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                                          Abstract  

Cell migration is a key aspect of many normal and abnormal biological 

processes, including embryonic development, defense against infections, wound 

healing, and tumor cell metastasis. In this study we demonstrate that an epithelial 

cell actin-binding protein, villin, plays a crucial role in the process of cell 

migration. Overexpression of villin in doxycyline-regulated HeLa Tet-off and 

MDCK Tet-off cells enhanced cell migration. We further demonstrate that 

tyrosine phosphorylation of villin by c-src is required for villin-induced cell 

migration. Previously, we identified four tyrosine phosphorylation sites in the 

amino-terminal domain of villin.  I further identified six new sites in the carboxyl-

terminal region of the villin core. Collectively we have now documented all 

phosphorylatable tyrosine residues in villin and mapped them to villin’s functions. 

To further investigate the role of tyrosine phosphorylation sites in cell migration, 

we used phosphorylation site mutants (tyrosine to phenylalanine or tyrosine to 

glutamic acid) stably transfected in HeLa and MDCK Tet-off cells. We determined 

that tyrosine phosphorylation at amino-terminus of villin played an essential role 

in cell migration as well as in the reorganization of the actin cytoskeleton. The 

carboxyl-terminal phosphorylation sites were found to be critical for villin’s 

interaction with its ligand PLC-γ1 and for its localization to the developing 

lamellipodia in a motile cell.  Collectively, these studies define how biophysical 

events such as cell migration are actuated by biochemical signaling pathways 

involving tyrosine phosphorylation of actin binding proteins, in this case villin. 
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Introduction 
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1.1 The actin cytoskeleton 

The actin cytoskeleton is a fundamental component of all eukaryotic cells. 

It provides force and stability and plays an integral role in a diverse array of 

cellular processes. Actin is mainly located in the cytoplasm, but it is also present 

in the nucleus where it may or may not have motor-associated functions. Actin 

filaments are particularly abundant beneath the plasma membrane, where they 

form a network that provides mechanical support, determines cell shape, and 

allows movement of the cell surface, thereby enabling cells to migrate.            

Actin exists as a globular monomer called G-actin and as a filamentous polymer 

called F-actin, which is a linear chain of G-actin subunits. G-actin has a 

molecular mass of approximately 43 kDa. Although G-actin appears globular in 

the electron microscope, x-ray crystallographic analysis reveals that it is 

separated into two lobes by a deep cleft. The deep cleft has a tightly bound 

nucleotide in the center of G-actin. The nucleotide binds as a complex with either 

Mg2+ or Ca2+. This nucleotide is usually ATP or ADP-Pi rather than ADP. ADP-Pi 

binds with ~ 10-fold lower affinity to Mg2+-G-actin and ~ 200-fold lower affinity 

with Ca2+-G-actin compared to ATP (ATP-Mg2+ dissociation constant (kd) is 1.2 

nM and ATP-Ca2+ kd is 0.12 nM) (De La Cruz and Pollard, 1995; Strzelecka-

Golaszewska, 2001). Hence, Mg2+, the dominant cation in vivo, determines the 

binding affinity of the nucleotide to G-actin. The nucleotide binding to G-actin 

affects the conformation of the molecule. In fact, without a bound nucleotide, G-

actin denatures very quickly (De La Cruz and Pollard, 1995).  



 3

G-actin has high affinity binding sites that mediate head-to-tail interactions 

with two other G-actin molecules, thus actin monomers polymerize to form F-

actin nuclei (figure 1.1). G-actin monomers are then added to the nuclei to 

assemble filamentous actin (F-actin). Each monomer is rotated by 166° in the 

filaments, which gives it the appearance of a double-stranded helix (Holmes et 

al., 1990). Because all the actin monomers are oriented in the same direction, 

actin filaments have a distinct polarity, and their ends (called the barbed ends or 

plus ends and pointed ends or minus ends) are distinguishable from one another 

(figure 1.1). The addition of ions — Mg2+, K+, or Na+— to a solution of G-actin will 

induce the polymerization of G-actin into F-actin filaments. The process is 

reversible: F-actin depolymerizes into G-actin when the ionic strength of the 

solution is lowered. The F-actin filaments that form in vitro are indistinguishable 

from microfilaments isolated from cells. This indicates that other factors such as 

actin binding proteins are not required for polymerization per se. However the 

presence of actin-binding proteins in cell results in a 100 times faster turnover of 

actin filaments. Actin polymerization from monomers proceeds in at least four 

reversible steps: activation, nucleation, elongation and annealing. Activation is a 

conformational change in G-actin monomer induced by salts. Nucleation is the 

association of 2 to 3 monomers to form oligomers from which polymer can grow 

(figure 1.1). These two steps are much slower than elongation and account for 

the initial lag phase in the time course of actin polymerization in vitro. Elongation 

involves association and dissociation of monomers from the filament. These 

processes can occur at either end of the filament, but association predominantly 
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Figure 1.1 G-actin polymerizes to form F-actin. Two to three monomers of ATP 

bound G-actin polymerize to form the nuclei. Addition of ATP-G-actin at the 

barbed end in a polymerization reaction forms F-actin. Filaments age by 

hydrolysis of ATP bound to each ATP-G-actin subunit followed by dissociation of 

the γ phosphate, which result in actin filaments with ADP-G-actin. 
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occurs at the barbed end and dissociation at the pointed end as discussed 

below. Short actin filaments can also anneal end to end, leading over time to an 

increase in filament length (annealing). The nucleotide binding site of monomeric 

actin is almost exclusively associated with ATP in vivo. While the G-actin bound 

ATP is readily exchangeable, the ADP of F-actin is essentially nonexchangable 

(Hegyi et al., 1988). Hydrolysis of bound ATP was originally thought to be tightly 

coupled to the polymerization process (Wegner, 1976); however subsequent 

investigation (Carlier et al., 1984; De La Cruz et al., 2000) revealed that a time 

lag exists between the incorporation of ATP-G-actin onto the filament end and 

hydrolysis of the bound nucleotide. This results in the formation of an ATP-G-

actin cap at the barbed end which facilitates faster polymerization at the barbed 

end (figure 1.1). Because actin polymerization is reversible, filaments can 

depolymerize by the dissociation of ADP-G-actin subunits from the pointed end.  

Thus, an apparent equilibrium exists between actin monomers and filaments, 

which are dependent on the concentration of free monomers. The rate at which 

actin monomers are incorporated into filaments is proportional to their 

concentration, so there is a critical concentration of actin monomers at which the 

rate of their polymerization into filaments equals the rate of dissociation. At this 

critical concentration, monomers and filaments are in apparent equilibrium.  

As noted earlier, the two ends of an actin filament grow at different rates, 

with monomers being added to the fast-growing end (barbed or plus) five to ten 

times faster than to the slow-growing (pointed or minus) end. Because ATP-actin 

(barbed end) dissociates less readily than ADP-actin (pointed end), 
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depolymerization of actin filaments always occurs at the pointed end. This results 

in a difference in the critical concentration of monomers needed for 

polymerization at the two ends. The critical concentration for the pointed end is 

12 to 15 -fold higher than for the barbed end under physiological conditions 

(Wegner and Isenberg, 1983). This difference may result in the unidirectional 

growth of the actin filament due to a continual flux of actin subunits from the 

pointed to the barbed end of the filament. This reaction is called treadmilling 

(Wegner, 1976). Treadmilling requires ATP, with ATP-G-actin being added at the 

barbed end of filaments while ADP-G-actin being removed from the pointed end. 

The role of treadmilling at the leading edge of a moving cell was clearly 

demonstrated by use of fluorescent speckle microscopy (Ponti et al., 2004). Actin 

treadmilling at the leading edge results in the dynamic assembly and 

disassembly of actin filaments in an efficient unidirectional manner required for 

cells to change shape and move.  

1.2 Villin: An actin binding protein  

In cells the assembly and disassembly of actin filaments, and also their 

organization into functional higher-order networks, is regulated by a plethora of 

actin-binding proteins (ABPs). The turnover of actin filaments is about 100 times 

faster within the cell than it is in vitro, and this rapid turnover of actin plays a 

critical role in a variety of cell movements. Villin is an epithelial cell specific actin- 

binding protein. Villin is a 92.5 kDa protein consisting of two tandem homologous 

halves (segments 1-3 and 4-6, S1-S6) and a head piece domain              
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(segment 7, S7) (figure 1.2). The segments 1 through 6 are all structural repeats 

that are conserved amongst villin family of proteins which includes (but not 

limited to) gelsolin, adseverin (also known as scinderin), CapG, severin (aka 

fragmin), advillin, and supervillin. All of these proteins contain at least one of the 

structural repeats. For example gelsolin and adseverin are a six-domain ABP; 

CapG only has the first three domains, whereas advillin and supervillin have six 

domains and also share a villin-like carboxyl-terminal headpiece domain.  Among 

all actin-binding proteins, villin is unique in presenting capping, bundling, 

polymerizing and severing properties in a single protein. An important question is 

how does villin regulate these different actin modifying activities? The work done 

in our lab has significantly contributed to our understanding of this important and 

complex question. Our studies show that the ligand-binding properties and post-

translational modification of villin protein regulate the actin modifying activities of 

villin (see discussion below).  

1.2.1 PIP2 regulates actin-severing, -capping and -crosslinking activity of 

villin. In vitro interaction of full length villin protein with phosphoinositide 4, 5 

bisphosphate (PIP2) was first characterized by our lab (Panebra et al., 2001). 

Using site directed mutagenesis we identified three PIP2 binding sites in human 

villin, PB1 (a.a. 112-119), PB2 (a.a. 138-146) and PB5 (a.a. 816-824), (figure 

1.2). These sites contain the consensus sequence for phosphoinositide binding 

also found in other cytoskeletal proteins, and consists of basic amino acids with 

the following motif, (X)4(R/K)(X)(R/KR/K) (Kumar et al., 2004b). Two of the PIP2  
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Figure 1.2 Schematic representation of villin. Segmental repeats are represented 

by S1 through S6. The letter H represents the headpiece. Ca2+ binding sites 

depicted in segments S1 represent Ca2+ binding site 1 and the site depicted in 

segment S2 represents the intradomain Ca2+ binding site 2. Sites depicted in 

segment S3 through S6 represent the other intradomain Ca2+ binding sites in 

villin. F-actin binding sites, PIP2 binding sites (PB1, PB2 and PB5) and tyrosine 

phosphorylation sites (Y-46, -60, -64, -81 and -256) are also schematically 

represented. 
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binding sites identified by us described actin-binding sites in villin  (Kumar et al., 

2004b). PB2 has been described as the site of F-actin binding to villin prior to 

severing, and PB5 has been identified as the F-actin-binding site involved in the 

bundling function of villin. However a more recent high resolution crystal 

structures of chicken villin head piece, has established that most of the residues 

in PB5 are dispensable for F-actin binding (Meng et al., 2005). Thus, PB5 is a 

PIP2 binding site in proximity of the F-actin binding site in villin headpiece. The 

third lipid-binding site PB1, lies in the vicinity of an actin monomer-binding site 

(a.a. 72-99) in other proteins of the villin family such as gelsolin and by homology 

in villin (Bretscher and Weber, 1980). PB1 and PB2 lie in the actin capping and 

severing domain of villin and are conserved among the actin-capping and            

-severing proteins, whereas PB5 lies in close vicinity of the actin cross-linking 

domain in the headpiece of villin and is conserved among proteins that contain a 

villin-like headpiece (figure 1.2). We further demonstrated that Arg 138 in PIP2 

binding domain PB2 determines 80% of the PIP2 binding and as previously 

reported 83% of the actin-severing activity of villin (De Arruda et al., 1992; Kumar 

et al., 2004b). This suggests that PIP2 binding to villin in the actin severing 

domain (PB2) can directly inhibit the actin-severing activity of villin by competitive 

inhibition. Interestingly deletion of PB1 also inhibits actin-severing activity of villin. 

PB1 has been described as the site that stabilizes the binding of F-actin to PB2, 

and PIP2 binding to PB1 results in a change in the secondary structure of PB1. 

This suggests that PIP2 -induced structural changes in villin could also influence 

the actin-severing activity of villin in vivo. Like severing PIP2 also inhibited the 
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capping activity of villin (Kumar et al., 2004b). PIP2 enhances the actin-

crosslinking activity of villin (Kumar et al., 2004b). We have recently 

demonstrated that PIP2 facilitates dimerization of villin (George et al., 2006). We 

further demonstrated that the F-actin binding site in the villin headpiece is 

sufficient for actin-bundling activity of villin, provided villin is dimerized. Hence, 

PIP2 can regulate the actin-bundling activity of villin by regulating villin self-

association. The only actin modifying function of villin that is not regulated by 

PIP2 is actin-nucleation (Kumar et al., 2004b).  

1.2.2 Calcium regulates villin’s actin-severing and -capping activity. It has 

been shown previously that villin directly binds to calcium and can regulate the 

actin-capping and -cutting activities of villin (Glenney et al., 1980; Hesterberg and 

Weber, 1983a; Walsh et al., 1984). It has also been reported before that in the 

presence of calcium, there is an increase in the Stoke’s radius of villin, indicative 

of a Ca2+ -induced conformational change, which was confirmed by circular-

dichroism studies (Hesterberg and Weber, 1983b). The work done in our lab has 

demonstrated that two low affinity Ca2+ -sensitive sites (aspartic acid 467 and 

715) interact with a cluster of basic residues in the S2 domain of villin, resulting in 

an auto-inhibited conformation of villin. A Ca2+ concentration of > 100 µM causes 

a conformational change in villin. A similar change in villin conformation can be 

obtained by mutation of aspartic acid 467 and 715 to leucine, allowing villin to 

sever F-actin at physiological Ca2+ concentration (Kumar and Khurana, 2004). 

Hence, Ca2+ can regulate the structure and function of villin. With the help of site 

directed mutagenesis, using the NMR structure of villin 14T (Markus et al., 1994) 
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and the gelsolin-actin/ Ca2+crystal structure (Burtnick et al., 1997) our lab 

identified six additional sites that result in Ca2+ induced conformational changes 

in villin. Furthermore, we determined that villin expresses at least two types of 

Ca2+ sensitive sites that determine separate functional properties; site 1 (Glu-25, 

Asp-44, and Glu-74) regulates actin-capping, whereas sites 1 and 2 (Asp-86, 

Ala-93, and Asp-61), together with the intra-domain calcium-sensitive sites in 

villin, regulate actin-severing by villin ((Kumar et al., 2004a), (figure 1.2)). Hence, 

Ca2+ binding to villin can functionally dissect the actin-capping and -severing 

activities of villin. Although half-maximal capping is obtained at Ca2+ 

concentration of 1 µM, half-maximal severing by villin requires more than 100 µM 

Ca2+. Our data then suggests that site 1 may be a high affinity Ca2+ binding site 

which could regulate the actin-capping activity of villin at low Ca2+ concentrations 

(2.5 µM). Whereas site 2 and other intra-domain calcium sensitive sites in villin 

may be low affinity Ca2+ binding sites, which could regulate  actin-severing 

activity of villin at calcium concentrations greater than 100 µM (Kumar et al., 

2004a). Hence, the high affinity and low affinity Ca2+ binding sites could result in 

a conformational change in villin from an auto-inhibited state to an active state, 

capable of capping (2.5 µM Ca2+) and severing actin filaments (> 100 µM Ca2+) 

respectively.  

1.2.3 Tyrosine phosphorylation of villin regulates actin-severing,                   

-nucleation and -bundling activities of villin. The Ca2+ concentrations required 

for actin-severing by villin are in the micromolar range (~200 µM), which suggests 

that in vivo functional regulation of villin may not be regulated by Ca2+, since 
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intracellular Ca2+ levels may never reach 200 µM (Villereal and Palfrey, 1989). To 

resolve this paradox we looked at the role of post-translational modification of 

villin, in the form of tyrosine (Y) phosphorylation. Our lab was the first to show 

that villin is tyrosine phosphorylated (Khurana et al., 1997). Five phosphorylation 

sites were identified by direct mutation of candidate tyrosine’s (Y) to 

phenylalanine (F), namely, Y46, -60, -64, -81, and -256 (figure 1.2). These sites 

could be phosphorylated by c-src kinase in an in vitro kinase assay, suggesting 

that c-src may be involved in phosphorylation of villin in cells (Zhai et al., 2002). 

We determined that tyrosine phosphorylated villin had enhanced actin-severing 

activity compared to unphosphorylated villin. Tyrosine phosphorylation of villin 

also resulted in actin-severing at nanomolar Ca2+ concentrations, suggesting that 

tyrosine phosphorylation and not Ca2+ may be the physiological regulator of 

villin’s actin-severing activity (Zhai et al., 2002; Kumar and Khurana, 2004). 

Characterization of individual tyrosine phosphorylation sites in the amino-

terminus of villin revealed that phosphorylation at Y46 or -60 increased the actin-

severing activity of villin (Zhai et al., 2002). Tyrosine phosphorylation of villin also 

inhibited its actin-nucleating activity (Zhai et al., 2001; Zhai et al., 2002). Since 

phosphorylation of villin decreases its affinity for F-actin, it provides a  

mechanism for inhibition of villin’s actin-nucleating activity (Zhai et al., 2001; Zhai 

et al., 2002). Unlike severing no individual tyrosine phoshorylation site of villin 

regulated actin-nucleation by villin, suggesting that two or more of the identified 

tyrosine phosphorylation sites may regulate  actin-nucleation by villin (Zhai et al., 

2001; Zhai et al., 2002). Actin-crosslinking activity of villin is also inhibited by 
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tyrosine phosphorylation. We have recently demonstrated that tyrosine 

phosphorylation of villin prevents villin dimerization, which in turn results in 

inhibition of actin-crosslinking by villin (George et al., 2006).  

1.3 Cell migration 

Cell migration is a key aspect of many normal and abnormal biological 

processes, including embryonic development, defense against infections, wound 

healing, and tumor cell metastasis (Trinkaus, 1988; Martin, 1997; Nodder and 

Martin, 1997).  As shown in figure 1.3  almost universally, crawling motility 

involves a cycle of four steps: protrusion of the leading edge, adhesion to the 

substratum, retraction of the rear, and de-adhesion (Abercrombie et al., 1972).  

In response to various migratory cues, directional movement is initiated by 

polarization of the cell, as defined by the spatial segregation of molecular 

machineries that control the four stages of the migratory cycle. At the front of the 

cell, actin polymerization drives membrane protrusion to form the leading edge. 

Subsequently, the leading edge is stabilized by attachment to the extracellular 

matrix (ECM) through integrin-mediated adhesion complexes, which not only link 

the ECM to the actin cytoskeleton but also function as signal transduction centers 

that modulate cell migration. Once coupled to adhesion complexes, the actin 

cytoskeleton can generate the forces necessary to translocate the cell body 

forward. Finally, adhesive contacts at the rear of the cell must be disassembled to 

allow detachment of the rear to complete the migratory cycle.  
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 Figure 1.3 Simplified model of cell motility. Almost universally, crawling motility 

involves a cycle of four steps: (1) protrusion of the leading edge in response to a 

signal, (2) adhesion to the substratum, (3) retraction of the rear, and (4) de-

adhesion. 
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The first step in locomotion, protrusion of a leading edge, seems to rely 

only on forces generated by actin polymerization pushing the plasma membrane 

outward. Motile cells primarily generate two types of protrusive structures, 

filopodia (also known as microspikes) and lamellipodia. These protrusive 

structures are filled with a dense core of filamentous actin, which excludes 

membrane-enclosed organelles. Filopodia and lamellipodia differ primarily in the 

way in which the actin is organized. Filopodia are essentially made up of long, 

bundled actin filaments, which are reminiscent of those in microvilli but longer 

and thinner, as well as more dynamic. Lamellipodia are sheet-like structures, 

they contain an orthogonally cross-linked mesh of actin filaments, most of which 

lie in a plane parallel to the solid substratum. (DeMali and Burridge, 2003).  

Filopodia are postulated to increase directional motility by acting as 

environmental sensors (Bryant, 1999). Lamellipodia contains all of the machinery 

that is required for cell motility. Understanding how actin is assembled at the 

leading edge can provide important insight into the molecular mechanism(s) of 

cell migration. The next section describes the machinery that is required for the 

initiation and formation of lamellipodia. 

1.3.1 Role of Rho family GTPases in lamellipodia formation. The signalling 

pathways that initiate lamellipodia formation are somewhat obscure; however it is 

clear that Rho family guanosine tri-phosphatases (GTPases) play a central role. 

These proteins (Rac, Cdc 42 and Rho) act as molecular switches cycling 

between an active GTP and inactive GDP-bound forms. Despite being 

membrane-anchored via their isoprenylated carboxy-termini, Rho GTPases 
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rapidly translocate between membrane and cytosolic compartments. The role of 

Rho family GTPases has been revealed by simple microinjection experiments. 

Microinjection of activated Rac into fibroblasts induced dramatic lamellar ruffling 

driven by de novo actin polymerization (Ridley and Hall, 1992; Machesky and 

Hall, 1997). Dominant negative Rac mutant blocked motility of macrophages and 

prevented membrane ruffling in stimulated fibroblasts (Ridley and Hall, 1992). 

Injection of Cdc 42 into fibroblast resulted in the formation of filopodia  (Kim et al., 

2000). When Rho protein was microinjected into fibroblasts it resulted in the rapid 

assembly of stress fibers and focal adhesions but did not have any influence on 

the lamellipodia formation. Hence, in response to various migratory cues Rac 

and Cdc 42 are activated at the leading edge of a motile cell and are crucial for 

lamellipodia protrusion. In contrast Rho is activated at the trailing edge of the cell 

and is responsible for cell contraction at the trailing edge (figure 1.4).  

