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ABSTRACT

Changes in the diabetic retina likely occur in response to a variety of insults, 
including high glucose, oxidative stress, and increased levels of inflammatory markers. 
Müller cells become activated and express increased glial fibrillary acidic protein levels 
in diabetes. This suggests that these cells are in a reactive state that may alter their 
regulation of inflammatory markers, glucose transport, oxidative stress, growth factors, 
and cell survival. During the onset of diabetes, there is a loss of sympathetic nerve 
activity that takes place in different regions of the body. Previous studies from our lab 
suggested that loss of sympathetic neurotransmission induces diabetic-like changes to the 
retina, specifically in Müller cells and endothelial cells.

In previous studies, we found that retinal Müller cells possess beta-1 and 
beta-2-adrenergic receptors, and with those findings we used a non-specific beta agonist, 
isoproterenol as a treatment to stimulate both receptors. In addition we used a selective 
beta-2-adrenergic receptor agonist, salmeterol, to selectively stimulate the 
beta-2-adrenergic receptor in Müller cells. Salmeterol significantly increased tyrosine 
phosphorylation of the insulin receptor, Akt, and significantly reduced apoptosis in 
retinal Müller cells.  Our data showed that salmeterol reduced TNF- levels. TNF-
phosphorylates IRS-1 on Ser307 and inhibits insulin signaling.  Salmeterol inhibited,
TNF- and thereby increased insulin signal transduction. 

Based upon these findings, we generated shRNA against TNF- -1.
Knockdown of IRS-1 with shRNA significantly increased in cell death compared to 
retinal Müller cell samples cultured in 5mM glucose alone.  However stimulation of
beta-2-adrenergic receptor prevented cell death through IRS-1 in a hyperglycemic 
environment. We demonstrated that knockdown of TNF- by shRNA significantly 
reduced the phosphorylation of serine 307 on IRS-1, leading to increased Akt activity.  
Our results are in agreement with other studies in adipose cells, which found TNF- to be 
a negative regulator of the insulin receptor signaling. We believe that these results
provide a putative mechanism for the effects of beta-adrenergic receptors in reducing 
retinal damage in diabetes.   These studies will help to further characterize the function of 
beta-2-adrenergic receptors in the retina and also in a disease state, such as diabetic 
retinopathy.  
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CHAPTER 1.   GENERAL INTRODUCTION

Introduction to the Autonomic Nervous System

The autonomic nervous system is an involuntary system that regulates the heart, 
blood vessels, immune system, lungs, and eye.  This system is divided into two 
subsystems, parasympathetic nervous system and sympathetic nervous system.  The 
parasympathetic nervous system is responsible for the “rest and digest,” nonemergency 
actions throughout the body such as slowing heart rate, pupil constriction, increasing 
digestion and other opposing actions of the sympathetic nervous system. The sympathetic 
nervous system is responsible for the “fight or flight” response in times of stress and 
excitement. These responses are mediated by two endogenous neurotransmitters, 
norepinephrine, and epinephrine.  During times of stress, the adrenal medulla releases 
epinephrine into the bloodstream causing physical effects such as increases in heart rate, 
pupil dilation, increase in sweating, etc, while sympathetic nerve terminals release 
synaptic norepinephrine in the target organs. The action of catecholamines are mediated 
by alpha and beta-adrenergic receptor that are selectively distributed in all organs of the 
body.

Brief History of Beta-Adrenergic Receptors

In 1948, Ahlquist provided the initial characterization of beta-adrenergic 
receptors.1 These investigations led Ahlquist to classify the receptors based upon 
responses to agonists in different tissues throughout the body.1 The adrenergic receptors 
were classified alpha (excitatory) and beta (inhibitory); the beta-adrenergic receptors 
received their name based upon the “insensitivity” of these drugs to -haloalkylamines.   
Further work by Land et. al in 1967 duplicated some of the previous work of Ahlquist, by 
comparing various adrenergic agonists on the stimulation of beta-adrenergic receptors, in
various tissues.2 Results from these studies led to two different receptor subtypes: 
beta-1-adrenergic receptor and beta-2-adrenergic receptor.3 Studies into the structure of 
beta-adrenergic receptors revealed that these subtypes of receptors possess an alpha 
helical membrane-spanning region that contains seven clusters of hydrophobic amino 
acids.4 The beta-1-adrenergic receptor contained 477 amino acid residues compared to 
the 413 residues of the beta-2-adrenergic receptor. Further studies into similarity of 
sequence homology between the two subtype of receptors, suggested a 54% sequence 
homology in beta-1 vs. beta-2 adrenergic receptor.4 Since the sequence homology 
contained a lot of variability between the two subtypes, the author decided to investigate 
the sequence homology within the transmembrane regions, since this region is believed to 
be the key to G protein coupling.  The results showed a 71% transmembrane sequence 
homology between the two-receptor subtypes.  Although amino acid sequences were 
noticed, none of the differences were specific enough to explain the difference in 
catecholamine binding affinities. 

Additional findings have suggested that each receptor subtype had dominance in 
different tissues throughout the body.2 For example, results suggested that the beta-1
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adrenergic receptor is the dominant receptor in the heart, while beta-2 adrenergic receptor 
is found to be dominant in the lungs and uterus.1 Sensitivity in affinity to epinephrine 
and norepinephrine is equal for the beta-1 adrenergic receptor, but the beta-2 adrenergic 
receptor has higher affinity and sensitivity to epinephrine versus norepinephrine.5 The 
classification of these two specific beta-adrenergic receptor subtypes is widely accepted 
today, but additional data indicated that there was an additional adrenergic receptor that 
did not respond to non-selective agonists and antagonists.  The newly found receptor
subtype, beta-3 adrenergic receptor, was identified with selective agonists and observed 
to possess characteristics of the two previously discovered beta-adrenergic receptors.2

Beta-Adrenergic Receptor Signaling

The beta-adrenergic receptors are family A members of the G protein-coupled 
receptors (GPCRs) .The activation of beta-adrenergic receptors takes place in a site 
within the transmembrane region, which allows ligand binding of two neurotransmitters 
norepinephrine and epinephrine.6 Norepinephrine and epinephrine signal through 
guanine nucleotide binding proteins (G proteins) to elicit various cellular actions such as 
phosphorylation of receptors and activation of various signaling pathways.  G proteins 
consist of three functional subunits, a large alpha subunit, a beta subunit, and a gamma 
subunit.  The beta and gamma subunits are coupled together making them active, while 
the alpha is alone but is responsible for most of the signaling.  The alpha subunit is 
divided into four families, Gs, Gi, Gq, and G12, based upon sequences of amino acids 
rather than functional characteristics.  Signaling through the G proteins takes place upon 
stimulation of a receptor (in this case the beta-adrenergic receptor) by a neurotransmitter, 
or agonist, which would activate the G-protein.  Activation of G-protein will initiate 
exchange of GDP for GTP to activate the alpha subunit and separate from the coupled 
beta –gamma subunits.  Once the GTP is exchanged, further signaling is carried out by 
the G-alpha and GTP complex, which propagates the signal to the effector molecule, 
adenylyl cyclase .7,8 Enzymatic activity of adenylyl cyclases is commonly stimulated by 
the alpha subunit of the Gs protein, which leads to conversion of ATP to the second 
messenger, 3’-5’-cyclic AMP (cAMP).7,8

This second messenger, cAMP activates protein kinase A (PKA) to elicit its 
biological effects on a cellular level (Figure 1-1). The activity of PKA results from a 
conformational changes to its structure, which consists of two R subunits (regulatory) and 
two C subunits (catalytic). The C2R2 structure of PKA is inactive because the C subunit 
is bound to the R subunit, separating the holoenzyme to make PKA active.7,8 The active 
form of PKA phosphorylates many substrates, such as cAMP responsive element binding 
protein (CREB).9 Phosphorylation of CREB by PKA at Ser 133 activates CREB and 
allows CREB to bind cAMP-responsive element (CRE).9 At Ser 133, CREB binds the 
KIX domain of CREB binding protein (CBP) to serve as a coactivator.9 Recruitment of 
CBP assists with transcription by forming the transcription initiation complex at the 
initiation site for CRE containing portions of a particular gene.9 Recruitment of CBP at 
Ser 133 and activation of CREB are involved in transcription in a number of pathways,
including the P42/44 MAP kinase, PI3K/AKT, and matrix metalloproteinases pathways.10
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Figure 1-1. Activation of PKA by beta-adrenergic receptors

-adrenergic   
-AR) following treatment with agonist in retinal Müller cells. Adapted with 

permission. Pepe S, van den Brink OWV, Lakatta EG, Xiao R-P. Cross-talk of opioid 
peptide receptor and beta-adrenergic receptor signalling in the heart. Cardiovascular 
Research 2004;63:414-422.14
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These pathways have all been implicated in diabetic retinopathy, involving angiogenic 
effects, stimulation of growth factors, and breakdown of the blood retinal barrier.11-13

PKA activity is regulated by phosphorylation of proteins on a subcellular 
level.6,15-17 Target and choices of protein phosphorylation are determined and influenced 
by the localization of the targeted substrate and enzyme within a specific cell.  In order 
for proper protein phosphorylation and other protein interactions to take place, the 
substrate and the enzyme must be in the same proximity of one another within the 
cell.6,15-17 Regulation on a subcellular level of PKA is dependent upon the regulatory
subunits, which bind to various proteins (scaffolding, anchoring, and adaptor) at specific 
sites within the cell. Various studies have suggested that targeting the isoforms of PKA is 
done by A-Kinase Anchor Proteins (AKAPs).7,18-20 AKAPs consist of more than 50 
members that function to target substrates to certain subcellular sites.7,18-20 AKAPs 
contain a conserved motif that possesses high affinity binding to the regulatory subunit of 
PKA.  Binding of the RII subunit to AKAP creates an AKAP-PKA complex that anchors  
and targets PKA within the cell, In addition to binding PKA, AKAPs bind other kinases, 
such as PKC and phosphatases.  The complexes establish a foundation for 
synchronization of enzyme activities, in time and space.7,18-20

After signals have been tranduced through protein phosphorylation via 
cAMP-PKA and AKAP pathways, the signal and response become weakened.   This 
weakened signal is attributed to the beta-adrenergic receptors that are still being 
stimulated by binding of a agonist, that are now undergoing a process of desensitization.  
This process of homologous receptor desensitization is initiated by phosphorylation of a 
G protein coupled receptor protein kinase (GRK).6, 15-17 The family of GRK consists of 
four members, GRK2 (beta-adrenergic receptor kinase 1), GRK5, GRK3 (beta-adrenergic 
receptor kinase 2), and GRK6.6,15-17 Phosphorylation of GRK in the C-terminal region of 
the beta-adrenergic receptor causes the attachment of beta arrestin, disrupting signaling of 
G protein.6,15-17 Beta arrestins also recruit clathrins to initiate the formation of 
clathrin-coated vesicles. Internalization causes the beta-adrenergic receptor to become 
dephosphorylated; at this point the receptor will be directed back to the cell 
membrane.6,15-17 The internalization of the beta-adrenergic receptor functions to disrupt 
signaling following extended periods of agonist bound stimulation.  

Regulation of Sympathetic Neurotransmission in the Retina

In diabetes there is a loss of sympathetic nerve activity leading to dysfunction of 
the kidneys, heart, and peripheral vasculature.21 For example, loss of sympathetic 
neurotransmission in the pancreas has been shown to inhibit release of insulin from 
pancreatic beta cells in response to high glucagon levels.22 Sympathetic nerves induce 
dilation of the pupils in the eye, by stimulation of ciliary nerves.23 Damage to these 
sympathetic nerves causes ptosis (droopiness of the eyelid), primarily seen in Horner’s 
syndrome.24 Other investigations of sympathetic neurotransmission in the eye, such as in 
the retina, have been controversial.  
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Previous investigations by Laties and Jacobowitz (1966) did not observe 
sympathetic innervation in the retina by immunohistochemical analysis.25 However, 
Furukawa (1987), using both immunohistochemical and transmission and scanning 
electron microscopy, demonstrated that the retina does receive sympathetic innervation.26

Further studies have shown that sympathetic innervation from the superior cervical 
ganglion is responsible for the ocular blood flow in choroidal and retinal blood vessels in 
hypertensive cats.27 Results from these studies demonstrate that sympathetic nerves are 
likely present in retina.10

Loss of sympathetic neurotransmission in the retina could be responsible for some 
of the changes that take place in diabetic retinopathy. Past investigations in our lab have
shown that surgical removal of the superior cervical ganglion, which eliminates 
sympathetic neurotransmission to all cranial targets, can produce classic hallmarks of 
diabetic retinopathy such as pericyte dropout, basement membrane thickening, and 
Müller cell activation.28,29 In addition, we have shown that loss of sympathetic 
neurotransmission can lead to loss of cells in the ganglion cell and outer nuclear layers.30

SNS Interactions in Inflammation 

One potential mechanism by which the sympathetic nervous system might be
involved in diabetes is decreasing inflammatory markers. Inflammation is often 
associated with increased blood flow, swelling, and permeability of the vasculature, and 
increase in inflammatory markers in cytokine activity.31 Sympathetic neurotransmitters 
such as norepinephrine are able to decrease inflammatory characteristics such as 
phagocytosis, apoptosis, and natural killer cell activity, as well as inhibiting production of 
certain inflammatory markers.  One key inflammatory marker is TNF- , which is 
produced in a variety of cells, including macrophages, astrocytes, microglia, and reactive 
retinal Müller cells.32 In rheumatoid arthritis, TNF- and another inflammatory marker, 
IL-1 are believed to be upregulated in T-cells.33 Studies have shown that T-cells secrete 
IL-1 and TNF- in response to a stress in this condition.33 Cyclic AMP and PKA 
decreases production of inflammatory cytokines T-cells.33 Previous research has shown 
that signaling in rheumatoid arthritis is attributed to the beta-2 adrenergic receptor 
subtype.33 Further studies suggest that treatment with a beta-2 adrenergic receptor 
agonist, salmeterol, is able to block T-cell activation, which blocks production of 
inflammatory markers TNF- and IL-1 .33

In ocular inflammation, TNF- may be involved in induced uveitis, retinal 
degeneration, glaucoma, and diabetic retinopathy.34 Some of the effects of TNF-
include cellular apoptosis and crosstalk with other inflammatory markers, such as iNOS, 
ICAM-1, and prostaglandins. Specifically, in glaucoma, reactive Müller cells rapidly
increase production of TNF- , while other retinal cells are devoid of this cytokine.34 In 
diabetes, TNF- was significantly increased in diabetic rats as compared to control rats.35

This finding is in agreement with other data that suggest that inflammation may occur in 
response to high glucose in retinal cells.35 In human diabetic vitreous samples, increased 
levels of TNF- and IL-1 were detected.35
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Beta-adrenergic receptor signaling may inhibit cytokine release in a 
hyperglycemic environment. Müller cells are activated in a hyperglycemic environment, 
and that beta-adrenergic receptors on these cells may regulate cytokine activities. In rat 
Müller cells significantly upregulated TNF- as well as other cytokines such as IL-1 ,
and iNOS in 25mM glucose.36 After treatment with isoproterenol, Western blot and 
ELISA analysis revealed that protein levels of TNF- , IL-1 , and iNOS were 
significantly decreased as compared to control cells.36 Literature has shown that with the 
onset of diabetes, an inhibitory mechanism occurs in which phosphorylation by 
IRS-1Ser307 is induced by the upregulation of inflammatory cytokine, TNF- This event 
can play an inhibitory role in insulin receptor signal transduction, leading to the increased 
apoptosis noted in the diabetic retina.  

