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ABSTRACT 
 

  
 Taster and non-taster mice strains have been used extensively in animal taste 
research. Inbred mouse strains C57 and FVB have been proposed to be tasters, where as 
strains 129 and Balb/C are classified as non-tasters.   Therefore, evaluating the peripheral 
taste system in these mice is of great importance to determine if there are morphological 
differences that might explain the physiological classification.   
  
 The purpose of the present study was to determine if inbred mice that have been 
shown to be tasters have a larger number of fungiform papillae, have larger fungiform 
papillae and have larger taste buds.  
 
  My work in this study involved counting the number of fungiform papillae from 
male and female of each strain, utilizing green food dye under light microscopy.  I also 
utilized a scanning electron microscope after tongues were dehydrated in alcohol and 
Hexamethyldisilazane (HMDS) and sputter coated with gold to evaluate size and shape of 
fungiform papillae. I used antibodies to troma -1, utilizing indirect 
immunohistochemistry on tissue sections to evaluate size and shape of taste buds within 
each strain.   
  
 Unpaired t-test was used to analyze the results.  There was a significant difference 
in the number of fungiform papillae as seen under light microscopy in the non-taster 129 
strain compared to the other strains.  Data generated by scanning electron microscope 
also suggest that the size of the fungiform papillae is significantly smaller in the non-
taster Balb/C and 129 strains.   
  
 Moreover, the 129 strain had the lowest number of fungiform papillae whereas 
Balb/C mice had the smallest fungiform surface area among the strains studied.  We also 
evaluated whether multiplying fungiform papillae number by the papillary surface area 
might also be used as an indicator for the size of the receptor field in different mouse 
strains. Using this method, we showed that non-taster strains had a smaller receptor field 
area than taster strains. In summary, our study shows that the taster/non-taster phenotype 
is reflected in the tongue surface morphology among the strains studied. 
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CHAPTER 1.  INTRODUCTION 

 It has been shown that there are differences in taste sensitivity in humans and 
animals.  Based on this physiological sensitivity, the classification of taster and non-taster 
has been given in humans and in animals.  Taste behavioral research has been done based 
on these classifications.  In humans, taster and non-taster classification is based on an 
individual’s ability to detect/taste phylthiocarbamide (PTC).  In mice, the taster and non-
taster classification is based on the contrasting preference for sucrose octaacetate (SOA) 
and gylcine.  
 
  In tasters, some populations, whether human or mice, have low detection 
thresholds to individual tastants.  It is just the opposite in non-tasters, in which it takes 
high concentration of tastants to elicit a response.  The difference between tasters and 
non-tasters is not clearly understood, but it is believed there is a genetic component.  
Whether or not genetic background is reflected in the morphology and number of 
fungiform papillae is not clear.  It has been suggested that there is a subset of tasters in 
humans that are termed supertasters (Bartoshuk and Duffy 1994; Reedy et al, 1993).  
Supertasters were shown to have a larger number of fungiform papillae and a larger 
number of taste pores than were seen in non-tasters.  It was shown in humans that with 
increased number of stimulated taste buds and fungiform papillae, there was an increase 
in taste sensitivity and more profound taste intensity (Miller and Whitney 1989).  It has 
also been show in humans and rats that there is no decrease in taste buds or significant 
difference in taste bud diameter when comparing age, health or gender (Miller and 
Whitney 1989; Mistretta 1989).  Miller and Whitney (1989) reported there were an 
increased number of taste buds in the vallate papillae in taster mice compared to non-
taster mice.  They did not test whether there were a greater number of fungiform papillae 
in taster and non-taster mice.        
  

The aim of this study is to test the hypotheses that taste sensitivity in different 
strains of mice is related to tongue surface morphology. We studied tongue surface 
morphology by examining fungiform papillae and the taste buds contained inside the 
papillae.  Fungiform papillae are the arch prototype for gustatory papillae due to the 
containment of generally a single taste bud.  Fungiform papillae are mainly located on the 
anterior tongue in both rodents and humans.  Better understanding of the number of 
fungiform papillae and the size of not only the papillae, but also the taste buds, will assist 
us to a better understand the interrelationship between the peripheral taste system 
morphology and taste physiology. 
 