1.3.2 Role of actin in lamellipodia formation. Rapid changes in the levels of F-

actin and G-actin that occur in a spatially and temporally controlled fashion are 

involved in the morphological changes in living cells. Observation of actin 

dynamics in motile cells indicates that not only are actin filaments actively 

polymerizing beneath the plasma membrane at the leading edge, but also the 

turnover of actin filaments is faster (for instance during actin treadmilling) in the  

lamellipodia than in other regions of the cell (Condeelis, 1993). Lamellipodia 

extension requires assembly of a specialized network of actin filaments at the 

leading edge of the cell. F-actin in lamella is mainly present in the form of cross-

linked network which are several microns long and organized into two nearly 
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Figure 1.4 Role of Rho GTPases in cell migration. Rac and Cdc 42 are activated 

at the leading edge of a motile cell. Activation of Rac results in the formation of 

lamellipodia, whereas activation of Cdc 42 results in the formation of filopodia. 

Rho is activated at the trailing edge of the cell and is responsible for cell 

contraction at the trailing edge. 
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parallel two-dimensional arrays, approximately orthogonal to each other  (Small 

et al., 1995). Closer to the membrane (within 1µM) is a population of very short 

filaments that are organized into an extensive network of Y-branches (Svitkina 

and Borisy, 1999). This specialized arrangement of F-actin in the lamella is 

responsible for the formation and growth of lamellipodia in a moving cell.  

1.3.3 Role of actin binding proteins in lamellipodia formation. Cells are 

endowed with a rich variety of actin binding proteins, falling into more than 60 

classes. Actin and a limited subset of actin binding proteins can reconstitute 

motility in a purified system. These include ADF/cofilin, Cap Z, Arp2/3 complex, 

an activator of Arp2/3 complex and profilin (Loisel et al., 1999). Many other actin 

binding proteins including villin family of proteins have been shown to play an 

important role in cell migration and lamellipodia formation, but for purposes of 

simplicity, I will concentrate on these core proteins.  

Profilin binds ATP-actin monomers in a stable 1:1 complex and is 

essentially a high-affinity monomer binding protein. Rather than sequestering 

actin monomers (which is also achieved by other monomer binding proteins like 

thymosin), the main function of profilin  is to promote assembly of actin filaments 

in cells (Lu and Pollard, 2001). Profilin in complex with ATP-G-actin is postulated 

to assist in addition of monomers exclusively at the barbed end of an actin 

filament. After the complex binds transiently to the filament, the profilin 

dissociates from actin. Profilin also binds to proline-rich sequences that are 

commonly found in membrane-associated signaling proteins such as formins, 

Vasp and Mena. This interaction, which does not inhibit profilin binding to G-



 19

actin, localizes profilin-actin complexes to the membrane (Lu and Pollard, 2001).  

Profilin also promotes assembly of actin filaments by acting as a nucleotide-

exchange factor. Profilin is the only actin binding protein that allows the 

exchange of ADP for ATP. Profilin regulates actin treadmilling as it converts the 

ADP-G-actin released from the pointed end of actin filaments to ATP-G-actin that 

can be added to the barbed end of actin filaments. (Pollard and Borisy, 2003). 

Hence, profilin plays an important role in actin polymerization at the leading 

edge.  

At the leading edge the barbed ends of actin filament are always oriented 

towards the membrane. As a result, actin polymerization at the barbed end 

generates membrane protrusion. Most filament depolymerization occurs at sites 

located well behind the leading edge. ADF/Cofilin accelerates the actin 

depolymerization at the pointed end thus playing an important role in cell 

migration. Cofilin binds cooperatively and preferentially to pointed end of actin 

filaments, containing ADP-actin, and not at the barbed end containing ATP-actin, 

causing enhanced rate of monomer dissociation from the pointed end. The ADP-

actin released from the pointed end is then converted to ATP-actin by profilin as 

described above. Hence, ADF/cofilin along with profilin plays an essential role in 

actin treadmilling, which maintains efficient, unidirectional actin-polymerization in 

the lamellipodium. 

Cap Z a heterodimeric capping protein is a ubiquitous barbed end capping 

protein which prevents actin assembly from barbed ends. Capping may appear 

counter-productive in cell motility, since it antagonizes elongation of barbed ends, 
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the driving force for motility. However, capping makes two important contributions 

to actin-driven motility. First, capping proteins limit the length of the growing 

branches. Short filaments are stiffer than long filaments and therefore more 

effective at pushing the membrane. Second, capping controls where actin 

filaments “push”. Since only those barbed ends in contact with the lamellipodial 

surface are effective in generating propulsive force, global capping of barbed 

ends avoids non-productive consumption of actin subunits elsewhere in the cell 

and funnels subunits from diverse points of disassembly to a limited number of 

growing barbed ends (Carlier and Pantaloni, 1997; Cooper and Schafer, 2000; 

Pollard and Borisy, 2003). 

The formation and growth of lamellipodia in a moving cell needs to be 

fuelled by continuous new F-actin filaments nuclei. Severing of existing filaments, 

uncapping of existing filaments or de novo nucleation can all result in the 

formation of new actin nuclei. However de novo creation of new nuclei is now 

considered to be the dominant mechanism in the leading edge (Zigmond, 1996). 

Arp2/3 complex has the ability to form de novo actin filaments. Arp2/3 complex is 

a stable assembly of two actin-related proteins, Arp2 and Arp3, with five novel 

subunits called ARPC1, ARPC2, ARPC3, ARPC4 and ARPC5 (Machesky et al., 

1994). Biochemical and cell biology experiments established that the Arp2/3 

complex caps pointed ends and initiates growth in the barbed end direction at 

70° branches identical to actin filament branches (Y-branches) seen in growing 

lamellipodia (Mullins et al., 1998). The Arp2/3 complex sits at the Y branch 

between the filaments and stabilizes the cross-link both in vitro and in vivo. 
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Coordination of these two activities of the Arp2/3 complex is thought to 

simultaneously generate new filaments and connect them together in 

approximately orthogonal networks in cells. 

Purified Arp2/3 complex possesses little activity on its own, but it can be 

activated by a class of proteins called nucleation promoting factors (NPFs) that 

are highly conserved from bacteria to mammals (Mullins et al., 1998). These 

include the Listeria monocytogenes ActA protein (Welch et al., 1998), and the 

evolutionary conserved Wiskott-Aldrich syndrome protein (WASP), among others  

(Rohatgi et al., 1999; Winter et al., 1999). Based on this information a model has 

been proposed called the “dendritic model” which also explains the quantitative 

mechanism of lamellipodia formation and growth (figure 1.5). The model 

proposes that, in the absence of new actin nuclei, cytoskeletal components are 

held in a metastable state, poised for assembly. Activation of WASP family 

proteins activates Arp2/3 complex to create new barbed ends on existing 

filaments, at a constant rate. These filaments grow rapidly and push the 

membrane forward. After a short time, growth of barbed ends is terminated by 

capping. Consequently the system requires continuous activation of new Arp2/3 

complex, because it is consumed by incorporation into a network that grows for a 

very limited time. If the rate of nucleation drops to zero, capping stops 

polymerization automatically. Constitutive ATP hydrolysis within actin filaments 

and dissociation of phosphate triggers severing and depolymerization at pointed 

ends of actin filament by ADF/cofilin at a rate that is controlled by some of the 

same signals that stimulate assembly. Nucleotide exchange catalyzed by profilin 
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Figure 1.5 Dendritic nucleation model. Activation of Arp2/3 complex generates a 

new F-actin branch on a pre-existing actin-filament. Rapid growth occurs at the 

barbed end of actin filaments which pushes the membrane forward. Filaments 

age by hydrolysis of ATP bound  to each ATP-G-actin subunit followed by 

dissociation of the γ phosphate, which results in actin filaments with ADP-G-actin. 

Profilin catalyzes the exchange of ADP for ATP returning subunits to the pool of 

ATP-actin bound to profilin, ready to elongate barbed ends as they become 

available. 
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recycles ADP-actin subunits back to the ATP-actin monomer pool, and is rapidly 

added to the fast growing barbed end of actin filament. Thus, in a continuously       

moving lamellipodia, assembly and disassembly are balanced (Pollard et al., 

2000). If the actin depolymerization at the pointed end is slower compared to 

actin polymerization at the barbed end, the pool of ATP-G-Actin will diminish thus 

preventing actin polymerization and inhibiting cell migration.    
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Chapter 2 

Regulation of cell motility by tyrosine 

 phosphorylated villin1 

                                            
1 Permission to reproduce by The American Society for Cell Biology.          
Tomar, A., Wang, Y., Kumar, N., George, S., Ceacareanu, B., Hassid, A., 
Chapman, K.E., Aryal, A.M., Waters, C.M., and Khurana, S. (2004). Regulation 
of cell motility by tyrosine phosphorylated villin. Mol. Biol. Cell 15, 4807-4817. 
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2.1 Introduction 

Villin, an epithelial cell-specific protein belongs to a family of actin binding  

proteins that contain segments that display internal homology with each other 

(Arpin et al., 1988). The amino terminal core of villin retains the actin-capping 

and -severing functions of villin while the carboxyl terminal headpiece enables 

villin to crosslink actin filaments. The actin modifying properties of villin are 

regulated in vitro by calcium (Northrop et al., 1986a), phosphoinositides (Janmey 

and Matsudaira, 1988; Kumar et al., 2004a) and tyrosine phosphorylation (Zhai 

et al., 2001; Kumar and Khurana, 2004). It has been assumed for several years 

that villin’s actin-bundling and not actin-severing functions are important because 

unphysiologically high Ca2+ concentrations (200 µM) are required to activate 

villin’s actin-severing activity. However, studies done with the villin knock-out 

mice suggest that in the absence of villin, the actin-bundling properties 

associated with villin can be substituted by other proteins in the microvilli (Pinson 

et al., 1998); on the other hand the actin-severing activity of the microvilli is lost 

(Ferrary et al., 1999). In recent years we have demonstrated that villin’s actin 

modifying functions can be regulated in vitro by tyrosine phosphorylation and 

PIP2, suggesting that villin has the potential to function as a link between 

receptor activation and actin cytoskeleton reorganization even in the absence of 

high calcium (Zhai et al., 2001; Kumar and Khurana, 2004; Kumar et al., 2004a). 

In addition, we have recently demonstrated that the auto-inhibited conformation 

of villin can be released by tyrosine phosphorylation of villin (as opposed to high 
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Ca2+) allowing it to sever actin at physiological Ca2+ concentrations (Kumar and 

Khurana, 2004). These results suggest that tyrosine phosphorylation rather than 

high calcium may be the mechanism by which villin severs actin in vivo. From our 

in vitro studies we developed the hypothesis that in vivo villin may be a key factor 

integrating information from external stimuli that could affect the plasticity of the 

actin cytoskeleton from a more rigid to a dynamic network, and that these spatial 

and temporal changes in the physical properties of the cytoskeleton could 

enhance cell motility (Panebra et al., 2001; Zhai et al., 2001; Kumar et al., 2004a; 

Kumar et al., 2004b). Further, that villin’s ability to cycle between active 

(phosphorylated) and inactive (non-phosphorylated) forms may be a critical 

feature of its mechanism of action in cell migration. 

The current study was designed to determine specifically the role of villin 

overexpression on cell morphology and cell migration. Overexpression of other 

proteins of the villin superfamily including gelsolin and CapG have been 

demonstrated to increase the motile phenotypes of cells (Hartwig et al., 1989; 

Aizawa et al., 1996; Chen et al., 1996; Furnish et al., 2001). Conversely, the 

gelsolin-null mice and other mutant cell lines lacking these proteins have been 

shown to exhibit decreased rates of cell motility  (Witke et al., 1995; Lu et al., 

1997; Chellaiah et al., 2000). To confirm our hypothesis that villin and its ligand-

binding activities described by in vitro experiments are mechanistically important 

to villin’s relationship to cell motility, we used the villin-null HeLa cells to 

overexpress villin using a tetracycline-regulated system. We demonstrate that 

villin participates in actin reorganization and cell migration. Further we   
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determined that tyrosine phosphorylation of villin is essential to its role in cell 

migration. We have previously identified an area in the amino terminus of villin as 

the site of phosphorylation. Four major sites of phosphorylation were identified in 

this region by direct mutation of candidate tyrosine’s (Y) to phenylalanine (F), 

namely Y-46, -60, -81, and -256  (Zhai et al., 2002). Mutation of any of these 

phosphorylation sites inhibits the ability of villin protein to polymerize actin 

filaments in vitro (Zhai et al., 2002). Based on our previous studies, 

phosphorylated villin could regulate cell motility by modifying actin assembly by 

distinct mechanisms, including lowering the binding affinity for F-actin, inhibiting 

polymerization of existing actin nuclei, and/or cutting pre-existing filaments to 

generate new actin nuclei (Zhai et al., 2001; Zhai et al., 2002) In this study,         

we investigated the role of each tyrosine phosphorylation site of villin in actin 

reorganization and cell migration by establishing HeLa cell lines stably 

expressing wild-type or each of the phosphorylation site mutants (tyrosine to 

phenylalanine) of villin. The ability of each mutant of villin (tyrosine to glutamic 

acid) to rescue actin organization and cell migration was analyzed to confirm the 

essential phosphorylation sites responsible for each of these biological 

processes. We demonstrate that villin participates in actin reorganization and cell 

migration by utilizing more than one phosphorylation site. We propose that villin 

tyrosine phosphorylation is coordinated with actin remodeling, where it may serve 

to integrate and transduce signals involved in cell migration. Since there is 

significant homology between villin and other actin-capping and -severing 

proteins of its family that are also tyrosine phosphorylated (De Corte et al., 1997) 
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and are known regulators of cell motility (Cunningham, 1995; Sun et al., 1995; 

Arora and McCulloch, 1996), the results of our study provide a structural basis for 

the mechanism of cell motility and help to understand the role of phosphorylation 

in this function. 

2.2 Materials 

 HeLa Tet-Off cells stably expressing the tTA tetracycline-controlled 

transactivator protein, G418, hygromycine, doxycycline, the eukaryotic 

expression vector pTRE-6xHN, and the selection vector pTK-Hyg were 

purchased from Clonetech. Lipofectine was purchased from Invitrogen; 

monoclonal antibodies to phosphotyrosine (clone PY-20) were from ICN; 

monoclonal antibodies to villin were from Transduction Laboratories; hepatocyte 

growth factor (HGF), epidermal growth factor (EGF), 4-amino-5-(4-chlorophenyl)-

7-(t-butyl)pyrazolo(3,4-d)pyrimidine (PP2), and 4-amino-7-phenylpyrazolo 

(Forney et al., 1999) pyrimidine (PP3) were purchased from Calbiochem; Alexa 

Fluor 568 Phalloidin, was acquired from Molecular Probes; fluorescein (FITC)-

conjugated affinity purified donkey anti-mouse IgG was purchased from Jackson 

ImmunoResearch Laboratories; QuikChange site-directed mutagenesis kit was 

purchased from Strategene. Src cDNA (dominant negative); (K296R/Y528F 

mutation) and src monoclonal antibodies were purchased from Upstate 

Biotechnology. Cell culture reagents were purchased from GIBCO-BRL (Grand 

Island, NY). All other chemicals were from Sigma or Invitrogen. 
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2.3 Methods 

2.3.1 Villin cDNA construct. Human villin cDNA containing the entire coding 

sequence cloned in the prokaryotic expression vector pGEX2T (Panebra et al., 

2001) was amplified by PCR using the primers GAL1  

5’GTTCCGCGGTCGACCATGACC3’) and GAL2 (5’TCAATT-

GGTCTAGAACTAATA3’). These primers contain sequences for the restriction 

enzymes Sal I and Xba I, respectively. The Sal I and Xba I digested amplicon 

was ligated into the plasmid pTRE-6xHN that was digested with the same 

restriction enzymes. The ligation reaction was used to transform XL1-Blue 

competent cells and plasmids were isolated from several colonies. The plasmids 

were checked by sequential double digestion with Sal I and Xba I respectively. 

Plasmids that excised the insert were used for sequencing. 

2.3.2 Phosphorylation site mutants of villin. Human villin cloned in the 

eukaryotic expression vector pTRE-6xHN was used as a template to mutate the 

known tyrosine phosphorylation sites in human villin. The identified 

phosphorylatable tyrosine (Y) residues in full-length human villin were changed to 

phenylalanine (F) or glutamic acid (E) by designing complementary primers. 

Tyrosines at positions 46, 60, 81, and 256 were replaced with phenylalanine or 

glutamic acid using the QuikChange site-directed mutagenesis kit to make 

single-base changes from TAT and TAC to TTT and TTC, or  GAA and GAG 

respectively. The mutation primers were as follows:  

Y46F, 5’- GATGGTGACTGCTTCATCATCCTGGC-3’ (forward) and 
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 5’-GCCAGGATGATGAAGCAGTCACCATC- 3’ (reverse);  

Y60F, 5’-AGCAGCCTGTCCTTTGACATCCACTAC- 3’ (forward) and 

 5’-GTAGTGGATGTCAAAGGACAGGCTGCT-3’ (reverse); 

Y81F, 5’-GCAGCTGCCATCTTCACCACACAGATG-3’ 4 (forward) and 

 5’-CATCTGTGTGGTGAAGATGGCAGCTGC- 3’ (reverse);  

Y256F, 5’-TGCACTCAAACTGTTCCATGTGTCTGAC- 3’ (forward) and  

5’-GTCAGACACATGGAACAGTTTGAGTGCA- 3’ (reverse).  

Y46E, 5’-TCGATGGTGACTGCGAAATCATCCTGGCTATC-3’ (forward) and  

5’-GATAGCCAGGATGATTTCGCAGTCACCATCGA (reverse);  

Y60E, 5’-AGCAGCCTGTCCGAAGACATCCACTAC-3’ (forward) and  

5’-GTAGTGGATGTCTTCGGACAGGCTGCT- 3’ (reverse);  

Y81E, 5’-GCAGCTGCCATCGAAACCACACAGATG- 3’ (forward) and  

5’-CATCTGTGTGGTTTCGATGGCAGCTGC- 3’ (reverse); 

 Y256E, 5’-TGCACTCAAACTGGAACATGTGTCTGAC-3’ (forward) and 

5’-GTCAGACACATGTTCCAGTTTGAGTGCA-3’ (reverse). The introduction of 

the desired codon was confirmed by sequencing. 

2.3.3 Preparation of recombinant adenovirus expressing dominant negative 

c-src kinase. Replication-deficient recombinant type 5 adenovirus expressing 

dominant negative c-src was prepared using an adenoviral preparation kit 

developed by the University of Iowa (Anderson et al., 2000). Briefly, plasmid 

cDNA (containing dominant negative c-src) was digested with Hind III and Bam 

HI and ligated into the pShuttle vector pacAd5 CMV K-N pA. Recombinant 

homogenous virus was generated in HEK 293 cells by homologous 
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recombination. Nucleotide sequencing was used to confirm the construct. 

Adenoviral titers were determined by measuring their cytopathic effects in HEK 

293 cells. HeLa cells were mock infected (with Ad-EGFP) or infected with the 

dominant negative c-src kinase at a multiplicity of infection of 100 using standard 

protocol (White et al., 1984). Cell lysates were analyzed by western blotting for c-

src kinase expression. 

2.3.4 Transfection of Tet-Off HeLa cells with full-length and mutant villin 

cDNA. HeLa Tet-Off cells described by Gossen and Bujard (Gossen and Bujard, 

1992) and stably transfected with the tTA tetracycline-controlled transactivator 

were purchased from Clontech. The pTRE-6xHN full-length and mutant villin 

constructs were co-transfected with a selection plasmid carrying the hygromycine 

resistance gene using lipofectine. Transfected cells were selected by growing in 

media containing hygromycine (400 µg/ml) and, G418 (100 µg/ml). Several 

clones were obtained, all expressing villin in a doxycycline-dependent manner. 

Clones expressing comparable amounts of wild-type and mutant villin proteins 

were selected for further studies. For all the experiments cells transfected with 

wild-type or mutant-villin proteins were grown in the absence or presence of 

doxycycline (1.0 µg/ml). 

2.3.5 Cell motility assay. To measure cell motility, HeLa cells transfected with 

villin were seeded in 6-well plates and cultured in the absence or presence of 

doxycycline. Cell migration was measured as described previously (Waters and 

Savla, 1999). Briefly, confluent monolayers were scraped with a plastic pipette tip 
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across the diameter of the  well to produce wounds of approximately 800 µm 

width. Cells were rinsed to remove cellular debris, and images were obtained at 

the initial time of wounding and at various times up to 12 h post-wounding. 

Images of the wounds were collected with a NikonTE300 inverted microscope 

equipped with a CoolSnap FX CCD camera (Roper Scientific, Trenton, NJ), an 

Optiscan ES102 motorized stage system (Prior Scientific, Rockland, MA), and a 

Pentium III computer with Metamorph image analysis software (Universal 

Imaging Corporation, Dowington, PA). Images were collected by programming 

the X, Y, and Z coordinates of each wound location allowing the stage to return 

to the precise location of the original wound. Data are expressed as a percentage 

of the original wound width to normalize variability in wounding from well to well, 

although similar size initial wounds were observed from experiment to 

experiment. Wound width measurements were averaged from two regions of the 

same well and the mean treated as a single data point. Comparisons between 

mean values were made using one-way repeated-measures analysis of variance 

and Turkey’s modified t test (Bonferroni criteria) with p < 0.05 considered 

significant. 

2.3.6 Phospho-villin antibodies. Recombinant villin that was tyrosine 

phosphorylated (VILT/WT) or not (VIL/WT) was prepared as described before 

(Panebra et al., 2001). A phospho-villin antibody was raised using a commercial 

facility (Biosource International). One of the antibodies, clone #VP-70782 was 

affinity-purified and its specificity for the phospho-epitope was examined using 

western analysis. Since the villin monoclonal antibody cannot be used to 
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immunoprecipitate villin, the phospho-villin antibody was used to 

immunoprecipitate villin from HeLa cells transfected with wild-type villin protein. 

Additional immunoprecipitation studies were done with a commercially available 

phospho-tyrosine antibody (clone PY-20). 

