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ABSTRACT 

 

Pediatric adrenocortical cancer is extremely rare and often fatal 

(approximately 0.3-0.4 cases per million worldwide; 50% 5-year survival). The 

incidence of pediatric adrenocortical cancer in southern Brazil is 10-15 times 

higher than the worldwide incidence. Due to the rarity of adrenocortical cancer, 

especially in children, underlying gene dysregulation and mechanisms of 

tumorigenesis of the adrenal gland are very poorly described in the literature. 

However, it is well-known that the tumor suppressor p53, which is mutated in 

over 50% of all human cancers, is commonly mutated in pediatric adrenocortical 

cancer. In addition, evidence strongly suggests that if a child has adrenocortical 

cancer, it indicates a germline p53 mutation exists.  

In order to provide an understanding of the etiology and the biology of this 

disease, blood and tumor samples from 35 pediatric adrenocortical tumor 

patients, including 24 from southern Brazil, were screened for p53 mutations. 

Matched blood and tumor samples were obtained as available. Of the 35 patient 

samples screened, 24 samples were entered into a novel gene expression study 

that exclusively investigated gene dysregulation in pediatric adrenocortical 

cancer; the first study of its kind. Overall findings from this study reveal the 

importance of screening for germline p53 mutations and provide fundamental 

insight into pediatric adrenocortical cancer.  
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CHAPTER 1: INTRODUCTION 

 

1.1 The Discovery of p53 

A tumor suppressor is defined as the wild-type form of a gene that plays a 

crucial regulatory role in cellular growth, proliferation, and differentiation and 

whose loss of function results in oncogenic processes. These processes 

encompass the overall positive regulation of cellular proliferation through several 

factors called proto-oncogenes that include signal transducers, transcription 

factors, and growth factors and their receptors. When proto-oncogenes succumb 

to alterations such as mutation and overexpression, which compromise their 

normal regulatory function on cellular proliferation resulting in dysregulated 

growth and transformation, they are called oncogenes. Tumor suppressors are 

recognized through their negative actions on oncogenic transformations in order 

to maintain normal cellular function and chromosomal stability (1).  

The TP53 gene encodes the tumor suppressor protein p53, discovered in 

1979 by three groups. David Linzer and Arnold Levine demonstrated that a 

54kDa protein co-precipitated with large T antigen in whole cell lysates of simian 

virus 40 (SV40)-infected murine cell lines (2). Around the same time, it was 

shown by David Lane and Lionel Crawford that a 53 kDa protein 

immunoprecipitated with large T antigen in cellular extracts from a murine SV40-

transformed cell line (3). In 1979, DeLeo, et al. coined the term “p53” and 

detected the 53 kDa protein using antisera produced in mice that developed 

sarcomas after chemical induction by the polycyclic hydrocarbon and carcinogen, 
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methylcholanthrene (MethA) (4). The protein p53 was described by all three 

groups as a tumor antigen due to its detection in either chemically or virally-

induced tumors (2-4). Shortly following these murine tumor studies, p53 was 

detected in human tumor cell lines (5).  

Until the early 1990’s, the function of p53 was unknown. Some reports 

implied p53 functioned as a potential oncoprotein because it induced cellular 

transformation. In a study by Eliyahu et al., rat embryonic fibroblasts were 

transiently co-transfected with a plasmid (pMSVp53G) containing a p53 cDNA 

and the human HA-RAS gene in order to examine the oncogenic effects of p53 

on primary cells (6). Indeed, it was shown that p53 and HA-RAS were able to 

promote cellular transformation. The result was similar to studies in which co-

transfection of primary cells with the MYC and HA-RAS oncogenes result in 

cellular transformation (7). However, it was discovered a few years later that the 

p53 cDNA used to construct the pMSVp53G plasmid contained a mutation at 

codon 135 resulting in a valine to alanine amino acid substitution (V135A) (8, 9). 

It was also established that cell lines from fibrosarcomas arising in mice treated 

with MethA had the V135A mutation, which participates with RAS in oncogenic 

transformation (10). Almost a decade following its discovery, these findings led to 

the conclusion that p53 was a tumor suppressor (8, 9, 11, 12).  
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1.2 The Tumor Suppressor p53 

 

1.2.1 The Protein Structure of p53 

The human p53 protein is 393 amino acids long and is divided into five 

functional domains: the transactivation, proline-rich, DNA-binding, 

tetramerization, and basic domains. In addition, there are five structurally 

conserved regions located between the transactivation and DNA-binding 

domains (Fig. 1-1) (13-16). 

The TP53 gene is evolutionarily conserved in rodents, fish, primates, 

vertebrates, and mammals (13). Mutations that arise within the five conserved 

regions of the TP53 gene are representative of high “evolutionary constraint” 

(17). Overall structural functions of the p53 domains include maintaining stability 

 

 

  Basic 
(363-393)

  Tetramerization Acidic 
(1-50)   Proline-rich DNA Binding Domain 

         (326-355)      (62-91) 

 

Figure 1-1. Functional and Structural Domains of the p53 Protein. The p53 
protein contains five functional domains: acidic or transactivation (amino acids 1-
50; shown in orange), proline-rich (amino acids 62-91; shown in blue), DNA-
binding domain (amino acids 98-292; shown in red), tetramerization domain 
(amino acids 326-355; shown in green), and the basic C-terminal domain (amino 
acids 363-393; shown in yellow). The protein is also comprised of five structurally 
conserved domains:  I (amino acids 13-23), II (amino acids 117-142), III (amino 
acids 171-181), IV (amino acids 234-258), and V (amino acids 270-286). 

 

          (98-292) 
I II III IV V

N C
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of the p53 protein and establishing DNA contact of p53 downstream targets in 

response to cellular stress (16) . 

 

1.2.1.1 The Transactivation Domain 

The N-terminal transactivation domain (TAD) is represented by amino acid 

residues 1-42. Only one of the five structurally conserved domains of p53 is 

located in the TAD between amino acid residues 13 and 23. Specific residues in 

the conserved region of the TAD are post-translationally modified for p53 gene 

regulation and include contact sites between residues 18 and 26 for its negative 

regulator, Murine Double Minute-2 (MDM2). In addition, the p53 transactivation 

domain interacts with proteins such as histone acetyl transferases, which foster 

transcriptional activation of p53 [reviewed by (14, 16, 18)].  

 

1.2.1.2 The Proline-Rich Domain 

The proline-rich domain (PRD) lies adjacent to the transactivation domain 

between amino acid residues 62 and 91. It contains five PXXP motifs which 

serve as the consensus sequence for binding Src-homology 3 (SH3) domains. In 

addition, the proline-rich domain contains 15 proline residues. It was 

demonstrated that if PRD amino acid residues 62-91 are deleted, p53 cannot 

efficiently suppress cellular growth via apoptosis (19), even though the protein 

retains the ability to transactivate p53 target genes, including p21WAF1/CIP1, 

MDM2, and BAX (20). A PRD knockout mouse model (p53 ∆P/∆P) was generated 

in order to examine the physiological importance of the proline-rich domain. Both 
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p53 ∆P/∆P and wild-type p53 MEFs that overexpress the E1A oncogene are 

susceptible to apoptosis after ionizing radiation treatment (21, 22). However, p53 

∆P/∆P MEFs were unresponsive to adriamycin-induced cell cycle arrest. This data 

suggests that the PRD may contribute to p53 induction of cell cycle arrest and 

apoptosis under specific conditions. Most importantly, when the p53 ∆P/∆P 

genotype was tested as a suppressor of E1A and Ras-induced tumors, it was 

unable to suppress tumor growth in nude mice; further demonstrating the 

importance of the proline-rich domain on p53 induction of apoptosis versus cell 

cycle arrest during oncogenic stress (22). 

Mdm2+/- mice were crossed with p53 ∆P/∆P mice and then intercrossed to 

yield p53 ∆P/∆P/Mdm2-/-, however, this phenotype was embryonic lethal. In 

contrast, p53 ∆P/∆P rescued MdmX embryonic lethality in MdmX-/-/p53 ∆P/∆P mice, 

suggesting the proline-rich domain modulates MdmX activity on p53, but does 

not modulate the effects of Mdm2 and therefore cannot rescue the embryonic 

lethal Mdm2-/-phenotype (22).  

 

1.2.1.3 The DNA-Binding Domain 

The p53 DNA-binding domain (DBD) is located within amino acids 98-292 

(exons 4-9 of the TP53 gene). The DBD participates in DNA sequence-specific 

binding of p53 transcriptional targets (14, 16). The DBD consists of two 

structures: a β-sandwich scaffold comprised of two anti-parallel β-sheets made 

up of four and five β-strands, and a DNA binding surface. The DNA binding 

surface is comprised of a loop-sheet-helix motif and two loops, L2 and L3, bound 
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by a Zn2+ atom (23, 24). Loss of the Zn2+ atom results in abrogation of DNA 

binding activity but, according to structural studies, the DNA binding domain 

remains folded and stable (24). The general consensus sequence for p53 

transcriptional targets is 5’ PuPuPuC(A/T)(T/A)GPyPyPy-3’ in 2 tandem repeats 

separated by 0-13 nucleotides (23, 25). Currently, there are 1,501 human 

transcripts representing genes that are responsive to human p53, with 361 

containing a  p53 consensus sequence in their regulatory regions (26, 27).  

A p53 mutant lacking the DBD and the TAD is functional in transforming 

cells and forming oligomers with full-length wild-type p53, but is unable to 

transactivate target genes (28). Mice expressing mutant p53 in which exons 2-6 

are deleted develop spontaneous lymphomas around the age of 9 months (29, 

30). In addition, the DBD is one of the most mutated regions of the TP53 gene. 

To date, approximately 80% of human p53 germline mutations occur in the DBD, 

demonstrating the functional importance of this domain (31). 

 

1.2.1.4 The Tetramerization Domain 

The tetramerization domain (a.a. 326-355) is located proximal to the C-

terminus of the p53 protein. Originally, p53 was described as forming a tetramer 

when analyzing the binding site of SV40 on p53 (32, 33).  Shortly thereafter, 

human and murine p53 were reported to form oligomers, including tetramers (34, 

35). In the monomer of p53, the tetramerization domain consists of a β-strand 

(a.a. 326 to 333) linked to an α-helix (a.a. 335-355) by the G334 residue. 

Hydrogen bonding occurs within the hydrophobic core between the β-strand 
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(F328, L330, I332) and the α-helix (F338, F341, and N345). Salt bridge formation 

occurs between the D352 residue of one monomer and the R337 of another 

monomer. p53 dimerization occurs via β-strand interaction that forms an 

antiparallel β-sheet and an eight hydrogen bond backbone, and α-helix 

interaction that places the α-helices antiparallel to one another. Tetramerization 

requires α-helix interaction between two dimers at amino acid residues M340, 

L344, A347, L348, and L350, placing the β-sheets outside of the tetrameric 

structure. Structural data was confirmed by mutating amino acid residues in the 

tetramerization domain, especially those located in the hydrophobic core to 

alanine in order to demonstrate their importance in formation of tetramers. 

Mutated residues included: F328, L330, I332, R337, F338, M340, F341, L344, 

and L348 (36-39). The hydrophobic core of the tetramerization domain, 

especially the G334 residue, is conserved throughout evolution, reiterating the 

importance of these residues for tetramer formation and stabilization (40). In 

addition to tetramer formation, a nuclear export signal lies between amino acid 

residues 340 and 351 (41). p53 tetramerization is required for DNA binding and 

mutations within this region have been found in human cancers (38, 42, 43).  

 

1.2.1.5 The C-Terminal Domain 

The C-terminal negative regulatory domain (CTD) is comprised of basic 

amino acid residues required for the regulation and function of p53 (14). The C-

terminal domain undergoes several post-translational modifications, including 

acetylation and sumoylation in response to cellular stresses, such as DNA 
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damage. K373, 381, and 382 are acetylated by the p300/CBP acetyltransferase 

in response to DNA damage caused by ionizing radiation (44). K382 is also 

acetylated by p300 in response to UV radiation (45). The p53 C-terminal domain 

promotes the reannealing of single strand DNA and RNA and binds to DNA 

containing insertion/deletion mismatches in response to DNA strand breaks (46).  

The negative regulatory region of the p53 C-terminus consists of a DNA-

binding domain (amino acid residues 363-393) that nonspecifically binds DNA, 

contributing to p53 latency (14). There are two models of p53 latency: allosteric 

and competitive binding. The allosteric model proposes that the C-terminal 

domain inhibits the core domain via conformational changes. The competitive 

binding model proposes that when competitor DNA, i.e., long single-stranded 

DNA, nonspecifically binds to the CTD, binding of p53 core domain to its 

consensus sites on target DNA is inhibited.  Post-translational and structural 

modifications to the C-terminus alter protein conformation in order to activate 

p53-mediated transcription (47, 48). Deletion of residues required for non-specific 

DNA binding by the CTD activates p53 sequence-specific binding, allowing p53 

DBD to bind target DNA. Short single strand oligonucleotides also stimulate p53 

binding to consensus sites (49, 50). Phosphorylation of S392 by casein kinase II 

and S378 by protein kinase C activate sequence-specific binding in the core 

domain (51). PAb421, which masks residues 370-378, inhibits CTD nonspecific 

DNA binding (52, 53). This data overall suggests that either inactivation or 

deletion of the C-terminal domain activates the core domain for site-specific DNA 

binding by the p53 protein. The mechanism of p53 latency and C-terminal 
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domain competition with the core domain for DNA binding is still in debate. 

Nuclear magnetic resonance (NMR) spectra and mobility shift assays suggest 

that p53 conformation of wild-type p53 and truncated p53 lacking the C-terminus 

is identical (54). Because of the structural similarities between wild-type p53 and 

p53 lacking the C-terminal domain, it has been suggested that steric hinderance 

by excess large DNA bound to the C-terminus is inhibitory to core domain 

binding of target DNA and may serve as a mechanism for p53 latency (53, 54). 

Indeed, steric hinderance by non-specific DNA binding might serve as the 

mechanism for the C-terminal domain inhibitory effect on the core domain. NMR 

spectra show that K373, 381, and 382, which are acetylated residues, exhibit 

large chemical shifts upon DNA binding, suggesting that these residues possibly 

bind non-specific DNA. It was also suggested that upon acetylation of these 

residues, non-specific DNA binding is inhibited (37). 

 

1.2.2 p53 Translocation 

p53 nucleocytoplasmic translocation is regulated by its association with 

nuclear import and export machinery, post-translational modifications, and its 

negative regulator, MDM2. p53 has three nuclear localization signals (NLS) 

located in the C-terminus of the TP53 gene: Bipartite NLS1 (a.a. 305-322), 

corresponding to the general consensus of a bipartite NLS which consists of two 

basic lysine and arginine clusters separated by 10 to 12 amino acids, NLS2 (a.a. 

369-375) and NLS3 (a.a. 379-384). p53 has two nuclear export signals (NES): 
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NES1 (a.a. 11-27)  in the N-terminal TAD and NES2 (a.a. 340 and 351) in the C-

terminal tetramerization domain (14, 41). 

Under normal conditions, p53 translocation between the nucleus and the 

cytoplasm allows maintainance of chromosomal stability. It was demonstrated in 

normal fibroblasts that p53 is localized in the cytoplasm until the cell enters the 

G1/S transition of the cell cycle, when it is shuttled to the nucleus and is retained 

there until S phase begins. p53 is also translocated to the nucleus during cellular 

stress responses, i.e. following DNA damage (55-57). 

p53 nuclear import is mediated via binding of an NLS receptor complex 

(containing importin-α and –β heterodimers) to p53 NLS sequences in the C-

terminus and is energetically driven by RanGTP. Importin binding is inhibited by 

p53 tetramerization, phosphorylation of C-terminal amino acid residue S315, 

cytoplasmic tether binding, and missense mutations at amino acid residues 

K305, R306, and R283 (55, 56).  

p53 is normally maintained at low basal levels in the cytoplasm via 

ubiquitination and subsequent nuclear export by its negative regulator, MDM2. It 

has been proposed that MDM2 first binds the N-and C-terminal NES of p53, 

targeting it for ubiquitination and subsequent translocation from the nucleus to 

the cytoplasm. Once p53 is ubiquitinated, monomers are shuttled to the 

cytoplasm via CRM-1/exportin-mediated MDM2 translocation. Amino and 

carboxy terminal nuclear export signals are masked via protein alterations, i.e. 

conformational changes and post-translational modifications, in order to retain 

p53 in the nucleus. Specifically, the C-terminal NES is partially masked by 
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tetramer formation and during the DNA damage response p53 is phosphorylated 

on serines 15 and 20, masking the N-terminal NES, thereby preventing MDM2 

binding on amino acid residues 22 and 23. However, ubiquitination of p53 lysine 

residues in the N- and C-termini unmasks the nuclear export signals, allowing 

nucleocytoplasmic shuttling of p53 (55, 58).  

 

1.2.3 Regulation and Activation of p53 

 

1.2.3.1 p53 Activation via Post-Translational Modifications 

Because p53 plays a pivotal role in maintaining genomic stability, it is a 

highly regulated tumor suppressor. Stress signals are transmitted to p53 via post-

translational modifications, such as phosphorylation, acetylation, and 

sumoylation, all leading to p53 activation. In addition, it is negatively regulated in 

an autofeedback loop by MDM2.  

 

1.2.3.1.1 p53 Activation via PIKK Phosphorylation    DNA damage is one of 

the genotoxic stresses a cell can encounter to cause chromosomal instability. 