 It is our hypothesis that the taster mouse strains will have a higher number of 
fungiform papillae and the fungiform papillae, and their taste buds will be larger 
compared to non-taster strains.  We set out to test our hypothesis by utilizing two taster 
strains (C57BL/J and FVB) and two non-taster strains (Balb/C and 129).  We utilized six 
male and six female for each strain.  We counted the fungiform papillae under light 
microscopy and utilize SEM imaging to determine size of the fungiform papillae.  
Indirect immunohistochemistry was utilized to evaluate size of the taste buds.        
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CHAPTER 2.  REVIEW OF LITERATURE 

Tongue Morphology 
 

 Three key terms connected with tongue morphology:  (1)  Lingual papilla are 
specialized structures with an epithelium over a connective tissue core with a well-
defined shape that rises above the level of the dorsal tongue surface and can include a 
mature taste bud.  (2) Gustatory organ refers to an embryonic or mature papilla.  (3) 
Taste bud is a sensory organ that transduces gustatory stimuli into neural signals; it is 
composed of a collection of dozens of cells that span the depth of the epithelium, are 
oriented perpendicularly to the epithelium and are in synaptic contact with sensory nerve 
fibers or in functional association with nerve fibers (Mistretta 1989). 
 
 The dorsal surface of the mammalian tongue is covered by specialized structures 
called lingual papillae.  There are four lingual papillae; fungiform, circumvallate, foliate 
and filiform papillae (Figure 1 and Figure 2).  The first three papillae are considered 
gustatory, i.e. contain taste buds.  Taste buds not only occur in distinct papillae, but also 
in the epithelium of the palate, oropharynx, larynx and the upper esophagus.  There is a 
rather similar distribution of taste buds over the tongue in humans and rodents. 
Fungiform papillae are mushroom shaped, enlarged heads with a slender neck; these are 
mainly located on the anterior part of tongue.  As early as 1875, Hoffman concluded that 
taste perception is dependent of the number of taste buds on a particular location (1875).  
In humans there are around 4,600 total taste buds in all papillae; vallate papillae comprise 
about 48%, foliates about 28% and fungiform about 24% (Miller and Reedy 1990a).  
Humans have on average nine vallate papillae, which are located on the posterior tongue.   
The circumvallate papilla in rodents is a single taste bud containing papilla along the 
posterior midline.  The fungiform papillae will contain one or more taste bud depending 
on species.  There is generally a single taste bud on the apical epithelium of the 
fungiform papillae in rodents.  In humans it is estimated there are 3.5 taste buds per 
papilla.  Miller and Reedy quantified taste in terms of tongue surface area, which they 
referred to as “taste bud density,” or number of taste buds per cm².  They found 320 
fungiform papillae per tongue and multiplied by 3.5 taste buds for a total of 1120 
fungiform taste buds (Miller and Reedy, 1990a; 1990b).  The fungiform papilla is a 
gustatory organ that is composed of:  taste epithelium, non-taste epithelium and 
connective tissue.  Taste epithelium which surrounds non-taste epithelium is made of up 
taste bud cells and cells competent to differentiate to taste cells.  The sensory fibers that 
innervate papillae and taste buds cells are encompassed by the connective tissue core 
(Mistretta and Liu 2006).  The fungiform papillae emerge histologically in mice at 
embryonic day (E) 11.5- E12 (Kaufman 1992).  Foliate papillae are located at the lateral 
edges of the tongue and contain multiple taste buds.  Filiform are the most numerous but 
do not contain taste buds.  There is a certain number and location of taste buds with the 
three papilla types that will differ depending on the species (Mistretta, et al. 1999).  The 
location and number of gustatory papillae and taste buds form a patterned organ system 
that is well suited to detect chemicals or tastants on the tongue (Mistretta and Liu 2006).    
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Figure 1. Human tongue 
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Figure 2. Mouse tongue 
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Taste Bud Morphology 
 

 Taste buds are multicellular, pear-shaped sensory organs.  Although there is a 
variation in the morphology of taste buds, it is now believed that there are distinct 
populations of cells in mammalian taste buds, including receptor cells and cells with 
synapses.  Histological identification was first utilized to describe these distinct cells, 
later identified as Types I, II, III, IV cells by electron microscopy and 
immunohistochemistry (Roper 2007) (Figure 3).  Type I cells are the most frequent cells 
found in a taste bud (Murray 1986). Type I cells share some common features with glial 
cells (Roper, Finger, Barbel 2004).  Type I cells might have a secretory and phagocytotic 
function and possibly produce the amorphous material of the taste pore (Farbman 1965; 
Menco 1989; Ohmura, Horimoto et al. 1989; Witt 1996).  Type II cells contain the G-
protein coupled receptors that detect bitter, sweet and umami tastes, indicating that Type 
II cells are sensory receptor cells (Roper 2007).  These cells are located on the periphery 
of the taste buds but synapses are not observed (Kinnamon, Taylor et al. 1985; 
Kinnamon, Sherman et al. 1988; Royer and Kinnamon 1988).  Type III cells are the only 
cells that posses features of typical synapses, and have been termed presynaptic cells by 
some investigators (Roper 2007).  They make up 5-7% of the cells in a taste bud and due 
to the synaptic property are considered gustatory relay cells.  Type IV cells are small 
undifferentiated cells that appear at the base of the taste buds, and do not form processes 
that reach the pore (Royer and Kinnamon 1991).  They are considered to be 
stem/progenitor taste cells.  
 
