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ABSTRACT 

 

      To determine how tetraspanin KAI1/CD82, a tumor metastasis suppressor, 

inhibits cell migration, we assessed which motility-related cellular events are 

altered by KAI1/CD82 and how KAI1/CD82 regulates these events. We found 

that KAI1/CD82-overexpressing cancer cells exhibit various morphologies but 

typically display elongated cellular extensions and a lack of lamellipodia. Live 

imaging demonstrated that the formation of lamellipodia and retraction of 

extensions were deficient upon KAI1/CD82 overexpression.  

      The deficiency in developing motility-related cellular events was 

accompanied by defects in actin cortical network and stress fiber formations. 

Notably, actin polymerization was attenuated by KAI1/CD82. Although Rac1 

activity was diminished upon KAI1/CD82 expression, Rac1 could not rescue 

lamellipodia formation because Rac1 activity is not required for this process in 

Du145 prostate cancer cells. Surprisingly, RhoA activity was upregulated upon 

KAI1/CD82 overexpression despite the loss of stress fiber and lack of cellular 

retraction, suggesting that enhanced RhoA activity is a compensatory effect 

resulting form impaired actin polymerization. Cofilin, an effector of both Rac and 

Rho, cannot translocate to the cell periphery in KAI1/CD82-overexpressing cells 

to facilitate lamellipodia formation, though the total and active cofilin proteins 

remain unchanged.  

      In summary, we demonstrate that KAI1/CD82 inhibits protrusion and 

retraction events crucial for cell movement by disrupting actin cortical network  
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and stress fiber formations. At the molecular level, KAI1/CD82 impairs actin 

polymerization by unbalancing Rac1 and RhoA activities. KAI1/CD82-induced 

disruption of actin organization likely results from the suppression of common 

signaling steps of multiple pathways but is alleviated by cell-cell adhesion. 
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CHAPTER 1.  INTRODUCTION 
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1.1 Importance of cell migration in normal development and diseases 

      Cell migration is a life-long event. It accompanies us throughout our life, 

from shortly after conception to death. During embryonic development, cell 

migration is pivotal for morphogenesis (Ridley et al., 2003). For example, 

massive cell migration directly contributes to three-layer-embryo formation during 

gastrulation and subsequent tissue and organ development (Ridley et al., 2003). 

Cell migration is also actively involved in normal renewal of skin and intestine, in 

which the newly differentiated epithelial cells migrate up from the basal layer and 

the crypts, respectively. However, the detailed mechanisms of cell migration and 

its importance in a variety of biological events are still far from delineated (Ridley 

et al., 2003).  

      Cell migration is not only key for normal development and biological 

processes, but also heavily involved in a vast number of pathological processes, 

for example, vascular disease, osteoporosis, chronic inflammatory diseases 

(rheumatoid arthritis and multiple sclerosis), and cancer. During wound healing 

and immune defense processes, circulating leukocytes, which are attracted by 

the chemotactants released from the inflammatory lesion, migrate into the tissue 

surrounding the lesion to attack the pathogens, destroy infected cells, and clean 

up debris. 

     For all above pathological processes, to unveil the fundamental mechanisms 

underlying cell migration will shed light on the development of more effective 

therapeutic methods and for a variety of illnesses.  
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      In recent years, scientists have made many important progresses about how 

cancers initiate and develop. Surgery, chemotherapy and radiation can 

effectively treat the primary tumor lesion. However, relatively little is known about 

how cancers are able to metastasize to distant tissues and organs (Steeg, 2006). 

Metastasis is a multiple step process including invasion, survival and arrest of 

cancer cells in the bloodstream, and finally the formation of metastatic 

colonization to the target organs (Steeg, 2006) .  

      The metastasic cancer lesion can lead to catastrophic consequences, such 

as the functional failure of target organs due to cancer growth and infiltration. In 

fact, the local invasion and distal metastasis of the cancer are the leading cause 

of death in many common cancer cases, such as lung metastasis and 

destruction in thyroid cancer (Mazzaferri, 2006), and the bone, lungs, liver and 

brain metastasis and destruction in breast cancer (Price, 1994), et al. It is very 

important to understand the mechanisms for our body to fight against tumor 

metastasis. However, the genetic foundation of suppressing cancer metastasis 

remained unclear. It has been reported that at least three genes are involved in 

this process. They are Nm23 ( Fournier et al., 2002; Hartsough et al., 2002; 

Palacios et al., 2002; D'Angelo et al., 2004; Engel et al., 2004), 

medroxyprogesterone (MPA) (Ouatas et al., 2003; Palmieri et al., 2005), and 

KAI1 (Bandyopadhyay et al., 2006; Zijlstra and Quigley, 2006; Gellersen et al., 

2007; Iiizumi et al., 2007). Here, Iwill focus on how KAI1/CD82 inhibits cancer 

cell metastasis. 
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1.2 KAI1/CD82 is a cell motility-inhibitory tetraspanin 

 

1.2.1   The discovery of KAI1/CD82  

       KAI1/CD82 (also called R2, C33, IA4, or 4F9) was initially identified from T 

cell activation studies (Gaugitsch et al., 1991). The KAI1/CD82 gene encodes a 

267 amino acid protein that contains four putative transmembrane domains 

(Gaugitsch et al., 1991). Later studies showed that immuno-crosslinking of 

KAI1/CD82 triggered the intracellular calcium mobilization in lymphocytes and 

the T cell adhesion, the cell surface level of KAI1/CD82 was up-regulated upon 

cell activation and cytokine stimulation, and KAI1/CD82 played an accessory role 

in T cell activation (Fukudome et al., 1992; Gil et al., 1992; Nojima et al., 1993). 

Interestingly, KAI1/CD82 was also identified as a target of the monoclonal 

antibody that inhibited syncytium formation induced by human T-cell leukemia 

virus (Fukudome et al., 1992). 

      The role of KAI1/CD82 in cancer progression was discovered by a genetic 

screen attempting to identify metastasis suppressing genes (Ichikawa et al., 

1991). Using microcell-mediated chromosome transfer, human gene(s) 

responsible for suppressing metastasis of the highly metastatic rat AT6.1 

prostate cancer cells was mapped to the short arm of human chromosome 11 

(Ichikawa et al., 1992). Dong, Isaacs, and Barrett made important progress in 

1995 as they cloned the metastasis suppressor gene located at human 

chromosome 11 p11.2-13 and designated this suppressor as KAI1(Dong et al., 

1995). KAI1 is identical to CD82 (Dong et al., 1995). KAI1/CD82 expression 
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leads to a marked suppression of lung metastases of AT6.1 prostate cancer 

cells, without affecting the growth rate of the primary tumor (Dong et al., 1995).  

 

1.2.2   KAI1/CD82 as a tumor metastasis suppressor  

     Although KAI1/CD82 was initially identified as a metastasis suppressor of 

prostate cancer, a plethora of evidence supports KAI1/CD82 as a wide-spectrum 

invasion- and metastasis-suppressor during the progression of a variety of solid 

tumors (Dong et al., 1995; Hemler, 2001; Stipp et al., 2003). In the past decade, 

KAI1/CD82 expression in tumors has been thoroughly analyzed. In normal 

tissues, KAI1/CD82 is ubiquitously expressed. Its mRNA levels are high in 

spleen, placenta, lung, liver, kidney, and prostate, moderately abundant in the 

pancreas, skeletal muscle, and thymus;  and detectable at low level in brain, 

heart, ovary, stomach, and uterus (Nagira et al., 1994; Dong et al., 1995). 

KAI1/CD82 is evolutionarily conserved (Nagira et al., 1994; Dong et al., 1995) . 

For example, KAI1/CD82 protein displays 76% identity and 82% similarity 

between human and mouse (Nagira et al., 1994). Thus, although KAI1/CD82 is 

important for cancer progression, the ubiquitous tissue expression pattern and 

evolutionary conservation of KAI1/CD82 implicate that KAI1/CD82 also plays a 

significant role in development.  In malignant solid tumors, the presence of 

KAI1/CD82 expression predicts a better prognosis for cancer patients (Dong et 

al., 1996; Dong et al., 1997b; Higashiyama et al., 1998; Ow et al., 2000), 

whereas the down-regulation or loss of KAI1/CD82 expression is constantly 

found in the clinically advanced cancers (Dong et al., 1997b; Kawana et al., 
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1997; Yu et al., 1997; Uchida et al., 1999; Yang et al., 2000). Consistent with 

these observations, an inverse correlation between KAI1/CD82 expression and 

the invasive and metastatic potentials of cancer has been frequently observed in 

a wide range of malignancies such as prostate (Ueda et al., 1996; Bouras and 

Frauman, 1999; Tricoli et al., 2004), gastric (Hinoda et al., 1998), colon (Takaoka 

et al., 1998a; Lombardi et al., 1999), cervix (Liu et al., 2001; Schindl et al., 2002; 

Liu et al., 2003), breast (Yang et al., 1997; Yang et al., 2000; Yang et al., 2001), 

skin (Geradts et al., 1999), bladder (Yu et al., 1997; Jackson et al., 2000a; Ow et 

al., 2000; Jackson et al., 2002), lung (Adachi et al., 1996; Adachi et al., 1998), 

pancreas (Guo et al., 1996; Friess et al., 1998; Friess et al., 2001), liver (Guo et 

al., 1998; Sun et al., 1998), and thyroid cancers (Chen et al., 2004). KAI1/CD82 

overexpression inhibits cell migration and cancer invasion in vitro and 

suppresses cancer metastasis in animal models (Dong et al., 1995; Yang et al., 

2001). In addition to the suppression of cancer progression, it has been 

occasionally reported that KAI1/CD82 induces senescence (Bandyopadhyay et 

al., 2006) and apoptosis (Ono et al., 1999; Schoenfeld et al., 2003).      

 

1.2.3   KAI1/CD82 as a tetraspanin  

      KAI1/CD82 is a type III transmembrane protein that belongs to the 

tetraspanin superfamily (Figure 1.1). Tetraspanins are characterized by 4 

membrane-spanning domains, 4-6 well-conserved extracellular cysteine residues 

that presumably form 2-3 disulfide bonds, a Cys-Cys-Gly motif in the large  
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Figure 1.1   KAI1/CD82 is a tetraspanin  
 
KAI1/CD82 is a type III transmembrane protein and belongs to the tetraspanin 
superfamily. KAI1/CD82 is characterized by 4 membrane-spanning domains, 6 
well-conserved extracellular cysteine residues that presumably form 3 disulfide 
bonds, a Cys-Cys-Gly motif in the large extracellular loop, and polar residues 
within the transmembrane domains.  
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extracellular loop, and polar residues within the transmembrane domains (Wright 

MD & Tomlinson MG., 1994; Hakomori, 2002; Stipp et al., 2003). Tetraspanins 

participate in a wide variety of biological events such as immune response, viral 

entry, synapse formation, neurite outgrowth, and sperm-egg fusion (Maecker et 

al., 1997). Although the mechanism remains unclear, tetraspanins regulate 

migration, fusion, adhesion, and proliferation at the cellular level (Maecker et al., 

1997). Among these, regulation of cell motility stands out as a prominent feature 

for many tetraspanins. For example, tetraspanins KAI1/CD82 and CD63 inhibit 

cell motility, while tetraspanins CD151 and CO-029 promote it. The structural 

elements in KAI1/CD82 required for its function are still not well understood. 

Characterization of these elements will shed light on the mechanism that governs 

KAI1/CD82 function. In the following, Iwill discuss the biochemical and structural 

features of human KAI1/CD82 protein. (Higashiyama et al., 1995; Berditchevski, 

2001; Boucheix and Rubinstein, 2001; Levy and Shoham, 2005).  

 

1.2.3.1 Large extracellular loop (LEL) 
 
      Among tetraspanins, the LELs usually share less homology than the 

transmembrane and intracellular domains. The LELs can be further divided into 

variable and constant regions based on the sequence homology (Hemler, 2001). 

The variable region is situated in the middle and usually mediates heterogeneous 

protein-protein interactions. The constant regions are situated at N- and C-termini 

of LEL and predicted to be responsible for the dimerization (Stipp et al., 2003; 

Levy and Shoham, 2005). The variable region of the KAI1/CD82 LEL (residues 
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110-227) contains six highly conserved cysteines (Gaugitsch et al., 1991; 

Fukudome et al., 1992; Gil et al., 1992; Nojima et al., 1993). These cysteine 

residues form disulfide bonds which are critical for the correct folding of the LEL 

(Berditchevski, 2001; Hemler, 2001; Stipp et al., 2003).  Also in the LEL variable 

region, KAI1/CD82 contains 3 sites for N-glycosylation, Asn129, Asn157 and 

Asn198 (Ono et al., 1999). Although KAI1/CD82 glycosylation has been 

experimentally demonstrated (Ono et al., 2000), the contribution of each site to 

the glycosylation remains to be determined. The C-terminal constant region of 

the KAI1/CD82 LEL may contain the structural elements needed for its function 

since an alternatively spliced form of KAI1/CD82, which lacks the C-terminal part 

of LEL and a part of the 4th transmembrane region, no longer exerts the 

inhibitory activity on cell migration (Lee et al., 2003b).  

 

1.2.3.2 Small extracellular loop (SEL)  
 
      The function of KAI1/CD82 SEL has not yet been studied. The studies from 

other tetraspanins such as CD81 suggest that the SEL is involved in the optimal 

folding of the LEL (Masciopinto et al., 2001). 

 

1.2.3.3 Transmembrane (TM) domains 

      TM domains are highly conserved among tetraspanins (Levy and Shoham, 

2005). The specific hydrophobic interactions of TM domains between 

tetraspanins are important for the maintenance of Tetraspanin Web (Stipp et al., 

2003). Like other tetrapsanins, KAI1/CD82 TM1, 3, and 4 domains contain polar 
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residues Asn, Gln, and Glu, respectively. These polar residues are predicted to 

situate in the internal TM-TM interface rather than the external TM-lipid interface 

and serve as both hydrogen bond donors and recipients mediating the 

tetraspanin dimerization or polymerization (Zhou et al., 2000; Bienstock and 

Barrett, 2001; Gratkowski et al., 2001; Senes et al., 2001). Moreover, the TM 

domains are needed for KAI1/CD82 maturation. A truncated KAI1/CD82 lacking 

TM1 (TM2-4) can’t leave the endoplasmic reticulum (Cannon and Cresswell, 

2001). Co-expression of TM1 facilitates the transport of TM2-4 to the cell surface 

(Cannon and Cresswell, 2001), suggesting the TM1 may either contain a 

surface-targeting signal or be required for the proper TM domain assembly of 

KAI1/CD82.     

 

1.2.3.4 Intracellular loop (IL) 
 
      The IL only contains 4 or 5 amino acid residues including one acidic residue 

(Stipp et al., 2003; Levy and Shoham, 2005). Like tetraspanins CD9 and CD151, 

KAI1/CD82 is constitutively palmitoylated in the cysteine residues located in or 

near the interface of TM and cytoplasmic regions (Zhou et al., 2004). The Cys83 

residue at the IL and Cys74 near the IL can be palmitoylated (Zhou et al., 2004). 

 

1.2.3.5 Cytoplasmic domains 
 
      The N- and C-terminal cytoplasmic domains of KAI1/CD82 only contain 11 

and 15 residues, respectively. There are 3 cysteine residues (Cys5, Cys251, and 

Cys253) in the tails. All are adjacent to TM domains and found to be 
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palmitoylated (Zhou et al., 2004). The glycine residue (Gly2) in the N-terminal tail 

is a putative myristoylation site. Acylation likely assists the anchorage of short 

tails to membrane and the interactions between TM domains in the Tetraspanin 

Web. In addition, the Lys10 and Tyr11 residues in N-terminal tail are well 

conserved among tetraspanins (Stipp et al., 2003), but the biochemical relevance 

of these residues awaits to be addressed. The C-terminal cytoplasmic domain 

contains a tyrosine-based, functional internalization motif (Bonifacino and 

Dell'Angelica, 1999; Stipp et al., 2003). 

 

1.2.4   How KAI1/CD82 suppresses cancer invasion and metastasis  

 

1.2.4.1 KAI1/CD82 regulates the functions of its associated proteins 

      KAI1/CD82 likely suppresses cancer metastasis by primarily inhibiting cancer 

cell migration and invasion. There are two mechanisms possibly involved: one is  

that KAI1/CD82 per se directly initiates signals to diminish cell motility. This 

mechanism is less likely because the simplistic structure of KAI1/CD82 and the 

lack of enzyme motif that within its cytoplasmic domain. However, there is  

example, ligands for tetraspanins may exist (Nakamura et al., 2000; Crotta et al., 

2001; Waterhouse et al., 2002; Nakajima et al., 2005)  even though tetraspanins 

are not documented as typical receptors (Stipp et al., 2003). Also, the cross-

linking of KAI1/CD82 proteins with a monoclonal antibody produces profound 

morphological changes and signaling (Nojima et al., 1993). For example, the 

crosslinking of KAI1/CD82 with its mAb in T-cells trigger the tyrosine  
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phosphorylation of Vav1 (Delaguillaumie et al., 2002), SLP76 (Delaguillaumie et 

al., 2002), and Cas-L (Delaguillaumie et al., 2002; Iwata et al., 2002). However, 

these effects could be alternatively interpreted as a result of clustering of the 

KAI1/CD82-associated tetraspanin web.  

      Alternatively, KAI1/CD82 inhibits cell motility through regulating the signaling 

initiated or mediated by KAI1/CD82 associated protein such as integrin and 

EGFR in tetraspanin web. Growing evidence supports this notion. The 

tetraspanin web components that KAI1/CD82 associates with include:  

   1. Tetraspanins such as CD9 and CD81 (Claas et al., 2001; Hemler, 2003);   

   2. Integrins such as β1 and β2 integrins (Mannion et al., 1996; Ono et al., 

1999; Shibagaki et al., 1999; Sugiura and Berditchevski, 1999; Iwata et 

al., 2002; Lee et al., 2003),  

   3. Immunoreceptors such as MHC-I and -II molecules (Szollosi et al., 1996; 

Lagaudriere-Gesbert et al., 1997; Shibagaki et al., 1999);  CD4 (Imai et 

al., 1992; Imai et al., 1995; Shibagaki et al., 1999), CD8 (Imai et al., 1992), 

EWI2/PGRL (Zhang et al., 2003), FPRP/CD9P-1 (Charrin et al., 2001), 

CD19 (Bradbury et al., 1992), and CD46 (Lozahic et al., 2000) ;   

   4. Growth factors and growth factor receptors such as heparin-binding 

epidermal growth factor (Nakamura et al., 2000), EGF receptor (Odintsova 

et al., 2000), and hepatic growth factor receptor c-Met (Sridhar and 

Miranti, 2006; Todeschini et al., 2007);   

   5. Intracellular signaling proteins such as PKC (Zhang et al., 2001), and  
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   6. Other proteins such as KITENIN (Lee et al., 2004; Rowe and Jackson, 

2006) and gamma-glutamyl transpeptidase (Nichols et al., 1998);  In the 

following, Iwill discuss the functional significance of these associations. 

 

1.2.4.1.1 Integrin   

      KAI1/CD82 associates with various integrins including α3β1, α4β1, α5β1, 

α6β1, and αLβ2 (Mannion et al., 1996; Shibagaki et al., 1999; Sugiura and 

Berditchevski, 1999; Ono et al., 2000; Iwata et al., 2002; Lee et al., 2003) (Figure 

1.2). Since integrins are indispensable for cell adhesion and migration, this 

association likely plays a role in KAI1/CD82 metastasis-suppressive function. 

Indeed, KAI1/CD82 regulates integrin-mediated signaling and -dependent 

adhesion.  

   1. KAI1/CD82 directly alters the downstream signaling events of integrin 

(Zhang et al., 2003). KAI1/CD82 has been reported to regulate the 

activities or levels of Src family kinases though Src kinases are not 

necessarily activated by integrins (Lagaudriere et al., 1998; Jee et al., 

2003; Zhang et al., 2003),. KAI1/CD82 down-regulates the formation 

p130CAS-Crk complex, a molecular switch for cell motility, leading to the 

inhibition of cell migration (Zhang et al., 2003). Rho small GTPases are 

activated by the clustering of KAI1/CD82 in T cells (Delaguillaumie et al., 

2002). The inhibition of Rho GTPases blocks the cellular protrusions 

triggered by KAI1/CD82 clustering and impairs KAI1/CD82-stimulated 

phosphorylation of Rho GTPases guanosine exchange factor Vav1 and  
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Figure 1.2   The mechanisms contributing KAI1/CD82-mediated 
suppression of cancer cell migration and invasion 
 
 A. KAI1/CD82 indirectly inhibits the uPA binding to uPAR and the pericellular 
plasminogen activation through inducing the redistribution of uPAR into focal 

adhesions and the association of uPAR with integrin α5β1. Presumably, 
pericellular ECM degradation will be consequently reduced.  B and C. 

KAI1/CD82 accelerates the internalization of both integrin α6β1 and EGFR. The 
internalized proteins might be delivered to lysosomes for degradation. Hence, the 
levels of integrin and EGFR at thecell surface are reduced, and cell adhesion and 
cell migration are impaired. D. KAI1/CD82 and other tetraspanins interact with 
each other and form tetraspanin web. KAI1/CD82 attenuates integrin signaling 
such as FAK-Src-p130CAS-Crk and Rho small GTPases signaling. The 

KAI1/CD82-containing tetraspanin web also recruits activated PKC to β1 
integrins and regulates the phosphorylation of laminin-binding integrins. As a 
consequence, cellular protrusion, possibly cellular retraction, and actin 
cytoskeleton reorganization are inhibited, and cell migration and cancer invasion 
are suppressed. E. The KAI1/CD82-EWI2/PGRL association enhances the 
motility-inhibitory activities of both molecules, while the KAI1/CD82-KITENIN 
association attenuates the motility-promoting activity of KITENIN. Modified with 
permission. Liu WM, and Zhang XA, 2006, KAI1/CD82, a tumor metastasis 
suppressor: Cancer Letters, v. 240, no. 2, p. 183-194. 
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adapter protein SLP76. However, the activity of Rho GTPases are not 

required for the inducible interaction between actin cytoskeleton and 

KAI1/CD82 (Delaguillaumie et al., 2002), suggesting a downstream role of 

Rho or other mechanisms.  

   2. KAI1/CD82 directly modulates integrin-dependent cell-extracellular matrix 

adhesion. For instance, integrin α6-dependent adhesion to laminin are 

diminished upon KAI1/CD82 overexpression and enhanced by KAI1/CD82 

knockdown (He et al., 2004). It was also reported that KAI1/CD82 

expression inhibited adhesion to fibronectin of DLD-1 and CT-26 colon 

cancer cells (Lombardi et al., 1999; Lee et al., 2003b), while KAI1/CD82 

silencing promoted the adhesion to fibronectin of BM314 colon cancer 

cells (Lombardi et al., 1999).  

