such as frontal/lateral acceleration impacts simulation, rear end 
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impact simulation, Whiplash Associated Disorders (WAD) research, muscle moment arm 

influence, and the in vitro experiment protocol simulation.  

 

2.3.1 Previous simulation work in our biomechanics laboratory 

 

The Joint Implant Biomechanics Laboratory of the University of Tennessee Health 

Science Center has made an effort to integrate computer animation and engineering analysis into 

biomechanical research.  Using a general engineering program, Visual Nastran 4D (MSC 

software, Santa Ana, CA), Ahn3 developed a graphic-oriented multi-body model of the human 

cervical spine that served as a virtual laboratory simulator for kinematic and kinetic testing.  The 

model included seven rigid bodies from C2 to T1 with detailed definitions of the interconnecting 

soft tissue structures.  The intervertebral discs were modeled as load-based joints with 

viscoelastic characteristics.  The facets joints were defined as joints having compressive stiffness 

and tensile stiffness.  The ligaments were modeled as non-linear spring-damper elements also 

having viscous behavior.  Simulation results from this model were comparable to the in vivo data 

and the experimental results.  One main advantage of the in vitro model developed by Ahn was 

that it provided a realistic simulation of the in vitro experimental protocol for studying the 

human cervical spine.  As a result, the model could be used to study the kinematics and kinetics 

of various spine conditions (i.e. fusion, harvested, or intervertebral disc implantation).  However, 

without the muscle components, their model lacked the ability to simulate the in vivo human 

cervical spine movements.   
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2.3.2 Other head-neck models 

 

Only a few numerical models of the human cervical spine have been developed that have 

included the neck muscles.7  Brolin7 developed a model of the neck that allowed the muscles to 

curve around the vertebra bodies and included active muscles properties.  De Jager14 developed a 

multi-body musculoskeletal head-neck model that consisted of rigid intervertebral bodies, a rigid 

head, and associated soft tissues.  Some representation of active muscle involvement was 

incorporated into their model.  On the basis of De Jager’s work,14 van der Horst39 refined the 

model with new geometrical description of the cervical spine and new locations of the ligaments 

and muscles.  In van de Horst’s model, the muscles could follow the curvature of the neck, which 

resulted in a more realistic muscle force line of action.  

Using a graphic-oriented computer model, an improved kinematics and dynamic 

simulation could be achieved.  Vasavada et al.40 created a biomechanical head-neck simulation 

model capable of representing muscle architecture, musculoskeletal geometry, and cervical spine 

kinematics.  Their model analyzed the effect of muscle morphometry and moment arm lengths 

on the moment-generating capacity of human neck muscles over physiological ranges of motion.  

Nineteen distinct muscles were included and the muscle attachments sites were based on 

anatomical description.  The kinematics of the cervical spine were calculated from the 

“representative angles” of the intervertebral motions reported by White and Panjabi.41  Moment 

arms and force-generating capacity of each neck muscle were calculated for a range of head 

positions.  One limitation of their study was that coupled motions were not included.  Another 

limitation was that all joints were modeled as three degrees of freedom rotational joints having 
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no translational components.  As a result, their model could only be driven under motion control 

and could not simulate muscle force control strategies.  

 

2.4 Summary 

 

A full understanding of the functional anatomy of human cervical spine is essential to 

successfully model the human head-neck musculoskeletal system.  Modeling techniques provide 

useful tools for the biomechanical study of human cervical spine.  With muscle components 

included, the head-neck model can be further developed to simulate in vivo human cervical spine 

movement through the incorporation with muscle control programs.   
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3.  Methods 

 

In this chapter, a three-dimensional mathematical model of the human head-neck 

musculoskeletal system was developed.  This model studied the motion responses of the human 

cervical spine under the control of muscles.  The graphics-oriented multi-body human head-neck 

model consisted of three major parts: head and vertebrae, interconnecting joints and ligaments, 

and muscles.  These three components are discussed in detail in the first Section (3.1).  The 

second Section (3.2) describes the application of using inverse dynamics.  A motion response-

driven model and a muscle-driven model were developed.  The muscle changes determined from 

the motion-driven model served as input for the model driven by muscle control.  The muscle 

driven model was studied under three different muscle sets, which are also discussed in this 

section.  Lastly, the method used to evaluate the model output is discussed in the Section (3.3).  

 

3.1 Head-Neck model 

 

The model was developed within a rigid body dynamic simulation program, Visual 

Nastran 4D.  The model developed by Ahn3 served as the basis for this research.  The soft tissues 

of upper cervical spine region were defined and the muscle components of the head-neck 

complex were incorporated into the in vitro computational model.  
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3.1.1 Head and vertebrae anatomy 

 

The head-neck musculoskeletal model was developed based on the in vitro cervical spine 

(C2-T1) model developed by Ahn.3  Their anatomical model is shown in Figure 3-1.  The skull, 

C1, clavicle, the scapula, and upper part of the thorax were added to their model.  The geometry 

of the skeletal components, such as skull, cervical vertebrae, and thorax was created from axial 

computer tomography (CT) images obtained from National Library of Medicine’s Visible 

Human data set.1  Image processing software SliceOmatic 4.2 (Tomovision, Montreal, Canada) 

and surface modeling software Geomagic Studio 5 (Raindrop Geomagic, Research Triangle Park, 

NC) were also used to create the surface models before they were imported to Visual Nastran 4D 

(MSC software, Santa Ana, CA).3  Figure 3-2 to Figure 3-4 show the detailed model of skull 

(Figure 3-2), C0 (Figure 3-2), C1 (Figure 3-3 A), C2 (Figure 3-3 B), and the remaining vertebrae 

(Figure 3-4).  In this model, the scapula and thorax were fixed and used only for muscular 

attachment, while the mass, the moment of inertia, and the position of the center of mass for the 

vertebral bodies were obtained from Visual Nastran 4D software and are listed in Table 3-1.  

 

3.1.2 The interconnecting joints and ligaments 

 

The interconnecting joints and ligaments were defined relative to the region they belong 

to: the lower sub-axial spine region (C2-T1) or the upper cervical spine region (C0-C2). 
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Occipital Condyles (OC) 

 

 

 

Figure 3-1: Development of the Head-Neck model from the (C2-T1) in vitro model.  (A) 
Original in vitro model (C2-T1). (B) The current head-neck model.  

 

 

 

 

 

 

 

 

Figure 3-2: Bottom and oblique views of the skull with occipital condyles (C0). 
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Figure 3-3: Anatomical model of C1 and C2 vertebrae.  (A) C1. (B) C2.  

 

 

Figure 3-4: Anatomical model of C3 and C4 vertebrae.  (A) Anterior view. (B) Lateral view. 

  A     B 

A B 
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Table 3-1: Inertial and geometric data of vertebral bodies (C1-T1). 

Moment of inertia (kgmm2) 
 

Vertebral 

body 

Mass 

(kg) 
Ixx Iyy Izz 

Center of mass position 

relative to T1 center of 

mass (mm) (X: right, Y: 

anterior, Z: upward) 

C1 0.21 29.3 81.6 99.0 (2.24, 33.81, 111.00) 

C2 0.25 46.3 47.7 64.9 (3.29, 32.61, 93.80) 

C3 0.26 23.7 48.9 65.3 (4.35, 32.50, 75.29) 

C4 0.27 23.8 57.7 72.2 (4.17, 28.96, 61.18) 

C5 0.26 24.3 61.2 73.4 (3.19, 25.20, 46.64) 

C6 0.29 38.8 62.7 79.0 (1.51, 18.40, 31.97) 

C7 0.41 72.1 89.2 132.8 (1.34, 8.51, 16.40) 

T1 0.27 50.4 68.7 93.9 (0.00, 0.00, 0.00) 

 



 20

3.1.2.1 Definition of joints in lower cervical spine 

 

The joints connecting any two vertebral bodies in the lower cervical spine region (C2-C7) 

were described as “triple joint complexes” in the in vitro model developed by Ahn.3  The triple 

joint complexes were comprised of intervertebral disc joints in the anterior region, two facet 

joints in the posterior region, and ligament structures between two vertebrae.  This definition was 

also adapted in the current head-neck musculoskeletal model. 

 

3.1.2.2 Definition of joints in upper cervical spine 

 

The rigid bodies of the upper cervical spine formed by C0, C1, and C2 were connected by 

intervertebral joints and represented the compound behaviors of occipital (C0)-atlano (C1)-axial 

(C2) complex. The joints included ligaments and facet joints.  In this study, the stiffness 

properties of the transverse ligament, alar ligament, the apical ligament, and the facet joints in 

the upper region were lumped together in Visual Nastran 4D to form generic joints for C0-C1 

and C1-C2.  Both joints had six degrees of freedom as shown in Figure 3-5.  To be consistent 

with previous ligaments development in the lower cervical spine,3 four types of ligaments were 

modeled: anterior atlanto-occipital membrane (AA-OM), posterior atlanto- occipital membrane 

(PA-OM), anterior longitudinal ligament (ALL), and ligamentum flavum (LF). 