Role of Insulin Receptor Signaling in Retina

Insulin is a hormone that starts out as a peptide, preproinsulin, which consists of 
110 amino acids.37 The first 24 amino acids are the pre form, which guides the peptide 
for cleavage in the endoplasmic reticulum.38 Following cleavage, the proinsulin portion 
is left and form the A and B chains, both of which are stored in the beta cells of the 
pancreas.38 Insulin synthesis begins when disulfide bridges link the A and B chains.

The action of insulin is mediated by binding of insulin to the insulin receptor, 
which is located on the cell membrane.38 This receptor is made up of two alpha subunits 
and two beta subunits, which are connected by disulfide bonds.37,39 The actions of insulin 
are initiated when the receptor becomes bound on the alpha subunits and this binding of 
receptor causes phosphorylation of tyrosine kinases on the beta subunits inducing a 
conformational change of the receptor.37,39 The beta subunits of the insulin receptor 
become phosphorylated due to the binding of insulin, initiating a conformational 
change.37,39 Following tyrosine phosphorylation of the beta-subunit of the insulin 
receptor, one of the 30 or more tyrosine or serine/threonine residues on the insulin 
receptor substrate (IRS) complex becomes phosphorylated.37,39 Following insulin 
stimulation, phosphorylation of Akt on Ser 473 will occur downstream of the IRS 
complexes to inhibit apoptosis. 

Das et al. (1984) suggested the possibility of insulin being produced in other 
tissues beyond the beta cells of the pancreas.40 In these studies, using insulin antibodies 
in rodent retinal glial cells, Das found that these cells could produce insulin and that
insulin receptors were present in glial cells, likely Müller cells.40 From these initial 
studies, recent results have further suggested that receptors for insulin are present in the 
eye, specifically the retina.41-44 Further studies by Budd (1987) found the presence of the 
precursor of insulin, preproinsulin, in mRNA from an intact rat retina.45 These studies 
suggest that the retina has might or is capable of synthesizing insulin and activate insulin 
receptor signal transduction.  

Other investigations using both ex vivo and in vivo methods were initiated to 
better understand the mechanisms of insulin action in the retina. Gardner et al. (2006)
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have shown that insulin is able to decrease apoptosis induced by serum starvation using 
rat retinal explants.37 This study revealed that insulin inhibited the cleavage of caspase 3, 
which decreased apoptosis and increased cell survival.37 This reduction of cell death was 
suggested to be modulated by an Akt- mediated pathway, since inhibitors to PI3K also 
inhibited the actions of insulin.37

While insulin signaling in the retina has been previously investigated, few studies
have targeted the role of beta-adrenergic receptor regulation of insulin signaling in the 
retina.  However, there is abundant literature from other cell types describing an 
interaction between insulin and beta-adrenergic receptor signaling, which appears to be 
dependent on the glycemic environment of the cells in question.  In vascular smooth cells 
cultured in normoglycemic conditions, insulin can augment beta-adrenergic receptor 
signaling, while insulin can inhibit beta-adrenergic activation of PKA in cells cultured in 
high glucose conditions.46,47

My dissertation work investigates the interactions between insulin signaling and 
the beta-2-adrenergic receptor in retinal cells in both normal glycemic and hyperglycemic 
conditions in retinal Müller cells. We have previously shown that the Müller cells possess 
beta-1 and beta-2-adrenergic receptors. The goal of this work was to identify the 
dominant beta-adrenergic receptor present on Müller cells to allow for more detailed 
analysis of subtype specificity in beta-adrenergic receptor regulation of insulin signaling.

We have shown that Müller cells display an increase in various inflammatory 
markers; specifically TNF-
isoproterenol, a non-specific beta-adrenergic receptor agonist, decreases levels of TNF-
Previous findings in adipose tissue cells, suggest that TNF-
receptor signaling by phosphorylating IRS-1Ser 307 to inhibit insulin action, and 
decreasing the phosphorylation of Akt.  Additionally, TNF- tivates JNK, which is also 
known to phosphorylate IRS-1Ser 307 in adipose tissue.31 This event can play an 
inhibitory role in insulin receptor signal transduction by potentially leading to the 
increased apoptosis noted in the diabetic retina. 

To address this question, we use selective antagonists and agonists for both 
beta-1 and beta-2-adrenergic receptors on Müller cells followed by a comparison of the 
affect of each drug to previous responses of isoproterenol treatment on cleaved caspase 3 
levels.   These findings suggest that the beta-2-adrenergic receptor is the dominant 
receptor subtype to mediate insulin receptor signaling on Müller cells.  This research
presented here will dissect the mechanisms by which beta-adrenergic receptors regulate
TNF- and insulin receptor actions in Müller cells. Our hypothesis is that beta-adrenergic 
receptors will decrease TNF- , which will increase insulin receptor signaling. These 
results are invaluable in understanding of the critical role of insulin in diabetic 
retinopathy.
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Research Objective and Specific Aims

Objective

Diabetic retinopathy causes loss of sympathetic neurotransmission and produces
significant changes in the retina, including vascular, glial, and neuronal changes that 
occur during the progression of diabetic retinopathy.  Based on this work, our conceptual 
hypothesis is that loss of sympathetic neurotransmission leads to decreased insulin 
signaling and increased apoptosis in the retina. The overall objective of this project is to 
define the mechanisms by which sympathetic neurotransmission modulates insulin 
signaling and apoptosis in the retina, specifically in retinal Müller cells. 

Specific Aim 1 

The first aim of this dissertation was to determine the mechanisms by which 
beta-adrenergic receptors modulate insulin signaling in retinal Müller cells.

Specific Aim 2

The second aim of this dissertation was to determine how beta-adrenergic
receptor mediated regulation of insulin signaling inhibits apoptosis. 

Specific Aim 3

The third aim of this dissertation was to determine which G protein is necessary to 
regulate insulin receptor actions in Müller cells following stimulation with salmeterol.
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CHAPTER 2.   SILENCING OF INSULIN RECEPTOR SUBSTRATE-1
INCREASES CELL DEATH IN RETINAL MÜLLER CELLS

Introduction

Over the years, it has been widely accepted that changes that occur in the diabetic 
retina occur in response to a variety of insults, including high glucose, oxidative stress, 
and increased expression of inflammatory markers.31,49-58 During the initial stages of 
diabetic retinopathy, Müller cells become activated and express increased glial fibrillary 
acidic protein (GFAP) levels in diabetes.52,53,58-62 This increase in GFAP levels signals a 
transition of Müller cells from a quiescent to a reactive state, causing a dysfunction in the 
regulation of inflammatory markers, glucose transport, oxidative stress, growth factors, 
and cell survival.52,53,58,62-65 In diabetic retinopathy, the regulation of insulin signaling, 
specifically that of insulin receptor substrate 1 (IRS-1), is not well understood. IRS-1 is a 
180 kD downstream substrate of the insulin receptor and plays a central role in both 
insulin and insulin-like growth factor (IGF-1) signaling.66-70 IRS-1 has been shown to 
have numerous sites for phosphorylation of serine, threonine, and tyrosine, with some 
sites serving to propagate insulin/IGF-1 receptor signaling, while other residues inhibit 
insulin/IGF-1 signaling.  Tyrosine phosphorylation of IRS-1 is known to be an important 
step in the propagation of insulin/IGF-1 signal, while the role of serine and threonine 
phosphorylation of IRS-1 has recently become of more significance as a component of 
insulin resistance, as decreased insulin/IGF-1 signaling is likely a key factor in 
diabetes.66-70 One of the serine residues on IRS-1 that has been suggested as serving an 
inhibitory role in insulin signaling is serine 307.66,70,71 Previous studies have shown that 
increases in the phosphorylation of IRS-1Ser 307 causes decreased insulin receptor 
signaling, resulting in increased in apoptosis in various tissues throughout the body.70-78

In vitro and in vivo studies have shown that prolonged exposure to a 
hyperglycemic environment produces a number of cellular changes, including increased 
apoptosis.79,80 Normal regulation of cell death in the mitochondria is tightly controlled by 
the Bcl-2 family, both pro- and anti- apoptotic members.57,81-86 In a disease, such as 
diabetic retinopathy, where the hyperglycemic environment causes cellular stress and 
damage, Bax, a member of the Bcl-2 family, can become activated and form pores as a 
passage for other pro-apoptotic proteins to be released.57,81-86 Release of proteins, such as 
cytochrome C, along with increased Bax levels results in cell death through increased 
levels of key caspases.  In contrast, Bcl-xL, an anti-apoptotic member of the Bcl-2
family, is known to prevent cell death by inhibiting activation of the pro-apoptotic 
proteins.82,84-86 These changes have been well studied in other diseases, as well as other 
cell types in diabetic retinopathy.81,83 However, the regulation of apoptotic proteins in 

Source: Reprinted with permission. Walker RJ, Anderson NM, Bahouth S, Steinle JJ. 
Silencing of insulin receptor substrate–1 increases cell death in retinal Müller cells. 
Molecular Vision 2012;18: 271–279.48
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retinal Müller cells is not well characterized.  A potential role for IRS-1 in this pathway
in the regulation of Bax, cytochrome c, and Bcl-xL has also not been investigated.  

In this investigation, we hypothesize that silencing the expression of IRS-1 will 
demonstrate that IRS-1 directly regulates specific apoptotic markers in retinal Müller 
cells.  Additionally, since we have previously demonstrated that beta-adrenergic receptors 
can decrease TNF levels,29 and TNF is known to increase IRS-1Ser307, we hypothesize 
that salmeterol, a beta-2-adrenergic receptor agonist, requires IRS-1 actions to decrease 
apoptosis of retinal Müller cells. 

Results

Salmeterol Prevents Phosphorylation of IRS-1Ser307 Induced by TNF

It is known that TNF- preferentially phosphorylates IRS-1Ser 307 in other cell
types;70,73,74,77,78 we wanted to see if the same mechanism occurs in retinal Müller cells.  
Following treatment with salmeterol, Western blot analysis revealed that phosphorylation 
of IRS-1Ser307 was significantly decreased as compared to cells in 25mM glucose alone or 
with TNF- only treatment (Figure 2-1) (*p<0.05 vs. not treated, # p<0.05 vs. TNF-
alone).

Silencing of IRS-1 Decreases Total Akt Levels

Previous data has shown that significant increases in tyrosine phosphorylation of 
insulin receptor signals downstream through IRS-1 to increase Akt phosphorylation.73,74

Knockdown of IRS-1 with shRNA (Figure 2-2A) (*p<0.05 vs. 25mM Glucose showed a 
significant decrease in total Akt levels (Figure 2-2B) (*p<0.05 vs. 25mM Glucose
cultured in a hyperglycemic environment). These results suggest that IRS-1 signals to 
Akt in retinal Müller cells.