 

1.2.4.1.2 Epidermal growth factor receptor (EGFR)   

      EGFR belongs to the ErbB family of receptors, and the ErbB pathway is 

frequently hyper-activated in cancer via the overproduction of ligands and 

receptors or the constitutive activation of receptors (Yarden and Sliwkowski, 

2001). KAI1/CD82 associates with EGFR, ErbB2, and ErbB3 (Odintsova et al., 

2000; Odintsova et al., 2003). Through this association, KAI1/CD82 accelerates 

the desensitization of EGF signaling and endocytosis of EGFR (Odintsova et al., 

2000) (Figure 1.2). Meanwhile, KAI1/CD82 specifically inhibits ligand-induced 

EGFR dimerization and alters the distribution of EGFR in plasma membrane 

(Odintsova et al., 2003).   
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1.2.4.1.3 EWI2/PGRL   

      EWI2/PGRL belongs to a novel Ig subfamily and associates with tetraspanins 

such as CD9, CD81, and KAI1/CD82 (Clark et al., 2001; Stipp et al., 2001) 

(Figure 1.2). KAI1/CD82 can form a complex with EWI2/PGRL in a CD9- and 

CD81-independent manner (Zhang et al., 2003b). EWI2/PGRL overexpression 

inhibits cell migration (Clark et al., 2001; Zhang et al., 2003b) and enhances the 

motility-inhibitory activity of KAI1/CD82 (Clark et al., 2001; Zhang et al., 2003b; 

Lee et al., 2004).    

 

1.2.4.1.4 KITENIN  

      KITENIN was recently found to directly bind the C-terminal cytoplasmic 

domain of KAI1/CD82 (Lee et al., 2004). KITENIN is also a transmembrane 4 

protein but does not belong to the tetraspanin superfamily. In contrast to 

KAI1/CD82, KITENIN promotes cell migration, cancer invasion, and cancer 

metastasis (Lee et al., 2004).  

 

1.2.4.1.5 Protein kinase C (PKC)  

      Among tetraspanin-associated intracellular Signaling proteins, KAI1/CD82 

interacts with the activated PKC (Zhang et al., 2001a) (Figure 1.2) but not 

phosphatidylinositol-4 kinase (PI-4K) (Zhang et al., 2001a). Upon phorbol ester 

stimulation, the activated PKC is recruited to interact with integrin-tetraspanin 

complex (Zhang et al., 2001a) and regulate integrin-dependent cell migration 

(Zhang et al., 2001a).  
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1.2.4.1.6 c-MET and GM2  

      c-MET is the cell surface receptor of HGF. HGF-cMET axis promotes 

integrin-dependent cell migration. KAI1/CD82 can attenuate this process and 

thus inhibit cell migration (Sridhar and Miranti, 2006). GM2 is a glycosphingo-

lipid (GSLs), which interacts with KAI1/CD82. GM2 is required for 

KAI1/CD82’s inhibition on cell migration through regulation of HGF-cMET axis 

(Todeschini et al., 2007).  

 

1.2.4.1.7 Duffy Antigen Receptor for Chemokines (DARC)  

     DARC can inhibit the colonization of metastasized cancer cells, probably 

through the interaction with KAI1/CD82(Bandyopadhyay et al., 2006; Rinker-

Schaeffer and Hickson, 2006). This interaction can trigger the senescene of 

cancer cell and completely abolish the lung metastasis of rat prostatic carcinoma 

cell line AT6.1, the human breast carcinoma cell line MDA-MB-435, and the 

mouse melanoma cell lines B16BL6 and B16F10 (Bandyopadhyay et al., 2006; 

Zijlstra and Quigley, 2006; Gellersen et al., 2007; Iiizumi et al., 2007). However, 

in DARC knockout mice, this inhibition of metastasis has been significantly 

impaired. 
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1.2.5   KAI1/CD82 redistributes the plasma membrane components   

      Cell surface molecules undergo dynamic redistributions during cell migration. 

KAI1/CD82 overexpression leads to the redistribution of urokinase-type 

plasminogen activator receptor (uPAR) into focal adhesions to form a stable 

complex with integrin α5β1, though no physically interaction was found between 

KAI1/CD82 and uPAR (Bass et al., 2005). The redistribution of uPAR markedly 

reduces its ability to bind the ligand uPA, and consequently to cleave and 

activate plasminogen (Bass et al., 2005) (Figure 1.2). Similarly, the redistribution 

of EGFR and gangliosides within plasma membrane were also found upon 

KAI1/CD82 overexpression (Odintsova et al., 2000; Odintsova et al., 2003).  

      Besides re-compartmentalization of plasma membrane components, 

KAI1/CD82 likely redistributes Tetraspanin Web components such as EGFR into 

distinct cellular compartments through endocytosis.  In addition, the diminished 

integrin α6-dependent cell adhesion upon KAI1/CD82 expression results from the 

decreased levels of α6 integrins at cell surface (He et al., 2004). As to the effect 

on EGFR, KAI1/CD82 accelerates the internalization of α6 integrins (Figure 1.2). 

Since the total cellular α6 integrins are not altered by KAI1/CD82, α6 integrins 

are likely redistributed into endocytic compartments. The mechanism KAI1/CD82 

use to redistribute the tetraspanin web components is obscure. The answer will 

likely rely on the identification of intrinsic trafficking motifs in KAI1/CD82.  
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1.2.6   Post-translational modifications of KAI1/CD82: the essential makeup 

for its motility-suppressive activity   

 

1.2.6.1 Palmitoylation  

       Palmitoylation is a posttranslational acylation process in which saturated 

fatty acids, predominantly palmitate, are covalently linked to the cysteine 

residues in proteins. Palmioylation contributes to membrane targeting of proteins, 

protein trafficking, localization of proteins into organized membrane 

microdomains such as lipid rafts, and regulation of functional activities of proteins 

(Dunphy and Linder, 1998; Resh, 1999; Bijlmakers and Marsh, 2003). 

Tetraspanin palmitoylation contributes to the organization of Tetraspanin Webs 

(Berditchevski et al., 2002; Charrin et al., 2002; Yang et al., 2002). KAI1/CD82 is 

palmitoylated in all 5 cysteines proximal to the plasma membrane (Cys5, Cys74 , 

Cys83 , Cys251 , and Cys253) (Zhou et al., 2004). Removal of palmitoylation 

reverses KAI1/CD82-dependent inhibition of cell migration and invasion, which is 

at least partly due to less KAI1/CD82 reaching the cell surface and joining the 

Tetraspanin Web (Zhou et al., 2004).  

 

1.2.6.2 Glycosylation   
 
      KAI1/CD82 is N-glycosylated, and the degrees of glycosylation vary among 

cells or tissues (Fukudome et al., 1992; Imai et al., 1992; White et al., 1998). The 

glycosylation appears to be important for the cell surface targeting of KAI1/CD82 
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(Fukudome et al., 1992; Imai et al., 1992), motility regulation (Ono et al., 2000), 

and integrin association (Ono et al., 1999; Ono et al., 2000).  

     These studies suggest that reaching the cell surface or the presence in 

plasma membrane is the prerequisite for KAI1/CD82 to exert its motility-inhibitory 

activity.   

 

1.2.7   KAI1/CD82 induces apoptosis: a distinctive or concurrent 

mechanism?  

      Along with several other tetraspanins, KAI1/CD82 induces apoptosis in a 

variety of cell lines upon overexpression (Ono et al., 2000; Schoenfeld et al., 

2003). Meanwhile, KAI1/CD82 sensitizes cells to the pro-apoptotic stimuli 

(Schoenfeld et al., 2003). KAI1/CD82 overexpression promotes the generation of 

intracellular reactive oxygen intermediates, which possibly result from the Cdc42-

dependent release of intracellular anti-oxidant glutathione (Schoenfeld et al., 

2003). It remains to be determined whether KAI1/CD82-induced apoptosis 

contributes to the metastasis suppression. Despite no effects on cancer cell 

proliferation in vitro and/or tumor growth in vivo for prostate, colon, and skin 

cancers (Dong et al., 1995; Takaoka et al., 1998a; Lombardi et al., 1999; Kim et 

al., 2005), KAI1/CD82 was found to decrease the size of primary tumors of 

gastric and breast cancers in animal models (Dong et al., 1995; Lee et al., 

2003a; Lee et al., 2003b).  It is therefore possible that, at least in some cancers, 

the induction of apoptosis may serve as a concurrent mechanism for KAI1/CD82.  
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1.2.8   How KAI1/CD82 expressions are diminished or lost in invasive and 

metastatic cancers 

      How KAI/CD82 gene expression is regulated becomes an increasingly 

important question. The answer will not only shed light on the mechanisms of 

cancer invasion and metastasis but also likely lead to clinical benefits. The 

regulatory mechanisms of KAI1/CD82 gene expression have started to emerge 

from recent studies and are summarized as follows and in Table 1.1.  

 

1.2.8.1 The alternative splicing of KAI1/CD82  
 
      KAI1/CD82 contains at least one alternative spliced form, in which the exon 7 

is deleted (Lee et al., 2003b). As a result, this spliced form lacks the distal part of 

the second extracellular loop and part of the fourth transmembrane region (also 

see section 1.3.1). Compared to wild type KAI1/CD82, this spliced KAI1/CD82 

cannot efficiently suppress the metastasis of gastric carcinoma (Lee et al., 2003). 

 

1.2.8.2 The transcriptional regulation of KAI1/CD82 expression 
 
      Down-regulated KAI1/CD82 expression does not result from loss of 

heterozygosity (Dong et al., 1997a; Kawana et al., 1997; Tagawa et al., 1999), 

the hyper-methylation of the CpG island within KAI1/CD82 promoter region 

(Jackson et al., 2000b), or the mutations within the KAI1/CD82 coding region 

(Dong et al., 1995; Miyazaki et al., 2000). Rather, it is likely due to increased 

transcription repressor activity and/or decreased activator activity.  
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Table 1.1 Molecules involved in KAI1/CD82 transcription regulation 

Molecules involved in activation 
Molecules involved in 

repression 

 

Transcription factors: 
 
NFκB* (Shinohara et al., 2001; Li et al., 2001; 

Baek et al., 2002; Telese et al., 2005) 

Tip60;  (Telese et al., 2005) 

Fe65;  (Telese et al., 2005) 

SET (Telese et al., 2005) 

P53;  (Dong et al., 1997a) 

AP1;  (Dong et al., 1997a) 

AP2;  (Dong et al., 1997a) 

C-Jun & JunB (Mashimo et al., 1998; 

Mashimo et al., 2000; Gao et al., 2003; 

Marreiros et al., 2005) 

 

Transcription factors: 
 
NFκB* (Baek et al., 2002; 

Telese et al., 2005; Kim et al., 

2005) 

β-Catenin (Kim et al., 2005);   

Reptin (Kim et al., 2005) 

NcoR (Baek et al., 2002);   

TAB2 (Baek et al., 2002);   

HDAC3 (Baek et al., 2002) 

 

Other molecules:  
 
Amyloid β precursor protein (APP) (Baek et 

al., 2002) 

PKC (Akita et al., 2000)  

IL-1(Baek et al., 2002)  

Nerve growth factor (Sigala et al., 1999) 

 

 
* NFκB could serve as either activator or repressor depending on whether co-
activator or co-repressor is recruited (see text for detail). 
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1.2.8.2.1 NFκB  

      NFκB P50 subunit was found to bind to a region between -6631 to -6996 bp 

upstream of the KAI1/CD82 gene transcription start site. This region contains a  

sequence homologous to the NFκB binding sequence (Baek et al., 2002; Telese 

et al., 2005). The overexpression or activation of NFκB elevates the mRNA and 

protein levels of KAI1/CD82 in murine pro-B cells (Li et al., 2001) and various 

human adenocarcinoma cell lines (Li et al., 2001; Shinohara et al., 2001), while 

specific inhibition of NFκB by IκBα down-regulates KAI1/CD82  transcription (Li et 

al., 2001). In contrast to p50, NFκB p65 subunit does not bind to the KAI1/CD82 

promoter. These observations strongly suggest that NFκB p50 subunit dimerize 

and regulate the transcription of KAI1/CD82. Whether NFκB activates or 

represses KAI1/CD82 transcription actually depends on the nature of the 

transcription co-factors recruited to NFκB p50.  Co-activator Tip60/Fe65 complex 

or co-repressor N-CoR/TAB2/HDAC3 complex could exchange with each other 

to bind NFκB p50 and turn on and off KAI1/CD82 transcription, respectively 

(Baek et al., 2002; Telese et al., 2005). 

 

1.2.8.2.2 β-Catenin and Reptin   

      A recent discovery has linked the transcription regulation of KAI1/CD82 to β-

catenin (Kim et al., 2005). β-catenin, in combination with reptin chromatin 

remodeling complex, binds directly to the p50 docked on the NFκB response 

element in the KAI1/CD82 promoter region and replaces the Tip60 co-activator 

complex (Telese et al., 2005). Consequently, the co-repressor HDACs are 
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recruited to β-catenin-reptin complex to repress KAI1/CD82 transcription. 

Therefore, the exchange of β-catenin co-repressor and Tip60 co-activator also 

regulates the KAI1/CD82 transcription. 

 

1.2.8.2.3 p53, AP-1, AP-2, JunB, and c-Jun  

       Although no typical TATA- and CAAT-binding motifs are found in KAI1/CD82 

promoter, KAI1/CD82 promoter does contain binding sites for the transcription 

factors such as p53, AP1, AP2, and Sp1 (Dong et al., 1997). Two minimal 

promoter elements have bee reported: one is located from -197 to -1 bp and 

another from +1 to +351 bp (Gao et al., 2003). Both in vitro and in vivo analyses 

indicated that p53 is able to bind the KAI1/CD82 promoter and turn on its 

expression (Mashimo et al., 2000). Furthermore, p53 is involved in etoposide-

induced KAI1/CD82 gene expression in A549 non-small cell lung cancer cells 

(Mashimo et al., 2000). Although KAI1/CD82 transcription is up-regulated by p53 

(Marreiros et al., 2003; Marreiros et al., 2005), KAI1/CD82 can still be expressed 

in cells containing p53 mutant deficient in DNA binding (Duriez et al., 2000; 

Shinohara et al., 2001). In addition, c-Jun and Jun-B was also found to 

participate in KAI1/CD82 transcription regulation (Mashimo et al., 2000; 

Marreiros et al., 2003; Marreiros et al., 2005).  
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1.2.8.2.4 Other transcription factors   

      Besides NFκB, other transcription factors in IL-1 and TNF signaling pathways  

may also regulate KAI1/CD82 transcription since IL-1 and TNF induce 

KAI1/CD82 gene expressions (Baek et al., 2002; Bao et al., 2007).  Also, a novel 

transcription co-activator, SET, can be recruited by p50-Tip60-Fe65-APP 

complex to KAI1/CD82 promoter region (Telese et al., 2005; Bao et al., 2007). 

Moreover, PKC activation promotes KAI1/CD82 gene transcription and  

expression (Akita et al., 2000), suggesting that the transcription factors 

responsive to PKC activation are involved. Finally, transcription factors 

responsive to nerve growth factor may also elevate the transcription of 

KAI1/CD82 (Sigala et al., 1999).   

      Taken together, the replacement of transcription activators from the 

KAI1/CD82 promoter by the dominant co-repressor complex may serve as one 

mechanism to repress KAI1/CD82 expression. How NFκB, N-CoR, β- catenin, 

p53, AP-1, and AP-2 coordinately regulate the transcription of KAI1/CD82 in a 

temporal-spatial manner is an interesting and important issue that remains to be 

addressed.     
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1.3 The actin cytoskeleton rearrangement, cell migration, and small Rho 

GTPases 

 

1.3.1   Cytoskeleton components, actin polymerization and cytoskeletal 

rearrangement 

      The cytoskeleton can be described as cellular "scaffolding". It provides a 

traffic track for all organelle, within the cytoplasm. It presents in all eukaryotic and 

prokaryotic cells (Albert, 1994). The cytoskeleton provides a dynamic structure to 

maintain cell shape, as well as protects the cell. Furthermore, it participates in 

cell motion. In addition to all the roles above, it plays pivotal roles in cellular 

division. Thus, the cytoskeleton functions as a bone-like structure within the 

cytoplasm (Albert, 1994). The cytoskeleton consists of three major classes of 

proteins. They are microfilaments, intermediate filaments and microtubules.  

   1. Microfilaments. The major protein residings in the microfilaments is actin.      

Actin monomer can be polymerized to form filaments, which are the major 

microfilaments. An actin filament is approximately 7 nm in diameter. It is 

composed of two actin chains oriented in a circular shape. They are 

heavily accumulated just beneath the plasma membrane, so as to keep 

cellular shape, and form cytoplasmic protuberances such as pseudopodia 

and microvilli, and mediate inter-cellular signaling transduction in some 

cell-to-cell or cell-to-matrix junctions. Moreover, they participate in 

cytokinesis and cell contraction in coordination with myosin. The 
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interaction of actin and its motor, myosin, can reduce cytoplasmic 

streaming in most cells. 

   2. Intermediate filaments. The major proteins are vimentins, keratin, 

neurofilaments, and lamin. Unlike microfilaments, which only consist of 

actin, intermediate filaments consist of a variety of structural proteins. 

Different intermediate filaments and their major functions are listed as 

following: 

a. Vimentins – ubiquitously expressed as structural support of many cells. 

b. Keratin – found mostly in skin cells, hair and nails. 

c. Neurofilaments – present in neural cells. 

d. Lamin - structural support to the nuclear envelope. 

   3. Microtubules. The main cytoskeletal protein is microtubules. Microtubules 

are hollow cylinders of approximately 25 nm in diameter. They are made 

of 13 protofilaments consisting of polymers of alpha and beta tubulin. They 

constantly undergo rapid turnover as they bind GTP for polymerization or 

GDP for depolymerization. They are organized by the centrosome. The 

key functions of microtubules are listed as follows: 

a. Intracellular transport (provides track for dyneins and kinesins as that            

transport organelles such as mitochondria or vesicles). 

b. Axoneme of cilia and flagella. 

c. Mitotic spindle. 

d. Cell wall in plants. 
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      As stated in the above, the major force that drives cell to migration is 

microfilaments, more specifically, actin filaments. Actin filaments are the building 

block of lamellipodia and filopodia, which play central roles in plasma membrane 

protrusion and afterwards cell migration (Albert, 1994). Understand how actin is 

polymerized is very important for understanding of cell migration and its 

regulation (Albert, 1994; Pollard and Borisy, 2003; Raftopoulou and Hall, 2004). 

The first step of locomotion, ie;  the protrusion of a leading edge is driven by the 

actin polymerization that pushes the plasma membrane outward. Types of 

protrusive structures are various in different cell types. Protrusion can be divided 

into three different catalogories, filopodia (also known as microspikes), 

lamellipodia, and pseudopodia. All of them are filled with a dense core of 

filamentous actin and contain no membrane-enclosed organelles. These three 

structures differ basically in the way at actin is organized, in two or three 

dimensions respectively. The actin associating proteins involved in the formation 

of these structures are also varied, and their interactions with actin are regulated 

in a spatial and temporal manner. These structures named above are introduced 

as follows: 

       1. Filopodia. Filopodia are growth-cone like the protrusions found commonly 

in some types of fibroblasts. They contain long, bundled actin filaments, 

similar to those in microvilli but longer, thinner, and more dynamic (Albert, 

1994; Pollard and Borisy, 2003; Raftopoulou and Hall, 2004).  

   2. Lamellipodia. Lamellipodia are more likely to be present in epithelial cells, 

although fibroblasts and some neurons may also use similar structures to 
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migrate. Unlike filopodia, lamellipodia are complicated by consisting of 

two-dimensional, sheet-like structures. They contain a dense, branched 

“dendritic” mesh network of actin filaments, lying on a plane parallel to the 

solid substratum. The geometry of lamellipodia makes it convenient to 

observe under the phase contrast light microscope. Thus, people know 

more about the dynamic organization and protrusion mechanism of 

lamellipodia than that of filopodia and pseudopodia (Albert, 1994; Pollard 

and Borisy, 2003; Raftopoulou and Hall, 2004). 

   3. Pseudopodia. Pseudopodia are stubby three-dimensional projections filled 

with an actin-filament gel. They can be found in amoebae and neutrophils 

(Albert, 1994; Pollard and Borisy, 2003; Raftopoulou and Hall, 2004).  

      Since lamellipodia is the most simplistic machinery that is required for cell 

motility, I here use them as an example to illustrate how actin undergoes 

polymerization during cell migration. 

      Actin filaments are double helical polymers of globular subunits that are 

assembled from head-to-tail to endow the filament a molecular polarity (Pollard 

and Borisy, 2003). According to the arrowhead pattern heralded by decoration 

with myosin (also see Figure 1.3), one end is called the barbed end and another 

is called the pointed end. This polarity is the core mechanism driving actin 

assembly in cells. The barbed end usually points outward towards the plasma 

membrane (Green in Figure 1.3). It is strongly oriented to favor the elongation of 

the actin filaments (Small et al., 1978). For example, when the permeabilized 

cells were fed with fluorescent dye-tagged actin, actin was found to be added to  
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Figure 1.3   Key factors participating in actin polymerization 
 
1. Extracellular stimuli activate receptors. 2. The correspondent signal 
transduction pathways activate small Rho GTPases and PIP2. 3. Activate 
WASp/Scar proteins. 4. WASp/Scar proteins recruit Arp2/3 complex and an actin 
monomer to the side of a preexisting filament to initiate a new branch. 5. Rapid 
growth at the dendritic barbed end of the new branch. 6. pushes the membrane 
outward and forms membrane protrusion and lamellipodia. 7. Capping proteins 
shut down growth within seconds. 8. Filaments aged by hydrolysis of ATP-actin 
subunit followed by dissociation of the γ phosphate (green circle turn white). 9. 
Dephosphorylated / activated ADF/cofilin induces phosphate dissociation and 
promotes disassembly of ADP-actin from pointed filament ends (during steady-
state protrusion when G-actins are depleted). Dephosphorylated / activated 
ADF/Cofilin can also sever ADP-actin filaments (during stimulated protrusion and 
lamellipodia formation when G-actins become abundant). 10. Profilin catalyzes 
the exchange of ADP for ATP (turning the white circles subunits green again), 
11. The recycling pool of ATP-actin bound to profilin can return to where 
membrane protrusion and the actin dendritic mesh network locate, ready to 
generate more barbed ends. 12. Small Rho GTPases also activate PAK and LIM 
kinase. Once LIM kinase has been acti-vated, it phosphorylates and inactivates 
ADF/cofilin. Phosphorylation or inacti-vation of ADF/cofilin slow down the 
turnover of the filaments and actin tread-milling. Modified with permission. Pollard 
TD, and Borisy GG, 2003, Cellular Motility Driven by Assembly and Disassembly 
of Actin Filaments: Cell, v. 112, no. 4, p. 453-465. 
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the barbed ends at the leading edge of the lamellum (Symons and Mitchison, 

1991; Chan et al., 2000; Pollard and Borisy, 2003). In steady state, ATP-actin 

associates at the barbed end as ADP-actin dissociates from the pointed end, 

resulting in very slow recycling and treadmilling of actin from the barbed end to 

the pointed end, which can be captured directly by fluorescence time-lapse 

microscopy (Fujiwara et al., 2002). However, in highly motile state, actin 

treadmilling at the leading edge turns faster. During the actin treadmilling, ATP  

hydrolysis in the filament also plays an essential role to maintain this process 

(Pollard and Borisy, 2003). 