 Taste buds are clusters of receptor cells found inside the papillae and have 
fingerlike projections called microvilli that extend into the oral environment through an 
opening called the taste pore.  Chemicals from food (tastants) bind to the cell surface 
taste receptor molecules or activate specific ion channels.  This reaction causes electrical 
changes in the taste cells which then send this message to the brain through taste nerves 
(Smith and Margolskee 2001).  The ability to be able to distinguish between tastes is an 
important part of survival.  The brain via a series of chemical reactions interprets the 
following as basic tastes:  salty, sour, sweet, bitter and umami (Smith and Margolskee, 
2001).  Salt is critical to survival for ion and water homeostasis.  Due to this fact, salt in 
appropriate concentrations is favorable taste for mammals but in high concentrations is 
aversive.  Sour foods tend to have a negative taste in large quantities, and are also 
aversive at high concentrations.  Taste also has a protective quality, for most spoiled 
meats and fruits will have a sour taste and the body will respond appropriately as to not 
ingest what it feels is harmful food.  Alkaloids and toxins are usually bitter and thus 
avoided.  The human body has actually managed to overcome the bitter taste, for such 
flavors as caffeine and nicotine.  Sweet taste tends to relate to carbohydrates, again 
essential in energy use and energy storage.  Umami is considered a savory taste relating 
to amino-acids in proteins, thus encouraging the ingestion of proteins.  Proteins are used 
in the human body to build muscle and transport molecules.  The ability to differentiate 
between these tastes is essential for survival whether we are referring to humans or 
animals.    
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Figure 3. Taste bud 
 



7 

Innervation 
 

Taste buds are innervated by branches of the facial, glossopharyngeal and vagal 
nerves.  The majority of taste buds are located within taste papillae (Smith and 
Margolskee 2001).  We will focus mainly on fungiform and circumvallate papillae. 
Fungiform papillae are innervated by a sensory branch of the facial nerve, the chorda 
tympani.  The chorda tympani courses through the facial canal and exits the skull through 
the petrotympanic fissure where it joins the mandibular division of the trigeminal nerve; 
the lingual nerve.  The combo chorda-lingual nerve will now enter the anterior tongue 
and make its way to the connective tissue of fungiform papillae; also it innervates apical 
papilla epithelium, where taste bud differentiation will take place (Mistretta and Liu, 
2006).  It has been shown that only 25% of nerves entering the fungiform papillae 
originated from the chorda tympani while most nerve fibers originated from 
trigeminal/lingual nerve (Farbman and Hellekant, 1978).   The glossopharyngeal nerve 
supplies not only taste fibers to taste buds in the circumvallate and foliate papillae, but it 
also provides general somatosensory to the papillae.  The glossopharyngeal is also 
responsible for the taste buds in the pharynx, whereas the vagus nerve innervates taste 
buds of the epiglottis, larynx and esophagus.     

 
The development of taste buds was once thought to be directly related to its 

innervations, the so called “neural induction theory.”  It was thought that the facial, 
glossopharyngeal and vagus nerves invade the mesenchmye of the tongue and induce 
thickenings in the lingual epithelium.  These thickenings are termed “placodes.”  These 
placodes would continue to differentiate until nerve fibers reached the inner surface of 
the epithelium and induced the formation of taste bud primordia.  Differentiation would 
continue until the taste cells finally gained access to the external environment through the 
formation of a taste pore (Northcutt 2004).  This theory was taken to task when it was 
shown that taste buds developed in the absence of innervations in aquatic salamanders in 
what is known as the “early specification model” (Northcutt 2004). The gustatory 
epithelium is clearly predefined and expresses growth factors and morphogens long 
before the arrival of pioneering gustatory nerves (Hall and Bryan 1981; Nosrat, Blomlof 
et al. 1997). This theory proposes that during gastrulation in axolotl, cells within the 
orophayngeal endoderm can signal one another, and some cells become taste bud 
progenitors, while the remaining cells will be general epithelium.  A chemical is 
produced by the orophayngeal epithelium which attracts nerve fibers.  In mammals, it has 
been shown to be brain-derived neurotrophic factor (Nosrat, Blomlof et al. 1997).  Once 
the nerve fibers reach the epithelium, they form contacts within the taste bud primordia.  
At this point the differentiation of the taste bud primordia will continue and taste cells 
form synapses with afferent fibers (Northcutt 2004).  
 