Loss of IRS-1 Increases Cell Death in Retinal Müller Cells

Treatment of cells with salmeterol alone prevented cell death in retinal Müller
cells (Figure 2-3) (p<0.05 vs. 25mM Glucose). Cell death analyses showed a significant 
increase in cell death in response to silencing of IRS-1 in cells cultured in high glucose as 
compared to the normal glucose control group (Figure 2-3) (#p<0.05 vs. 5mM Glucose).
Salmeterol + IRS-1 shRNA showed a significant increase in cell death compared to 
salmeterol alone (Figure 2-3) ($p<0.05 vs. salmeterol alone), suggesting that 
beta-adrenergic receptors signal through IRS-1 to reduce cell death in retinal Müller cells.
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Figure 2-1. Ratio of IRS-1Ser 307 in Müller cells

Phosphorylation of IRS-1Ser 307 is significantly increased in Müller cells following 
treatment with TNF , but treatment with beta-2-adrenergic receptor agonist, salmeterol 
significantly decreases phosphorylation levels. Significance was determined by 
one-tailed, non-parametric Mann-Whitney test on Western blot data(*p<0.05 vs. High 
Glucose, n=4, #p<0.05 vs. Normal Glucose, n=4).
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Figure 2-2. Verification of IRS-1 shRNA knockdown

(A) Mean densitometry and representative blot of IRS-1 levels following transfection of 
shRNA (IRS-1) in rat Müller cells. (B) Mean Densitometry of Akt levels following 
transfection of shRNA (IRS-1) in Müller cells. Significance was determined by 
Mann-Whitney test (*p< 0.05 vs. 25mM, n=5).
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Figure 2-3. Cell death in IRS-1 knockdown

Cell death ELISA of rat Müller cells transfected with IRS-1 shRNA alone and IRS-1
shRNA + beta-2-adrenergic receptor agonist, salmeterol (SALM) for 6 hours. 
Transfection with IRS-1 shRNA significantly increased cell death levels vs. 5mM 
Glucose. Treatment with salmeterol alone in Müller cells significantly decreased levels of 
cell death as compared to either 5mM Glucose or 25mM Glucose. Statistical significance 
was determined Mann-Whitney test (*p<0.05 vs. 25mM Glucose, #p<0.05 vs.5mM 
Glucose, $p<0.05 vs. salmeterol  n=5 for ELISA assay).
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Silencing IRS-1 Increases Cytochrome C levels in Retinal Müller Cells

Previous studies have suggested the mitochondria as a key regulator of apoptosis, 
with excess production of superoxides within the mitochondria initiating cytochrome c 
release to the cytosol to begin the cascade of apoptotic signaling.82,84-86 Our current 
investigation shows that prolonged exposure of retinal Müller cells to hyperglycemia 
results in excess release of cytochrome C when compared to retinal Müller cells cultured 
in normal glycemic conditions (Figure 2-4) (*p<0.05 vs. 5mM Glucose). Western blot 
analysis further shows that salmeterol alone treatment significantly reduced cytochrome 
C levels, with the effect lessened when salmeterol was combined with IRS-1 shRNA 
(Figure 2-4) ($p<0.05 vs. salmeterol alone). Taken together, these results suggests that 
active IRS-1 is required for salmeterol to reduce cytochrome C levels in retinal Müller 
cells cultured in a hyperglycemic environment. 

Absence of IRS-1 Causes Increase in Bax Levels

In addition to cytochrome C, we also investigated another member of the Bcl-2
family, Bax. Western blot analyses showed significant increases in Bax protein levels in 
high glucose samples compared to normal glucose samples (Figure 2-5) (#p<0.05 vs. 
5mM Glucose).  Stimulation with salmeterol showed that salmeterol could only reduce 
Bax when IRS-1 was active (Figure 2-5) ($p<0.05 vs. salmeterol alone). These findings 
were in agreement with previous studies that suggested increased Bax levels in a 
hyperglycemic environment;50,83 however, these are the first to our knowledge to link 
beta-adrenergic receptors and IRS-1 to Bax levels in retinal Müller cells.  

The IRS complex proteins are responsible for mediating the downstream actions 
of the insulin receptor.  The IRS complex consists of IRS 1-4, with each substrate playing 
a significant role in the body; however animal studies have shown that a vast majority of 
insulin actions signal through IRS-1 and IRS-2.87 The amino acid sequence of 
IRS-possesses a unique signaling mechanism of tyrosine phosphorylation sites and serine 
phosphorylation sites37,38,70,75-78,88,89 to regulate cellular actions.  Phosphorylation of 
various tyrosine sites, (Y99, Y1150, Y1151) and several serine sites (Ser265, Ser 302, Ser325,
Ser 358) increase downstream signaling mediated by IRS-1.  In contrast, other serine 
residues (such as Ser307, Ser 636, Ser 639) have been shown to inhibit signaling downstream 
of IRS-1, suggesting that IRS-1 phosphorylation may be a key regulator for activation or 
inhibition of a multitude of signaling cascades.  

Based upon literature in other cell types, with the onset of diabetes, TNF
preferentially phosphorylates Ser307 on IRS-1.31,38,90 Phosphorylation of IRS-1Ser307 can 
play an inhibitory role in insulin/IGF-1 receptor signal transduction, potentially leading to 
the increased apoptosis noted in the diabetic retina.31,38,90 Present findings in Müller cells 
(Figure 2-6) confirm work in adipose tissue cells, which suggested that TNF negatively 
regulates insulin receptor signaling by phosphorylating Ser307 on IRS-1 to inhibit insulin 
action.31,38 In these studies, we began using a selective beta-2-adrenergic receptor 
agonist, salmeterol, to selectively stimulate the beta-2-adrenergic receptor, since we have 
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Figure 2-4. Levels of cytochrome C increased in IRS-1 knockdown

Mean densitometry displayed a significant increase in cytochrome c levels cultured in 
25mM Glucose vs. 5mM Glucose samples. Knockdown of IRS-1 protein significantly 
increased cytochrome C levels vs. 5mM & 25mM Glucose samples. Western blot data 
showing that treatment with salmeterol significantly decreased levels of pro-apoptotic 
cytochrome C (*p<0.05 vs. NT, $p<0.05 vs. salmeterol n=4 for Western blot.)
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Figure 2-5. Bax protein levels increased in IRS-1 knockdown

Protein levels of Bax were significantly increased 25mM Glucose vs. 5mM Glucose 
samples.  Transfection of IRS-1 shRNA in Müller cells significantly increased levels of 
pro-apoptotic Bax. 10 salmeterol significantly decreased Bax levels activity after 6 
hours of treatment. Significance was determined by Mann-Whitney test (*p<0.05 vs. 
25mM Glucose, $p<0.05 vs. salmeterol n=4, #p<0.05 vs. 5mM Glucose, n =4 for 
Western blot).
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Figure 2-6. Anti-apoptotic Bcl-xL levels decreased in IRS-1 knockdown

Western blot analysis showing significantly decreased levels of Bcl-xL vs. 5mM Glucose 
and 25 mM Glucose. Salmeterol treatment significantly increased levels of Bcl-xL
toward basal levels. Significance was determined by one-tailed, non-parametric 
Mann-Whitney tests on Western blot data. (*P<0.05 vs. 25mM Glucose, $p<0.05 vs. 
salmeterol n=4, #p<0.05 vs. 5mM Glucose, n =4.)
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recently found that this receptor is active in retinal Müller cells.  Our findings in this 
study with salmeterol demonstrate that beta-2-adrenergic receptor stimulation may inhibit 
cytokine release in retinal Müller cells cultured in a hyperglycemic environment, 
resulting in reduced IRS-1Ser307 phosphorylation, leading to decreased apoptosis.

Additionally, we investigated whether beta-adrenergic receptors regulate 
apoptosis of retinal Müller cells through IRS-1 signaling.  Since we know that 
beta-adrenergic receptors can decrease cell death in a high glucose environment,91 we 
sought to determine whether modulation of IRS-1 was involved.  Knockdown of IRS-1
showed a significant increase in cell death compared to samples in 5mM glucose, but 
stimulation of the beta-2-adrenergic receptor with salmeterol prevented cell death through 
IRS-1 in a hyperglycemic environment on retinal Müller cells. 

Discussion

Several factors can influence the increase in apoptosis.  An imbalance in the 
expression of anti-apoptotic vs. pro-apoptotic members of the Bcl-2 family within the 
mitochondria of retinal Müller cells is one possibility.  Retinal Müller cell samples 
cultured in a 25mM glucose environment showed a significant increase in cytochrome C 
and Bax levels compared to samples cultured in 5mM glucose. We found that activation 
of cytochrome C and Bax in a hyperglycemic environment was reduced following 
treatment with salmeterol.  Increases in cytochrome C and Bax were also demonstrated 
with IRS-1 shRNA + salmeterol, indicative of increased cell death following knockdown 
of IRS-1 versus cells treated with salmeterol alone.  Our results suggest that 
beta-adrenergic receptors play a specific role in the regulation of key apoptotic markers
through alterations in IRS-1 levels.  In support of this finding, we also found that high 
glucose decreased anti–apoptotic, Bcl-xL but treatment with salmeterol significantly 
increased Bcl-xL in a hyperglycemic environment. Decreased Bcl-xL levels were also 
observed in IRS-1 shRNA +salmeterol treatments, suggesting that the anti-apoptotic 
effects of Bcl-xL restored with treatment of salmeterol required IRS-1 for activation. 

To our knowledge, we identify for the first time that salmeterol, a 
beta-2-adrenergic receptor agonist, can reduce cell death activity in retinal Müller cells 
using IRS-1 signaling.  However, our results are not in agreement with previous results 
that suggest that IRS-2 is the key mediator of cell death in whole retinal samples.37,39 The 
discrepancies in our findings compared to previous studies likely stem from the fact that 
we concentrated solely on in vitro studies using retinal Müller cells.   Previous studies 
have dealt with in vivo and ex vivo studies using whole retinal samples, which contain a 
variety of retinal cell types. In other work from our lab,91 we have found differences in 
insulin receptor substrate signaling in retinal endothelial cells, which tend to signal 
through an IGF-1 receptor/IRS-2-dependent mechanism.91 Thus, it appears that different 
cell types in the retina may use different IRS complexes for cellular signaling, which 
expands the signaling possibilities of retinal cells.  While we recognize that IRS-1 is a 
key component of insulin signaling, we chose to focus our investigations on 
beta-adrenergic receptor regulation of apoptosis of retinal Müller cells through the 
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actions of IRS-1 rather than insulin receptor or IGF-1 receptor actions.  Future studies 
may be directed at beta-adrenergic receptor actions and cross talk with insulin signaling. 

In summary, these studies demonstrate that retinal Müller cells cultured in an 
hyperglycemic environment activate a number of mechanisms leading to increased cell 
death; 1) the initial mechanism involving increases in phosphorylation of 
IRS-1Ser 307–mediated by increased TNF levels in the diabetic retina54;  2) the second 
mechanism involving significant increases in apoptotic markers Bax and cytochrome C, 
coupled with a significant decrease in anti-apoptotic Bcl-xL.  Both mechanisms of cell 
death were significantly inhibited following treatment with a beta-2-adrenergic receptor 
agonist, salmeterol.  Taken together, these results suggest that beta-adrenergic receptors 
require active IRS-1 to prevent cell death in retinal Müller cells.
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CHAPTER 3.   ROLE OF -ADRENERGIC RECEPTOR’S REGULATION OF 
TNF- AND INSULIN SIGNALING IN RETINAL MÜLLER CELLS

Introduction

Diabetes is a growing epidemic caused by excess glucose levels and the body’s 
inability to produce or regulate insulin.93 While there is a significant amount of research 
ongoing on the regulation of insulin, very little of that research has focused on insulin 
regulation in the eye as it may relate to diabetic retinopathy. Diabetic retinopathy is the 
leading cause of vision loss in people of working age in North America.49,93 It is 
unknown whether altered insulin actions in the retina are involved in the pathogenesis of 
diabetic retinopathy.49,93 The normal mechanism of insulin action is mediated by binding 
the insulin receptor, which is located on the cell membrane.38 This receptor is made up of 
two alpha subunits and two beta subunits, which are connected by disulfide bonds.37,39

The actions of insulin are initiated when the receptor is bound on the alpha subunits, 
causing phosphorylation of tyrosine kinases of the beta subunits and inducing a 
conformational change.37,39

Previous work on insulin signaling in the retina has suggested that 
phosphorylation of the insulin receptor can activate insulin receptor substrate complexes
(IRS1-4) and lead to phosphorylation of Akt.39 Further research efforts in adipose and 
retinal tissues have suggested that phosphorylation on specific serine sites (Ser 307) on 
IRS-1 reduces tyrosine phosphorylation activity of insulin receptor73 (Chapter 1). The 
cytokine TNF- has been suggested to regulate IRS-1 through the serine 307 site. TNF-
induced inhibition of IRS-1 signaling would decrease Akt phosphorylation to potentially 
induce apoptosis.  

Our lab has previously shown that Müller cells have increased TNF- levels in a 
hyperglycemic environment, which was reduced following -adrenergic receptor 
stimulation.29 Since -adrenergic receptors can decrease TNF- and TNF- negatively 
regulates insulin receptor signaling to induce apoptosis, our studies sought to determine 
the mechanisms by which -adrenergic receptors modulate insulin receptor signaling and 
apoptosis in retinal Müller cells. Previous investigations have concentrated on insulin 
signaling in the retina,37,39,40,45,52,94,95 with less work focusing on the role of -adrenergic 
receptor regulation of insulin signaling in the retina. Our recent work with IRS-1
(Chapter 2) suggests that -adrenergic receptors on retinal Müller cells may play a role in 
insulin signaling, as it relates to diabetic retinopathy. Since -adrenergic receptors have 
been reported to interact with insulin receptor signaling in other targets, it suggests that 

-adrenergic receptor regulation of insulin signaling may be involved in the 
anti-apoptotic actions observed following -adrenergic receptor agonist stimulation.96

Source: Reprinted with permission. Walker RJ, Anderson NM, Jiang Y, Bahouth S, 
-adrenergic receptors regulation of TNF-

retinal Müller cells. Investigative Ophthalmology & Visual Science 2011.92
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In this present study, we propose that treatment with a selective -2-adrenergic 
receptor agonist, salmeterol, will decrease levels of TNF- , leading to increased insulin 
receptor signaling. Additional studies will use TNF- shRNA to further characterize the 
function of TNF- in the regulation of insulin receptor signaling.  These findings will 
allow us to further understand the regulation of insulin signaling in the retina, specifically 
on retinal Müller cells. 