Once DNA damage lesions are made, cellular mechanisms are in place to either 

repair the DNA or destroy the cell. Three of the most studied DNA damage 

sensors are the phosphoinositide-3-like kinase family members (PIKKs): DNA-

activated protein kinase (DNA-PK), Ataxia-Telangectasia Mutated-1 (ATM) 

kinase, and ATM-Rad3-Related (ATR) kinase, all of which phosphorylate p53 

(59). 
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ATM kinase recognizes serine and threonine residues that are followed by 

a glutamine residue. Ionizing radiation, which causes DNA double strand breaks 

(DSBs), signals the ATM response. ATM is then activated via 

autophosphorylation. Following its autophosphorylation, ATM activates several 

downstream effector genes which respond to DNA DSBs. Specifically, ATM 

either directly phosphorylates p53 on S15 or phosphorylates an effector kinase, 

checkpoint kinase 2 (CHK2), on T68. CHK2 phosphorylation leads to either 

phosphorylation of the phosphatase CDC25A on S123 or phosphorylation of p53 

on S20. CDC25A dephosphorylates cyclin dependent kinase 1 (CDK1) and cyclin 

dependent kinase 2 (CDK2), allowing the cell to progress from G1 to S phase of 

the cell cycle. However, CHK2 phosphorylation of CDC25A leads to its 

proteasomal degradation whereas CHK2 phosphorylation of p53 on S20 blocks 

the MDM2-p53 interaction, resulting in p53 stabilization and nuclear 

accumulation. ATM phosphorylates MDM2, additionally preventing its interaction 

with p53, assuring p53 stabilization. Once p53 is stabilized, it is able to activate 

downstream targets including p21 WAF1/CIP1, preventing G1 to S-phase 

progression (Fig. 1-2) (60).  

ATM also phosphorylates checkpoint kinase 1 (CHK1) on S345, blocking 

G2 to M-phase progression. CHK1 phosphorylates CDC25C, a phosphatase that 

dephosphorylates CDK1, allowing the cell to enter M-phase. However, unlike 

CHK2, CHK1 does not phosphorylate p53 (60).  
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Figure 1-2. ATM Activation of p53-Induced Cell Cycle Arrest. Following DNA 
damage by ionizing radiation, ATM either directly phosphorylates p53 on S15 or 
will phosphorylate CHK2 which phosphorylates p53 on S20 to induce G1/S 
arrest.      
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Patients with ataxia-telangectasia (A-T) are wild-type for p53, but have 

ATM mutations and are hypersensitive to ionizing radiation, resulting in a 

predisposition to cancer (61). p53 stabilization in Atm-/- fibroblasts and 

lymphoblasts is delayed because Atm provides a more rapid response to DNA 

damage than other related protein kinases. Atm-/- mice are sensitive to ionizing 

radiation and die of T-cell lymphoma. By contrast, Atm-/- mice do not exhibit the 

human A-T phenotype (45, 60, 62, 63). Elevated levels of p53 and downstream 

targets, p21 and Bax, in the testes of Atm-null male mice during meiosis were 

suggested to contribute to the mouse pleiotropic phenotype (64). 

Similarly, ATR is a serine/threonine kinase that plays a more long-term 

role in DNA damage than its related kinase, ATM. ATR maintains the 

phosphorylated state of its targets, including p53, whereas ATM is responsible 

for the rapid response to DNA damage leading to immediate substrate 

phosphorylation. ATR phosphorylates p53 on S15 and S37 (45, 60). However, 

this modification occurs following UV-induced DNA damage (65). ATR 

phosphorylates CHK1 on S345 and CDC25C on S317, preventing progression of 

the cell through G2. In contrast to ATM, ATR does not activate CHK2 (60). In 

addition, ATR does not have a significant effect on p53 stabilization after DNA 

damage. But this does not negate its role as a cell cycle checkpoint. ATR-/- mice 

are embryonic lethal, demonstrating its importance in embryogenesis (66). ATR 

also phosphorylates transducer proteins such as BLM, mutations of which result 

in chromosomal instability and ultimately a strong cancer predisposition called 

Bloom Syndrome (59, 60).  
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DNA-PK is a serine/threonine kinase that responds to double-strand DNA 

breaks caused by ionizing radiation. It also repairs DNA double strand 

breaks in the V (D)J recombination process. It consists of a catalytic subunit and 

two Ku subunits, 70 and 86. Ku70 and Ku86 bind broken DNA ends together 

followed by activation of the catalytic subunit as a kinase. The catalytic subunit of 

DNA-PK phosphorylates p53 on S15 and S37 in response to DNA damage 

caused by ionizing radiation in vitro (67, 68). However, when slip mice, which are 

deficient for DNA-PK (DNA-PK -/-), are exposed to ionizing radiation, the p53-

mediated response to DNA damage is not compromised. Instead, p53 

accumulates in the nucleus and is able to transcriptionally activate the pro-

apoptotic gene, Bax, and p21 WAF1/CIP1, which mediates G1/S cell cycle arrest. 

This data suggests that the function of p53 to prevent chromosomal instability is 

uncompromised in the absence of DNA-PK and that the function of DNA-PK in 

response to ionizing radiation is redundant, possibly with some other kinase 

which phosphorylates p53, such as ATM (69).  

 

1.2.3.1.2 p53 Phosphorylation by Non-PIKK Family Members    p53 is also 

phosphorylated by kinases that are not in the PIKK family, including CK1, CK2, 

MAPK, and JNK, in response to UV and ionizing radiation-induced DNA damage. 

T18 of p53 is phosphorylated in vivo by casein kinase 1 (CK1) following S15 

phosphorylation in response to ionizing radiation (70). S33 and S46 are 

phosphorylated by p38 mitogen-activated protein kinase (MAPK) following UV 

irradiation. Mutation of these residues may inhibit p53-dependent apoptosis, 
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mediated by p53 apoptosis-inducing gene (p53AIP) (71). S392 is phosphorylated 

by casein kinase 2 (CK2) in response to UV irradiation along with the 

transcription elongation factor, FACT, enhancing the activity of p53 (72). TAF-1 

(TATA box-binding protein-associated factor -1) a subunit of TFIID required for 

transcription initiation, phosphorylates T55 of p53, inhibiting p53-induced G1 

arrest (45). T81 of the p53 protein is phosphorylated by Jun N-terminal kinase 

(JNK) in response to DNA damage and stress-inducing agents (73). In response 

to UV irradiation, CDK2 phosphorylates S315 of the p53 protein in vivo and in 

vitro, causing an increase in p53 transcriptional activity (45). This data supports 

that phosphorylation is a mode of regulation by various upstream signals of p53 

and regulates p53 activity in response to different cellular stresses. 

 

1.2.3.1.3 p53 Activation via Acetylation    Acetylation of p53 regulates its 

sequence-specific DNA binding capability and maintains protein stability. PCAF 

(p300-CBP-associated factor) acetylates p53 at K320. CREB binding protein 

(CBP) and p300 acetylate p53 at K373 and K382. PCAF, CBP, and p300 are 

histone acetyltransferases (HATs) which bind to the N-terminus of p53 and 

acetylate C-terminal lysine residues, enhancing p53 sequence-specific DNA 

binding and p53-mediated transcription, especially following DNA damage (74).  

Acetylation of C-terminal residues also prevent MDM2 binding (75). In addition, 

TIP60 and hMOF, members of the MYST family of acetyltransferases, acetylate 

p53 on K120, promoting p53 activation of pro-apoptotic genes such as PUMA 

and BAX. Acetylation of K120 by MYST acetyltransferases currently serves as a 
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model for p53 selectivity of genes that induce apoptosis over those that trigger 

cell cycle arrest (76). 

 

1.2.3.1.4 p53 Activation via Sumoylation    Sumoylation is a post-translational 

modification similar to ubiquitination and regulates many biological processes 

including gene expression, transcriptional activation, nucleo-cytoplasmic 

shuttling, protein stability, the cell cycle, and apoptosis. Instead of targeting a 

protein for degradation, like ubiquitination, sumoylation enhances protein half-life. 

Ubiquitination requires an E1 activating enzyme, which hydrolyzes ATP and 

forms a complex with ubiquitin adenylate. Ubiquitin is then transferred to the 

active site of the E1 enzyme followed by adenylation of an additional ubiquitin. 

Ubiquitin is then transferred to an E2 conjugating enzyme, which allows multi-

ubiquitin chain formation via peptide bond formation between the carboxy 

terminus of one ubiquitin with the amino terminus of the next ubiquitin. The 

ubiquitin chain can then be transferred from the E2 ligase to an acceptor lysine 

on the target protein. An E3 ligase can also be used to recognize the acceptor 

protein and transfers the ubiquitin chain. Once the ubiquitin chain is transferred 

to the target protein, the protein can be directed to the 26S proteasome. 

Sumoylation only uses an E1 and E2 ubiquitin ligase. SUMO-1 (small ubiquitin-

related modifier-1), which is approximately 18% identical to ubiquitin, is an E1 

activating enzyme. It is linked to UBC-9, which is an E2 conjugating enzyme. 

SUMO-1 has been reported to sumoylate p53 on K386, enhancing p53 

sequestration in the nucleolus by Mdm2 and the ARF tumor suppressor (77, 78). 
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1.2.3.1.5 Oncogenic Activation of p53    One of the most understood 

oncogenic signaling pathways to p53 is mediated by the ARF tumor suppressor, 

which interacts with MDM2 and p53 to abolish aberrant oncogenic signaling by 

promoting cell cycle arrest. ARF (p14ARF-human) is encoded on the INK4A-ARF 

locus of human chromosome 9. ARF (Alternative Reading Frame) is the product 

of an alternatively spliced mRNA that includes sequences from exons 2 and 3 of 

the INK4A gene. ARF inhibits the E2F-DP1 interaction by binding to either E2F or 

DP1 prior to E2F-DP1 complex formation, interfering with cell cycle progression 

(79).  

Abnormal oncogenic activity by transcription factors that participate in 

mitogenic signaling, such as E2F, induces ARF expression. ARF binds to MDM2 

and sequesters it in the nucleolus, interfering with the MDM2-p53 interaction and 

increasing p53 protein levels to induce either cell cycle arrest or apoptosis (Fig. 

1-3). This model of ARF interaction with MDM2 and p53 is supported by 

generated mouse models demonstrating roles of ARF and p53 in tumor 

suppression. Arf- and p53-null mice are both tumor prone. p53-/- mice are most 

susceptible to T-cell lymphomas. Arf-/- mice develop various tumor types, 

including sarcomas and T-cell lymphomas (79). Arf/p53 double knockout mice 

are prone to lymphoma and sarcoma development, in addition to a multiple tumor 

phenotype. Arf-Mdm2-p53 triple knockout mice are even more susceptible to a 

multiple tumor phenotype. Studies using these triple knockout mice suggested  
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Figure 1-3. Rb-E2F-ARF and ARF-MDM-2-p53 Pathways. Cyclins/CDKs 
hyperphosphorylate Rb, releasing the E2F transcription factor to drive S-phase 
entry. E2F aberrant expression activates the ARF tumor suppressor which blocks 
the MDM2-p53 interaction, increasing p53 protein levels and subsequently 
inducing either cell cycle arrest or apoptosis via transactivation of p53 target 
genes. 
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that ARF can act independently of p53 in the induction of cell cycle arrest when 

MDM2 is inactivated (80). 

 

1.2.3.2 Negative Regulation of p53  

p53 negative regulation occurs via ubiquitination and proteosomal 

degradation. E6AP (E6-associated cellular protein), an E3 ubiquitin ligase, was 

shown to target p53 for ubiquitination and degradation. This mode of p53 

inactivation is used in HPV E6-associated cervical cancers and was the first 

demonstrated mechanism of p53 ubiquitination and degradation (75). However, 

in a normal cell, p53 requires the proto-oncogene and E3 ubiquitin ligase, MDM2 

(Murine Double Minute 2) (81-83). MDM2 associates with p53 in a negative 

autoregulatory feedback loop, resulting in low basal levels of p53 in a normal cell 

(84). Specifically, MDM2 binds the p53 transactivation domain in the N-terminus, 

inhibiting p53 transcriptional activation via its association with TATA-binding 

protein associated factors TAFII31 and TAFII70 (85-88).  

MDM2 (HDM2 in humans) contains a C-terminal RING-finger domain 

required for ubiquitination of p53 (81, 89, 90). The last thirty C-terminal residues 

of p53 are required for MDM2-mediated ubiquitination and degradation based on 

site-directed mutagenesis studies (91). MDM2 constitutively undergoes 

nucleocytoplasmic shuttling, and was primarily thought to be required for the 

nuclear export of p53 (83, 92-94). p53 mutants that localized to the nucleus and 

the cytoplasm were both ubiquitinated and degraded by MDM2, suggesting that 
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nuclear export is not required for MDM2-targeted ubiquitination and degradation 

of p53 (95).  

Furthermore, MDM2 fosters p53 ubiquitination in a dose-dependent 

manner. Low levels of MDM2 promote p53 monoubiquitination and nuclear 

export while high levels of MDM2 promote p53 polyubiquitination and nuclear 

degradation. Monoubiquitination may serve as a means of maintaining low levels 

of p53 in normal, unstressed cells while polyubiquitination may serve as a 

mechanism to destroy p53 in the latter stages of a cellular stress response (75, 

96). 

Mdm2 knockout mice are embryonic lethal, indicating that the loss of 

Mdm2 results in p53-mediated cell cycle arrest and apoptosis during 

embryogenesis. In addition, mice that lack both Mdm2 and p53 are viable but 

tumor-prone, demonstrating that the absence of p53 rescues the Mdm2-/- 

phenotype (97).  

 

1.2.4 p53 Responses to Cellular Stress 

In order for a cell to maintain genomic integrity, mechanisms must be in 

place to counteract genotoxic stress. As discussed in Section 1.1, tumor 

suppressors contribute to the maintenance of chromosomal stability. The p53 

tumor suppressor responds to a number of stress signals including DNA damage 

and oncogene activation by inducing cell cycle arrest and apoptotic programs 

(98). Specifically, cellular stress signals transduced to p53 via post-translational 

modifications and inhibition of the MDM2-p53 interaction (discussed in Section 
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1.2.3) activate and stabilize p53, increasing its half-life (from approximately 30 

minutes to 2 hours) and protein levels, resulting in sequence-specific 

transactivation of its downstream target genes (14). Most importantly, loss of p53 

function either through inactivation of p53 and/or any other component of the p53 

pathways leading to cell cycle arrest and apoptosis, ultimately results in tumor 

formation (74). 

 

1.2.4.1 p53-Mediated Cell Cycle Arrest 

The cell cycle is a highly regulated process by which cellular growth and 

proliferation are controlled. The cell cycle contains four stages: gap 1 (G1), DNA 

synthesis (S phase), gap 2 (G2), and mitosis (M). A fifth stage of the cell cycle 

termed G0, represents the phase during which cells are either quiescent or not 

actively replicating. Cells that are quiescent, such as nerve cells, can be 

described as those that are terminally differentiated and can no longer replicate. 

Those cells that are not terminally differentiated can re-enter the cell cycle (77). 

 The cell cycle is catalyzed by cyclins and cyclin-dependent kinases 

(CDKs). Cyclin-CDK complexes phosphorylate serine or threonine residues on 

several target transcription factors required to activate downstream targets 

necessary for cellular growth and proliferation. Cell-cycle checkpoints, like p53, 

negatively regulate the cell cycle at both the G1/S and G2/M phases in response 

to DNA damage recognized by ATM and ATR and to oncogenic stress signaled 

by the ARF tumor suppressor (77, 98).  
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Progression from G1 to S-phase is specifically inhibited by the p53 

downstream target, p21WAF1/CIP1 (99). p21 is a “universal” cyclin dependent kinase 

inhibitor (CKI), which binds to CDK-cyclin complexes and prevents the cell from 

entering S-phase (98, 100). p21-null mice are viable and embryonic fibroblasts 

from these mice show partial cell cycle arrest when they are subjected to DNA 

damage (101), suggesting that there are alternate downstream targets activated 

in response to p53. 

The cyclin B and CDK2 complex promote cellular progression from G2 to 

M phase. They are in an inactive complex via phosphorylation by the CKIs, 

WEE1 and MYT1. However, the CDC25 phosphatase dephosphorylates and 

activates the CDK2/Cyclin B complex. p53 inhibits this complex by inducing 

downstream targets GADD-45 and 14-3-3σ, in response to DNA damage. 

GADD-45 promotes dissociation of Cyclin B and CDK2 and 14-3-3σ prevents 

nuclear import of the CDK2/Cyclin B complex, blocking entry into mitosis (102).  

 

1.2.4.2 p53-Mediated Apoptosis 

Apoptosis, or programmed cell death, is characterized by morphological 

changes including membrane blebbing, DNA fragmentation, cell shrinkage, 

chromatin condensation, and cytoplasmic disorganization resulting from loss of 

organelle compartmentalization. Programmed cell death is also defined by 

signaling pathways leading to its characteristic morphological changes (77, 103).  

Apoptosis requires activation of either the extrinsic or intrinsic pathways. 