 

Genetics 
 

 Inbred mice have been shown to have genetic differences related to sweet and 
bitter taste. Glycine, an amino acid, in solution has been shown to taste bitter and sweet 
in different strains of mice, and there are differences between strains in their ability to 
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detect each taste (Lush and Holland 1988).  Taste sensitivity, aversion and preference are 
tested using a two-bottle preference test.  In a two-bottle preference test, mice are given a 
choice between compounds dissolved in water, and based on their choice they are 
classified as taster or non-taster.  If a group of mice avoid drinking the solution they are 
referred to as tasters, the other group has a slight tendency to avoid the solution and are 
referred to as non-tasters.  There is another category that has been shown in humans but 
not in mice; supertasters.  In a study by Bartoshuk et al. (1994), supertasters were 
identified as perceiving intense bitter tastes from concentrated PROP (6-n-pro-
pylthiouracil).  Supertasters were shown to have a larger number of fungiform papillae, 
had a large number of taste pores (indicating a functional taste bud associated with the 
taste pore), and had rings of tissue that were not seen on the non-tasters’ Fungiform 
papillae (Bartoshuk, Duffy et al. 1994).  The difference between the tasters and non-
tasters in this instance could be due to a single gene, Glb (glycine bitterness) (Lush and 
Holland 1988).  Detection of another bitter tasting compound, sucrose octaacetate (SOA), 
has been shown to differ between tasters and non-tasters (Boughter and Whitney 1997).  
 
 When looking at sweet compounds, the interaction of a sweetener with a G 
protein-coupled taste receptor (GPCR) gives a sweet taste perception on the apical ends 
of taste receptor cells.  Hoon et al. (1999) were able to identify two taste-specific GPCRs, 
T1R1 and T1R2.  Hoon et al.(1999) and Roper (2007) speculated that based on the 
protein expression pattern on the tongue, T1R1 was a sweet receptor. Several groups 
have searched for genes related to T1R1 and T1R2 (Roper 2007).  Their search resulted 
in finding the location of the gene that has been shown to be prominent in regulating 
differences in sweet preferences among mouse strains; the saccharin preference (Sac) 
locus on distal chromosome 4 (Bachmanov, Tordoff et al. 2001).  The Sac locus gene 
may be the gene that encodes a sweet taste receptor; this receptor is T1R3 of the T1R 
family of taste receptors (Bachmanov, Tordoff et al. 2001).  Having allelic variation for 
the T1R3 can make a mouse either sweet sensitive or subsensitive (Sclafani 2006).  
Besides the sweet taste, T1R receptor family members have also been identified as 
candidates for umami receptors (Roper 2007).  Maruyarna et al. (2006) and Roper (2007) 
showed there was a diminished response to sweet taste in T1R3-null mice, but many did 
respond to umami-taste stimuli.  These findings indicated that the umami taste is likely to 
be transduced by T1R1 + T1R3 dimers as well as other receptors, some of which have yet 
to be identified (Roper 2007).  A family of GPCRs that recognizes bitter tastes was 
identified in 2000 (Adler, Hoon et al. 2000; Matsunami, Montmayeur et al. 2000; Roper 
2007). This family was named T2Rs (Roper 2007).  Their role as bitter receptors was 
confirmed when mouse and human cells transfected with T2Rs responded to denatonium 
and cycloheximide, two intensely bitter compounds (Chandrashekar, Mueller et al. 2000; 
Roper 2007). 
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CHAPTER 3.  RESEARCH OBJECTIVES 

Hypothesis 
 

The peripheral taste system morphology in inbred mice is reflective of the 
classification of taster/non-taster. Three specific aims for this hypothesis follow. 
 
 

Specific Aim 1 
 
  We hypothesized that the number of fungiform papillae would correspond to the 
taster/non-taster classification.   
 

Procedure:  We aimed to quantify the number of fungiform papillae on each 
tongue by staining the tongue with green food dye, which would allow the fungiform 
papillae to be visible under light microscopy.  Each tongue was counted by two 
independent researchers trained in counting tongue papillae under light microscopy.  
 

 
Specific Aim 2 

 
 We hypothesized that the morphology and size of the fungiform papillae would 
correlate to the taster/ non-taster classification.   
 

Procedure:  Scanning electron microscope was used to evaluate the morphology 
and size of fungiform papillae.  Three tongues from each strain were used, 2 males and 1 
female.  Computer software was employed to measure the size and for analysis. 
 

 
Specific Aim 3 

 
 We hypothesized that fungiform taste bud size would correlate to the taster/ non-
taster classification.    
 