The origin of the coordinate system for C0-C1 joint was set above the occipital condyles 

(Figure 3-5 A), while the origin of the coordinate system for C1-C2 joint was located at two-

thirds the height of the dens along the central axis of the dens (Figure 3-5 B).  The Xd, Yd, and 

Zd- axes for both C0-C1 and C1-C2 joints (Figure 3-5) were assigned pointing right laterally,  
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(A)  

 

 

 

 

 

 

 

 

 

(B) 

Figure 3-5: The three-dimensional coordinate system for the C0-C1-C2 complex used to 
describe rotatory motions.  (A) C0-C1 joint. (B) C1-C2 joint. 
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anteriorly, and cranially, respectively.    

Viscous behavior of the C0-C1, C1-C2 generic joints was defined by constant damping 

coefficients obtained from De Jager’s study.14  The damping coefficients varied for different 

motions.  For example, the damping coefficients were 1 Ns/mm for translations and 26 

Nmms/deg for rotation.  

In order to model the elastic behavior of the joints, load-displacement curves were 

assigned for each degree of freedom and each level of C0-C1 and C1-C2 joints.  The rotational 

stiffness of C0-C1 and C1-C2 joints were defined by nonlinear moment- rotation curves.14  

Figure 3-6 and Figure 3-7 show the moment-rotation curves that represent the in vitro elastic 

behavior of C0-C1 and C1-C2 joints, respectively.  Table 3-2 and Table 3-3 provide the 

corresponding data. 

De Jager14 used a relatively large stiffness of 500N/mm to define the translatory stiffness 

in his model, as no force-translation data were available in the literature.  In this study, the 

translatory stiffness values for the upper cervical spine joints were assumed to be identical to that 

used for the lower cervical spine intervertebral discs.  These stiffness values resulted in minimal 

translational motion for normal physiologic loads, which agreed with the physical observations 

for these joints.  As described in detail in Ahn’s dissertaion,3 force-translation curves for Xd- and 

Yd- directions (shear) were adapted and modified from De Jager,14 while the force-translation 

curve for Zd- direction (tension-compression) were directly adapted from Shea et al..36  Figure 

3-8 shows the force-translation curves for C0-C1 joint and C1-C2 joint.  The corresponding data 

are given in Table 3-4. 
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Figure 3-6: Moment-rotation curves for the C0-C1 joint.  (Adapted from De Jager MKJ. 
Mathematical Head-Neck Model for Acceleration Impacts: Eindhoven University of Technology, 
1996) 
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Figure 3-7: Moment-rotation curves for the C1-C2 joint.  (Modified from De Jager MKJ. 
Mathematical Head-Neck Model for Acceleration Impacts: Eindhoven University of Technology, 
1996) 
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Table 3-2: Coordinate data for C0-C1 motion segment unit moment-rotation curves.   

C0-C1 
Axial Rotation Lateral Bending Flexion /Extension 

Deg Nm Deg Nm Deg Nmm 
-20.8 -20 -13.4 -20. -36.6 -40 
-6.1 -1.5 -4.9 -1.5 -10.2 -1.5 
-1.8 -0.15 -2.5 -0.15 -6.5 -0.15 
1.8 0.15 2.5 0.15 7.6 0.15 
6.1 1.5 4.9 1.5 16.3 11.5 

20.8 20 13.4 20 78.7 40 
Note: Modified from De Jager MKJ. Mathematical Head-Neck Model for Acceleration Impacts: 
Eindhoven University of Technology, 1996 
 
 
 

Table 3-3: Coordinate data for C1-C2 motion segment unit moment-rotation curves.  

C1-C2 
Axial Rotation Lateral Bending Flexion/ Extension 

Deg Nmm Deg Nmm Deg Nmm 
-69.4 -20 -22.7 -20 -33.1 -20 
-35.8 -1.5 -9.3 -1.5 -11.7 -1.5 
-25.6 -0.15 -5.4 -0.15 -5.5 -0.15 
25.6 0.15 5.4 0.15 5.3 0.15 
35.8 1. 9.3 1.5 9.6 1.5 
69.4 20 22.7 20 24.1 20 

Note: Modified from De Jager MKJ. Mathematical Head-Neck Model for Acceleration Impacts: 
Eindhoven University of Technology, 1996 
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Load-diaplacement curves
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Figure 3-8: Load-displacement curves for the C0-C1 and C1-C2 joints.  (Modified from De 
Jager MKJ. Mathematical Head-Neck Model for Acceleration Impacts: Eindhoven University of 
Technology, 1996) 

 
 

Table 3-4: Coordinate data for the C0-C1 and C1-C2 motion segment units the load-
displacement curves shown in Figure 3-8.  

 

Zd 
Translation (mm) -0.936 -0.863 -0.721 -0.608 -0.475 -0.377 -0.23 -0.132 

Force (N) -757.27 -689.33 -524.28 -415.63 -308.73 -207.84 -133.99 -75.725 
Translation (mm) 0.328 0.613 0.902 1.162 1.461 1.765 2.054 2.309 

Force (N) 19.417 38.882 42.761 58.282 83.514 120.4 182.53 275.72 
Yd 

Translation (mm) -13.8 -2.3 -1.6 -0.9 0.9 1.9 2.5 12.8 
Force (N) -2000 -125 -50 -5 5 50 125 2000 

Xd 
Translation (mm) -10.8 -1.5 -0.8 0.8 1.5 10.8   

Force (N) -2000 -50 -5 5 50 2000   
Note: Modified from De Jager MKJ. Mathematical Head-Neck Model for Acceleration Impacts: 
Eindhoven University of Technology, 1996 
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The ligaments, anterior atlanto-occipital membrane (AA-OM), posterior atlanto-occipital 

membrane (PA-OM), anterior longitudinal ligament (ALL), and ligamentum flavum (LF) were 

modeled as non-linear spring-damper systems that resisted tensile or distractive forces (Figure 

3-9), similar to the method used to define ligaments in the lower cervical spine region.3  Since 

AA-OM, PA-OM, and ALL are narrower at the upper level,28 they were modeled as two-parallel 

spring-damper elements compared to the ligaments ALL and PLL in the lower cervical spine, 

which were modeled as three parallel spring-damper elements.3  A three-parallel spring-damper 

element was used to define LF located between C1 and C2.  The origin and insertion of 

ligaments were located at the margin of the vertebrae.3  

 The viscous behavior for the ligaments was represented by a constant damping 

coefficient of 0.4 NS/mm that was adapted from van der Horst39 and Yoganandan et al.45  The 

stiffness-displacement curves (Figure 3-10) represent the non-linear elastic behavior of each 

ligament.  The data were derived from published literatures44 and plotted in Figure 3-11. 

 

 

 

 

 

 

 

 

Figure 3-9: The ligaments modeled in the upper cervical spine region. 
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Figure 3-10: The stiffness versus displacement of a ligament.  Point “a”, “b”, and “c” were 
defined at 5%, 10%, and 15% of failure strain and 6.15%, 25%, and 50% of stiffness respectively.  
Point “d” and point “e” were assumed at 20% and 90% of the failure displacement (point f), 
respectively.  (Modified from Ahn HS. A Virtual Model of the Human Cervical Spine for 
Physics-beased Simulation and Applications. Department of Biomedical Engineering. Memphis, 
Tennessee: The University of Tennessee Health Science Center, 2005.) 
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Figure 3-11: The stiffness-displacement curves plot based on Figure 3-10 for the ligaments 
in the upper cervical spine.  
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3.1.3 Muscles 

 

The complicated muscle system of the head and neck was represented by 19 distinct 

muscles, which were classified into 9 groups and modeled by 25 sub-volumes.  In some neck 

muscle models, one bundle of muscle may be represented by more than one element to account 

for different points of attachment of the muscle.  However, in this study, each muscle was 

modeled as one straight line element that was represented by an actuator in Visual Nastran 4D.  

Table 3-5 shows all the neck muscles developed in this muscle model and their attachment sites, 

which were defined according to published anatomic descriptions.2,11,18  The coordinates of the 

origins and insertions of the muscles represented an average position for the muscle attachment.  

Since T4 (the fourth thoracic body) and T5 (the fifth thoracic body) were not available in this 

model, the origin sites for the muscles splenius cervicis and longissimus cervicis were 

approximated.  

According to the muscle motor functions, such as axial rotation, lateral bending, 

extension, and flexion, muscles were further categorized into a “Primary Muscle Group” for each 

movement (Table 3-6 and Table 3-7).  As mentioned in Section (2.1.3), primary muscles causing 

axial rotation, lateral bending, extension, and flexion were called rotators, lateral flexors, 

extensors, and forward flexors, respectively.  The motor functions were determined based on the 

classic text of Gray’s Anatomy.34 
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Table 3-5: Neck muscle attachment sites.  