      A series of questions regarding the actin cytoskeleton rearrangement during 

cell migration remains unanswered: how does the growth of actin filaments turn 

faster when cells switch from steady state to highly motile state? How is the de 

novo actin polymerization initiated and terminated? How do actin filaments form 

dendritic mesh network to push forward the membrane at the leading edge? How 

are ATP- and ADP- bound actin monomers in the barbed end and pointed end of 

the actin filament network recycled? How do environmental and internal signals 

closely govern these reactions?  

      Answers to these questions are assessed by a theory called the dendritic 

nucleation/array treadmilling (Pollard and Borisy, 2003) (Figure 1.3). In short, 

cells contain a pool of unpolymerized actin monomers bound to groups of protein 

including profilin (Vinson et al., 1998; Kaiser et al., 1999) and thymosin-β4 (Safer 

and Nachmias, 1994; De La Cruz et al., 2000). De novo actin polymerization will 

be initiated when extracellular stimuli turn on signaling pathways and sequentially 
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activate nucleation-promoting factors, primarily the WASp/Scar family of proteins 

(Takenawa and Miki, 2001; Weaver et al., 2003).  

      WASp was named after the first patient with human bleeding disorder and 

immunodeficiency, called Wiskott - Aldrich syndrome.  A mutation of the WASp 

gene has been identified as the cause of this syndrome (Rengan et al., 2000).      

      Soon after the activation of nucleation-promoting factors, Arp2/3 complex 

becomes then activated to initiate de novo polymerization of a actin filament that 

forms a branch on the side of a previously existing filament (Machesky et al., 

1994; Mullins et al., 1998) (thorough discussion of Arp2/3 can be found in section 

1.3). Fed by actin-profilin from the abundant subunit pool, newly synthesized 

branches grow rapidly and push the plasma membrane outward (Sagot et al., 

2002). The elongation of the newly synthesized actin filament is transient, as the 

capping proteins terminate growth (Cooper and Schafer, 2000). Actin subunits in 

this new dendritic network hydrolyze their bound ATP rapidly but dissociate the γ-

phosphate slowly. Dissociation of γ-phosphate triggers disassembly reactions, 

accompanying with debranching and binding of ADF/cofilin (Pollard and Borisy, 

2003).  

      Cofilin then promotes the severing and dissociation of ADP-subunits from the 

pointed ends (Pollard and Borisy, 2003) (Detailes discussion of Cofilin can be 

found in section 1.3). Profilin functions as the nucleotide exchange factor for 

actin. It catalyzes the transition of ADP-actin into ATP-actin and the recycling of 

subunits to the ATP-actin-profilin pool (Vinson et al., 1998; Kaiser et al., 1999), 

thus ready for the next round of assembly. Beside dissembling and recycling 
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actin from the pointed end during steady state movement, ADF/cofilins may also 

contribute to initiate protrusions by severing filaments to expose barbed ends for 

elongation (Zebda et al., 2000; Ghosh et al., 2004). In this case, an individual 

actin filament does not treadmill in the way of simultaneous elongating at one 

end and shortening at another. A new filament is synthesized at a branch point 

and grows towards its barbed end while its pointed end is capped at the branch;  

the filament becomes capped at its barbed end, debranches and shortens after  

being severed by cofilin (Pollard and Borisy, 2003). Thus, the actin filament 

bundle are recycling and reproducing themselves at the leading edge as a whole. 

However, actin treadmills dismantle themselves and these dismantling processes 

keep some distance from the very leading edge in the front (Figure 1.3). 

 

1.3.2   Steps in cell migration and signals that govern those steps  

   Directed cell movement is depended upon the rearrangement of cytoskeletal 

filament throughout the cytoplasm (Elson, 1988; Raftopoulou and Hall, 2004).The 

cytoskeleton consists of three distinct types of protein filaments: Actin filaments 

(Pollard and Borisy, 2003), microtubules (Watanabe et al., 2005) and 

intermediate filaments (Goldman et al., 1996). 

   Cell migration requires a highly well organized and cyclical program starting 

from transient local signaling events to initiate polarization and ending with rear 

retraction (Figure 1.4) ( Horwitz and Parsons, 1999; Parent and Devreotes, 1999; 

Horwitz and Webb, 2003; Ridley et al., 2003; Van Haastert and Devreotes, 2004;  
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Figure 1.4   Cell migration steps 
 
Cell migration can be divided into three sequential steps: A. Polarity is intrinsic to 
a migrating cell. Cdc42, as well as Par proteins and aPKC, participate in the 
initiation of polarity. Those proteins synergize to promote directed vesicle 
trafficking, such as translocation of Golgi apparatus towards the front of the 
nucleus and toward the leading edge, re-organization of microtubules , and the 
formation of the MTOC. In the presence of chemotactic agents, PIP3 start to 
accumulate at the leading edge as the result of the localized PI3K activation. 
PTEN, a PIP3 phosphatase localized to the cell margins and rear, restrict 
protrusions to the front along with mysosin II. B. Protrusion heralds the start of 
cell migration. Sequential activation of Rac and Cdc42, their down-stream 
effectors WASP/WAVE proteins, and then Arp2/3 promote the formation of actin 
branches on pre-existing actin filaments.  In the combination effect of profilin 
(control the availability of activated actin monomers), ADF/cofilin (de-branching, 
depolymerizing and severing proteins), and capping protein, promote actin 
polymerization and thus actin treadmilling. Protrusions are stabilized by the new 
adhesions formation. Integrin activation and clustering is pivotal for nascent 
adhesions. Talin binding and PKC-, Rap1-, and PI3K-mediated pathways 
activate integrins. Rac participates in Integrin clustering. C. Rear retraction and 
detachment are mediated by Src/FAK/ERK, Rho, myosin II, calcium, calcineurin, 
calpain, microtubules. Modified with permission. Ridley AJ, Schwartz MA, 
Burridge K, Firtel RA, Ginsberg MH, Borisy G, Parsons JT, and Horwitz AR, 
2003, Cell Migration: Integrating Signals from Front to Back: Science, v. 302, no. 
5651, p. 1704-1709. 
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Vicente-Manzanares et al., 2005).  Cell migration consists of several key steps 

as follows: 

   1. Polarization. When a non-migrating cell encounters chemotactic 

molecules, its cell body will transform into two distinct portions: the “front” 

portion, ie., the forward moving portion, and the”back” portion, ie., the 

retracting rear portion localizes. Small Rho GTPases family member 

Cdc42 (Stowers et al., 1995; Wedlich-Soldner et al., 2003; Watanabe et 

al., 2004; Etienne-Manneville et al., 2005), PAR proteins (PAR3 and  

PAR6) (Nagai-Tamai et al., 2002; Suzuki et al., 2002; Macara, 2004; 

Suzuki et al., 2004; Gerard et al., 2007; Totong et al., 2007), and atypical 

protein kinase C (aPKC) (Suzuki et al., 2002; Suzuki et al., 2004) are 

participating in polarization. After polarization has occurred, multiple 

overlapping signaling pathways from small RhoGTPases, PI3K, integrin,  

microtubules and vesicular transport will maintain the stability of the 

polarization.  

   2. Protrusion. Protrusion heralds the actual beginning of the migration cycle. 

The cardinal event during the formation of protrusion is the actin 

polymerization  (Pollard and Borisy, 2003). The actin cytoskeleton 

undergoes polarization, forms barbed ends and pointed ends under the 

induction of ARP2/3 complex, and thus drives the actin treadmilling and 

membrane protrusion (Bailly et al., 1999). Protrusions can be present in 

the forms of either filopodia (spike –like) or lamellipodia (large and broad). 

They provide the direction of cell migration (Pollard and Borisy, 2003). 
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Several proteins are proposed to regulate the fast-turnover actin 

cytoskeletal rearrangement. They include the following: ADF/cofilin (Kiuchi 

et al., 2007), capping proteins (Eddy et al., 1997; Miyoshi et al., 2006), 

profilin (Didry et al., 1998; Gutsche-Perelroizen et al., 1999; Blanchoin et 

al., 2000a; Battersby et al., 2004), dendritic network stabilizers within 

lamellipodia such as α-actinin (Laukaitis et al., 2001), cortactin (Weed et 

al., 2000), and filamin A (Hou et al., 1990; Flanagan et al., 2001). Cofilin 

can sever actin filaments, promote the dissociation of actin, generate more 

barbed ends for dendritic actin mesh network formation, increase actin 

turnover rate, and promote lamellipodia formation in conjunction with 

ARP2/3 complex (Svitkina and Borisy, 1999).  

   3. Traction. At this stage, the newly formed adhesions at the leading edge of 

a migrating cell are stabilized by the recycling of the integrin from the rear 

end to the front end (Pollard and Borisy, 2003; Caswell and Norman, 

2006). 

   4. Retraction. Rear retraction of the cell is the hallmark of finishing the 

migration cycle and cell translocation. During retraction, myosin II plays a 

pivotal role ( Uchida et al., 2003; Wylie and Chantler, 2003).  

 

1.3.3   Small RhoGTPases and their role in actin cytoskeleton 

rearrangement and cell migration   

      Small Rho GTPases are ubiquitously expressed in various species. So far, 

20 members have been found in mammals. Members 7, 5 and 15 were 
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uncovered in Drosophila melanogaster, Caenorhabditis elegans and 

Dictyostelium discoideum respectively (Schultz et al., 1998).  

      During cell migration, small Rho GTPases play a central role as the major 

molecular switch (Burridge and Wennerberg, 2004). They are typically activated 

by upstream signaling mechanisms such as integrin (Hood and Cheresh, 2002) 

and EGF (Ridley and Hall, 1992; Ridley et al., 1992; Nobes et al., 1995; Malliri et 

al., 1998). Rho GTPases switch the on and off downstream signal transduction 

pathways by cycling between a GDP-bound, inactivated form and a GTP-bound, 

activated form (Raftopoulou and Hall, 2004). This transition is tightly regulated by 

guanine exchange factors (GEFs), GTPase activating proteins (GAPs) and 

guanine dissociation inhibitors (GDIs) (Raftopoulou and Hall, 2004). In their GTP-

bound activated state, Rho GTPases bind and activate downstream targets 

(effectors) such as kinases and scaffold proteins. Then they trigger a series of 

intracellular responses to regulate actin dynamics, cell migration and invasion 

(Figure 1.4).  

      These small Rho GTPases coordinate with each other and play very 

distinctive but well cooperative roles to propel cell migration. For example, RhoA 

regulates the assembly of contractile and actin filament-myosin crosslinking, 

while Rac and Cdc42 promotes actin polymerization and dendritic mesh network 

to form peripheral lamellipodia and filopodia, respectively (Hood and Cheresh, 

2002; Ridley et al., 2003; Burridge and Wennerberg, 2004; Raftopoulou and Hall, 

2004). Moreover, all three GTPases also induce inside-out signaling to promote 

the assembly of integrin-based, matrix adhesion complexes (Ridley and Hall, 
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1992; Ridley et al., 1992; Nobes et al., 1995). Based on such a broad spectrum 

of functions, it is not surprising that these three regulatory proteins play such 

pivotal roles in controlling cell migration. Beside actin cytoskeleton 

rearrangement, Rho GTPases are also implicated in a variety of other 

biochemical processes, ranging from cell polarity, microtubule assembly to gene 

transcription. Most notably, Cdc42 is required for the establishment of cell 

polarity, while all three can, in distinct ways, affect the microtubule cytoskeleton 

and gene transcription (Etienne and Hall, 2002; Hood and Cheresh, 2002; Ridley  

et al., 2003; Burridge and Wennerberg, 2004; Raftopoulou and Hall, 2004). The 

functions of each Rho GTPases are listed as follows for further discussion (See 

also Figure 1.5). 

 

1.3.3.1 Upstream of Rho GTPases  

      The p130Cas/CrkII/DOCK180 pathway, as illustrated in Figure 1.5, the 

SH2/SH3 domain-containing adaptor protein Crk (Hasegawa et al., 1996; Buday 

et al., 2002) interacts with another adaptor molecule p130Cas. The presence of 

Crk/p130Cas complex activates Rac. Crk/p130Cas complex serves as a 

“molecular switch” to promote cell migration (Figure 1.5) (Klemke et al., 1998). 

DOCK180 is a downstream component of integrin signaling (Hood and Cheresh, 

2002). DOCK180 was originally portrayed as a binding partner of CrK. 

Expression of DOCK180 can enhance further p130Cas/Crk/Rac-induced cell 

migration (Cheresh et al., 1999). The mechanism of how p130Cas/Crk/DOCK180 

complex activates Rac might be as follows: DOCK180/ELMO recruits a DH- 
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Figure 1.5   Small RhoGTPases, their upstream regulators and downstream 
effectors, and their roles in actin cytoskeleton rearrangement and cell 
migration 
 
Small RhoGTPases, like Rac, can be activated by conjugation of integrin and its 
ECM ligand. After integrin activation, GEF DOCK180 form complex with CrKII 
and p130CAS and thus activates Rac. PI3-K also activates Rac. Once Rho 
GTPases are activated, they will execute distinct but well coordinated tasks to 
promote cytoskeletal rearrangement and thus cell migration. Rac and cdc42 
promote lamellipodia / new adhesion formation and filopodia / polarization 
formation respectively. Two important effectors have been identified downstream 
of Rac and cdc42. 1) Ser/Thr kinase p65PAK activates Arp2/3 and plays an 
important role in regulating actin dynamics to form lamellipodia. 2). WASp/SCAR/ 
WAVE family of scaffold proteins. Once they are activated, each of these 
proteins is able to activate the Arp2/3 complex, which in turns promotes actin 
polymerization either de novo or at the barbed end or sides of preexisting 
filaments. In this way, the dendritic morphology of lamellipodia (by Rac1) or 
filopodia (by Cdc42) is generated. Under the similar mechanism, cdc42 also 
promotes cell polarization. Rho promotes focal adhesion formation, cell body 
contraction and rear end retraction. 1) In leukocytes and macrophages, Rho 
stimulates actin-myosin filament crosslinking and in turn contractility through 
Ser/Thr kinase p160ROCK. Rock inhibits MLC phosphatase, which in turn allows 
MLC to remain phosphorylated. The overall effect is to activate MLC and induce 
actin-myosin crosslinking and thus rear contraction and tension. 2) p160ROCK, 
like p65PAK, can phosphorylate and activate LIMK, which in turn phosphorylates 
and inactivates cofilin. Cofilin temporarily lose its function to sever actin 
filaments, resulting in stabilization of actin filaments within actin:myosin filament 
bundles, as well as favoring focal adhesion formation and maintenance. Solid 
arrows symbolize direct activating signals. Modified with permission. Raftopoulou 
M, and Hall A, 2004, Cell migration: Rho GTPases lead the way: Developmental 
Biology, v. 265, no. 1, p. 23-32. 
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1.3.3.1 Upstream of Rho GTPases  

      The p130Cas/CrkII/DOCK180 pathway, as illustrated in Figure 1.5, the 

SH2/SH3 domain-containing adaptor protein Crk (Hasegawa et al., 1996; Buday 

et al., 2002) interacts with another adaptor molecule p130Cas. The presence of  

Crk/p130Cas complex activates Rac. Crk/p130Cas complex serves as a 

“molecular switch” to promote cell migration (Figure 1.5) (Klemke et al., 1998). 

DOCK180 is a downstream component of integrin signaling (Hood and Cheresh, 

2002). DOCK180 was originally portrayed as a binding partner of CrK. 

Expression of DOCK180 can enhance further p130Cas/Crk/Rac-induced cell 

migration (Cheresh et al., 1999). The mechanism of how p130Cas/Crk/DOCK180 

complex activates Rac might be as follows: DOCK180/ELMO recruits a DH- 

containing GEF to the complex, which in turn activates Rac by adding GTP 

(Raftopoulou and Hall, 2004). In lymphocytes, Vav might function as a GEF since 

it is associated with DOCK2. Other GEFs might still exist, because the blocking 

of Vav activity by dominant negative Vav is not sufficient to block activation of 

Rac by DOCK2 (Nishihara et al., 2002).  
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containing GEF to the complex, which in turn activates Rac by adding GTP 

(Raftopoulou and Hall, 2004). In lymphocytes, Vav might function as a GEF since 

it is associated with DOCK2. Other GEFs might still exist, because the blocking 

of Vav activity by dominant negative Vav is not sufficient to block activation of 

Rac by DOCK2 (Nishihara et al., 2002).  

 

 1.3.3.2 Rac signaling: lamellipodia and new adhesion in the front  

 

1.3.3.2.1 Rac1 promote actin polymerization, lamellipodia formation and cell 

migration  

      As a major downstream target of integrin and growth factor signaling 

pathways, Rac promotes actin polymerization in the leading edge to form 

membrane protrusion, lamellipodia (Nobes and Hall, 1995; Etienne and Hall, 

2002; Hood and Cheresh, 2002; Ridley et al., 2003; Burridge and Wennerberg, 

2004; Raftopoulou and Hall, 2004), and cell adhesion (Souza-Schorey et al., 

1998; Burridge and Wennerberg, 2004).  

      How does Rac promote membrane protrusion and lamellipodia formation? 

Expression of the constitutively activated Rac induces membrane ruffling. 

Furthermore, suppression of Rac activity by expressing a dominant-negative 

form of Rac, N17Rac1, impairs the ruffle formation induced by growth factors 

(Ridley et al., 1992). It is worthwhile to mention here that membrane ruffles 

closely resemble lamellipodia, and those terms are interchangeably used 

(Burridge and Wennerberg, 2004). Frequently, lamellipodia can develop into 
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membrane ruffles, especially when these membrane protrusions can’t attach to 

the matrix and thus flip backward on the dorsal surface (Burridge and 

Wennerberg, 2004). On the other hands, membrane ruffles can be induced de 

novo from the dorsal surfaces of cells. However, membrane protrusion may be 

related more to macropinocytosis than cell migration (Burridge and Wennerberg, 

2004), as the activated Rac promotes the accumulation of  large vesicles that 

contain the engulfed materials from the extracellular environment (Ridley et al., 

1992). Interestingly, macropinocytosis is also found when the activated Ras is 

introduced into cells (Bar-Sagi and Feramisco, 1986), and this Ras-induced 

membrane ruffling can be inhibited by the dominant-negative Rac (Ridley et al., 

1992; Burridge and Wennerberg, 2004). 

      Unlike the controversial role of RhoA in actin polymerization, Rac is a robust 

actin polymerization activator. Although Rac1 can activate PI 5-kinase and this 

suggests that Rac1 promotes actin polymerization by activating the uncapping 

process of actin filaments, through lipids such as PIP2 (Tolias et al., 1995). 

Arp2/3 complex, the potent actin nucleater and polymerizer, turns out to be a 

more prominent in inducing barbed ends and dendritic actin mesh network at the 

leading edge of lamellipodia. What is the linkage between Rac and Arp2/3? Does 

Rac directly or indirectly regulate actin polymerization? Why does the regulation 

of Arp2/3 by Rac1 play such an exceptionally important role in the formation of 

lamellipodia and cell migration?  

      First, WAVE/Scar protein bridges between Rac and Arp2/3 (Figure 1.5). 

WAVE/Scar protein belongs to the WASP family (Machesky and Insall, 1998; 
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Miki et al., 1998). Unlike Cdc42, which binds WASP and N-WASP and induces a 

conformational change that sequentially activates downstream effectors such as 

Arp2/3 to nucleate actin polymerization, Rac does not interact directly with the 

WAVE/Scar proteins. Instead, Rac can activate Arp2/3 through WAVE/Scar by 

two different and indirect ways, by IRSp53 (Miki et al., 2000), or alternatively by 

Rac binding proteins Nap125, PIR121, and probably HSPC300 and Abi2 (Eden 

et al., 2002). However, IRSp53 has later been found to preferentially bind Cdc42 

over Rac, indicating that IRSp53 may be the downstream of Cdc42 activation ( 

Govind et al., 2001; Krugmann et al., 2001). As for Nap125 and PIR121, along 

with HSPC300 and Abi2, they bind WAVE and restrict its activity during the 

steady state. Once activated, Rac will induce the dissociation of Nap125, 

PIR121, and Abi2 from WAVE and HSPC300, the release of WAVE to stimulate 

the actin polymerization activity of Arp2/3 (Eden et al., 2002). Interestingly, 

another adaptor protein, Nck, also binds Nap125, which similarly frees WAVE. 

Both Rac and Nck are the downstream effectors of a variety of receptors and 

provide an alternative or synergistic role in mediating extracellular signals to actin 

polymerization and cytoskeletal rearrangement (Burridge and Wennerberg, 

2004).   

      Another downstream effector of Rac that is related to cytoskeletal 

rearrangements and membrane ruffling is PAK. Both Rac and Cdc42 activate 

PAK. It then can promote lamellipodia formation (Sells et al., 1997) and disrupt 

stress fibers and focal adhesions (Manser et al., 1997).  Although the 

mutagenesis study of PAK shows that the direct binding and activation of PAK to 
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Rac or Cdc42 might not be required for its functions in promoting lamellipodia 

formation, such a physical binding and activation are indispensable for 

attenuating the formations of stress fiber and focal adhesion (Manser et al., 

1997). Besides this, PAK also affects polarization (Sells et al., 1999). PAK also 

binds to several other substrates or binding partners other than Rac, such as the 

actin binding protein filamin, LIM kinase, myosin, the paxillin/Pix/PKL complex, 

and the adaptor protein Nck (Figure 1.5) (Burridge and Wennerberg, 2004). 