The extrinsic pathway requires activation of death receptors such as tumor 
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necrosis factor receptor-1 (TNFR-1), which binds to its ligand, tumor necrosis 

factor (TNF). This interaction promotes recruitment of TNFR-1 associated death 

domain (TRADD) and FAS-associated death domain (FADD). TRADD and FADD 

recruit and activate the initiator caspase, procaspase-8, which is cleaved to form 

active caspase-8. “Executioner” caspases, procaspases-3, -6 and -7, are 

activated by caspase-8 cleavage. Cleavage and subsequent activation of these 

“executioner” caspases promote the downstream morphological changes 

associated with apoptosis (104, 105).  

p53 promotes the intrinsic pathway by transactivation of BCL-2 family pro-

apoptotic genes, BAX and BAK. BCL-2 antagonist/killer (BAK) and BCL-2-

associated X protein (BAX) contain the BCL-2 homology domain-3 (BH3 

domain). The BH3 domain consists of 9-16 amino acids and an amphipathic 

alpha helix. The hydrophobic side of the alpha helix makes contact with the 

hydrophobic groove of BH1, BH2, and BH3 domains of pro-survival members of 

the BCL-2 family of proteins, e.g. BCL-2, BCL-XL, MCL-1, to block anti-apoptotic 

signals. Mutations in the BH3 domain result in loss of binding and pro-apoptotic 

activity. These proteins regulate mitochondrial outer membrane permeability 

(MOMP) leading to the release of cytochrome c from the mitochondria into the 

cytosol. APAF-1, cytochrome c, and caspase-9 form the apoptosome within the 

cytosol. Once procaspase-9 is cleaved, active caspase-9 activates effector 

caspases, leading to the morphological changes that occur during apoptosis 

(103, 105, 106).  
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 Both BAX and BAK mediate the intrinsic apoptotic response (19, 105). In 

response to ionizing radiation, Bax -/- murine thymocytes are susceptible to 

apoptosis due to functional redundancy with Bak. Ionizing radiation also kills  

Bak-/- thymocytes. Therefore, as expected, Bax /Bak double knockout murine 

thymocytes do not respond to DNA damage by ionizing radiation (62).  p53 also 

directly transactivates other pro-apoptotic factors, BH3-only proteins such as 

Puma and Noxa (107, 108). Both proteins translocate to the mitochondria to 

induce apoptosis (103, 108, 109). In response to DNA damage, Puma and Noxa 

are both activated to block pro-survival signals from the anti-apoptotic Bcl-2 

protein family members, Bcl-2 and Bcl-XL (105).  

Another model of p53-induced apoptosis suggests that p53 binds anti-

apoptotic factors such as Bcl-2 and Bcl-XL in the cytoplasm at the mitochondria. 

In response to DNA damage, p53 protein binds the Bcl-2 negative regulatory 

domain. When this region is deleted, p53 binding is abrogated, enhancing Bcl-2 

activity. Bcl-2 phosphorylation in this region also reduces p53 binding and 

increases Bcl-2 activity (110).  Under cellular stress, p53 cytoplasmic 

sequestration by Bcl-2 and Bcl-XL is relieved by nuclear p53 transactivation of 

BH3 domain, pro-apoptotic proteins such as Puma. It has been demonstrated 

that Puma will compete with p53 for binding of Bcl-XL in the cytoplasm. This 

releases p53 to possibly promote oligomerization of pro-apoptotic genes such as 

BAX and BAK (105) (Fig. 1-4).  
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Figure 1-4. p53-Mediated Apoptosis. p53 directly transactivates pro-apoptotic 
proteins with a BH3-domain including Bax, Bak, Puma, and Noxa. p53 binds Bcl-
2/Bcl-XL in the cytoplasm. Under cellular stress, p53 competes with pro-apoptotic 
proteins such as Puma for binding of anti-apoptotic proteins such as Bcl-XL. 
Once p53 is released from Bcl-2/Bcl-XL, it is free to possibly promote 
oligomerization of pro-apoptotic genes including Bax and Bak, which induce 
apoptosis.  
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1.3 Li-Fraumeni Syndrome 

 

1.3.1 Clinical Characteristics of LFS and LFLS 

In 1969, Frederick Li and Joseph Fraumeni initially identified five families 

with pediatric rhabdomyosarcoma probands having members with sarcomas, 

breast cancer, and other neoplasms (111). A retrospective study uncovered four 

of the five families who were extremely tumor-prone (112). 

Li-Fraumeni Syndrome (LFS) was clinically defined in 1988 as a rare 

disease with strict diagnostic criteria (112). After investigating 151 cancer 

patients from 24 families, it was discovered that 79% (119 of 151 patients) were  

younger than 45 years of age. Specifically, 51 of 55 patients diagnosed with 

sarcomas acquired mostly soft tissue sarcomas before the age of 45. 

Osteosarcomas mostly occurred in children and young adults (19 of 23 patients). 

The number of breast carcinoma cases was also increased (36 patients of 151) 

and all patients were female. Approximately 78% of breast cancer patients were 

younger than 45. Other neoplasms that occurred in these patients were 

leukemia, lymphomas, brain tumors, adrenocortical carcinoma, and cancers of 

the lung, pancreas, colon, prostate, and stomach. Leukemia, brain cancer, and 

adrenocortical carcinomas were found more often in patients from ages 0-29. 

These findings later defined LFS criteria as follows: A proband must be 

diagnosed with a sarcoma under the age of 45; there must be a first-degree 

relative diagnosed with any cancer under the age of 45 and a first- or second-

degree relative diagnosed with either any cancer or sarcoma at any age.  
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 In 1994, Li-Fraumeni-like Syndrome (LFLS) was defined based on a study 

of 21 families, all of which had an increased incidence of cancer. Of these 

families, 12 of them could be classified under LFS. Nine families did not adhere 

to the LFS criteria but were also increasingly tumor-prone. These 9 families were 

referred to as “Li-Fraumeni-like” based on the following criteria: A proband must 

be diagnosed with any childhood cancer or sarcoma, brain tumor, or 

adrenocortical carcinoma under the age of 45; One first- or second-degree 

relative must be diagnosed with any cancer defined in typical LFS (brain tumor, 

adrenocortical carcinoma, leukemia, breast cancer, or sarcoma); A first- or 

second-degree relative must be diagnosed with any cancer under age 60 (113).   

 Originally, it was suggested that LFS was an autosomal dominant disease 

(111). Data from families of 159 childhood soft tissue sarcoma patients was used 

for segregation analysis to determine an etiologic model, i.e. recessive or 

dominant, for LFS.  Thorough computational analyses showed the data strongly 

favored an autosomal dominant gene predisposed family members to cancer 

(114).  

 

1.3.2 Germline p53 Mutations in LFS and LFLS 

 Immediately after LFS was defined, it was suspected that this familial 

cancer syndrome was inherited due to its rarity and increased age-specific 

mortality. It was known that mutations in tumor suppressors were associated with 

cancer (1), i.e, the Retinoblastoma (Rb) gene and its connection to 

retinoblastoma (115). However, retinoblastomas were not associated with LFS. 
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The next tumor suppressor candidate considered was p53 (116). More 

importantly, p53 mutations were characterized in sporadic sarcomas, leukemia, 

and breast, brain, colon, and lung cancers, all of which are defined in LFS (117-

123). The first mutations reported in the germline of LFS patients were missense 

mutants located in the four conserved regions of the p53 gene: a.a. 117-142 (I), 

171-181 (II), 234-258 (III), and 270-286 (IV), spanning exons 5-8 (116-118). 

Specifically, a.a. 245, 248, 252, and 258, all in exon 7 of the TP53 gene, 

contained missense mutants (117, 118). After the discovery that germline p53 

mutations were strongly linked to LFS, many cancer types were analyzed for 

these mutants, specifically, within the conserved regions of exons 5-8, restricting 

the search for mutations in other regions of the gene. Mutations in these 

conserved regions of the DNA binding domain can lead to structural alterations of 

the protein resulting in partial or complete loss of tumor suppressor function (18). 

 The DNA binding domain contains the most commonly mutated residues, 

i.e. R175, R248, R273, R249, and G245.  Initially, p53 germline status of LFS 

and LFLS families was determined by analyzing exons 5-8. However, as other 

mutations outside of this region were discovered in LFS and LFLS families, 

analysis of p53 germline status included the entire TP53 coding region, exons 2-

11 (124, 125). For example, L344P and R337C mutants, located in the p53 

tetramerization domain, have been described (126, 127). Additionally, splice site 

mutations in introns 1 and 9 are associated with Li-Fraumeni Syndrome (128).  

 Loss of heterozygosity (LOH), represents loss of the wild type allele and 

retention of the mutant allele. LOH is based upon Knudson’s Hypothesis, 
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adapted by Ponder et al. (129) which states “one defective allele must be 

inherited and the second must be inactivated by loss of either part or all of the 

wild-type chromosome”. The mechanisms which can cause LOH in a tumor cell 

are: gene conversion or mitotic recombination leading to a partial exchange 

between homologous chromosomes during mitosis, complete deletion of the 

wild-type chromosome, and deletion and duplication of the mutant chromosome 

(130). p53 LOH occurs in approximately 44% of all tumors associated with LFS 

(131). It is not well understood why the rate of LOH in tumors expressing mutant 

p53 is lower than in tumors expressing other mutant tumor suppressors (~80%), 

i.e. Rb in retinoblastoma. It has been predicted that these mutants are dominant-

negative (116).  

 

1.4 Pediatric Adrenocortical Cancer 

 

1.4.1 Clinical Characteristics of Pediatric Adrenocortical Cancer 

 The adrenal cortex is a highly specialized sub-organ responsible for the 

production of steroid hormones. During development, the adrenal cortex is 

divided into two zones: the definitive zone and the fetal zone, which ultimately 

separates into three zones, once the cortex has matured: zona glomerulosa, 

zona fasciculata, and zona reticularis, each zone specifically producing 

mineralocorticoids (aldosterone), glucocorticoids (cortisol), androgens and 

DHEA-S (Dihydroepiandrosterone sulfate), respectively (132).  
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 Pediatric adrenocortical cancer (ACT) is a rare and fatal disease with a 

worldwide incidence of 0.2-0.3 cases per million worldwide and 1 case per million 

in the United States. In addition, the incidence of pediatric ACT in southern Brazil 

is 10-15 times the worldwide incidence. The median age of pediatric 

adrenocortical tumor patients is approximately 3-4 years of age (133, 134).  

 In addition to Li-Fraumeni Syndrome, other diseases can predispose a 

patient to adrenocortical neoplasms including Beckwith-Wiedemann Syndrome 

(BWS), Carney’s Complex, congenital adrenal hyperplasia, multiple endocrine 

neoplasia, and hemihyperplasia (135). Patients with multiple endocrine neoplasia 

type 1 mainly have adrenocortical carcinoma due to mutations in the MEN1 

gene; however reports of ACC in BWS, hemihyperplasia, and congenital adrenal 

hyperplasia are rare. Patients present primarily with virilization, with or without 

Cushing’s syndrome, indicating that this tumor is functional or producing 

hormones. Cushing’s syndrome is characterized by excess production of 

glucocorticoids (cortisol) (135). 

 The only effective treatment of pediatric adrenocortical tumors is surgical 

resection of the tumor. Chemotherapeutic treatment is used, primarily mitotane, 

etoposide, and cisplatin. Mitotane (1, 1-dichloro-2-(o-chlorophenyl)-2-(p-

chlorophenyl)ethane; o,p’-DDD) causes necrosis of the adrenal cortex and is 

commonly used as an adjuvant chemotherapeutic agent in metastatic ACT cases 

with a 15-60% response rate. Etoposide and cisplatin can be used in 

combination with doxorubicin and low doses of mitotane, resulting in “variable 

efficacy among patients” (135).  
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 There are two histological subtypes of adrenocortical tumors: adenoma 

and carcinoma. Adrenocortical tumors can be histologically classfied but are not 

clinically useful in predicting prognosis. Therefore, using tumor size has become 

acceptable in predicting prognosis because tumors can exceed 200g in weight. 

Tumors that are less than 200g in weight predict a greater tumor-free survival 

than tumors that exceed 200g (133, 135). 

 

1.4.2 Biology of Pediatric Adrenocortical Cancer 

 The biology of pediatric adrenocortical cancer is not well understood. 

Insulin-like Growth Factor-II (IGF-II) is overexpressed in both adult and pediatric 

adrenocortical carcinoma (ACC) (136-139). IGF-II is mapped to the chromosomal 

region of 11p15.5 with a number of imprinted genes including KCNQ1, CDKN1C 

(p57KIP2), and H19. IGF-II has affinity for two receptors: IGF1R and IGF2R. 

Specifically, IGF-II binds with higher affinity to the IGF2R receptor, and becomes 

internalized in the pre-lysosomal compartment for degradation. However, IGF-II 

binds the IGF1R to promote cellular growth, especially during fetal development 

and adrenal maturation during gestation (140).  

 Genes at the IGF-II locus are regulated via genomic imprinting. Genomic 

imprinting is an epigenetic mechanism which uses DNA methylation in order to 

silence either a maternal or paternal allele. Genes that are imprinted are, 

therefore, expressed from either allele (141). However, when imprinting has 

failed, both alleles are expressed, leading to overexpression of a gene, in this 

case, IGF-II. Overexpression of IGF-II and other genes at the IGF-II locus on 
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chromosome 11p15.5 (e.g. KCNQ1, CDKN1C) have been linked to BWS and 

ACC.  Mice that overexpress the IGF-II gene acquire either a BWS phenotype or 

develop adrenal hyperplasia (142, 143). However, the mechanism affected by 

IGF-II overexpression is not understood. The aberrant expression of other genes 

at this locus has not been fully elucidated.  

 Other genetic alterations in pediatric ACC include amplification of 

chromosome 9q34 (144). Overexpression of several genes on and in proximity to 

chromosome 9q34 could serve as an additional alteration and possibly contribute 

to the onset of ACC, including steroidogenic factor-1 (SF-1). SF-1 is located on 

chromosome 9q33.3 and is involved in steroidogenesis. Specifically, SF-1 

(NR5A1) is a member of the nuclear orphan receptor family and is present during 

adrenogenesis. It is responsible for the transcription of genes involved in 

hormone production. In male development, SF-1 helps to regulate 

steroidogenesis, especially testosterone production and Mullerian duct 

regression during gonadogenesis. In female gonadogenesis, SF-1 is not present 

(145). Sf-1 knockout mice lack both adrenal glands and gonads and die from 

adrenal insufficiency (146). More importantly, it is overexpressed in pediatric 

adrenocortical tumors (147). 

 Germline p53 mutations have been comprehensively reported in pediatric 

adrenocortical tumors. p53 mutations are associated with approximately 70% 

sporadic adult ACC cases. Specifically, p53 mutations are associated with 86% 

of adult functional tumors and 33% of non-functional tumors (148). However, 

approximately 80% of pediatric ACC cases reported in LFS are associated with 
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germline p53 mutations (134). Specifically, pediatric ACC patients either with or 

without family history have germline p53 mutations (134, 149). Therefore, it is 

apparent that ACC is highly associated with p53 germline mutations. 

 p53 germline mutations that are associated with pediatric ACC cases lie 

within the conserved regions of the DNA binding domain and are often at “hot 

spot” amino acids. However, there are a number of germline p53 mutations that 

lie within these regions that cannot be categorized as “hot spots”. In 1999, Varley 

et al. conducted a study of 14 pediatric ACC patients that had either no family 

history or did not comply with LFS or LFLS criteria (134). Of 11 pediatric ACC 

cases, 9 had germline p53 mutations. In addition, they also observed loss of 

heterozygosity in only 50% of ACC tumors. Of the germline mutations found in 

this subset of patients, R158H and P152L were the most common. Carriers 

either presented with cancer or were unaffected. Some carriers developed LFS-

like cancers, i.e. ACC, but other members of the same family were unaffected. In 

addition, some carriers affected by cancer did not have tumors characteristic of 

LFS or LFLS, including uterine and cervical cancers. Considering that the 

penetrance for germline p53 mutation carriers in LFS families is 73% for males 

and 100% for females (150), data presented by Varley et al. (134) suggests that 

not only are some p53 mutations low-penetrance but they are found in pediatric 

ACC probands.  

 In the above study, a somatic mutation found in the tumor DNA of an ACC 

proband was located at codon 337, resulting in an arginine to histidine 

substitution [R337H; (134)]. However, the R337H mutation was not germline. 
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R337 is located in the α-helix of the p53 tetramerization domain and, as 

mentioned in Section 1.2.1, forms a salt-bridge with D352 (39). In a group of 36 

pediatric ACC probands from southern Brazil, this mutation was found in the 

germline of 35 patients (43). There was loss of heterozygosity in 100% of the 

patient tumors. Cancer histories from 25 of 36 patient families were obtained. 

Twenty-four were not tumor prone. The remaining family had a cancer history 

meeting the LFLS criteria. Functional studies showed that this mutation retained 

wild-type function. However, structural observation showed that R337H is 

unstable at 37ºC, pH 8. Specifically, approximately 70% of R337H molecules are 

unstable under these conditions (151).  The penetrance of the R337H mutation is 

low (9.9%), compared to the lifetime penetrance 73% for males and 100% for 

females (152). However, this mutation increases the likelihood of carriers 

developing pediatric ACC by 20,000 fold (151). In addition, this mutation has 

been found in other tumor types including breast, brain, and soft tissue sarcomas 

and has been linked to LFLS (153). However, none of the 36 families tested in 

the initial study analyzing the R337H mutation were associated with LFS (43) and 

with 30 families as R337H carriers (152), none met LFS criteria. Additionally, in 

Ribeiro et al. (43) 1 of 35 R337H families met LFLS critieria and only 7 of 30 

families with the R337H mutation met LFLS criteria in Figueiredo et al. (152). 

R337H involvement in other cancers remains to be elucidated, strongly arguing 

that cancer arises in a tissue-specific manner due to this mutation (154). 
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1.4.3 Purpose 

 The biology of pediatric adrenocortical tumors is largely unknown. 