2.3.7 Immunofluorescence microscopy. HeLa Tet-Off cells expressing wild- 

type or mutant villin proteins were cultured on coverslips and fixed in 3.7% 

formaldehyde in PBS for 15 min. The slides were washed twice with phosphate 

buffered saline and permeabilized by incubation in PBS containing 0.2% Triton 

X-100 and 0.5% normal serum for 5 min at 4°C. The fixed and permeabilized 

cells were washed three times with PBS (10 min each) and blocked with 0.1% 

bovine serum albumin in TBST (20 mM Tris, pH 7.2, 150 mM NaCl and 0.1% 

Tween-20) for 30 min. Cells were incubated with villin monoclonal antibody 

(1:100) and Alexa Fluor 568 was included to record distribution of F-actin. The 

cells were then incubated with a secondary antibody, fluorscein-5-isothiocyanate 

(FITC)-conjugated affinity purified donkey anti-mouse IgG. The fluorescence was 

examined by confocal laser-scanning microscopy (Zeiss LSM 5 PASCAL). 

2.3.8 F-actin content measurements in HeLa cells expressing wild-type or 

mutant villin proteins. The F-actin content of cells was determined as described 

by Cunningham (Cunningham, 1995). Briefly, cells were fixed with 3.7% 

paraformaldehyde, permeabilized with 0.5% Triton X-100, and stained with 250 

nM Alexa-Phalloidin at 37°C for 30 min. Ethidium bromide-binding DNA was used 

at a final concentration of 10 µM to label the DNA at room temperature for 5 min. 
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The cells were washed with PBS, scraped in 500 µl of methanol and the 

fluorescence recorded. The Alexa Phalloidin was quantitated at an excitation 

fluorescence recorded. The Alexa Phalloidin was quantitated at an excitation 

wavelength of 578 nm and emission of 600 nm, while the DNA was measured at 

excitation of 525 nm and emission of 605 nm. The relative F-actin content was 

quantified as the ratio of Alexa-phalloidin fluorescence intensity to ethidium 

bromide fluorescence intensity. 

2.3.9 Cell proliferation measurement. Cell proliferation was measured by 

bromodeoxyuridine (BrdU) labeling by quantitating BrdU incorporation into newly 

synthesized DNA of replicating cells using the BrdU in-situ detection kit according 

to the instructions of the manufacturer (BD PharmigenTM). Wounded monolayers 

were incubated with BrdU (10 mM) for 1 h, 10 h post-wounding. The cells were 

fixed, washed, permeabilized and then incubated with 0.3% H2O2 to block 

endogenous peroxidase. Immuno-detection of incorporated BrdU label was done 

fixed, washed, permeabilized and then incubated with 0.3% H2O2 to block 

endogenous peroxidase. Immuno-detection of incorporated BrdU label was done 

using a biotinylated anti-BrdU antibody that specifically recognizes 5-bromo-2’-

deoxyuridine showing no cross-reactivity with thymidine or uridine. BrdU 

incorporation was detected by using the chromagen diaminobenzidine. Slides 

were counterstained with hematoxylin. 
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2.4 Results     

2.4.1 Cells expressing villin migrate faster than villin-null cells. Cells 

expressing villin migrate faster than villin-null cells. HeLa Tet-Off cells were 

cotransfected with full-length human villin cloned in pTRE-6xHN and pTK-Hyg 

and subjected to selection with hygromycine B. Several stable transfectant lines 

were expanded and screened for efficient gene induction by removal of 

doxycycline. A representative transfectant of the villin gene was compared with 

parental cells for the gene expression in the absence or presence of doxycycline. 

western blot analysis showed that the HeLa Tet-Off cells transfected with human 

villin cDNA can be induced to express significant amounts of full-length villin 

protein when cultured without doxycycline, while cells cultured in the presence of 

doxycycline (1.0 µg/ml) do not express villin (VIL/NULL) (figure 2.1A). 

Untransfected HeLa cells as well as HeLa cells transfected with vector alone do 

not express villin. A wound-healing assay was used to determine the kinetics of 

migration of HeLa Tet-Off cells overexpressing villin both during basal conditions 

as well as chemotactic migration. Cell migration was recorded between time 0 

and 24 h post-wounding for cells transfected with wild-type villin cultured in the 

presence or absence of doxycycline under low serum (1.0% fetal bovine serum) 

conditions. Cell motility was judged from the reduction of the wound width 0-24 h 

after the wound was made. Migration of cells expressing villin (VIL/FL) was 

complete at 12 h post wounding (figure 2.1B). In contrast a significant delay in 

the ability of the VIL/NULL cells (villin transfected cells cultured in the presence
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Figure 2.1 HeLa Tet-Off cells expressing wild-type villin display significantly 

enhanced migration. (A) HeLa Tet-Off cells were stably transfected with full-

length human villin cDNA. Cells cultured in the absence of doxycycline express 

villin (VIL/FL), whereas cells cultured in the presence of doxycycline (1.0 µg/ml) 

do not express villin (VIL/NULL). Expression of villin protein was followed 0-150 h 

after the addition of doxycycline. western analysis was done using monoclonal 

villin antibodies. Data are representative of three experiments with similar results. 

(B) Equal numbers of wild-type (VIL/FL) and villin null (VIL/NULL) cells were 

cultured to confluence. Cells were denuded with a pipette tip and migration of the 

remaining cells into the wound is shown 0-12 h after the wound was introduced 

under low-serum condition (1.0% fetal bovine serum). Wound repair was 

measured as a percentage of initial wound area. Unlike villin-null cells, cells 

expressing villin seal the wound completely 12 h post wounding. Bar, 40 µm. (C) 

HeLa cells expressing villin migrates faster than villin-null cells at all time points. 

Migration distance was determined by taking two independent measurements 

from each well in a total of 24 wells. The error bars are the measured SEM and 

the asterisk denotes statistically significant values (p < 0.05, n = 24). 
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of doxycycline) to migrate into the empty wound space was observed. 

Assessment of cell migration revealed that wild-type villin expressing cells 

exhibited a dramatic increase in cell migration compared with villin-null cells (at 

12 h, four fold, n = 24, p < 0.05; figure 1B). Significant changes in the migratory 

capacity of villin-expressing cells were also observed at earlier time points (figure 

2.1C). Based on these data, all subsequent migration studies were done 

between 0-10 h post-wounding. Untransfected  HeLa cells as well as HeLa cells 

transfected with vector alone migrate at the same rate in the absence or 

presence of doxycycline (data not shown). Cell migration was studied at 10 h 

post-wounding and in the presence of 1.0% serum, conditions that do not favor 

cell proliferation. Nevertheless, DNA synthesis using 5-bromo-2’-deoxyuridine 

(BrdU) immunocytochemistry was measured and showed no significant 

difference in VIL/NULL and VIL/FL cells (figure A.1). These studies demonstrate 

that overexpression of human villin increases cell migration. Hepatocyte growth 

factor (HGF) is a multifunctional cytokine that can act as a motility inducing factor 

for epithelial cells through the c-met tyrosine kinase (Sonnenberg et al., 1993). 

Similarly EGF has been reported to enhance epithelial cell migration by 

mechanisms varied from HGF (Singh et al., 2004) as well as comparable to HGF 

(Muller et al., 2002). We measured the effects of both HGF and EGF on cell 

migration. VIL/NULL and VIL/FL cells were cultured in low serum (1.0%) medium 

for 24 h prior to wounding. Cells were treated with HGF (10 ng/ml) or EGF (10 

nM) for 30 min and then wounded. The HGF and EGF treated cells were washed 

and the media was replaced with DMEM containing 1.0% serum. 
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As shown in figure 2.2, at 6 h post-wounding in the absence of any 

treatment VIL/FL migrated faster than VIL/NULL cells (n = 24, p < 0.05); 

treatment of these cells with HGF modestly enhanced the villin-induced cell 

migration (n =24, p < 0.05). This is comparable to previous reports demonstrating 

a small increase in response to HGF (Athman et al., 2003). Similarly treatment of 

VIL/FL cells with EGF enhanced villin-induced cell migration by about 9% (n =24, 

p < 0.01). Similar data was obtained with cells cultured overnight in the absence 

of serum.  Taken together these data show that expression of villin is sufficient to 

enhance cell migration and that HGF and EGF can modestly augment the villin-

induced increase in cell migration. Further it suggests that over expression of 

villin may have a direct effect on the signal transduction pathways that modify the 

actin cytoskeleton and enhance cell migration. 

2.4.2 Tyrosine phosphorylation of villin is essential for villin-induced cell 

migration. Previous studies from our laboratory have demonstrated that villin is 

a substrate in vitro for the src kinase(s) (Panebra et al., 2001; Zhai et al., 2002). 

In addition our studies have suggested that villin phosphorylation and the 

resulting changes in the actin rearrangements might serve to promote the 

migratory phenotype of epithelial cells (Panebra et al., 2001; Zhai et al., 2002). 

To confirm this, we examined the migratory capacity of cells stably expressing 

wild-type villin in the absence or presence of the src kinase inhibitor PP2 and its 

inactive analog PP3. In agreement with our previous results, pretreatment of 

VIL/FL with the src kinase inhibitor PP2 inhibits the villin-induced cell migration. 

While      PP2     inhibits     both    basal     as well    as EGF-induced    cell migra-                          
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Figure 2.2 Villin-induced cell migration is enhanced by HGF and EGF. VIL/FL 

cells were treated without or with HGF (10 ng/ml) or EGF (10 nM) for 30 min and 

cell migration followed over a period of 6 h. Wound repair is expressed as a 

percentage of the initial wound area after 6 h. VIL (-) refers to each clone 

cultured in the presence of doxycycline, whereas VIL (+) refers to the same clone 

cultured in the absence of doxycycline. The error bars are the measured SEM, 

and the asterisk (*) and cross ( ) denote statistically significant values (p < 0.05,  

n = 24, compared with VIL (-) cells) and (p < 0.05, n = 24, compared with 

untreated cells) respectively. 
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tion, the effects of PP2 on villin-induced cell migration is significantly higher (11% 

in VIL/NULL cells versus 20% in VIL/FL cells, n = 24, p < 0.05) (figure 2.3A). 

Cells treated with the inactive analog PP3 behaved like untreated VIL/FL . A 

phospho-villin antibody (VP-70782) that specifically recognizes recombinant 

tyrosine phosphorylated villin (VILT/WT) and does not cross-react with 

recombinant nonphosphorylated villin protein (VIL/WT) (figure 2.3B upper panel) 

was used to immunoprecipitate tyrosine phosphorylated villin from HeLa cells. A 

commercially available anti-phosphotyrosine antibody (PY-20) confirms the 

specificity of the phospho villin antibody (figure 2.3B upper panel). The lower 

panel in figure 2.3B is an SDS-PAGE of VIL/WT and VILT/WT stained with 

GelCode Blue, showing the expression of the two recombinant proteins VILT/WT 

and VIL/WT. Consistent with our previous studies (Panebra et al., 2001; Zhai et 

al., 2002), tyrosine phosphorylation of villin (in response to wounding or 

treatment with HGF/EGF) is inhibited by PP2 but not PP3 (figure 2.3C). Using 

this approach, no basal tyrosine phosphorylation of villin in the absence of 

wounding or EGF/HGF treatment could be detected in these cells with either 

phospho-villin antibody (VP-70782) or phospho-tyrosine antibody (PY-20). Either 

there is no basal phosphorylation of villin in the absence of wounding or growth 

factor treatment, or there is some basal tyrosine phosphorylated villin but the 

levels are too low to be detected by western analysis. These data suggest that 

villin may be phosphorylated in vivo by src kinase(s) and that villin-induced 

motility may be mediated by activation of src kinase(s) and tyrosine 

phosphorylation of villin. To further confirm these observations, we used a 
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Figure 2.3 Villin-induced cell migration is regulated by c-src kinase. (A) The Src 

kinase inhibitor PP2 inhibits villin-induced cell migration. VIL/FL cells were 

treated without or with the Src-kinase specific inhibitor PP2 (10 nM). The error 

bars are the measured SEM, and the asterisk (*) and cross ( ) denotes 

statistically significant values compared with VIL (-) cells and untreated cells (p < 

0.05, n = 24) respectively. (B) Characterization of phospho-villin antibody. 

Recombinant phosphorylated (VILT/WT) and nonphosphorylated (VIL/WT) villin 

proteins were used to determine the specificity of the phospho-villin antibody. (C) 

HeLa cells cultured in the presence or absence of doxycycline were wounded (20 

wounds/dish) and allowed to migrate in the presence of HGF (10 ng/ml) with or 

without the Src kinase inhibitor PP2 (10 nM) or its inactive analog PP3 (10 nM). 

(D) Expression of dominant negative c-src in VIL/NULL and VIL/FL cells. This is 

a western blot with c-src monoclonal antibodies. (E) Dominant negative c-src 

inhibits villin-induced cell migration. VIL/FL and VIL/NULL cells were infected with 

recombinant adenovirus [Ad-DN-c-src (dominant negative c-src)] for 4 h at a 

multiplicity of infection of 100. This was followed by measurement of cell 

migration. (F) Dominant negative c-src inhibits the tyrosine phosphorylation of 

villin. Tyrosine phosphorylated villin was immunoprecipitated from VIL/FL cells 

infected with or without Ad-DN-c-src by using anti-phosphotyrosine antibody 

(clone PY-20), and western analysis was done using a villin mAb. This is a 

representative of three experiments with similar results.  
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 dominant negative construct of c-src (Ad-DN-c-src). HeLa cells expressing full-

length villin cultured in the absence or presence of doxycycline were infected with 

or without Ad-DN-c-src (figure 2.3D) and we measured the effect of expression of 

dominant negative c-src on villin-induced cell motility. A lower band around 57 

kDa was seen in these western blots and was determined to be a degradation 

fragment of c-src (figure 2.3D). As shown in figure 2.3E, VIL/NULL and VIL/FL 

cells infected with Ad-DN-c-src migrate at very similar rates. Thus, expression of 

Ad-DN-c-src antagonized the capacity of villin to enhance cell motility, indicating 

that phosphorylation of villin by c-src is required for the villin induced increase of 

cell migration. Infection with an unrelated vector (Ad-EGFP) had no effect on cell 

migration (figure A.2). Over-expression of Ad-DN-c-src also inhibited the tyrosine 

phosphorylation levels of villin in VIL/FL cells (figure 2.3F). Ad-DN-c-src did not 

completely inhibit the tyrosine phosphorylation of villin unlike PP2. One possibility 

is that PP2 inhibits tyrosine phosphorylation of villin completely because PP2 can 

inhibit not only c-src but also other members of the Src family including c-yes and 

c-fyn, which may also be involved in the phosphorylation of villin.  

2.4.3 Tyrosine phosphorylation at Y-60, Y-81, and Y-256 is essential for 

villin-induced cell migration. Previous studies from our laboratory have 

demonstrated that c-src phosphorylates human villin on tyrosine 46, 60, 81, and 

256 (Zhai et al., 2002). To determine the role of tyrosine phosphorylated villin in 

cell migration, we examined the migratory capacity of cells stably expressing 

either wild-type or phosphorylation site mutants of villin, namely 

VIL/Y46F,VIL/Y60F, VIL/Y81, and VIL/Y256F. Multiple clones expressing the 
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villin proteins were selected by immunoblotting using villin antibodies. Clones 

expressing similar amounts of villin proteins were selected for the migration 

studies (figure 2.4A). We assessed the effect of overexpression of wild-type and 

mutant villin proteins in HeLa Tet-Off cells on the organization of the actin 

cytoskeleton. HeLa Tet-Off cells expressing wild-type and mutant-villin proteins 

were stained with Alexa Phalloidin 568 (red) to examine the F-actin distribution 

and the localization of villin was examined using a villin monoclonal antibody 

(green) (figure 2.4B and, figure A.3). The overall morphology of HeLa cells 

reconstituted with villin or with empty vector appears strikingly different. 

Phalloidin staining showed that actin stress fibers were lost in villin expressing 

HeLa cells (figure 2.4B, a-b). The transfection of HeLa cells with wild-type villin 

results in cells that are less flat and develop membrane ruffles concurrent with 

the reorganization of F-actin (figure 2.4B, b1-b3). Coincident with a virtual lack of 

stress fibers in these cells is the appearance of F-actin rich membrane ruffles on 

the dorsal surface and filopodia like structures, including microspikes on the 

ventral surface. All of these structures contained villin. This is consistent with 

previous work done by consistent with previous published reports (Friederich et 

al., 1989; Franck et al., 1990). The villin and F-actin in these cells localized at the 

cell perimeter where both proteins co-localized to peripheral ruffles, filopodia and 

microspikes (figure 2.4B, b1-b3). These results indicate that villin can direct the 

localization of F-actin to the cell cortex. The distribution of the villin mutant, Y46F, 

was similar to wild-type in that greater than 90% of the villin protein as well as the      
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 Figure 2.4 Tyrosine phosphorylation of villin is required for villin-induced 

increase in cell migration. (A) HeLa cells were stably transfected with wild-type 

(VIL/FL) and phosphorylation site mutants of villin, namely, Y46F, Y60F, Y81F, 

and Y256F. This figure shows representative clones of each villin construct 

transfected in HeLa cells. Data are representative of six experiments with similar 

results. (B) Villin expression results in reorganization of the actin cytoskeleton. 

HeLa cells transfected with wild-type (VIL/FL), and mutant villin proteins were 

analyzed by confocal microscopy. Double staining of villin (a1-f1) and F-actin (a2-

f2) was performed using villin monoclonal antibodies (1:100) and FITC-

conjugated anti-mouse IgG (1:200) and Alexa-Phalloidin 568 (1 µg/ml), 

respectively. Composite images of villin (green) and F-actin staining (red) are 

shown. Merged images (a3-f3) show colocalization of villin and F-actin. Bars, 3 

µm. (C) HeLa cells expressing equal amounts of wild-type and phosphorylation 

site mutants (Y to F) of villin were used in wound-healing experiments. Wound 

repair is expressed as a percentage of the original wound width after 10 h. The 

error bars are the measured SEM, and the asterisk (*) and cross ( ) denote 

statistically significant values (p < 0.05, n = 24.). (D) Tyrosine phosphorylation of 

wild-type and mutant villin proteins. Cell extracts from VIL/FL and the mutant 

villin cell lines VIL/Y46F, VIL/Y60F, VIL/Y81F, and VIL/Y256F were 

immunoprecipitated with phospho-villin antibody (VP-70782) and western 

analysis done with villin mAb or phospho-tyrosine antibody (PY-20). This is not a 

quantitative western blot. The western blot is representative of three other 

experiments with similar results. 
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F-actin co-localized to the cell margin (figure 2.4B, c1-c3). The morphology of 

these cells was similar to VIL/FL cells with a disassembly of stress fibers and co-

localization of the villin protein with F-actin in membrane ruffles, filopodia, and 

microspikes. In contrast, expression of villin phosphorylation mutants Y60F, 

Y81F or Y256F resulted in redistribution of F-actin, suggesting that co-

localization of villin and F-actin is dependent on tyrosine phosphorylation of villin 

at these sites (figure 2.4B, d-f). In all these mutant cell lines, the villin mutant 

proteins were distributed diffusely in the cytoplasm as well as at the cell 

periphery. In addition, the distribution of F-actin was altered and was associated 

not only with the cell surface structures but also intracellularly including what 

appear as dorsal arcs (figure 2.4B, e2 and f2). There was limited co-localization 

of villin and F-actin at the cell margins in these cells and the majority of the villin 

and F-actin remained segregated between the cell margins and the intracellular 

compartment. These data suggest that phosphorylatable tyrosine residues at Y   

-60, -81, and -256 are required for both the colocalization of villin with F-actin as 

well as for the rearrangement of the actin cytoskeleton in the cell. Collectively, 

these results suggest that expression of villin is involved in reorganization of the 

actin cytoskeleton and further that villin-induced regulation of cell motility may be 

dependent on this redistribution of the actin cytoskeleton. There was no change 

in the total F-actin content in wild-type or mutant villin cell lines (figure A.4). 

Our earlier studies including data presented in this study suggest that villin 

phosphorylation and the resulting changes in the actin rearrangements in the cell 

might serve to promote the migratory potential of epithelial cells. To confirm this, 
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we examined the migratory capacity of cells stably expressing wild-type or 

phosphorylation-site mutants of villin. As shown in figure 2.4D, wild-type villin 

enhanced cell migration while the villin phosphorylation site mutants VIL/Y60F, 

VIL/Y81F, and VIL/Y256F were able to completely reverse the migratory 

phenotype of HeLa cells, reducing their migration rates to VIL/NULL cells. In 

contrast, the villin mutant VIL/Y46F behaved like wild-type villin suggesting that 

phosphorylation at this site is not essential for cell migration. To further quantify 

cell migration rate, we measured cell velocity. As shown in table 2.1, the average 

velocity (0.13 µm/min) of VIL/FL and VIL/Y46F shows an approximately 50% 

increase in cell velocity compared with the villin-null HeLa cells 10 h post-

wounding (n = 24, p < 0.05). In contrast, the villin mutants VIL/Y60F, VIL/Y81F, 

and VIL/Y256F moved at a lower velocity, speeds similar to the villin-null HeLa 

cells (0.09 µm/min, n = 48). There was no significant difference in cell 

proliferation between VIL/NULL, VIL/FL or cells expressing the phosphorylation 

site mutants   of villin (figure A.1). The villin protein is tyrosine phosphorylated in 

all these cell lines in response to wounding. This is not a quantitative western blot 

since comparison of phosphorylation levels in different cell lines with a point 

mutation in one of the three phosphorylation sites could not be done with a great 

deal of confidence. These data confirm that tyrosine phosphorylation of villin 

regulates effective cell migration and further they characterize the specific 

tyrosine residues that control this process. To confirm the role of the specific 

tyrosine residues in the regulation of villin induced cell migration, we used 

phosphomimetics, namely tyrosine (Y) to gluatamic acid (E) phosphorylation site
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Table 2.1 Tyrosine phosphorylation of villin regulates the rate of cell migration. 