Results

Stimulation of Beta-Adrenergic Receptors Increases Insulin Receptor Signaling

We examined the phosphorylation activity of the insulin receptor using rMC-1
cells in normoglycemic and hyperglycemic environments. Previous work has shown loss 
of retinal insulin receptor activity in diabetes.39 Our results indicate that isoproterenol 
treatment, a non-selective -adrenergic receptor agonist, significantly increased 
phosphorylation of the insulin receptor (*P <0.01 vs. not treated) after 1hour treatment 
(Figure 3-1A). Typically, phosphorylation of the insulin receptor should increase 
phosphorylation of Akt.  Following treatment of rMC-1 cells with 10 isoproterenol, 
Akt phosphorylation levels were significantly increased (*p< 0.01 vs. not treated) after 
one hour of treatment (Figure 3-1B).  These results indicate that, insulin receptor 
signaling is regulated by -adrenergic receptors. 

Stimulation of Beta-Adrenergic Receptors Decreases Cleaved Caspase 3 

Increased phosphorylation activity of Akt contributes to significant decreases in 
levels of the pro-apoptotic proteins, cytochrome c, caspase 9, and caspase 3. In Figure 
3-2, we show treatment with 10 isoproterenol for 24 hours significantly decreases 
cleaved caspase 3 levels (Figure 3-2) (*p<0.05 vs. not treated).

Blocking of Beta-Adrenergic Receptor by Selective Inhibitors

Previously, we have identified that Müller cells express -1- and -2 adrenergic 
receptors.29 In these studies, we chose to use a pharmacological approach to determine 
the dominant receptor present on Müller cells using 300nM of CGP 20712A 
( -1-adrenergic receptor antagonist) and 50nM of ICI 118.551 ( -2-adrenergic receptor 
antagonist)97 with isoproterenol as a stimulus to the receptor not being inhibited. 
Treatment with -1-adrenergic receptor antagonist followed by stimulation of 
isoproterenol for 1, 6, 12, 24 hours showed significant decreases in cleaved caspase 3 
(Figure 3-3A) (#p<0.05 vs. not treated, *p<0.01 vs. ICI samples). Inhibition of 

-2-adrenergic receptors by antagonist with stimulation of isoproterenol resulted in 
significant increases (#p<0.01 vs. not treated) in cleaved caspase 3 activity 



22

Figure 3-1. Treatment with isoproterenol restores phosphorylation of IRB and Akt

(A) Mean densitometry of protein levels of phosphorylation of insulin receptor are 
significantly increased in Müller cells following treatment with -adrenergic receptor 
agonist, isoproterenol. (B) Mean densitometry of ratio for Akt shows that protein levels 
of Akt were significantly increased in Müller cells cultured in high glucose (25mM 
glucose) medium foll
determined by one-tailed, non-parametric T-tests on western blot data (A)* p<0.05 vs. 
not treated, n=4, (B) *p<0.05 vs. not treated, n =4.
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Figure 3-2. Levels of cleaved caspase 3 reduced following treatment

ELISA of cleaved caspase 3 in rat Müller cells showed significantly increased apoptosis 
in high glucose as compared to low glucose. Treatment with isoproterenol significantly 
decreased caspase 3 activity after 24hours of treatment in Müller cells. Significance was 
determined by Mann-Whitney test (*p<0.05 vs. Low Glucose, # p<0.05 vs. High 
Glucose, n=5). 
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Figure 3-3. Levels of cleaved caspase 3 in retinal Müller cells

ELISA analysis showed a significant increase in samples treated with ICI 118.551 
( -1-adrenergic receptor antagonist) compared to not treated samples.  Caspase 3 levels 
were significantly decreased in samples treated with CGP 20712A ( -2-adrenergic 
receptor antagonist) vs. not treated (*p<0.05 vs. nt, #ICI vs. CGP n=5 for ELISA assay).  
(B) Rat Müller cells treated with -1-adrenergic receptor agonist, xamoterol (XAM) and 

-2-adrenergic receptor agonist, salmeterol (SAL) for 1-24 hours. Treatment with 
salmeterol significantly decreased caspase 3 levels, after 1hour of treatment in Müller 
cells, while treatment with xamoterol showed little effect after the 6hour treatment point. 
Statistical significance was determined Mann-Whitney test (*p<0.05 vs. not treated,
#Xam vs. Sal n=5 for ELISA assay). (C) Dose response of selective -2-adrenergic 
receptor agonist, salmeterol. Treatment with 1 and 10 significantly decreased 
caspase 3 activity after 6 hours of treatment in Müller cells. Significance was determined 
by Mann-Whitney test (*p<0.05 vs. nt, n=5).
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(Figure 3-3A). These results suggest that -2-adrenergic receptors regulate apoptotic 
signaling in retinal Müller cells.

To further confirm the findings using -adrenergic receptor antagonists, we also 
treated Müller cells with -adrenergic receptor agonists.  Treatment with a selective 

-1-adrenergic receptor agonist, xamoterol, significantly decreased caspase 3 levels after 
1 and 6 hours of treatment (Figure 3-3B) (*p<0.05 vs. not treated).  Treatment with a 

-2-adrenergic receptor agonist, salmeterol, significantly decreased cleaved caspase 3 
levels at all timepoints (Figure 3-3B) (*p<0.05 vs. not treated), which demonstrates that 
the -2-adrenergic receptor is indeed key -adrenergic receptor subtype for apoptotic 
signalling in retinal Müller cells.  Following treatment of cells with 10nM, 50nM, 
100nM, 1 , and10 concentrations of salmeterol, we found that the 10
concentration produced the greatest decrease in cleaved caspase 3 levels compared to the 
other concentrations tested (Figure 3-3C). 

Salmeterol Significantly Reduces TNF- , while Increasing Insulin Receptor and Akt 
Phosphorylation

ELISA analysis reveals that Müller cells treated with TNF-
significant increases levels of TNF- Figure 3-4A)
(*p<0.05 vs. not treated).  Following treatment with salmeterol, levels of TNF-
significantly decreased (Figure 3-4A) (*p<0.05 vs. not treated, # p<0.05 vs. TNF-
alone).

Further efforts to determine whether -2-adrenergic receptor stimulation alone
could increase insulin receptor signaling demonstrated a significant increase of 
phosphorylation following treatment with 10 salmeterol (Figure 3-4B). Over 
expression of TNF- üller cells resulted in a significant decrease of tyrosine 
phosphorylation on insulin receptor in high glucose conditions (Figure 3-4B) (*p<0.05 
vs. not treated, #p<0.05 vs. TNF- -adrenergic 
receptor regulation of insulin receptor phosphorylation occurs predominantly through the 

-2-adrenergic receptor subtype.  Similar to the results on insulin receptor regulation, 
selective -2-adrenergic receptors agonist treatment increases Akt phosphorylation on 
serine 473 (Figure 3-4C) (*p<0.05 vs. not treated, #p<0.05 vs. TNF-
significant decrease in phosphorylation of Akt was noted with TNF-
Taken together, these data suggest that -2-adrenergic receptors may regulate insulin 
receptor and Akt actions.

Silencing of TNF- Plays Critical Role in Phosphorylation of Akt and IRS-1Ser 307

Our present data suggests that TNF- has a modulatory role in insulin receptor 
signaling, specifically downstream of the insulin receptor with actions on proteins such as 
Akt and IRS-1Ser 307.  After verification of successful knockdown with TNF- shRNA 
(Figure 3-5A), we found a significant decrease in Akt in rMC-1 in cells cultured in high 
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Figure 3-4. Stimulation of TNF- in retinal Müller cells

(A) ELISA of Tumor Necrosis Factor alpha (TNF- ) displaying significant increases in 
TNF- alone treatment levels.  Treatment with salmeterol significantly decreases levels 
of TNF- . Significance of statistics was determined by Mann-Whitney test (*p<0.05 vs. 
not treated, # p<0.05 vs. TNF- n=5). (B) Mean densitometry of protein 
phosphorylation ratios for insulin receptor beta was significantly decreased in TNF-
treated cells, but treatment with 10 salmeterol significantly increases phosphorylation 
activity of insulin receptor in Müller cells cultured in high glucose.  (C) Western blot 
analysis showing a significant increase in TNF- Treatment with 
salmeterol significantly increased phosphorylation activity of Akt. Statistical significance 
was analyzed using a non-parametric, one tailed T-test for Western blots (*p<0.05 vs. not 
treated, # p<0.05 vs. TNF- ).



27

Figure 3-5. Knockdown of TNF-

(A) ELISA of Tumor Necrosis Factor-alpha (TNF- ) showing significant decreases in 
various TNF- shRNA vectors. Significance of statistics was determined by Mann-
Whitney test (*p<0.05 vs. not treated, # p<0.05 vs. TNF- n=5). (B) Akt 
phosphorylation activity was significantly increased following treatment with shRNA 
alone, shRNA +salmeterol, and salmeterol alone samples. (C) Western blot analysis of 
phosphorylation of IRS-1Ser307   showed a significant decrease in shRNA alone and 
shRNA +salmeterol treated cells compared to high glucose samples.  Treatment with 
salmeterol also significantly decreased phosphorylation levels of IRS-1Ser307 in Müller 
cells. Significance was determined by one-tailed, non-parametric Mann-Whitney tests on 
western blot data (*P<0.05 vs. 25mM Glucose, $P<0.05 vs. salmeterol n=4, #p <0.05 vs. 
5mM Glucose, n =4).
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glucose, which was inhibited in cells treated with salmeterol (Figure 3-5B).  Treatment 
with TNF- shRNA+ salmeterol also increased Akt phosphorylation, which was
expected since salmeterol alone decreases TNF- actions (Figure 3-5B). Additionally, 
samples from scrambled control shRNA displayed results similar to that of 5mM glucose 
(Figure 3-5B).

TNF- Is a Mediator of Apoptosis in rMC-1 Cells

In Müller cells, apoptosis was characterized using cell death ELISA, where the 
addition of TNF- in a hyperglycemic environment resulted in an increase in cell death.  
Cellular transfections with TNF- shRNA and TNF- shRNA + salmeterol treatments 
showed significant decreases in apoptosis compared to TNF- only treated samples 
(Figure 3-6). These results suggest that TNF- plays a major role in the induction of 
apoptosis in Müller cells, since the inhibition of TNF- significantly reduced apoptosis
(Figure 3-6) (*P<0.05 vs. 5mM glucose,  #P <0.05 vs. 25mM glucose, and $P <0.05 vs. 
TNF- alone).

Discussion

The insulin receptor-insulin receptor substrate (IRS)-Akt pathway is known to be 
responsible for mediating numerous insulin actions at the cellular level, such as inhibition 
of apoptosis, maintenance of glucose levels, and synthesis of proteins.37,39 Signaling 
through the first steps of this pathway is highly complex and can produce >1,000 possible 
signal pathway variations.78 Insulin receptor signaling is initiated by the phosphorylation
of beta subunits on specific tyrosine sites, which signals further downstream to a complex 
of insulin receptor substrates (IRS 1-4) that also become phosphorylated.37,39,73,74 Insulin 
receptor substrates are docking proteins that are responsible for eliciting insulin actions 
throughout the body.73 One protein that can lie downstream of the IRS complex is the 
anti-apoptotic factor, Akt.  Phosphorylation of Akt following insulin stimulation has been 
suggested to inhibit the caspases, specifically caspases 3 and 9, which results in reduced 
apoptosis.

These findings demonstrate that insulin receptor phosphorylation is reduced in rat 
Müller cells cultured in a hyperglycemic environment compared to untreated samples, 
which agrees with previous findings.37,39,95 Furthermore, these studies show that 

-adrenergic receptors with isoproterenol significantly increases
phosphorylation of Tyr1150/1151 on insulin receptor.37 In addition to increased 
phosphorylation of the insulin receptor, treatment with isoproterenol also significantly 
increased levels of Akt phosphorylation, leading to decreased cleavage of caspase 3. 

Further studies determined that -2-adrenergic receptors are the dominant 
receptors present on Müller cells for the regulation of insulin receptor signaling. 
Stimulation of -2-adrenergic receptors with salmeterol, a specific -2-adrenergic 
receptor agonist, showed significant increases in tyrosine phosphorylation of the insulin
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Figure 3-6. Knockdown of TNF- reduces cell death

Analysis of apoptosis shows an increase in apoptosis with treatment of TNF-
following transfection with TNF- shRNA, levels of cell death were significantly 
decreased and further decreased in TNF- shRNA+ salmeterol and salmeterol alone
treatment. (*P <0.05 vs. 5mM glucose, # P <0.05 vs. 25mM glucose, n=5).
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receptor, as well as increased phosphorylation of anti-apoptotic factor, Akt. The reduction 
of cell death is likely through an Akt-mediated pathway, since inhibitors to 
phosphatidylinositol-3-kinase also inhibited the actions of insulin.37 The results from the 
retinal explants agree well with our findings in retinal Müller cells.

While insulin signaling has been well studied throughout various tissues in the 
body, less work has focused on the regulation of insulin signaling in the retina, 
specifically the relationship of inflammation and insulin receptor signaling. One cell type 
in the retina that may be susceptible to changes in this proposed relationship is the Müller 
cell. Müller cells serve as structural support cells for the retina, and span the entire 
thickness of the retina.59 Since Müller cells become activated and express increased glial 
fibrillary acidic protein levels in diabetes, 59 this suggests that the cells are non-
homeostatic, which will alter their regulation of inflammatory markers, glucose transport, 
oxidative stress, growth factors, and finally cell survival.98,99

Previous studies from our lab have shown that Müller cells display increased 
inflammatory markers (specifically TNF-
reduced following -adrenergic receptor stimulation.29 TNF- has been shown to play a 
major role in the induction of apoptosis in retinal cells, specifically during the onset of 
diabetic retinopathy.54 Use of the TNF- inhibitor (etanercept) produced significant 
reductions in DNA fragmentation and activation of caspases, further demonstrating that 
this TNF- is important in early diabetic abnormalities in the retina.54

In insulin receptor signaling, TNF- can play an inhibitory role by directly 
phosphorylating IRS-1 at Ser 307, which produces a loss of insulin receptor signal 
transduction, leading to the increased apoptosis noted in the diabetic retina.31,38,100 Our 
findings in Müller cells confirm previous work in our lab in 1-adrenergic receptor KO 
mice in which we found that phosphorylation of IRS-1 at Ser 307 is significantly 
increased in comparison to their wildtype littermates.100 These studies also found a 
significant decrease in Akt and significant increases in cleaved caspase 3 levels, as well 
as TNF- levels in the 1-adrenergic receptor knockout mice.100 Our present findings 
with salmeterol suggest that -2-adrenergic receptor stimulation may inhibit cytokine 
release in retinal Müller cells cultured in a hyperglycemic environment, resulting in 
elimination of IRS-1Ser307 phosphorylation. This would allow the anti-apoptotic actions of 
insulin to be properly transduced to Akt, producing a reduction in apoptosis. To further 
confirm these findings for the role of TNF- in retinal Müller cells, we demonstrated that 
reduction of TNF- levels with shRNA significantly reduced the phosphorylation of 
serine 307 on IRS-1, leading to increased Akt activity.