However, germline p53 mutations and their associations with pediatric 

adrenocortical tumors have been well documented. Over the past decade, low-

penetrance p53 mutations and their role in pediatric ACC have become an 

increasingly important topic based on these postulates: 1) Low-penetrance p53 

alleles are specifically present in pediatric ACC; 2) Some low-penetrance p53 

germline mutation carriers are more subject to this specific cancer type than 

others; 3) Families that are affected by low-penetrance p53 germline mutations 

may or may not meet criteria for either LFS or LFLS; 4) Structure-function 

relationships of p53 mutants may be useful in predicting the clinical outcome of 

patient families. In addition, other biological mechanisms in pediatric 

adrenocortical tumors are not well understood or documented. Therefore these 

hypotheses will be addressed: 1) Structure-function relationships of low-

penetrance germline p53 mutations, i.e. R337H, may be used to indicate the 

importance of thorough genetic screening in families with pediatric ACC 

probands; 2) Identifying cooperating events in pediatric adrenocortical tumors will 

significantly contribute to the etiology and biological aspects of this disease. 
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CHAPTER 2: IDENTIFICATION OF A NOVEL GERMLINE VARIANT HOT 

SPOT MUTANT p53-R175L IN PEDIATRIC ADRENOCORTICAL 

CARCINOMA*

 

2.1 Introduction 

The p53 tumor suppressor plays a prominent role in the prevention of 

cancer by functioning as a transcription factor that induces downstream targets 

which negatively control cell growth (e.g., p21Cip1) and viability (e.g., Puma and 

Noxa) (99, 107, 155). It is, therefore, not surprising that half of all human cancers 

have sustained inactivating somatic mutations in p53. Several residues are more 

frequently targeted than others and these are referred to as hot spot mutations 

[for review, see (156)]. Interestingly, hot spot mutations disrupt critical DNA 

contact points or alter the structure in such a way that the protein no longer binds 

DNA in a sequence specific manner (23). In either case, protypical hot spot 

mutants are unable to efficiently induce target gene expression, cell cycle arrest 

and cell death.  

Germline p53 hot spot mutations strongly predispose carriers to cancer as 

children or young adults. Indeed, epidemiology studies estimate that 

approximately 70% of males and 100% of females who inherit a p53 mutation will 

develop cancer, including tumors of the breast, brain, soft tissue, bone, blood 

and adrenal cortex (150). The extraordinarily high occurrence of tumors 

                                                           
* Permission to reproduce by The American Association for Cancer Research.  

West AN, Ribeiro RC, Jenkins J, Rodriguez-Galindo C, Figueiredo BC, Kriwacki R, Zambetti 
GP. Identification of a Novel Germline Variant Hotspot Mutant p53-R175L in Pediatric 
Adrenal Cortical Carcinoma. Cancer Res 2006 May 15;66(10):5056-5062. 
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associated with germline p53 mutations is referred to as Li-Fraumeni Syndrome 

(LFS) (118). LFS is formally defined by a proband with a sarcoma before the age 

of 45 years and a first-degree relative with any cancer under 45 years of age, 

and an additional first-or-second degree family member with any cancer before 

45 years or sarcoma at any age (112). Subsequent studies identified a variation 

of LFS, referred to as Li-Fraumeni-Like syndrome (LFLS), which includes a 

proband with any childhood cancer or a sarcoma, brain tumor or adrenocortical 

tumor before 45 years of age, and a first-degree or second-degree relative with a 

LFS-type tumor and an additional first or second degree relative with any cancer 

before 60 years of age (113). A telling feature of LFS and LFLS is a child who 

has developed an adrenocortical tumor, although other mechanisms (e.g., 

Beckwith-Wiedemann Syndrome) are also recognized to promote childhood 

adrenocortical tumorigenesis.  

Pediatric adrenocortical tumors (ACT) are extremely rare with an annual 

worldwide incidence of 0.3-0.4 per million children under the age of 15 (157). 

Because childhood ACT often arises within LFS and LFLS families, they are 

usually associated with a germline p53 mutation (158). In many of these cases, 

the proband has inherited a hot spot p53 mutation. However, childhood ACT can 

also occur outside the context of LFS/LFLS, and yet be associated with a low 

penetrant constitutional mutant p53 allele (134). For example, recent studies 

identified a group of pediatric ACT patients from southern Brazil who inherited a 

mutation in exon 10, corresponding to an arginine to histidine substitution at 

amino acid 337 (R337H) (43). Interestingly, the mutation occurs within the 
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COOH-terminal oligomerization domain and not the DNA binding region. 

Although the mutation could be tracked through multiple generations within the 

ACT families, there were no reports of sarcoma or indications of an increased 

susceptibility to cancer in general. The R337H mutation strongly predisposes 

carriers to ACT, but not to LFS or any other tumors (159). Interestingly, the 

histidine substitution at this site within the oligomerization domain alters the 

stability of the protein structure in a pH-dependent manner, which presumably 

forms the basis for the tumor specificity of this particular mutant (151).  

The overall structure of p53 relies on arginine 175 (Arg 175), which is 

located in the L2 loop of the DNA binding domain (23). Arg175 mediates the 

interaction between the L2 and L3 loops to maintain structural stability. 

Substitution of histidine for arginine at amino acid 175 (R175H) is one of the most 

common somatic mutations of p53 detected in human cancers (31, 160). The 

R175H DNA binding domain is unable to bind specifically to the gadd45 promoter 

sequence, is significantly less thermodynamically stable than the wild-type 

domain, and is predicted to be completely denatured at 37 °C. Furthermore, full-

length mutant p53 R175H lacks wild-type-like p53 function and is, therefore, 

transcriptionally inactive and unable to induce cell cycle arrest or apoptosis. 

Consequently, the R175H mutant is severely compromised in tumor suppressor 

function and when inherited is associated with LFS.  

In this study, we identified a carrier of a novel germline variant of the p53-

R175H hot spot mutation, in which arginine is substituted for leucine, and 

developed pediatric adrenocortical carcinoma. The R175L variant has been 
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infrequently detected in sporadic tumors (e.g., lung, liver, colon and breast; 21 of 

more than 21,000 reported cases) and never before as a germline mutation (31). 

Based on family history, the R175L germline mutation is not associated with LFS 

or LFLS. We therefore investigated the in vitro and in vivo consequences of this 

mutation on p53 function and found that it retains partial activity in transcription 

and growth control. In contrast, the classical LFS hot spot mutant p53-R175H 

was completely defective in each assay. These findings show that not all amino 

acid substitutions, even when involving critical residues such as Arg-175, have 

the same outcome with respect to function and tumor susceptibility. Notably, 

these findings bear important implications for genetic counseling and possibly 

clinical management.   

 

2.2 Materials and Methods 

 

2.2.1 DNA Analysis 

    DNA was isolated from peripheral blood using the PureGene DNA 

Isolation kit according to manufacturer’s recommendations (Gentra Systems, 

Minneapolis, MN). Tumor DNA was extracted in xylene-100% ethanol (1:1) and 

digested in 50 mM Tris-HCl (pH 8.0), and proteinase K (14 mg/ml) overnight at 

37oC. Proteinase K was inactivated at 100oC for 5 minutes and the supernatant 

containing the DNA was collected after centrifugation. Whole blood DNA was 

quantified and amplified using the multiplex PCR protocol developed by 

Affymetrix (Valencia, CA). Samples were analyzed by the Hartwell Center (St. 
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Jude Children’s Research Hospital, SJCRH) using the Affymetrix GeneChip p53 

probe array, according to manufacturer’s instructions. In addition, genomic DNA 

from whole blood and tumor samples were PCR amplified and sequenced. 

Specifically, whole blood DNA was screened using primers spanning exons 5 

and 6 of the p53 gene and genomic DNA from the tumor was screened using 

primers spanning exon 5. Primer sequences are as follows: E5F (forward) [5’-

CTTGTGCCCTGACTTCAACTCTGTCTC-3’] and E6R (reverse) 

[5’GCCACTGACAACCACCCTTAACCCCTC3’]. The E5R primer (reverse) was 

derived from the Affymetrix p53 gene chip protocol [5’-

TGGGCAACCAGCCCTGTCGTCTCTCCA-3’] and used in combination with E5F 

to amplify tumor DNA. Whole blood DNA was purified by dialysis on 0.025 µm 

filter discs (Millipore, Bedford, MA) and diluted 1:50 in nuclease-free water. 

Tumor DNA was purified using ExoSAP-IT (US Biochemical, Cleveland, OH) 

according to manufacturer’s instructions. Both blood and tumor DNA was 

analyzed by high-throughput DNA sequencing (Hartwell Center) and compared 

with a human p53 genomic sequence (NCBI accession# U94788). p53 mutation 

status was also confirmed by DNA sequencing through the Carolinas Medical 

Center DNA Diagnostics Laboratory (Charlotte, NC).  

 

2.2.2 Transactivation Assay 

Human SaOS-2 osteosarcoma cells and murine 10(1) fibroblasts(5 x 105 

per 10 cm dish) were grown in Dulbecco’s Modified Eagle’s Medium (DMEM) 

containing 10% fetal bovine serum (FBS), penicillin (50 µg/ml, streptomycin (100 
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U/ml) and 2.5 mM glutamine (complete DMEM) in 100 mm tissue culture dishes 

at 37oC under 5% CO2. The cells were co-transfected in duplicate with 250 ng of 

the p50-2Luc promoter-reporter and either 100 ng or 1µg CMV-Neo Bam (vector-

only) or CMV-Neo-Bam expressing wild-type p53 (WTp53), R175H or R175L. 

The cells were lysed after 72 hours and protein yields determined using the BCA 

Protein Assay kit (Pierce, Rockford, IL). Normalized samples were analyzed by 

the Single Luciferase Assay kit according to the manufacturer’s 

recommendations (Promega, Madison, WI).  

 

2.2.3 Apoptosis Assay 

    Human H1299 lung adenocarcinoma cells and human SaOS-2 

osteosarcoma cells were grown at 4 x 103 cells/dish (35 mm glass coverslip-

embedded dishes) in complete DMEM at 37oC under 5% CO2. Cells were 

microinjected with 50 ng/µl pGreenLantern (Life Technologies, Inc. now 

Invitrogen Corporation, Carlsbad, CA) which expresses green fluorescent 

protein, and co-injected with either 100 ng/µl CMV-Neo-Bam, WTp53, R175L, or 

R175H. Control injections included 100 ng/µl pGreenLantern only. Cells were 

microinjected using an Eppendorf Transjector system with a Zeiss Axiovert 

135TV microscope as previously described (161). Viable fluorescent cells were 

counted at specific time points after microinjection and photographed 

(Microinjection Core Lab, SJCRH).  
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2.2.4 Colony Reduction Assay 

    SaOS-2 cells were plated in duplicate in 100 mm tissue culture dishes and 

transiently transfected with 100ng and 1µg of either CMV-Neo-Bam, WTp53, 

R175H, or R175L. Cells were selected in G418 antibiotic (Invitrogen Corporation, 

Carlsbad, CA) at 0.8-1 µg/ml for up to 21 days. Colonies were washed briefly 

with phosphate buffered saline (PBS) and fixed with methanol. Cells were 

stained with 1:20 Giemsa dye (Sigma-Aldrich, St. Louis, MO) for 45 minutes, 

washed briefly with distilled water and air-dried. Colonies were counted and 

photographed (Biomedical Communications, SJCRH).  

 

2.2.5 Protein Analysis 

SDS-PAGE analysis was done with 30 µg protein/sample and the Novex 

NuPAGE Bis-Tris gel system (Invitrogen). Proteins were electrophoretically 

transferred to nitrocellulose membranes and blocked in TBS-T buffer (10mM 

Tris-HCl, pH 7.4, 150 mM NaCl, 0.1% Tween-20) containing 5% non-fat milk. 

Membranes were hybridized with sheep polyclonal anti-human p53 Ab-7 

(Calbiochem, San Diego, CA) diluted 1:2,500 in TBS-T with 5% non-fat milk at 

room temperature for 4 hours. Mouse monoclonal anti-human actin (Sigma-

Aldrich, St. Louis, MO) was diluted at 1:3,000. Membranes were washed with 

TBS-T and hybridized with either HRP-linked rabbit anti-sheep at 1:5,000 

(Pierce, Rockford, IL) or HRP-linked sheep anti-mouse (Amersham Biosciences, 

Piscataway, NJ) at 1:3000 secondary antibodies for 1 hour at room temperature. 

The membranes were washed with TBS-T and developed with Supersignal West 
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Dura Extended Substrate kit according to the manufacturer’s recommendations 

(Pierce). 

 

2.2.6 Tissue Preparation and Immunohistochemistry  

Adrenal samples were fixed in 10% neutral phosphate buffered formalin 

and processed through graded ethanol to xylene and embedded in paraffin. 

Multiple 3 to 4 micron sections were cut and attached to lysine-treated glass 

slides. Heat-induced epitope retrieval was performed with EDTA at pH 8.0. 

Tissue sections were placed in plastic Coplin jars containing preheated target 

retrieval solution (DAKO, Carpinteria, CA), heated in a household vegetable 

steamer (Sunbeam-Oster, Model Sunbeam 4713/5710, 900 W) for 35 minutes, 

and allowed to cool at room temperature for at least 15 minutes. Subsequent 

steps of the immunohistochemical staining procedure were performed using the 

DAKO Autostainer at room temperature and included the following: A) blocking of 

endogenous peroxidase in 3% H2O2 in phosphate buffered saline (PBS) at pH 

7.4 for 5 minutes; B) blocking of nonspecific protein-binding sites using protein 

blocking solution (DAKO) for 5 minutes; C) incubation with the primary p53 

antibody (DAKO clone DO-7) for 1 hour; and D) detection using the streptavidin-

biotin-peroxidase based LSAB+ kit (DAKO) for 2 x 15 minutes. 3,3' 

diaminobenzidine/H2O2 (Biogenex, San Ramon, CA) was used as the chromogen 

and hematoxylin as the counterstain. Samples that were positive for p53 are 

identified by the nuclear deposition of a permanent brown precipitate that is 

readily detected by light microscopy. 
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2.3 Results 

 

2.3.1 Identification of the Germline p53-R175L Mutation Associated with   

ACC 

An international pediatric adrenocortical tumor registry and bank (IPACTRB) 

has been established at St. Jude Children’s Research Hospital (SJCRH) in order 

to centralize clinical information regarding the subjects and to collect tissue 

specimens. The registry component has been in existence since 1990 and has 

enrolled more than 250 subjects. The intention of the registry and bank is to 

broaden our understanding of the biology of adrenocortical tumors and how to 

best treat the patients. The registry and bank have been approved by the SJCRH 

Institutional Review Board for the protection of human research subjects.  

Recently, a female patient from North America who developed 

adrenocortical carcinoma (ACC) at 3 years of age was enrolled in the IPACTRB. 

Pediatric ACC is often associated with Li-Fraumeni Syndrome; however, the 

proband’s family history does not fulfill LFS or LFLS criteria (Fig. 2-1). Indeed, 

there was only one other case of cancer within this family, which was a uterine 

tumor at 38 years of age (paternal grandmother). Uterine cancer is not an LFS 

tumor type and is rarely associated with somatic p53 mutations (61 cases of 

21,512 total tumors) (31). Nevertheless, given the strong association between 

p53 mutations and pediatric ACC, the germline status of p53 in the proband was 

initially determined by Affymetrix p53 chip array analysis using genomic DNA  
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Figure 2-1. Pedigree of the p53-R175L Family. Three generations of the 
affected family are presented. Deceased individuals are identified by leftward 
diagonal lines. Identified carriers of the R175L mutation are designated by 
hatched lines.  
 

 

prepared from peripheral blood leukocytes (PBLs). Affymetrix analysis revealed a 

single point mutation (CGC to CTC) in exon 5 at codon 175, resulting in an 

arginine to leucine substitution (R175L) (data not shown). DNA sequence 

analysis confirmed the Affymetrix results and demonstrated the presence of the 

germline wild-type and mutant p53-R175L alleles (Fig. 2-2). The father and two 

siblings of the proband are also carriers of the R175L mutation (data not shown), 

but none of these individuals developed cancer. These findings indicate that the 

R175L mutation may predispose carriers to adrenocortical tumors without 

causing LFS.  
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Figure 2-2. DNA Sequencing Analysis of the Germline p53-R175L Mutation 
Associated with Adrenocortical Carcinoma. Schematic diagram of the p53 
tumor suppressor highlighting the site of the R175H mutation found in the 
proband with ACC (upper panel). Blood DNA from the proband was analyzed by 
high-throughput sequencing, which revealed both wild-type (CGC) and mutant 
alleles (CTC) (lower left panel). The heterozygous germline mutation is 
represented by the double peak at codon 175. The tumor also revealed both 
mutant and wild-type alleles, as shown by a double peak at codon 175 (lower 
right panel). Blue = Cytosine, Red = Thymidine, Black = Guanidine. 
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2.3.2 Elevated Expression of Mutant p53-R175L in ACC 

 A hallmark of tumor suppressor genes that have been targeted in human 

cancers is the elimination of the wild-type allele with retention of the mutant  

allele, which is referred to as loss of heterozygosity (LOH). Particularly for the 

p53 tumor suppressor, the mutant allele is usually expressed and the missense 

protein accumulates to high levels in the nucleus. However, DNA sequence 

analysis showed that the adrenal tumor of the proband did not undergo LOH and 

retained both the wild-type and mutant allele (Fig. 2-2). No second site mutations 

were detected throughout the coding region. This result is rare but not 

uncommon in pediatric adrenocortical tumors harboring low-penetrance p53 

mutations, as described by Varley et al. (134). As expected for a tumor carrying a 

p53 mutation, the p53 protein was well expressed and accumulated within the 

nucleus as shown by immunohistochemical analysis (Fig. 2-3). In contrast, an 

adrenocortical tumor with wild-type p53 alleles failed to stain for p53 protein 

expression, consistent with the predicted short half life of the protein (Fig. 2-3). 

Taken together, these results support the concept that mutant p53-R175L is 

functionally impaired within the adrenocortical tumor.  

 

2.3.3 In Vitro Characterization of Mutant p53-R175L Function 

 

2.3.3.1 Transactivation 

The consequence of the R175L mutation on p53 function was explored 

under a variety of controlled conditions. First, the ability of the R175L mutant to 
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WTp53  R175L 

Figure 2-3. p53 Immunohistochemistry of R175L Tumor. p53 
immunohistochemistry illustrates nuclear accumulation of mutant p53-R175L in 
the adrenocortical tumor (40x magnification, right panel). Adrenocortical tumor 
expressing wild-type p53 fails to stain for p53 (60x magnification, left panel). 
 