 
 
  

 

 

 

 

 

The average velocity (0.13 µm/min) of VIL/FL and VIL/Y46F shows an ~50% 

increase in cell velocity compared with the villin-null HeLa cells 10 h 

postwounding (n = 24, p < 0.05). In contrast, the villin mutants VIL/Y60F, 

VIL/Y81F, and VIL/Y256F moved at a lower velocity, speeds similar to the villin-

null HeLa cells (0.09 µm/min, n < 48). *Denotes statistically significant values (P 

< 0.05, n = 24). 
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mutants of villin. Multiple clones expressing the phosphomimetic villin proteins 

were selected by immunoblotting using villin monoclonal antibodies. Clones 

expressing comparable amounts of villin proteins were selected for the migration 

studies (figure 2.5A). The intracellular distribution of villin as well as the F-actin 

localization was also examined using confocal microscopy (figure 2.5B and figure 

A.5). As shown in figure 2.5B, d-f, Y60E, Y81E, and Y256E look like VIL/FL. In all 

these cell lines, villin and F-actin co-localize at the cell margin and in the 

membrane ruffles. In contrast, VIL/Y46E resembles the VIL/NULL cells (figure 

2.5B, c1-c3). As shown in figure 2.5C, VIL/Y60E, VIL/Y81E, and VIL/Y256E 

migrated faster than the comparable Y to F mutants (figure 2.4C). At 10 h post-

wounding 95%  of the wound was closed in cells expressing VIL/FL compared 

with villin-null cells (65% closed). The phosphomimetics behaved like VIL/FL in 

demonstrating enhanced cell migration compared with the villin-null cells, with 

80-88% of the wound closed at 10 h post-wounding in VIL/Y256, VIL/Y81E, and 

VIL/Y60E respectively (figure 2.5C). The rate of cell migration in VIL/Y60E, 

VIL/Y81E, and VIL/Y256E was not identical to that of VIL/FL but were dose-

dependent and densitometric analysis revealed that they paralleled the protein 

expression levels in these cell lines. The villin mutant VIL/Y46E in contrast 

inhibited cell migration, migrating at the same rate as villin-null cells, suggesting 

that this site must remain dephosphorylated for the motogenic effects of villin. 

Together, these results indicate that efficient cell migration from wounded cell 

monolayers requires tyrosine phosphorylation of villin.        
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Figure 2.5 Phosphorylation of villin at Y-60, Y-81, and Y-256 is required for villin-

induced cell migration. (A) HeLa cells were stably transfected with wild-type 

(VIL/FL) and phosphorylation site mutants of villin, namely, Y46E, Y60E, Y81E, 

and Y256E. This figure shows representative clones of each villin construct 

transfected in HeLa cells. Data are representative of six experiments with similar 

results. (B) Villin expression results in reorganization of the actin cytoskeleton. 

HeLa cells transfected with wild-type (VIL/FL) and mutant villin proteins were 

analyzed by confocal microscopy. Double staining of villin (a1-f1) and F-actin (a2-

f2) was performed using villin monoclonal antibodies (1:100) and FITC 

conjugated anti-mouse IgG (1:200) and Alexa-Phalloidin 568 (1 µg/ml), 

respectively. Composite images of villin (green) and F-actin staining (red) are 

shown. Merged images show colocalization of villin and F-actin (a3-f3). Wild-type 

villin and VIL/Y60E, VIL/Y81E, and VIL/Y256E colocalize with F-actin at the cell 

periphery. In contrast, phosphorylation mutants of villin VIL/Y46E shows 

intracellular distribution of villin and F-actin with minimal colocalization of villin 

and F-actin at the cell surface. Bars, 3 µm. (C) HeLa cells expressing equal 

amounts of wild-type and phosphorylation site mutants (Y to E) of villin were 

used in wound-healing experiments. Wound repair is expressed as a percentage 

of the original wound width at 10 h. The error bars are the measured SEM, and 

the asterisk (*) and cross ( ) denote statistically significant values [p < 0.05, n = 

24, compared with VIL (-) cells and p < 0.05, n = 24, compared with untreated 

cells], respectively. Tyrosine phosphorylation of villin at Y60, Y81, and Y256 is a 

specific mediator of villin-regulated cell migration. 
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2.5 Discussion 

Actin structures are dynamic and are affected by extracellular signals. 

While the organization of the actin cytoskeleton in a moving cell has been 

described reasonably well, it is still unclear how the cytoskeleton is directed by 

external signals to coordinate its activity to provide directional movement. In the 

present report we provide evidence that tyrosine phosphorylation of villin, which 

could occur in response to receptor activation or during wound healing results in 

both rearrangement of the microfilament structure as well as regulation of cell 

migration. In this study we further demonstrated that overexpression of villin 

enhances cell migration. This is consistent with previous observations made with 

proteins of the villin family including cofilin (Aizawa et al., 1996), CapG, and 

gelsolin (Sun et al., 1995). Data presented in our study suggest that an epithelial 

cell could also use villin as an intrinsic signal to stimulate actin assembly and 

increase cell migration in the absence of an external signal. Further, our studies 

demonstrate that this change in cell motility by villin can be enhanced in 

response to environmental cues such as chemo attractants. For our studies we 

used HGF, a cytokine that is known to coordinate changes in cell morphology 

associated with the induction of cell motility during epithelial-mesenchyme 

transition (Boyer et al., 1996) and EGF, another powerful motogen. Together 

these studies suggest that villin and other members of its family may function in 

vivo to provide a signaling mechanism for translating cell surface receptor 

mediated biochemical reactions into cell locomotion.  
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Tyrosine kinase activity has been shown to be necessary for intestinal 

epithelial cell migration (Calalb et al., 1995; Cary et al., 1996; Parsons and 

Parsons, 1997; Reiske et al., 1999). Activation of c-src kinase has been reported 

in pre-neoplastic colonic adenomas and in colon carcinomas. In addition 

overexpression of pp60c-src has been demonstrated to increase the invasive 

behavior of intestinal epithelial cells (Pories et al., 1998). Thus, both tyrosine 

phosphorylation and activation of c-src kinase have been associated with the 

motile properties of intestinal epithelial cells. We have previously demonstrated 

that villin is phosphorylated in vitro by c-src kinase (Zhai et al., 2002). In the 

present study we provide evidence that in migrating cells, villin is a substrate for 

c-src kinase as well. Further, the potent and specific src kinase inhibitor PP2 

inhibits the villin-induced increase in cell migration. Overexpression of the 

dominant negative c-src likewise inhibits villin-induced cell migration. These data 

suggest that villin is a substrate for src kinases in vivo just as it is in vitro and 

furthermore that src kinase phosphorylation of villin is important for villin-

mediated cell motility. 

We have previously identified the tyrosine phosphorylation sites in villin 

and mapped phosphorylation at these sites with the actin modifying activities of 

villin (Zhai et al., 2002). Human villin contain four major tyrosine phosphorylation 

sites namely Y-46, -60, -81, and -256. In the current study we assessed the 

effects of tyrosine phosphorylation of villin as well as mapped the 

phosphorylation sites that regulate villin induced increase in cell migration. Our 

studies revealed that phosphorylation at Y60, Y81, and Y256 are required for cell 
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migration. Both Y46F and wild-type villin enhance cell migration and demonstrate 

similar intracellular distribution including redistribution of actin to the cell 

perimeter, loss of stress fibers and co-localization with F-actin, suggesting that 

actin cytoskeletal reorganization by villin is necessary for its role in cell migration. 

This is supported by the observation that the villin mutants VIL/Y60F, VIL/Y81F 

and VIL/Y256F migrate like the VIL/NULL cells and demonstrate a different 

subcellular distribution of villin as well as microfilament organization pattern. The 

most obvious difference between villin-induced migrating and villin-null or 

phosphorylation site mutant-villin cells is that villin that can be tyrosine 

phosphorylated at residues 60, 81, and 256 as well as the phosphomimetics 

localize at or near the cell surface. In contrast villin that cannot be tyrosine 

phosphorylated at these sites, show an intracellular distribution and are not very 

well distributed in cell surface structures. One possibility is that by altering the 

ability of villin to be tyrosine phosphorylated, we may have modified the ligand-

binding properties of villin that determine its intracellular distribution and 

localization. 

Recombinant tyrosine phosphorylated villin does not associate with PIP2, 

while non-phosphorylated villin does (Panebra et al., 2001). Further, we have 

demonstrated that tyrosine phosphorylation of villin decreases villin’s binding 

affinity for F-actin (Zhai et al., 2001). This would suggest that within the cell at or 

near the leading edge, there could be two separate pools of villin, tyrosine 

phosphorylated villin that does not associate with the plasma membrane and has 

decreased affinity for F-actin and nonphosphorylated villin, which could bind both 
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PIP2, and F-actin. Consistent with this observation we have previously reported 

that tyrosine phosphorylated villin redistributes to a Triton X-100-soluble fraction 

of intestinal villus cells, while non-phosphorylated villin remains associated with 

the F-actin filaments in a Triton-insoluble fraction (Khurana et al., 1997). Since 

phosphorylated villin does not associate with PIP2, we speculate that this Triton-

soluble pool may represent the cellular G-actin pool while the Triton X-100 

insoluble pool is the F-actin pool in live cells. This is a reasonable speculation 

since we have also reported that tyrosine phosphorylation of villin releases an 

auto-inhibited conformation allowing it to sever actin filaments at physiological 

Ca2+ concentrations (Kumar and Khurana, 2004). Further, we have identified the 

biochemical properties of the individual phosphorylation sites in villin. 

Phosphorylation at Y60 enhances the actin-severing activity of villin, suggesting 

that this site could be involved in generating new barbed ends (Zhai et al., 2002). 

In contrast, phosphorylation at Y81 and Y256 inhibits the ability of villin to 

polymerize actin filaments, thus altering the F-actin dynamics in vivo. These sites 

may have additional biochemical properties such as to decrease the binding 

affinity of villin for F-actin, decrease the actin-crosslinking activity of villin and/or 

induce conformational changes in villin resulting in constitutively-active villin that 

can sever actin filaments at nanomolar Ca2+. We have previously shown all these 

functions of villin to be regulated by tyrosine phosphorylation (Zhai et al., 2001; 

Kumar and Khurana, 2004). Alternatively, in vivo these tyrosine phosphorylation 

sites may be ligand-binding sites for second messengers that may regulate either 

tyrosine phosphorylation of villin such as c-src kinase or yet unidentified tyrosine 
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phosphatases, as well as the SH2 domain of PLC-γ1  (Panebra et al., 2001), all of 

which would modify villin-induced cell migration. 

The integrity of these tyrosine residues is required for actin-nucleation and  

-depolymerization by villin, since phosphorylation of any one site impairs villin’s 

capacity to nucleate actin, and likewise mutation at Y60 to F severely impairs 

phosphorylated villin’s ability to sever actin filaments (Zhai et al., 2002). In other 

words, villin’s ability to regulate the actin dynamics is dependent on its 

phosphorylation. Inhibition of cell migration by villin mutants suggests that a 

decrease in the actin-severing activity of villin is a negative regulator of villin-

induced increase in cell migration. In other words, increased actin 

depolymerization by villin could be the signal for the enhanced cell migration. The 

phosphomimetics lend further support to the idea that phosphorylation of villin at 

these three sites is necessary for the regulation of villin-induced migration. 

Interestingly the villin mutant Y46E inhibited cell migration. The significance of 

this observation is not clear at this point except it suggests that while 

phosphorylation at Y46 is not required for cell migration (VIL/Y46F behaves like 

VIL/FL), maintaining this site in a dephosphorylated form may be necessary for 

the villin-induced effects on cell migration. This also suggests that regulation of 

cell migration by villin may require both kinases and phosphatases maintaining 

the Y-60, -81 and -256 sites in a phosphorylated state and the Y46 site in a 

dephosphorylated state for efficient cell migration. Based on our observations we 

propose the following model for villin-induced cell migration. We believe that 

spatially restricted accumulation of signaling molecules could determine the 
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activation of one or more of villin’s actin-regulatory properties, thus establishing 

villin’s function in regulating cell motility. One of these signals could be a tyrosine 

kinase and/or phosphatase that could determine the phosphorylation state of 

villin. In the unphosphorylated state the actin-crosslinking property of villin could 

be important. For instance it is known that crosslinking of actin filaments is 

essential to convert the force of polymerization into forward movement of the 

membrane and the cell. While Arp 2/3 is considered the major crosslinking 

component it is possible that in epithelial cells villin plays a significant role in 

crosslinking the actin filaments and generating stable lamellae. The crosslinking 

functions of villin could determine the rate and extent of lamellipodia formation 

and/or regulate the amount of F-actin incorporated into newly formed 

lamellipodia. Unphosphorylated villin could also bind the membrane phospholipid 

PIP2 and the villin-PIP2 complex could favor persistent growth of the barbed ends 

by preventing capping of the barbed ends thus favoring both filament growth as 

well as allowing actin to push the membrane forward. 

Phosphorylated villin could have other functions. Phosphorylation of villin 

could increase actin depolymerization, which could replenish the actin monomer 

pool thus allowing the cell to maintain high concentration of unpolymerized actin 

far from the equilibrium. Depolymerization of actin by villin could also produce 

new barbed ends that may be used for the formation of new filaments. 

Phosphorylation of villin and activation of villin’s actin-capping function could help 

cap barbed ends. Capping of barbed ends could help maintain the length of actin 

filaments thus resulting in short filaments that can generate propulsive force and 
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effectively push the membrane forward. Tyrosine phosphorylation of villin could 

regulate directed cell movement. It is possible that some of the phosphorylation 

site mutants exhibit lower migration rates because of lack of directed and 

coordinated movement. Since phosphorylated villin also disassembles actin 

filament bundles, cytoskeletal disassembly associated with disruption of actin 

bundles by tyrosine phosphorylated villin could generate pulling forces that may 

even be involved in the rearward retraction of a moving cell. Examples of such 

solationcontraction include microtubules that segregate chromosomes during 

mitosis (Mogilner and Oster, 2003), and sperm of the nematode Ascaris suum 

(Miao et al., 2003). Cell migration is intimately linked to cytoskeleton dynamics 

and our study demonstrates that tyrosine phosphorylation which affects 

cytoskeleton dynamics also affects cell migration. Our studies suggest that 

filament turnover in cells may be defined by the regulated action of actin-binding 

proteins interacting with signaling molecules. 
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Chapter 3 

Interaction of phospholipase C- γ1 with villin 

 regulates epithelial cell migration2 

                                            
2 Permission to reproduce by The American Society for Biochemistry and 
Molecular Biology. Tomar, A., George, S., Kansal, P., Wang, Y., and Khurana, S. 
(2006). Interaction of phospholipase C-γ1 with villin regulates epithelial cell 
migration. J. Biol. Chem. 281, 31972-31986. 
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3.1 Introduction 

In intestinal epithelial  cells as well as in the opossum kidney cell line, 

tyrosine phosphorylation of villin regulates ion transport (Khurana et al., 1997; 

Papakonstanti et al., 2000).  In addition, rearrangement of the microvillar 

cytoskeleton and concomitant redistribution of villin have been reported in studies 

with enteroinvasive bacteria (Finlay and Cossart, 1997), in intestinal restitution 

(Nusrat et al., 1992; Albers et al., 1996), in renal ischemia, ischemia of the small 

intestine (Barthod, 1994; Golenhofen et al., 1995; Brown et al., 1997; White et 

al., 2000) as well as in colonic adenocarcinomas (Bacchi and Gown, 1991). It 

may be noted that villin expression is maintained in carcinomas derived from 

renal and intestinal epithelial cells.  Villin is also expressed in other 

adenocarcinomas even though it is absent from normal tissue such as in 

Barrett’s metaplasia and gastric cardia adenocarcinomas. More recently, chronic 

Helicobacter pylori infection has been shown to induce endogenous villin 

expression in the stomach (Rieder et al., 2005). Consistent with this and other 

studies, it has been suggested that villin expression arises in these tissues in 

response to chronic injury and may be a marker of pre-neoplastic lesions  and 

may even participate in the altered genetic program that results in intestinal 

metaplasia (Tsukamoto et al., 2004).  Studies done with the villin knock out mice 

show that villin is required for intestinal cell migration as well as Shigella infection 

(Athman et al., 2003; Athman et al., 2005). Abnormalities in villin gene 
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expression have also been associated with progressive cholestatic liver disease 

(Phillips et al., 2003).   

Villin is a member of a conserved family of actin-associated proteins 

widely expressed from slime molds to humans.  Severin from Dictyostelium 

discoideum, fragmin from Physarum polycephalum and the vertebrate proteins 

villin, gelsolin, adseverin and scinderin belong to the group of actin-severing 

proteins that contain 3-6 repeats of a conserved domain.  Villin contains six such 

domains (S1-S6). Like several proteins of its family, villin caps, nucleates and 

severs actin filaments and these functions are confined to the villin core (S1-S6).  

Villin contains in addition, a carboxyl-terminal domain (S7) called the headpiece, 

which provides villin with the ability to crosslink actin filaments (Glenney and 

Weber, 1981). We have previously demonstrated that villin is tyrosine 

phosphorylated in vitro and in vivo by c-src kinase (Panebra et al., 2001; Tomar 

et al., 2004; Wang et al., Submitted).  Likewise, gelsolin, fragmin and CapG have 

been shown to be tyrosine phosphorylated in vitro by c-src (De Corte et al., 

1997).  Further, proteomic analysis of phosphotyrosyl-proteins in human lumbar 

cerebrospinal fluid has been shown to include tyrosine phosphorylated gelsolin 

(Yuan and Desiderio, 2003).  These reports and our own data point to a more 

general mechanism involving tyrosine phosphorylation of this family of proteins. 

Thus, giving new properties to these proteins and adding another level of 

regulation that will be recognized by future studies involving the identification of 

the phosphorylated tyrosine residues and functional assays.  Epithelial cells of 

the intestine and kidney express more than one protein of this family (villin, 
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gelsolin and adseverin) (Lueck et al., 1998).  We and others have previously 

reported that while these proteins share structural homology they are not 

functionally identical (Finidori et al., 1992; Panebra et al., 2001; Kumar and 

Khurana, 2004; Kumar et al., 2004a; Kumar et al., 2004b).  The identification of 

the tyrosine phosphorylation sites and their molecular characterization in these 

proteins will facilitate our understanding of their functional diversity.  Further, 

such studies will help elucidate why some cells express more than one protein of 

this family and whether these proteins have identical, overlapping or distinct 

functions in these tissues. 

Tyrosine phosphorylation of villin releases its autoinhibited conformation 

allowing it to sever actin at physiologically relevant calcium concentrations 

(Kumar and Khurana, 2004).  We have also reported that tyrosine 

phosphorylation regulates villin functions, specifically, villin’s ability to modify the 

actin cytoskeleton, redistribution of F-actin in cells as well as villin-induced 

changes in cell shape and cell motility (Tomar et al., 2004).  In addition, tyrosine 

phosphorylation of villin modifies villin’s ligand-binding properties, including its 

association with phosphatidylinositol 4,5-bisphosphate  (PIP2), phospholipase C- 

γ1  (PLC-γ1) and F-actin (Khurana et al., 1997; Panebra et al., 2001; Zhai et al., 

2001). Regulation of villin’s functions by tyrosine phosphorylation, which is often 

a consequence of receptor activation, suggests that villin may function to 

communicate cell surface activation to the cytoskeletal machinery.         

  In an effort to comprehend the role of tyrosine phosphorylation to villin’s 

function, we have elected to identify the tyrosine phosphorylation sites in human 
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villin and map villin’s functions to these sites.  We have previously identified four 

major phosphorylated tyrosine residues in the villin core (Zhai et al., 2002; Tomar 

et al., 2004).  In the present study we identify six additional sites in the carboxyl-

terminal villin core (domains S3-S6).  With this study we have identified all the 

tyrosine residues in human villin that can be phosphorylated and mapped the 

functions of villin regulated by these phosphorylation sites.  Specifically, we have 

characterized the role of these sites in regulating F-actin reorganization, cell 

morphology and cell motility by transfecting full-length, truncation or 

phosphorylation site mutants of villin in the tetracycline regulated HeLa and 

MDCK cells.  In this report, we demonstrate for the first time that the carboxyl-

terminal tyrosine phosphorylation sites in villin are required for its association 

with PLC-γ1, thus determining their significance in villin-induced cell migration.  

Since there is considerable structural and functional homology between villin and 

other proteins of its family, the results presented herein help understand the 

relationship of phosphorylation with the role of these proteins in cell migration 

(Arpin et al., 1988; Arora and McCulloch, 1996; Folger et al., 1999; Athman et al., 

2003; Tomar et al., 2004).  

3.2 Materials 

Epicurian coli TKX1 and BL21 competent cells and the Quick-Change site-

directed mutagenesis kit were from Stratagene.  Glutathione Sepharose 4B 

Fastflow was from Amersham-Pharmacia.  GelCode Blue was from Pierce.  

Monoclonal antibodies to phosphotyrosine (clone PY-20) were from ICN; 
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monoclonal antibodies to villin were from Transduction Laboratories and, 

polyclonal phospho-villin antibody VP-70782 used in these studies has been 

described previously (Tomar et al., 2004).  Monoclonal antibodies to 

phospholipase C-γ1 were purchased from Upstate Biotechnology. Monoclonal 

antibody to the influenza A virus haemagglutinin (HA) tag was purchased from 

Roche.  Alexa Fluor 488-phalloidin was purchased from Molecular Probes; and 

Cy3-conjugated affinity purified donkey anti-mouse IgG was purchased from 

Jackson ImmunoResearch Laboratories.  Lysophosphatidic acid (LPA) and 

epidermal growth factor (EGF) were purchased from Sigma-Aldrich.  In situ Cell 

Death Detection kit, POD was purchased from Roche.  HOECHST 33258 was 

purchased from Sigma-Aldrich. HeLa Tet-Off cells stably expressing the tTA 

tetracycline-controlled transactivator, G418, hygromycin, doxycycline, the 

eukaryotic expression vectors pTRE-6 x HN, pTRE-HA and the selection vector 

pTK-Hyg were purchased from BD Biosciences Clonetech.  MDCK Tet-Off cells 

were a kind gift from Dr. Keith Mostov (UCSF, California).  LipofectamineTM 2000 

was purchased from Invitrogen Laboratories.  35 mm glass bottom culture dishes 

were purchased from Mat Tek Corporation. The muscle actin polymerization kit 

was purchased from Cytoskeleton (Denver, CO).  All other chemicals were from 

Sigma or Invitrogen. Monoclonal antibodies to phospholipase C-γ1 were 

purchased from Upstate Biotechnology. Monoclonal antibody to the influenza A 

virus haemagglutinin (HA) tag was purchased from Roche.  Alexa Fluor 488-

phalloidin was purchased from Molecular Probes; and Cy3-conjugated affinity 
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purified donkey anti-mouse IgG was purchased from Jackson ImmunoResearch 

Laboratories.   