      Filamin is the major actin binding protein and a substrate for PAK (Vadlamudi 

et al., 2002).  Filamin is enriched in the cell cortex where F actin is concentrated, 

especially in membrane ruffles. Filamin is essential for the growth factor- or PAK- 

induced membrane ruffling. The binding of filamin to PAK activates PAK. Filamin 

promotes lamellipodia and ruffle formation by crosslinking F actin and stabilizing 

the actin networks underneath the membrane of protrusions. Moreover, filamin 

also serves as a scaffold for PAK and other signaling proteins (Stossel et al., 

2001). Finally, filamin also binds either GTP- or GDP- loaded forms of Rho, Rac, 

and Cdc42 (Ohta et al., 1999). Since filamin is enriched in the actin cortex and is 

important for lamellipodia formation, the binding to small Rho GTPases may 

regulate the differential localization of Rac and Rho to the leading edge or rear 

contractile region (Burridge and Wennerberg, 2004). 

      As another downstream target of Pak, LIM kinase can be phosphorylated and 

activated by both PAK (Edwards and Gill, 1999; Edwards et al., 1999) and Rho-

kinase (Maekawa et al., 1999). In turn, LIM kinase phosphorylates and 

inactivates cofilin, which promotes depolymerization of F-actin (Blanchoin et al., 
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2000b; Burridge and Wennerberg, 2004). The net effect of PAK-LIM kinase 

activation is to stabilize actin filaments and filament bundles. This is somewhat 

paradoxical, as the stabilization of F-actin may slow down the turnover rate of 

actin filaments, which will to some extent impede the formation of lamellipodia or 

ruffles. During cell migration, lamellipodia formation demands active cofilin and 

rapid actin recycling between polymer and monomer to sustain the actin 

treadmilling (Figure 1.3 and 1.6) (Blanchoin et al., 2000a; Zebda et al., 2000). 

How to explain such a discrepancy? One possible explanation would be that 

cofilin activation and inactivation are under elegant spatial or temporal control. 

During the cell migration, active cofilin was found to be more concentrated at the 

leading edge to promote actin polymerization, in cooperation with Arp2/3 

complex. In contrast to the active cofilin, inactive cofilin, i.e, the one 

phosphorylated by PAK-LIM kinase may concentrate further back from the 

leading edge of lamellipodia (Burridge and Wennerberg, 2004). This subtle 

difference may allow active cofilin to promote polymerization, synergizing with the 

Arp2/3 complex at the leading edge of lamellipodia, while simultaneously the 

inactive cofilin distributes further back in the body of the lamellipodium or ruffle, 

leading to stabilization of the newly formed actin filaments in the dendritic actin 

mesh network (Burridge and Wennerberg, 2004). Furthermore, the stage of the 

cell (with or without stimulation) may also need to be included into the 

consideration. During the steady state, the need of cofilin activation at the leading 

edge is relatively low and cells may only form new actin branches by the effort of 

Arp2/3. The actin bundles are relatively stabilized under this state. However, 
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once the cell turns to the active migratory stage, the demand for active cofilin 

rises dramatically as the newly formed barbed end, actin mesh network and actin 

treadmilling will do the following: 1. Consume lots of actin monomers, which are 

generated from depolymerization of F actin by active cofilin. 2. Form new barbed 

ends severed by active cofilin to develop into dendritic mesh network and 

consequently lamellipodia (DesMarais et al., 2005).  

      The association of PAK with the Pkl/paxillin/Pix complex potentially has 

multiple effects on downstream signals. Pkl is an Arf GAP, therefore implicating a 

convergent point between Rac and Arf GTPases signaling (Burridge and 

Wennerberg, 2004). Pix is a Rac and Cdc42 GEF (Turner et al., 2001). The 

interaction of a downstream Rac effector with an upstream Rac regulator strongly 

suggests at the existance of signaling feedback loops. The pairing of 

downstream effectors with the same GEF also implies that a specific GEF may 

preferentially activate one out of the possible downstream pathways (Burridge 

and Wennerberg, 2004).  

      Another possibility for PAK to promote actin polymerization is that the adaptor 

protein Nck can recruit PAK receptor tyrosine kinases and may participate in the 

activation of both WASP and WAVE/Scar and actin polymerization (Bokoch, 

2003). As a consequence, Rac1 promotes cell migration (Hood and Cheresh, 

2002; Ridley et al., 2003; Burridge and Wennerberg, 2004; Raftopoulou and Hall, 

2004). 
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1.3.3.2.2 Rac1 promotes adhesion formation 

      Other than stimulating lamellipodia formation and cell migration, Rac1 also 

promotes cell adhesion (Burridge and Wennerberg, 2004). In lymphocytes, 

activated Rac promotes adhesion, probably through enhancing cell spreading, 

actin cytoskeleton reorganization, and inside-out signaling to the clustered 

integrin that engage with ECM (Souza-Schorey et al., 1998). Cofilin inactivation 

by Rac activation is essential for integrin mediated adhesion (Toshima et al., 

2001; Marcoux and Vuori, 2005). Other actin severing proteins such as gelsolin, 

are also the downstream effectors of Rac-phospholipase C-calcium signaling 

pathway to sever actin filaments (Snyder et al., 2003).  

      In addition to promoting adhesion, Rac1 also controlls focal adhesion 

formation within the new adhesions through the local inside-out activation of 

integrins (Kiosses et al., 2001). Active Rac may inhibit cofilin activation through 

PAK-LIM kinase pathway, to stabilize the stress fiber where focal adhesions are 

developing (Burridge and Wennerberg, 2004). Recently, this has been confirmed 

by the study using Rac1 knock out animal (Guo et al., 2006). However, Rac also 

perturbs stress fiber and focal adhesion formation via activating PAK and 

antagonizing Rho activity (Sander et al., 1999), resulting into inhibition of myosin 

light chain kinase (MLCK) activity and less MLC phosphorylation (Sander et al., 

1999).  How to explain this discrepancy? The answer may reside in the temporal 

and spatial regulation of distribution of Rac and Rho, respectively (Xu et al., 

2003). Within a cell, Rac activity dominates tje behavior at the front, while Rho 

activity is more prominent at the rear. The antagonism between Rac and Rho 
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signaling pathways determines the migration direction of the cell in response to 

chemotactic signals. The activities of Rho and myosin at the rear inhibit 

protrusive activity in this region and confine the protrusion to the front of the 

migratory cell ( Worthylake and Burridge, 2003; Xu et al., 2003) 

      Moreover, a recent study has indicated that Rac1 might also regulate the 

genomic stability and senescence (Debidda et al., 2006). 

 

1.3.3.3 RhoA signaling: stress fibers, tension and contractile at the rear 

      RhoA strengthens the formations of focal adhesions and stress fibers (Nobes 

and Hall, 1995; Etienne and Hall, 2002; Hood and Cheresh, 2002; Ridley et al., 

2003; Burridge and Wennerberg, 2004; Raftopoulou and Hall, 2004). It also 

regulates rear contraction (Nobes and Hall, 1995; Machesky and Hall, 1997; 

Etienne and Hall, 2002; Hood and Cheresh, 2002; Ridley et al., 2003; Burridge 

and Wennerberg, 2004; Raftopoulou and Hall, 2004).  

      Rho promotes actin nucleation, polymerization, and stress fibers formation in 

focal adhesions (Ridley and Hall, 1992), probably through activating of myosin 

light chain (MLC) by phosphorylation (Chrzanowska-Wodnicka and Burridge, 

1996). Situating in between Rho and MLC phosphatase is Rho-kinase (ROCK, 

ROK), a downstream Rho effector. ROCK increases MLC phosphorylation by 

inhibiting the MLC phosphatase (Kimura et al., 1996). Rho-kinase can also 

directly phosphorylate MLC and thereby activate myosin (Amano et al., 1996) 

(Figure 1.5). The important relationships among MLC, contractile tension, and 

stress fiber / focal adhesion formation are as follows: in a single cell in which 
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myosin activity was inhibited, applying extrinsically mechanical force to this single 

cell could mimic an increasing intrinsic tension, promoting the assembly of stress 

fibers and focal adhesions (Riveline et al., 2001). 

      Taken together, Rho drives the formation of stress fibers and focal 

adhesions, promotes myosin contractility, and thereby raises contractile tension 

(Nobes and Hall, 1995; Machesky and Hall, 1997; Etienne and Hall, 2002; Hood 

and Cheresh, 2002; Ridley et al., 2003; Burridge and Wennerberg, 2004; 

Raftopoulou and Hall, 2004) (Figure 1.5).  

      The next interesting question would be this: is Rho-induced actin 

polymerization relevant to stress fiber development? Surprisingly, the level of 

actin polymerization in response to Rho activation was relatively modiocre 

(Machesky and Hall, 1997). On the other hand, constitutively active form of Rho-

kinase induced robust stellate-like stress fibers. Unlike the stress fibers induced 

by active Rho, those ROCK-induced stellate-like stress fibers are much thicker 

(Watanabe et al., 1999).  

      Interestingly, activated mammalian homolog of diaphanous (mDia), another 

Rho effector, induces the formations of more stress fibers (Watanabe et al., 

1999) (Figure 1.5). As a member of the formin family proteins, mDia induces 

actin polymerization (Li and Higgs, 2003). However, how this elevated actin 

polymerization is relevant to stress fiber organization has yet to be determined. 

As mentioned above in the external force on cells study, mDia turned out to be 

an important impact factor. In the presence of Rho specific inhibitor C3 

exotransferase, external force cannot stimulate focal adhesion formation. 
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However, overexpression of active mDia, but not ROCK, could rescue this 

phenotype (Riveline et al., 2001).  

      Other targets for Rho relevant to actin cytoskeleton rearrangement (Bishop 

and Hall, 2000) include: 1) Citron kinase, a Rho-kinase like protein, which 

promotes MLC phosphorylation and myosin activation (Madaule et al., 1998; 

Fujiwara et al., 2002). 2) LIM kinase, which phosphorylates and inactivates 

cofilin/ADF, thereby leading to the inhibition of actin depolymerization and 

increasing stability of actin filament arrays including stress fibers and the cortical 

actin ring (Maekawa et al., 1999; Raftopoulou and Hall, 2004), and 3) Adducin, 

which is member of the ERM family. It is a substrate for Rho-kinase and is 

activated by phosphorylation. Once it is phosphorylated, adducin increases its 

affinity to F-actin (Kimura et al., 1998).  

      Surprisingly, when cells lose stress fibers and focal adhesions, such as cell 

rounding up during early mitosis or experimental manipulation, Rho activity is 

higher instead of lower (Ren et al., 1999; Maddox and Burridge, 2003). Based on 

Rho’s role in promoting focal adhesion and stress fiber formation, the rounded 

cells should have decreased Rho activity. Why? The answer may be that the 

presence of high Rho activity would contribute to the disassembly of stress fibers 

and the construction of more rigid cell cortex (Burridge and Wennerberg, 2004). 

The rigid cortex of a rounded cell increases the resistance to mechanical forces 

and protects the cell from damage. This may be important for leukocytes to 

survive and function in the circulation. How can high Rho activity achive this? 

The potential explanations are as follows: 1). High Rho activity promotes 
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phosphorylation and inactivation of cofilin through the ROCK / LIM kinase 

pathway (Figure 1.5);  2) High Rho activity enhances MLC phosphorylation and 

activation;  thereby promote actin-myosin crosslinking, rear contractility, and 

probably cell rounding up (Figure 1.5). On the other hand, decreased Rho activity 

can be observed when cells become adhered to ECM (Ren et al., 1999). The 

declining in Rho activity may facilitate the transition from a rigid cortex to a more 

dynamic actin cortex that allows cell spreading and cell migration (Arthur and 

Burridge, 2001). 

      Besides focal adhesion, Rho also regulates cell adhesion. Rho induces 

integrin clustering to provide firm attachment to the ends of stress fibers in focal 

adhesions (Chrzanowska-Wodnicka and Burridge, 1996). The inhibition of Rho in 

fibroblasts not only abolishes stress fibers, but also decreases adhesion, causing 

the retraction of lamellae and rounding of the cell body (Chrzanowska-Wodnicka 

and Burridge, 1996). Merely inhibiting focal adhesions cannot explain for all 

these effects, because many cells without the structures adhere and spread well 

(Burridge and Wennerberg, 2004). It is possible that the disruption of Rho 

function leads to a collapse of the cortical actin organization (Burridge and 

Wennerberg, 2004).  

      In contrast to fibroblasts, Rho inhibits the integrin clustering within leukocytes, 

which lack both stress fibers and focal adhesions. Inhibition of Rho promotes 

integrin-mediated adhesion (Worthylake et al., 2001). One explanation is that, 

during the resting / suspended state, integrins are distributed evenly on the cell 

surface. Integrin clustering has been inhibited by being tethered to the relatively 



 55  

rigid cortical actin network. Since the stability of the cortical actin is controlled by 

Rho-ROCK-LIM kinase-cofilin pathway, active Rho may contribute to the 

maintaining of a rigid cortical actin network by inhibiting the activation of actin 

filament-severing protein, cofilin (Figure 1.5). Once Rho activity is suppressed, 

cofilin becomes activated. Activated cofilin will sever and depolymerize the 

cortical actin network, and consequently integrins are clustered by binding the 

multivalent ECM ligands or by inside-out signals (Worthylake and Burridge, 

2003).  

 

1.3.3.4 Cdc42 signaling: A master regulator of cell polarity and filopodia 

 

1.3.3.3.1 Cdc42 and cell polarity 

      Cdc42 defines cell polarity in a variety of eukaryotic organisms ranging from 

yeast to humans (Ridley et al., 2003). Despite the fact that those macrophage 

would still be able to move in a Rac-dependent manner, inhibition of Cdc42 in 

macrophage cells impairs their ability to undergo chemotaxis (Ridley, 2001). The 

mechanisms for Cdc42 to control cell polarity are the following:  

   1. Cdc42 regulates the positive feedback loop between Rac and PI (3,4,5) P3 

which is important for initiating neutrophil asymmetry and polarity when 

the external chemotactic gradient is present (Weiner et al., 2002).  

   2. Cdc42 determines where lamellipodia form, thereby regulating the direction 

of polarization (Labrousse et al., 1999; Ridley et al., 2003). Cdc42 is 

activated close to the leading edge of migrating cells (Smirnova et al., 
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1998). Both inhibition and global activation of Cdc42 are able to perturb 

the directionality of migration (Etienne and Hall, 2002).  

   3. Cdc42 regulates the orientation of the microtubule-organizing center 

(MTOC) and Golgi apparatus by positioning them in front of the nucleus 

and toward the leading edge in slowly migrating cells through 

PAR6/PAR3/aPKC/APC pathway (Etienne and Hall, 2002; Rodriguez et 

al., 2003). The polarized migration of many cells is heralded by 

reorganization of the microtubule cytoskeleton and centrosome to form 

MTOC. The orientation of MTOC usually indicates the direction of 

migration. Cdc42-induced MTOC orientation is important for cell migration. 

It directs microtubule growth into the lamella as well as trafficking of Golgi-

derived vesicles to the leading edge along those growing microtubule. 

Those vesicles provide the source of membrane and associated proteins 

required for forward protrusion (Etienne and Hall, 2002; Ma and Chisholm, 

2002; Rodriguez et al., 2003). How does Cdc42 regulate MTOC? In 

astrocytes, PAR6, an effector of Cdc42, forms a complex with PAR3 and 

an atypical protein kinase C (aPKC) and mediates Cdc42 regulated of 

MTOC position (Etienne and Hall, 2003). PAR6/PAR3/aPKC complex 

orients MTOC by local capture of microtubules at the leading edge through 

a protein called APC, which binds tubulin at the ends of microtubules 

(Etienne and Hall, 2002). CLIP170 and IQGAP (Rodriguez et al., 2003) 

and/or the microtubule-based dynein/dynactin motor protein complex 



 57  

(Etienne and Hall, 2003) might also participate in this PAR6/PAR3/aPKC 

complex-APC mediated MTOC formation. 

   4. Cdc42 crosstalks with Rac to promote and control cell polarity through the 

interaction of APC, Asef and other proteins. Interestingly, APC associates 

with Asef, a Rac-specific GEF. This interaction indicates a potential 

crosstalk between Rac and Cdc42 signalings at the leading edge 

(Kawasaki et al., 2000). APC is found to be able to move along 

microtubules, probably via binding to the microtubule-associated protein 

EB1 and the kinesin/KAP3 motor complex (Nakamura et al.2001; 

Gundersen, 2002; Jimbo et al., 2002), supporting the idea that the APC-

Asef interaction is important for polarity formation. The track by which APC 

moves towards the plus ends of microtubules in migrating cells could be 

used to track Asef down to where Rac-dependent actin polymerization is 

taking place ( Bienz, 2002; Jimbo et al., 2002).  

 

1.3.3.3.2 Cdc42 and filopodia  

      Cdc42 induces filopodia formation (Nobes and Hall, 1995; Kozma et al., 

1995), through its binding to its downstream effector WASP and N-WASP 

(Kozma et al., 1995; Nobes and Hall, 1995; Raftopoulou and Hall, 2004) (Figure 

1.5).  

      Another downstream effector of Cdc42 is PAK1. Pak1 activation induced by 

Cdc42 shares a common downstream events with the one to Rac (see above 

Rac section), i.e., activate LIMK and then inactivate cofilin, thereby stabilizing the 
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actin filament (Figure 1.5) (Arber et al., 1998; Edwards et al., 1999; Raftopoulou 

and Hall, 2004). Pak1 also interacts with downstream targets of heterotrimeric 

GTP-binding protein–coupled receptors activated by variety of chemoattractants. 

These interactions underline a positive feedback loop between Cdc42 and PAK1, 

and contribute to the high Cdc42 activity at the leading edge (Li et al., 2003). 

Similarly, integrins also maintain the local Cdc42 activity through this positive 

feedback loops (Etienne and Hall, 2001; Etienne and Hall, 2002; Raftopoulou 

and Hall, 2004). 

 

1.3.3.5 Crosstalk among Rho GTPases 

 

1.3.3.5.1. Cdc42 and Rho can be activated following the Rac activation 

      In serum-starvated fibroblasts, the activation of Rac during membrane ruffling 

usually leads to the formation of stress fibers, which is dependent on another 

member in the same Rho GTPase family, Rho (Ridley and Hall, 1992). This 

strongly indicates that Rac activation might in turn activate Rho. Moreover, 

Cdc42 is also found to be activated by a similar manner after the Rac activation 

(Kozma et al., 1995; Nobes and Hall, 1995).  

 

1.3.3.5.2. RhoA and Rac counteract with each other 

      In contrast to the early observation, activation of Rac could suppress the 

activation of RhoA and vice versa in many cell types (Sander et al., 1999) (Figure 

1.5). How does Rac suppress Rho? 1) Rac could increase the intracellular 
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reactive oxygen species (ROS) levels. Rising ROS inhibits low molecular weight 

protein tyrosine phosphatase (LMW-PTP), thereby in turns stimulates the 

phosphorylation and activation of p190RhoGAP, which inactivates RhoA 

(Nimnual et al., 2003). 2). PAK, a downstream effector of Rac1, induces the loss 

of stress fibers and focal adhesions through either inhibiting MLCK (Sander et al., 

1999) , or directly phosphorylating myosin II heavy chain (Kiosses et al., 1999; 

van Leeuwen et al., 1999).  

 

1.3.3.6 Pathogens, diseases and pharmaceutical compounds that target 

Rho GTPases 

 

1.3.3.6.1 Pathogens modulate Rho GTPases 

      Interestingly, various bacterial pathogens have developed strategies to 

escape from the host cell defense system by regulating Rho GTPases proteins. 

Those strategies include preventing phagocytosis and thus escaping from being 

uptaken and destroyed, and promoting phagocytosis to occupy the 

immunologically inaccessible locations within the host cells (Burridge and 

Wennerberg, 2004). The prototypical agent is the C3 exotransferase from 

Clostridium botulinum. It ADP-ribosylates RhoA and inhibits nucleotide exchange 

catalyzed by GEFs, and in turn immediately inactivates RhoA proteins (Barbieri 

et al., 2002).  

      Other toxins that influence Rho GTPases activity may inactivate or activate 

Rho GTPases: Clostridial toxins A and B glucosylates Rho, Rac, and Cdc42 
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proteins and thus inactivates them (Barbieri et al., 2002). Cytotoxic-necrotizing 

factor (CNF) produced from E. coli activates Rho by deamidation of Gln63 

(Barbieri et al., 2002). This blocks the GAP-activated GTPase activity, resulting in 

the constitutively active RhoA. Salmonella can also activate Rac and Cdc42 by 

injecting SopE and SopE2 proteins into host intestine epithelial cells (Stebbins 

and Galan, 2001). These toxins are such potent GEFs for Rac and Cdc42 that 

they stimulate robust membrane ruffling at the attached sites of bacteria, thereby 

facilitating the phagocytosis of the bacterium (Stebbins and Galan, 2001). After 

entry into host cells, Salmonella immediately starts to secret another protein, 

SptP, to suppress the Rac and Cdc42 activity. Inhibition of active cytoskeletal 

rearrangement by SptP will provide the bacteria more advantage to survive. 

Enteropathic Yersinia also express several proteins that can regulate Rho 

GTPase activity (Finlay and Cossart, 1997; Bliska, 2000; Burridge and 

Wennerberg, 2004).  

 

1.3.3.6.2 Cancer metastasis, Rho GTPases, their inhibitors and modulators 

      As discussed in detail above, one of the consequences of the activation of 

Rho GTPases is the elevated cell migration. For cancer, that means increased 

chance of metastasis. Compounds that inhibit Rho GTPases activity are also 

tested for their obvious clinical cancer metastasis prevention and treatment. One 

of those compounds is Rac1 specific compound, NSC23766 (Gao et al., 2004)., 

NSC23766 was identified based on a structure-based virtual screening of 

compounds that fit into a surface groove of Rac1 known to be important for GEF 
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specification. NSC23766 effectively disrupts the binding of Rac1 with its specific 

GEF, Trio or Tiam1 in a dose-dependent manner, thereby specifically inhibiting 

the Rac1 activation without interfering with other Rho GTPases such as Cdc42 or 

RhoA. In the presence of NSC23766 the Rac1-dependent lamellipodia formation 

will be blocked. It also inhibited Rac1-induced proliferation, anchorage-

independent growth, and invasion (Gao et al., 2004). 

 

1.3.3.7 Major downstream effectors of Small RhoGTPases – Cofilin, an actin 

severing and depolymerizing protein 

      During the cytoskeletal rearrangement, protrusion and cell migration, the 

most important downstream effectors of small Rho GTPases are cofilin and 

Arp2/3 (Figure 1.6).  

      Cofilin is a 19kDa protein that is ubiquitously expressed (Carlier et al., 1997; 

Maciver, 1998; Maciver et al., 1998; Bamburg et al., 1999; Wang et al., 2007). 