Procedure:  Immunohistochemistry with specific antibodies was performed on 
sagittally and frontally cryo-sectioned tongue tissue. Taste bud size was evaluated using 
Image J software version 1.40g (Wayne Rasband, National Institute of Health, USA). 
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CHAPTER 4.  METHODS AND MATERIALS 

Materials and Methods 
 

The mice were obtained from the Jackson Laboratory (Jackson, Michigan).  
Animal use has been approved by IACUC.  Four strains of mice were purchased, two 
taster strains (FVB, C57) and two nontaster strains (Balb/C, 129). Six male and six 
female of each strain of mice were evaluated.  At eight weeks of age the mice were 
euthanized by CO2 asphyxiation and perfused with 4% paraformaldehyde in phosphate 
buffered saline (PBS) through the ascending aorta.  Tongues were removed, post-fixed, 
rinsed and cryopreserved in 10% sucrose in PBS.  All animal procedures were in 
compliance with approved institutional animal care and use protocols and according to 
National Institutes of Health guidelines.    
 
 

Papilla Count 
 

For the initial count of the fungiform papillae number, before cryopreservation, 
the papillae of intact tongues were visualized using green food coloring and counted 
under a Nikon SMZ-1500 steriomicroscope.  Count was completed by two experienced 
researchers; one researcher counted twice on two separate occasions, counts were 
averaged together.  Count was completed for all four strains of inbred mice including six 
female and six male of each strain.  Average counts were placed in computer software 
Instat and data was analyzed using unpaired t-tests.  

 
 

Scanning Electron Microscopy 
 

Tongues for scanning electron microscopy procedure were dehydrated in series of 
alcohol and a final step of HMDS, mounted on aluminum stubs and sputter-coated with 
gold and observed in a Joel JJM-5510 SEM.  Three male animals of each strain were 
used for scanning electron microscopy.  For the dehydration of tongues the following 
steps were followed: 
 
 Incubate tongue in 70% alcohol for 2 hours 
 Incubate tongue in 95% alcohol for 2 hours 
 Incubate tongue in 100% alcohol overnight  

 
The SEM operator was allowed to make decision on the best magnification per 

sample based on operator expertise.  Length, Width and Area measurements were taken 
on SEM pictures utilizing computer software Image J.  The SEM picture chosen for 
analysis was the picture that had exactly or at least six identifiable fungiform papillae.  
Image J software was used to set scale on each picture to measure the length, width and 
area on six fungiform papillae per species.  Measurements were completed by same 
examiner on two separate occasions. Then the numbers were averaged and placed in 
computer software Instat for statistical analysis using unpaired t-tests.     
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Immunohistochemistry 
 

Three female animals of each strain were used to prepare tongues for sectioning; 
in one instance, three (129) males were also used.  Tongues were sectioned into three 
sections: anterior, middle and posterior. Since the anterior and middle portions contain 
fungiform papilla and the posterior section contains circumvallate papillae.  Tongues 
were frozen and sectioned (14 µm) and mounted onto gelatin coated slides.  Slides were 
washed in PBS (10min x 2).  Slides were then placed in acetic acid for five minutes, 
followed by washing in PBS (5 min x 5).  We then placed 100ml per slide of antibodies 
to Troma-1 (taste cell marker) at a ratio of 80:1 with triton PBS.  Slides were placed in 
storage containers lined with absorbent sheets soaked in PBS and incubated overnight in 
refrigeration.  After twenty-four hours, slides were washed with PBS (5min x 3).  100ml 
of secondary antibody Alexfluor 594 at a ratio 100:1 with triton PBS was placed on 
slides.  Slides were then evaluated under a microscope and fixed with 1:1 mix 
glycerin/PBS and covered with glass cover slips.  Using indirect immunohistochemistry, 
taste buds and their innervation were visualized under a fluorescent microscope (Nikon 
80i).  Digital images were taken of fungiform papillae/taste buds and circumvallate 
papillae/taste buds using Nikon DXM-1200 digital camera.  Pictures were placed in 
Image J software and measurements were taken for length, width and area of taste buds.  
An O.1mm ruler was used to set the scale and all measurements were completed during 
one session.  Due to difference in number of quality sections obtained from each strain, 
10 of the most representative tastes buds from all sections were used.  These 
measurements were averaged to gain a mean number which was inserted into computer 
software Instat for statistical analysis using unpaired t-tests.     
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CHAPTER 5.  RESULTS 

Papillae Count 
 
 All fungiform papillae were counted on surface stained tongues from six male and 
six female transgenic mice, utilizing four different strains (Balb/C, 129, FVB, C57).  The 
mean papillae count was 83.5 in Balb/C, 65.9 in 129, 85.3 in FVB and 90.1 in C57 
(Table 1).  Unpaired t-tests showed a significant difference between strain 129 and all 
other strains (p<0.001).  There was also a significant difference between strains Balb/C 
and C57 (p<0.05).  Not only was the number of fungiform papillae decreased in non-
taster strains, but papillae distribution was different for strain 129.  Strain 129 presented 
with almost all fungiform papillae in the anterior portion, whereas the other strains 
showed papillae as we moved posteriorly.  Figure 4 (error bar represents standard error 
of mean, or SEM), demonstrates the significant difference between strain 129 and strains: 
FVB, C57 and Balb/C.  There were no statistical difference between male and female 
within each strain.   
 