-adrenergic receptor agonist in 
vitro can restore the loss of insulin receptor activity noted in diabetic retinal Müller cells. 
These results match well in vivo studies with topical isoproterenol, in which isoproterenol 
negated deleterious changes in phosphorylation of the insulin-signaling pathway during 
diabetes in rats.101 While our findings confirm our hypothesis of TNF- modulation in 
insulin receptor signaling, we also recognize that our findings could be the result of 
phosphatases such as PTP1B that were previously suggested by Rajala et al. 2010 which 
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would decrease insulin receptor activity leading to a decrease in Akt activity.102,103 It is 
well know that insulin receptor mediates activation of caspase-3 by signaling through the 
PI3K/Akt pathway as well as the MAPK pathway.102,103 Our future studies will focus 
more in detail on the relationship of the PI3K and MAPK pathways in retinal Müller 
cells. 

Further explanation of Akt modulation of cell death presented in the current study 
can be explained by previous findings by Gottlob et al., 2001 in which it was suggested 
that Akt mediates hexokinase activity in the mitochondria of cells.104 An upregulation of 
hexokinase in the mitochondria was found to inhibit apoptosis. Further findings by 
Majewski et al. suggested that this anti-apoptotic action of hexokinase was the result of 
its ability to inhibit cytochrome C release once placed in the mitochondria.105 These 
previous findings are in line with our labs findings in retinal Müller cells that showed an 
increase in release of cytochrome C following silencing of IRS-1, this loss of IRS-1 led to 
a decrease in Akt (Walker et al. in submission).

In conclusion, we have demonstrated that the -2-adrenergic receptor is the 
dominant receptor subtype to mediate insulin actions in retinal Müller cells. Furthermore, 
we have shown that a selective -2-adrenergic receptor agonist, salmeterol, can increase 
insulin receptor signal transduction, leading to decreased apoptosis.  Salmeterol increases 
the actions of insulin through inhibition of TNF- actions in the retinal Müller cells 
cultured in high glucose.  In this manner, salmeterol inhibits the TNF- -mediated 
increased phosphorylation of IRS-1Ser307, allowing insulin actions to be transduced to 
Akt, thus preventing apoptosis.  These results provide a potential mechanism of action for 

-adrenergic receptor therapies for diabetic retinopathy. 
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CHAPTER 4.   DUAL SIGNALING OF G PROTEIN COUPLED RECEPTORS 
REDUCES CELL DEATH IN RETINAL MÜLLER CELLS

Introduction

The family known as the G protein-coupled receptors (GPCRs) is a group of 
proteins that use cells to adapt and react to their surrounding environments. Past research 
has identified more than 300 GPCRs in the human genome.106 In addition to these 
receptors that have been identified, there are more than 160 that remain undefined,
currently referred to as orphan GPCRs due to unknown ligands. Activation of the G 
proteins produces cellular signaling through a variety of signaling cascades.107

The beta-adrenergic receptors are family A members of the G-coupled protein 
receptors that spread signals by activating and eliciting action through various signaling 
pathways.  The beta-adrenergic receptors contain seven transmembrane helices that are a 
common feature among other family members of the GPCRs.3,108,109 Activation of the 
beta-adrenergic receptors takes place in a site within the transmembrane region, which 
allows ligand binding of two neurotransmitters, norepinephrine and epinephrine.6 These 
neurotransmitters signal through guanine nucleotide binding proteins (G proteins) to elicit 
various cellular actions such as phosphorylation of receptors and activation of various 
signaling pathways.110 The G proteins consist of three functional subunits, a large alpha 
subunit, a beta subunit, and a gamma subunit. The larger alpha subunit is divided into 
four families, Gs, Gi, Gq, and G12, based upon sequences of amino acids, rather than
functional characteristics.110

Previous knowledge of beta-adrenergic receptor ( -AR) signaling has suggested 
that G protein signals following binding of norepinephrine or epinephrine to the 

-adrenergic receptor to trigger Gs protein, activating the enzyme, adenyl cyclase.8
Adenylate cyclase stimulates the second messenger cyclic AMP (cAMP) to activate 
kinase A (PKA) to elicit its effects on a cellular level by phosphorylating various 
signaling cascades.111 Recent studies in the heart have shown that - and 

-ARs can signal through different G alpha proteins.112 -AR stimulation typically 
activates Gs –cAMP- PKA pathway,112 -ARs dually signals 
through a Gs/Gi mechanism in cardiac myocytes.8,113,114

The retina is known to express at least three different subtypes of beta-adrenergic 
- -adrenergic receptors present on retinal endothelial cells10 and 

- -adrenergic receptors present on retinal Müller cells.29 - and 
-adrenergic receptors are both present on retinal Müller cells, we have shown in recent 

-adrenergic receptor subtype is the dominant subtype for regulation of
insulin receptor signaling.92 -AR in vivo and in vitro in heart, lung, 
and kidney tissues have suggested it to be Gs driven, while other studies using pertussis 

-AR signaling may be also coupled to Gi cascade cardiac 
tissue.113-119 -adrenergic receptors on retinal Müller cells are 
regulated by Gs or Gi, we will knockdown PKA using siRNA, and determine whether 
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insulin receptor signaling is mediated by Gs. Further studies will look at treatment of 
retinal Müller cells with pertussis toxin to evaluate the role of Gi activation.

Results

Knockdown of PKA Produces No Significant Changes in Insulin Receptor

In our previous studies we have shown that insulin receptor phosphorylation is 
reduced in an high glucose environment in retinal Müller cells.92 In these, we 
investigated whether knockdown of PKA would alter the phosphorylation of the insulin 
receptor in a high glucose environment.  Western blot analysis showed that knockdown
of PKA resulted in a significant decrease in insulin receptor phosphorylation compared to
5mM glucose samples (Figure 4-1) (*p<0.05 vs. 5mM glucose).  Further analysis of 
PKA siRNA and PKA +sal samples show no change vs. 25mM glucose samples. As in 
previous studies, treatment with salmeterol alone significantly increased phosphorylation 
of insulin receptor compared to 25mM glucose samples (Figure 4-1) (#p<0.05 vs. 25mM 
glucose samples).  These results suggest that phosphorylation of insulin receptor is only 
partially mediated by PKA.

Loss of PKA Decreases Phosphorylation of Akt Levels while Increasing 
Phosphorylation of IRS-1Ser 307

Phosphorylation of Akt is important modulator of anti-apoptotic events in insulin 
receptor signaling in the retina.  Decreased PKA levels by PKA siRNA and in PKA 
siRNA + salmeterol samples resulted in a significant decrease in Akt phosphorylation 
compared to both 5mM and 25mM glucose samples in retinal Müller cells (Figure 4-2A)
(*p<0.05 vs. 5mM glucose, #p<0.05 vs. 25mM glucose).  Salmeterol alone treatments 
significantly increased Akt phosphorylation vs. PKA siRNA + salmeterol samples 
(Figure 4-2A) ($p<0.05 vs. PKA siRNA +salmeterol).  These results suggest that Akt 
phosphorylation in retinal Müller cells signals in a PKA-dependent manner.

Previous findings have suggested that loss of Akt phosphorylation in 
hyperglycemia may be attributed to significantly increased phosphorylation of 
IRS-1Ser 307 on retinal Müller cells.92 Results showed a significant increase in 
phosphorylation on IRS-1Ser307 in PKA siRNA samples vs. 5mM glucose samples as well 
as 25mM glucose samples  (Figure 4-2B) (*p<0.05 vs. 5mM glucose samples, #p<0.05 
vs. 25mM glucose samples) Further analysis shows that treatment with PKA 
siRNA +salmeterol results in a significant increase in IRS-1Ser307 phosphorylation vs. 5&
25mM glucose samples (Figure 4-2B) (*p<0.05 vs. 5mM glucose samples, #p<0.05 vs. 
25mM glucose samples).  Treatment with salmeterol alone samples resulted in a 
significant decrease IRS-1Ser307 phosphorylation vs. 25mM glucose samples & PKA 
siRNA +salmeterol samples (Figure 4-2B) (#p<0.05 vs. 25mM glucose samples, $p<0.05 
vs. PKA siRNA +salmeterol). Our findings here suggest that IRS-1Ser307 phosphorylation 
signaling to Akt in retinal Müller cells is mediated by Gs via PKA.
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Figure 4-1. Knockdown of PKA shows little change in phosphorylation of insulin
receptor

Protein analysis of Protein Kinase A (PKA) siRNA for the ratio of phosphorylation on 
insulin receptor showed no change compared to high glucose samples.  However PKA 
siRNA was significantly different vs. 5mM glucose (*p<0.05 vs. 5mM glucose).
Salmeterol (Salm) alone treated samples were significantly increased vs. high glucose 
samples (#p<0.05 vs. 25mM glucose samples n=4).
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Figure 4-2. PKA siRNA decreases phosphorylation of Akt

(A) Western blot analysis of Protein Kinase A (PKA) siRNA on phosphorylation of Akt, 
PKA siRNA and PKA + salmeterol significantly decreased phosphorylation of Akt vs. 
high glucose samples (#p<0.05 vs. 25mM glucose samples).  (B) Treatment with PKA 
siRNA also significantly increased levels of phosphorylation on IRS-1Ser307 (#p<0.05 vs. 
25mM glucose samples).  PKA siRNA +salmeterol further increased phosphorylation on 
IRS-1Ser307 (#p<0.05 vs. 25mM glucose samples).  Salmeterol alone samples were 
significantly decreased vs. High glucose samples and vs. PKA siRNA +salmeterol 
samples (*p<0.05 vs. 5mM glucose samples n=5,#p<0.05 vs. 25mM glucose samples n=5,
$p<0.05 vs. PKA siRNA +salmeterol n=5).
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Dual Coupling of Gs/Gi Decreases Cell Death in Retinal Müller Cells

Retinal Müller cells cultured in high glucose showed a significant increase in cell 
death in comparison to 5mM glucose samples (Figure 4-3) (*p<0.05 vs. 5mM glucose 
sample).  Knockdown of PKA showed a significant increase in cell death compared to 
5mM glucose samples, however the PKA siRNA alone samples did not show any 
significant changes vs. 25mM glucose samples.  Combination treatments of PKA 
siRNA +salmeterol yielded a significant decrease in cell death vs. 25mM glucose 
samples (Figure 4-3) (#p<0.05 vs. 25mM glucose samples).  Activation of Gi by 
pertussis toxin and pertussis toxin+salmeterol resulted in significant decrease in cell 
death vs. 25mM glucose samples (Figure 4-3) ( #p<0.05 vs. 25mM glucose samples). 
Treatment with salmeterol alone showed a significant decrease in cell death vs. 25mM 
glucose samples and PTX +salmeterol samples (Figure 4-3) (#p<0.05 vs. 25mM glucose 
samples, $p<0.05 vs. PTX +salmeterol). The findings here suggest that beta-adrenergic 
receptors signal through both PKA-dependent (Gs) and -independent manner (Gi) to 
reduce cell death in retinal Müller cells.

Activation of Gi Does Not Effect Insulin Receptor Phosphorylation in Retinal Müller 
Cells

Further studies using PTX treatments on retinal Müller cells show a significant 
decrease in phosphorylation of insulin receptor compared to 5mM glucose samples 
(Figure 4-4) (*p<0.05 vs. 5mM glucose), but as in the case with PKA siRNA studies 
show no significant change when compared to high glucose samples.   The mechanism by 
which stimulation of ß2-adrenergic receptors results in increased phosphorylation of 
insulin receptor treatment (Figure 4-4) (#p<0.05 vs. 25mM glucose sample) continues to 
be unknown. 

Pertussis Toxin Treatment Causes Increase in Phosphorylation of Akt

Western blot analyses showed that Müller cells treated with PTX and 
PTX+salmeterol significantly increased phosphorylation of Akt in comparison to protein 
levels in high glucose samples (Figure 4-5A) (#p<0.05 vs. 25mM glucose). PTX 
treatment alone and combination treatment of PTX+salmeterol significantly decreased 
IRS-1Ser307 phosphorylation in a high glucose environment (Figure 4-5B) (#p<0.05 vs. 
25mM glucose). Activation of Gi by PTX results in an increase in anti-apoptotic, Akt by 
decreasing IRS-1Ser307 phosphorylation, which is a novel finding in retinal Müller cells.  
These findings are indicative a possible switch from Gs to Gi in order to provide an 
anti-apoptotic signal for stimulation of ß2-adrenergic receptors.