 

transactivate a p53-responsive promoter was tested using the p50-2Luc reporter 

plasmid, which contains p53 DNA binding elements from the murine muscle 

creatine kinase promoter (162). Human osteosarcoma SaOS-2 cells and murine 

(10)1 fibroblasts, both p53-null cell lines (avoids dominant negative effects), were 

co-transfected with p50-2Luc and either CMV-Neo-Bam empty vector (CMV-only) 

or CMV-Neo-Bam-based vectors expressing human wild-type and mutant p53 

proteins. The R175H mutant serves as a negative control, since it is well 

established that it exhibits a denatured conformation and is severely defective in 

DNA binding and transactivation functions (163). As expected, wild-type p53, but 

not mutant p53-R175H, strongly induced promoter-reporter activity in SaOS-2 

cells (Fig. 2-4) and (10)1 fibroblasts (Fig. A-1). Mutant p53-R175L retained partial 

function and upregulated the promoter at approximately 20-40% efficiency of that 
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Figure 2-4. Transactivation of the Wild-Type p53 Responsive Promoter-
Luciferase Reporter by WTp53 and Mutant p53 Proteins. SaOS-2 cells were 
transfected with 100ng (A) and 1 µg (B) CMV p53 expression plasmids in 
duplicate and reporter activity measured as described in the Materials and 
Methods (left panel). Protein expression was analyzed by western blot (right 
panel).  
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observed for wild-type p53 (Fig. 2-4A and B; A-1). Western blot analysis 

showed relatively equal expression of each form of p53, indicating that the 

differences in activity reflect alterations in function and are not due to variations 

in protein levels (Fig. 2-4A and B; A-1). These findings demonstrate that mutant 

p53-R175L exhibits low, but significant transactivation function. 

 

2.3.3.2 Growth Suppression 

To test the effect of the R175L mutation on growth suppression, SaOS-2 

cells were transfected with CMV-only or CMV vectors expressing either wild-type 

or mutant p53. Cells were selected for antibiotic resistance in 0.8-1mg/ml G418 

for 2-3 weeks, stained with Giemsa dye and photographed. As expected, cells 

transfected with CMV-only readily formed colonies whereas wild-type p53 

efficiently suppressed colony formation (Fig. 2-5). Mutant p53-R175H enhanced 

the number and size of the colonies at 100ng DNA (Fig. 2-5), consistent with its 

reported gain-of-function activity that promotes cell growth and survival (163, 

164). By contrast, mutant p53-R175L markedly reduced colony formation, 

approximately equivalent to wild-type p53 (Fig. 2-5). Similar results were 

obtained when using 1µg of each plasmid (Fig. A-2). Taken together, these 

results show that mutant p53-R175L maintains considerable growth suppressive 

activity.  
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Figure 2-5. p53 Colony Reduction Assay. SaOS-2 cells were transfected in 
duplicate with 100ng CMV p53 expression plasmids and selected by neomycin 
(G418) resistance. Colonies were stained by Giemsa dye and photographed 
(upper panel) and subsequently counted (lower panel). 
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2.3.3.3 Apoptosis 

Induction of apoptosis by wild-type p53 is thought to be its primary tumor 

suppressor function. To determine whether mutant p53-R175L is competent for 

inducing programmed cell death, SaOS-2 and p53-null human lung  

adenocarcinoma H1299 cells were microinjected with CMV-only or CMV vectors 

expressing wild-type or mutant p53 proteins. A vector that expresses green 

fluorescent protein (pGreenLantern) was included to identify productively injected 

cells. Cells microinjected with the GFP- and CMV- only plasmids maintained 

viability and increased in number over a 72 hour period (Fig. 2-6). In contrast, 

cells expressing wild-type p53 displayed hallmark features of apoptosis and 

detached from the plate, resulting in a significant loss of viability (Fig. 2-7). 

Mutant p53-R175H and p53-R175L were essentially indistinguishable and had no 

impact on survival or cell number (Fig. 2-7). Similar findings were obtained using 

human H1299 lung carcinoma cells (Fig. A-3). Therefore, mutant p53-R175L 

exhibits a clear defect in triggering apoptosis.  

 

2.3.4 Modeling Structural Effects of the R175L Substitution 

The residues within the L2 (residues 163-195) and L3 (residues 236-251) 

loops of the DNA binding domain of p53 coordinate Zn2+ which, in turn, maintains 

key residues within L3 in a conformation competent for binding DNA (23). 

Arginine-175 lies within the L2 loop and plays a role in orienting Cys176 and 

His179, also within L2, for Zn2+ binding.  Further, Arg175 may form a salt bridge 

with Asp184 to stabilize the L2 conformation and hydrogen bond with residues in  

 53



  
 
Figure 2-6. p53 Apoptosis Assay. SaOS-2 cells were plated at 4x103 per 

nd 

 

 

 

 

 

 

 

 

35mm2 dish and co-microinjected with pGreenLantern (GFP) and CMV p53 
expression plasmids and monitored for apoptosis as described in Materials a
Methods. SaOS-2 cells injected with CMV-only, R175H, R175L and WTp53 and 
photographed at 60 hours. Representative of three independent experiments.  
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Figure 2-7. Quantitation of p53 Apoptosis Assay. SaOS-2 cells were plated at 

 

 

 

 

 

 

 

 

 

 

4x103 per 35mm2 dish and co-microinjected with pGreenLantern (GFP) and CMV 
p53 expression plasmids and monitored for apoptosis as described in Materials 
and Methods. SaOS-2 cells counted at 24, 48, and 72 hours. Representative of 
three independent experiments.  
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L3 to stabilize the L2/L3 interface.  It is well established that the R175H 

substitution significantly destabilizes the p53 native conformation, which exposes 

an epitope (monoclonal PAb240 reactivity) that usually only becomes accessible 

when the protein is denatured. This may arise because the His175 side chain 

provides an alternative ligand for Zn2+, disrupting the loop L2 conformation.   

We have used computerized modeling to infer how the Leu175 mutation 

may lead to altered stability of loop L2 and thus influence the conformation of the 

entire DNA binding domain.  A structural view of one wild-type p53 DNA binding 

domain protomer from the crystal structure with DNA is presented in Fig. 2-8. 

The Zn2+ ion which is tightly bound  and required for DNA binding activity is 

tetrahedrally coordinated by the side chains of Cys176 and His179 in loop L2 and 

Cys238 and Cys242 in loop L3. In this p53 protomer, the side chain of Arg175 

projects from one side of the L2 loop toward that of Asp184 on the other side and 

may participate in a stabilizing electrostatic interaction (Fig. 2-8B). Further, the 

conformation of the Arg175 guanidinium group may be further stabilized by 

hydrogen bonds with backbone atoms of Pro191 in L2 and Met237 in the L3 

loop. In contrast, in the Leu175 mutant, the shorter, uncharged side chain (Fig. 2-

8C) is unable to participate in the salt bridge or in hydrogen bonding to residues 

in L2 and L3 and may destabilize the native structure by creating a void at the 

L2/L3 interface. Although the loss of these interactions may destabilize the 

conformation in the vicinity of the L2/L3 interface, their loss would not necessarily 

disrupt the overall conformation of the DNA binding domain. The retention of  
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Figure 2-8. Structural View of R175L Mutation within p53 DNA Binding 
Domain (DBD). A) Wild-type p53 DBD (protomer “B” from 1TUP.pdb).  The Cys 
ligands (residues 176, 238 and 242) of the Zn2+ ion are colored yellow and the 
His ligand (residue 179) is colored cyan.  Arg 175 is colored blue and Asp 182, 
which forms a salt bridge with Arg 175, is colored red. B) Expanded view of 
boxed region in Panel A, with the same coloring scheme. C) Arg 175 was 
mutated to Leu using SwissPdbViewer (http://au.expasy.org/spdbv/); Leu 175 is 
colored magenta.  Leu 175 cannot form a salt bridge with Asp 182, possibly 
destabilizing the illustrated sub-structure containing the Zn2+ center (shaded 
black).  In addition, substitution of Arg 175 with Leu creates an unoccupied 
pocket that may cause side chain packing within this sub-domain to be non-ideal 
and energetically unfavorable. 
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significant transactivation and growth suppression activities indicates that this 

must indeed be the case. 

 

2.4 Discussion 

We have identified a family that harbors a novel germline variant hot spot 

mutation, p53-R175L. Although the R175L mutation has been previously 

reported in the literature, albeit rarely (21 cases in more than 21,000 samples), 

this is the first incidence of it occurring as a germline mutation (31). The typical 

mutation at codon 175 results in an arginine to histidine substitution (R175H), 

which is the third most common somatic and germline p53 mutation listed in the 

p53 database (31). A wealth of evidence shows that the R175H mutant is 

structurally unstable and functionally inactive. Indeed, it no longer binds DNA, 

transactivates target genes, or induces cell cycle arrest and apoptosis (163). 

Rather, it acts as a dominant-negative factor that inactivates wild-type p53 and 

cooperates with activated Ras to transform cells. Carriers of an inherited R175H 

mutation are associated with LFS and are at a remarkably high risk for 

developing a wide spectrum of tumors at a young age (165). Interestingly, one 

other inherited variant hot spot codon 175 mutation, R175G, has been previously 

reported (166). This mutation is also associated with LFS and predisposes 

carriers to early onset cancers. Functional studies in a yeast reporter system 

demonstrated that the R175G mutant was equally defective in transactivation as 

the R175H hot spot mutant (166). By contrast, the R175L mutation identified here 

exists within a family that is not predisposed to cancer. In fact the only tumor, in 
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addition to the ACC, that occurred on the affected side of the family was a uterine 

cancer (paternal grandmother, 38 years of age) (Fig. 2-1), which is not a tumor 

type involved in LFS or spontaneous tumors associated with p53 mutations (31). 

The p53 status of the paternal grandfather was wild-type implying that the mutant 

allele was derived from the paternal grandmother. It should be noted that the 

father, who is a carrier, developed multiple lipomas. In addition, a second cousin 

from the affected side of the family also developed a benign soft tissue mass in 

his forearm at 11 years of age. Other low penetrant germline mutant p53 alleles 

have been identified that increase the risk of adrenocortical tumors without 

causing LFS or LFLS (43, 134). Analysis of this class of mutants generally shows 

that they are also impaired in activity, in contrast to the complete inactivation of 

function seen with classical hot spot mutants.  

Our characterization of the adrenocortical tumor provides additional 

evidence that mutant p53-R175L is functionally compromised in vivo and 

contributes to tumorigenesis. DNA sequence analysis of the tumor shows that 

p53 has not selected against the wild type allele (Fig. 2-2). It has been shown 

that heterozygous p53 mutations occur in pediatric adrenocortical carcinoma 

without the incidence of a second site mutation (134). In addition, the missense 

protein is expressed at elevated levels in the nucleus of the adrenocortical tumor 

cells (Fig. 2-3). Intuitively, mutant p53 must not be sufficiently active for the tumor 

to tolerate nuclear accumulation of p53-R175L and to survive and proliferate. The 

apparent low tumor penetrance associated with the R175L mutation, especially in 

comparison to the R175H mutant, may reflect the partial activity of R175L in 
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transactivation and growth suppression (Figs. 2-4 and 2-5). The R175L mutant 

has also been shown by others to transactivate the p21CIP1 promoter, but is 

unable to transactivate the Bax and IGF-BP3 promoters (167, 168). These 

findings, taken together with the results presented here, show that R175L 

controls partial tumor suppressor function. Loss of further activity would likely 

predispose carriers of the R175L mutation to LFS or LFLS syndrome.  

Other somatic mutations at codon 175 have been observed in human 

tumors. One such example is R175P. Functional studies showed that R175P is 

defective in apoptosis, but less so in cell cycle arrest (169). The R175P mutant 

was critically assessed by generating a mouse knock-in mutation model. 

Thymocytes from homozygous mutant R175P mice are completely resistant to 

DNA damage-induced apoptosis, but cells can undergo cell cycle arrest to some 

extent. The mice are tumor prone, but tumor onset is delayed compared with 

p53-knockout mice, demonstrating that the R175P also retains a substantial 

degree of activity.  

Mutant p53-R175H associates with hsp70 and binds to monoclonal 

antibody PAb240 (recognizes the denatured conformation) but not PAb1620 

(specific for the native structure), indicating that the missense protein is unfolded 

(163, 167). By contrast, the p53-R175L mutant does not associate with hsp70 

and is positive for binding to PAb1620 and not PAb240 (167). These findings 

suggest that the leucine substitution at codon 175 is less disruptive to the native 

p53 conformation, which is consistent with our data demonstrating that mutant 

p53-R175L displays significant transactivation function and contributes to growth 
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suppression, as well as being associated with a less penetrant tumor phenotype 

in carriers.  

Here we have identified a naturally occurring human p53 germline hot spot 

variant mutation, which is indeed a rare occurrence. Although we cannot reach a 

firm conclusion regarding the penetrance of the R175L mutation due to human 

subject consent issues, our data indicate that the R175L variant exhibits a milder 

phenotype than the LFS-associated germline R175H and R175G mutations. It is 

becoming increasingly clear that the biochemical nature of the amino acid 

substitution at a particular residue, including hot spot mutants, can have very 

different clinical outcomes. Germline R337H mutations selectively predispose 

carriers to childhood adrenocortical tumors whereas the R337C mutant is 

associated with breast cancer and LFLS syndrome (43, 127, 170). Similarly, the 

R175H hot spot mutation causes LFS while our results to date indicate that the 

R175L can cause ACC without being associated with LFS or LFLS syndrome. 

Although a number of knock-in mutant p53 mouse models have been recently 

generated to test the effects of different amino acid substitutions in a selected 

site (169, 171, 172), the identification of the R175L mutation in a family with a 

child who developed ACT offers a unique opportunity to study this phenomenon 

in a human setting. It will be important to continually monitor these individuals in 

the future to fully evaluate the effect of the germline R175L mutation on 

tumorigenesis. Finally, the information provided by the genetic and biochemical 

data presented in this article shows the importance of thorough screening for p53 
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status in cancer patients and their families for use in diagnosis, treatment, and 

genetic counseling. 
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CHAPTER 3: GENE EXPRESSION PROFILING OF CHILDHOOD 

ADRENOCORTICAL TUMORS*

 

3.1 Introduction 

Pediatric adrenocortical tumors (ACT) are rare malignancies occurring at a 

rate of 0.3-0.4 annual cases per million children under the age of 18 (133, 173). 

Signs and symptoms of ACT include virilization, acne, deep voice, facial hair, 

muscle weakness, facial hyperemia, hypertension, and other signs of Cushing 

syndrome. The tumor size and weight, disease staging, and selected histologic 

criteria have been used to classify ACT as either carcinoma (ACC) or adenoma 

(ACA). Large tumors (> 200 g), and locally invasive or metastatic tumors, have 

been associated with poor outcome. However, in many cases, clinical and 

pathological features fail to identify patients with localized disease that eventually 

relapse. Current therapy for pediatric ACT relies primarily on surgical resection of 

the tumor, although mitotane (a DDT-related compound)—with or without DNA 

damaging agents—has been used with some success (174). The overall 5-year 

disease-free survival is 50%, however, patients with Stage IV disease have less 

than a 10% chance of long-term survival (173).  

The adrenal cortex synthesizes essential steroids  (e.g., glucocorticoids, 

androgens, and mineralocorticoids) that regulate diverse biological processes 

such as blood pressure, glucose metabolism, immune surveillance, and sexual 

                                                           
* Permission to reproduce by The American Association for Cancer Research.  

West AN, Neale GA, Pounds S, Figueiredo BC, Rodriguez-Galindo C, Pianovski MA, 
Oliveira-Filho AG, Malkin D, Lalli E, Ribeiro R, Zambetti GP. Gene Expression Profiling of 
Childhood Adrenocortical Tumors. Cancer Res 2007 Jan 15;67(2):600-608. 
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development (132, 175). During gestation, the cortex is subdivided into the outer-

definitive and inner-fetal zones, which contribute to the maintenance of normal 

pregnancy through the production of dihydroepiandrosterone sulphate (DHEA-S). 

As this function is no longer required after birth, the adrenal gland rapidly loses 

50% of its volume within the first 2 weeks due to massive apoptosis. 

Subsequently, the adrenal cortex undergoes significant tissue remodeling and 

develops into 3 defined regions: outer zona glomerulosa, middle zona 

fasciculata, and inner zona reticularis. The zona glomerulosa is primarily 

responsible for the production of aldosterone, whereas the zona fasciculata and 

zona reticularis produce corticosteroids and androgens, respectively. Various 

genetic abnormalities, either acquired or inherited (see below), promote ACT 

development during childhood or late adulthood (176). 

Pediatric ACT is frequently reported in families with Li-Fraumeni 

Syndrome (LFS) and Li-Fraumeni-Like Syndrome (LFLS), which are usually 

associated with TP53 tumor suppressor germline mutations (113, 118). The most 

frequently observed tumors in LFS include soft tissue sarcomas, osteosarcomas, 

breast carcinomas, brain tumors, and adrenocortical carcinoma. Indeed, it has 

been proposed that pediatric ACT is almost diagnostic of a germline TP53 

mutation (158), but clearly alternative factors can contribute to this tumor type 

(e.g., Beckwith-Wiedemann Syndrome (BWS), Carney’s complex, and multiple 

endocrine neoplasia type I) (135). BWS is characterized by the overgrowth of 

tissues and organs, including the adrenal gland. BWS is usually sporadic, but 

also occurs as a familial autosomal dominant form linked to the loss of imprinting 
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(LOI) at the Insulin-Like Growth Factor-II (IGF-II) locus on chromosome 11p15.5; 

resulting in the overproduction of IGF-II (176). The underlying genetic events 

responsible for the BWS phenotype are complex, with multiple genes (e.g., 

KCNQ1 and CDKN1C) being implicated in its etiology (141, 177).  

The cooperating factors and signaling pathways that promote the 

development of childhood ACT are not well defined. Animal studies implicate 

Inhibin-α, a glycoprotein with homology to TGF-β, as a suppressor of ACT 

development (178). Deletion of Inhibin-α by gene targeting in gonadectomized 

mice causes fully penetrant adrenocortical tumors by 4-5 weeks of age. 