Muscle Name Origin Insertion 
Sternocleidomastoid   

Sternomastoid Sternum Skull (m.p) 
Cleidomastoid Clavicle Skull (m.p) 
Cleido-occipital Clavicle Skull (s.n.l) 

Trapezius   
Clavotapeius Clavicle Skull (m.p) 
Acromiotrapezius Scapula C7 (t.p) 

Sbocclpital   
Rectus capitis posterior major C2 (s.p.) Skull (i.n.l) 
Rectus capitis posterior minor C1 (p.t.) Skull (i.n.l) 
Obliquus capitis superior C1 (t.p.) Skull (s.-i.n.l) 
Obliquus capitis inferior C2 (s.p.) C1( t.p.) 

Longus capitis and colli   
Longus capitis C4 (t.p.) Skull (bas-occ) 
Longus colli-vetical C3 ( ant v.b.) C1 ( ant v.b.) 
Longus colli-superior oblique C5 (t.p.) C1 ( ant v.b 
Longus colli-inferior oblique C3 ( ant v.b.) C5 ( t.p.) 

Splenius   
Splenius capitis-medial C6 (s.p.) Skull (s.n.l.) 
Splenius capitis-lateral T1 (s.p.) Skull (m.p.) 
Splenius cervicis T4 (s.p.) C3 (s.p.) 

Semispinalis   
Semispinalis capitis-lateral C5 (a.p.) Skull (s.-i.n.l) 
Semispinalis capitis-medial T1 (t.p.) Skull (s.-i.n.l) 
Semispinalis cervicis T1 (t.p.) C3 (s.p.) 

Scalenes   
Scalenus anterior Rib 1 C4 ( t.p.) 
Scalenus medius Rib 1 C3 ( t.p.) 
Scalenus posterior Rib 2 C5 ( t.p.) 

Levator scapulae Scapula (med) C2 ( t.p.) 
Erector spinae   

Longissimus capitis C6 (a.p.) Skull (i.n.l) 
Longissimus cervicis T5 (t.p.) C4 ( t.p.) 
Iliocostalis cervicis Rib 3 C5 ( t.p.) 

Note: Modified from Vasavada AN, Li S, Delp SL. Influence of muscle morphometry and 
moment arms on the moment-generating capacity of human neck muscles. Spine 1998;23:412-22. 
 
a.p. = articular process;  
acr. = acromion of scapula; 
ant v.b. = anterior vertebral 
body;  
bas-occ = basi-occiput; 
i.n.l. = inferior nuchal line; 

med = medial border scapula, 
between spine and superior 
border;  
m.p. = mastoid process; 
occ pr =external occipital 
protuberance;  

p.t. = posterior tubercle;  
s.-i.n.l = between superior and 
inferior nuchal lines;  
s.p. = spinous process;  
s.n.l. = superior nuchal line;  
.p. = transverse process. 
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Table 3-6: Primary muscles involved in axial rotation and lateral bending. 

Movement Axial Rotation (Rotator) Lateral Bending (Lateral Flexor)

  Sternocleidomastoid    Sternocleidomastoid  
 Sternomastoid (O)  Sternomastoid (S) 
 Cleidomastoid (O) Cleidomastoid  (S) 
 Cleido-occipital (O) Cleido-occipital (S) 

 Trapezius  Trapezius 
Clavotrapezius (O) Clavotrapezius (S) 
Acromiotrapezius (O) Acromiotrapezius (S) 

  Suboccipital   Longus capitis and colli  
Rectus capitis posterior major (S) Longus colli-inferior oblique (O) 
Obliquus capitis inferior (S) Longus colli-superior oblique (O)

  Longus capitis and colli    Splenius  
Longus colli-inferior oblique (O) Splenius cervicis (S) 

  Splenius    Scalenus 
Splenius capitis-medial (S) Scalenus anterior (O) 
Splenius capitis-lateral (S) Scalenus medius (S) 
Splenius cervicis (S) Scalenus posterior (S) 

  Semispinalis    Levator scapulae (S) 
Semispinalis capitis-lateral (S)   Erector spinae  
Semispinalis capitis-medial (S) Longissimus capitis (S) 
Semispinalis cervicis (S) Longissimus cervicis (S) 

  Scalenus Iliocostalis cervicis (S) 
Scalenus anterior (O)  

  Erector Spinae  

Muscles 

Longissimus capitis (S)  

Notes: The muscles in Italic are the ones involved in both axial rotation and lateral bending.  “O” 
mean muscle rotates head in the opposite side to the muscles when contracting; “S” means 
muscles rotate head to the same side when shortening.  
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Table 3-7: Primary muscles involved in extension and flexion. 

 

 

 

 

 

 

Movements Extension (Extensor) Flexion (Flexor) 
  Sternocleidomastoid    Sternocleidomastoid  

cleidomastoid  Sternomastoid 
cleido-occipital   Longus capitis and colli  

  Trapezius Longus capitis  
Clavotrapezius longus colli-vetical 
Acromiotrapezius longus colli-superior oblique 

  Suboccipital  longus colli-inferior oblique 
Rectus capitis posterior major   Scalenus 
Rectus capitis posterior major Scalenus anterior  
Obliquus capitis superior Scalenus medius 

  Splenius  Scalenus posterior  
Splenius capitis-medial   Levator scapulae  
Splenius capitis-lateral  

Splenius cervicis  

  Semispinalis   

Semispinalis capitis-lateral  

Semispinalis capitis-medial  

Semispinalis cervicis  

  Erector spinae  

Longissimus capitis  

Longissimus cervicis  

Muscles 

    Iliocostalis cervicis  
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3.2 Inverse dynamics 

 

3.2.1 Method overview 

 

The application of inverse dynamics is widely used in biomechanics as a tool for motion 

analysis.33  Riener et al.33 concluded that inverse dynamic modeling can be an effective tool for 

motion analysis in patients with cerebellar disorders.  Pedrocchi et al.29 applied inverse dynamics 

to investigate voluntary trunk movements during weightlessness.  Vasavada et al.40 investigated 

the effect of moment arms and morphometry on the moment-generating capacities of individual 

muscles by developing a biomechanical head-neck musculoskeletal model that represented 

cervical spine kinematics.  

The objectives of this study were first to develop a human head-neck musculoskeletal 

system that could simulate axial rotation, lateral bending, flexion, and extension under the 

control of muscles, and then second to define and validate soft tissues properties.  Since there are 

no muscle excitation functions available in our Biomechanics Laboratory or in the literature, 

neck muscle forces could not be calculated.  The use of inverse dynamics method offered an 

alternative approach.  A head-neck model driven under motion response was developed first.  Its 

main function was to obtain muscle length changes over time.  That data served as input date for 

the second model driven under muscle control.  A general comparison of these two models is 

summarized in Table 3-8, and a schematic flow chart of the inverse dynamic method used in this 

study is presented in Figure 3-12.  The detailed descriptions of the two models are provided in 

the following sections. 
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Table 3-8: Comparison of motion-driven model and muscles-driven model. 

 Model Driven by Motion Response Model Driven by Muscles 

Muscle Force actuator (F=0) Length actuator (Length-time curve) 
Force actuator (Inactive muscle: F=0) 

 Soft 
Tissues 

No soft tissues 
Motion driven joint  

Intervertebral discs, facet joints, 
ligaments, C0-C1 and C1-C2 joints 

Driving 
Force 

Motion response obtained from literatures 
and Ahn' models 

Muscle length changes over running time 
obtained from the models driven by 

motion response 

 

 

 

 

 

 

 

 

Figure 3-12: Flow chart of the inverse dynamic method.  The input for the model driven by 
motion response was the motion response data from in vitro model and the literature.  The output 
of the model driven by motion response was the muscle length-time relationship, which served 
as an input for the model driven by muscle length control. 

 

 

 

 

 

Motion Response from 
In Vitro Model and 

Literature

Muscles’ Length 
Changes Over 

Time

Motion-driven 
model 

Muscle-driven 
model 

Input Output Input 
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3.2.2 Model driven by motion response 

 

In order to obtain the muscle length changes over time, a head-neck musculoskeletal 

model driven by motion responses was developed (Figure 3-13).  Motion response was the 

driving force for this model, thus at each spinal level a motion driven joint, represented by a 

generic joint in Visual Nastran 4D, was developed.  Further, each intervertebral joint between the 

C0 and T1 had three rotational degrees of freedom and three translational degrees of freedom.  

Therefore, motion driven joints were placed at each motion segment unit (C0-T1) and replaced 

all soft tissues, including intervertebral discs (C2-T1), C0-C1-C2 complex (C0-C2), facet joints, 

and ligaments. All motion driven joints from C2 to C7 were positioned at the exact same location 

as the native discs in the lower cervical spine.  Joints C0-C1 and C1-C2, defined above, were  

 

 

 

 

 

 

 

 

 

 

Figure 3-13: The three dimensional coordinate system for the motion driven joints.  

X 

Y 

Z 

Rotation Axis

Lateral Bending 
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Extension/Flexion 
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+Rz
+Tx 

+Tz

+Ry 



 35

replaced by motion driven joints that similar to the intervertebral discs in the lower region, 

although no discs were present in the native upper cervical spine region.  The Xd, Yd, and Zd 

coordinate axes were defined pointing to the right-laterally, anteriorly, and cranially, respectively 

(Figure 3-13).  