 

Scanning Electron Microscope 
 

 Pictures of three male transgenic mice of each species (Balb/C, 129, FVB, C57) 
were examined after having scanning electron microscopy completed.  Length, width and 
area were measured on pictures utilizing Image J software.  Balb/C was measured on 
picture with 200x magnification.  129 were measured on picture with 90x magnification.  
C57 was measured on picture at 100x magnification, and FVB was measured on picture 
with 150x magnification.  Due to lack of fungiform papillae in the posterior section, all 
pictures and measurements were taken from anterior tongue.  The mean length was 0.060 
mm for Balb/C, 0.066 mm for 129, 0.085 mm for FVB and 0.063 mm for C57.  There 
was significant difference when comparing length of all species to FVB after running 
unpaired t-tests (p<0.01).  When looking at width the mean was 0.055 mm for Balb/C, 
0.057 mm for 129, 0.065 mm for FVB and 0.061 mm for C57.  After unpaired t-tests 
were run, there was significant difference between FVB and 129 (p<0.05).  There was a 
significant difference between FVB and Balb/C (p<0.01).  When looking at area, the 
mean was 2.9 mm for Balb/C, 3.2 mm for 129, 4.8 mm for FVB and 3.4 mm for C57 
(Table 2).   When unpaired t-tests were run there was a significant difference between 
FVB and all other species (p<0.001).  Figures 5, 6, 7 (error bar represents standard error 
of mean, or SEM), show the difference when fungiform papillae were measured on SEM 
pictures utilizing Image J software.  Figure 8 shows the 200x magnification SEM picture 
of fungiform papillae from male strain Balb/C used for measurement.  Figure 9 shows 
the 90x magnification SEM picture of fungiform papillae from male strain 129 used for 
measurements. Figure 10 shows the 100x magnification SEM picture of fungiform 
papillae from male strain C57 used for measurements.  Figure 11 shows the 150x 
magnification SEM picture of fungiform papillae from male strain FVB used for 
measurements.  Pictures are labeled with which fungiform papillae were measured one to 
six.  Six fungiform papillae were measured from each strain using Image J software, 
setting a scale on each picture based on the given length bar.     
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Table 1.  Mean papillae count 
 
 
Measurement   Balb/C  129  FVB  C57 
 
 
Papillae count   83.53  65.97  85.33  90.11 
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Figure 4.  Mean papillae count 
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Table 2.  Mean SEM measurements in mm 
 
 
Measurement   Balb/C  129  FVB  C57 
 
 
Area    2.9  3.2  4.8  3.4 
Length    0.060  0.066  0.085  0.063 
Width    0.055  0.057  0.065  0.061 
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Figure 5.  Mean fungiform papillae area measured from SEM pictures in mm   
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Figure 6.  Mean fungiform papillae length measured from SEM pictures in mm 
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Figure 7. Mean fungiform papillae width from SEM pictures in mm 
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Figure 8.  SEM picture of fungiform papillae strain Balb/C 200x magnification 
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Figure 9.   SEM picture of fungiform papillae strain 129 90x magnification 
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Figure 10.   SEM picture of fungiform papillae strain C57 100x magnification 
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Figure 11.  SEM picture of fungiform papillae strain FVB 150x magnification 
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Immunohistochemistry 
 

 Three female of each strain were used for analysis in indirect 
immunohistochemistry.  Due to improper sectioning, strain 129 was deemed not 
appropriate for data collection.  At this time, three male 129 strains were used in indirect 
immunohistochemistry.  Due to lack of fungiform papillae in posterior section, all 
pictures and measurements were taken from the anterior tongue.  Length, width and area 
were measured using Image J software.  Measurements were combined to determine a 
mean value.  The mean values for length were 0.043 mm for Balb/C, 0.045 mm for 129, 
0.042 mm for FVB and 0.045 mm for C57.  These values were non-significant in the 
differences.  The mean values for width were 0.027 mm for Balb/C, 0.026 mm for 129, 
0.027 mm for FVB and 0.023 mm for C57.  There was a significant difference between 
the widths of Balb/C and C57 (p<0.001).  The mean values for area were 0.001099mm2 
for Balb/C, 0.001054mm2 for 129, 0.001131mm2 for FVB and 0.000928mm2 for C57 
(Table 3).  No significant difference is seen between the means for area between the 
tested species.  Figures 12, 13, 14 (error bar represents standard error of mean, or SEM), 
show the difference when taste buds were measured after indirect immunohistochemistry 
pictures utilizing Image J software.  Figure 15 is an example of a taste bud following 
indirect immunhistochemisty from female strain Balb/C.  Figure 16 is an example of a 
taste bud following indirect immunohistochemistry from male strain 129.  Figure 17 is 
an example of a taste bud following indirect immunohistochemistry from female strain 
FVB.  Figure 18 is an example of a taste bud following indirect immunohistochemistry 
from female strain C57.  Length, width and area were measured on each taste bud 
utilizing Image J software.         
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Table 3.  Mean taste bud size area measurements in mm², length and width in mm 
 