Consistent with the mouse model, mutation of INHIBIN-α (INHA) with loss of 

heterozygosity (LOH) at chromosome 2q33 was commonly observed in human 

pediatric adrenocortical tumors (178). Comparative genomic hybridization 

analysis of pediatric ACT also demonstrated recurrent chromosomal alterations, 

such as the amplification of chromosome 9q34 (144).  Localized within this 

region is the nuclear orphan receptor Steroidogenic Factor-1 (SF1, NR5A1), 

which is required for normal adrenal gland development. Subsequent studies 

demonstrated that SF1 is amplified and overexpressed in about 90% of pediatric 

adrenocortical tumors (147, 179). Similarly, both pediatric and adult ACT express 

elevated levels of IGF-II (136, 180).  

 Due to the rarity of pediatric ACT, it becomes necessary to consolidate 

resources to maximize efforts in studying this disease in a comprehensive and 

thorough manner. We therefore established an International Pediatric 

Adrenocortical Tumor Registry and Bank (IPACTRB) at St. Jude Children’s 
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Research Hospital (St. Jude; www.stjude.org). More than 250 subjects have 

enrolled in the registry component since 1990 (the adrenal tissue bank has been 

in existence since 2000). To identify key factors and signaling pathways that may 

be involved in adrenocortical tumorigenesis, we conducted an Affymetrix gene 

expression profiling analysis of pediatric ACT. As we report here, distinct 

expression signatures have been identified that discriminate between normal 

adrenal cortex and ACT. In addition, our retrospective analyses identified profiles 

that may aid in the differential diagnosis of adenoma from carcinoma. Insight into 

the cell type of origin that gives rise to ACT has also been generated. Our 

findings provide the basis for identifying signaling pathways that are corrupted 

during adrenocortical tumorigenesis, with the goal of establishing new 

therapeutic targets that could be exploited in treating this often fatal disease. 

 

3.2 Materials and Methods 

 

3.2.1 IRB Approval  

The Institutional Review Boards of St. Jude and the Hospital for Sick 

Children, and the Ethics Committees of the Hospital de Clinicas of the Federal 

University of Parana, Hospital Erasto Gaertner, and the Centro Infantil de 

Investigações Hematológicas Dr. Domingos A. Boldrini approved the genetic 

analysis of pediatric normal adrenal cortex and adrenocortical tumors. Informed 

consent was obtained for each subject.  
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3.2.2 Total RNA Preparation  

Tissue samples were classified according to established histopathological 

criteria and verified by 2 independent pathologists. Total RNA was isolated from 

50-100 mg of pediatric adrenocortical tumors using the Qiagen RNeasy RNA 

Midi-Prep kit (Valencia, CA). Tumors were prepared in a 4ºC cold room, sliced 

into fine pieces using a sterile scalpel and homogenized with 18 and 19 gauge 

needles in lysis Buffer RLT (Qiagen) containing β-mercaptoethanol. Total RNA 

was isolated by the ‘Animal Tissues’ protocol following the manufacturer’s 

recommendations. The RNA was resuspended in diethyl pyrocarbonate-treated 

water, quantified by UV absorbance at 260/280 nm, and stored at -80ºC. 

 

3.2.3 cDNA Amplification and Real-Time PCR Analysis  

cDNA was generated from 1 µg total RNA using the iScript cDNA 

amplification kit according to the manufacturers’ instructions (Bio-Rad 

Laboratories, Hercules, CA). cDNA was diluted 1:2 using sterile double distilled 

H2O prior to real-time PCR analysis. The following genes were amplified by real-

time PCR using the iQSybrGreen PCR amplification mix (Bio-Rad Laboratories; 

according to the manufacturer’s instructions) and 400 ng per primer: IGF-II, 

HSD3B2, FGFR4, NURR1, NGF1-B, and NOV. Ubiquitin was also amplified as a 

loading control. Each normal adrenal and tumor sample was amplified in triplicate 

via separate PCR conditions and compared to ubiquitin expression levels using 

the ∆∆cT method (181). Primer sequences and PCR conditions are described in 

Table B-1. 
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3.2.4 Western Blot Analysis  

Protein was isolated from normal adrenal cortex and tumor tissues by 

homogenization in T-PER lysis buffer (Pierce Chemical, Rockford, IL) containing 

a protease-inhibitor cocktail (Roche Diagnostics Corporation, Indianapolis, IN). 

Total protein (50 µg) was analyzed by SDS-PAGE using the Novex NuPAGE 

system (Invitrogen, Carlsbad, CA). Proteins were separated by electrophoresis 

and transferred to 0.45 µm nitrocellulose membranes. Membranes were blocked 

in TBS-T buffer (10 mmol/L Tris-HCl [pH 7.4], 150 mmol/L NaCl, 0.1% Tween 20) 

containing 5% nonfat milk and probed with the following primary antibodies: goat 

polyclonal anti-human IGF-II (1:500; Sigma-Aldrich Chemical, St. Louis, MO), 

rabbit polyclonal anti-human HSD3B2 (1:500; gift from Dr. C. Richard Parker Jr., 

University of Alabama, Birmingham, AL), and mouse monoclonal anti-human 

Actin (1:2000; Sigma-Aldrich Chemical). Membranes were washed with TBS-T 

and hybridized with the following horseradish peroxidase-linked antibodies 

diluted in TBS-T containing 5% nonfat milk: rabbit anti-goat (1:1,000; 

Calbiochem, San Diego, CA), donkey anti-rabbit (1:3,000; Amersham 

Biosciences, Piscataway, NJ), and sheep anti-mouse (1:2,000; Amersham 

Biosciences). The membranes were washed with TBS-T and developed using 

Supersignal West Dura chemiluminescence reagent (Pierce Chemical), 

according to the manufacturer’s protocol. 
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3.2.5 Microarray Analysis  

The Affymetrix U133A GeneChip was used to collect expression data for 

22,215 probe sets on each of 31 samples (18 adrenocortical carcinomas, 5 

adenomas, 1 undetermined adrenocortical tumor, and 7 normal adrenal cortex). 

Microarray analysis was performed in the Hartwell Center Affymetrix core 

laboratory at St. Jude. High quality RNA, confirmed by UV spectrophotometry 

and an Agilent 2100 Bioanalyzer, was processed according to the Affymetrix 

one-cycle labeling protocol (http://www.affymetrix.com/support/technical/manual/ 

expression_manual.affx). In brief, 5 to 10 µg total RNA was annealed to an oligo-

dT(24)-T7 primer to initiate cDNA synthesis. Purified double-stranded cDNA was 

used as a template to synthesize biotin-labeled cRNA using T7 RNA polymerase. 

Labeled cRNA (20 µg) was fragmented, added to a mixture containing blocking 

agents and array controls, and hybridized overnight at 45oC to the gene chip 

array. Following hybridization, arrays were stringently washed, stained with 

streptavidin-conjugated phycoerythrin, and scanned using an Affymetrix 

GeneChip Scanner 3000. Relative expression signals for each gene was 

calculated using the Affymetrix GCOS software (version 1.4) using the global 

normalization method where the 2% trimmed mean signal was set to a target 

value of 500.  

 

3.2.6 Statistical Analysis  

Microarray signals were summarized and normalized using Affymetrix 

GCOX software as described above.  No probe set was excluded prior to 
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subsequent statistical analysis because filtering has been found to be of 

questionable value (182). The Wilcoxon rank-sum test was used to compare 

each probe set’s median expression between normal and tumor tissues (183).  

Likewise, the rank-sum test was used to compare the median expression level of 

each probe set between ACA and ACC. To account for multiple testing in each of 

these analyses, we used a robust method to estimate the false discovery rate 

(184). These analyses were implemented using S-plus (www.splus.com) 

software, version 6.2 for Windows (Microsoft). The robust FDR method was 

implemented using our freely available routines (http://www.stjuderesearch.org/ 

depts/biostats/robustfdr/index.html).   

To compare expression profiles in our pediatric ACT samples with data in 

other reports (137, 138) U133A probesets were matched by either GenBank 

accession ID (137) or by the Affymetrix “best match” criteria (138). Fold-change 

point estimates were computed by exponentiation of the difference of means of 

log-transformed signals. This estimate of fold-change can be interpreted as an 

estimate of the ratio of two groups’ median expression levels. The t-distribution 

was used to compute 95% confidence intervals for the difference of means of 

log-signals; these intervals were transformed into confidence intervals for fold-

changes by exponentiation. The fold-change confidence intervals are not 

adjusted for multiple-testing.   

As measures of how fold-changes observed in our study correlated with 

fold-changes observed in other studies, we computed the number of probe sets 

with a directional agreement (i.e., the fold-change estimates from the two studies 
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were in the same direction) and Kendall’s τ  (185) with the two sets of fold-

changes as input. We used a permutation method to assess the statistical 

significance of the observed values of these measures of agreement. The 

permutation assessment was performed by computing the fold-changes on 1,000 

data sets, derived by randomly reassigning group labels in our data set to the 

expression profiles in our data set, and then computing the agreement statistics. 

We counted the number of permuted data sets in which stronger values of the 

agreement statistics were observed to obtain the p-value.    

Estimates of overall and relapse-free survival were computed using the 

Kaplan-Meier method with standard errors determined using the method of Peto 

and Pike (186).  Overall survival was defined as the duration from date of 

diagnosis to date of death with those living at lost follow-up considered censored.  

Relapse-free survival was defined as the duration from date of diagnosis to date 

of relapse or death with those alive and relapse-free at last follow-up censored.  

 

3.3 Results 

 

3.3.1 Clinical Information  

Pediatric ACA and ACC patients were enrolled on the International 

Pediatric Adrenocortical Tumor Registry and Bank protocol. Tumor specimens 

were harvested during surgery and snap-frozen in liquid nitrogen to preserve 

tissue integrity. Data have been compiled for 8 males and 15 females between 0 

and 16 years of age. Table 3-1 summarizes the primary clinical information for  
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Table 3-1. Clinical Data of 24 Pediatric Adrenocortical Cancer Patients. 
 

Sample  Sample ID Sex Age** 
(in years) 

Tumor or 
Normal 

Histological 
Type (Adenoma or 
ACC) 

Tumor 
Stage 

Virilization    Cushing
Syndrome 

Outcome Treatment

1           ACC1 M 8 T ACC 4 Y N CR* SC*
2           
          
           
          
           
          
           
          
          
           
           
          
           
           
           
           
           
           
           
           
          
           
           

ACA1 F 12 T Adenoma
 

*** Y Y CCR* S*
3 ACC2 F 5 T ACC 2 Y N DD* SC
4 ACA2 F <1 T Adenoma

 
*** Y Y CCR S

5 ACC3 M 2 T ACC 3 Y N DD SC
6 ACC4 F 2 T ACC 1 Y N CCR S
7 Unk1* Unk* Unk T Unk Unk Unk Unk Unk Unk
8 ACC5 M 4 T ACC 2 Y N CR SC
9 ACC6 F 13 T ACC 4 Y Y Deceased*

 
 SC

10 ACA3 F 3 T Adenoma *** Y N CCR S
11 ACA4 F 2 T Adenoma *** Y Y CCR S
12 ACA5 F 4 T Adenoma

 
*** Y N CCR S

13 ACC7 F 11 T ACC 2 Y Y CR SC
14 ACC8 M 9 T ACC 2 Y Y DD SC
15 ACC9 M 2 T ACC 1 Y Y DD SC
16 ACC10 F <1 T ACC 2 Y Y CCR S
17 ACC11 M 2 T ACC 1 Y N CCR S
18 ACC12 M 12 T ACC 3 Y Y CCR SC
19 ACC13 M 4 T ACC 3 Y Y CR SC
20 ACC14 F 10 T ACC 3 Y N CR SC
21 ACC15 F 3 T ACC 1 Y Y CR

 
SC

22 ACC16 F 6 T ACC 2 Y N SC
23 ACC17 F 15 T ACC 4 Y N DD SC
24 ACC18 F 3 T ACC 3 Y N CCR SC
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Table 3-1 (continued). 
 

Sample  Sample 
ID 

Sex      Age**
(in years) 

Tumor or 
Normal 

Histological 
Type (Adenoma or 
ACC) 

Tumor 
Stage 

Virilization Cushing
Syndrome 

Outcome Treatment

25          Nor001 Unk Unk N NA* NA NA NA NA NA
26          

           
           
           
           
           

Nor004 Unk Unk N NA NA NA NA NA NA
27 Nor006 Unk Unk N NA NA NA NA NA NA
28 Nor007 Unk Unk N NA NA NA NA NA NA
29 Nor009 Unk Unk N NA NA NA NA NA NA
30 Nor010 Unk Unk N NA NA NA NA NA NA
31 Nor011 Unk Unk N NA NA NA NA NA NA

 

*Abbreviations: Unk – Unknown, NA – Not applicable, D – Bilateral disease, CR – Complete remission, CCR – 
Continuous complete remission, DD – Died from disease, Deceased – Died from unknown causes, S – Surgical 
resection only, SC – Surgical resection plus chemotherapy 
**Ages rounded to nearest full year 
***Adenomas are not staged based on standard adrenocortical tumor staging criteria (173). 
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each subject (excluding sample Unk1 with ACT of undetermined histology), 

including stage of the disease, tumor class, sex, age, relapse-free survival, and 

overall survival. Details regarding clinical features and treatment were also 

collected.  

All subjects presented with virilization. Eleven patients had signs and 

symptoms consistent with an increased secretion of glucocorticoids (Cushing 

syndrome) and 8 patients were hypertensive at presentation. Normal adrenal 

glands were obtained with IRB approval as discarded tissue from 7 cases of 

Wilms’ tumor. These patients, whose age ranged from 2 to 6 years, had not 

received chemotherapy prior to surgery; thus avoiding complications of 

chemotherapeutic effects. Normal adrenal cortex was subsequently isolated by 

an American Board certified pathologist and processed as described in the 

Materials and Methods. 

 

3.3.2 Gene Expression Profiling Distinguishes Adrenocortical Tumors from 

Normal Adrenal Tissue 

 Gene expression profiles for the ACT and normal adrenal cortex samples 

were generated using the Affymetrix U133A gene chip, which recognizes 14,500 

genes using 22,215 probe sets. We estimate that at least 33% of the probe sets 

on the array are differentially expressed between tumor and normal tissues; for 

1,019 of the probe sets, we detected differences that were significant at  
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p = 0.001 (187). Furthermore, we estimate that 1.5% or fewer of the 1,019 

detected differences are false discoveries. Hierarchical clustering analysis was 

used to visualize the variability between ACT and normal cortex (Fig. 3-1). 

 

3.3.3 Validation of the Gene Expression Dataset 

 Among the 1,019 significant probe sets, we identified 25 with the greatest 

and least ratios of median expression in tumor samples to that of normal samples 

(Table 3-2). The median expression of Fibroblast Growth Factor Receptor-4 

(FGFR4) in the ACT samples was 21 times that of the normal samples (95% CI = 

11.4 – 38.8) and represents the highest induced gene within the group. Previous 

studies implicate FGFR4 in breast cancer progression and other tumors (188).  

 The median expression of Insulin-Like Growth Factor-II (IGF-II) in ACT 

samples was 18 times that of the normal samples (95% CI = 7.8 – 42.7). 

Overexpression of IGF-II in the ACT samples was subsequently verified at the 

RNA and protein level by quantitative real time-PCR (qRT-PCR) and western blot 

analysis, respectively (Fig. 3-2). The qRT-PCR assay revealed higher expression 

values in the ACT samples than that determined by microarray analysis, most 

likely due to the larger dynamic range of the real time PCR assay. IGF-II protein 

levels were also significantly higher in the tumors than in the normal adrenal 

cortex samples and correlated with changes in mRNA expression. These results 

are concordant with previous biochemical and microarray analyses of adult and 

pediatric ACT (136, 138, 139, 189). However, the 7.5 kDa mature form of IGF-II 

was selectively expressed in the normal adrenal tissue, whereas multiple 

 75



 

Figure 3-1. Heat Map and Hierarchical Clustering Analysis Comparing 
Pediatric Adrenocortical Tumor and Normal Cortex. Relative expression 
signals of 1,019 unique probe sets are represented in red (over-expressed) and 
green (under-expressed). Differentially expressed genes were significant at  
p = 0.001. The scale bar represents standard deviation from the mean.  
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Table 3-2. Dysregulated Genes in Pediatric ACT. 
 