Discussion

The signaling of G protein-coupled receptors (GPCR) is composed of a wide 
range of stimuli, such as neurotransmitters and hormones to name a few.120,121 This wide  
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Figure 4-3. Treatment with PTX reduces cell death

Cell Death ELISA displayed a significant decrease in Protein Kinase A (PKA)
siRNA +salmeterol vs. high glucose samples (#p<0.05 vs. 25mM glucose samples).  
Treatment with Pertussis Toxin (PTX) showed a significant decrease in cell death in 
comparison to high glucose samples (#p<0.05 vs. 25mM glucose samples) 
PTX +salmeterol (Salm) also showed a significant decrease in cell death vs.high glucose 
samples (#p<0.05 vs. 25mM glucose samples).  Salmeterol alone samples showed a 
significant decrease in cell death vs. high glucose samples as well as PTX + salmeterol 
samples (*p<0.05 vs. 5mM glucose samples n=5, #p<0.05 vs. 25mM glucose samples
n=5, $p<0.05 vs. PTX +salmeterol n=5).   
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Figure 4-4. PTX treatment shows no effect on phosphorylation of insulin receptor

Mean densitometry showed Pertussis Toxin (PTX) & PTX +salmeterol (Sal) treated 
samples had a significant decrease in phosphorylation of insulin receptor in comparison 
to high glucose samples (*p<0.05 vs. 5mM glucose).   Salmeterol alone samples showed 
a significant increase in ratio of IR (#p<0.05 vs. 25mM glucose n=5). 
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Figure 4-5. Treatment with PTX leads to increased Akt phosphorylation

(A) Mean densitometry of phosphorylation showed that activation of Gi causes a 
significant increase in phosphorylation of Akt in comparison to non-treated high glucose 
samples (#p<0.05 vs. 25mM Glucose).  PTX + salmeterol also showed a significant 
increase compared to high glucose samples (#p<0.05 vs. 25mM Glucose).  (B) Western 
blot analysis of phosphorylation of IRS-1Ser307   showed a significant decrease in PTX 
alone and PTX +salmeterol samples compared to high glucose samples (#p<0.05 vs. 
25mM Glucose, $p<0.05 vs. PTX +salmeterol). Treatment with salmeterol alone also 
significantly decreased phosphorylation levels of IRS-1Ser307 in Müller cells (#p<0.05 vs. 
25mM Glucose) . Significance was determined by one-tailed, non-parametric 
Mann-Whitney tests on western blot data (#p<0.05 vs. 25mM Glucose, $p<0.05 vs. 
PTX +salmeterol n=4, *p<0.05 vs. 5mM Glucose, n =4).
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range of signaling is able to mediate different responses throughout normal body and also 
suggested to be disrupted in a diseased body state.  One of the diseases, which may 
involve loss of GPCR signaling, is diabetes, specifically diabetic retinopathy.  The 
common GPCR, beta-adrenergic receptors have been previously shown to lose signaling 
capabilities with the onset of diabetes in various tissues throughout the body including 
the eye.28,29,92,96,122

-adrenergic receptor as the 
dominant receptor subtype in regulation of insulin receptor signaling in retinal Müller 
cells.92 -adrenergic receptor agonist, 
salmeterol, restored phosphorylation of insulin receptor and Akt, as well as decreased cell 
death in a high glucose environment.92 The mechanism by which stimulation of 

-adrenergic receptors leads altered TNF- and IRS-1 signaling is unclear.  It is well 
documented that stimulation of beta-adrenergic receptors typically activate cAMP, 
leading to phosphorylation of PKA via G s,7,8 however recent findings have suggested 

-adrenergic receptors use a switching mechanism between Gs and Gi of the alpha 
subunit in cardiac myocytes.123

In our studies, knockdown of PKA with siRNA in retinal Müller cells resulted in 
a significant decrease in phosphorylation of Akt and insulin receptor in PKA alone 
compared to high glucose samples (Figures 4-1 and 4-2A). Salmeterol alone treatments 
significantly increased phosphorylation Akt and insulin receptor, but also were 
significantly increased compared to combination treatment of PKA siRNA +salmeterol 
(Figures 4-1 and 4-2A, respectively).  Silencing of PKA and combination treatment of 
PKA siRNA +salmeterol significantly increased IRS-1Ser307, while salmeterol alone 
treatment significantly reduced Ser 307 phosphorylation on IRS-1 (Figure 4-2B).   
Findings from these studies indicate that restoration of insulin receptor signaling is 
partially mediated by PKA via Gs.  However these findings did not extend to cell death in 
retinal Müller cells, as PKA knockdown significantly increased cell death vs. 5mM 
glucose, but failed to show any significant increases in cell death vs. 25mM glucose 
samples (Figure 4-3).  However results from the cell death ELISA suggest a “switching” 
from Gs/Gi based upon Gi activation by pertussis toxin (PTX) treatment in retinal Müller 
cells. Treatment with pertussis toxin alone, and combination treatment of pertussis 
toxin +salmeterol significantly decreased cell death in retinal Müller cells vs. 25mM 
glucose.  

Additional studies using pertussis toxin treatment on retinal Müller cells 
suggested no significant changes in phosphorylation of insulin receptor signaling, 
although there was a significant decrease in PTX alone and PTX+sal compared to normal 
glucose; however, these changes were likely attributed to the PTX treatments occurring 
in a 25mM glucose environment (Figure 4-4).  Activation of Gi by PTX resulted in 
significant increases in phosphorylation of Akt, which correlated with the decreases in 
phosphorylation of IRS-1Ser 307 (Figure 4-5A and B). PTX +salmeterol also resulted in 
significant changes in phosphorylation in both Akt and IRS-1Ser 307 (Figure 4-5A and B).   
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-adrenergic receptor coupling of 
Gs to Gi proteins to reduce cell death in a diabetic like environment.  Activation of Gi and 
reduced coupling to Gs on ß2-adrenergic receptors result in activation of Akt and other 
cell survival mechanisms in retinal Müller cells. Our findings presented here are in line 
with previous findings from heart studies that suggested a dual Gs/Gi coupling 
mechanism to prevent apoptosis.118,123 Previous studies in our lab using primary cultures 
of human retinal endothelial cells with treatment of a selective ß1-adrenergic receptor 
agonist, in a high glucose environment showed significant increases in PKA levels 
through 15-45 minute treatments.124 These results suggest that stimulation of ß1-
adrenergic receptors activate the signaling of Gs -adenylyl cyclase-cAMP-PKA, which is 
in contrast to the findings reported here on ß2-adrenergic receptors.   

The differences in the ß1-adrenergic receptor and ß2-adrenergic receptor using 
different G protein subunits to signal may be related to a difference in structure in the 
B2-adrenergic receptor G-protein transmembrane regions.112 Studies have shown that 
specific G protein signaling for -adrenergic receptors is modulated by the third 
intracellular loop.112 ß2-adrenergic receptors possess a shorter third intracellular loop that 
is saturated with proline motifs; the result of this proline motif saturation results reduced 
efficiency of Gs coupling.112 Studies provided by Xiao et al., found that by substituting 
the third intracellular loop of ß1-adrenergic receptors into that of ß2-adrenergic receptors 
resulted in a switch in the ß1-adrenergic receptor to use both Gi and Gs signaling 
pathways.112 Those studies provided further evidence in differences between 
betaadrenergic receptor subtypes.  

For the first time to our knowledge, we show that ß2-adrenergic receptors in 
retinal Müller cells undergo a PKA-mediated dual coupling from Gs to Gi protein to 
provide anti-apoptotic signaling in a high glucose environment. Future studies will look 
to further delineate the difference in G protein coupling in different -adrenergic receptor
subtypes specifically ß1- and ß2-adrenergic receptors.  The use of ß1 and ß2-adrenergic 
receptor knockout mice may provide the answer since the each subtype knockout mice 
will theoretically have different signaling patterns.  Characterization of the G protein 
signaling in these mice will answer and provide unknown knowledge in retinal tissues.
Knowledge from those studies would have might give more insight in treatment strategies 
based on -adrenergic receptors in the progression of diabetic retinopathy.
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CHAPTER 5.  GENERAL DISCUSSION

Diabetic retinopathy is a major complication of diabetes, and the leading cause of 
vision loss in working age people in the United States.39,59,103,122,125-127 At a 2007 summer 
meeting of the Association for Research in Vision and Ophthalmology, it was suggested 
that diabetic retinopathy be defined as “structural and functional changes in the retina due 
to diabetes.” The hyperglycemic environment caused by diabetes produces a number of 
vascular and neuronal changes in the retina, making the disease very difficult to describe 
and develop treatments.

Previous studies on diabetic animal models have observed changes in the retina, 
initiated within weeks after the onset of diabetes to vascular changes occurring after 6-8
months of diabetes.37,39,103,128-130 These studies have described various complications 
such as pericyte loss, acellular capillaries, basement membrane thickening, activated glial 
cells and inflammation occurring within the neurosensory retina.37,39,103,129,130

Unfortunately, work in animal models do not progress to the proliferative phase of 
diabetic retinopathy.125 The exact mechanism of how high glucose levels contribute to the 
vascular and neuronal complications seen in diabetic retinopathy are not well understood,
needing additional investigations to fully understand the pathology of this disease from 
the onset to visual loss.

The majority of investigations surrounding the pre-proliferative stages of the 
disease have concentrated on animal studies, with a focus on pericytes and endothelial 
cells. The studies presented in this dissertation focused on a different cell type, retinal 
Müller cells. Müller cells are the principal glial cell in the retina, and along with other 
glia cells (astrocytes, and microglia) make up roughly 95% of the retina.131 Müller cells 
play an important role in the retina by providing nutrients to blood vessels, regulating ion 
concentrations, and initiating protection methods in times of stress.58,59,98,127,131,132 One of 
the earliest disruptions in diabetic retinopathy is the activation of retinal Müller cells 
leading to an increase in GFAP, indicative of a stress in the retinal 
environment.29,53,59,62,99,127,131,133,134 Müller cells have previously been shown to be 
protective to the eye in a normal setting, but with the onset of diabetic retinopathy, these 
cells exhibit deleterious effects such as increases in inflammatory cytokines, growth 
factors, and other toxic effects.  In addition to these effects, Müller cells have also been 
shown to possess insulin receptors, which are suggested to be impaired in diabetic 
retinopathy.39,52,58,95,122,125

Although elevated glucose levels characterize diabetes, the underlying cause for 
these complications can be attributed to deficiencies in the production or usage of insulin.  
Insulin is only able to mediate its actions by binding the insulin receptor, with the 
receptor propagating the signal to carry out various protein and energy requirements.  
Disruption in insulin receptor signaling results in impairment and complications observed
in all tissues throughout the body, including the retina.  Recent rodent studies have 
confirmed that insulin receptors are present in the retina in levels comparable to brain and 
liver.39 Since Müller cells possess insulin receptors, one of our goals was to investigate 
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insulin signaling in Müller cells.  Results from our studies (Chapter 2) show that 
phosphorylation of the insulin receptor is significantly decreased in Müller cells cultured 
in a high glucose environment. These findings are in agreement with previous findings
from whole retina samples.39 While it is clear that insulin signaling occurs in Müller 
cells, the present work focuses on -adrenergic receptor regulation of insulin signaling in 
these cells.  These studies show for the first time that restoration of insulin receptor 
signaling can be obtained by use of non-selective (isoproterenol) and selective 
(salmeterol) beta adrenergic receptor agonists in cells cultured in hyperglycemic
environments or diabetic animals.  These results also show that stimulation of 
beta-2-adrenergic receptors can reduce cell death in retinal Müller cells, suggesting a
signaling mechanism for TNF- actions on insulin receptor signaling, resulting in cell 
death in retinal Müller cells. 

Earlier work in our lab concentrated on the role of inflammatory cytokines 
specifically TNF- and their role in diabetic retinopathy.  The results of those studies 
concluded that by stimulating beta adrenergic receptors in retinal Müller cells that were 
cultured in a high glucose environment, we significantly reduced protein levels of various 
inflammatory cytokines such IL-1 , ICAM-1, iNOS, and TNF- .29 To continue those 
studies, we chose to concentrate one inflammatory cytokine, TNF- , and provide a 
possible mechanism leading to cell death in retinal Müller cells. TNF- is one of the 
most targeted pro-inflammatory cytokines in studies of diabetic retinopathy, cancer, and 
diabetic neuropathy as well as many other diseases.54,135,136 The topic of inflammation 
and its relation to diabetic retinopathy is a well-documented hypothesis for a majority of 
the earlier changes that occur in the disease.31,135,137-141

Screening of retinal samples from diabetic patients has revealed increased levels 
of numerous inflammatory cytokines such as TNF- .  Although is not uncommon for 
these inflammatory cytokines to be upregulated in stress responses to the body (i.e. tissue 
injury, cellular infection, etc.), excessive expression of these inflammatory cytokines can 
result in various complications and diseases.  In diabetic animal studies, it has been 
suggested that the number of leukocytes and neutrophils are increased comparable to the 
levels of inflammatory cytokines, leading to leukostastis.  Increases in inflammatory 
cytokines can lead to activation of NF- B by removal of inhibitor of NF- B (I- B), 
which is a known mediator of inflammation.31,138,142 These factors, along with many 
others, contribute to the thought that diabetic retinopathy is a chronic inflammatory 
disease.  

Other contributing factors that correlate to diabetic retinopathy being an 
inflammatory disease are the ability of retinal Müller cells to release TNF- upon
activation. We have previously shown that levels of TNF- are significantly increased in 
the presence of high glucose.  These results lead us to hypothesize that the increase of 
TNF- could lead to cell death in retinal Müller cells.  Literature searches in adipocytes 
in other tissues revealed a possible mechanism that suggested that increases in TNF-
can stimulate phosphorylation of Ser 307 on IRS-1.  IRS-1Ser307 leads to decreased Akt 
phosphorylation on Ser 473 and increased in cell death.  Results from knockdown of 
TNF- show that decreasing levels of TNF- resulted in increase in phosphorylation of 
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Akt, significant decreases in IRS-1Ser 307 phosphorylation, and decrease in cell death.  
Although our shRNA experiments did not completely inhibit TNF- levels in high 
glucose, the amount of knockdown was enough to produce significant changes to IRS-1
actions in retinal Müller cells.  