Cofilin can be inactivated by the phosphorylation on Ser3 position (Agnew et al., 

1995; Moriyama et al., 1996). Although cofilin binds to both G- and F-actin, it 

preferentially binds to ADP-bound actin subunits and promotes actin monomer 

disassembly from the pointed end of an actin filament. (Carlier et al., 1997; 

Maciver, 1998; Maciver et al., 1998; Bamburg et al., 1999; Wang et al., 2007).  

Thus, Cofilin plays an important role in actin cytoskeletal rearrangement, 

especially during membrane protrusion (Bamburg et al., 1999; Condeelis et al., 

2001; Ono, 2003; Pollard and Borisy, 2003; Wang et al., 2007). Active cofilin can 

also sever actin filaments and in turn generate free actin barbed ends to provide  
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Figure 1.6   Roles of Cofilin during different state protrusion 
 
A. In steady state protrusion formation, such as in keratocytes, a low G-actin 
level limits polymerization. Cofilin functions exclusively as an actin-recycling 
factor by depolymerizing filaments to generate free G-actin. In this state, cofilin 
localizes at the base of the lamellipodium to sustain steady-state actin 
polymerization at the leading edge. Meanwhile, Arp2/3 complex near the cell 
membrane is responsible for dendritic nucleation. (Loisel et al., 1999; Svitkina 
and Borisy, 1999).  B.In contrast, during the stimulated protrusion stage, such as 
in crawling cells like fibroblasts and chemotactic carcinoma cells, cofilin 
synergistically cooperates with Arp2/3 complex. Cofilin seveing is omportant r in 
initiating reassembly of actin filaments and governing the migratory direction 
during this stage (Ghosh et al., 2004) .Cofilin is found enriched within barbed 
ends at the very leading edge, but not at the base of lamellipodia (Chan et al., 
2000). Cofilin itself is sufficient to generate barbed ends, actin polymerization and 
protrusion (Ghosh et al., 2004). Actin polymerization depends on the pre-existing 
G-actin pool and is not necessarily tightly coupled to depolymerization. Cofilin 
also determines the site of activation of the Arp2/3 complex to form protrusion. 
Modified with permission. DesMarais V, Ghosh M, Eddy R, and Condeelis J, 
2005, Cofilin takes the lead: Journal of Cell Science, v. 118, no. 1, p. 19-26. 
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a platform for the later development of the dendritic network beneath the plasma 

membrane (Maciver et al., 1991; Du and Frieden, 1998; Chan et al., 2000;  

Ichetovkin et al., 2002). How does cofilin depolymerize or sever actin filaments?  

The answer is that cofilin bind to F-actin and causes a bend in the actin filament.   

This twist destabilizes the actin-actin interactions and eventually fragments the 

filament (McGough et al., 1997).  The next questions are as following: how are 

cofilin’s functions executed in vivo to contribute to cell motility and its related 

morphology? Is cofilin level positively correlated with the cell motility? In early 

studies, the activation of cofilin was thought to be required for cell motility (Carlier 

et al., 1997; Condeelis et al., 2001).  In supporting this notion, an elevated cofilin 

level or declined phosphorylated cofilin level can be detected within the cells or 

tissues from different species. Elevated total cofilin have been found in variety of 

tumor cell lines, such as highly invasive C6 rat glioblastoma cell line (Gunnersen 

et al., 2000), A549 human lung cancer cells (Keshamouni et al., 2006), and 

human pancreatic cancer cells (Sinha et al., 1999). The decreased level of 

phosphorylated / inactivated cofilin may also be an indicator of upregulated cofilin 

activity. Phosphrylated cofilin level is downregulated in T-cell lymphoma (Jurkat), 

carcinomas from the cervix (HeLa), colon (KM12), liver (HepG2) and kidney 

(COS1) (Nebl et al., 1996; Wang et al., 2007). In clinical tumor samples, the 

increased cofilin expression is detected in  oral squamous-cell carcinoma 

(Turhani et al., 2006), renal cell carcinoma (Unwin et al., 2003), and ovarian 

cancer  using both proteomic and genomic approaches (Martoglio et al., 2000). 
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      However, is cofilin always upregulated in highly motile cells, such as cancer 

cells? The answer is no. In high motility cells such as potent metastatic 

hepatocellular carcinoma (HCC) cells line MHCC97-H (Ding et al., 2004) and 

ovarian surface epithelium (OSE) cells derived from a woman with a  family 

history of ovarian and/or breast cancer and bearing BRCA1 mutation (Smith-

Beckerman et al., 2005), cofilin had been found to be downregulated instead of 

upregulated. If endogenous cofilin levels fluctuate among different cell types 

instead of positively proportional to cell motility, then what would happen if 

Iectopically overexpress cofilin into those cells? Will they have higher motility or 

less? Similar to the controversial effect of endogenous cofilin on cell motility, the 

overexpression of wild-type cofilin can either promote invasion in Melanoma cell 

(Dang et al., 2006),  or inhibit the invasiveness of human lung cancer H1299 cells 

(Lee et al., 2005). 

      Therefore, the expression level and phosphorylation level of cofilin are not 

sufficient to determine the motility and invasion status of cells (Wang et al., 

2007). What are the roles of cofilin in controling the cell motility and cytoskeletal 

rearrangement in vivo?  Without understanding the cofilin pathway in each 

individual situation, it is very hard to predict the consequence by simply altering 

the level of one component of the whole pathway, such as cofilin in those above 

cases. The well-balanced of the activity of cofilin as well as other molecules in 

the cofilin pathway are required for chemotaxis and motility in tumor cells (Wang 

et al., 2007).  
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      What are the cofilin pathways? What factors / molecules control the 

activation, inactivation and translocation of cofilin? The cofilin pathway includes 

several kinases and phosphatases that regulate cofilin phosphorylation, 

dephosphorylation, and / or translocation in response to extracellular stimuli 

(Figures 1.3; 1.6). Those stimuli include epidermal growth factor (EGF) 

(Mouneimne et al., 2004), transforming growth factor-α (TGF α) , stromal cell-

derived factor 1 (SDF1) and heregulin, which are positively correlated with 

cancer metastasis (Wang et al., 2007).  

      Cofilin is regulated in a temporal and spatial manner by the following 

processes:  

   1. Phosphorylation / inactivation. Cofilin can be phosphorylated at the serine 

3 residues by LIM kinase (LIMK1 and LIMK2) (Arber et al., 1998; Yang et 

al., 1998; Dan et al., 2001) and testicular protein kinase 1 (TESK1, 

TESK2) (Rosok et al., 1999; Toshima et al., 2001) . This phosphorylation 

inhibits the binding of cofilin to actin. LIMKs can be either activated by 

p21-activated kinase 1 (PAK1) and Rho-dependent protein kinase 

(ROCK1) (Figure 1.5) (Dan et al., 2001; Bamburg and Wiggan, 2002) 

through phosphorylation, or inhibited by SSH1 through dephosphorylation 

(Soosairajah et al., 2005).  

   2. Dephosphorylation / activation. Dephosphorylation of cofilin at Ser3 is 

achieved by phosphatase types 1, 2A (Ambach et al., 2000), phosphatase 

types 2B (Meberg et al., 1998), slingshot (SSH) (Niwa et al., 2002)  and 
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chronophin phosphatases (Gohla et al., 2005). Dephosphorylation of 

cofilin results in the activation of cofilin and its binding to actin.  

   3. Blockage of the actin-binding capability of cofilin by protein-protein 

interaction.  

 a. Phosphatidylinositol-4,5-bisphosphate (PIP2) binds to cofilin which 

blocks the binding of cofilin to actin (Yonezawa et al., 1990; Yonezawa 

et al., 1991). The binding of PIP2 to cofilin is regulated by 

phospholipase C (PLCγ). PLCγ hydrolyses PIP2 and thus releases 

cofilin to be available to bind to actin (Mouneimne et al., 2004; 

Mouneimne et al., 2006). In non-carcinoma cell type such as platelets 

and fibroblasts, PLCγ promotes the plasma membrane protrusion by 

regulating both F actin severing protein: cofilin and gelsolin (DesMarais 

et al., 2005). Like cofilin, gelsolin also severs actin filaments, but in 

Ca2+- and PIP2- dependent manners (Sun et al., 1999). In contrast to 

cofilin, the actin severing and protrusion formation rates induced by 

gelsolin are a relatively slow (the half life is of actin severing is 15 

minutes after growth factor stimulation) (Allen, 2003). In platelets and 

fibroblasts, gelsolin seems to be important for the generation of barbed 

ends (Azuma et al., 1998; Falet et al., 2002). Other actin or cofilin 

binding proteins such as tropomyosin, cyclase-associated protein, 

gelsolin, and AIP1 may also regulate cofilin’s actin severing function as 

well (DesMarais et al., 2005; Wang et al., 2007).   
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   b. Tropomysosin. The binding of tropomysosin to actin prevents actin 

filaments from being either depolymerized (Bernstein and Bamburg, 

1982) or severed (DesMarais et al., 2002) by cofilin. Within the leading 

edge of lamellipodia of carcinoma cell, tropomyosin is absent wherever 

cofilin and Arp2/3 dominate and actively promote actin polymerization 

(DesMarais et al., 2002).        

c. Cyclase-associated protein (CAP). CAP induces the release of cofilin 

from the cofilin–G-actin heterodimer (Moriyama and Yahara, 2002), 

and in turn stimulates actin depolymerization from the pointed end 

(Moriyama and Yahara, 2002; Balcer et al., 2003). CAP might also 

accelerate actin recycling and thus actin polymerization (Moriyama and 

Yahara, 2002).This may also contribute to the localization of cofilin in 

crawling cells and therefore migration direction (Bertling et al., 2004).  

d. Actin-interacting protein 1 (AIP1). AIP1 binds to cofilin (Aizawa et al., 

1999; Okada et al., 1999; Rodal et al., 1999; Ono, 2003) and this 

binding might stimulate the depolymerization activity of cofilin (Ono, 

2003).  

   4. Intracellular pH. Elevating PH by Na-H exchanger protein potentiates 

cofilin’s actin-severing efficiency (Bernstein et al., 2000; Bamburg and 

Wiggan, 2002; Patel and Barber, 2005; Srivastava et al., 2007).  

      It is worthwhile to discuss subcellular localization of cofilin specifically. The 

reason is that cofilin mediates two relatively controversial processes: barbed-end 

formation and subsequent actin polymerization (Condeelis, 2001) and actin 
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depolymerization (Carlier et al., 1997; Lappalainen and Drubin, 1997). How are 

these two opposing processes balanced during protrusion and cell motility? In 

fact, the role that cofilin plays varies from cell type and functional states of cells 

(DesMarais et al., 2005).  

   1. Cell type. In migrating chick fibroblasts, cofilin promotes depolymerization 

of actin filaments to generate more actin monomers for treadmilling 

(Cramer, 1999);  In neurons, cofilin severs actin filaments to open more 

free barbed ends for dendritic network formation which is an important 

driving force for growth cone motility (Endo et al., 2003).  

   2. Cell migration stages (Figure 1.6). In steady state protrusion formation, 

such as in keratocytes, the low G-actin level limits polymerization. Cofilin 

functions exclusively as an actin-recycling factor by depolymerizing 

filaments to generate free G-actin. Meanwhile, Arp2/3 complex near the 

cell membrane is responsible for the dendritic nucleation (Loisel et al., 

1999; Svitkina and Borisy, 1999). In contrast, during the stimulated 

protrusion stage of crawling cells like fibroblasts and chemotactic 

carcinoma cells (Figure 1.6), cofilin synergistically cooperate with Arp2/3 

complex. The severing activity of cofilin initiates reassembling of actin 

filaments and governs the migratory direction during this stage (Ghosh et 

al., 2004). Cofilin is found to be enriched at barbed ends at the very 

leading edge, but not at the base of lamellipodia (Chan et al., 2000). 

Cofilin itself is sufficient to generate barbed ends to promote actin 

polymerization and protrusion (Ghosh et al., 2004). The two models are 
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not mutually exclusive (Figure 1.6). The transition from stimulated to 

steady protrusion formation state, or vice versa, could happen if cell kept 

moving until G-actin supply become limited to support further 

polymerization. At this point, cofilin-mediated actin depolymerization and 

elevation of actin turn-over rate become critical for further polymerization.  

      Then, what is the difference between these two models? Cofilin defines the 

sites of dendritic nucleation, and in turn cell protrusion, only in the stimulated 

protrusion model (DesMarais et al., 2005; Wang et al., 2007) . 

      In addition to all these functions described above, the cofilin pathway  

contributes to morphogenesis, such as cell polarity in Drosophila (Blair et al., 

2006), and blastocyst positioning and body wall formation (Ono et al., 2003). 

      The final question: why is cofilin enriched at the leading edge of lamellipodia, 

but not at the base of the lamellipodia and other compartments of the cell during 

cell migration? Is cofilin activated in those regions or activated at other locations 

and then undergo translocation into the leading edge? If this is the case, then 

what mechanisms control cofilin translocation after activation?  

      Driven by variety of stimuli, cofilin becomes dephosphorylated or activated, 

then translocated to the plasma membrane (Suzuki et al., 1995; Nagaishi et al., 

1999; Nagata-Ohashi et al., 2004; Verdijk et al., 2004) where it interacts with the 

actin cytoskeleton and promotes actin cortical meshwork formation, actin 

recycling, and consequently lamellipodia formation (Raftopoulou and Hall, 2004). 

Translocation of cofilin to the plasma membrane constitutes a key step for cofilin 

activation (Suzuki et al., 1995; Nagaishi et al., 1999; Nagata-Ohashi et al., 2004; 
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Verdijk et al., 2004). For example, in T leukemia cells and NIH3T3 cells, 

phosphorylated cofilin undergoes the translocation to lamellipodia upon activation 

or dephosphorylation (Verdijk et al., 2004). Still, how cofilin activation couples 

with the translocation to the leading edge of lamellipodia remains largely 

unknown. In fact, the EGF stimulation of invasive mammary tumor cells doesn’t 

always result in either cofilin activation / dephosphorylation or inactivation / 

phosphorylation (Song et al., 2006c), so models of which cofilin activation 

couples with stimuli stimulation (Nishita et al., 2005b) may not always reflect the 

invasion potential in all types of tumors. Thus, one needs to be cautious in 

evaluating models.   

      The next question is this: will the level of dephosphorylated cofilin really 

portray the cofilin activity within the cells? As Ialready mentioned above, there 

are at least four mechanisms to regulate cofilin activity. Simply measuring the 

ratio of dephosphorylated cofilin to the total cofilin may not be an ideal way to 

assess the activity of cofilin in cells. Interestingly, cofilin dephosphorylation is 

uncoupled from the EGF stimulated membrane protrusion (Mouneimne et al., 

2004). In fact, the levels of phosphorylated cofilin in mammary tumor cells 

increase in response to EGF-stimulation (Mouneimne et al., 2004). However, 

EGF can activate PLCγ, which in turn hydrolyzes PIP2, releases cofilin from the 

cofilin-PIP2 complex, and thus activates cofilin (Mouneimne et al., 2004). Shortly 

after the release of cofilin, LIMK1 phosphorylates it and results in a net elevation 

of phosphorylated cofilin level. Although the total inactivated cofilin may increase 

after stimulation, the sharpening asymmetrical distribution of the cofilin activity 
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inside the tumor cell may account for the more active motility (Mouneimne et al., 

2004; Blair et al., 2006; Song et al., 2006b; Wang et al., 2007).  

 

1.4 Novelty of this study 

Overall, cell migration plays roles in a wide variety of pivotal biological 

processes ranging from embryonic development to cancer cells metastasis. 

Elucidating the mechanisms that govern cell migration will not only have a 

tremendous impact on the deciphering of those mystery biological processes, but 

will also lead to the discovery of novel and more effective treatment of many 

common diseases. KAI1/CD82 is a key suppresser of cell migration. So far, how 

KAI1/CD82 regulates cell migration is not clear, especially how KAI1/CD82 

regulates cancer cell migration. Previously, there were several studies on how 

KAI1/CD82 regulates hematopoietic cell morphology and cytoskeletal 

rearrangement (Liu and Zhang, 2006). However, those studies focused on 

suspension cells, which behave quite differently from cells with epithelial origin in 

many aspects, including cell adhesion, cytoskeletal rearrangement and cell 

migration. Instead of inhibiting migration of epithelial and fibroblast cells, 

KAI/CD82 promotes actin cytoskeleton rearrangement and cell migration in 

hematopoietic cells, probably through enhancing co-stimulation of T-cell surface 

receptors TCR (Liu and Zhang, 2006). In this dissertation, I use prostate cancer 

cell lines Du145 and PC3 cells as models to study the role of KAI1/CD82 in 

cytoskeletal rearrangement. I conclude that KAI1/CD82 inhibits cancer cell 

migration through impairing actin cytoskeletal rearrangement. 
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CHAPTER 2.  KAI1/CD82 INHIBIT CANCER CELL MIGRATION THROUGH 

ALTERING MOTILITY RELATED CELL MORPHOLOGY  
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2.1 Introduction 

      Regulation of cell motility is a common feature of many tetraspanins 

(Maecker et al., 1997; Berditchevski, 2001; Boucheix and Rubinstein, 2001 

Hemler, 2001). Although it remains largely unclear how tetraspanins modulate 

cell motility, the possible mechanisms start to emerge from recent progress 

(Higashiyama et al., 1995; Shi et al., 2000; Odintsova et al., 2003). Lines of 

evidence suggest that tetraspanins could regulate the functional status of cell 

adhesion molecules and growth factor receptors (or membrane-bound growth 

factor). They physically and/or functionally associate with each other and then 

alter cellular behaviors through these partners (Higashiyama et al., 1995;  

Maecker et al., 1997; Shi et al., 2000; Berditchevski, 2001; Boucheix and 

Rubinstein, 2001; Hemler, 2001; Odintsova et al., 2003). For example, 

KAI1/CD82 attenuates epidermal growth factor (EGF) signaling and integrin 

function by accelerating the endocytosis of its associated EGF receptor and 

integrin, respectively (Odintsova et al., 2000; Berditchevski, 2001; He et al., 

2004). In parallel, experimental data support the notion that tetraspanins per se 

solicit outside-in signals to modulate cellular functions (Maecker et al., 1997;  

Berditchevski, 2001; Hemler, 2001). Again, taking KAI1/CD82 as an example, 

immuno-crosslinking of cell surface KAI1/CD82 demonstrates that KAI1/CD82 

functions as a costimulatory molecule during the T cell activation (Nojima et al., 

1993; Lebel-Binay et al., 1995; Lagaudriere et al., 1998; Shibagaki et al., 1998; 

Delaguillaumie et al., 2002; Iwata et al., 2002), indicating that KAI1/CD82 plays a 

direct role in signal initiation and/or transduction.  
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      Regardless which of the two possible mechanisms plays a more predominant 

role, tetraspanins and/or their associated molecules must act on the cytoskeleton 

to alter cell motility and motility-related cellular events. For example, clustering 

the cell surface KAI1/CD82 proteins using immobilized KAI1/CD82 mAb induces 

profound dendritic cellular protrusions in T cells, accompanied by the 

rearrangement of the actin cytoskeleton and the connection of KAI1/CD82 to the 

actin cytoskeleton, in a protein kinase A activity-dependent but Src kinase 

activity-independent manner (Nojima et al., 1993; Lagaudriere et al., 1998). 

Further studies indicated that Rho small GTPases are required for KAI1/CD82-

induced dendritic processes in T cells (Delaguillaumie et al., 2002). 

      Cell migration requires the polarized formation and extension of cellular 

protrusions, the transmembrane connection of cytoskeleton to ECM for the 

generation of traction force to propel cell body forward, and the retraction of the 

rear cellular portion (Raftopoulou and Hall, 2004).  

      In this chapter, I will focus on how KAI1/CD82 inhibits cell migration at the 

cell morphological level, such as polarization, protrusion, lamellipodia formation, 

and random cell migration on ECM.  

      

2.2 Materials 

      The monoclonal antibodies (mAbs) used in this study were human CD81 

mAb M38 (Fukudome et al., 1992), human KAI1/CD82 mAb M104 (Fukudome et 

al., 1992), 4F9 (Schlossman et al., 1994; Iwata et al., 2002), and TS82b (Tepnel, 

Stamford, CT). A mouse monoclonal IgG2 was used as a negative control 
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antibody (Sigma). The secondary antibodies were horseradish peroxidase-

conjugated goat anti-mouse or -rabbit IgG antibody (Sigma) and rhodamine-

conjugated goat-anti-mouse IgG antibody (Biosource International, Camarillo, 

CA). 

      Cell culture medium DMEM was purchased from Invitrogen (San Diego, CA) 

Extracellular matrix (ECM) proteins used in this study were human plasma 

fibronectin (FN) (Invitrogen, San Diego, CA), mouse laminin (LN)-1 (Invitrogen, 

San Diego, CA), and rat LN-5 (Desmos Inc., San Diego, CA).  

      Growth factors or chemokine used in this study include epidermal growth 

factor (EGF) (Upstate Biotechnology, Lake Placid, NY), platelet-derived growth 

factor (PDGF) (Upstate Biotechnology), hepatocyte growth factor (HGF) (Sigma), 

and stromal cell derived factor 1 (SDF-1) (R&D, Minneapolis, MN).  

      

2.3 Methods 

 

2.3.1   Establishment of KAI1/CD82 transfectants 

      Prostate cancer cell lines Du145 and PC3 were obtained from ATCC 

(Manassas, VA) and cultured in DMEM supplemented with 10% FBS, 100 

units/ml penicillin and 100 µg/ml streptomycin. The full-length KAI1/CD82 cDNA 

was constructed in a eukaryotic expression vector pCDNA3.1 (Invitrogen). Du145 

or PC3 cells were transfected with the plasmid DNA using either Superfectin 

(Qiagen, Valencia, CA) or Lipofectamine 2000 (Invitrogen), respectively, and 

selected with 1 mg/ml geneticin (Invitrogen). The geneticin-resistant clones were 
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pooled, and the KAI1/CD82-positive cells were collected by flow cytometric cell 

sorting (Zhang et al., 2003a). 

 

2.3.2   Western blot 

      Western blot was performed as previously described (Zhang et al., 2003a). 

For of total cellular proteins, an equivalent number of cells were lysed using RIPA 

buffer, the protein concentrations of lysates were normalized, and then the 

lysates were separated by SDS-PAGE. After being transferred electrically, 

nitrocellulose membranes (Schleicher & Schuell, Keene, NH) were sequentially 

blotted with primary antibody and horseradish peroxidase conjugated anti-mouse 

or -rabbit IgG (Sigma) and then detected with chemiluminesence reagent 

(PerkinElmer Life Sciences). In some cases, membranes were stripped and 

reblotted with mAbs or pAbs according to the manufacturer's instruction. 