3.3 Methods  

3.3.1 Tyrosine phosphorylation of villin in TKX1 cells.  Full-length or mutant 

villin cDNA cloned in pGEX-4T1 were expressed in E. coli TKX1 cells as 

described previously (Panebra et al., 2001).  Briefly, TKX1 cells carry a plasmid 

with the elk tyrosine kinase (tk) gene controlled by the trp promoter.  The TKX1 

cells were transformed with wild-type or mutant villin plasmids.  A two-step 

protocol was followed to first induce the villin gene (by addition of isopropy-γ-D-

thiogalactropyranosie (IPTG)) followed by induction of the tk gene (by addition of 

indoleacrylic acid (IAA)), which generated glutathione S-transferase (Gst)-tagged 

tyrosine-phosphorylated villin protein(s). TKX1 cells transformed with the villin 

gene and cultured in the absence of IAA were used to obtain non-phosphorylated 

villin controls.   Tyrosine phosphorylated proteins were detected by western 

analysis using a phosphotyrosine monoclonal antibody (PY-20).  Densitometric 

analysis was carried out using Scion Image software.   

3.3.2 Amino-terminal truncation mutants of villin.  To identify the villin 

phosphorylation site(s) we created amino-terminal truncation mutants of villin 

using full-length human villin cDNA cloned in the prokaryotic expression vector 

pGEX-4T1.  Briefly, polymerase chain reaction was used to introduce EcoRI 
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(Forward) and XhoI  (Reverse) restriction sites using the following primers:  CT, 

5’ (Forward)-AGGGAATTCGCCACACGGCCACTGACA, 

5’ (Reverse)-CTTTCTCGAGGAAT-AGGTACATTATTA; 

CT1, 5’ (Forward)-GTGGAATTCGTGAAGTTCGATGCCACA,  

5’(Reverse)-CTTTCTCGAGGAAT-AGGTACATTATTA;                                  

CT2,5’ (Forward)-TTTGAATTCCCAGCGCGGGCCAATTTC,   

5’(Reverse)- CTTTCTCGAGGAATAG-GTACATTATTA;   

CT3, 5’(Forward)- AGGGAATTCGCCACACGGCCACTGACA,    

5’(Reverse)- TTTGGCCCTCGAGC-CCACAGTGTG;    

CT4, 5’(Forward)- GTGGAATTCGTGAAGTTCGATGCCACA,                 

5’ (Reverse)-TGGACCTCGAGCAGC-CGTGTGGAG.  

The PCR amplicons were digested using EcoRI and XhoI and directionally 

cloned in pGEX-4T1. The cloning of the specific truncation mutants were 

confirmed by sequencing. 

3.3.3 Substitution of tyrosine with phenylalanine in villin truncation 

mutants. The putative phosphoryable tyrosine (Y) residues in the truncation 

mutants (CT2-CT6) were changed to phenylalanine (F) by designing 

complementary primers in which a Y codon was replaced with an F codon.   

Tyrosine’s at positions 286, 296, 324, 422, 427, 431, 433, 441, 444, 461, 470, 

555, 604, 681, 725 were replaced with phenylalanine using the QuikChange site-

directed mutagenesis kit to make single-base change from TAT and TAC to TTT 

and TTC respectively.  The mutation primers were as follows: Y286F, 

5’(Forward)-TCACGAGGACTGGTTTCA-TCCTGGACCAGG and 5’ (Reverse)- 
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CCTGGTCCAGGATGAAACAGTCCTCGTGA; Y296F, 5’  (Forward)-GGCCTGA-

AGATCTTCGTGTGGAAAGGG  and    

5’ (Reverse)-CCCTTTCCACACGAACATC-TTCAGGCC;  

Y324F, 5’ (Forward)-ATCAAAGCCAAGCAGTTCCCACCAAGCACACCAG and 

5’ (Reverse)-CTGTGTG-CTTGGTGGGAACTGCTTGGCTTTGAT; 

Y422F 5’ (Forward)-CTAGGCCACTTC-TTTGGGGGCGACTGC and 

5’ (Reverse)-GCAGTCGCCCCCAAAGAAGTGGCCT-AG; 

Y427F, 5’ (Forward)-GGGGGCGAC-TGCTTCCTGCTGCTCTAC and 

5’ (Reverse)-GTAGAGCAGCAGGAAGCA-GCAGTCGCCCCC; 

Y431F, 5’ (Forward)-TACCTGCTGCTCTTCACCTACCTCATC and 

5’ (Reverse)-GATGAGGTAGGTGA-AGAGCAGCAGGTA; 

Y433F, 5’ (Forward)-CTGCTCTACACCTTCCTCA-TCGGCGAG and 

5’ (Reverse)-CTCG-CCGATGAGGAAGGTGTAGAGCAG; 

Y441F, 5’(Forward)-GGCGAGAAGCA-GCATTTCCTGCTCTACGTTTGG and 

5’ (Reverse)-CCAAACGTAGAGCAGGAA-ATGCT-GCTTCTCGCC; 

Y444F, 5’ (Forward)-CATTACCTGCTCTTCGTTTG-GCAGGGC and 

5’ (Reverse)-GCCCTGC-CAAACGAAGAGCAGGTAATG; 

Y461F 5’ (Forward)-ACAGCATCAGCTTTCA-AGCCGTCATC  and 

5’ (Reverse)-GATGACGGCTTGAAAAGCTGATGCTGT; 

Y470F,5’(Forward)-CCTGGACATCCGGACCAGAAGTTCAATGGTGA and 

5’(Reverse)-GACTGGTT-CACCATTGAACTTCTGGTCCAGGAT; 

Y555F, 5’ (Forward)-ACCCAGTCTTGCT-GCTTTCTATGGTGTGGGAAG and 

5’ (Reverse)-CTTCCCACACCATAGAAA-GCAGCAAGACTGGGT; 
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Y604F, 5’ (Forward)-TGGGAAGGCCCCCTTTGCC-AACACCAAGAG and 

5’ (Reverse)-CTCTTGGTGTTGGCAAAGGGGGCCTTCCCAC; 

Y681F, 5’ (Forward)-ACCACTG-CACAGGAATTCCTCAAGACCCATCCC and 

5’ (Reverse)-GGGATGGGTCTTGA-GGAATTCCTGTGCAGTGGT; 

Y725F, 5’ (Forward)-TAACACCAAATCCTTTGA-GGACCTGAAGG and 

5’ (Reverse)-CCTT-CAGGTCCTCAAAGGATTTGGTGTTA.  A villin mutant 

lacking all ten identified tyrosine phosphorylation sites namely Y-46, -60, -81,       

-256, -286 , -324, -461, -555, -604 and -725 (substituted with phenylalanine)  was  

made to confirm the tyrosine phosphorylation status of recombinant villin 

expressed in TKX1  cells (VILT/WT (AYFM)). 

3.3.4 Urea denaturation assay.  To determine the effects of specific mutations 

on the overall stability of the villin molecules, fluorescence-monitored urea 

denaturation was performed on each recombinant protein as described 

previously (Kumar et al., 2004b).  Fluorescence measurements were taken at an 

excitation wavelength of 280 nm and at an emission scan was performed from 

335 nm to 360 nm. 

3.3.5 Measurement of actin-polymerization and -depolymerization by 

phosphorylated wild-type and point mutants of villin.  The kinetics of actin-

polymerization were determined using a muscle actin polymerization kit 

according to the instructions of the manufacturer and as described previously 

(Kumar et al., 2004a).  The ability of villin to nucleate actin assembly or to 

depolymerize actin filaments was determined by its effect on the rate and extent 
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of increase or decrease, respectively, of fluorescence of pyrene-labeled actin.  

Fluorescence measurements were performed at 25oC using the FluoroMax 3 

spectrofluorometer.  The excitation wavelength was set at 365 nm, and the 

emission wavelength was set at 407 nm.   

3.3.6 Measurement of actin uncapping by phosphorylated wild-type and 

point mutants of villin.  The actin-capping activity of wild-type and mutant villin 

proteins was measured essentially as described by Northrop et al using  pyrene-

labeled actin as described by Schafer et al (Northrop et al., 1986b; Schafer et al., 

1996).  290 nM villin-actin seed were used as nuclei for polymerization with 

pyrene-labeled G-actin (1.4 µM) in a reaction volume of 200 µl.  The increase in 

fluorescence was measured over time as described before (Kumar et al., 2004a).  

The concentration of calcium (2.5 µM) used in the assays has been shown to be 

saturating for capping but not severing of actin filaments by villin. 

3.3.7 Transfection of HeLa and MDCK Tet-Off cells with full-length and 

mutant villin cDNA.  Full-length villin and the point mutants of villin (Y286F; 

Y324F; Y461F; Y555F; Y604F and Y725F were cloned in the eukaryotic 

expression vector pTRE-6 x HN by amplification using polymerase chain reaction 

of the coding sequences cloned in  pGEX-4T1 as described before (Tomar et al., 

2004). Three additional constructs were made: (i) VIL/ANFM, in which all four 

amino-terminal tyrosine phosphorylation sites, namely Y46, Y60, Y81 and Y256, 

were mutated to phenylalanine; (ii) VIL/ACFM, in which all six carboxyl-terminal 

tyrosine phosphorylation sites, namely Y286, Y324, Y461, Y555, Y604 and Y725 
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were mutated to phenylalanine and   (iii)VIL/AYFM, in which all ten 

phosphoryable tyrosine residues were mutated to phenylalanine. Yellow 

fluorescent protein tagged version of full-length villin was made by using 

superenhanced yellow fluorescent protein (SEYFP) subcloned  into the Sal 1 site 

of full-length villin cloned into pTRE-HA  between the HA tag and villin 

(SEYFP/FL) in collaboration with Dr. Ian Macara (University of Virginia School of 

Medicine, Charlottesville, VA) (Tomar et al., 2004).  To check if villin and SEYFP 

were in frame the following primer was used, 5’-CATGGTCCTGC-

TGGAGTTCGTCA; and to check if SEYFP was in frame with the HA tag, the 

following sequencing primer was used, 5’-CGC-CTCCAGACGCCATCCACGCT. 

Deletion mutant S1-S3 (SEYFP/S1-S3) was made by designing complementary 

primers to introduce a stop codon at positions 338 of SEYFP/VIL using the 

QuikChange site-directed mutagenesis kit, as recommended by the 

manufacturer. The introduction of the stop codon was verified by sequencing.  

SEYFP tagged versions of VIL/ANFM, VIL/ACFM and VIL/AYFM were cloned by 

digesting VIL/ANFM, VIL/ACFM and VIL/AYFM cloned in pTRE-HA with Sal I.  

Likewise the 0.7 kb SEYFP fragment was obtained by digestion of SEYPF/FL 

with Sal I.  The recombinant constructs VIL/ANFM, VIL/ACFM or VIL/AYFM were 

ligated with the SEYFP fragment using non-directional sticky end cloning.  The 

cloning of the SEYFP insert was verified by sequencing and the SEYFP fragment 

was found upstream of VIL/ANFM, VIL/ACFM as well as VIL/AYFM sequence 

and in correct reading frame with the HA tag.  HeLa Tet-Off cells were stably co-

transfected with the wild-type or mutant villin plasmids and a selection plasmid 
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carrying the hygromycin resistance gene.  Villin-null HeLa and MDCK Tet-Off 

cells were transiently transfected with SEYFP/FL, SEYFP/ACFM or SEYFP/S1-

S3 plasmids and cells were analyzed 16-24 h post-transfection.  Alternatively, 

MDCK Tet-Off cells were stably transfected with SEYFP/FL, SEYFP/ANFM, 

SEYPF/ACFM or SEYFP/AYFM.  

3.3.8 Cell motility assay.  HeLa Tet-Off cells transfected with wild-type or 

mutant villin proteins were seeded in six-well plates and cultured in the absence 

(VIL +) or presence (VIL -) of doxycycline.  Confluent monolayers were scraped 

with a plastic pipette tip to generate wounds essentially as described before 

(Tomar et al., 2004).  Images were obtained at the initial time of wounding and at 

various time intervals up to 24 h post-wounding.  Data are expressed as a 

percentage of original wound width.  Wound width measurements were averaged 

from two regions of the same well and the mean treated as a single data point.  

Comparisons between mean values were made using one-way repeated-

measures analysis of variance and Tukey’s modified t test (Benferroni criteria) 

with p < 0.05.  

3.3.9 Immunofluorescence microscopy.  HeLa Tet-Off cells expressing wild-

type and mutant villin proteins were cultured on coverslips and fixed in 3.7% 

formaldehyde and permeabilized by incubation in phosphate buffered saline 

containing 0.2% Triton X-100 and 0.5% normal goat serum.  Cells were 

incubated with villin monoclonal antibody (1:100) and Alexa Fluor 488-phalloidin 

was included to record the distribution of F-actin.  The secondary antibody was 
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Cy3-conjugated affinity purified donkey anti-mouse IgG (1:100).  The 

fluorescence was examined by confocal laser scanning microscopy (LSM 5 

PASCAL; Carl Zeiss, Thornwood, NY). 

 For time-lapse microscopy, cells were incubated on 35-mm glass bottom 

dishes.  MDCK/HeLa cells transiently transfected with SEYFP/FL or SEYFP/S1-

S3 were used for these studies, 16-24 h post-transfection.  Alternatively MDCK 

Tet-Off cells stably transfected with SEYPF/FL, SEYFP/ANFM or SEYFP/ACFM 

were used for these studies.  Cells were washed twice with phosphate-buffered 

saline and 50 ng/ml of epidermal growth factor (EGF) or lysophosphatidic acid 

(LPA 1 µM) were added to the cells 5 min before time lapse images were 

captured.  Time lapse images were acquired with a 40 x objective on a confocal 

microscope (LSM 5 PASCAL, Carl Zeiss, and Thornwood, NY).  Images were 

captured every 2 min for a maximum of 60 minutes.  

3.3.10 Measurement of lamellipodial protrusion rate.  Lamellipodia were 

characterized as thin regions 3-10 microns wide located at the cell margin.  Using 

time lapse imaging, lamellipodia protrusion rate was measured as the increase in 

total cell area after growth factor (LPA (1 µM) or EGF (50 ng/ml)) stimulated cell 

migration using time lapse images essentially as described before (Rottner et al., 

1999; Athman et al., 2003).  The mean relative area was plotted as a function of 

time to measure rate of protrusive activity after EGF/LPA treatment.  

Approximately 10 cells were examined and for all cells the rate remained 

approximately constant during the 20 minutes of observation.   
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3.3.11 Immunoprecipitation and western blot analysis.  HeLa or MDCK Tet-

Off cells transfected with full-length villin (VIL/FL) or phosphorylation site mutants 

of villin namely, VIL/ACFM or VIL/AYFM were extracted with a solution 

containing 1% Triton X-100, 20 mM HEPES, pH 7.2, 150 mM NaCl, 1 mM 

sodium orthovanadate, 50 mM NaF and a cocktail of protease inhibitors for 15 

min at 4oC.  PLC-γ1 were immunoprecipitated from the soluble extracts as 

described previously (Khurana et al., 1997) by using monoclonal antibodies to  

PLC-γ1.  Tyrosine phosphorylated proteins were Immunoprecipitated from MDCK 

Tet-Off cells  lysed using modified RIPA buffer containing 50mM Tris-HCl pH 7.4, 

1% NP-40, 0.25% Na-deoxycholate, 150 mM NaCl, 1 mM EDTA, 1 mM PMSF, 

Aprotinin, leupeptin, pepstatin 1 µg/ml each, 1 mM Na3VO4, and 1 mM NaF for 

15 min at 4oC. Immunoprecipitated proteins were separated by SDS-PAGE, 

transferred to nitrocellulose membrane and western analysis done with villin 

monoclonal antibodies. 

3.3.12 Separation of Triton-soluble and -insoluble pool.  For fractionation of 

Triton X-100 -soluble and -insoluble pool, MDCK Tet-Off cells expressing VIL/FL, 

VIL/ACFM or VIL/AYFM were lysed in buffer containing 1% Triton X-100, 20 mM 

HEPES, pH 7.2, 150 mM NaCl, 2 mM EDTA, 1 mM sodium othovanadate, 50 

mM NaF and a cocktail of protease inhibitors for 15 min at 4oC.  After 

centrifugation, supernatants were collected and represented the Triton-soluble 

pool.  The pellets were resuspended in buffer containing 15 mM HEPES, pH 7.5, 

150 mM NaCl, 1% Triton X-100, 1% sodium deoxycholate, 0.1% SDS, 10 mM 

EDTA, 1 mM dithiothreitol, 1 mM sodium orthovanadate and a cocktail of 



 76

protease inhibitors.   Samples were vortexed well and incubated on ice for 20 min 

on ice.  The pellet fraction was centrifuged and the resulting supernatant 

represented the Triton-insoluble pool.  Triton-soluble and -insoluble proteins were 

separated by SDS-PAGE, transferred to nitrocellulose membrane and western 

analysis done with villin monoclonal antibodies. 

3.3.13 Identification of apoptotic cells using HOECHST 33258 staining. 

MDCK Tet-Off cells transiently transfected with SEYFP-tagged S1-S3 villin 

truncation were incubated with HOECHST 33258 16 h post-transfection at a 

concentration of 20 µg/ml for 10 min at room temperature.  Apoptotic cells were 

distinguished from viable cells by nuclear condensation and DNA fragmentation 

seen as bright blue fluorescence in the nuclei.  Morphological changes 

corresponding to non-viable cells were determined using an inverted Nikon 

fluorescence microscope with a CoolSnap FX charge coupled device camera.  

3.4 Results    

3.4.1 The carboxy-terminus of villin is tyrosine phosphorylated.  We have 

previously identified four major tyrosine phosphorylation sites (Y-46, -60, -81 and 

-256) in the amino terminus of villin (Zhai et al., 2002).  Substitution of all four of 

these sites with phenylalanine allowed us to determine that there were additional 

phosphorylation sites in the carboxy terminus of villin that were tyrosine 

phosphorylated in vitro (figure 3.1A). Likewise, expression of this amino-terminal 

phosphorylation site mutant of villin (VIL/ANFM) in MDCK Tet-Off cells allowed   
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Figure 3.1 Tyrosine phosphorylation of wild-type and truncation mutants of villin.  

(A) Carboxy terminus of villin contains additional tyrosine phosphorylation sites. 

Four of the tyrosine phosphorylation sites identified in previous studies (Y-46,      

-60, -81 and -256) were mutated to phenylalanine (ANFM) (Zhai et al., 2002).  

The mutant villin protein cloned in the pGEX-4T1 was expressed as a non-

phosphorylated protein (VIL/WT (ANFM)) by expression in TKX1 cells in the 

absence of IAA (see Materials and Methods) or as a phosphorylated protein by 

expression in TKX1 cells in the presence of IAA (VILT/WT (ANFM)). (B) Amino-

terminal phosphorylation site mutant of villin is tyrosine phosphorylated in MDCK 

Tet-Off cells.  Cell extracts from MDCK Tet-Off cells stably transfected with full-

length villin (VIL/FL) or amino-terminal phosphorylation site mutant (VIL/ANFM) 

were immunoprecipitated with phospho-villin antibody (VP-70782) described 

previously (Tomar et al., 2004) and western analysis done with phospho-tyrosine 

antibody. (C) Schematic representation of wild-type and amino-terminal 

truncation mutants of villin that were expressed as Gst-tagged phosphoryable 

proteins in TKX1 cells. (D) Expression and tyrosine phosphorylation of wild-type 

(VILT/WT) and truncation mutant (CT-CT4) villin proteins.  The left panel is an 

SDS-PAGE analysis of recombinant, phosphorylated wild-type (VILT/WT) and 

amino-terminal truncation mutants of villin.  The gels were stained with GelCode 

Blue.  The right panel is a western blot of VILT/WT and truncation mutants of 

villin probed with phosphotyrosine monoclonal antibody (PY-20).  Data are 

representative of four experiments with similar results. 
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us to confirm our observation that there were additional phosphorylation sites in 

the carboxyl terminal domain of villin (figure 3.1 B). For these studies, cell 

extracts of MDCK Tet-Off cells expressing wild-type villin (VIL/FL) or the amino-

terminal phosphorylation site mutant of villin (VIL/ANFM) were 

immunoprecipitated with a phospho-villin antibody (VP-70782) and probed with a 

phospho-tyrosine antibody (PY-20) essentially as described before (Tomar et al., 

2004).  Together these studies demonstrate that both in vitro as well as in MDCK 

cells, the carboxyl terminal domain of villin contribute to the tyrosine 

phosphorylation of villin.   In addition, the identification of at least five tyrosine 

phosphorylation sites in human plasma gelsolin including a major 

phosphorylation site in domain S4, led us to speculate that villin may, likewise, 

have tyrosine phosphorylated residues in the carboxyl-terminal domain(s) (De 

Corte et al., 1999).  To identify these sites in villin as well as to determine the 

functional significance of these sites, truncation mutants of villin were constructed 

as shown in figure 3.1C.  The constructs consisted of amino-terminal deletions of 

human villin cDNA engineered into the prokaryotic expression vector pGEX-4T1.  

Five truncation mutants (CT-CT4) were generated as Gst-tagged fusion proteins 

in TKX1 cells.  The expression of full-length villin and the truncation mutants of 

villin were assessed by SDS-PAGE and staining with GelCode Blue (figure 

3.1D).  The apparent molecular masses were in agreement with those predicted 

for each deletion mutant.  To assess tyrosine phosphorylation of these mutants, 

the proteins were analyzed by western analysis using phosphotyrosine 

antibodies (PY-20). All four truncation mutants were tyrosine phosphorylated 
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(figure 3.1D).  These data suggested to us that each of the truncation mutants 

contained one or more tyrosine phosphorylated residues. To identify these 

phosphorylation sites, smaller truncation mutants were generated (CT5 and CT6, 

figure 3.1C).  Individual tyrosine residues in these shorter truncation fragments 

(CT2, CT3, CT5 and CT6) were substituted with phenylalanine and the effect of 

these mutations on the levels of phosphorylation was determined (Zhai et al., 

2002). 