 
Measurement   Balb/C  129  FVB  C57 
 
 
Area    0.001099 0.001054 0.001131 0.000928 
Length    0.043  0.045  0.042  0.045 
Width    0.027  0.026  0.027  0.023 
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Figure 12.  Mean taste bud area in mm² 
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Figure 13.  Mean taste bud length in mm 
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Figure 14.  Mean taste bud width in mm 
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Figure 15.  Immunohistochemistry picture of taste bud strain Balb/C 
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Figure 16.  Immunohistochemistry picture of taste bud strain 129 
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Figure 17.  Immunohistochemistry picture of taste bud strain FVB 
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Figure 18.  Immunohistochemistry picture of taste bud strain C57 
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CHAPTER 6.  DISCUSSION 

 Two bottle preference tests have been the standard test for assessing taste solution 
in animals since the 1930’s.  A two bottle preference test is a simple test where animals 
are presented two drinking options, one bottle containing water and the other a taste 
solution.  Different solutions are used when testing different taste qualities.  Tests 
between deionized water and sodium saccharin are used to test for sweet, citric acid 
solution is used to test for sour, quinine hydrochloride (QHCL) and sucrose octaacetate 
(SOA) are used to test for bitter, NaCl is used to test salty taste preference, whereas 
inosine monophosphate (IMP) is used to test umami (Tordoff 2007).   In the two bottle 
preference test, animals are given 48 hours with deionized water and a tastants solution.  
After 48 hours, the solutions are measured to determine how much liquid was consumed 
of each solution.  With sweet/umami solutions, tasters will consume more than non-
tasters due to enjoying the taste. With bitter/salty solution, tasters avoid the solution more 
than non-tasters due to the bitterness taste.  The two bottle preference test results have 
had conflicting data even between inbred strains.  This may be due to altered gustatory 
functioning within the strain (Boughter 2002).  Different preference testing methods 
including utilizing more or fewer bottles have been proposed, all having advantages and 
disadvantages (Batsell and Best; 1993; Dragoin et al., 1971; Elkins, 1973; Grote and 
Brown, 1971; Klein et al., 1975).  A study by Tordoff and Bachmanov (2003) showed a 
three bottle preference test has the greatest sensitivity when compared to a two bottle 
preference test.  They also state that their results reinforce the fact that preferences 
observed in the laboratory may have little or no effect on preferences observed in real 
life.  Since preference testing can have its flaws, our study will help explain strain-based 
differences in taste preference.   
 
 There are different reasons that fungiform papillae may have different sizes and 
different number in mice strains.  Aside from the inbred mouse strains tested here, 
different knockout mice can have an effect on gustatory function.  Brain-derived 
neurotrophic factor (BDNF) is a neurotrophic factor that regulates neuronal development 
and function (Lewin and Barde, 1996), and has been shown to have an effect on the 
support of gustatory function (Nosrat I.V., 2000).  When BDNF knockout mice are tested 
for number and size of fungiform papillae, there is a 35% decrease in number of 
fungiform papillae, and the papillae that remain are smaller in size (Nosrat et al., 1997).   
These finding correlates with the findings of Mistretta et al. (1999), that BDNF null 
mutant mice had fewer fungiform papillae’s, but the remaining papillae’s were on the tip 
of the tongue and absent on the posterior segments.   
 
 Nerve transection of the chorda tympani nerve can cause degeneration of taste 
buds in fungiform papillae while cutting the superior laryngeal nerve has this effect on 
vallate taste buds.  The nerve transection, like BDNF, has a larger effect on the posterior 
and lateral tongue than on the anterior tongue.  This finding shows that taste buds on the 
anterior tongue are influenced less by neurotrophic factors than the posterior tongue 
(Guagliardo and Hill, 2007).  Dystonin (Bullous Pemphigoid Antigen 1) is a protein that 
is considered to play a role in cytoskeleton organization during axonogenesis (Dalpe et 
al., 1998; Leung et al., 1999).  Like BDNF, the loss of dystonin causes a reduction in the 
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density of fungiform papillae and taste buds.  Unlike BDNF null mutant mice, the 
dystonin mutated mice had a 67% reduction in number of fungiform papillae and the loss 
was mainly in the anterior tongue (Ichikawa H., 2007). 
 