 

2.3.3   Flow cytometry  

      Cell surfact expression of CD82 was analyzed as discribed before (Zhang et 

al., 2001b). Du145-Mock and Du145-CD82 transfectant cells were incubated with 

either negative control mAb, integrin mAbs, or specific TM4SF mAbs M104.  In 

turns, cells were stained with FITC-conjugated goat-anti-mouse IgG. The stained 

cells were analyzed using a FACScan flow cytometer (BD Biosciences, Mountain 

View, CA). Fluorescence with negative control mAb was subtracted to give 

specific mean fluorescence intensity (MFI) units. 
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2.3.4   Cell spreading experiment 

      Du145-mock and Du145-CD82 transfectants were rinsed with PBS, then 

detached by trypsin/EDTA treatment. After centrifugation, the supernatant was 

removed and cells were resuspended in DMEM containing 10% FCS (Invitrogen, 

San Diego, CA). Cells were then plated on ECM protein (FN or LM 1)-coated 

glass bottom dishes (MatTek Corp., Ashland, MA) in DMEM medium for 3-6 h. 

Cells attached and spread for 20 min before being fixed with 3.7% formaldehyde 

in PBS with 5% sucrose and 2 mM MgCl2 for 15 min at RT. Images were taken 

with a Hamamatsu cooled CCD camera run by Metamorph (Universal Imaging, 

PA) or a Bio-Rad 1024 microscope (Bio-Rad, Hercules, CA).  Areas of cells (20–

45 cells per coverslip) were calculated using the Scion Image v1.62 program 

(Scion Corp.).  

 

2.3.5   Time-lapse video microscopy  

      The time-lapse video-microscopic experiments were performed basically as 

previously described (Hinz et al., 2004; Prass et al., 2006). The Du145- or PC3-

transfectant cells were plated on ECM protein (FN or LM 1)-coated glass bottom 

dishes (MatTek Corp., Ashland, MA) in DMEM medium for 3-6 h before the time-

lapse imaging experiment. In the imaging experiment, each transfectant cell was 

observed for 1 to 6 h on an Axiovert 135 TV microscope (Carl Zeiss, Thornwood, 

NY) using DIC optics with either an oil-immersion 40X Plan Fluar or an oil-

immersion 63X Plan Apo objective. The microscope was equipped with a heated 
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stage and the temperature was kept at 37oC.  CO2 was kept by covering the 

medium with mineral oil.  Images were taken with a Hamamatsu cooled CCD 

camera run by Metamorph (Universal Imaging, PA) in 1, 2, 5, or 10 min interval 

during the observation periods. The cellular motile behaviors and the 

translocation of cells were assessed in movies made from the saved images. 

Cellular motile behaviors were analyzed under different conditions such as 

serum-free DMEM, DMEM containing EGF, DMEM containing KAI1/CD82 mAb, 

etc. The images were analyzed by Nikon EZ-C1 FreeViewer software.  

 

2.3.6   Cell migration assay 

      Migration experiments were performed in Transwell membrane filter inserts in 

24-well tissue culture plates (BD Labware, Bedford, MA) as described previously 

(Zhou et al., 2004). The Transwell filters were 6.5 mm in diameter, and the pore 

size for polycarbonate membranes was 8 µm. Filters were spotted with FN diluted 

in 10 mM NaHCO3 or LM 1 diluted in PBS on the lower surface of the Transwell 

inserts at 4°C overnight and then blocked with 0.1% heat-inactivated BSA at 

37°C for 30 minutes. Cells were detached at 90% confluence with 2 mM 

EDTA/PBS, washed once in PBS, and resuspended in serum-free DMEM 

containing 0.1% BSA. A 300-µL cell suspension was added to inserts at a density 

of 3 x 104 cells/insert. DMEM containing 1% FCS was added to the lower wells. 

Migration was allowed to proceed at 37°C for 3 hours. Cells that did not migrate 

through the filters were removed using cotton swabs, and cells that migrated 

through the inserts were fixed and stained with Diff-Quick (Baxter Healthcare 
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Corp., McGraw Park, IL). The number of migrated cells per insert was counted 

under a light microscope at magnification x40. Data from several independent 

experiments were pooled and analyzed using a two-tailed, Student’s t test. 

  

2.3.7   Image analysis and MDFR measurement   

      For cell morphology evaluation, phase contrast or fluorescent digital images 

of cells were analyzed by using the Image J software from NIH image (NIH 

image, http://rsb.info.nih.gov/nih-image/ ). The margin of each individual cell was 

traced by using the software's polygon selection tool and the cell perimeter and 

cell area were automatically calculated by the software. Then, as described 

previously (Szabo et al., 1995), the morphological deviation from roundness 

(MDFR), i.e., the deviation of each cell shape from perfect roundness, was 

calculated by dividing the theoretical maximum area for a given perimeter 

(perimeter2/4π) by the observed pixel area. The value for a perfectly round cell 

equals 1.0, and larger values represent increasing levels of deviation from 

roundness. 
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2.4 Results 

 

2.4.1   Detection and comparison of CD82 expression in Du145-mock and 

Du145-CD82 stable transfectants  

       After generating Du145-mock and Du145-CD82 transfectants as described 

above in Methods 2.3.1, KAI1/CD82 expression levels were determined by both 

flow cytometry and western blot (Figure 2.1). CD82 expression is not obviously 

detected in Du145-mock cell, whereas strong signals of CD82 has been detected 

(Figure 2.1A). The CD82 expression level within Du145-CD82 is not higher than 

the endogenous level of those cells sharing similar origin as prostate epithelial, 

which naturally express CD82, such as normal prostate epithelial cell line PrEC 

(Figure 2.1A).  The expression of CD82 on the surface of Du145-CD82 

transfectants was further confirmed by FACS (Figure 2.1B).  Compared to the 

absence of CD82 expression on Du145-mock transfectants, there was a clear 

peak shift indicating successful overexpression and correct conformation of 

CD82 on the surface of Du145-CD82 transfectants, as they were able to be 

recognized by CD82 specific antibody. 

      Thus, Isuccessfully re-introduced CD82 back to Du145 cells, which lose their 

endogenous expression of CD82 due to epigenetic events which is still largely 

unknown at current stage (Liu and Zhang, 2006). As a positive control, cell 

surface β1 integrin level was also detected simultaneously. It is not a surprise to 

see that there were slightly decreasing expression levels of cell surface β1  
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Figure 2.1   Detection and comparison of CD82 expression in Du145-mock 
and Du145-CD82 stable transfectants 
 
Upon establishing stable transfectants of Du145-mock and Du145-CD82, CD82 
expression is determined by the following: A. Western blot. CD82 expression is 
barely detectable in Du145-mock cell. However, Du145-CD82 transfectants 
shows decent protein level of CD82. In order to compare how high the 
expression level of CD82 in Du145-CD82 cells, cell lysate from those cells 
sharing similar origin as prostate epithelial, which naturally express CD82, such 
as normal prostate epithelial cell line PrEC, was also collected. The ectopic 
overexpression level of CD82 within D145-CD82 was contrasted and compared 
with the endogenous expression level of that in PrEC cells in this blot. The 
bottom panel shows the actin loading control. B. FACS analysis of cell surface 
CD82 expression. Both Du145-mock and Du145-CD82 transfectants were 
detached, then blocked with 1% BSA. Cells were then stained with negative 
control mouse IgG2 mAb, specific TM4SF mAbs M104, or integrin mAbs.  In 
turns, cells were stained with FITC-conjugated goat-anti-mouse IgG as 
secondary antibody. The stained cells were analyzed using a FACScan flow 
cytometer (BD Biosciences, Mountain View, CA).  
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integrin, since CD82 may accelerate its internalization and thus reduce its cell 

surface level (Liu and Zhang, 2006).   

 

 2.4.2   KAI1/CD82 inhibits Du145 cell motility 

      Upon confirming the expression of KAI1/CD82, Du145 transfectants were in 

turn tested for their directional motility, either by transwell haptotactic migration 

on FN, or chemohaptotactic migration on FN under the stimulation of HGF, 

respectively (Figure 2.2). As shown in Figure 2.2A, the ability of Du145-CD82 

cells to migrate toward ECM was greatly reduced compared with that of the 

Du145-Mock cells. The attenuated haptotactic cell migration in Du145-

KAI1/CD82 cells could also be replicated on LN5-coated substrata in our 

previous published data (Zhang et al., 2003a). Those results indicated that 

Du145-CD82 has robust inhibitory effects on cell migration mediated by both FN- 

and LM-binding integrins such as α5β1 and α3β1, respectively.  

      Besides inhibiting the haptotactic cell migration, CD82 expression also 

suppressed chemohaptotactic migration, i.e. cells migrated toward both the 

chemoattractant gradient and immobilized gradient (Figure 2.2B). In the 

presence of HGF, a strong cell migration promoter, the KAI1/CD82 transfectant 

still migrated significantly less on FN.  Moreover, the difference between Mock 

and CD82 cells migrating towards FCS and HGF are approximately the same, 

aound 3-4:1. This indicates that KAI1/CD82 impairs cell migration capability 

regardless the activation of c-Met. c-Met activation has been documented to be 

important for KAI1/CD82’s inhibition of cell migration in several cell types  
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Figure 2.2   KAI1/CD82 inhibits Du145 cell motility 
 
A, KAI1/CD82 inhibits haptotactic cell migration on fibronectin. Haptotactic 
migration of the Du145 transfectants was measured using the transwell inserts 
coated with FN (20 µg/ml). The migration medium in top and bottom wells was 
DMEM containing 0.1% heat-inactivated BSA and antibiotics. Cells that migrated 
onto the lower surface were fixed, stained, and photographed. In each individual 
experiment, cells that migrated through the filters were counted from at least 
three randomly selected fields. Results were obtained from at least three 
individual experiments and represented as the cell migration index, which is the 
number of cells per a high power field. The bar graph representgraph represents 
means ± S.D. p < 0.001 on FN between the Mock and KAI1/CD82 transfectants. 
B, KAI1/CD82 inhibits chemohaptotactic cell migration. Chemohaptotactic 
migration assays were carried out toward chemoattractants on FN (20 µg/ml)-
coated filters in the medium of the bottom well. The chemoattractants in the 
medium of the bottom well is HGF (100 ng/ml). The results were obtained from 
three experiments (mean ± S.D.). p < 0.001 toward HGF between the Mock and 
KAI1/CD82 transfectants. 
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including YTS1 bladder cancer cells (Todeschini et al., 2007), and metastatic 

 prostate cell line PC3 (Sridhar and Miranti, 2006). Although it has been reported 

that c-Met activation can fully overturn the motility inhibition induced by CD82  

(Todeschini et al., 2007), activation of c-Met by HGF in Du145-CD82 cells can’t 

rescue the impaired cell migration, which is previously inhibited by 

overexpression of CD82 (Figure 2.2B).   

 

2.4.3   KAI1/CD82 contributes to deficiencies in cellular extension retraction 

and lamellipodia formation  

      Cell movement on or through different ECMs is substantially diminished when 

KAI1/CD82 is forced to express in invasive or metastatic tumor cells, in which 

KAI1/CD82 expression is usually lost (Dong et al., 1995;  Hemler, 2001;  Stipp et 

al., 2003). When spread on ECM such as FN and LM, Du145-KAI1/CD82 

transfectant cells exhibited profound differences in cellular morphology from the 

Mock cells. KAI1/CD82 overexpression typically results in polygonal, dumbbell, 

liquid-drop, spindle, and arboreal cell shapes (Figures 2.3 and 2.4). In dumbbell-, 

spindle- and liquid drop-like cells, the elongated cellular extensions are probably 

caused by the deficiency in retraction of elongated cellular extensions during cell 

spreading and migration. Although the elongated cellular extensions can also be 

found in Mock cells, the occurrence frequency was much fewer than the 

KAI1/CD82-expressing cells. These cellular extensions could be observed when 

cells spread or migrate on substratum coated with FN or LN 5 (Figure. 2.4B) in 

the presence or absence of serum or growth factor. For example, extraordinarily  
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Figure 2.3   Morphological phenotypes of KAI1/CD82-overexpressing cells 
 
A. KAI1/CD82-expressing cells displayed altered morphology. Upper panel, 
Du145-Mock and -KAI1/CD82 transfectant cells were plated on either FN (10 

µg/ml)- or LM 5 (10 µg/ml)-coated glass coverslips at 37oC, 5% CO2 overnight in 

serum-free DMEM medium.  Lower panel, PC3-Mock and -CD82 transfectant 

cells were plated on tissue culture flasks at 37
o
C, 5% CO2 overnight in DMEM 

medium containing 10% FCS. B. Quantitative analysis of cell morphology. Based 
on the images of Du145-Mock and -CD82 cells on FN, the MDFR was analyzed 
as described Experimental Procedures. Asterisk stands for statis-tically 
significant difference between Mock and CD82 transfectants (p < 0.05). C. Lack 
of lamellipodia in KAI1/CD82-overexpressing cells. Upper panel, Du145-Mock 
and -CD82 cells were spread on FN (10 µg/ml)-coated plates in DMEM 

containing 1% FCS at 37
o
C for overnight. The DIC images of cells were captured 

on an Axiovert inverted microscope using DIC optics with a 40 x F Fluar oil 
immersion objective. The arrows indicate lamellipodia. Lower panel, PC3-Mock 
and -KAI1/CD82 transfectant cells were spread on FN- or LN 1-coated plates and 
stained with CD81 mAb M38 using immunofluorescence as described (Zhou et 
al., 2004) to visualize cell peripheries. D. CD82-overexpressing cells frequently 
exhibit elongated cellular extensions. Du145-Mock and -CD82 cells were spread 
on FN (10 µg/ml)-coated plates in DMEM containing 10% FCS and HGF (100 

ng/ml) at 37
o
C for 3-6 h. The DIC images of cells were captured using DIC optics 

with a 40 x F Fluar oil immersion objective. Scale bar, 50 µm.   
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Figure 2.4   KAI1/CD82 attenuates the formation of lamellipodia and      
retraction of cellular extensions 
 
A. KAI1/CD82 inhibits lamellipodia and protrusion formations. Du145-Mock and – 
KAI1/CD82 transfectant cells were plated on FN-coated glass coverslips. DIC 
images were acquired using time-laps vidoemicroscopy as described in experi-
mental procedures. Arrows indicate lamellipodia. B. KAI1/CD82 inhibits the 
retraction of rear tail. Du145-Mock and -KAI1/CD82 cells were placed on FN (10 
µg/ml)-coated coverslip for 3-6 h and treated with 100 ng/ml HGF for 4-6 h. The 
cell morphology was photographed by using time-lapse videomicroscopy for 3 h. 
Arrow heads indicate the retraction processes in Du145-Mock cells and arrows 
the rear tail in Du145-KAI1/CD82 cells. The time-lapse intervals are labeled 
inside images. Scale bar, 20 µm.  
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long cellular extensions were observed in KAI1/CD82-expressing cells treated 

with HGF (Figure 2.3D). Time-lapse video microscopy demonstrated that the 

elongated cellular extensions were generated due to the lack of contractile 

retraction (Figure. 2.3C, Figure 2.4B).  

      For KAI1/CD82-expressing cells with multilateral morphology, cell edges 

usually become flat or slightly concave, reflecting the lack of lamellipodia 

formation. Indeed, as reported earlier (Berditchevski, 2001;  Zhou et al., 2004), 

lamellipodia formation was diminished upon KAI1/CD82 overexpression (Figures 

2.3C and 2.4A).  In Du145-KAI1/CD82 cells, lamellipodia formation was 

completely lost (Figures 2.3C and 2.4A), while in PC3-KAI1/CD82 cells, localized 

lamellipodia were typically limited to one or two cellular ends (Figure 2.3C). Time-

lapse video microscopy demonstrated that the Mock cells could rapidly generate 

broad lamellipodia while the KAI1/CD82-expressing cells failed to produce 

lamellipodia (Figure 2.4A). Because of attenuated protrusive activities, some 

KAI1/CD82-expressing cells displayed more rigid edges. 

      Moreover, when spread on FN-coated plates or grow in cell culture dishes 

(Figure 1A), Du145-KAI1/CD82 cells showed significantly more MDFR, a 

parameter to describe the extent of irregularity departing from roundness in cell 

shape, than the Mock cells (Figure 2.3B). However, when spread on LN 5, 

Du145-KAI1/CD82 cells exhibited a more roundup morphology (Figure 2.3), 

reminiscent to the cell flattening process on poly-L-lysine coated plates, 

suggesting the attenuated outside-in signaling from laminin-binding integrins 

α3β1 and/or α6β4. The morphology of KAI1/CD82 transfectant cells also reflects  
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 the loss of polarization during spreading, consistent with the loss of directionality 

of these cells during cell migration (Zhang et al., 2003a). The morphological 

evidences for the loss of polarization include bipolar cellular extensions or 

lamellipodia (Figure 2.3C bottom panel), and cell flattening on LN 5 (Figure 2.3A 

top panel). The KAI1/CD82 expressionexpression level of KAI1/CD82 proteins in 

Du145-CD82 cells is slitely lower thandid not exceed the endogenous expression 

level of the endogenous protein in an immortalized human normal prostate 

epithelial cell line PERrEC (Figure 2.1). 

 

2.5 Discussion 

      Alterations in cellular morphology upon KAI1/CD82 expression reflect 

deficiencies in protrusion and retraction - could this explain the motility-inhibitory 

mechanism at the cellular level? 

      KAI1/CD82 expression alters the cellular morphology in various aspects. 

These alterations can be attributed to both diminished protrusive activities such 

as the lack of formation of lamellipodia and cellular protrusion and attenuated 

retraction of cellular extension and trailing edge. Since migrating cells typically 

display these motility-related morphological events, loss and disruption of these 

events are therefore predicted to be important for the cell movement-inhibitory 

activity of KAI1/CD82.   

      In Du145 prostate cancer cells, KAI1/CD82 expression abolishes the 

lamellipodia formation on fibronectin-coated, laminin-coated, or regular cell 

culture flask surface. Only on laminin 5-coated substratum did KAI1/CD82-
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expressing cells undergo cell flattening, a symmetric cell spreading process. In 

PC3 prostate cancer cells, KAI1/CD82 grossly inhibits the lamellipodia formation 

on fibronectin but partially inhibits it on laminin. Because PC3 cells could form 

fan-like, well-developed lamellipodia on laminin, KAI1/CD82 more likely inhibits 

the development or prevailence of fan-like lamellipodia. Of note, the definition of 

lamellipodia referrenced herein covers both subdomains of recently designated 

lamellipodia and lamella (Ponti et al., 2004). Since both Du145 and PC3 cells 

form lamellipodia during cell migration, the lack or disruption of lamellipodia 

formation or development is very likely to be crucial for the motility-inhibitory 

activity of KAI1/CD82, though some PC3-KAI1/CD82 cells can still form 

incomplete lamellipodia on laminin.  

      The presence of elongated cellular extensions is another genuine effect of 

KAI1/CD82 overexpression in Du145 and PC3 cells. The elongated cellular 

extensions could be the consequence of excessive protrusive activity, but they 

could also reflect the retraction deficiency. Our study clearly demonstrated that 

various cellular extensions in KAI1/CD82-expressing Du145 and PC3 cells are 

caused by deficiency in the retraction process. Earlier studies showed that the 

immobilized-KAI1/CD82 mAbs induce profound dendritic extensions in 

hematopoetic cells (Nojima et al., 1993;  Lagaudriere et al., 1998), 

morphologically reminiscent of some types of cellular extensions seen in 

KAI1/CD82-expressing Du145 and PC3 cells. Despite the differences between 

overexpression and Ab engagement and between adherent and suspension 
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cells, these dendritic extensions more likely represent the phenotype of less 

retraction if the motility-inhibitory activity of KAI1/CD82 is considered. 

      KAI1/CD82 not only blocked the cellular protrusion and retraction processes 

that were induced by the integrin-ECM engagement, but also blocked these 

events stimulated by growth factors or serum (Figure 1), For example,  

KAI1/CD82-caused deficiency in rear tail retraction is manifested in the presence  

of HGF. These observations indicate that KAI1/CD82 inhibits both integrin and 

growth factor signaling. Another novel observation in this study is that the effect 

of KAI1/CD82 on these motility-required cellular processes appears to be 

independent of cell-cell contacts. In other words, KAI1/CD82 can induce these 

morphological changes without directly engaging a cellular receptor from 

adjacent cells because those morphological effects are pronounced when cells 

do not form cell-cell contacts. On the contrary, the cell-cell contacts alleviate 

KAI1/CD82 effects on the actin cytoskeleton: the foundation of morphological 

changes and this will be shown in Chapter 3. 
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CHAPTER 3.  KAI1/CD82 DISRUPTS ACTIN CYTOSKELETON 

REARRANGEMENT THROUGH REGULATION OF THE SMALL-RHO 

GTPASES SIGNALING PATHWAY 
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3.1 Introduction 

      Cell migration consists of several critical steps: polarization formation, 

extension of cellular protrusions, the transmembrane connection of cytoskeleton 

to ECM for the generation of traction force to propel the cell body forward, and 

the retraction of the rear cellular portion (Horwitz and Parsons, 1999; Parent and 

Devreotes, 1999; Horwitz and Webb, 2003; Ridley et al., 2003; Raftopoulou and 

Hall, 2004;  Van Haastert and Devreotes, 2004;  Vicente-Manzanares et al., 

2005). Thus, by nature, cell migration is a process of global reorganization of 

thecytoskeleton. For example, actin polymerization drives the formation and 

extension of the protrusions such as lamellipodia at the leading edge (Condeelis, 

1993; Small et al., 1993; Mitchison and Cramer, 1996; Mogilner and Oster, 1996;  

), while the asymmetric distribution and crossing linking of myosin and actin 

produce the force for cellular contractility and lead to the retraction of the trailing 

edge (Kolega, 2003;  Kolega, 2006;  Sato et al., 2007). Rho small GTPases are 

clearly pivotal in all of these cytoskeletal rearrangement processes (Raftopoulou 

and Hall, 2004). For example, Rac is primarily responsible for generating a 

protrusive force through localized actin polymerization, while Rho is responsible 

for the contraction of the cell body and the retraction of the rear end (Jaffe and 

Hall, 2005). As a downstream effector of Rho GTPases (Raftopoulou and Hall, 

2004), cofilin severs actin filaments to generate barbed ends and thus facilitates 

the actin treadmilling (Bamburg and Wiggan, 2002;  Raftopoulou and Hall, 2004). 