 Probe Set ID Gene Symbol Ratio of 
Medians 

95% Low 95% High 

Increased      
 211237_s_at FGFR4 21.1 11.4 38.8 
 204597_x_at STC1 19.1 8.2 44.4 
 210881_s_at IGF2 18.3 7.9 42.7 
 202410_x_at IGF2 16.0 6.2 41.4 
 203213_at CDC2 13.8 5.7 33.6 
 219918_s_at ASPM 13.4 4.2 43.5 
 204285_s_at PMAIP1 13.1 5.9 29.1 
 213562_s_at SQLE 12.9 6.2 27.1 
 205345_at BARD1 12.8 8.6 18.9 
 218755_at KIF20A 12.0 5.6 25.7 
 204056_s_at MVK 10.6 4.1 27.4 
 218009_s_at PRC1 10.4 4.2 25.9 
 220091_at SLC2A6 10.2 5.3 19.7 
 207414_s_at PCSK6 10.0 3.7 26.9 
 218585_s_at RAMP 9.6 3.7 24.6 
 203828_s_at NK4 9.3 4.2 20.4 
 204641_at NEK2 8.6 3.3 22.5 
 201292_at TOP2A 8.6 3.2 23.0 
 201890_at RRM2 8.6 3.0 24.8 
 201291_s_at TOP2A 8.6 2.5 29.3 
 213126_at MED8 8.2 3.8 18.0 
 203708_at PDE4B 8.0 3.0 21.4 
 209218_at SQLE 8.0 4.1 15.3 
 202779_s_at UBE2S 7.9 2.3 27.5 
 213479_at NPTX2 7.8 4.4 13.9 
Decreased      
 204487_s_at KCNQ1 85.5 49.2 148.6 
 206294_at HSD3B2 41.1 16.1 104.7 
 204621_s_at NR4A2 26.9 11.5 63.0 
 214630_at CYP11B2 26.2 11.9 57.9 
 214321_at NOV 24.4 10.8 55.3 
 209613_s_at ADH1B 21.6 10.9 42.8 
 216248_s_at NR4A2 19.2 8.5 43.6 
 204501_at NOV 19.1 9.6 38.2 
 211959_at IGFBP5 18.2 11.3 29.5 
 203523_at LSP1 17.9 10.5 30.5 
 208606_s_at WNT4 17.3 8.3 36.1 
 213764_s_at MFAP5 15.7 4.3 56.6 
 204622_x_at NR4A2 15.5 7.8 31.1 
 209496_at RARRES2 14.3 6.7 30.2 
 202768_at FOSB 14.0 4.8 41.2 
 217767_at C3 13.7 7.2 26.2 
 211217_s_at KCNQ1 13.6 6.4 29.1 
 202994_s_at FBLN1 13.2 6.9 25.3 
 203131_at PDGFRA 13.0 7.9 21.6 
 205969_at AADAC 12.2 5.4 27.8 
 203798_s_at VSNL1 12.0 6.0 23.8 
 203424_s_at IGFBP5 11.1 6.6 18.5 
 204457_s_at GAS1 11.0 5.3 22.9 
 213994_s_at SPON1 10.8 3.9 30.0 
 211896_s_at DCN 10.8 6.2 18.8 
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Figure 3-2 Dysregulation of IGF-II Gene Expression in Pediatric 
Adrenocortical Cancer. A) IGF-II mRNA levels are significantly higher in tumors 
compared to normal tissue. B) IGF-II protein is overexpressed in adrenal tumors, 
but incompletely processed. 
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pro-forms of IGF-II, including the prominent 20 kDa form of the protein, were 

overexpressed in the ACT samples. In addition, the expression of  NOV 

(nephroblastoma overexpressed), a member of the CCN gene family of secretory 

proteins that plays a role in cell adhesion, was significantly lower in the ACT 

samples compared to normal adrenal tissue (Table 3-2; Fig. B-1). Loss of NOV 

expression in the pediatric ACT samples is also in agreement with those reported 

in adult ACT studies by Martinerie et al (190), further corroborating our dataset.  

 

3.3.4 Cell Origin of Pediatric Adrenocortical Tumors 

  Type II 3β-hydroxysteroid dehydrogenase (HSD3B2), a steroidogenic 

enzyme responsible for the conversion of pregnenolone to progesterone in the 

synthesis of glucocorticoids, mineralocorticoids, and androgens, is expressed at 

programmed times during adrenal development [for review, see (191)]. During 

late embryogenesis, HSD3B2 is preferentially expressed in the adrenocortical 

definitive zone, but not the fetal zone. After birth, HSD3B2 expression is 

restricted largely to the zona glomerulosa and zona fasciculata. Microarray 

analyses demonstrated that the median expression of HSD3B2 in pediatric ACT 

samples is roughly 40-fold less than that of normal controls. This finding was 

confirmed by qRT-PCR and Western blot analysis (Fig. 3-3). Moreover, the 

expression of NURR1 (NR4A2) and NGF1-B (NR4A1), transcriptional regulators 

of HSD3B2 gene expression (192), were concomitantly lower in the ACT 

samples (Table 3-2; Figs. B-2 and B-3). The expression of KCNQ1, which 
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Figure 3-3 Dysregulation of HSD3B2 Gene Expression in Pediatric 
Adrenocortical Cancer. A) HSD3B2 transcripts are markedly lower in adrenal 
tumors than in normal tissue. B) HSD3B2 protein levels are reduced in tumors 
compared to normal tissue.  
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encodes a voltage-dependent potassium channel, was also lower (~85-fold) in 

the pediatric ACT samples than in normal adrenal cortex (Table 3-2). Murine 

Kcnq1 is preferentially expressed in the cortical zona glomerulosa (193), but not 

in the adrenal medulla. Taken together these results suggest that pediatric 

adrenocortical tumors may arise from either the fetal zone or the more 

developmentally mature zona reticularis or zona fasciculata.  

 

3.3.5 Comparison between Adult and Pediatric Adrenocortical Tumors   

 Giordano and coworkers recently identified differences in gene expression 

patterns between adult ACT and normal tissue using the Affymetrix human U95A 

gene chip (138). Independently, Rainey and colleagues compared the gene 

expression profiles of normal human fetal and adult adrenal cortex using a cDNA 

microarray approach (137). To our knowledge there have been no published 

studies to date comparing adult and pediatric ACT gene expression in a 

comprehensive manner.  

To compare expression profiles across studies, we queried our microarray 

dataset for the genes identified as significantly changed in the other 2 studies. 

We then used expression values relative to normal tissues within each study 

(Log2Ratio) to compare gene profiles across studies. These analyses showed 

that the most significant differences identified in the comparison between adult 

adrenal tumors and normal adult adrenal cortex  were remarkably similar to our 

findings comparing childhood adrenocortical tumors (adenoma and carcinoma) to 

normal cortex (τ = 0.56, p = 0.001; Fig. 3-4, left panel). Moreover, the observed  
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Figure 3-4. Comparisons of Pediatric ACT Gene Expression Profiles to 
Adult ACT (left panel) and Fetal Adrenal Cortex (right panel) Gene 
Expression Profiles.  
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direction of association was the same for 147 of 153 probe sets in our study 

corresponding to their reported fold-changes (p < 0.001).  

Expression of IGF-II and HSD3B2 was dysregulated in a similar manner in 

both adult and childhood ACT, however, the degree of IGF-II expression appears 

to be greater in the adult tumors [200- versus 20-fold; (187)], possibly due to the 

relatively lower levels of IGF-II in the normal adult adrenal cortex (137, 138). 

There was also remarkable correlation in gene expression profiles between 

normal fetal adrenal tissue (137) and pediatric adrenocortical tumors (τ = 0.34,   

p = 0.022; Fig. 3-4, right panel).  Additionally, the direction of association agreed 

for 99 of 127 probe sets corresponding to genes for which they report fold-

changes (p = 0.006). These results indicate that both adult and pediatric ACT 

resemble fetal tissue with respect to gene expression patterns. Furthermore, our 

findings suggest that adult and childhood adrenocortical tumors may select for 

common genetic and biochemical alterations and may be more physiologically-

related than previously considered.  

 

3.3.6 Differences between Pediatric Adrenocortical Carcinoma and         
Adenoma  

 
There are no definitive tests to predict ACT malignant potential. Tumor size 

is one of the most consistent prognostic indicators in children with completely 

resected ACT (133), although it is not uncommon for patients with small tumors 

to experience relapses. We therefore compared gene expression profiles of ACT 

that were classified by histologic criteria as either ACA or ACC to identify 

changes that may distinguish between these risk groups.  
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For 52 probe sets, we detected differences in expression between ACA and 

ACC that were significant at the p = 0.001 level [Figs. 3-5; 3-6; (187)]. We 

estimate that 56% or more of the detected differences represent true discoveries. 

Among this set was a consistent and marked decrease in the expression of major 

histocompatibility class II genes. Specifically, the median expressions of HLA-

DRB1, HLA-DPB1, HLA-DRA, and HLA-DPA1 mRNA levels were 6- to 8-fold 

lower in pediatric ACC than in ACA. Similar findings have been recently reported 

by Bornstein and coworkers in a study of adult ACT (194, 195). HLA-class II 

expression may therefore serve as a marker for distinguishing between ACC and 

ACA. 

 

3.4 Discussion 

We have established the first pediatric ACT gene expression profile 

database. Analysis of the ACT panel revealed a marked increase in FGFR4 and 

IGF-II expression, and a sharp decrease in KCNQ1, CDKN1C, and HSD3B2 

gene expression in the ACT samples compared to normal adrenal cortex. In 

support of these results, qRT-PCR and western blot analyses confirmed the 

differential expression of several of these factors (Figs. 3-2; 3-3). Giordano and 

coworkers also detected a similar pattern of IGF-II, KCNQ1, and CDKN1C 

expression in adult ACC (138). All three of these genes are localized to an 

imprinted locus on chromosome 11p15, with IGF-II being normally expressed 

from the paternal allele and CDKN1C and KCNQ1 being expressed only from the  
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Figure 3-5. Heat Map of Differentially Expressed Genes Comparing 
Pediatric Adrenocortical Carcinomas and Adenomas. Median expression 
values calculated by the Wilcoxon rank-sum test generated data for 52 unique 
probe sets between adenoma and carcinoma significant at p = 0.001. Red, over-
expressed; green, under-expressed. The scale bar represents standard deviation 
from the mean. 
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Figure 3-6. Three-Dimensional Scaling of ACC and ACA Samples by 
Principle Component Analysis. Generated using the 52 probesets that best 
discriminate ACC vs ACA.  
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maternal allele [for review, see (141, 177)]. The coupled dysregulation of IGF-II, 

CDKN1C, and KCNQ1 (Table 3-2) implies an imprinting defect, similar to what 

has been observed in Beckwith-Wiedemann syndrome (141, 177). 

Overexpression of IGF-II in pediatric ACT was anticipated based on 

previously published reports (Fig. 3-1, Table 3-2) (136, 138, 189, 196). However, 

the finding that the majority of the tumors grossly overexpress immature forms of 

IGF-II was surprising, but not unprecedented based on adult ACT studies (139). 

Pro-IGF2 must be post-translationally modified by glycosylation and proteolytic 

cleavage before its mature, active 7.5 kDa form is secreted (197). Here, we have 

detected in the ACT samples, IGF-II proteins ranging from 14 to 22 kDa, but not 

the 7.5 kDa form, which was readily evident in normal adrenal cortex tissue. It is 

generally considered that the overexpression of IGF-II in ACT provides a growth 

advantage that drives tumorigenesis. Consistent with this hypothesis, transgenic 

mice engineered to express high levels of IGF-II develop adrenal hyperplasia 

(143) and recombinant IGF-II stimulates human fetal adrenocortical cell 

proliferation in culture (198). Since the IGF-type I receptor is concomitantly 

upregulated in the pediatric tumors analyzed here (187), it is reasonable to 

speculate that IGF-II may also play a role in pediatric adrenocortical 

tumorigenesis and therefore serve as a drug target. However, further 

consideration must be given as to whether these adrenal tumors secrete an 

active form of IGF-II that contributes to the growth and survival of these cells.   

Interestingly, basic Fibroblast Growth Factor-2 (bFGF-2) suppresses the 

processing of IGF-II in human adrenocortical tumor cells—thereby blocking its 
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secretion—resulting in a marked accumulation of intracellular IGF-II (199). 

Consistent with the high levels of partially processed IGF-II protein in the adrenal 

tumors, FGFR-1 and FGFR-4, both of which can be activated by bFGF-2, were 

found by microarray analysis to be significantly upregulated in the ACT samples 

(Table 3-2). Moreover, since bFGF is a potent angiogenic factor and is mitogenic 

for fetal adrenal cortex cells (200, 201), the inhibition of the FGFR signaling 

pathway may represent a rational approach in developing new treatments for 

pediatric ACT. In support of this concept, 17 of the most significant genes 

dysregulated in pediatric ACT [Fig. 3-1; (187)] function within the MAPK pathway, 

including NRAS, an immediate downstream target of FGFR signaling. 

The finding that the expression of KCNQ1, HSD3B2, and its 

corresponding transcriptional regulators NURR1 and NGF1B is markedly lower in 

pediatric ACT compared to normal adrenal cortex, supports the thesis that the 

tumors originate from either the fetal zone during embryogenesis, or the 

developing zona fasciculata or zona reticularis during the first few years of life. At 

the very least, the pediatric adrenal tumors share biochemical characteristics of 

these compartments. Since normal adult tissue is significantly different from the 

fetal adrenal cortex (137), the remarkable and somewhat unexpected similarity 

between adult and pediatric ACT implies the existence of an adrenal stem cell 

that may become corrupted to give rise to the developing tumor. Alternatively, the 

tumors, whether adult or pediatric, may undergo dedifferentiation as they develop 

(202).   
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In the present study, patterns of gene expression have been identified that 

distinguish ACC from ACA, which is often difficult to assess by standard 

histopathological approaches. Interestingly, 2 ACC cases, which have not yet 

relapsed, segregated with the ACA group [Fig. 3-5; 3-3 and (187)], underscoring 

the limitations of the histological criteria to predict tumor malignant potential. 

Future prospective studies should determine the utility of gene expression 

analysis in the classification and prognosis of pediatric ACT.  

Significant changes in the expression profiles between ACA and ACC 

included the MHC class II genes, which are largely restricted to hematopoietic 

lineages. Interestingly, the adrenocortical reticular zone also expresses MHC 

class II antigens after 4 years of age (194, 195). Based on the age of the patients 

diagnosed with ACA, it is reasonable to speculate that the relatively high MHC 

class II expression reflects an infiltration of immune cells that limits tumor 

potential (B.F., data not shown). Conversely, the association of low MHC-class II 

expression in the carcinomas may represent a mechanism to evade immune 

surveillance, which could contribute to its malignant phenotype (195).  

Little is known regarding the pathways and factors that promote pediatric 

ACT and there is no proven therapy for this rare malignancy other than surgery. 

Our findings identify potentially important components that may contribute to 

adrenocortical tumorigenesis. However, the establishment of genetically 

engineered mice, primary tissue culture cell lines, and/or human adrenocortical 

tumor xenografts will be required to explore new potential targets, such as 

FGFR4, IGF-II, and other dysregulated genes identified here. Only through these 
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efforts can advancements in the treatment of pediatric adrenocortical tumors be 

made. 
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CHAPTER 4: CONCLUSION 

 

4.1 Introduction 

We have identified dysregulation of several genes in pediatric 

adrenocortical cancer at the DNA, RNA, and protein levels. The first of these 

genes is the tumor suppressor p53. In Chapter 2, the novel germline p53 

mutation, R175L, was described in a pediatric ACC case in which the family did 

not have a prevalent cancer history. More importantly, the association of amino 

acid substitution within the p53 gene, especially the DNA binding domain with the 

incidence of cancer supports the importance of genetic screening for p53 

mutations and the assessment of their functions. However, p53 mutations do not 

fully explain the etiology of pediatric adrenocortical cancer. In Chapter 3, aberrant 

expression of gene transcripts such as IGF-II and FGFR4 were identified. In 

addition, loss of MHC Class II gene expression in pediatric adrenocortical 

carcinomas may be used as an alternative tool to pathologically distinguish 

between adenomas and carcinomas. Although the dataset is not large enough at 

this time to use transcript expression as a definitive method for diagnostic and 

prognostic purposes, the relevance of the data is significant considering this is 

the first study of its kind, comparing normal pediatric adrenocortical tumors to 

age-matched normal adrenocortical tissue and more importantly, distinguishing 

adenomas from carcinomas, thus giving it future potential to be utilized as a 

clinical tool.    
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4.2 The Impact and Future of p53 Mutation Screening on Genetic 
Counseling for Pediatric Adrenocortical Cancer Patients and Their Families 
 
 Because p53 is one of the most mutated genes in cancer (<50%) and is 

associated with LFS and LFLS, p53 genetic screening is critical to genetic 

counselors and physicians in predicting cancer susceptibility. Approximately 50-

70% of tumor-prone families are carriers of p53 germline mutations, as defined 

by LFS criteria. The frequency is lowered to approximately 20-40% when the 

criteria become less stringent as defined in LFLS. The remaining percentage of 

LFS families can possibly attribute cancer susceptibility to CHK2 mutations, 

although an accurate frequency has not yet been determined (203-205). 

Additionally, males in LFS families have a 70-90% increased lifetime risk of 

developing cancer while women have a 100% increased risk due to the incidence 

of breast cancer (150, 206).   

 Estimating the genetic predisposition to cancer based on the penetrance 

and frequency of p53 germline mutations is not only important to physicians but 

is of utmost importance to cancer patients who might experience surgery and 

post-operative radiation or chemotherapy and to their families who might undergo 

preventive treatment. Although the decision to undergo genetic testing is made 

available to all patients, about 40% actually follow through with screening (206). 

Genetic testing for families that have children with early-age tumor onset is of 

even greater importance due to the psychological burden it puts on the parent(s) 

or legal guardian(s). Parents and guardians experience increased awareness of 

their child’s illness and the devastation of the child’s inheritance of a genetic 

abnormality (207). If this is indeed the case and parents/guardians are properly 
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made aware of genetic screening, not only would members of Li-Fraumeni and 

Li-Fraumeni-Like Syndrome families be likely to complete genetic testing but 

those who belong to families that do not have a history of cancer would be 

expected to enroll in p53 genetic testing programs. This cohort of patients and 

their families would include those families that have children diagnosed with 

adrenocortical cancer. 

 Although pediatric adrenocortical cancer comprises only 3.6% of cancer 

cases in LFS, the incidence of germline p53 mutations is approximately 80% in 

pediatric adrenocortical cancer patients (134, 158). A number of these gene 

alterations are hot spot mutants. An exact frequency of hot spot mutants that 

occur in childhood adrenocortical cancer has not been assessed in the literature. 