 The current study shows that differences in taster and non-taster mice are 
observed and correlate well in terms of the morphology and number of fungiform 
papillae.  Strain 129, considered a non-taster strain had 21% fewer fungiform papillae 
than its non-taster counterpart Balb/C.  When compared to the taster strains, 129 had 23% 
fewer fungiform papillae than strain FVB and 27% fewer fungiform papillae than strain 
C57.  When measuring the area of fungiform papillae on SEM pictures, non-taster strain 
Balb/C had the smallest area, measuring 2.9mm, whereas taster strain FVB had the largest 
area measuring 4.8mm.  Taster strain FVB was 40% larger than non-taster strain Balb/C, 
34% larger than non-taster strain 129 and 30% larger than taster strain C57.  By taking 
the number of fungiform papillae and multiplying it by the area obtained from SEM 
measurements of the fungiform papillae, the result should be a number that represents the 
size of the receptor field per tongue (Table 4, Figure 19).  Taster strain FVB has the 
largest surface area at 409.58 mm, strain FVB has 48% and 41% more surface area for 
tasting than non-taster strains 129 (211.10 mm) and Balb/C (242.24 mm) respectively.  
Taster strain C57 has a 26% smaller tasting surface area than FVB at 306.37 mm.  C57 
was 31% larger than strain 129 and 21% larger than strain Balb/C. 
 
  Genetic composition in different mouse strains predicts the taster/non-taster 
properties in mice. However, whether or not genetic background is reflected in the 
morphology and number of taste buds and papillae is not clear. Due to the extensive use 
of transgenic mice in developmental and biological studies of the peripheral taste system, 
it is imperative to have better understanding of possible variations in the peripheral taste 
system in different background strains. The majority of the transgenic mice using 
homologous recombination in the past were generated using 129 mouse embryonic stem 
cells.  
 
 This study has described the morphological differences between taster and non-
taster mouse strains.  We know the ability to taste can influence food ingestion and 
palatability in humans.  It has been shown that taster status has an effect on the 
preference for dairy products in children, where nontasters tend to like cheddar cheese 
more than tasters.  This might have to do with the ability to detect bitter tastes by the 
tasters.  There are individuals that have a higher affinity for sweets, usually in the non-
taster group, due to the tasters perceiving greater sweetness and not liking it (Bartoshuk 
et al., 1994). This perception could explain some of the weight issues that may be 
genetically predisposing people.   
 
 There is mounting interest towards the genetic involvement of taste stimuli and 
taste modifiers for humans and other animals.  In humans, the interest mainly involves 
making food and drinks healthier without sacrificing taste, and also making oral 
medications more acceptable/palatable to patients.  As we have seen from the many 
artificial sweeteners to be introduced to the market, there is a demand for sweet and 
umami compounds, enhancers of salty, blockers of bitter taste and improving the sensory  
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Table 4.  Receptor field in mm 
 
 
Measurement   Balb/C  129  FVB  C57 
 
 
Receptor field   242.24  211.10  409.58  306.37 
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Figure 19.  Receptor field in mm 
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properties of pharmaceuticals.  Variation in taste receptors in humans can affect not only 
what we eat, but how much we eat.  The idea that taste choices based on allelic variations 
in taste receptors could lead to life style choices even lead to risk factors for disease 
(Bachmanov and Beauchamp, 2007).  Just like in two bottle testing for mice, humans that 
have higher sensitivity to ethanol bitterness may protect against excessive alcohol 
consumption (Duffy et al., 2004).  This study will add to the knowledge related to taste 
sensation in mice and hopefully will be able to relate to human research. 
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CHAPTER 7.  CONCLUSION 

The results of the present study suggest: 
 
1. There is a significant difference between the numbers of fungiform papillae in taster 

strains FVB and C57 and non-taster strain Balb/C compared to a non-taster strain 129. 
 

2. There is significant difference in the length and area of fungiform papillae in taster 
strain FVB compared to the other taster strain C57 and non-taster strains Balb/C and 
129. 
 

3. Strain FVB has a 48% and 41% larger surface receptor field than non-taster strains 
129 and Balb/C respectively. 
 

4. There is not a significant difference between the taster and non-taster mice strains and 
the size of taste buds as measured after immunohistochemistry sectioning.     
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