Arp2/3, an effector complex, nucleates new actin filaments from the sides of 

preexisting filaments (Weaver et al., 2003;  Raftopoulou and Hall, 2004). The 
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severing activity of cofilin and branching activity of Arp2/3 function coordinately to 

promote the formation of branched actin network or cortical actin meshwork at 

the leading edge and generate propulsive force for migrating cells (Blanchoin et 

al., 2000a).       

      Tetraspanin KAI1/CD82 is an inhibitor of cell movement (Dong et al., 1995;  

Guo et al., 1996; Higashiyama et al., 1998; Takaoka et al., 1998a; Takaoka et al., 

1998b; Miyake et al., 1999; Ono et al., 1999; Uchida et al., 1999; Yang et al., 

2001; Delaguillaumie et al., 2002; Zhang et al., 2003a; Zhang et al., 2003b). 

Previous studies have shown that KAI1/CD82 suppresses cancer metastasis by 

inhibiting cell migration. Mechanisms may include the following: 1) Inhibiting EGF 

and integrin signaling by accelerating their endocytosis (Berditchevski, 2001;  

Odintsova et al., 2003;  He et al., 2004;  Liu and Zhang, 2006). In turns 

KAI1/CD82 attenuates outside-in signals and thus modulates cellular functions 

(Maecker et al., 1997;  Berditchevski, 2001;  Hemler, 2001). 2) Regulating 

cytoskeletal rearrangement.  In T cells, CD82 clustering promotes cellular 

protrusions and actin cytoskeleton rearrangement. This activity may depend on 

protein kinase A (Nojima et al., 1993;  Lagaudriere et al., 1998). Rho small 

GTPases are also important for KAI1/CD82-induced dendritic protrusion in T 

cells (Delaguillaumie et al., 2002).      

      Recent studies revealed that, in solid tumor cells, KAI1/CD82 attenuates the 

signaling derived from integrin (Ridley et al., 2003), EGFR (Yarden and 

Sliwkowski, 2001), and c-Met  (Dugina et al., 1995;  Sridhar and Miranti, 2006;  

Todeschini et al., 2007) and that FAK-Src-p130CAS-Crk pathway is a major 
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downstream signaling pathway affected by KAI1/CD82 (Zhang et al., 2003a;  

Sridhar and Miranti, 2006). At the cellular level, besides the aforementioned 

induction of cellular protrusions via immobilized KAI1/CD82 mAbs, earlier studies 

showed KAI1/CD82 inhibits lamellipodia formation (Odintsova et al., 2000). The 

cellular and molecular events critical for the function of KAI1/CD82 and the 

signaling altered by KAI1/CD82, however, have not been elucidated in depth and 

details. The goal of this study is to determine the subcellular event and 

cytoskeletal events crucial for the motility-inhibitory activity of KAI1/CD82. In this 

study, Ifound that KAI1/CD82 inhibits the formation of lamellipodia and the 

retraction of cellular extension, which result from deficient development of actin 

cortical meshwork and stress fibers. Not surprisingly, actin polymerization 

becomes attenuated upon KAI1/CD82 overexpression, due to the deregulation of 

Rho small GTPase activities and aberrant functions of Rho GTPase effectors.  

 

3.2 Materials 

      The monoclonal antibodies (mAbs) used in this study were human integrin α3 

mAb X8 (Sauer et al., 2003), human integrin α5 mAb PUJ-2 (Pujades C, 1996), 

human integrin β1 mAb A1A5 and TS2/16 (Hemler et al., 1984), human CD81 

mAb M38 (Fukudome et al., 1992), human KAI1/CD82 mAb M104 (Fukudome et 

al., 1992), 4F9 (Schlossman et al., 1994;  Iwata et al., 2002), and TS82b (Tepnel, 

Stamford, CT), Rac1 mAb (BD Pharmingen, San Jose, CA), and β-tubulin mAb 

(Sigma, St. Louis, MI). A mouse monoclonal IgG2 was used as a negative control 

antibody (Sigma). The polyclonal Ab (pAb) for cofilin was purchased from 
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Cytoskeleton (Denver, CO). The pAb for phosphorylated cofilin were either the 

gift from Dr. Bombarg of University of Colorado or purchased from Cell Signalling 

(Danvers, MA). The pAb for p34 of Arp2/3 complex was purchased from Upstate 

Biotechnology (Lake Placid, NY). Polyclonal Abs for RhoA, Cdc42, and Rac1 

were purchased from Santa Cruz Biotechnology (Santa Cruz, CA). The 

secondary antibodies were horseradish peroxidase-conjugated goat anti-mouse 

or -rabbit IgG antibody (Sigma) and rhodamine-conjugated goat-anti-mouse IgG 

antibody (Biosource International, Camarillo, CA). 

      Extracellular matrix (ECM) proteins used in this study were human plasma 

fibronectin (FN) (Invitrogen, San Diego, CA), mouse laminin (LN)-1 (Invitrogen, 

San Diego, CA), and rat LN-5 (Desmos Inc., San Diego, CA).  

      Growth factors or chemokine used in this study include epidermal growth 

factor (EGF) (Upstate Biotechnology, Lake Placid, NY), platelet-derived growth 

factor (PDGF) (Upstate Biotechnology), hepatocyte growth factor (HGF) (Sigma), 

and stromal cell derived factor 1 (SDF-1) (R&D, Minneapolis, MN).  

      Other reagents include cell permeable C3 transferase (Cytoskeleton), Texas 

Red- or Alexa 488-conjugated α-phallodin (Molecular Probe, Eugene, OR), Rac1 

inhibitor 23766 and its negative control 23767 (NIH, Bethesda, MD), and actin 

polymerization enhancer jasplakinolide (J7473) (Molecular Probe).  
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3.3 Methods 

 

3.3.1   Transfectants 

      Retrovirus containing the Rac1 dominant negative mutants Rac1N17, and 

constitutively active mutants Rac1L61 were kindly provided by Dr. Yi Zheng of 

University of Cincinnati. Those constructs were ligated in frame with the 

nucleotides encoding a three-hemagglutinin (HA3) tag at the 5′ end of the 

retroviral vector MIEG3 that expresses enhanced green fluorescent protein 

bicistronically. Recombinant retroviruses were produced using the Phoenix cell 

packaging system as described before (Guo and Zheng, 2004). Du145-mock and 

Du145-CD82 were infected with the respective retroviruses and harvested 48 to 

72 h postinfection. The enhanced green fluorescent protein-positive cells were 

isolated by fluorescence-activated cell sorting (FACS). pEGFP, pEGFP-actin , 

pEGFP-N-WASp (kindly provided by Dr. A. Weaver of Vanderbilt University), 

pEGFP-Cofilin (kindly provided by Dr. J Vandekerckhove of University Ghent)and 

pEGFP-PLCδ PH domain (kindly provided by Dr. John Cox of University of 

Tennessee) were transiently transfected into Du145-KAI1/CD82 and -Mock cells 

using Lipofectamine 2000 by following the manufacturer’s protocol. 

 

 3.3.2   Time-lapse video microscopy  

      The time-lapse video-microscopic experiments were performed as previously 

described in Chapter 2 method 2.3.5. For intracellular GFP-actin polymerization 

study, GFP-actin was transfected 48 h prior to experiment, then plated on FN-
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coated glass bottom plates (MatTek Corp., Ashland, MA). Images were taken 

with a C1Si confocal system mounted on an Eclipse TE2000-E microscope 

(Nikon, Melville, NY), using a Plan Fluor oil-immersion 40X objective (N.A. 1.3), 

or an oil-immersion Plan Apo 60X objective (N.A. 1.45).  The system is equipped 

with an environmental-control chamber (InVivo Scientific, St Louis, MO).  

Temperature was kept at 37oC and 5% CO2.  DIC and fluorescent images were 

recorded every 1-2 minute. Polymerization of GFP-actin was assessed in movies 

made from the saved images 

 

3.3.3   Fluorescent and confocal microscopy  

            The immunofluorescence staining was carried out as described (Zhang et 

al., 2001b). In brief, glass coverslips were coated with either FN (50 µg/ml) in 10 

mM NaHCO3 or LM 1 (50 µg/ml) in phosphate buffer saline (PBS) at 4oC 

overnight, and then blocked with 0.1% heat-inactivated bovine serum albumin 

(BSA) at 37oC 45 min.  Du145 transfectants were harvested in PBS containing 2 

mM EDTA, washed once, and plated on the ECM-coated coverslips in serum-

free or serum DMEM for 4 to 6 h at 37oC.  Then the cells were fixed with 3% 

paraformaldehyde (Sigma) and permeated with 0.1% Brij99 (Sigma).  

Nonspecific binding sites were blocked with 20% goat serum in PBS for 1 h at 

room temperature.  The cells were incubated sequentially with primary mAbs (~1 

µg/ml) and with Rhodamine-conjugated secondary antibody. For F-actin staining, 

cells were incubated with Texas Red-conjugated phalloidin. Each incubation 

lasted 30 min at RT in 20% goat serum/PBS and followed by 4 washes with PBS. 
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Finally the coverslips were mounted on glass slides in FluroSave reagent 

(Calbiochem-Novabiochem, San Diego, CA), analyzed using an Axiophot 

fluorescent microscope (Carl Zeiss) or a Bio-Rad 1024 confocal microscope (Bio-

Rad, Hercules, CA) and photographed with Optronics digital camera (Southern 

Micro Instrument, Marietta, GA) at 40X or 63X magnification.   

 

3.3.4   Rac1, Cdc42 and RhoA effector pull-down assay   

      The cellular Rho GTPase activities were measured by an effector domain 

pull-down assay  as described (Gao et al., 2004). Du145 transfectant cells were 

washed with PBS buffer once and lysed in RIPA buffer (1% NP40, 0.2% SDS, 

150 mM NaCl, 25 mM HEPES, 2 mM phenylmethylsulfonyl-fluoride, 20 µg/ml 

leupeptin, 20 µg/ml aprotinin, 2 mM sodium vanadate, and 2 mM sodium fluoride) 

on ice. Cell lysates were clarified by centrifugation at 14, 000 g at 4oC for 5 min, 

and equal amounts of lysate were incubated with GST fusion beads at 4oC for 45 

min. The beads were washed three times with ice-cold RIPA buffer. To assay the 

activity of Cdc42, cell lysate was affinity-precipitated with the beads adsorbed 

with the WASP Cdc42 binding domain-GST fusion that only binds to the active, 

GTP-bound form of Cdc42. With the same principle, Rac1 or RhoA activity was 

pulled down with PAK Rac1 binding domain-GST fusion or Rhotekin RhoA 

binding domain-GST fusion beads, respectively. The total cell lysates and the 

affinity-precipitated products were run on a SDS-PAGE gel, transferred to 

nitrocellulose membrane, and then immunoblotted for Cdc42, Rac1, or RhoA, 

respectively. The blots were detected with chemiluminesence reagent (Perkin-
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Elmer, Boston, MA). The intensities of the bands from four separate experiments 

were measured by NIH Scion Image program (Kroczynska et al., 2006). 

 

3.3.5   Cell motility assay 

      Different Rac1 mutants within either Du145-mock or Du145-CD82 were 

tested by the transwell migration described as above in Chapter 2 method 2.3.6.  

 

3.3.6   Actin polymerization analysis 

      As described above, intracellular GFP-actin polymerization was analyzed 

using live fluorescent imaging under a time-lapse confocal microscope. In 

addition, intracellular F-actin level was measured by using flow cytometry 

(Miyake et al., 2001). Briefly, Du145 transfectant cells at the confluent culture 

stage were detached with trypsin and washed once with sterile PBS. The cells 

were permeabilized with 0.01% Triton X-100 in PBS at 4ºC for 1 min and then 

washed 3 times with PBS. The permeabilized cells were fixed with 3.7% 

formaldehyde at RT for 5 min and subsequently washed 3 times with PBS. For F-

actin staining, the cells were incubated with 66 nM Alexa 488-conjugated 

phalloidin in PBS containing 1 % BSA at 37ºC for 1 h.  The stained cells were 

washed 3 times with PBS and analyzed in BD LSR II flow cytometer. The flow 

cytometry data were analyzed by using FlowJo 7.1 or FCS express V3 software. 
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3.3.7   Rac1 inhibitor assay 

      To evaluate whether Rac1 specific inhibitor, NSC23766, can inhibit 

lamellipodia formation in Du145 cell, Du145 cells grown in 10% calf serum were 

treated with 100 µM NSC23766 or DMSO overnight according to previous 

description (Gao et al., 2004), and then the cell were detached. Cell spreading 

experiment were then done as described in Chapter 2 method 2.3.4.  

 

3.3.8   Cytokine stimulation assay  

      Du145-Mock or -KAI1/CD82 transfectant cells were spread on FN-coated 

plates in complete DMEM and treated with integrin β1 activating mAb A1A5 (8 

µg/ml), EGF (100 ng/ml), HGF (100 ng/ml), or SDF-1 (100 ng/ml) at 37oC for 4-6 

h. Cells were then fixed, permeabilized, and incubated with Texas Red-

conjugated α-phalloidin. Digital images were captured under a fluorescent 

microscope. Scale bar, 20 µM. 

 

3.3.9   RhoA inhibition assay  

      Du145 cells were plated on coverslips overnight in DMEM full medium 

containing 10% FBS, then were untreated or treated with 2.0 µg/ml of C3 

Transferase (Cytoskeleton) for 4-6h at 37°C.  Cell were then fixed, stained with 

Rhodamine-labeled Phalloidin, and visualized by fluorescence 

microscopy.  Images were taken at a magnification of 60X.  
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3.3.10 Jasplakinolide inducing actin polymerization   

      It has been reported that Jasplakinolide  (Molecular probe, J7473) can induce 

actin polymerization (Bubb et al., 1994c). Effect of Jasplakinolide on actin 

polymerization of Du145-Mock and Du145-CD82 were then determined. Cells 

were treated with 50nM Jasplakinolide in full DMEM containing 10% FCS for 24 

hours, Cell were then fixed, stained with Rhodamine-labeled Phalloidin, and 

visualized by fluorescence microscopy.  Images were taken at a magnification of 

60X.  

 

3.3.11 Image analysis  

      For quantitation of F-actin intensity, the cell perimeters were outlined as 

described above in chapter 2 method 2.3.7. fluorescent digital images of cells 

were analyzed by using the Image J software from NIH image (NIH image, 

http://rsb.info.nih.gov/nih-image/). The margin of each individual cell was traced 

by using the software's polygon selection tool and the cell perimeter and cell area 

were automatically calculated by the software.Then, based on the fluorescent 

digital images of α-phalloidin staining, the total cellular F-actin intensity, F-actin 

intensity inside the inner edge of cortical actin ring, and F-actin intensity of 

membrane protrusion or outside the inner edge of cortical actin ring were 

measured using the “analyze” function in Image J software. Theoretically, total 

cellular F-actin intensity = F-actin intensity inside the inner edge of cortical actin 

ring + F-actin intensity of membrane protrusion. Relative F-actin intensity of 
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membrane protrusion = F-actin intensity of membrane protrusion / total cellular F-

actin intensity (Figure 3.1). 

 

3.4 Results 

 

3.4.1   KAI1/CD82 inhibits the formations of actin cortical network and 

stress fibers  

      Dynamic actin reorganization is the hallmark of a motile cell (Steinmetz et al., 

1997). Usually, the loss of stress fibers and formation of extensive cortical 

meshwork accompany the enhanced cell migration (Steinmetz et al., 1997). It 

was reported that KAI1/CD82 could induce F-actin rearrangement either by the 

immobilized KAI1/CD82 mAb (Delaguillaumie et al., 2002) or in response to EGF 

stimulation (Lagaudriere et al., 1998). In Du145-Mock cells, actin was extensively 

polymerized into continuous fibers when cells were spread on both FN- and LM1-

coated substrata (Figure 3.2A). The actin fibers distributed in the cell peripheral 

areas were assembled into cortical actin ring or meshwork, while the ones in cell 

central areas are the stress fibers (Figure 3.2A). In contrast, the F-actin in 

Du145-KAI1/CD82 cell was either stained as patches or formed discontinuous 

fibers (Figure 3.2A), suggesting a defect in actin polymerization. In some cells,  

F-actin was concentrated in cell periphery to form dense actin bundles (Figure 

3.2A), which were found much more frequently in KAI1/CD82-expressing cells 

than in the Mock cells. Similar abnormality of actin organization was also found in 

PC3-KAI1/CD82 cells (data not shown).  
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Figure 3.1   Illustration of the calculation of F-actin intensity quantification 
and membrane protrusions 
 
For quantitationquantization of F-actin intensity, the cell perimeters were outlined 
by image J software as described above. Then, based on the fluorescent digital 
images of α-phalloidin staining, the total cellular F-actin intensity, F-actin intensity 
inside the inner edge of cortical actin ring, and F-actin intensity of membrane 
protrusion or outside the inner edge of cortical actin ring were measured using 
the “analyze” function in Image J software. Theoretically, total cellular F-actin 
intensity = F-actin intensity inside the inner edge of cortical actin ring + F-actin 
intensity of membrane protrusion, so F-actin intensity inside the inner edge of 
cortical actin ring = total cellular F-actin intensity - F-actin intensity of membrane 
protrusion . Finally, Relative F-actin intensity of membrane protrusion = F-actin 
intensity of membrane protrusion / total cellular F-actin intensity.  
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Figure 3.2   KAI1/CD82 regulates the activities of Rho GTPases  
 
A. After being spread on FN (50 µg/ml)- or LM1 (50 µg/ml)-coated coverslips at 
37oC, 5% CO2 for 6 h, Du145 transfectant cells were fixed, permeabilized, and 
then stained with TRITC-conjugated α-phalloidin. The fluorescent images were 
captured under an Axiophot fluorescent microscope equipped with an Optronics 
digital camera at magnification 63X. B. Kymography of actin polymerization in 
Du145-Mock and -KAI1/CD82 cells. The cells were transiently transfected with 
pEGFP-actin construct. They were spread on FN-coated coverslip in complete 
DMEM and photographed using time-lapse confocal videomicroscopy. 
Arrowheads and arrows indicate actin polymerization during the development of 
mini-protrusion and stress fiber, respectively. C. Less F-actin in Du145-
KAI1/CD82 cells. Top panel, Du145-Mock and -KAI1/CD82 cells were fixed, 
permeabilized, incubated with Alexa 488-conjugated phalloidin or IgG2b, and 
then analyzed using flow cytometry. Bottom panel, Quantization of the mean 
fluorescence intensity (MFI) of F actin shown in the top panel. Data are 
expressed as the mean MFI of three independent experiments (p < 0.05 between 
Mock and KAI1/CD82 cells). Right bottom panel, the cell lysates from the 
experiment were analyzed in Western blot for total cellular actin proteins. Cofilin 
blot was used as the protein loading control. 
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      Since microtubules also play an important role in cell movement and 

morphogenesis (Wittmann and Waterman-Storer, 2001), Ianalyzed the effect of 

KAI1/CD82 expression on microtubule organization. As showed in Figure 3.2A, 

no apparent difference was found in microtubule number, length, and distribution 

between Du145-Mock and -KAI1/CD82 cells, indicating that KAI1/CD82 

specifically affects the actin cytoskeleton. In contrast to the pronounced defect in 

actin cytoskeletal rearrangement, microtubule cytoskeletal structure remained 

less affected in terms of length, continuity, and number in Du145-CD82 cells, 

though microtubule organization centers in these cells become less profound 

than those in Mock cells (Figure 3.2A).  

 

3.4.2   Actin polymerization is impaired upon KAI1/CD82 overexpression  

      To determine the biochemical nature of the aberrant actin organization in 

KAI1/CD82-expressing cells, Ianalyzed actin polymerization. Consistent with the 

F-actin staining at steady state under immunoflurescence microscopy, Ifound that 

actin polymerization was impaired in Du145-KAI1/CD82 cells under live imaging 

using GFP-actin as a tracer (Figure 3.2B). Actin polymerization in stress fibers 

(Figure 3.2B, arrow), cortical ring, and peripheral bundles (Figure 3.2B, arrow 

head) in the membrane protrusions occurred in Mock cells, but they are 

significantly attenuated in KAI1/CD82 cells (Figure 3.1B). In KAI1/CD82 cells, 

actin polymerization could still be found at the end of cellular extensions, and 

were sometimes accompanied by the formation of large endocytic or exocytic 

vesicles. 
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      To confirm this observation, Idirectly measured and compared the 

intracellular quantity of F-actin using fluorescent phalloidin in permeabilized 

Du145 transfectant cells. As shown in Figure 3.2C, the F-actin level, reflected by 

the mean fluorescent intensity of intracellular phalloidin staining, was significantly 

decreased in KAI1/CD82-expressing cells, compared with the one in Mock cells. 

The levels of total actin protein or G-actin were equal between Du145-Mock and -

KAI1/CD82 cells (Figure 3.2C bottom panel).   

      Thus, the results from the qualitative live imaging and quantitative flow 

cytometry experiments agree with each other and indicate impaired actin 

polymerization within KAI1/CD82 cells.  

 

3.4.3   The roles of cell adhesion- and growth factor-signaling in 

KAI1/CD82-induced morphological and cytoskeletal changes   

      It has been reported that signaling initiated by integrin-ECM adhesion and 

growth factors is diminished by KAI1/CD82 and these diminutions correlate 

KAI1/CD82-induced inhibition of cell movement (Dong et al., 1995;  Hemler, 

2001;  Stipp et al., 2003). Inext investigated if increased input of the signaling 

from cell adhesion, growth factor, and chemokine could reverse KAI1/CD82-

induced morphological and cytoskeletal changes. For example, growth factors  

such as EGF and HGF were reported to promote actin cortical meshwork and 

stress fiber formation or development (Gohla et al., 1999;  Kodama et al., 2000;  

Liu et al., 2002;  Marcoux and Vuori, 2005). By evaluating the quantity and 

distribution of F-actin in Du145-KAI1/CD82 cells, Ifound that KAI1/CD82-induced 
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changes such as the loss of actin cortical meshwork or less F-actin in protrusions 

could not be rescued by the activation of following signaling either alone (Figure 

3.3A) or in combination (data not shown): β1 integrins, EGFR, c-Met, and 

CXCR4. Thus, KAI1/CD82 affects actin reorganization likely through inhibiting 

either multiple signaling pathways or the signaling step after the convergence 

point of multiple pathways. To further explore other possibly involved signaling, 

Iinvestigated the effects of cholesterol remover MβCD and PKC activator PMA on 

the morphological and cytoskeletal changes induced by KAI1/CD82. Ifound that 

both reagents could not override the changes induced by KAI1/CD82 (our 

unpublished data).  