Displacement-time and rotation-time curves were applied to each generic joint.  Ahn3 

developed a multi-body model of human cervical spine (C2-T1) and built a virtual laboratory 

simulator for kinematic and kinetic testing of the models.  From the simulation results, the 

contributions of the individual motion segment rotations to the global rotation were comparable 

to the in vivo data from White and Panjabi.27,41  Therefore, translational data (X, Y, Z) and 

rotational data (Rx, Ry, Rz) of each joint in the lower cervical spine were adapted and modified 

from the kinematics output of Ahn’s in vitro models.   

However, similar detailed information for the upper cervical spine was not available in 

Ahn’s in vitro model.  As such, the upper spinal motion driven joints were modeled as motion-

based joints that allowed Rx- rotation, Ry- rotation, Rz- rotation in flexion/extension, one-side 

lateral bending, and axial rotation, respectively.  Intervertebral rotations were specified as a 

percentage of the total rotation, and the motions for level C0-C1 and C1-C2 were scaled from the 

“representative values” of intervertebral motions reported by White and Panjabi.27,41  

Translations of the upper vertebrae were so small, they were considered negligible.  No coupling 

behaviors were included here.  

The aim of motion-driven model was to obtain the changes in muscle length over time.  

Force actuators were chosen to represent muscles in Visual Nastran 4D.  The force resistance of 

the actuator was set to 0 N manually and the length changes of each “muscle” (actuator) was 

recorded by the length meter in Visual Nastran 4D.    
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3.2.3 Musculoskeletal head-neck system driven under muscle control 

  

The description of the dynamic cervical spine model was provided in the Section (3.1).  

Motion driven joints in the motion-driven model were replaced with the intervertebral discs, 

facet joints, ligaments, and joints C0-C1 and C1-C2 to accomplish this task.  Compared to other 

regions of the human musculoskeletal system, the head-neck region is one of the more complex 

structures to computationally model because of the many muscles attached between them.  

Different combinations of neck muscles used to drive this musculoskeletal model may produce 

different modeling results.  However, in order to perform a computer simulation and numerical 

optimization of the cervical spine dynamics within a reasonable computational run time, it was 

necessary to limit the complexity of the model.7  One of the key methods to reduce the 

complexity of this model in this study was to focus on the major muscles related to each 

movement.  Therefore, for each specific movement, only the primary muscles involved in the 

movement were considered.  

 A concentric contraction is defined as a contraction causing movement when the muscle 

is shortening.  An eccentric contraction is when the muscle lengthens under tension which 

controls movement caused by other muscles or gravity.  One-side axial rotation and one-side 

lateral bending were caused by the single-side muscle contractions and were assumed to 

represent a concentric contraction in this study.  Muscle lengthening activities provide a resistive 

force that tries to maintain the head and neck in the neutral position.  In extension, the extensor 

muscles contract concentrically, moving the neck to the same side, while the anterior forward 

flexor muscles help to stabilize the spine.  A similar action occurs in flexion, but in that instance 

the forward flexor muscles flex the head forward instead.   



 37

The vertebral body was actuated by three different sets of muscles to construct the “All 

muscles” mode, the “Concentric contraction muscles only” mode, and the “Eccentric contraction 

muscles only” mode.  The eccentric muscle activity during axial rotation can be referred to as 

“Passive elongation muscles only”, as the lengthening muscles act passively during this 

movement.  Within Visual Nastran 4D, the muscles were categorized into eccentric contraction 

muscles and concentric contraction muscles mainly based on the trend of the muscle length 

changes.  If the muscle length decreased over time, it belonged to the concentric contraction 

muscles; otherwise, it was considered as a member of eccentric contraction muscles.  Table 3-9 

shows the behavior of the muscles in these three study modes for each movement.  As mentioned 

in Section (3.2.1), muscles in the motion-driven model were represented by force actuators in 

Visual Nastran 4D, while in the muscle-driven model, activated muscles were modeled as 

displacement actuators.  The muscle length-time relationship for an individual muscle was 

obtained from the motion-driven model and became the input data for the muscle-driven model. 

 

3.3 Model evaluation  

  

Published in vivo data from White and Panjabi41 were used to validate motion-driven and 

muscle-driven models.  The contribution of each motion segment unit rotation relative to the 

overall global motion of cervical spine was compared between the simulation model (both the 

model driven by motion response and model driven under muscle control) and the in vivo data41 

and served as the model evaluation step.  
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Table 3-9: Muscle behaviors in the three study modes.  

 Movement Muscles Muscles (Actuator) 
in VN 4D  

Axial rotation Both sides of the paired 
muscles 

Lateral Bending Both sides of the paired 
muscles 

Extension Extensor+Flexor muscles

“All Muscles” 
Mode 

Flexion Extensor+Flexor muscles

Some are lengthening, 
some are shortening 

Axial rotation Only one side of paired 
the muscles 

 Lateral Bending Only one side of paired 
the muscles 

Extension Flexor muscles, paired 

“Eccentric 
Contraction 

Muscles Only” 
Mode (Passive 

Elongation 
Muscles Only” 
mode for Axial 

Rotation) Flexion Extensor muscles, paired

Lengthening 

Axial rotation Only one side of the 
paired muscles 

 Lateral Bending Only one side of the 
paired muscles 

Extension Extensor muscle, paired

“Concentric 
Contraction 

Muscles Only” 
Mode 

Flexion Flexor muscle, paired 

Shortening 
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4.  Results 

 

This chapter consists of three parts: a musculoskeletal head-neck model is represented in 

Section (4.1), the results from the model driven by motion response are discussed in Section 

(4.2), and the results from the model driven by muscle length are provided in Section (4.3). 

 

4.1 Simulation of musculoskeletal head-neck complex 

  

A musculoskeletal head-neck model that simulated in vivo movements was developed.  

The model consisted of the skull, cervical and thoracic vertebrae, interconnecting joints, 

ligaments, and nine groups of head-neck muscles.  The structure of the skull and vertebrae in the 

model were shown in Figure 3-1.  The structure of the interconnecting joints and ligaments in the 

model are demonstrated in Figure 3-5.  A detailed description of the origin and insertion of each 

muscle element is provided in Appendix A.  Illustration of the frontal, lateral, and rear views of 

the final model are shown in Figure 4-1.  

 

4.2 Motion-driven model results 

 

Two sets of simulation results were generated from the head-neck model driven under 

motion control.  The first data set represented the percent contribution of each motion segment 

unit to the overall global response for axial rotation, lateral bending, extension, and flexion.  The  
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(A) (B) 

 

(C) 

Figure 4-1: Musculoskeletal head-neck simulation model.  (A) Frontal view. (B) Lateral view. 
(C) Rear view. 
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second data set represented the change in length of each muscle over time for different 

movements.  This information was used as input data to drive the muscle-driven model. 

 

4.2.1 Evaluation of motion-driven model 

 

 The motion segment unit rotations, expressed as a percent of the global rotation, are 

shown in Figure 4-2 for the motion-driven model and published in vivo data41.  There was a close 

match between the two data sets for all head movements.  

 

4.2.2 Muscle length-time relationship 

 

The most important result from the model driven under motion control was the length-

time curve for each muscle in one-side axial rotation, one-side lateral bending, flexion, and 

extension.  During one-side axial rotation and one-side lateral bending, the muscles on one side 

of the paired primary muscles shorten while the other side lengthens, indicating muscles in these 

two movements work alone to rotate or bend the head and neck obliquely.  However, the paired 

muscles lengthen or shorten simultaneously, acting together to complete the motion during 

flexion and extension.   
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Figure 4-2: Comparisons of the segment unit rotations between the simulation model 
driven under motion control and in vivo data for different movements.  (A) Axial rotation, 
(B) One side lateral bending, (C) Extension, and (D) Flexion. 
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4.3 Muscle driven model results 

 

The simulation results were divided into four parts according to the four types of  

movements: axial rotation, lateral bending, flexion, and extension.  For each specific movement, 

muscle selections for the three different modes: “All muscles” mode, “Concentric contraction 

muscles only” mode, and “Eccentric contraction muscles only” mode, were based on the muscle 

length-time relationship obtained from the motion-driven model.  The “All muscles” mode 

included all the primary muscles involved in the specific movement; “Concentric contraction 

muscles only” mode only included those muscles shortened with time; while “Eccentric 

contraction muscles only mode” only included those muscles lengthened with time.  The motion 

segment unit rotations for each type of movement tested under each mode were plotted against 

the corresponding run time.  Figure 4-3 shows the typical curves of the rotation versus time for 

each segment level under the “All muscles” mode in axial rotation.  The remainder curves are 

provided in Appendix B. 