3.4.2 Identification of one major and two minor phosphorylation sites in 

CT2.  The truncation mutant of villin CT2 contains four tyrosine residues (Y-555,  

-604, -681 and -725) between amino acids 533-827 of human villin that could be 

phosphorylated.  We used site-directed mutagenesis to substitute each of these 

tyrosine residues with phenylalanine in the truncation mutant CT2.  The mutants 

were expressed in TKX1 cells, and the phosphorylation status of the mutant 

proteins was analyzed by western analysis using an anti-phosphotyrosine 

antibody (figure 3.2A).  Densitometric analysis was done by determining the ratio 

of phosphorylated protein to total protein for each sample.  Mutation of Y725 to F 

significantly decreased the level of tyrosine phosphoryaltion in the truncation 

mutant CT2 (54.3 ± 3.3 %, n = 4, p < 0.001).  In contrast mutation of Y555 or 

Y604 to F decreased the level of tyrosine phosphorylation of the villin construct 

CT2 to a lesser extent (25.0 ± 5.7 % and 37.5 ± 4.1 % respectively, n = 4, p < 

0.001).  This suggested that CT2 contains one major (Y725) and two minor 

(Y555 and Y604) tyrosine phosphorylated residues.  To confirm this observation, 

double mutants of these sites were generated in CT2 (figure 3.2B).    
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Figure 3.2 Identification of one major and two minor tyrosine phosphorylation 

sites in villin truncation mutant CT2.  (A)  Mutant villin proteins were generated by 

substitution of tyrosine residues at 555, 604, 681 or 725 with phenylalanine in 

villin truncation mutant CT2 [CT2(Y555F); CT2(Y604F); CT2(Y681F); 

CT2(Y725F)].  The villin mutants were expressed as Gst-tagged phosphoryable 

proteins in TKX1 cells.  The samples were normalized for protein content and 

subjected to SDS-PAGE and western analysis using phosphotyrosine antibody 

(PY-20).  (B)  A villin mutant was generated by substituting two of the three 

identified tyrosine phosphorylation sites in different combinations (CT2 (Y604F, 

Y555F); CT2 (Y725F, Y604F); CT2 (Y725F, Y555F).  Villin truncation mutant 

CT2 as well as these phosphorylation site mutants were purified from TKX1 cells, 

separated by SDS-PAGE and stained with GelCode Blue. western analysis was 

done with a phosphotyrosine antibody.  Tyrosine phosphorylation of CT2 and 

phosphorylation site mutants of CT2 was quantified using Scion Image software. 

The values for phosphorylation site mutants of CT2 were normalized to the 

phosphorylation of truncation mutant CT2 (which was set as 100).   Statistically 

significant values (compared with CT2) are marked with an asterisk (p < 0.001). 
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Western analysis of the double mutants using phosphotyrosine antibodies 

indicated essentially a complete loss of tyrosine phosphorylation with double 

mutants Y725, 604F (91%, n = 4, p < 0.001) and Y725, 555F (81%, n = 4, p < 

0.001).   In contrast, the double mutant Y604, 555F resulted in a relatively 

smaller decrease in the total phosphorylation level in the truncation mutant CT2 

(33.0 ± 5.3 %, n = 4, p < 0.001).  These results indicate the presence of one 

major and two minor sites in human villin protein between a.a. 533 and 827.  

3.4.3 Identification of two major phosphorylation sites in villin truncation 

mutant CT3.  Villin truncation mutant CT3 contains three putative phosphoryable 

tyrosine residues, Y286, Y296 and Y324.  We mutated each of these tyrosine 

residues to a phenylalanine and determined the effect of the mutation on the 

levels of phosphorylation in the truncation mutant CT3.  Equal amounts of the 

proteins were separated by SDS-PAGE and western analysis done with 

phosphotyrosine antibodies (PY-20).  As shown in figure 3.3, mutation of Y286 

as well as Y324 significantly decreased the levels of tyrosine phosphorylation in 

the truncation mutant CT3 (99.0 ± 1.0 % and 65.9 ± 3.7 % respectively, n = 4, p < 

0.001).  On the other hand, mutation of Y296 to phenylalanine had no effect on 

the phosphorylation levels of the truncation mutant CT3.  These data 

demonstrate that in addition to Y555, Y604 and Y725, the carboxyl-terminal 

domain of villin contains two additional tyrosine residues that can be 

phosphorylated in vitro, namely Y286 and Y324.  
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Figure 3.3 Tyrosine 286 and 324 are the major phosphorylation sites in the villin 

truncation mutant CT3.  Mutant villin proteins were generated by substitution of 

tyrosine residues at 286, 296 or 324 with phenylalanine in villin truncation mutant 

CT3 [CT3 (Y286F); CT3 (Y296F); CT3 (Y324F)].  The villin mutants were 

expressed as Gst-fused phosphoryable proteins in TKX1 cells.  The samples 

were normalized for protein content and subjected to SDS-PAGE and western 

analysis using phosphotyrosine antibody (PY-20). Tyrosine phosphorylation of 

CT3 and phosphorylation site mutants of CT3 was quantified using Scion Image 

software. The values for phosphorylation site mutants of CT3 were normalized to 

the phosphorylation of truncation mutant CT3 (which was set as 100).   

Statistically significant values (compared with CT3) are marked with an asterisk 

(p < 0.001). 
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3.4.4 Y461 is the major phosphorylation site in the villin truncation mutant 

CT4.  As shown in figure 3.1D, the villin truncation CT4 is also tyrosine 

phosphorylated suggesting that this truncation contains one or more tyrosine 

residues that can be phosphorylated in vitro.  Human villin contains 7 tyrosine 

residues within this domain that could be phosphorylated in vitro.  To determine 

these sites of phosphorylation, we generated two additional truncation mutants, 

CT5 and CT6, which encompass the amino acid residues between 373 and 533   

(similar to CT4, figure 3.1 C).  CT5 contains four tyrosine residues namely Y-422, 

-427, -431 and -433.  Mutation of either of these sites to phenylalanine resulted in 

less than 5% decrease in the phosphorylation levels suggesting that these are 

minor sites of phosphorylation, if at all, in the villin truncation CT4 (data not 

shown).  The truncation mutant CT6 contains three tyrosine residues namely, Y   

-461, -444 and -470 and mutation of one of these residues, Y461, completely 

(99%, n = 5, p < 0.001) abolished the phosphorylation in the truncation CT6 

(figure 3.4A).  To confirm that Y461 was the only major phosphorylation site in 

CT4, we also generated a point mutant, Y461F, in CT4 (figure 3.4B).  The 

expression and analysis of this mutant demonstrated that Y461 was the single 

key phosphorylation site in CT4 (a.a. 373-534 of human villin).  In conclusion, in 

this study we have identified six tyrosine phosphorylation sites in the carboxyl-

terminal domain of villin between a.a. 271-827 of human villin.  All of these sites 

are well conserved in villin across different species.  Three of these sites are also 

conserved among other proteins of the villin family including gelsolin, adseverin    



 86

Figure 3.4 Identification of tyrosine residue 461 as the major phosphorylated 

residue in villin truncation mutant CT4.  (A)  Mutant villin proteins were generated 

by substitution of tyrosine residues at 444, 461 or 470 with phenylalanine in villin 

truncation mutant CT6 [CT6 (Y444F); CT6 (Y461F); CT6 (Y470F)].  (B) Tyrosine 

Y461 in villin truncation mutant CT4 was substituted with phenylalanine (CT4 

(Y461F).  The values for phosphorylation site mutants were normalized to the 

phosphorylation of truncation mutant CT6 or CT4 (which was set as 100).   

Statistically significant values are marked with an asterisk (p < 0.001). (C) 

Sequence alignment of villin and related proteins of the villin superfamily.  The 

top panel shows alignment of villin sequences from human, mouse and chicken.  

The bottom panel shows alignment of homologous sequences in gelsolin, 

adseverin and CapG.  (D) Substitution of all ten tyrosine residues at positions 46, 

60, 81, 256, 286, 324, 461, 555, 604 and 725 with phenylalanine (VILT/WT 

(AYFM)) eliminates tyrosine phosphorylation in full-length recombinant villin 

protein.  Tyrosine phosphorylation of full-length recombinant villin protein 

(VILT/WT) was compared with villin mutant VILT/WT(AYFM) using a 

phosphotyrosine antibody or a phospho-villin antibody (VP-70782) described 

previously (Tomar et al., 2004).  (E) Mutation of all ten identified tyrosine 

residues abolishes tyrosine phosphorylation of villin in MDCK Tet-Off cells.  Cell 

extracts from MDCK Tet-Off cells stably transfected with VIL/FL or VIL/AYFM 

were immunoprecipitated with phospho-villin antibody (VP-70782) and western 

analysis done with phospho-tyrosine antibody. 
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and CapG (figure 3.4C).  Two of these sites Y324 and Y604 in human villin have 

been identified as minor sites that are phosphorylated in human plasma gelsolin 

(Y576 and Y624 respectively in gelsolin) (De Corte et al., 1999). Mutation of all 

ten sites (VILT/WT(AYFM)) in villin, four previously identified (Y-46, -60, -81 and  

-256) as well as the six sites identified in this study (Y-286, -324, -461, -555, -604 

and -725) resulted in the complete loss of tyrosine phosphorylation in full-length 

recombinant villin protein (figure 3.4D). These data were confirmed in MDCK Tet-

Off cells stably transfected with this villin mutant lacking all ten identified tyrosine 

phosphorylation sites (VIL/AYFM) (figure 3.4E). Collectively with our previous 

study  we have now identified ten tyrosine residues in human villin that are 

phosphorylated both in recombinant villin protein as well as in MDCK cells.  

 We also examined the stoichiometry of tyrosine phosphorylated villin in 

MDCK cells expressing full-length villin (VIL/FL), villin mutant lacking the four 

amino-terminal phosphorylation sites previously identified (VIL/ANFM), villin 

mutant lacking the six carboxyl-terminal phosphorylation sites identified in this 

study (VIL/ACFM) and a villin mutant lacking all ten identified tyrosine 

phosphorylation sites (VIL/AYFM).  MDCK cells stably expressing wild-type and 

mutant villin proteins were lysed and immunoprecipitated using  PY-20. Since the 

commercially available villin monoclonal antibody cannot be used for 

immunoprecipitation and since the phospho-villin antibody VP-70782 binds to 

selective tyrosine phosphorylated epitopes of villin, we reasoned that a phospho-

tyrosine antibody would bind phosphorylated villin proteins with comparable 

affinity.  We have previously demonstrated that PY-20 immunoprecipitates 
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tyrosine phosphorylated villin protein (Khurana et al., 1997; Tomar et al., 2004).   

Quantitative immunoprecipitation studies demonstrated that in MDCK cells 

VIL/FL, VIL/ANFM and VIL/ACFM were tyrosine phosphorylated while villin 

mutant VIL/AYFM was not (figure 3.5).  Densitometric analysis revealed that 

mutation of the amino-terminal phosphorylation sites or the carboxyl-terminal 

phosphorylation sites resulted in  a 30.6 ± 12.22 and 56.79 ± 10.96 percent 

decrease respectively in the phosphorylation levels of mutant villin proteins 

compared to wild-type villin protein.  Mutation of all ten tyrosine phosphorylation 

sites (VIL/AYFM) resulted in the complete loss of phosphorylation of the villin 

protein in MDCK cells (98.52 ± 0.47 percent decreased compared to VIL/FL).  

These studies demonstrate that the ten tyrosine phosphorylation sites identified 

in recombinant villin protein are also tyrosine phosphorylated in MDCK cells with 

a comparable stoichiometry.  

3.4.5 Functional significance of tyrosine phosphorylation sites identified in 

the carboxy-terminus of villin.  Each of the six tyrosine phosphorylation sites 

identified in this study were mutated individually in full-length human villin cDNA 

to phenylalanine (VILT/WT(Y286F); VILT/WT(Y324F); VILT/WT(Y461F); 

VILT/WT(Y555F); VILT/WT(Y604F); VILT/WT(Y725F)), expressed in TKX1 cells 

and purified as Gst-tagged tyrosine phosphorylated proteins.  All six mutants 

were tyrosine phosphorylated but lacked one of the identified tyrosine residues 

(figure 3.6A).  In order to assess whether the single point mutants maintained the 

conformation of the wild-type villin protein, the unfolding profiles of wild-type          
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Figure 3.5 Tyrosine phosphorylation of wild-type and mutant villin proteins.  Cell 

extracts from VIL/FL, VIL/ANFM, VIL/ACFM and VIL/AYFM were 

immunoprecipitated with phospho-villin antibody (VP-70782) and western 

analysis done with phospho-tyrosine antibody PY-20 (upper panel).  Middle panel 

is a western blot with anti-villin monoclonal antibody and the bottom panel is a 

western blot with anti-actin antibody. 
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Figure 3.6 Regulation of actin dynamics by the carboxyl-terminal tyrosine 

phosphorylation sites in villin.  (A)  Expression of full-length villin proteins with 

point mutations at position 286, 324, 461, 555, 604 or 725.  Tyrosine residues at 

these positions were substituted with phenylalanine in full-length villin and 

expressed as recombinant proteins in TKX1 cells. (B) Urea-induced, equilibrium-

unfolding transition of wild-type and mutant villin proteins.  Urea-induced 

denaturation of wild-type and mutant villin proteins was measured by the change 

in tryptophan fluorescence maxima at an excitation wavelength of 280 nm and an 

emission scan from 300 to 420 nm.  (C)  Effect of wild-type and phosphorylation 

site mutant villin proteins on the kinetics of actin polymerization. Pyrene-labeled 

G-actin was incubated with VIL/WT, VILT/WT or mutant mutant villin proteins in 

polymerization-inducing buffer, and fluorescence intensity was measured over 

time. (D)  Effect of wild-type and phosphorylation site mutant villin proteins on the 

kinetics of actin depolymerization.  Pyrene-labeled F-actin in the presence of 

VIL/WT, VILT/WT or mutant villin proteins was diluted in actin depolymerizing 

buffer, and the decrease in fluorescence intensity was followed over time. (E) 

Effect of wild-type and phosphorylation site mutant villin proteins on the kinetics 

of actin-capping.  Polymerization of G-actin at barbed ends was nucleated by F-

actin (290 nM) seeds in the absence (control) or presence of non-phosphorylated 

(VIL/WT), phosphorylated (VILT/WT) or mutant villin proteins. 
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and mutant villin proteins expressed in the absence of IAA (non-phosphorylated 

proteins) as a function of the urea concentration were recorded by measuring the 

intrinsic tryptophan fluorescence emission spectrum essentially as described 

before (Kumar et al., 2004b).  The results indicate that single point mutants 

express similar unfolding transitions as wild-type villin, thus maintaining a 

comparable overall conformation as the wild-type recombinant villin protein 

(figure 3.6B).  Full-length non-phosphorylated villin (VIL/WT), phosphorylated 

villin (VILT/WT) and the phenylalanine substituted single point mutants were 

used in a pyrene based actin-polymerization and -depolymerization assay as 

described before (Zhai et al., 2002).  As shown in figure 3.6C, the addition of 

non-phosphorylated full-length villin (VIL/WT) increased the initial rate of actin 

polymerization compared to the polymerization kinetics of actin alone (control). In 

contrast, tyrosine phosphorylated full-length villin (VILT/WT) resulted in a lag 

phase and decreased the rate of actin polymerization.  This is consistent with our 

previously published observation that tyrosine phosphorylation inhibits the actin-

nucleating function of villin (Zhai et al., 2001; Zhai et al., 2002; Kumar and 

Khurana, 2004).  Mutation of any of the six identified phosphorylation sites 

individually from Y to F, did not rescue the actin-nucleating property of non-

phosphorylated full-length villin protein.  These data demonstrate that 

phosphorylation at any five of the six identified tyrosine residues inhibits actin 

nucleation by villin.  Thus, like the  amino-terminal phosphorylation sites, the  

carboxyl-terminal phosphorylation sites also inhibit the actin-nucleating activity of 

villin (Zhai et al., 2002).  These studies suggest that the entire villin core and 
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multiple tyrosine phosphorylation sites in the villin core could regulate actin 

nucleation by villin.  

 Next we examined the effect of tyrosine phosphorylation of villin on F-actin 

depolymerization.  Non-phosphorylated full-length villin protein (VIL/WT) 

increased the depolymerization of F-actin compared with control samples (figure 

3.6D).  Furthermore, phosphorylation of villin enhanced its actin-depolymerizing 

property, similar to our previous reports (Zhai et al., 2001; Zhai et al., 2002; 

Kumar and Khurana, 2004).  Mutation of Y286 to F resulted in actin severing by 

villin comparable to that of non-phosphorylated full-length villin protein, while all 

other mutants (Y324F, Y461F, Y555F, Y604F or Y725F) behaved like VILT/WT.  

These data suggest that Y286 is the major phosphorylation site that regulates the 

actin-depolymerizing function of villin.  Taken together with our previous study, 

we have now determined  three tyrosine residues, namely Y46, Y60 and Y286, in 

the amino-terminal domain (S1-S3) of villin that regulate its actin-depolymerizing 

activity (Zhai et al., 2002).    

 The ability of VIL/WT, VILT/WT and the phosphorylation site mutants of 

villin to bind to the plus or barbed end of actin filaments was tested by following 

the polymerization kinetics of pyrene-labeled G-actin from barbed ends under 

polymerization conditions where there is little or no growth from the pointed end.  

The concentration of calcium (2.5 µM) used in this assay has been shown to be 

saturating for capping but not severing of actin filaments by villin (Northrop et al., 

1986b).   As shown in figure 3.6E, addition of pyrene-labeled G-actin in the 

presence of F-actin seeds results in significant and rapid actin polymerization 
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over time.  VIL/WT shows decreased rates of polymerization in the presence of 

2.5 µM calcium, consistent with capped barbed ends.  VILT/WT as well as the 

phosphorylation site mutants of villin likewise capped the barbed ends of actin.  

The inhibition of F-actin polymerization in the presence of 20 nM Cytochalasin D 

confirms the fact that capping of the barbed end is indeed the cause of abolished 

actin polymerization.  These data show that phosphorylated villin caps actin 

filaments very similar to non-phosphorylated villin protein.  Further these results 

demonstrate that the actin-capping activity of villin is not regulated by tyrosine 

phosphorylation.  

3.4.6 Regulation of villin-induced cell migration by carboxyl-terminal 

phosphorylation site mutants.  Because we have previously shown that 

tyrosine phosphorylation of villin regulates cell migration, we examined the ability 

of the carboxyl-terminal phosphorylation site mutants of villin to regulate this 

function of villin (Tomar et al., 2004).  For these studies, HeLa Tet-Off cells were 

stably transfected with wild-type or the individual phosphorylation site mutants of 

villin.  Clones expressing comparable levels of wild-type and phosphorylation site 

mutant proteins were selected for these studies (figure 3.7).    As shown in 

supplementary figure 3.7B b1-b3 and as reported previously, overexpression of 

wild-type villin results in loss of stress fibers and redistribution of F-actin at or 

near the cell surface compared with untransfected cells which appear more flat 

and exhibit stress fibers (figure 3.7B a1-a3) (Tomar et al., 2004). Mutation of any of 

the six carboxyl-terminal phosphorylation sites individually did not result in any 

significant changes in either the distribution of villin or F-actin (figure 3.7B c-h).      
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Figure 3.7 Phosphorylation of villin at Y286, Y324, Y461, Y555, Y604 or Y725 is 

not required for villin-induced changes in actin reorganization or cell shape 

change. (A) HeLa Tet-Off cells were stably transfected with wild-type (VIL/FL) 

and phosphorylation site point mutants of villin, namely VIL/Y286F; VIL/Y324F; 

VIL/Y461F; VIL/Y555; VIL/Y604F; VIL/Y725F; or amino-terminal phosphorylation 

site mutant (VIL/ANFM) or the carboxyl-terminal phosphorylation site mutant 

(VIL/ACFM).  This figure shows representative clones of each villin construct 

transfected in HeLa Tet-Off cells.    (B) Villin expression results in reorganization 

of the actin cytoskeleton.  HeLa Tet-Off cells transfected with wild-type and 

mutant villin proteins were analyzed by confocal microscopy.  Double staining of 

villin (a1-j1) and F-actin (a2-j2) was performed using villin monoclonal antibodies 

(1:100) and Cy3 conjugated anti-mouse IgG (1:100) and Alexa-Phalloidin 488 (1 

µg/ml), respectively.  Composite images of villin (red) and F-actin staining (green) 

are shown.  Merged images show co-localization of villin and F-actin (a3-j3).  

Bars, 10 µm. (C) HeLa Tet-Off cells expressing equal amounts of wild-type or 

phosphorylation site point mutants were used in wound-healing experiments.    