However, accounting for tumors classified as either “adrenal cancer carcinoma” 

or “adrenocortical carcinoma” in the human TP53 mutation database, 

approximately 38% of p53 germline mutations associated with adrenocortical 

tumors occur in the DNA binding domain. Of that percentage, only 12% are 

associated with LFS. The remaining 58% are attributed to the mutations that 

occur in the tetramerization domain, specifically at codon 337 (31). Since 

childhood adrenocortical cancer is so highly associated with germline p53 

mutations compared to adult adrenocortical tumors, it should be assumed that 

the majority of these cancer cases listed in the database occur in children. Of 

ACT patient samples reported here, we found that approximately 90% of patients 

screened had a germline p53 mutation, approximately 70% of them harboring the 

R337H mutation due to the high number of patients originating from southern 
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Brazil. In pediatric ACT, the number of p53 germline hot spot mutations 

associated with LFS is reported to be quite low compared to mutations that are 

not classically associated with LFS, raising the question of the exact biology 

regarding p53 germline mutations in the onset of this tumor type. 

 Low-penetrance germline p53 mutations have been detected in pediatric 

adrenocortical tumors (134). Specifically, 9 of 11 patients carried mutations in the 

p53 DNA binding domain, i.e. P152L and R158H. Although these mutations 

occur in the hot spot region of p53, they are not considered hot spot mutants 

based on the frequency and penetrance at which they occur in tumor-prone 

families. At the time these mutations were found, there was only one other study 

that reported the P152L mutation in the germline of pediatric ACC patients and 

the R158H germline mutation had never been described. To date, the P152L and 

R158H mutations have been reported in approximately 4% and 0.9% of cancer 

cases, respectively. Neither mutant has been reported to be associated with LFS, 

but patients carrying these mutations have been categorized as belonging to 

LFLS families (31). As we have determined with the R175L mutation, it is 

important to characterize the structure-function relationship of these mutants in 

order to best advise families on genetic screening and preventive measures to 

take following cancer diagnosis. Function of the P152L mutant has not been 

analyzed in human cell lines but has been studied as a temperature-sensitive 

mutant in yeast cell lines. Data showed that P152L cannot transactivate the p21, 

Bax, or PIG3 promoters, suggesting that this mutant has impaired ability to 

transactivate target genes (208).  
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 The R337H mutation has been characterized as a low-penetrance 

mutation based on the incidence of cancer occurring in families with ACC 

probands. In a study of 36 ACC patients from 34 families in southern Brazil, 35 of 

these patients carried the R337H mutation (~97%) (43). Classical studies testing 

functions of this mutant including transactivation, colony suppression, and ability 

to induce apoptosis showed that R337H has activity comparable to wild-type p53 

protein. In addition, this mutant has yet to be associated with LFS or LFLS 

syndrome (154). Another mutant at this residue, R337C, is associated with LFS 

(42). Functionally, both proteins can bind to the p53 consensus sequence; 

however, the R337C mutant is structurally unstable at physiological temperature, 

while the stability of the R337H mutation is pH-dependent at physiological 

temperature. Specifically, the R337C mutation favors the monomeric over the 

tetrameric form of p53 at 37ºC. The R337H mutant protein is stable at pH 5 and 6 

at 37ºC and 90% of R337H molecules are folded. However, as the pH is 

increased to 8, approximately 70% of R337H molecules are unfolded (42, 151). 

The R337H mutation has been structurally characterized as more stable than the 

R337C at both physiological temperature and pH (37ºC and pH 7.0). However, in 

cells that exceed pH 7, the R337H protein may not structurally be stable enough 

to maintain its function, possibly explaining its involvement in the onset of 

adrenocortical cancer (151). A mouse model has been constructed using the 

R337H mutation. This model will provide phenotypic information and serve as a 

tool to study a low-penetrant p53 mutation that does not occur in the DNA-

binding domain. Heterozygous and homozygous R337H mutant mice will provide 
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information regarding the involvement of this mutant in the onset of tumors, 

especially those that arise in the adrenal gland. Because pediatric adrenocortical 

tumor patients in Brazil are heterozygous in the germline for the R337H mutation, 

the phenotype of heterozygous and homozygous R337H mice must be examined 

for tumor susceptibility. Heterozygous and homozygous R337H mice and 

hemizygous (R337H/-) mice must be challenged under various cellular stresses, 

including DNA damage by irradiation and chemical carcinogens, in order to 

determine the physiological effect of this mutant. 

 This study uncovered a low-penetrance p53 germline mutation associated 

with childhood adrenocortical cancer, R175L, which is now categorized in a class 

of structural p53 germline mutations that retains partial function under a specific 

set of conditions (discussed in Chapter 2). Particularly, the R175L mutant is 

active under stress conditions that signal cell cycle arrest but cannot function 

under conditions that require the cell to undergo apoptosis. Another mutation, 

p53-I332F, was also revealed in screening pediatric adrenocortical tumors for 

p53 germline mutations. The mutation was identified in both blood and tumor 

DNA. Penetrance of this mutation cannot be determined due to lack of patient 

family history. We are also unable to conclude whether or not this mutation is de 

novo. Functional studies identical to those performed for the R175L mutant 

showed that the I332F mutant retains wild-type function. This mutant may be 

similar to the R337H, though its structural stability has yet to be determined.  

 In addition to mutations, polymorphisms within the p53 gene must also be 

considered. A polymorphism at codon 72 in exon 4 either results in arginine 
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(R72) or proline (P72). An ethnic variation of this polymorphism was investigated 

over a decade ago, suggesting that P72 arose in Africans versus R72 which 

developed in northern European populations (209). In vitro studies in p53-null 

cells showed that the R72 form was a better apoptotic regulator than P72 (210). 

Within various ethnic populations, the R72/P72 polymorphism has been identified 

in a number of tumor types including lung cancer, hepatocellular carcinoma, 

breast, colorectal, cervical, thyroid, and skin cancer and is thought to be 

associated with p53 mutations (211-217). Although the in vitro data suggests that 

R72 is more effective at inducing apoptosis than P72, clinical data suggests in 

some tumor types, most affected patients are positive for R72, while in other 

cancers, P72 is selected. In our current database, only 2 of 35 patients are 

carriers of the P72 polymorphism. It is inconclusive at this time what role the 

R72P polymorphism plays in cancer and needs to be further elucidated. Another 

polymorphism at codon 47 resulting in either a proline or serine residue (P47S) 

has also been identified as an ethnic variation, occurring at a higher frequency in 

the African-American population than in the Caucasian population (218). Since 

its characterization in the human population, it was demonstrated in vitro that the 

S47 variant induces apoptosis 5-fold less well than its counterpart, P47, due to its 

inability to transactivate apoptotic regulators, such as p53AIP (p53-apoptosis-

inducing protein) and PUMA. We have not identified the P47 polymorphism in 

any of our pediatric adrenocortical cancer patients. However, both the S47/P47 

and the R72/P72 polymorphisms should be further characterized and their 
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cooperation with the low-penetrance p53 germline mutations, if any, should be 

clarified. 

 Low-penetrance germline p53 mutations account for only a small 

percentage of those associated with cancer. However, they comprise a large 

percentage of those germline mutations associated with pediatric adrenocortical 

cancer. If this is indeed the case, it is important to continue to screen for p53 

mutations in the germline and in tumors of pediatric adrenocortical patients and 

to determine their structure-function relationship in vitro and in vivo in order to 

provide more in-depth and accurate information for physicians to present to 

patients and their families. 

 

4.3 Future Importance of Gene Expression Profiling for Pediatric  
Adrenocortical Cancer Patients 

 
 We have characterized 24 pediatric adrenocortical tumors for global gene 

expression using Affymetrix microarray analysis. As mentioned above, this is the 

first study of its kind, comparing these tumors to age-matched normal adrenal 

tissue. Expression of dysregulated genes, including IGF-II and HSD3B2 were 

confirmed by real-time quantitative PCR and compared to protein levels by 

western blot analysis. We were also able to compare the expression profiles of 

these tumors to published normal fetal adrenal and adult ACT profiles. Most 

importantly, we have used this method in order to classify ACT as adrenocortical 

adenomas or carcinomas, based on MHC Class II gene expression, which was 

downregulated in carcinomas.  
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Gene expression profiling is rapidly becoming an increasingly important 

diagnostic tool, first suggested almost a decade ago (219, 220). Microarray has 

been used to identify gene expression associated with tumors in comparison with 

their normal controls. Microarray technology was initially used in cancer biology 

to distinguish between different cancer classes and subclasses. One of the first 

studies performed to divide cancers into classes using microarray technology 

compared 38 acute lymphoblastic leukemia (ALL) and acute myeloid leukemia 

(AML) samples for global gene expression (221). Another microarray study 

identified genes from 130 pediatric AML patients discriminating subsets of the 

disease which were used to classify 20 adult AML cases (222). In 2001, breast 

cancer gene expression studies using microarray were used to distinguish 

between estrogen receptor positive and negative tumors and breast tumors that 

expressed BRCA1 and BRCA2 (Breast cancer type 1 and breast cancer type 2), 

which puts women at a 50-85% lifetime risk for breast cancer (223, 224). 

Following these studies, a more comprehensive gene expression study using 

microarray compared 117 BRCA1 and BRCA2 breast tumors, metastatic breast 

tumors, and tumors arising in women who were disease-free for at least 5 years 

(225). These studies explored alternative methods in predicting survival and 

outcome for breast cancer patients based on gene expression instead of 

histologic grades and tumor staging, which is important for treatment. For 

example, 70% of breast tumors that are positive for both ER and PgR (Estrogen 

Receptor and Progesterone Receptor) are responsive to tamoxifen treatment, 

while ER positive/PgR negative tumors are not responsive to tamoxifen. 
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Predicting survival and outcome for breast cancer patients is important due to the 

poor prognosis and survival rates of women diagnosed at later stages of this 

disease, which is often catastrophic and fatal (226, 227). Considering pediatric 

adrenocortical tumors are histologically difficult to identify, it is important that 

alternative methods are used for diagnostic and prognostic purposes, such as 

gene expression profiling using microarray.  Current treatment of adrenocortical 

tumors is surgical resection of the tumor. Chemotherapy including mitotane, 

cisplatin, and etoposide are also used and has some impact on patient outcome 

(discussed in section 1.4). According to microarray data, growth factors and their 

receptors are dysregulated in ACT profiles. For example, FGFR4 is upregulated 

approximately 21 fold in tumors compared to normal. In addition, IGF-II probes 

are also upregulated 16-18 fold. Mechanisms of their dysregulation in ACT are 

unknown. However, it has been well-described in the literature that IGF-II is 

dysregulated in adrenocortical tumors. Specifically, IGF-II levels are increased in 

the higher 20 kDa protein form (discussed in section 3.4).  

IGF-II is located on an imprinted locus of chromosome 11p15.5, which 

includes a number of imprinted genes including KCNQ1, H19, and CDKN1C 

(p57KIP2/CIP2). Imprinted genes are preferentially expressed from either the 

maternal or paternal allele. The alleles which are not expressed, or imprinted, are 

silenced via methylation of the CpG dinucleotide by a number of de novo 

methylation enzymes during development of the germ cells into sperm and ova 

and maintained in somatic cells. Both KCNQ1 and IGF-II are maternally 

imprinted while H19 and CDKN1C are paternally imprinted (228). We also found 
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dysregulation of both CDKN1C and KCNQ1 in the pediatric ACT gene 

expression profiles. It is unclear whether or not there is an imprinting problem 

during embryonic development or if mutations arise in these genes during 

tumorigenesis. However, since these genes are imprinted, there is more likely an 

imprinting problem. Imprinting could possibly be confirmed using methylation-

specific PCR. H19 transcript expression could not be determined using the 

Affymetrix Human U133A array chip. However, quantitative real-time PCR should 

be used to determine H19 expression in pediatric ACT. IGF-II secretion in 

pediatric adrenocortical tumors can be measured by western blot from whole cell 

protein lysates isolated from a pediatric adrenocortical tumor cell line. 

FGFR4 (Fibroblast Growth Factor Receptor-4) is a member of the FGFR 

family, consisting of four tyrosine kinase receptors that bind FGFs (Fibroblast 

Growth Factors). FGFs are mitogens involved in a number of biological 

processes ranging from tissue regeneration to organ development. Specifically, 

FGFR4 binds FGF1, 2, 4, 6, 8, and 9 (229).  In the H295R adult adrenal cell line, 

FGF2 (bFGF) stimulates proliferation and blocks IGF-II secretion, prohibiting the 

pro-form from maturation into the final 7.5kDa form (199). This is another 

possible mechanism for IGF-II overexpression. FGFR4 overexpression should be 

confirmed by qRT-PCR and western blot for transcript and protein expression, 

respectively. Pediatric ACTs should be analyzed for FGF2 expression and mice 

with adrenal tumors, i.e. ACT xenograft models, should be analyzed for 

increased transcript and protein expression of FGFR4 and FGF2. Similarities in 

our prospective assessment of gene expression comparing adult and pediatric 
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ACT, inhibition of IGF-II by FGFR4 could be highly likely, thus making FGFR4 a 

strong candidate for therapeutic targeting using specific inhibitors.  

Of 21 ACT samples examined in the microarray study, all were positive for 

p53 germline mutations. p53-responsive genes were not comprehensively 

identified from the entire list of 14,500 genes. However, of the most dysregulated 

probe sets, pro-apoptotic regulator PMAIP, whose gene product is NOXA and 

GADD45A, which induces cell cycle arrest, were 13.1-fold and 2.67-fold 

overexpressed, respectively. Tumors that were positive for the R337H mutation 

must be compared against tumors that had other p53 mutations, including one 

which was associated with LFS (R273C), for expression of p53-responsive 

targets. This data must be elucidated to determine the downstream 

consequences of p53 germline mutations. 

There were 52 probe sets that differed between pediatric adrenocortical 

adenomas and carcinomas. Among those probe sets were MHC Class II genes 

which were downregulated in carcinomas and upregulated in adenomas. 

Downregulation of these genes may indicate the evasion of immune surveillance 

in pediatric ACT. MHC Class II genes, specifically HLA-DRB1 are downregulated 

in human adrenocortical carcinomas (194, 230) and in pancreatic carcinomas 

(231). MHC Class II genes are involved in Fas-mediated apoptosis through 

recognition of T-cell receptors on CD4+ cells. Downregulation of these genes 

could possibly compromise this interaction, Fas-mediated apoptosis and thus, 

immune surveillance (230). Because the sample size for this study was not 

statistically large enough to clearly confirm the differences between adenoma 
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and carcinoma, it must be expanded in order for this type of testing to be used for 

clinical diagnostics. Nonetheless, the differential expression between adenomas 

and carcinomas signifies that alternative testing can be used to histologically 

distinguish between these two subclasses of pediatric ACT.  
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APPENDIX A: CHAPTER 2 SUPPLEMENTAL DATA 
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Figure A-1. Transactivation of the Wild-Type p53 Responsive Promoter-
Luciferase Reporter by WTp53 and Mutant p53 Proteins in 10(1) Cell Line. 
CMV p53 expression plasmids (100ng) were transfected in duplicate and reporter 
activity measured as described in the Materials and Methods (Section 2.2).  
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Figure A-2. p53 Colony Reduction Assay Using Increased Plasmid Dose. 
SaOS-2 cells were transfected in duplicate with 1µg CMV p53 expression 
plasmids and selected by neomycin (G418) resistance. Colonies were stained by 
Giemsa dye and photographed (upper panel) and subsequently counted (lower 
panel). 
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Figure A-3. Quantitation of p53 Apoptosis in H1299 Cell Line. H1299 cells 
were plated at 4x103 per 35mm2 dish and co-microinjected with pGreenLantern 
(GFP) and CMV p53 expression plasmids and monitored for apoptosis as 
described in Materials and Methods. H1299 cells counted at 24, 48, and 72 
hours. Representative of three independent experiments.  
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APPENDIX B: CHAPTER 3 SUPPLEMENTAL DATA 

 

Table B-1. qRT-PCR Primer Set Sequences and PCR Conditions. 

 Gene Primer Sequence PCR Conditions
Set 1     

 IGF-II   

   
  
   
     

   
 

 

  
  
   
  
 
   
   
   
   

Forward 5'-CTTCTACTTCAGCAGGCCCG-3' 95ºC-3' - 1x 
  Reverse 5'-TAGCACAGTACGTCTCCAGGA-3' 95ºC-10'', 61.2ºC-45'' - 40x 
    95ºC-1', 55ºC-1' - 1x  

NOV
 

Forward 5'-CACGGCGGTAGAGGGAGATA-3' 55ºC-10"- 80x 
 Reverse

 
 5'-GGGTAAGGCCTCCCAGTGAA-3'

 

Set 2
 

 
HSD3B2
 

 Forward 5'-GCGGCTAATGGGTGGAATCTA-3' 95ºC-3' - 1x 
Reverse 5'-CATTGTTGTTCAGGGCCTCAT-3' 95ºC-10'', 64.3ºC-45'' - 38x 

    95ºC-1', 55ºC-1' - 1x 
NR4A1
 

 Forward 5'-AAGCCACATTGTTGCCAAGACCTG-3' 55ºC-10" - 80x 
 Reverse

 
 5'-TGGTGTCCCATATTGGGCTTGGAT-3'

 
NR4A2
 

 Forward 5'-GGCTTCTTTAAGCGCACAGTGCAA-3' 
 Reverse

 
 5'-TGAAATCGGCAGTACTGACAGCGA-3'

 
FGFR4
 

 Forward 5'-TGATGGCCCAAATGTCAGGGTTCT-3'
Reverse
 

 5'-TTTAGCATAGCAGCTCTCCAGCCA-3'
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Figure B-1. NOV Gene Dysregulation in Pediatric Adrenocortical Cancer. 
NOV transcripts are markedly lower in adrenal tumors than in normal tissue.  
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Figure B-2. Dysregulation of NR4A1 Gene Expression in Pediatric 
Adrenocortical Cancer. NR4A1 transcripts are markedly lower in adrenal 
tumors than in normal tissue.  
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Figure B-3. NR4A2 Gene Dysregulation in Pediatric Adrenocortical Cancer. 
NR4A2 transcripts are markedly lower in adrenal tumors than in normal tissue.  
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