 

4.3.1 Axial rotation  

  

For the axial rotation movement under the “All muscles” mode, all of the primary 

muscles involved in axial rotation (rotator) were chosen.  Under the “Concentric contraction 

muscles only” mode (Figure 4-4), only those muscles that shortened with time were considered 

(Figure 4-5), while under the “Passive elongation muscles only” mode, only those muscles that  
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Figure 4-3: The rotation versus time curves for each segment level under the “All muscles” 
mode in axial rotation.  (A) C0-C1. (B) C1-C2. (C) C2-C3. (D) C3-C4. (E) C4-C5. (F). C5-C6. 
(G) C6-C7. (H) C7-T1.  
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(A) 

 

(B) 

Figure 4-4: Musculoskeletal head-neck model under “All muscles” mode during right-side 
axial rotation.  (A) Frontal view. (B) Rear view. 
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(A) 

 

(B) 

Figure 4-5: Musculoskeletal head-neck model under “Concentric contraction muscles only” 
mode during right-side axial rotation.  (A) Frontal view. (B) Rear view. 
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lengthened were activated (Figure 4-6).  Muscle selection for each study mode are listed in Table 

4-1.  The distribution of relative motion segment unit rotations normalized to the global (C0-T1) 

rotation during axial rotation is shown in Figure 4-7 for different muscle activation modes and in 

vivo data.  The simulation results of all the three modes were comparable to the in vivo data.  The 

contributions of C1-C2 segment to the overall global rotation in the “Concentric contraction 

muscles only” mode and the “Eccentric contraction muscles only” mode were 61% and 62%, 

respectively, compared to the in vivo data value of 52%.  The contribution from the “All 

muscles” mode was the closest at 57%. 

 

4.4.2 Lateral bending 

  

The muscle selection for the three muscle activation modes used for lateral bending was 

similar to the ones used to study axial rotation.  Under the “All muscles” mode, all the primary 

muscles involved in lateral bending (lateral flexor muscles) were chosen (Figure 4-8).  Under the 

“Concentric concentration muscles only” mode (Figure 4-9), only those muscles that shortened 

in length with time were considered.  Lastly, for the “Eccentric contraction muscles only mode”, 

only those muscles that lengthened were activated (Figure 4-10).  Muscle selection for each 

study mode is listed in Table 4-2. 

The distribution of relative motion segment unit rotations normalized to the global (C0-

T1) rotation during lateral bending is shown in Figure 4-11 for the different muscle activation 

modes  and in vivo data.  The results from “All muscles” mode had the closest fit with in vivo 
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(A) 

 

(B) 

Figure 4-6: Musculoskeletal head-neck model under “Passive elongation muscles only” 
mode during right-side axial rotation.  (A) Frontal view. (B) Rear view. 
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Table 4-1: Muscle associated with each muscle activation mode in right-side axial rotation. 
 

Muscles “All muscles” 
mode 

“Concentric 
contraction 

muscles 
only” mode

“Eccentric 
contraction 

muscles only” 
mode 

Sternocleidomastoid    
Sternomastoid B R L 
Cleidomastoid B R L 
Cleido-occipital B R L 

Trapezius    
Clavotrapezius B L R 
Acromiotrapezius B L R 

Suboccipital    
Rectus capitis posterior major B R L 
Obliquus capitis inferior B R L 

Longus capitis and colli    
Longus colli-inferior oblique B R L 

Splenius    
Splenius capitis-medial B R L 
Splenius capitis-lateral B R L 
Splenius cervicis B R L 

Semispinalis    
Semispinalis capitis-lateral B R L 
Semispinalis capitis-medial B R L 
Semispinalis cervicis B R L 

Scalenus    
Scalenus anterior B R L 

Erector Spinae    
Longissimus capitis B R L 

Note: B, R, L represents both-side, right-side, and left-side muscles were activated, respectively.  
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Figure 4-7: Comparisons of the distribution of relative motion segment unit rotations 
during axial rotation for the “All muscles” mode, “Concentric contraction muscles only” 
mode, “Passive elongation muscles only” mode, and in vivo data.  
 

 

 

 

 

 

 

 

 

 



 51

 

 

(A) 

 

(B) 

Figure 4-8: Musculoskeletal head-neck model under “All muscles” mode during left-side 
lateral bending.  (A) Frontal view. (B) Rear view. 
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(A) 

 

(B) 

Figure 4-9: Musculoskeletal head-neck model under “Concentric contraction muscles only” 
mode during left-side lateral bending.  (A) Frontal view. (B) Rear view. 
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(A) 

 

(B) 

Figure 4-10: Musculoskeletal head-neck model under “Eccentric contraction muscles only” 
mode during left-side lateral bending.  (A) Frontal view. (B) Rear view. 
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Table 4-2: Muscles associated with each muscle activation mode in left-side lateral bending. 

Muscles 
“All 

muscles” 
mode 

“Concentric 
contraction 

muscles 
only” mode

“Eccentric 
contraction 

muscles 
only” mode 

  Sternocleidomastoid    
 Sternomastoid  B L R 
 Cleidomastoid   B L R 

    Cleido-occipital  B L R 
 Trapezius    

 Clavotrapezius  B L R 
 Acromiotrapezius  B R L 

  Longus capitis and colli    
 Longus colli-inferior oblique B L R 
 Longus colli-superior oblique B L R 

  Splenius    
 Splenius cervicis  B L R 

  Scalenus    
 Scalenus anterior  B L R 
 Scalenus medius  B L R 
 Scalenus posterior  B L R 

  Levator scapulae     B    L    R 
  Erector spinae    

 Longissimus capitis  B L R 
 Longissimus cervicis  B L R 
 Iliocostalis cervicis  B L R 

Note: B, R, L represents both-side, right-side, and left-side muscles were activated, respectively. 
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Figure 4-11: Comparisons of the distribution of relative motion segment unit rotations 
during lateral bending for the “All muscles” mode, “Concentric contraction muscles only” 
mode, “Eccentric contraction muscles only” mode, and in vivo data.  
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data as reported by White and Panjabi,27,41 except level C0-C1 which had a higher value.  For all 

three study modes, the rotational contribution to the overall global rotation of levels C4-C5, C5-

C6, and C7-T1 were comparable to the in vivo values.   

 

4.4.3 Extension  

  

In the “All muscles mode”, all the primary muscles involved in both extension and 

flexion were chosen (Figure 4-12).  For the “Concentric contraction muscles only” mode, only 

the primary muscles involved in extension (extensor muscles) were considered, as shown in 

Figure 4-13.  While in the “Eccentric contraction muscles only” mode, only the primary muscles 

involved in flexion (forward flexor muscles) were activated (Figure 4-14).  Refer to Table 3-7 for 

the list of extensor and flexor muscles.  

The distribution of relative motion segment unit rotation normalized to the global (C0-T1) 

rotation during extension is shown in Figure 4-15 for different muscle activation modes and in 

vivo data.  Only the simulation results from the “All muscles” mode were comparable to the in 

vivo data.  The results from “Concentric contraction muscles only” mode and “Eccentric 

contraction muscles only” mode agreed with the in vivo data, except at C3-C4, which was 14% 

compared to 11% for the in vivo case, and at C4-C5, which was 9% compared to 14% for the in 

vivo case.   
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(A) 

 

(B) 

Figure 4-12: Musculoskeletal head-neck model under “All muscles” mode during extension. 
(A) Frontal view. (B) Rear view. 
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(A) 

 

(B) 

Figure 4-13: Musculoskeletal head-neck model under “Concentric contraction muscles 
only” mode during extension.  (A) Frontal view. (B) Rear view. 
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(A) 

 

(B) 

Figure 4-14: Musculoskeletal head-neck model under “Eccentric contraction muscles only” 
mode during extension.  (A) Frontal view. (B) Rear view. 
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Figure 4-15: Comparisons of the distribution of relative motion segment unit rotations 
during extension for the “All muscles” mode, “Concentric contraction muscles only” mode, 
“Eccentric contraction muscles only” mode, and in vivo data.  
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4.4.4 Flexion 

 

A similar set of muscles used for extension modeling was used to study flexion, as shown 

in Figure 4-16.  The only differences were for the “Concentric contraction muscles only” mode, 

only forward flexor muscles (i.e. those that shorten) were considered (Figure 4-17), while for  

“Eccentric contraction muscles only” mode, only those muscles that lengthened (extensor 

muscles) were activated (Figure 4-18).  For the “All muscles” mode, both the primary muscles 

involved in extension (extensor muscles) and flexion (forward flexor muscles) were chosen.  

Refer to Table 3-7 for the list of the extensor and forward flexor muscles.  