All villin expressing cells (wild-type as well as mutants) migrated significantly 

faster than villin null cells (p < 0.01, n = 24).  VIL (-) cells refer to each clone 

cultured in the presence of doxycycline, whereas VIL (+) refers to the same clone 

cultured in the absence of doxycycline. The error bars are the measured SEM.  
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Intracellular distribution of F-actin and villin were also examined in HeLa cells 

expressing the villin mutants VIL/ACFM as well as VIL/ANFM.  Clones 

expressing comparable levels of VIL/ACFM and VIL/ANFM were selected for 

these studies (figure 3.7A). There was no significant change in either in the cell 

morphology or the distribution of villin or F-actin in cells expressing VIL/ACFM 

compared with VIL/FL (compare figure 3.7B j1-j3 and figure 3.7B b1-b3). In contrast, 

the villin mutant VIL/ANFM demonstrated a cell shape change consistent with 

villin-null cells (figure 3.7B i1-i3 and figure 3.7B a1-a3).  This is similar to the 

observation made with individual amino-terminal phosphorylation site mutants 

(Tomar et al., 2004).  Together with our previous studies, these data suggest that 

changes in the microfilament structure and cell morphology are regulated by the 

amino-terminal phosphorylation sites (Tomar et al., 2004).  Next, we examined 

the effects of these point mutants on villin-induced cell migration. Consistent with 

our previous report, HeLa Tet-Off cells overexpressing wild-type (VIL +) villin 

migrated faster than villin null cells (VIL -) (Tomar et al., 2004).  The carboxyl-

terminal phosphorylation site point mutants behaved like HeLa cells expressing 

wild-type villin and individually did not regulate villin induced cell migration (figure 

3.7C).  To test the possibility that these sites may collectively be important to 

villin’s function in cell migration, we examined the villin mutant lacking all six 

carboxyl-terminal phosphorylation sites (VIL/ACFM).  To our surprise, mutation of 

all six carboxyl-terminal tyrosine residues to phenylalanine significantly inhibited 

villin-induced increase in cell migration (figure 3.8A).  The villin mutant VIL/ACFM 

migrated significantly slower than VIL/FL and more like the villin-null cells
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Figure 3.8 Collectively the carboxyl-terminal tyrosine residues regulate villin-

induced cell migration. (A) Villin mutants lacking all four amino-terminal 

phosphorylation sites (VIL/ANFM) or villin mutant lacking all six carboxyl-terminal 

phosphorylation sites (VIL/ACFM) were cloned in pTRE- 6 x His and transfected 

in HeLa Tet-Off cells.  HeLa Tet-Off cells expressing equal amounts of VIL/FL, 

VIL/ANFM, or VIL/ACFM, were used in a wound-healing assay. Cells expressing 

VIL/WT migrate significantly faster than villin-null (VIL -) cells. VIL/ANFM and 

VIL/ACFM, migrate like villin-null cells.  The error bars are the measured SEM, 

and the asterisk (*) denotes statistically significant values (p < 0.01, n = 24, 

compared with VIL/FL).  (B)  The carboxyl-terminal phosphorylation sites in villin 

regulate villin induced lamellipodia formation.   MDCK Tet-Off cells transfected 

with SEYFP-tagged full-length (SEYFP/VIL), villin mutant lacking the amino-

terminal phosphorylation sties (SEYFP/ANFM) or villin truncation mutant lacking 

the carboxyl-terminal domain (SEYFP/S1-S3) were treated with EGF (50 ng/ml) 

and time-lapse images recorded 5 min after the addition of EGF for a total of 35 

min.  Bar 10 µm.  (C) Lamellipodial protrusion rates were determined as 

described in Methods. Average velocity of lamellipod formation is denoted in 

µm/min.  The error bars are the measured SEM, and the asterisk (*) denotes 

statistically significant values (p < 0.001, n = 10, compared with VIL/FL). 
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(p < 0.01, n = 24).  Likewise, mutation of all four amino-terminal phosphorylation 

sites (VIL/ANFM) significantly (p < 0.01, n = 24) inhibited villin-induced cell 

migration, consistent with our previous report (Tomar et al., 2004).  Together with 

our previous studies, these data demonstrate that multiple tyrosine 

phosphorylation sites contained within the core are required for villin’s function in 

cell migration. To further explore the mechanisms underlying the observations 

described above, we generated a villin truncation mutant, S1-S3 (a.a. 1-338), 

that lacks the second half of the villin core (S4-S6) as well as the headpiece (S7), 

but retains the amino-terminal tyrosine phosphorylation sites.  Full-length villin 

(VIL), villin mutant lacking the carboxyl-terminal phosphorylation sites (ACFM), 

as well as S1-S3 truncation mutant were transiently expressed as SEYFP-tagged 

fusion proteins.  All experiments were done 16 h post-transfection. MDCK Tet-Off 

cells transiently transfected with SEYFP/VIL, SEYFP/ACFM as well as 

SEYFP/S1-S3 were treated with LPA (1 µM) or EGF (50 ng/ml) and time lapse 

images recorded every 2 min for 35 min.  MDCK cells overexpressing full-length 

villin and treated with EGF (50 ng/ml) show association of villin with the 

lamellipodia (figure 3.8B). The association of villin with these cell surface 

structures was tightly coupled to the growth of the lamellipodia and the forward 

extension of the cell body . In contrast, MDCK Tet-Off cells overexpressing either 

SEYFP/ACFM or SEYFP/S1-S3 villin did not form lamellipodia and demonstrated 

little if any cell spreading during the 35 min of LPA/EGF treatment.  In addition, 

unlike the full-length villin protein, the truncation mutant S1-S3 was localized 

diffusely to the cytosol (figure 3.8B). A similar observation was made in cells 
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treated with LPA. Consistent with our previous report, time lapse images of 

MDCK Tet-Off cells transfected with  a the villin mutant lacking all four amino-

terminal phosphorylation sites, SEYFP/ANFM, show no lamellipod formation in 

response to EGF treatment (figure B.2A) (Tomar et al., 2004). We quantitated 

these morphological changes by measuring the rate of lamellipodial protrusion 

rate in MDCK Tet-Off cells expressing wild-type or mutant villin proteins 

essentially as described before (Rottner et al., 1999; Athman et al., 2003).  

MDCK cells expressing SEYFP/VIL demonstrated a significant increase in the 

rate of lamellipodia formation (0.29 ± 0.008 µm/min) in MDCK cells expressing 

SEYFP/VIL compared to SEYFP/ACFM (0.07 ± 0.003 µm/min) and SEYFP/S1-

S3 (0.03 ± 0.044 µm/min) (figure 3.8C).  Similar observations were made in HeLa 

Tet-Off cells transiently transfected with these plasmids. These data suggest that 

optimal lamellipodia formation and maximum increase in cell migration following 

EGF/LPA treatment occurred in cells expressing full-length villin compared with 

cells expressing the amino-terminal phosphorylation site mutant, the carboxyl-

terminal phosphorylation site mutant or the carboxyl-terminal truncation mutant of 

villin.  Together these data confirm our observation that like the amino-terminal 

domain, the carboxyl-terminal domain of villin is also required for effective villin-

induced cell migration.   

3.4.7 Tyrosine phosphorylation of carboxyl-terminal domain of villin is 

required for its association with PLC-γ1.  Since the carboxyl-terminal 

phosphorylation site mutants did not result in any significant changes in cell 

shape or actin redistribution (figure 3.7, B.2), we speculated that the carboxyl-
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terminal phosphorylation sites in villin may determine its interaction with ligands 

that are crucial to cell migration.  We have previously demonstrated that tyrosine 

phosphorylated villin associates with PLC-γ1  and that PLC-γ1  is a major binding 

partner of tyrosine phosphorylated villin in detergent-soluble fractions of cells 

(Khurana et al., 1997; Panebra et al., 2001). More recently using fluorescence 

resonance energy transfer (FRET) we have demonstrated the direct interaction 

of villin with the SH2 domains of PLC-γ1  in living cells (Wang et al., Submitted).  

Thus, PLC-γ1 is a physiologically significant ligand of tyrosine phosphorylated 

villin (Wang et al., Submitted). Further, we have demonstrated that this 

association of phospho-villin with PLC-γ1  is required for  its function in intestinal 

cell migration (Wang et al., Submitted). What was not reported in these studies 

was the specific structural determinants in villin that establish its association with 

PLC-γ1.  Based on these previous studies, we hypothesized that the COOH-

terminal phosphorylation sites in villin may determine phospho-villin’s association 

with PLC-γ1.  To test this hypothesis, we examined the co-immunoprecipitation of 

villin with PLC-γ1 in MDCK Tet-Off cells ectopically expressing VIL/FL, 

VIL/ACFM, VIL/ANFM or VIL/AYFM. Using immunoprecipitated PLC-γ1 we 

observed that tyrosine phosphorylated full-length villin associated with PLC-γ1 in 

MDCK cells expressing wild-type villin protein (figure 3.9A). These data are 

consistent with our previous reports demonstrating the association of tyrosine 

phosphorylated villin with PLC-γ1  (Khurana et al., 1997; Panebra et al., 2001; 

Wang et al., Submitted). In cells expressing VIL/ANFM PLC-γ1, formed a complex 

with the mutant villin protein,  indicating that amino-terminal phosphorylation sites 
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Figure 3.9 Collectively the carboxyl-terminal tyrosine phosphorylation sites are 

required for redistribution of villin to the detergent-soluble fraction and for its 

association with PLC-γ1.  (A)  This figures shows co-immunoprecipitation of villin 

with PLC-γ1 from the Triton X-100 soluble cell extracts.    (B) Distribution of villin 

in detergent-soluble and insoluble cell fractions.  Triton X-100-soluble fraction 

(DS) and Triton X-100-insoluble (DI) fractions from MDCK cells transfected with 

VIL/FL, VIL/ANFM VIL/ACFM or VIL/AYFM were immunoblotted with villin 

monoclonal antibodies.  VIL/FL and VIL/ANFM distributes to the detergent-

soluble and -insoluble fraction, while villin mutants, VIL/ACFM as well as 

VIL/AYFM distribute exclusively in the detergent-insoluble fraction.  The western 

blots are representative of three other experiments with similar results.   
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are not involved in PLC-γ1   binding.  In contrast, in cells expressing either 

VIL/ACFM or VIL/AYFM, PLC-γ1 did not form a complex with villin. All individual 

point mutants of the carboxyl-terminal phosphorylation sites can associate with 

PLC-γ1 (figure B.2B).  It may be noted that for these co-immunoprecipitation 

studies PLC-γ1 was immunoprecipitated from the Triton X-100-soluble fraction of 

cells. These data show that collectively the carboxyl-terminal tyrosine 

phosphorylation sites determine villin’s association with PLC-γ1. In concurrence 

with these immunoprecipitation studies, analysis of the detergent-soluble and      

-insoluble pools indicated that wild-type villin protein was distributed both in the 

Triton-soluble and Triton-insoluble fractions of the cell, as reported earlier 

(Khurana et al., 1997). Likewise, VIL/ANFM protein was distributed both in the 

detergent-soluble and -insoluble fractions of the cell.  In contrast, in cells 

expressing either of the phosphorylation site mutants, VIL/ACFM or VIL/AYFM 

the villin mutant proteins were almost exclusively distributed to the Triton X-100-

insoluble fraction and none of the mutant proteins were associated with 

detergent-soluble cell fraction (figure 3.9B). This is noteworthy, since we have 

previously demonstrated that the majority of the PLC-γ1  present in ileal villus 

brush border is associated with the Triton-soluble fraction and not the detergent-

insoluble fraction (Khurana et al., 1997).  Further, we have also shown that the 

tyrosine phosphorylated villin associates with PLC-γ1  in the detergent-soluble cell 

fraction (Khurana et al., 1997). Taken together, these data suggest that the 

carboxyl-terminal tyrosine phosphorylation sites in villin determine villin’s 

distribution to the detergent-soluble cell fraction, where phosphorylation of these 
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sites allows villin to form a complex with PLC-γ1 which is required for villin-

induced increase in cell migration (figure 3.10).  While studying the SEYFP/S1-

S3 mutant that lacks the second half of villin core (S4-S6) as well as head piece 

(S7), we made an interesting observation. We determined that longer 

transfection times (>20 h) resulted in significant cell death in HeLa/MDCK Tet-Off 

cells expressing the truncation mutant S1-S3 as noted by cell rounding and loss 

of fluorescence, increase in TUNEL positive cells, chromatin condensation and 

staining with Hoechst 33258 (figure B.3). For the same reason, stable cell lines 

expressing S1-S3 could not be established for these studies. We speculate that 

like gelsolin, the S1-S3 domain of villin results in unregulated actin severing and 

apoptotic cell death (Kothakota et al., 1997).  This may be important to villin’s 

role as an anti-apoptotic protein and if villin is a substrate for caspases and/or 

other proteases, the cleavage of villin into this fragment may have a regulatory 

function (Wang, Y. and Khurana, S., unpublished observation).  Hence, the 

carboxyl-terminal domain of villin may also be required to maintain a biologically 

relevant conformation of villin that may be important to its functions as an anti-

apoptotic protein. Most importantly, the data presented in this study demonstrate 

that the carboxyl terminal half of the villin core is not redundant as has been 

suggested by some, but essential to villin’s function in cell migration and perhaps 

cell death. 
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Figure 3.10 Schematic representation of the role of the carboxyl-terminal 

tyrosine phosphorylation sites in villin-induced cell migration.  The panel on the 

left shows resting cells in which villin associates with PIP2 at the plasma 

membrane. In response to receptor activation including EGF treatment, villin is 

tyrosine phosphorylated (by c-src kinase) and dissociates from PIP2 and binds 

PLC-γ1 through its carboxyl-terminal phosphorylation sites. The association of 

villin with PLC-γ1 at the plasma membrane results in the hydrolysis of PIP2 into 

diacylglycerol (DAG) and inositol-1,4,5-trisphosphate (IP3) (Wang et al., 

Submitted).  IP3 releases Ca2+ from intracellular stores such as the endoplasmic 

reticulum (ER).  Both tyrosine phosphorylation as well as increase in intracellular 

calcium induce actin-severing by villin resulting in actin remodeling and change in 

cell morphology and increase in cell migration. 
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3.5 Discussion 

Metastases is the most lethal property of cancer cells and critical to this 

property is the increased migratory state of tumor cells.  The current thinking is 

that cancer cells switch to a more motile state thus enhancing the metastatic 

potential of a tumor cell.  The molecular mechanisms that propel invasive growth 

and metastases are also found during embryonic development and in adult tissue 

maintenance such as wound repair. Most human cancers originate from epithelial 

cells and include the major killers namely colon, breast and lung cancer. 

Epithelial cell migration differs from that of fibroblasts in that epithelia migrate as 

sheet such as during wound closure or as a tube such as during kidney 

development in vertebrates. More recent studies have established that examining 

epithelial cell migration in the context of proteins that are  uniquely expressed in 

epithelial cells including the actin binding protein villin  is important to our 

understanding of this rather complex process (Athman et al., 2003; Wang et al., 

Submitted). We have demonstrated that overexpression of villin enhances cell 

migration (Tomar et al., 2004).  Likewise Athman et al have demonstrated that 

villin enhances hepatocyte growth factor induced actin remodeling in epithelial 

cells (Athman et al., 2003). Tyrosine phosphorylation of villin is essential to its 

function in cell migration (Athman et al., 2003; Tomar et al., 2004). We have 

previously reported that three tyrosine residues (Y60, Y81 and Y256)  in the 

amino-terminal domain of villin are required for villin-induced increase in cell 

migration (Tomar et al., 2004). Phosphorylation at these three sites was shown to 
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regulate the intracellular distribution of villin, the F-actin redistribution and 

remodeling as well as villin-induced increase in cell migration (Tomar et al., 

2004). In this study we determined that in addition to these three amino-terminal 

residues, the carboxyl-terminal tyrosine phosphorylation sites of villin are equally 

important to its function in cell migration.  While the tyrosine phosphorylation 

sites in the amino-terminal half regulate villin-induced cell migration by regulating 

the actin reorganization and cell morphology, the tyrosine phosphorylation sites 

in the carboxyl-terminal half regulate villin’s ligand-binding properties, namely its 

association with PLC-γ1.  Mutation of all six carboxyl-terminal phosphorylation 

sites in villin prevents the association of villin with PLC-γ1. The role of PLC-γ1 in 

cell migration is undisputed.  Overexpression of PLC-γ1  has been shown to result 

in malignant transformation and has been implicated in the pathophysiology of 

tumorigenesis (Soderquist et al., 1992; Nomoto et al., 1995; Chang et al., 1997; 

Smith et al., 1998).  Overexpression of PLC-γ1  is associated with progression of 

colorectal tumors from normal mucosa to adenoma and then to carcinoma (Park 

et al., 1994).  Growth factor mediated PLC-γ1  signaling is also required for 

enhanced cell motility (Chen et al., 1994; Polk, 1998; Wells, 2000). For instance, 

activation of PLC-γ1  downstream of HGF receptor activation is required for the 

morphogenetic effects of HGF  during epithelial-mesenchymal transition 

(Ponzetto et al., 1994; Gual et al., 2000). Redistribution of PLC-γ1  to the leading 

edge and the activation of the phosphoinositide signal cascade at the leading 

edge is likewise well documented (Chang et al., 1997; Chou et al., 2002; Piccolo 

et al., 2002). Our study suggests that villin keeps the signal equilibrium of actin 
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cytoskeleton organization, cell morphology and cell migration by utilizing distinct 

domains and tyrosine phosphorylation sites within these domains in a differential 

and cooperative way.   

In this study we determined that villin mutant lacking the carboxyl-terminal 

phosphorylation sites does not associate with the detergent-soluble fraction of 

the cell thus preventing the association of phospho-villin with PLC-γ1.  Likewise, 

time-lapse video demonstrate that mutation of the carboxyl-terminal 

phosphorylation sites prevents villin’s localization to the lamellipodia.  A very 

important step in cell locomotion is the development of a polarized phenotype 

with the formation of a leading edge in the direction of cell movement.  It has 

been suggested that in addition to PI3-kinase, PLC-γ1  also determines the 

polarized phenotype of a motile cell by its recruitment to the leading edge thus 

regulating the first step of cell migration, namely the formation of a protrusion 

(Chang et al., 1997; Chou et al., 2002; Piccolo et al., 2002). In fact, such an 

observation has been made with cofilin, where inhibition of PLC inhibited the 

effects of cofilin during the early stages of cell migration by delaying the initiation 

of lamellipodia formation and inhibiting the ability of the cells to sense EGF 

gradients (Mouneimne et al., 2004).  In these studies, the authors determined 

that both cofilin and PLC activation were required for the initial but not late 

changes in the generation of free barbed ends, thus regulating cell migration.  

Our own studies with PLC-γ1 
-/- and PLC-γ1 

+/+ cells have demonstrated that 

overexpression of villin and villin-induced increase in cell migration requires PLC-

γ1  (Wang et al., Submitted). Likewise, we have demonstrated that down 
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regulation of PLC-γ1  using small, interfering, hairpin RNA (siRNA) prevents villin-

induced increase in cell migration (Wang et al., Submitted).  Together, these 

studies suggest that villin-induced increase in cell migration is likely regulated by 

a rapid increase in actin polymerization at the leading edge which is enhanced by 

tyrosine phosphorylation of villin and by the catalytic activation of PLC-γ1 by 

phospho-villin. Thus, the synergistic interaction between tyrosine phosphorylated 

villin and PLC-γ1 may drive the EGF stimulated lamellipod formation seen in our 

studies.  Together with our previous reports, data presented in this study show 

that tyrosine phosphorylation sites in the carboxyl-terminal domain of villin are 

important for villin’s ligand binding properties, specifically for its association with 

PLC-γ1, thus regulating villin-induced cell migration (figure 3.10) (Panebra et al., 

2001). 

Another interesting observation made in this study was the significance of 

the carboxyl terminal domains of villin in maintaining a functionally relevant 

protein conformation. Transient expression of S1-S3 fragment of villin in 

HeLa/MDCK Tet-Off cells resulted in cell death (figure B.2). These studies 

suggest that the S1-S3 fragment of villin might be functionally similar to the S1-

S3 fragment of gelsolin, which has been shown to be pro-apoptotic resulting in 

cell death (Kothakota et al., 1997; Azuma et al., 2000). Further, these studies 

suggest that the carboxyl-terminal half of the villin core may be functionally 

similar to gelsolin domains S4-S6, in that these domains may be required to 

maintain an autoinhibited conformation that prevents unregulated actin 

depolymerization. It is also likely that releasing this conformation may be 
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biologically relevant to the functions of these proteins in vivo. While a caspase-3 

cleavage site has been identified in gelsolin that generates the pro-apoptotic S1-

S3 fragment, a similar caspase cleavage site or caspase-mediated cleavage of 

villin is lacking, even though the villin fragment S1-S3 appears to be apoptotic 

(Wang Y., and Khurana, S., unpublished observation) (Burtnick et al., 2004).  

The pro-apoptotic functions of these two proteins could thus be regulated 

differently as well.  For instance gelsolin could be a substrate for caspase-3 while 

villin could be a substrate for other proteases.  Such proteolytic cleavage of villin 

has been reported in enteric cells infected with Entamoeba histolytica (Lauwaet 

et al., 2003). It may also be noted that in villin-gelsolin chimeras, where the S4-

S6 domains of villin were substituted with the second half of the gelsolin core, 

failed to function like full-length villin protein, suggesting that while these two 

proteins share significant structural and functional homology, they are not 

identical (Finidori et al., 1992). This lends support to our view that proteins of this 

family may have overlapping and yet distinct function(s) in tissues where more 

than one member of this family is expressed such as in the intestine and kidney.   

Our in vitro studies allowed us to identify the carboxyl-terminal 

phosphorylation sites in villin.  In addition, we determined that phosphorylation of 

multiple carboxyl-terminal domain phosphorylation sites could regulate actin-

nucleation by villin, while phosphorylation of Y286 enhanced actin-

depolymerization by villin.  Further, we determined that tyrosine phosphorylation 

of villin does not regulate its actin capping activity.  Together with our previous 

studies, these data confirm our observation that tyrosine phosphorylation 
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regulates all but one actin regulatory activity of villin  (Zhai et al., 2001; Zhai et 

al., 2002; Tomar et al., 2004).  While the carboxyl-terminal phosphorylation sites 

regulated actin kinetics in vitro, mutation of these sites did not result in any 

significant change in actin redistribution in the cell.  The significance of these 

changes is unclear at this point.  