In order to fully understand the role of insulin signaling on apoptosis of retinal 
Müller cells, it is important to determine the specific role of the IRS complex proteins, 
specifically IRS-1 in Müller cells.  IRS-1’s ability to mediate insulin’s action becomes 
dysfunctional with the onset of diabetes,52,73,74 and becomes a target for TNF- to 
mediate pro-apoptotic signals.  Results from Chapter 2 indicate that the reduced IRS-1
signaling after shRNA results in a significant increase in cell death.  Although the 
knockdown IRS-1 significantly decreased serine phosphorylation, tyrosine 
phosphorylation was decreased as well, enhancing the increase in cell death.  
Combination treatments of IRS-1 shRNA +Salmeterol showed significant increases in 
cell death compared to salmeterol alone treatments, suggesting the need for IRS-1
signaling to decrease cell death. 

As shown in Chapters 2 and 3 of this dissertation, our findings are in line with the 
findings in adipocytes,73,74,136 but contrast recent reports published in our field that state 
that IRS-2, not IRS-1, is the major player in the role of insulin signaling in the retina.39

The discrepancies in our findings compared to previous studies in our field likely stem 
from the fact that we concentrated solely on in vitro studies using retinal Müller cells.   
Previous studies have dealt with in vivo and ex vivo studies using whole retinal samples, 
which contain a variety of retinal cell types. There are 4 subtypes of the insulin receptor 
substrate complex (IRS 1-4), and out of these four; two of these subtypes, IRS-1 and 
IRS-2 play a major role in insulin signaling throughout the body.  In other work from our 
lab, we have found differences in insulin receptor substrate signaling in retinal 
endothelial cells, which tend to signal through an IGF-1 receptor/IRS-2-dependent 
mechanism compared to retinal Müller cells which signal through an IR/ IRS-1
mechanism. Insulin studies have shown that mechanism of action for insulin is to signal 
through insulin receptors, which consists of two alpha subunits and two beta subunits,37,39

however the makeup of IGF-1 receptor is very similar and for that reason have similar 
signaling paths.  The actions of insulin are initiated when the receptor becomes bound on 
the alpha subunits and this binding causes a phosphorylation on tyrosine kinases of the 
beta subunits inducing a conformational change.37,39 In most cases the lack of expression 
insulin receptors can promote IGF-1 receptors to form a tetrameric receptor making it 
difficult to delineate which receptors are responsible for the cellular signaling through the 
IRS-1 complexes.75,136 These studies provide a rationale suggesting that different cell 
types in the retina may use different subtypes of the IRS complex for cellular signaling, 
which expands the signaling possibilities of retinal cells.  

Our studies have shown that high glucose can cause inhibition of beta-adrenergic 
receptor activation of signaling molecules, such as phosphatidylinositol-3-kinase (PI3K) 
and IRS-1.47 Inhibition of these signaling molecules can significantly alter the 
interactions of beta-adrenergic receptors and insulin receptor.  It is well known that beta-
adrenergic receptors primarily signal through PKA. Results from Chapter 4 confirm that 
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loss of PKA signaling by siRNA leads to further inhibition of beta-adrenergic receptor 
signaling.   Significant inhibition of PKA significantly decreased the phosphorylation of 
Akt, as well as significantly increases the phosphorylation of IRS-1 on serine 307 in 
retinal Müller cells.  Silencing of PKA also increased cell death compared to normal 
glucose samples, however no significant differences in cell death were seen in high 
glucose samples compared to PKA siRNA samples.  Combination treatment with 
salmeterol + PKA siRNA showed a significant decrease in cell death, suggesting a 
compensatory mechanism for alternate signaling when the PKA signal is disrupted. Our 
findings are very thought provoking in that we are the first to our knowledge to show the 
mechanism of PKA signaling in retinal Müller cells, since it is known that PKA is 
supposed to be the essential step in beta-adrenergic receptor regulation.

One possible link between beta-adrenergic receptors and insulin receptor 
-coupled Gi signaling.  While we have shown 

that loss PKA leads to significant decreases in Akt and phosphorylation, we also reported 
that loss of PKA showed no significant changes in cell death when compared to high 
glucose samples.  While it is well understood that majority of beta-adrenergic receptor 
stimulation results from PKA activation by Gs, we have reason to believe that in retinal 
Müller cells, dual coupling (utilizing Gs and Gi to signal simultaneously) may occur.  
Results from our cell death assay showed that in combination treatments with PKA 
siRNA + salmeterol, there was a significant decrease in cell death.  Additional findings 
showed that treatment with pertussis toxin (PTX), an inhibitor of Gi, significantly 
decreased cell death levels also.  These findings agree with previous literature in the heart 
has shown that beta-2-adrenergic possess an innate ability to signal through numerous
pathways by dual coupling to various members of the G protein family.112 This report 
also suggested that the inhibition of Gi was able to act in an anti-apoptotic manner, which 
is very similar to our findings in Chapter 4.  Further reports are substantiated by studies 

-2-adrenergic receptor 
showed very contrasting signaling mechanisms than that of the beta-1-knockout mice 
following stimulation.  Although there was increased accumulation of cAMP verified by 
assay in the animals, the animals showed no effects when given PKA inhibitors 
suggesting an alternate pathway.123 The findings from Chapter 4 were in line with our 
original hypothesis, and upon further literature review, these findings are in agreement 
with findings in the heart.  These findings are the first to our knowledge to report that 
retinal Müller cells signal through a PKA-dependent manner in a high glucose 
environment.  Future studies will go more in depth mechanistically to confirm our initial 
findings, as well as identify possible trigger points for this dual signaling in this particular 
cell type. 

From these works, future studies will hopefully be directed toward
characterizations of insulin signaling in vivo to see whether findings from our in vitro
studies are relevant in animal models.  The best potential animal model to achieve these 
studies would be to use beta-2-adrenergic receptor knockout mice, which are commonly 
used for heart and lung studies.  The potential findings from using retinal tissue lysates 
from these animals would give further evidence of changes that occur with altered 
sympathetic neurotransmission.  We would hope to observe that insulin and/or IGF-1
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signaling is down regulated in the retina of these KO mice as compared to the 
heterozygote littermates.  These results would strongly suggest that beta-2-adrenergic 
receptors mediate changes in insulin signaling in the retina, which may explain the 
protective effect of sympathetic neurotransmission on the retina.  Alternatively, we could 
also make the beta-2-adrenergic receptor knockout and their wild-type littermates 
diabetic to determine if the role of the beta-2-adrenergic receptor only in times of 
systemic stressors, such as high glucose environment.  These results would show that loss 
of beta-2-adrenergic receptor agonist could lead to increased expression of apoptotic 
markers observed when the retina is stressed due to high glucose.

The findings presented here in this dissertation add to a very limited body of work 
as it relates to insulin signaling and cell death in retinal Müller cells.  For many years it 
was thought that the death of retinal Müller cells occurred via apoptosis.  While this 
thought seemed to fall in line with data from other cell types in the retina, the work in our 
lab and findings from other labs have shown that apoptosis in retinal Müller cells does 
not occur.  The inability to display common apoptotic DNA fragmentation via TUNEL 
staining, along with very minimal changes in cleaved caspase 3 levels in Müller cells
cultured in a hyperglycemic environment has changed the thinking in the field.  

Recent studies have suggested that increases in GAPDH nuclear accumulations in 
retinal Müller cells could be a potential mediator for cell death occurring in these cells.  
In a hyperglycemic environment, it is suggested that GAPDH translocation from the 
cytosol to the nucleus of Müller cells is stimulated by increase in nitric oxide as well as 
interleukin-1beta.143,144 The stimulation from pro-inflammatory cytokines, nitric oxide 
and interleukin-1beta, resulted in nuclear accumulation of GAPDH which resulted in 
significant increase in Caspases 1, 6, and 9.143,144 Although these studies are the first to 
suggest an alternative mechanism for cell death in retinal Müller cells in diabetic 
retinopathy, our results fall in line with some of their findings.  Walker et al. 2007, 
showed that culturing Müller cells in a hyperglycemic environment resulted in increases 
in iNOS, as well as interleukin-1beta, and treatment with isoproterenol significantly 
decreased these inflammatory cytokines.  

Studies in this dissertation add to the complex mechanism of cell death in retinal 
Müller cells, in my opinion, much additional work is needed to understand why Müller 
cells undergo such a different sequence of events in diabetic retinopathy than any other 
cell type. It has been estimated that 20% of Müller cells undergo cell death in the early 
progression of diabetic retinopathy, but the exact mechanism for how the death occurs is 
not clear. What we understand is that in normal conditions the Müller cells have a variety 
of housekeeping functions such as mediating glutamine uptake to and from neurons, 
production and secretions of proteins that make up the tight junctions of the blood retinal 
barrier, as well as being the only cell type that is in contact with all retinal cell types.131

One study that I would conduct to elucidate the mechanism of Müller cell survival 
and/or loss in diabetic retinopathy is to use some of the current rodent models, and label 
cells with a co GFAP/CRALBP/ glutamine synthetase marker.  By targeting cells first 
with GFAP, one would be able to identify activated glial cells and then using CRALBP 
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and glutamine synthetase which are both expressed by Müller cells and not by astrocytes,
the theory would be that any cell that is triple labeled would be positively identified as 
Müller cells.  A comparison of a diseased rodent model to a normal untreated counterpart 
would identify exactly how many Müller cells survived/die.  This process would need to 
be carried out after 3-4 weeks of STZ injections, since we know that Müller cells undergo 
early changes in diabetic retinopathy.  From these findings we could further use these 
labeled cells for microarray analysis, various proteomic analysis, and various microscopy 
analysis to further understand the mechanism of cell death and cell survival for this 
particular cell type in the retina. 

In summary, it is important to understand that the lack of knowledge of Müller 
cells in diabetic retinopathy is much greater than the knowledge that we actually possess 
about this particular cell type.  These studies have attempted to further our knowledge by
dissecting out possible mechanisms of beta-adrenergic receptor regulation of TNF- and 
insulin receptor actions in retinal Müller cells.  We have shown a possible mechanism in 
which TNF- regulates insulin receptor signaling by phosphorylating serine 307 on 
IRS-1 and this phosphorylation inhibit insulin action.31,38 The efforts in this study have 
provided further understanding in the regulation of insulin signaling in the retina and a 
potential role for beta-adrenergic receptors in diabetic retinopathy.
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APPENDIX A.   MATERIALS AND METHODS

Müller Cell Culture 

Rat retinal Müller cells (rMC-1) were cultured and passaged in DMEM medium 
(HyClone, Logan, UT) containing 5mM glucose (normal glucose) or 25mM glucose 
(high glucose) 10% FBS, and 2mM L-glutamine. Cells were cultured until they reached 
80% confluency, at this point, FBS concentration was decreased from 10% to 2% in 
25mM media starved cells. Cells remained in this starved environment for 18-24 hours to 
reduce any serum effects from the medium. Immediately after starvation, cells were 
treated with 10 M salmeterol (beta-2-adrenergic receptor agonist) dissolved into high 
glucose medium for 6 hours. Additionally, five dishes of cells were used as not treated 
controls for both treatments in both 25mM glucose and 5mM glucose for the duration of 
the treatment. 

Following treatment cells were harvested and pelleted in lysis buffer. In TNF-
inhibitory studies, cells were treated with 5ng/ml of TNF- alone for 30 minutes or 30 
minutes pre-treatment with TNF- followed by 10 salmeterol for 4 hours.  
Immediately after treatments, cells were lysed with lysis buffer (1.58g Tris base, 150ml 
sterile water, 1.80g NaCl, 20ml 10% Igepal-40, 5ml 10% Na-deoxycholate, 2ml 100mM 
EDTA, and 1 g protease inhibitors (all ingredients for lysis buffer, Sigma) and harvested 
at each of the treatment time points. 

shRNA Library Construction 

The sequence for each of the 21-bp shRNA constructs was designed using 
Invitrogen Block-iT RNA designer™ (Invitrogen, Carlsbad, CA).  The sequence for rat 
IRS-1 (accession # NM_012969) was CGAGTTCTGGATGCAAGTGGA and the 
sequence of the scrambled shRNA was 5-GACGAACCCCTGTTCCGAATG.  The mir 
algorithm was used to design double-stranded cDNAs.  For rat IRS-1 the sequence of the 
forward primer was 
5’-TGCTGTCCACTTGCATCCAGAACTCGGTTTTGGCCACTGACTGACCGAGTT
CTATGCAAGTGGA and its complementary strand was: 
5’-CCTGTCCACTTGCATAGAACTCGGTCAGTCAGTGGCCAAAACCGAGTTCTG
GATGCAAGTGGAC.  These synthetic oligo constructs were hybridized and cloned into 
BLOCK-iT™ Pol II miR RNAi Expression Vector with EmGFP.  Each plasmid was 
grown on agar plates containing 50 g/ml of spectinomycin.  Colonies were selected and 
sequenced to verify insert sequence, and then a large plasmid preparation was made using 
Qiagen kits (Qiagen, Baltimore, MD).  Upon transient transfection into cells, expression 

= 488 = 520 nm).  

To determine the effect of transient expression of 5 -mm
plate on its target, we probed total RNA by RT-PCR or protein by Western blotting using 
anti-IRS-1 antibody (SC-559 from Santa Cruz Biotechnology).  For the RT-PCR 
procedure, first-strand cDNA synthesis was performed using the Transcriptor First-Strand 
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cDNA Synthesis Kit from (Roche Diagnostics, Indianapolis, IN, USA) using 62 ng of 
RNA per assay. The RT-PCR primers were designed using a web-based design center 
(http://www.universalprobelibrary.com).  The mRNA level for each protein was 
quantified using the Universal Probe Library of short hydrolysis locked nucleic acid 
probes in combination with the primers. The quantification of mRNA was accomplished 
using the Roche Lightcycler 480 Real-time PCR system and software.   