The distribution of relative motion segment unit rotations normalized to the global (C0-

T1) rotation during extension is shown in Figure 4-19 for different muscle activation modes and 

in vivo data.  All the simulation results were comparable to the in vivo data, except at C0-C1 

level, for the “Concentric contraction muscles only”, which was 21% compared to 18% for the in 

vivo case. 
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(A) 

 

(B) 

Figure 4-16: Musculoskeletal head-neck model under “All muscles” mode during flexion. 
(A) Frontal view. (B) Rear view. 
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(A) 

 

(B) 

Figure 4-17: Musculoskeletal head-neck model under “Concentric contraction muscles 
only” mode during flexion. (A) Frontal view. (B) Rear view. 
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(A) 

 

(B) 

Figure 4-18: Musculoskeletal head-neck model under “Eccentric contraction muscles only” 
mode during flexion. (A) Frontal view. (B) Rear view. 
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Figure 4-19: Comparisons of the distribution of relative motion segment unit rotations 
during flexion for the “All muscles” mode, “Concentric contraction muscles only” mode, 
“Eccentric contraction muscles only” mode, and in vivo data.  
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5.  Discussion 

 

This chapter summarizes the major findings of this study.  Section (5.1) discusses the 

simulation results and some conclusions are drawn.  Section (5.2) discusses the limitations with 

the muscle selection process when developing the model under muscle control, especially for 

axial rotation and lateral bending.  Section (5.3) discusses the similarities and differences 

between this musculoskeletal model with the previous in vitro model of the sub-axial human 

cervical spine developed by Ahn.3  Lastly, in order to improve the current model, the limitations 

of this study are given in Section (5.4).   

 

5.1 Simulation results 

  

In Section (4.3), the results of the three study modes for flexion movement matched well 

with the in vivo data.  There are no significant influences of involvement of extensor muscles 

during flexion.  However, the data from the “Eccentric contraction muscles only” mode and the 

“concentric contraction only” mode for extension neck movement do not agree with the current 

research outcome.  These results imply that the forward flexor muscles play a more important 

role in extension than the extensor muscles do in flexion.  For future work, the contribution of 

these flexor muscles in extension should be considered as well.   

 From the simulation results under “All muscles” mode, the translations that occur in the 

upper cervical spine were very small, which agreed with physiological observations.41  
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Furthermore, this finding validated the force-translation data used to define the transtalory 

stiffness of the C0-C1 and C1-C2 joints.  

 Coupled motions of axial rotation and lateral bending are very important features in 

cervical spine kinematics.  Clinically, two kinds of coupled motions are especially well 

established in the cervical spine.27,40  Axial rotation is coupled with same direction lateral 

bending in the lower cervical spine but with opposite direction lateral bending in the upper 

cervical spine region.27  Lateral bending is accompanied by axial rotation of the same side.27  The 

simulation results obtained from the “All muscles” mode, where left side axial rotation was 

associated with left-side lateral bending, were in accordance with the previous study by 

Panjabi.27  However, axial rotation was coupled with the same side lateral bending even in the 

upper cervical region.  This finding can be explained by the unavailable definition of the 

coupling behavior of the upper cervical spine region in the motion-driven model.  This study 

agrees with the results from the current in vitro and in vivo studies to some extent, and provides a 

reasonable foundation for future modeling work.  

 

5.2 Comparisons with Ahn model and Vasavada model  

  

There were several similarities between the current head-neck model and the in vitro 

model developed by Ahn.3  First, the musculoskeletal head-neck model was an extension of the 

in vitro model.  Second, the soft tissue properties in the lower cervical spine region of the model 

presented in this study were adapted from Ahn.3  Lastly, these two models were both developed 

within the Visual Nastran 4D program.  Three major differences existed between these two 

models.  They were the area of focus, model driving forces, and the existence of muscle 
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components.  Further, the in vitro model developed by Ahn3 only included the sub-axial (C2-T1) 

spinal segments.  A velocity actuator was used to drive the motion response in flexion/extension 

and lateral bending and a revolute motor was used for axial rotation.  The current head-neck 

models were driven by motion response and muscle length.   

Vasavada et al.27,40 developed a detailed musculoskeletal head-neck model to investigate 

how muscle morphometry and moment arms influence moment-generating capacity of human 

neck muscles in physiologic ranges of motion.  The muscle selection of the current head-neck 

model was based on Vasavada’s study.  The main difference between Vasavada’s model, Ahn’s 

model, and the current head-neck model, is the modeling platform.  Vasavada’s model was 

accomplished in Software for Interactive Musculoskeletal Modeling (SIMM) (Musculographic, 

Inc. CA), while the other two were developed in Visual Nastran 4D.  Table 5-1 shows the main 

differences between the three models.  

 

5.3 Muscle selection for axial rotation and lateral bending 

 

As mentioned in Section (2.1.3), axial rotation and lateral bending are due to unilateral 

contraction of a number of muscles.  Therefore, some muscle contractions will cause the 

opposite-direction rotation or bending, while some will rotate or bend the head and neck to the 

same side as their location.  Right-side axial rotation and left-side lateral bending were 

represented in this study.  Gray’s Anatomy34 provided detailed information about which side the 

neck muscle rotates or bends the head when it is shortening.  However, for some muscles, the 

length-time relationship obtained from the model driven by motion response was in conflict to 

the description of Gray’s anatomy.2  The sternomastoid muscle is an example of when this  
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Table 5-1: Comparisons between the current head-neck model, Ahn’s model3 and 
Vasavada’s model.40  
 

 Current Model Vasavada Model Ahn Model 
Development 

Program Visual Nastran 4D SIMM Visual Nastran 4D 

Interconnecting 
Joints 

Intervertebral discs, 
C0-C1 joint, C1-C2 
joint, Ligaments, 
Facet joints 

---- 
Intervertebral discs, 
Ligaments, Facet 
joint 

Muscles 19 distinct neck 
muscles 

19 distinct neck 
muscles ---- 

Area of Focus 

Upper cervical spine 
(C0-C2)+Lower 
cervical spine (C2-
C7) 

Upper cervical spine 
(C0-C2)+Lower 
cervical spine (C2-
C7) 

Lower cervical 
spine (C2-C7) 

Driving Force 1. Motion response 
2. Muscle length Motion response 

1. Velocity actuator 
(Flexion/Extension, 
Lateral bending) 
2. Revolute motor 
(Axial rotation) 
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occurred.  According to Gray’s anatomy,2 the left-side sternomastoid is supposed to shorten and 

rotate the cervical spine to the right side in right-side axial rotation. However, based on the 

results, it was the right-side sternomastoid muscle that shortened during right-side axial rotation.  

This can be explained by the significant coupled motion of axial rotation and lateral bending 

which occurs in the cervical spine.  A shortening sternomastoid muscle also contributes to the 

same side lateral bending.  Therefore, in the coupled right-side axial rotation and right-side 

lateral bending, the right-side sternomastoid muscle shortens.  The response of the motion-driven 

model confirmed this explanation.  It was found that the left-side sternomastoid contracted in 

right-side axial rotation, which was in a very close agreement with the description of the 

anatomical reference.  This explanation can also be applied to some muscles that are not the 

major function muscles in lateral bending and rotate the spine to the opposite side when 

contracting.  For instance, the left side of longus colli-inferior oblique and scalenus anterior 

muscles, were activated in right-side axial rotation in the model driven by muscle length, not the 

right-side ones as the anatomy reference suggested.  A similar explanation can be applied.  The 

right side of the muscles longus colli-inferior oblique, longus colli-superior oblique, and scalenus 

anterior were supposed to shorten during left-side lateral bending since they rotate the neck to 

the right side, however, a descending trend was found in the length-time curves of the left-side 

muscles.  
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5.4 Limitations 

 

The limitations of this study were divided into two parts: (1) the limitations of defining 

the soft tissue structures within the anatomical model development, and (2) the limitations of the 

methods used in this study, including the inverse dynamics and the method for model evaluation. 

 

5.4.1 Anatomical model development  

 

 No simulation model is without limitations.  The model developed in this study is not an 

exception.  This model shares some common limitations with the one developed by Ahn.3  This 

model does not have a general representation due to the singularity of the vertebral body 

geometries, and the initial alignment of the cervical column may not reflect neutral alignment of 

the general population.  Ahn3 provided a detailed description of process used to model the soft 

tissue structures of the lower cervical spine.   

 In this study C0-C1-C2 complex was modeled as simple spherical joints at C0-C1 and 

C1-C2.  In addition, four types of ligaments (AA-OM, PA-OM, ALL and LF) were identified.  

However, since the moving axis of rotation of the spinal bodies changes during  the movement,41 

the physiologic behavior of the complex structure of C0-C1-C2 could not be completely 

simulated.  In addition, the translatory stiffness properties for the upper cervical spine joints were 

derived from the ones used in the discs of the lower cervical spine due the unavailability of 

published data.   
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 Muscles were represented by straight-line elements in Visual Nastran 4D, which was a 

limiting factor because the simulated muscles could not exactly replicate the intact muscle 

structure.  For example, the muscle cleidomastoid was modeled as a very long actuator inserting 

between clavicle and skull (Figure 5-1).  In addition, if a muscle inserts over a large area of bone, 

it cannot have multiple attachment sites.  In this model, some muscle was separated into two or 

more portions.23  For instance, the muscle longus colli-vertical attaching from C1 to T3 (the third 

thoracic body) was model as seven separate actuators that inserted between each vertebra body 

(Figure 5-2).  However, for future studies muscles should have the ability to follow the curvature 

of the neck, resulting in more realistic muscle force line of action.39   

 

5.4.2 Inverse dynamics  

 

The inverse dynamics method used in this study is not the same as the traditional 

approach cited in the biomechanical literature.33  The definition of inverse dynamics is a process 

of deriving the kinetics response for a given motion from the kinematics of the motion itself.   