In addition to revealing new tyrosine phosphorylation sites as well as 

identifying all phosphoryable tyrosine residues in villin, this study established the 

domain functions of villin by investigating the ability of a series of mutants of villin 

to rescue actin organization, cell morphology, and cell migration.  These studies 

determined that the amino terminal half of the core regulates actin reorganization 

and cell shape while the entire villin core is required for cell migration. In this 

report we demonstrate for the first time the functional relevance of the carboxyl-

terminal tyrosine phosphorylation sites in villin, namely:  in the distribution of villin 

to the detergent soluble fraction; in the association of villin with its ligand PLC-γ1  

in this fraction; in  growth factor induced lamellipodia formation, hence in defining 

the directionality of a polarized motile cell; and in the synergistic interaction with 

PLC-γ1  to initiate the early steps involved in actin polymerization and assembly of 

the lamellipodia in a moving cell. Elucidating the molecular mechanisms linking 

the actin regulatory activities modified by phosphorylation of these sites with 

villin’s function(s) will be the subject of future studies.  
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Chapter 4 

Discussion 
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4.1  Tyrosine  phosphorylation  of  villin   and 

actin kinetics  

The work done in our lab has demonstrated that villin gets phosphorylated 

both in vitro and in vivo (Khurana et al., 1997; Panebra et al., 2001). It was also 

demonstrated that tyrosine phosphorylation of villin plays a vital role in the 

biological properties of villin (Khurana et al., 1997; Panebra et al., 2001; Zhai et 

al., 2001; Zhai et al., 2002). The next challenge was to identify the sites of 

phosphorylation and to determine the role of the identified phosphorylation sites 

in villin’s functions. The initial approach used to identify the sites of 

phosphorylation was by mass spectrometry. However, this approach yielded a lot 

of false positive results and the identified phosphorylation sites could not be 

validated by mutational analysis. Since, the results obtained using mass 

spectrometry would have required confirmation by mutational analysis, we 

elected to identify the phosphorylation sites using the same approach namely, 

mutational analysis. Tyrosine phosphorylated villin was generated in vitro using a 

unique strategy employing Epicurian coli TKX1 cells. TKX1 cells carry a plasmid 

with the elk tyrosine kinase (tk) gene controlled by the trp promoter. The elk 

tyrosine kinase has broad specificity and has been shown to tyrosine 

phosphorylate a number of eukaryotic proteins expressed in Epicurian coli TKX1 

cells (Chin et al., 1996; Kozlowski et al., 1998). Human villin cDNA was cloned in 

the prokaryotic expression vector pGEX-2T and a two-step protocol involving the 

expression of human villin gene (by addition of IPTG) followed by the expression 
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of the tk gene [by addition of 3- -indoleacrylic acid (IAA)], in Epicurian coli TKX1 

cells resulted in generation of GST-tagged tyrosine-phosphorylated villin 

(VILT/WT). We used site-directed mutagenesis to identify the tyrosine 

phosphorylation sites in villin. We generated 10 truncations and approximately 50 

individual point mutants (tyrosine to phenylalanine) of villin. A loss of signal in 

quantitative western blots, probed with a phospho-tyrosine specific antibody (PY-

20), in individual Y to F point mutants allowed us to identify putative tyrosine 

phosphorylation sites in villin (Zhai et al., 2002). Using this approach four 

phosphorylation sites were identified in the amino-terminus of human villin, 

namely Y-46, -60, -81, and -256. The identified sites were also substrates of c-

src kinase in vitro (Zhai et al., 2002). Interestingly, we noted that mutation of the 

four amino terminus tyrosine phosphorylation sites (to phenylalanine) still 

resulted in villin phosphorylation, indicating the presence of additional 

phosphorylation sites in the carboxyl-terminus of villin (Tomar et al., 2006). I used 

the same approach (as described above) to identify six additional tyrosine 

phosphorylation sites in the carboxyl-terminus of human villin, namely, Y-286,      

-324, -461, -555, -604 and -725. All ten identified tyrosine phosphorylation sites 

are well conserved across species. Y-46, -256, -286, -324, -461, -555, and -604 

are also well conserved in other proteins of the villin family, including gelsolin, 

adseverin and cap G (table 4.1). To confirm that all the phosphorylation sites in 

villin had been identified we generated a villin mutant with all ten identified 

tyrosine residues mutated to phenylalanine (VIL/AYFM). VIL/AYFM was not 

phosphorylated when expressed as a recombinant protein 
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using Epicurian coli TKX1 cells. VIL/AYFM was also not phosphorylated when 

expressed in HeLa and MDCK Tet-off cells (chapter 3).  

The next task was to map phosphorylation at each of these sites with 

villin’s actin regulatory functions. For these studies we used muscle actin as a 

source of pyrene labeled G-actin or F-actin. Each of the ten identified 

phosphorylation sites were mutated individually (to phenylalanine) in full-length 

villin and the role of these sites on villin’s actin modifying functions was 

determined in vitro. From these studies we determined that tyrosine 

phosphorylation of villin enhanced actin-severing, inhibited -nucleation and          

-bundling functions of villin but had no effect on the actin-capping activity of villin. 

Further, we established that phosphorylation at residues 46, 60 and 286 

enhanced the actin-severing activity of villin. Mutation of any one of the ten 

identified phosphorylation sites had no effect on the actin nucleating function of 

phospho-villin. Thus, two or more phosphorylation sites regulate the actin-

nucleating function of villin (table 4.2). 

4.2   A   summary   of   villin’s   role    in    cell  

migration 

Cell migration is regulated by correct spatial and temporal organization of 

actin filaments, which is determined largely by the actin binding proteins. Villin is 

one of the most versatile actin binding protein in epithelial cells, as it can regulate  
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 Table 4.2 Tyrosine phosphorylation of villin and its role in actin kinetics. 

 

 

 

 

 

 
 

 

Actin-severing is enhanced by phosphorylation at residues, 46, 60 and 286. aTwo 

or more of the identified tyrosine residues regulate actin-nucleation by villin. 

Tyrosine phosphorylation does not regulate actin-capping activity of villin. 

bTyrosine phosphorylation of villin inhibits actin-bundling but the specific residues 

regulating this function have not been identified. 
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actin-nucleation, -severing, -capping and -bundling. As discussed earlier, 

(chapters 2 and 3) overexpression of villin in intestinal and renal epithelial cells 

enhanced the rate of both basal as well as growth factor induced cell migration.   

Further, we demonstrated that tyrosine phosphorylation of villin was required for 

villin’s function in cell migration. Tyrosine phosphorylation of villin as well as villin-

induced cell migration was also significantly inhibited by overexpression of a 

dominant negative mutant of c-src kinase, confirming the significance of tyrosine 

phosphorylated villin in the regulation of cell migration (chapter 2). As 

summarized in table 4.2, we have identified 10 tyrosine residues in villin that are 

phosphorylated. Interestingly all but one of the phosphorylation sites enhanced 

villin-induced cell migration (Y-46 to -F had no effect). The amino-terminus 

phosphorylation sites (Y-60, -81 and -256) regulated villin’s intracellular 

distribution, actin reorganization and changes in cell morphology thus, regulating 

villin-induced cell migration (chapter 2). In contrast, phosphorylation of the 

carboxyl-terminus sites (Y-286, -324, -461, -555, -604, and -725) had no effect 

on villin-induced changes in actin reorganization or cell morphology, but were 

found to be critical for villin’s interaction with its ligand PLC-γ1. The role of PLC-γ1 

in cell migration is well documented (chapter 3). The role of all ten identified 

tyrosine phosphorylation sites in villin-induced cell migration has been 

summarized in table 4.3.  

As discussed in chapter 1, the formation and growth of lamellipodia in a 

motile cell requires actin polymerization. Severing of existing filaments, 

uncapping of existing filaments or de novo nucleation can all enhance actin
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Table 4.3 Tyrosine phosphorylation of villin and its role in cell migration. 

 

 

 

 

 

 

 

 

 

 
 

The role of all ten identified tyrosine phosphorylation sites in cell migration is 

summarized. aMore than one tyrosine phosphorylation site is involved in 

interaction with PLC-γ1. 
bMutation of Y-46 to -F had no effect on cell migration, 

however mutation of Y-46 to -E inhibited cell migration (Chapter 2). 
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polymerization. Tyrosine phosphorylated villin can sever F-actin to provide new 

actin nuclei thus enhancing actin polymerization. Tyrosine phosphorylation of 

villin does not regulate the capping activity of villin and inhibits the nucleating      

activity of villin. Hence, we speculate that severing of actin filaments by villin can 

provide new nuclei for elongation at the leading edge. As discussed in chapter 1, 

the current thinking is that de novo nucleation at the leading edge, primarily by 

Arp2/3 complex, is crucial for generation of new filaments and cell migration. 

However, some recent studies have suggested that a synergy between actin-

severing proteins like cofilin and Arp2/3 is required for optimal generation of 

barbed ends at the leading edge of moving cells (Chan et al., 2000; Bailly et al., 

2001). The function-blocking antibodies directed against either cofilin or Arp2/3 

significantly decreased barbed-end generation and cell protrusion (Chan et al., 

2000; Bailly et al., 2001). Further, it has also been demonstrated that the 

severing activity of cofilin and nucleating activity of Arp2/3 alone, caused only a 

modest increase in actin polymerization. However, together they significantly 

enhanced actin polymerization, suggesting a role for both proteins in cell 

migration (Ichetovkin et al., 2000). A similar argument has been made for the 

interaction between the Arp2/3 complex and gelsolin in platelets and fibroblasts, 

in which new actin nuclei generated by  the severing activity of gelsolin has been 

proposed to be necessary for the activity of the Arp2/3 complex (Falet et al., 

2002).These studies indicate that the severing activity of actin-binding proteins 

like cofilin, gelsolin and by analogy villin may be necessary for optimal actin 

nucleation by the Arp2/3 complex. It is suggested that the actin nucleating activity 
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of the Arp2/3 complex is enhanced because the severing activity of proteins such 

as cofilin and gelsolin generates new barbed ends, which are the preferred sites 

for binding of the Arp2/3 complex, compared with older, ADP-containing 

filaments (DesMarais et al., 2005). Hence, depending on the cell type, different 

actin severing proteins may act synergistically with Arp2/3 to regulate cell 

migration. This synergistic interaction between actin severing proteins and Arp2/3 

is also important for providing directionality, as actin severing and generation of 

new nuclei at the leading edge would determine the sites of dendritic nucleation 

and therefore the site of membrane protrusion (DesMarais et al., 2005). 

 For future studies, it would be interesting to examine the role of Arp2/3 

complex in villin-induced cell migration, to ask such questions as: can villin 

regulate cell migration in cells where Arp2/3 is inactivated? In the absence of 

Arp2/3 activity do villin expressing cells form primarily lamellipodia (cross-linked 

actin) or filopodia (bundled actin)? If not, then is there a synergy between Arp2/3 

complex and villin during epithelial cell migration? Is villin targeted to the leading 

edge before or after Arp2/3? Does the role of villin in phosphoinositide signalling 

play any role in activation of Arp2/3 complex and its targeting to the leading 

edge? Similarly it would also be important to examine the role of Rho GTPases, 

specifically Rac and Cdc42 in villin induced cell migration. The answers to these 

and similar questions would help establish the precise role that villin plays in 

concert with other proteins at the leading edge during epithelial cell migration. 
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4.3    Tyrosine    phosphorylation    of    villin: 

Leading the way in epithelial cell migration 

In chapter 1 the original steady-state “dendritic model” has been 

discussed. In this model actin severing proteins like cofilin, gelsolin or villin are 

proposed to function exclusively as actin-recycling factors, depolymerizing 

filaments to yield G-actin, but not as severing proteins that could generate new 

nuclei for filament assembly during cell migration. Moreover, the model does not 

take into account the synergistic interactions between actin-severing proteins and 

Arp2/3 complex, which are now reasonably well established. Hence, the steady-

state “dendritic model” fails to justify the role of actin-severing proteins in cell 

migration. More recently a new model of cell migration has been described which 

takes into consideration the synergistic interaction of actin-severing proteins with 

Arp2/3 complex and is called the “stimulated protrusion model” (DesMarais et 

al., 2005). This model proposes that the severing activity of actin-binding proteins 

at the leading edge determines the site of barbed end formation hence, 

determining the site of dendritic nucleation and therefore the site of membrane 

protrusion (figure 4.1). It is therefore reasonable to speculate that since villin is 

the most abundant actin-severing protein of its family in intestinal  and renal 

epithelial cells, and the only actin severing protein expressed in microvilli of 

epithelial cells, it could regulate cell migration by generating new actin nuclei at 

the leading edge. These severed actin filaments could then act as sites of 

dendritic nucleation, thus determining the site of membrane protrusion.  
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Figure 4.1 Stimulated protrusion model. (1) Under resting condition the actin 

severing protein is not activated. (2) The localized activation of actin severing 

protein generates free barbed end. (3) Profilin bound ATP-G-actin is added to the 

barbed end, generating ATP actin cap, where activated Arp2/3 complex binds 

and initiates branch formation. (4) Rapid growth occurs at the barbed end of actin 

filaments which pushes the membrane forward. 
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Hence, like cofilin, villin could serve as a dynamic component of the steering 

wheel in a moving cell. 
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Figure A.1 There is no change in cell proliferation in HeLa cells expressing wild-

type and mutant villin proteins. Cell proliferation was measured in HeLa cells 

stably transfected with wild-type and mutant villin proteins. Cells were cultured in 

low serum (1.0% fetal bovine serum) similar to those used for cell migration 

studies. Cell proliferation was detected using BrdU immunostaining. Data are 

representative of three experiments with similar results. Bar, 50 µm 
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Figure A.2 There is no change in villin-induced cell migration in HeLa Tet-Off 

cells infected with recombinant adenovirus vector. VIL/FL and VIL/NULL cells 

were infected with recombinant adenovirus (Ad-EGFP (vector alone, control) for 

4 hours at a multiplicity of infection (m.o.i.) of 100. Virus-containing media was 

then removed and cells were cultured for an additional 18 hours to allow for 

expression of transgenic proteins. This was followed by measurement of cell 

migration. The error bars are the measured SEM and the asterisk (*) and denote 

statistically significant values (p < 0.05, n = 24, compared with VIL (-) cells). 
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Figure A.3 Tyrosine phosphorylation of villin is required for villin-induced 

increase in cell migration. HeLa cells were stably transfected with wild-type 

(VIL/FL) and phosphorylation site mutants of villin, namely Y46F, Y60F, Y81F 

and Y256F. HeLa cells transfected with wild-type (VIL/FL) and mutant villin 

proteins were analyzed by confocal microscopy. Double staining of villin (a2-f2) 

and F-actin (a1-f1) was performed using villin monoclonal antibodies (1:100) and 

FITC conjugated anti-mouse IgG (1:200) and Alexa Phalloidin 568 (1 µg/ml) 

respectively. Composite images of villin (green) and F-actin staining (red) are 

shown. Merged images (a3-f3) show co-localization of villin and F-actin. Wild-

type villin and VIL/Y46F co-localize with F-actin at the cell periphery. In contrast 

phosphorylation mutants of villin VIL/Y60F, VIL/Y81F, and VIL/Y256F show 

intracellular distribution of villin and F-actin with minimal colocalization of villin 

and F-actin at the cell surface. Bars, 10 µm. 
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Figure A.4 Overexpression of villin does not change the F-actin content of the 

cells. HeLa cells expressing wild-type and mutant-villin proteins were cultured to 

confluence and then denuded using a pipette tip to generate 20 wounds per dish. 

The cells were fixed, permeabilized and stained with Alexa Phalloidin 568 and 

ethidium bromide. After scraping the cells in methanol, the Alexa Phalloidin and 

ethidium bromide were quantified using a spectrofluorometer at excitation of 525 

nm and emission of 605 for DNA and excitation wavelength of 578 nm and 

emission of 600 nm for F-actin. The F-actin content was quantified as the ratio of 

Alexa Phalloidin fluorescence intensity to ethidium bromide fluorescence 

intensity.  
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Figure A.5 Phosphorylation of villin at Y-60, Y-81 and Y-256 is required for villin-

induced cell migration. A. HeLa cells were stably transfected with wild-type 

(VIL/FL) and phosphorylation site mutants of villin, namely Y46E, Y60E, Y81E 

and Y256E. This figure shows representative clones of each villin construct 

transfected in HeLa cells. Data are representative of six experiments with similar 

results. B. Villin expression results in reorganization of the actin cytoskeleton. 

HeLa cells transfected with wild-type (VIL/FL) and mutant villin proteins were 

analyzed by confocal microscopy. Double staining of villin and F-actin was 

performed using villin monoclonal antibodies (1:100) and FITC conjugated anti-

mouse IgG (1:200) and Alexa Phalloidin 568 (1 µg/ml) respectively. Composite 

images of villin (green) and F-actin staining (red) are shown. Merged images 

show co-localization of villin and F-actin (a3-f3). Wild-type villin and VIL/Y60E, 

VIL/Y81E, and VIL/Y256E co-localize with F-actin at the cell periphery. In 

contrast a phosphorylation mutant of villin VIL/Y46E shows intracellular 

distribution of villin and F-actin with minimal co-localization of villin and F-actin at 

the cell surface. Bars, 3 µm. C. HeLa cells expressing equal amounts of wild-type 

and phosphorylation site mutants (Y to E) of villin were used in wound-healing 

experiments. The error bars are the measured SEM, and the asterisk (*) and 

cross (†) denote statistically significant values (p < 0.05, n = 24, compared with 

VIL (-) cells) and (p < 0.05, n = 24, compared with untreated cells) respectively. 

VIL (-) refers to each clone cultured in the presence of doxycycline while VIL (+) 

refers to the same clone cultured in the absence of doxycycline. 
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Appendix B 

Supplemental material for chapter 34

                                            
4 Permission to reproduce by The American Society for Biochemistry and 
Molecular Biology. Tomar, A., George, S., Kansal, P., Wang, Y., and Khurana, S. 
(2006). Interaction of phospholipase C-γ1 with villin regulates epithelial cell 
migration. J. Biol. Chem. 281, 31972-31986. 
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Figure B.1 Individually, the carboxyl-terminal tyrosine phosphorylation sites 

mutants are not associated with PLC-γ1.  (A) MDCK Tet-Off cells transfected with 

SEYFP-tagged amino-terminal phosphorylation site mutant (SEYFP/ANFM) were 

treated with EGF (50 ng/ml) and time-lapse images recorded 5 min after the 

addition of EGF for a total of 35 min. These cells do not form lamellipodia or 

membrane ruffles in response to EGF treatment. (B) Triton-X-100 soluble cell 

extracts from HeLa Tet-Off cells stably transfected with wild-type (VIL/FL) and 

phosphorylation site point mutants of villin, namely VIL/Y286F; VIL/Y324F; 

VIL/Y461F; VIL/Y555; VIL/Y604F and VIL/Y725F were used for co-

immunoprecipitation of villin with PLC-γ1.  These data show that VIL/FL as well as 

the phosphorylation site point mutants of villin associate with PLC-γ1. 
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Figure B.2 S1-S3 fragment of villin is pro-apoptotic. (A) HeLa Tet-Off cells 

transiently transfected with SEYFP/S1-S3.  Images were collected 16, 20 and 24 

hours post-transfection using a confocal microscope, LSM 5 PASCAL (Carl 

Zeiss, Thornwood, NY).  At 16 h post-transfection cells demonstrate good 

expression of the S1-S3 fragment of human villin.  Unlike full-length villin, this 

truncation mutant shows diffuse cytosolic localization.  At 20 h post-transfection 

some of the cells are rounded-up (arrow head); and at 24 h post-transfection 

almost all the cells expressing S1-S3 are rounded, detached and there is a 

significant loss of fluorescence indicating increased cell death.   (B) MDCK Tet-

Off cells transiently transfected with SEYFP/S1-S3 were incubated with 

HOECHST 33258 as described in materials and methods.  Apoptotic cells were 

distinguished from viable cells by nuclear condensation and DNA fragmentation 

seen as bright blue fluorescence in the nuclei indicated by arrow heads. The 

apoptotic cells showing bright blue fluorescence also express SEYFP/S1-S3 and 

the bright field image indicates that the SEYFP/S1-S3 expressing cells also show 

more rounded morphology. (C) MDCK Tet-Off cells transiently transfected with 

VIL/S1-S3 cDNA cloned in pTRE HA or vector pTRE HA alone (Control) were 

analyzed for apoptotic-induced DNA fragmentation using a colorimetric ELISA kit 

as described in methods, SEM (p < 0.01, n = 6). 
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Appendix C 

Glossary 



 153

A 
a.a. 
Ad  
Blot   
BrdU   
Ca2+   
Cyt D  
DAG   
DN  
E  
EGF  
ER   
F  
HGF   
IAA   
IP   
IP3   
IPTG   
K   
Kd   
kDa  
LPA   
Mg2+   
PI   
PIP   
PIP2   
PKC   
PLC-γ1   
PP2   
PP3   
R   
SEYFP   
VIL/ACFM 
VIL/ANFM 
VIL/AYFM  
VIL/FL  
VIL/WT   
VILT/WT   
X   
Y   
 

Alanine 
amino acid (human unless otherwise stated) 
Adenovirus 
Immunoblotting 
Bromodeoxyuridine 
Calcium 
Cytochalasin D 
Diacyl glycerol 
Dominant negative 
Glutamic acid 
Epidermal growth factor 
Endoplasmic reticulum 
Phenylalanine 
Hepatocyte growth factor 
3-β-indoleacrylic acid 
Immunoprecipitation 
Inositide tri phosphate 
Isopropyl β-D-thiogalactopyranoside 
Lysine 
Dissociation constant 
Kilo Dalton 
Lysophosphatidic acid 
Magnesium 
Phosphatidylinositol 
Phosphatidylinositol 4-monophosphate 
Phosphatidylinositol 4,5-bisphosphate 
Protein kinase C 
Phospholipase C-gamma-1 
4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo(3,4-d) pyrimidine 
4-amino-7-phenylpyrazolo(3,4-d)pyrimidine 
Arginine 
Super enhanced yellow fluorescent protein 
Villin mutant lacking all six carboxyl-terminal phosphorylation sites
Villin mutant lacking all four amino-terminal phosphorylation sites 
Villin mutant lacking all ten tyrosine phosphorylation sites 
Full-length human villin 
Full-length recombinant human villin;  
Full-length recombinant human tyrosine-phosphorylated villin 
Any amino acid 
Tyrosine 
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