RNA Interference Transfection 

For shRNA studies, cells were passaged and cultured until 80% confluency, at 
which time, cells were transfected with plasmid containing shRNA for silencing IRS-1
using lipofectamine for 24 hours. For IRS-1 shRNA + salmeterol studies, following the 
24 hours of transfection, cells were treated with 10 salmeterol for an additional 6 
hours. Cells that were designated as IRS-1 shRNA alone were harvested with no further 
treatment following the 24-hour transfection period.  For scrambled shRNA studies, cells 
were transfected with plasmid containing scrambled shRNA using lipofectamine for 24 
hours. 

For knockdown studies of TNF- , cells were cultured until 90% estimated 
confluency, followed by transfection of cells with shRNA against TNF- for 18 hours. 
For TNF- shRNA + salmeterol samples, cell were first treated with TNF- shRNA for 
18 hours, followed by 6 hours of exposure to 10 salmeterol.  

PKA siRNA Studies

Cells were cultured in previously mentioned conditions until 90% confluency, 
after which cells were transfected with 20nM naked siRNA using Lipofectamine for 
8-10hrs. Following a medium change, cells were allowed to proliferate for a period of 
24-48 hrs for PKA siRNA alone samples then harvested and pelleted with lysis buffer for 
experimental analysis. For PKA siRNA +salmeterol samples, following the 24hour 
proliferation period, cells were treated with 10 salmeterol for 6hrs, following by cell 
collection for experimental analyses.  

Pertussis Toxin Studies

Cells were cultured in previously mentioned conditions until 90% confluency.
Cells were transferred into Optimem medium and treated with 50ng/ml pertussis toxin 
(PTX) for 10 hrs 145.  Following the ten-hour treatment period, cells treated with PTX 
only were harvested and lysed for experimental analysis.  PTX +salmeterol samples were 
treated with 10 salmeterol for 6hrs following PTX treatment, followed by cell 
collection for experimental analyses.
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Beta-Adrenergic Receptor Antagonist Treatment 

In inhibitory studies, cells were treated with 300nM of CGP 20712A 
( -1-adrenergic receptor antagonist) or 50nM of ICI 118,551 ( -2-adrenergic receptor 
antagonist) 97 for 30 minutes.  Following thirty minutes of antagonist treatment, 5 dishes 
of cells were designated as controls and harvested with no further treatment, while the 
remaining cells were treated with 10 isoproterenol for 1, 6, 12, and 24 hours 
collecting 5 dishes for each timepoint.  

Western Blot Analysis

Protein concentrations in cell lysates were determined by Bradford assay (Thermo 
Fisher Scientific, Rockford, IL). Once protein concentrations were determined, 100 of 
protein were combined with denaturing sample buffer (1mL 2X GDW, 640 L 1M 
Tris-HCL pH 6.8, 420 L 30% glycerol, 250 L -mercaptoethanol, 200 L 0.05% 
bromophenol blue, and 0.125g recrystallized SDS) to be separated on 4-20% pre-cast 
tris-glycine gels (Lonza, Rockland, MD) and transferred to nitrocellulose membranes 
following separation.  Membranes were allowed to block at 4 degrees Celsius in a 5% 
BSA solution, overnight with antibody of interest: total and phosphorylated insulin 
receptor beta Tyr 1150/1151 (diluted 1:250) Cell Signaling, Danvers, MA).  All blots 
were washed and then incubated at room temperature with the anti-rabbit secondary 
antibodies combined with horseradish peroxidase at 1:5000 dilution for 2hrs.  Following 
incubation with secondary antibodies, blots were washed and placed into ECL reagent 
(Thermo Fisher Scientific, Rockford, IL). Chemilluminescent detection for 
immunoreactive bands was viewed using the Kodak ImageStation 4000MM with mean 
densitometry being calculated for individual bands. Results were expressed as a ratio of 
phosphorylated to total protein levels in densitometric units with comparisons between 
not treated vs. drug treatments.

For detection of Akt, analyses were done using the LiCor Odyssey system.  
Protein analyses were the same as above with the exception that, membranes were 
allowed to block in a Odyssey blocking solution with total or phosphorylated AktSer473

(diluted 1:500, Cell Signaling, Danvers, MA). All blots were washed and then incubated 
at room temperature with the IRDye 800CW goat anti-Rabbit secondary antibodies 
(LiCor, Lincoln, NE), at 1:5000 dilution in Odyssey blocking solution with 1% Tween
for 2hrs.  Following incubation with secondary antibody, blots were washed and viewed 
using the Odyssey infrared image system (LiCor, Lincoln, NE) with interval intensities 
being calculated for individual bands. Results were expressed as a ratio of 
phosphorylated to total protein levels in densitometric units with comparisons between 
5mM glucose vs. 25mM glucose, 25mM glucose vs. TNF- shRNA treatments, and 
salmterol vs. TNF- shRNA treatments.

For PKA studies, results were expressed as a ratio of phosphorylated to total 
protein levels in densitometric units with comparisons between 5mM glucose vs. 25mM 
glucose, 25mM glucose vs. PKA siRNA treatments, and salmterol vs. PKA siRNA 
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treatments. For PTX studies, results were expressed as a ratio of phosphorylated to total 
protein levels in densitometric units with comparisons between 5mM glucose vs. 25mM 
glucose, 25mM glucose vs. PTX treatments, and salmeterol vs. PTX +salmeterol 
treatments.

ELISA Assays

Müller cells were cultured under conditions previously stated and were treated 
either with TNF- alone, salmeterol alone, TNF- + salmeterol, or not treated (control).  
For TNF- shRNA conditions, cells were treated with TNF- shRNA, TNF- shRNA 
+salmeterol, scrambled shRNA (control), normal glucose, and high glucose.  Cell lysates 
from these treatment groups were transferred to a streptavidin-coated microplate.  The 
amount of DNA fragmentation was analyzed by use of Cell Death Detection ELISA 
(Roche, Germany), according to manufacturer’s instructions. ELISA assays were 
performed for cleaved caspase 3 (Cell Signaling, Danvers, MA) according to 
manufacturer’s instructions, except that equal protein concentrations were loaded into all 
wells to allow for analyses based on absorbance values. 
Statistical Analysis

All statistical analyses for these investigations were obtained using Prism 4.0b 
software. Nonparametric tests were conducted for cell culture experiments due to the 
small sample size for each experiment.  For all, the 5mM (#) and 25 mM (*) glucose 
samples (controls) were compared to IRS-1 shRNA treatment groups and salmeterol 
treatment groups using a Mann Whitney U, with p<0.05 considered as significantly 
different.  Additionally, a separate comparison was done with IRS-1 shRNA 
treatment + salmeterol vs. salmeterol treatment alone ($).

For all PKA studies, the 5mM (*) and 25 mM (#) glucose samples (controls) were 
compared to PKA siRNA treatment groups and salmeterol treatment groups using a 
Mann Whitney U, with P<0.05 considered as significantly different.  Additionally, a 
separate comparison was done with PKA siRNA treatment + salmeterol vs. salmeterol 
treatment alone ($).  For all PTX studies, the 5mM (*) and 25 mM (#) glucose samples 
(controls) were compared to PTX treatment groups and salmeterol treatment groups using 
a Mann Whitney U, with p<0.05 considered as significantly different.  Additionally, a 
separate comparison was done with PTX treatment + salmeterol vs. salmeterol treatment 
alone ($).  
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APPENDIX B.   CHAPTER 2 ABSTRACT

Purpose

To determine whether -adrenergic receptors require IRS-1 activity to regulate 
apoptosis in retinal Müller cells.

Methods

Müller cells (rMC-1) were cultured in DMEM medium grown in normal (5mm) 
or high glucose (25mM) conditions.  Medium was supplemented with 10% FBS and 
antibiotics. Cells were allowed to reach 80-90% confluency.  After becoming 
appropriately confluent, cells were placed in medium with reduced serum (2%) for 18-24
hours to eliminate any effects of FBS. Cells were then transfected with 10 g of IRS-1
shRNA. Forty-eight hours following transfection, cells were lysed and harvested for 
protein analysis using Western blotting. In additional experiments, some cells were 
treated with 10 M salmeterol 24 hours following transfection with IRS-1 shRNA.  To 
determine whether IRS-1 directly regulates apoptotic events in the insulin-signaling 
pathway in retinal Müller cells, a Cell Death assay kit (Roche) was used. In TNF
inhibitory studies, cells were treated with 5ng/ml of TNF alone for 30 minutes or 30 
minutes pre-treatment with TNF followed by salmeterol for 4 hours.  

Results

Müller cells treated with 5ng/ml TNF in 25mM glucose significantly increased 
phosphorylation of IRS-1Ser307. Treatment with the selective beta-2-adrenergic receptor 
agonist, salmeterol, significantly decreased phosphorylation of IRS-1Ser307. Following 
IRS-1 shRNA transfection+salmeterol treatment, Bax and cytochrome c levels were 
significantly decreased.  Salmeterol+IRS-1 shRNA also decreased cell death and 
increased protein levels of Bcl-xL, an anti-apoptotic factor.  

Conclusions

In these studies, we identify for the first time that salmeterol, a beta-2-adrenergic 
receptor agonist, can reduce retinal Müller cell death through IRS-1 actions These 
findings also suggest the importance of IRS-1 in beta-adrenergic receptor signaling in the 
prevention of cell death in retinal Müller cells.
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APPENDIX C.   CHAPTER 3 ABSTRACT

Purpose

The goal of this study was to determine the relationship of TNF- and the 
downregulation of insulin receptor signaling in retinal Müller cells cultured under 
hyperglycemic conditions and the role of -adrenergic receptors in regulating these
responses.

Methods

Retinal Müller cells were cultured in normal glucose (5mM) or high glucose 
(25mM) conditions until the cells reached 80% confluency and then were reduced to 2% 
serum for 18-24 hours. Following serum reduction, cells were treated with 10uM
salmeterol followed by Western blot and ELISA analyses. For TNF- inhibitory studies, 
cells were treated with 5ng/ml of TNF- alone for 30 minutes or 30 minutes pre-
treatment with TNF- followed by salmeterol for 6 hours.  In silencing studies of TNF- ,
cells were cultured until 90% estimated confluency, followed by transfection of cells with 
shRNA against TNF- for 18 hours.

Results

TNF- üller cells resulted in a significant decrease of 
tyrosine phosphorylation of the insulin receptor, as well as a decrease in phosphorylation 
of Akt in salmeterol, a 

-2-adrenergic receptor agonist, significantly increased the phosphorylation of both 
insulin receptor and Akt. TNF- shRNA significantly decreased phosphorylation of
IRS-1Ser307, which was further decreased following salmeterol+TNF- shRNA.  
Knockdown of TNF- or treatment with salmeterol significantly reduced cell death in 
retinal Müller cells.  

Conclusions

T -adrenergic receptor agonist in
vitro can restore the loss of insulin receptor activity noted in diabetes. By decreasing the 
levels of TNF- decreasing phosphorylation of IRS-1Ser307, while increasing tyrosine 
phosphorylation of insulin receptor, these results suggest a possible mechanism by which 
restoration of -adrenergic receptor signaling may protect the retina against 
diabetes-induced damage.
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APPENDIX D.   CHAPTER 4 ABSTRACT

Purpose

-adrenergic receptors on retinal Müller cells are 
regulated by Gs or Gi.

Methods

Müller cells (rMC-1) were cultured in DMEM medium grown in high glucose 
(25mM) conditions.  Medium was supplemented with 10% FBS and antibiotics.  Cells 
were continuously fed and allowed to grow until reaching 80-90% confluency. Cells were 
then serum-starved for 18-24 hours to eliminate any effects of insulin from the FBS. 
Cells were transfected with 20nM PKA siRNA transfection for a period 10-12hrs 
followed by cell lysis and Western blotting and ELISA analysis. For pertussis toxin 
experiments, cells were treated with 50ng/ml pertussis toxin (PTX) for 10 hrs.  For both 
PKA siRNA and PTX studies, cells were treated with 10 salmeterol following 
treatments of PTX and PKA siRNA.  Following salmeterol treatment, cells were lysed 
and harvested for various proteins of interest.

Results

PKA siRNA only and PKA siRNA + salmeterol samples produced a significant 
decrease in Akt phosphorylation in retinal Müller cells.  This was accompanied by a 
significant increase in phosphorylation on IRS-1Ser307 in PKA siRNA samples, suggesting 
that IRS-1Ser307 phosphorylation signaling to Akt in retinal Müller cells is mediated by Gs
via PKA. Combination treatments of PKA siRNA +salmeterol yielded a significant 
decrease in cell death vs. 25mM glucose samples. However, activation of Gi by pertussis 
toxin and pertussis toxin+salmeterol resulted in significant decreases in cell death.  
Additional studies revealed that Müller cells treated with PTX and PTX+salmeterol 
significantly increased phosphorylation of Akt and significantly decreased in IRS-1Ser307 

phosphorylation. 

Conclusions

-adrenergic receptor restoration of 
insulin receptor signaling in hyperglycemia.  Activation of Gi and reduced coupling to Gs
on ß2-adrenergic receptors resulted in activation of Akt and other cell survival 
mechanisms in retinal Müller cells. For the first time to our knowledge, we show that 
ß2-adrenergic receptors in retinal Müller cells undergo a PKA-mediated dual coupling 
from Gs to Gi protein to provide anti-apoptotic signaling in a high glucose environment. 
These results strongly suggest that beta-adrenergic receptors mediate changes in 
apoptosis and insulin signaling in the retina. 
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