However, Visual Nastran 4D was not designed to model muscles and lacked the ability to 

calculate the muscle forces through muscle properties, such as PCSA (physiologic cross-

sectional area), distribution of muscle fiber type, or muscle velocity-length properties.  Thus, the 

only information obtained from the kinematics model (model driven by motion response) was 

muscle length.  However, neck movement is caused by the muscle contraction that generates 

muscle forces.  As a result, the muscle-driven model was actually driven under muscle length 

control, and could not simulate the in vivo human neck movement.  
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Figure 5-1: The muscle cleidomastoid. 

 

Figure 5-2: The muscle longus colli-vertical. 

Longus Colli-Vertical 

Cleidomastoid 
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Inverse dynamics approach requires an accurate description of the motion response to 

obtain physiological results in biomechanical studies.  However, the input data for the motion 

driven model discussed in Section (3.2.2) were from two sources: the output data from Ahn’s in 

vitro model for the lower cervical spine region and in vivo data from literature for the upper 

cervical spine region.  Ahn’s in vitro model focused on obtaining a close match with the 

rotational contribution to the global rotation, but it did not include any analysis of the 

translational parameters.  In addition, the coupled motions were not considered in the upper 

cervical spine.  These two factors limited the accuracy of the results when using the inverse 

dynamics method and the same limitations noted with the response of motion segment unit 

rotations associate with the in vitro model are also present in this muscle model.  However, by 

using the inverse dynamics method, the information of the muscle length-time relationship 

needed to drive the musculoskeletal head-neck model was available.  Future work should 

introduce a forward dynamics simulation, which is a powerful approach for investigating how 

the elements of the musculoskeletal system interact to produce movement.38 

 

5.4.3 Methods of model evaluation  

  

Evaluation of the kinematics response only compared the motion segment unit rotations 

to the in vivo published data reported by White and Panjabi.41  A detailed analysis should include 

the coupling characteristics that occur between lateral bending and axial rotation.  Another 

parameter that should be added to the kinematic analysis is the three-dimensional helical axis of 

motion (HAM) between adjacent vertebrae.  
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6.  Conclusion and future work 

 

This chapter includes two parts.  A general conclusion of this study is given in Section 

(6.1).  Section (6.2) suggests future work, including some recommendations for improving the 

anatomical model and the application of a muscle control program, such as the “Virtual Muscle” 

program. 

 

6.1 Concluding discussion 

 

A computational model of the human head-neck musculoskeletal system was developed 

that simulated the dynamic motion response of the head and cervical spine under physiologic 

head movements.  This model included 19 distinct major muscles of the neck.  According to the 

motor function of the muscles, the muscles were categorized to form the primary muscle group 

for each motion.  The motion-driven model provided excellent replication of in vivo vertebral 

kinematics.  A similar response occurred for the muscle-driven model when the muscle groups 

on both sides were activated.  Although there was no significant involvement of the extensor 

muscles during flexion, the forward flexor muscle played an important role during extensional 

head movement.  In the future, this model can be used to explore muscle control strategies within 

the “Virtual Muscle” program to simulate EMG muscle force activation conditions.   
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6.2 Future work 

 

A computational approach to model the complex mechanical properties of muscles and 

tendons under physiological conditions is introduced.10  Furthermore, recommendations for 

improving the anatomical model are given in this section.   

 

6.2.1 The application of “Virtual Muscle” program 

  

This study presented the development of a musculoskeletal head-neck model that 

simulated four different movements under muscle length control.  The next developmental step is 

to add the muscle force capabilities to simulate the in vivo active muscle motion response.  There 

are two methods to determine the muscle force in the simulation model.  One method is 

formulate a static optimization solution that solves different optimization problems at each 

instant during the movement to calculate the muscle force.23  In this method, the net joint torques 

are solved from the same kinematic data used in the inverse dynamics solution.  The distribution 

of activations among muscles that could contribute to such net torques is solved by minimizing 

some criterion such as the total torque or total energy consumption.  This could be extremely 

difficult to do in a structure like the neck, which is dominated by viscoelastic properties rather 

than Newtonian mechanics (personal communication with Dr. Gerald Loeb from University of 

South Californica and Jun Yan, 2004).  The second method is to use EMG data to calculate the 

corresponding muscle forces.20,21  
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The integration of muscle control strategies through the use of the “Virtual Muscle” 

program may be a possible solution to the second method.  The Visual Nastran 4D program 

allows easy integration of many programs, such as Matlab (The MathWorks, Natick, MA) and 

Pro/ENGINEER (Parametric Technology Corporation, Needham, MA).  The “Virtual Muscle” 

program is embedded within Matlab/Simulink and it allows the user to assign different muscle 

fiber types that are based on the muscle morphometry data, such as the physiological cross-

sectional area of the muscles and the fascicle length.9,10  With the architectural parameters of the 

muscles defined in the “Virtual Muscle” program, a simulation block that calculates the muscle 

force production is built.  The simulation muscle block would require two inputs as shown in 

Figure 6-1: the musculotendon path length in units of centimeter and the neural activation level 

(between 0 and 1).  An EMG signal that represents the neural activity can be scaled to the level 

of maximal voluntary contraction and used to control the muscle response.9  In order to integrate 

the “Virtual Muscle” program in Visual Nastran 4D, only the force actuator component would 

need to be modified.   

 

 

 

 

 

   

Figure 6-1: Interactions between “Virtual Muscle” and Visual Nastran 4D. 

Virtual Muscle 
(Simulink) 

Motion  
Response
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Muscle model 
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A forward dynamic simulation can be performed by integrating the model with a set of 

Simulink blocks that describe the properties of the musculoskeletal system.  In contrast to the 

inverse dynamics method, the forward dynamics method uses muscle excitations as inputs to 

calculate the corresponding body motions.13,24,30,31,43,47  EMG data would drive the muscle 

mechanics in Simulink, which in turn would drive the skeletal model in Visual Nastran 4D.10  

Further, the muscle mechanics are modeled in the “Virtual Muscle” program computationally 

and the existing feedback would  enhance the stability of the model.  The interactions between 

these programs are shown in Figure 6-1. 

In order to generate the muscle block, information of the muscle fiber type and muscle 

morphometry are needed to be properly defined in the “Virtual Muscle” program.  However, not 

all the properties for the muscles used in this musculoskeletal head-neck model are available, due 

to the lack of research in this field.   

The morphologic and functional characteristics of the neck muscles are not well defined 

due to the complicated nature of the human neck musculature.18  Kamibayashi et al.18 created a 

systematic database of morphometric parameters for human neck muscles.  As such, some of the 

data needed to model the neck muscles in the “Virtual Muscle” program, such as PCSA and 

mass of the muscle, can be directly derived from their study.  Alternatively, some muscle 

parameters not directly available in the literature can be calculated using other unknown muscle 

property values and their relationships.  For example, the “Virtual Muscle” program requires that 

the tendon length be input but it is unavailable in the published literatures.  Zajac46 has 

established the relationship between the tendon slack lengths and the length of the tendon at the 

muscle’s optimal force.  This approach offers an alternative way to calculate the tendon length 

by using slack tendon length values provided in literatures.18,40  
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As for the muscle fiber types, the comparison of the vertebral muscle fiber characteristics 

between human and rhesus monkey shows there are considerable similarities between the deep 

muscle samples of these two species.4  This finding indicates that some research on the muscle 

fiber of rhesus monkey may be used to define the human muscles’ properties.  Richmond et al.32 

described the distribution of each fiber type in the rhesus monkey neck muscles in detail.  This 

information could be used to model human neck muscles in “Virtual Muscle” program. 

 

6.2.2 Recommendation for improving the anatomical model 

  

To enhance the development of the joints of the upper cervical spine in this model, the 

C0-C1-C2 complex can be connected by nonlinear viscoelastic ligaments that include an anterior 

membrane, posterior membrane, capsular ligament, alar ligament, transverse ligaments, and the 

nonlinear viscoelastic facet joints.14  The technique used to make the facet joints in the sub-axial 

spine would not work for the C0-C1-C2 complex, since the lower facets of C1 and the upper 

facets of C2 are convex, whereas the facet joints of the sub-axial spine (C2-T1) have flat 

articular surfaces.  This anatomy allows C1 to descend and ascend  relative to C2 during axial 

rotation.5  Bioconvex surfaces that can collide with each other need to be developed to simulate 

this movement.  In addition, some amount of overlap should be allowed for enhancing the model 

accuracy.3   

Muscles were modeled in Visual Nastran 4D with actuator, which functioned as straight-

line components.  In future studies, the muscles should be allowed to follow the curvature of the 

spine.  One approach to do this is to connect multiple actuators together along the curved path.3  

However, this would result in an increase in computational time, different shortening rate, and 
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the need for multiple actuator components per muscle.  Having multiple actuators per muscle 

groups would also not be easy to adapt to the “Virtual Muscle” program.  Further, a more 

sophisticated control strategy is needed to balance all the extra components.  Another approach is 

to choose a commercially-available musculoskeletal  modeling program, such as SIMM.  SIMM 

is a graphics-based software package that enables the users to quickly develop and analyze 

musculoskeletal models.  In SIMM, muscle-tendon actuators can be defined as spheres, 

ellipsoids, and cylinders to wrap over the bones.  However, there are some limitations with 

SIMM.  SIMM does not integrate with Simulink as easily as Visual Nastran 4D.  In order to 

calculate the muscle force in the “Virtual Muscle” program, a second program would be needed 

to allow the “Virtual Muscle” program to interact with SIMM.  The Muscuoskeletal Modeling in 

Simulink (MMS) is a software developed by A.E. Mann Institute for Biomedical Engineering at 

University of South California for building computer models of the musculoskeletal systems in 

Matlab’s Simulink environment.  It may be possible to use this to serve as the bridge between 

SIMM and the “Virtual Muscle” program.  Another limitation with SIMM is that each joint can 

only be modeled with three rotational degrees of freedom; no translation motion is permitted.  

 

6.2.3 Applications of this model 

 

There are many applications for this musculoskeletal head-neck model.  First, it could be 

used as a design tool developing and improving instrumentation.  Second, this model can be used 

to study the effect of surgical techniques on spinal kinematics and kinetics compared to a 

normative group.  Third, it could provide an in vivo simulation environment for the investigation 

of ligamentous, intervertebral disc, or muscular injuries, as the soft tissue injuries are a major 
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reason for the neck injuries.  Last,ly, it could readily support research on each injury caused by 

car collisions (e.g. Whiplash Associated Disorders), which cannot be accomplished in vivo.14,17,39  
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Appendix A Detailed muscle model 
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Longus capitis and colli 

 

                                          (A)                                                                (B) 

      

                                          (C)                                                                (D) 

Figure A-1: Muscle longus capitis and colli. (A) Longus capitis. (B) Longus collis-inferior 
oblique. (C) Longus colli-superior oblique. (D) Longus colli-vertical. 
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Longus colli-vertical 

 

                                          (A)                                                                (B) 

 

(C) 

Figure A-2: Muscle longus colli-vertical. (A) Splenius capitis-medial. (B) Spl enius capitis-
lateral. (C) Splenius cervicis. 
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Semispinalis 

 

                                          (A)                                                                (B) 

 

(C) 

Figure A-3: Muscle semispinalis. (A) Semispinalis capitis-lateral. (B) Semispinalis capitis-
medial. (C) Semispinalis capitis cervicis. 
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Scalenes  

 

                                          (A)                                                                (B) 

 

(C) 

Figure A-4: Muscle scalenes. (A) Scalenes anterior. (B) Scalenes medius. (C) Scalenes 
posterior. 
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Erector spinae  

 

                                          (A)                                                                (B) 

 

(C) 

Figure A-5: Muscle erector spinae. (A) Longissimus capitis. (B) Longissmus cervicis. (C) 
Iliocostalis cervicis. 
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Sternocleidomastoid 

 

                                       (A)                                                                     (B) 

 

(C) 

Figure A-6: Muscle sternocleidomastoid. (A) Sternomastoid. (B) Cleidomastoid. (C) Cleido-
occipital. 
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Levator spinae  

 

Figure A-7: Muscle levator spinae. 

Trapezius 

 

                                          (A)                                                              (B) 

Figure A-8: Muscle trapezius. (A) Clavotrapezius. (B) Acromiotrapezius.  
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Suboccipital  

 

                                           (A)                                                             (B) 

 

                                           (C)                                                             (D) 

Figure A-9: Muscle suboccipital. (A) Rectus capitis posterior major. (B) Rectus capitis 
posterior minor. (C) Obliquus capitis superior. (D) Obliquus capitis inferior. 
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Appendix B Motion segment unit rotations 
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Figure B-1: The rotation versus time curves for each segment level under the “Concentric 
contraction muscles only” mode in axial rotation.  (A) C0-C1. (B) C1-C2. (C) C2-C3. (D) C3-
C4. (E) C4-C5. (F). C5-C6. (G) C6-C7. (H) C7-T1.  
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Figure B-2: The rotation versus time curves for each segment level under the “Elongation 
muscles only” mode in axial rotation.  (A) C0-C1. (B) C1-C2. (C) C2-C3. (D) C3-C4. (E) C4-
C5. (F). C5-C6. (G) C6-C7. (H) C7-T1.  
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Figure B-3: The rotation versus time curves for each segment level under the “All muscles 
only” mode in lateral bending.  (A) C0-C1. (B) C1-C2. (C) C2-C3. (D) C3-C4. (E) C4-C5. (F). 
C5-C6. (G) C6-C7. (H) C7-T1.  
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Figure B-4: The rotation versus time curves for each segment level under the “Concentric 
contraction muscles only” mode in lateral bending.  (A) C0-C1. (B) C1-C2. (C) C2-C3. (D) 
C3-C4. (E) C4-C5. (F). C5-C6. (G) C6-C7. (H) C7-T1.  
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Figure B-5: The rotation versus time curves for each segment level under the “Elongation 
muscles only” mode in lateral bending.  (A) C0-C1. (B) C1-C2. (C) C2-C3. (D) C3-C4. (E) 
C4-C5. (F). C5-C6. (G) C6-C7. (H) C7-T1.  
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Figure B-6: The rotation versus time curves for each segment level under the “All muscles 
only” mode in extension.  (A) C0-C1. (B) C1-C2. (C) C2-C3. (D) C3-C4. (E) C4-C5. (F). C5-
C6. (G) C6-C7. (H) C7-T1.  
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Figure B-7: The rotation versus time curves for each segment level under the “Concentric 
contraction muscles only” mode in extension.  (A) C0-C1. (B) C1-C2. (C) C2-C3. (D) C3-C4. 
(E) C4-C5. (F). C5-C6. (G) C6-C7. (H) C7-T1.  
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Figure B-8: The rotation versus time curves for each segment level under the “Elongation 
muscles only” mode in extension.  (A) C0-C1. (B) C1-C2. (C) C2-C3. (D) C3-C4. (E) C4-C5. 
(F). C5-C6. (G) C6-C7. (H) C7-T1.  
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Figure B-9: The rotation versus time curves for each segment level under the “All muscles 
only” mode in flexion.  (A) C0-C1. (B) C1-C2. (C) C2-C3. (D) C3-C4. (E) C4-C5. (F). C5-C6. 
(G) C6-C7. (H) C7-T1.  
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Figure B-10: The rotation versus time curves for each segment level under the “Concentric 
contraction muscles only” mode in flexion.  (A) C0-C1. (B) C1-C2. (C) C2-C3. (D) C3-C4. (E) 
C4-C5. (F). C5-C6. (G) C6-C7. (H) C7-T1.  

 
 
 



 108

C0-C1

-11

-9

-7

-5

-3

-1

1

0 2 4 6 8 10 12 14 16 18

Time(S)

R
ot

at
io

n(
D

eg
re

e)

Rx
Ry
Rz

C1-C2

-11

-9

-7

-5

-3

-1

1

0 2 4 6 8 10 12 14 16 18

Time(S)

R
ot

at
io

n(
D

eg
re

e)

Rx
Ry
Rz

 
                                                (A)                                               (B) 

C2-C3

-11

-9

-7

-5

-3

-1

1

0 2 4 6 8 10 12 14 16 18
Time(S)

R
ot

at
io

n(
D

eg
re

e)

Rx
Ry
Rz

C3-C4

-11

-9

-7

-5

-3

-1

1

0 2 4 6 8 10 12 14 16 18

Time(S)

R
ot

at
io

n(
D

eg
re

e)

Rx
Ry
Rz

 
                                                (C)                                               (D) 

C4-C5

-11

-9

-7

-5

-3

-1

1

0 2 4 6 8 10 12 14 16 18

Time(S)

R
ot

at
io

n(
D

eg
re

e)

Rx
Ry
Rz

C5-C6

-11

-9

-7

-5

-3

-1

1

0 2 4 6 8 10 12 14 16 18

Time(S)

R
ot

at
io

n(
D

eg
re

e)
Rx
Ry
Rz

 
                                                (E)                                               (F) 

C6-C7

-11

-9

-7

-5

-3

-1

1

0 2 4 6 8 10 12 14 16 18

Time(S)

R
ot

at
io

n(
D

eg
re

e)

Rx
Ry
Rz

C7-T1

-11

-9

-7

-5

-3

-1

1

0 2 4 6 8 10 12 14 16 18
Time(S)

R
ot

at
io

n(
D

eg
re

e)

Rx
Ry
Rz

 
                                                (G)                                               (H) 

 
 

Figure B-11: The rotation versus time curves for each segment level under the “Elongation 
muscles only” mode in extension.  (A) C0-C1. (B) C1-C2. (C) C2-C3. (D) C3-C4. (E) C4-C5. 
(F). C5-C6. (G) C6-C7. (H) C7-T1.  
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