      Surprisingly, Irealized that KAI1/CD82-induced morphological and 

cytoskeletal changes became alleviated when cell-cell contacts were formed 

(Figure 3.3B). Namely, stress fibers and cortical actin meshwork were partially or 

largely restored, respectively, in the KAI1/CD82-expressing cells when they were  

placed in a cell-cell contact microenvironment. This observation suggests that the 

signaling resulting from cell-cell adhesion acts against KAI1/CD82 signaling by 

rescuing actin polymerization probably through either the downstream of 

KAI1/CD82’s signaling target or a pathway parallel to KAI1/CD82 signaling. HGF 

was reported to override the motility-inhibitory effect of KAI1/CD82 in YTS1  

bladder cancer cells (Todeschini et al., 2007). However, Idid not observe a 

similar effect on cell migration for HGF in Du145-KAI1/CD82 cells (Figure 2.2).  

The method to calculate relative F-actin intensity of the membrane protrusion is 

illustrated in Figure 3.1.  
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Figure 3.3   Effects of cell-ECM adhesion, cell-cell adhesion, chemokine, 
and growth factor on KAI1/CD82-induced cytoskeletal changes 

 
A. Du145-Mock or -KAI1/CD82 transfectant cells were spread on FN-coated 
plates in complete DMEM and treated with integrin β1 activating mAb A1A5 (8 
µg/ml), EGF (100 ng/ml), HGF (100 ng/ml), or SDF-1 (100 ng/ml) at 37oC for 4-6 
h. Cells were then fixed, permeabilized, and incubated with Texas Red-
conjugated α-phalloidin. Digital images were captured under a fluorescent 
microscope. Scale bar, 20 µM. B. Quantitative analysis. The cortical F-actin 
intensity was quantitated as described in Experimental Procedures.  Bars denote 
the average intensity of 50~95 cells from three individual experiments. The 
differences between Mock and all CD82 groups are statistically significant (p 
values < 0.05), while the differences between untreated CD82 and each treated 
CD82 group are not statistically significant (p values > 0.05).  C. Effect of cell-cell 
contact on actin polymerization in Du145-Mock and -KAI1/CD82 cells. Scale 
bars, 100 µM in Du145-Mock cells and 20 µM in Du145-CD82 cells. Arrows 
indicate the well-developed actin cortical meshwork seen in the KAI1/CD82-
expressing cells with cell-cell contacts. Arrowheads indicate that no well-
developed cortical network was found in KAI1/CD82-expressing cells without 
cell-cell contacts. D. Quantitative analysis. The cortical F-actin intensity was 
quantitated as described in Experimental Procedures.  Bars denote the average 
intensity of 32-40 cells from three individual experiments. The differences 
between the Mock and the KAI1/CD82 cells without cell-cell contacts and 
between the KAI1/CD82 cells with and without cell-cell contacts are statistically 
significant (p values < 0.05), while the differences between the groups of Mock 
and KAI1/CD82 cells containing cell-cell contacts are not statistically significant 
(p values > 0.05). 
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3.4.4   KAI1/CD82 regulates Rac1 and RhoA activities  

      Since a previous study found that Rho GTPases are involved in KAI1/CD82-

mediated signaling in T cells (Delaguillaumie et al., 2002) and Rho GTPases are 

the key regulators of actin cytoskeleton organization (Nobes and Hall, 1995;  

Nimnual et al., 2003), Ianalyzed the Cdc42, Rac, and Rho activities in Du145-

Mock and -KAI1/CD82 cells. By the effector domain pull-down experiments, 

Ifound that Rac1 activity was significantly downregulated by KAI1/CD82 while 

RhoA activity was markedly upregulated by KAI1/CD82. Cdc42 activity remained 

unchanged upon the overexpression of KAI1/CD82 (Figure 3.4).  

      Since Rac1 and RhoA play crucial roles in actin polymerization and cell 

migration as described above, Inext determined whether Rac1 activity is  

essential for KAI1/CD82-induced morphological and cytoskeletal changes, 

Iexpressed the constitutively activated form of Rac1, i.e., Rac1 L61 mutant, in 

Du145-KAI1/CD82 cells. Rac1 L61 mutant could not induce the cortical 

meshwork formation (Figure 3.5A), lamellipodia formation (Figure 3.7D), and cell 

migration (Figure 3.5C) in Du145-KAI1/CD82 cells. Surprisingly, in Du145-Mock 

cells, the dominant negative form of Rac1, i.e., Rac1 N17 mutant could not inhibit 

the formations of cortical meshwork (Figure 3.5A), lamellipodia formation (Figure  

3.5A), and cell migration (Figure 3.5C) either. In addition, inhibition of Rac1 

activity by a Rac1 specific inhibitor 23766 (Gao et al., 2004) can’t suppress the  

lamillapodia formation of Du145 cells (Figure 3.5B).  Thus, Rac1 appears not to 

be required for lamellipodia formation in Du145 cells. Moreover, the inhibition of  
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Figure 3.4   KAI1/CD82 regulates the activities of Rho GTPases   

 
Upper panel, KAI1/CD82 inhibits Rac1 activity. Du145-Mock or -KAI1/CD82 
transfectant cells were lysed in a lysis buffer containing 1% NP-40 and 0.2% 
SDS detergents. Cell lysates were subjected to the affinity precipitation using 
GST-PAK1, which only binds to the activated or GTP-bound Rac. The co-
precipitated, GTP-bound Rac GTPase was detected by Rac mAb. The intact cell 
lysates were blotted with Rac mAb to demonstrate equivalent levels of total Rac 
proteins between Mock and KAI1/CD82 transfectant cells. Blots show results 
from a single representative experiment;  the graph represents the relative 
density of the Rac band summarized from four individual experiments (mean ± 
SD), based on the densitometric analyses. P value between Mock and 
KAI1/CD82 is < 0.05. Middle panel, KAI1/CD82 enhances RhoA activity.  Du145 
transfectants were pretreated as described above. GTP-bound RhoA was pulled 
down by GST-Rhotekin and detected by RhoA mAb. The picture shows the 
results from a single representative experiment; the graph represents the relative 
density of the RhoA bands summarized from four individual experiments (mean ± 
SD), based on the densitometric analyses. P value between Mock and 
KAI1/CD82 is < 0.05.  Lower panel, KAI1/CD82 does not significantly alter Cdc42 
activity.  GTP-bound Cdc42 was pulled down by GST-PAK1 and detected by 
Cdc42 mAb. The picture shows the results from a single representative 
experiment; the graph represents the relative density of the Cdc42 bands 
summarized from four individual experiments, based on the densitometric 
analyses. P value between Mock and KAI1/CD82 is < 0.05.  In all experiments, 
tubulin protein levels in cell lysates were detected via Western blot and served as 
protein loading controls. 
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Figure 3.5   Rac1 cannot rescue KAI1/CD82-altered cellular morphology and 
actin cytoskeletal organization  

 
A. Du145-Mock cells expressing GFP or Rac1 N17-GFP and Du145-KAI1/CD82 
cells expressing GFP or Rac1 L61-GFP were spread on FN-coated coverslips at 
37oC, 5% CO2 for 3-6 min. Cell morphology images were captured using a digital 
camera at magnification of 60X, and F-actin were stained and photographed as 
described in Experimental Procedures, Bar = 20 um. B. Effect of Rac1 inhibition 
on lamellipodia formation in Du145 cells. Rac1 specific inhibitor 23766, no-
activity control 23766, and DMSO control were add to DMEM media to treat 
Du145 cell overnight. Cell morphology images were captured using a digital 
camera at magnification of 60X. C. Rac 1 activities in the cells expressing Rac1 
N17 or L61 and treated with 23766. (D) Cell migration of Du145 transfectants 
were measured on FN-coated substratum.   
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RhoA activity in Du145-KAI1/CD82 cells by C3 toxin cannot rescue KAI1/CD82-

induced morphological and cytoskeletal alterations (Figure 3.6).  

 

3.4.5   KAI1/CD82 blocks cofilin translocation  

      Cofilin is a downstream effector of both Rac and Rho and promotes actin 

reorganization (Raftopoulou and Hall, 2004). Despite that the levels of total, 

inactive (phosphorylated), and active (= total - phosphorylated) cofilin proteins  

remain unchanged in KAI1/CD82-overexpressing cells (Figure 3.7A), cofilin was 

concentrated in membrane protrusions such as lamellipodia (Figure 3.7B and D, 

arrow) as well as in nuclei in Du145-Mock cells (Figure 3.7B), resulting in 

relatively less cofilin within the cytoplasm (Figure 3.7B and D, arrow head). In 

contrast to Du145-Mock cells, cofilin was distributed across the cytoplasm but not 

enriched at the cell periphery in Du145-KAI1/CD82 cells (Figure 3.7B). The 

phosphorylated or inactivated cofilin was present in the perinuclear cytoplasm, 

and there was no difference in subcellular distribution of phosphorylated or 

inactivated cofilin between Mock and KAI1/CD82 cells (Figure 3.7C). Thus, 

although cofilin was still translocated to peripheral cytoplasm in Du145-

KAI1/CD82 cells, KAI1/CD82 expression inhibits the translocation of cofilin to or 

the enrichment of cofilin at the cell periphery, implying a putative mechanism by 

which Du145-KAI1/CD82 cells fails to form lamellipodia. Moreover, this blockage 

of cofilin translocation was not overturned by the increased activity of Rac1 

(Figure 3.7D), which activates cofilin, promotes cofilin translocation to membrane 

ruffles, and initiates the lamellipodia formation (Suzuki et al.,1995; Nagaishi et  
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Figure 3.6   RhoA specific inhibtor – C3 transferase’s effect on actin 
reorganization 

 
Du145-Mock and Du145-CD82 cells were spread on 10 µg/ml FN-coated Mak-
Tek chamber and treated with either glycerol control or C3 (2.5 ug/ml) for 4-6 
hours according to manufacturer’s manual. Cells were then fixed with 3% 
paraformaldehyde, permeabilized by 0.1% Brij 98. F-actin werewas stained with 
Texas Red-conjugated phalloidin and analyzed using confocal microscopy. Scale 
bar, 50 µm 
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Figure 3.7   KAI1/CD82 blocked the translocation of cofilin  

 
A. The levels of total and phosphorylated cofilin proteins in Du145-Mock and -
KAI1/CD82 cells were assessed by Western blot using pAbs against cofilin and 
phosphorylated cofilin, respectively, as described in Experimental Procedures. 
Tubulin blot is used a control for protein loading. B. KAI1/CD82 prevents cofilin 
from being targeted to the cell periphery. Du145 transfectant cells were spread 
on FN-coated coverslips in complete DMEM for 3-6 h. The cells were fixed, 
permeabilized, and incubated with cofilin pAb and TRITC-conjugated α-
phalloidin, followed by the FITC-conjugated 2nd Ab staining. Digital images were 
captured under a confocal microscope and each image represents a single XY 
section. Arrow indicates the translocation of cofilin into lamellipodia, while 
arrowhead indicates the relatively transparent zone beneath the actin cortical 
meshwork and within the cytoplasm. Scale bar, 20 µm. C. Comparison of the 
subcellular distribution of phosphorylated cofilin between Du145-Mock and -
KAI1/CD82 cells. The experiment was performed as described in B except that 
the pAb against phosphorylated cofilin was used as the primary Ab. Scale bar, 20 
µm.  D. Du145-Mock cells expressing GFP or Rac1 N17-GFP and Du145-
KAI1/CD82 cells expressing GFP or Rac1 L61-GFP were spread on FN-coated 
coverslips at 37oC, 5% CO2 for 3 ~ 6 h. Cofilin was visualized using 
immunofluorescence as described above. The digital images were captured 
under a confocal microscope. Scale bar, 20 µm.      



 125  



 126  

al., 1999; Nagata-Ohashi et al., 2004; Verdijk et al., 2004). Neither can the 

inhibition of Rac1 by dominant negative N17 suppress the translocation of cofilin 

in Du145-mock cell (Figure 3.7D).  

      To further elucidate how important cofilin is in the KAI1/CD82 signaling 

pathway, Ioverexpressed GFP-cofilin into both Du145-Mock and Du145-CD82 

transfectants (Figure 3.8). Upon cofilin overexpresion, Du145-Mock cells were 

still able to form lamellipodia (Figure 3.8 upper panel), whereas Du145-CD82 

cells still failed to form membrane protrusion effectively (Figure 3.8 lower panel). 

Although cofilin still actively participated in membrane protrusion in both Du145-

Mock and Du145-CD82 cells, Icouldn’t determine whether cofilin is the primary 

driven force for membrane protrusion formation or not in this spectacular 

experiment. This is not a surprise to us as overexpression of cofilin may impair 

the actin cytoskeleton rearrangement and cell migration (Lee et al., 2005) or 

enhance the same process (Dang et al., 2006).  

      As Imentioned above in Chapter 1, PIP2 binds to cofilin and restricts its 

activation. It is thus worthwhile to determine if there are any difference regarding 

to the sub-cellular localization of PIP2 within Du145-Mock and Du145-CD82 

cells, as it might give us some useful hints on why there are less cofilin present in 

the leading edge of Du145-CD82 cells. As shown in Figure 3.9, PIP2 subcellular  

distribution, more accurately, the plama membrane PIP2 distribution has not 

been altered by KAI1/CD82. 
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Figure 3.8   GFP-cofilin overexpression cannot overturn the inhibited 
lamellipodia formation by CD82 in Du145 cells  

 
The pEGFP-Cofilin construct was transiently transfected into Du145-Mock and 
Du145-CD82 transfectants. 48 h after transfection, the cells were spread on 10 
µg/ml FN-coated plates in complete DMEM at 37oC for 4-6 h. Cells were then 
photographed using time-lapse confocal videomicroscopy for 30 minutes. 
Representative pictures from 0, 5,10,15,20,25,30 minutes are shown.  Green 
color stands for the expression and localization of GFP-cofilin. Images were 
taken at a magnification of 60X. Scale bar, 20 µm 
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Figure 3.9   No alteration in PIP2 level upon KAI1/CD82 expression  

 
The pEGFP and pEGFP-PLCδ PH domain constructs were transiently 
transfected into Du145-Mock and Du145-CD82 transfectants. At the 48 h after 
transfection, the cells were spread on 10 µg/ml FN-coated Mak-Tek chamber and 
analyzed using confocal microscopy. A Z-stack of digital images was captured as 
described above. Representative images of different transfectants were shown.  
Green color stands for the expression and localization of either pEGFP or 
pEGFP-PLCδ PH domain. 
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3.4.6   Effect of KAI1/CD82 expression on Rac effector Arp2/3 

      Arp2/3 complex is a downstream effector of Cdc42 and Rac1 and plays 

pivotal roles in nucleation and polymerization of actin (Pollard and Borisy, 2003), 

especially for the branched cortical actin network (Mullins et al., 1998) at the 

leading edge of lamellipodia (Svitkina and Borisy, 1999). By analyzing p34, a 

component of Arp2/3 complex, Ifound that Arp2/3 complex remains unchanged in 

both subcellular localization and protein level between Du145-Mock and -

KAI1/CD82 cells (Figure 3.10).  

 

3.4.7   KAI1/CD82 inhibiting actin polymerization can’t be overturned by N-

WASp or jasplakinolide  

      N-WASp and jasplakinolide are potent actin polymerization inducers. N-

WASp promotes actin polymerization via Arp2/3 (Kozma et al., 1995;  Nobes and 

Hall, 1995;  Raftopoulou and Hall, 2004). Jasplakinolide is a cyclic peptide 

isolated from the marine sponge, Jaspis johnstoni.  It has been shown to bind to, 

de novo nucleate, and stabilize actin filaments (Bubb et al., 1994b;  Bubb et al., 

2000). Neither overexpression of GFP-N-WASp nor treatment of jasplakinolide 

(50nM), can rescue the defective actin polymerization induced by KAI1/CD82 

(Figures 3.11 and 3.12) 
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Figure 3.10 KAI1/CD82 doesn’t alter the protein level and subcellular 
localization of the p34 protein in Arp2/3 complex  

 
A. The level of p34 proteins in the Arp2/3 complex in Du145-Mock and -
KAI1/CD82 cells was assessed by Western blot using pAbs against p34 protein 
as described in Experimental Procedures. Tubulin blot is used a control for 
protein loading.  B. Du145 transfectant cells were spread on FN-coated 
coverslips in complete DMEM for 3-6 h. The cells were fixed, permeabilized, and 
incubated with p34 pAb and TRITC-conjugated α-phalloidin, followed by the 
FITC-conjugated 2nd Ab staining. Digital images were captured under a confocal 
microscope, and each image represents a single XY section. Scale bar, 20 µm.   
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Figure 3.11 Effect of N-Wasp on actin polymerization in Du145 
transfectants  

 
The pEGFP and pEGFP-N-WASp constructs were transiently transfected into 
Du145-Mock and Du145-CD82 transfectants. At the 48 h after transfection, the 
cells were spread on 10 µg/ml FN-coated Mak-Tek chamber. Cells were then 
fixed. F actin was stained with Rhodamine-labeled Phalloidin, and analyzed 
using confocal microscopy. Representative images of different transfectants were 
shown.  Green color stands for the expression and localization of either pEGFP 
or pEGFP-N-WASp. Images were taken at a magnification of 60X. Scale bar, 50 
µm 
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Figure 3.12 Jasplakinolide cannot overturn the actin polymerization defect 
in Du145-CD82 cells  

 
It has been reported that Jasplakinolide  (Molecular probe, J7473) can induce 
actin polymerization (Bubb et al., 1994a). Jasplakinolide’s effect on actin 
polymerization that was suppressed by CD82 was determined. Du145-Mock and 
Du145-CD82 transfectants cells were spread on 10 µg/ml FN-coated Mak-Tek 
chamber and treated with 50nM Jasplakinolide in full DMEM containing 10% FCS 
for 24 hours, Cell were then fixed, stained with Rhodamine-labeled Phalloidin, 
and visualized by fluorescence microscopy.  Images were taken at a 
magnification of 60X. Scale bar, 50 µm 
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3.5 Discussion 

 

3.5.1   Alterations in cellular morphology upon KAI1/CD82 expression 

reflect the deficiencies in protrusion and retraction - the motility-inhibitory 

mechanism at the cellular level 

      KAI1/CD82 expression alters the cellular morphology in various aspects. 

These alterations can be attributed to both diminished protrusive activities such 

as the lack of formation of lamellipodia and cellular protrusion and attenuated 

retraction of cellular extension and trailing edge. Since migrating cells typically 

display these motility-related morphological events, loss and disruption of these 

events are therefore predicted to be important for the cell movement-inhibitory 

activity of KAI1/CD82.   

      In Du145 prostate cancer cells, KAI1/CD82 expression abolishes the 

lamellipodia formation on fibronectin-coated, laminin-coated, or regular cell 

culture flasks. Only on laminin 5-coated substratum KAI1/CD82-expressing cells 

underwent cell flattening, a symmetric cell spreading process. In PC3 prostate 

cancer cells, KAI1/CD82 grossly inhibits the lamellipodia formation on fibronectin 

but partially inhibits it on laminin. Because PC3 cells could form fan-like, well-

developed lamellipodia on laminin, KAI1/CD82 more likely inhibits the 

development or prevailing of fan-like lamellipodia. Of note, the definition of 

lamellipodia referred herein covers both subdomains of recently designated 

lamellipodia and lamella (Ponti et al., 2004). Since both Du145 and PC3 cells 

form lamellipodia during cell migration, the lack or disruption of lamellipodia 
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formation or development is very likely to be crucial for the motility-inhibitory 

activity of KAI1/CD82 though some PC3-KAI1/CD82 cells can still form 

incomplete lamellipodia on laminin.  

      The presence of elongated cellular extensions is another genuine effect of 

KAI1/CD82 overexpression in Du145 and PC3 cells. The elongated cellular 

extensions could be the consequence of excessive protrusive activity, but they 

could also reflect the retraction deficiency. Our study clearly demonstrated that 

various cellular extensions in KAI1/CD82-expressing Du145 and PC3 cells are 

caused by deficiency in retraction processes. Earlier studies showed that the 

immobilized-KAI1/CD82 mAbs induce profound dendritic extensions in 

hematopoetic cells (Nojima et al., 1993;  Lagaudriere et al., 1998), 

morphologically reminiscent of some types of cellular extensions seen in 

KAI1/CD82-expressing Du145 and PC3 cells. Despite the differences between 

overexpression and Ab engagement and between adherent and suspension 

cells, these dendritic extensions more likely represent the phenotype of less 

retraction if the motility-inhibitory activity of KAI1/CD82 is taken into 

consideration. 

      MTOC is important for promoting cell polarization at the front edge of a 

migrating cell (Etienne and Hall, 2002;  Ridley et al., 2003;  Rodriguez et al., 

2003). The diminished MTOC in Du145-CD82 may play a role in indicating a 

potential mechanism;   however, the major regulator of the MTOC, Cdc42 

activity, has not been changed by KAI1/CDC42 (Figure 3.4). 
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      KAI1/CD82 not only blocked the cellular protrusion and retraction processes 

that were induced by the integrin-ECM engagement but also blocked these 

events stimulated by growth factors or serum (Figure 3.2), For example, 

KAI1/CD82-caused deficiency in real tail retraction is manifested in the presence 

of HGF. These observations indicate that KAI1/CD82 inhibits both integrin and 

growth factor signaling. Another novel observation in this study is that the effect 

of KAI1/CD82 on these motility-required cellular processes appears to be 

independent of cell-cell contacts. In other words, KAI1/CD82 can induce these 

morphological changes without directly engaging a cellular receptor from 

adjacent cells because those morphological effects are pronounced when cells 

do not form cell-cell contacts. On the contrary, the cell-cell contacts alleviate 

KAI1/CD82 effects on the actin cytoskeleton, the foundation of morphological 

changes.     

 

3.5.2   KAI1/CD82-induced deficiencies in protrusion and retraction 

processes are caused by the aberrant actin polymerization 

      The profound morphological changes induced by KAI1/CD82 apparently 

result from the aberrant organization and/or reorganization of cellular 

cytoskeleton networks. Actin is the cytoskeletal system that plays a central role in 

cell movement-related subcellular events including protrusion, traction, and 

retraction (Horwitz and Parsons, 1999;  Parent and Devreotes, 1999;  Horwitz 

and Webb, 2003;  Ridley et al., 2003;  Van Haastert and Devreotes, 2004;  

Vicente-Manzanares et al., 2005). As predicted, the actin cytoskeleton becomes 
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globally aberrant upon KAI1/CD82 expression. The lack of or defect in cortical 

meshwork and stress fibers is evident in KAI1/CD82-expressing cells, suggesting 

the aberrancy in actin polymerization. Indeed, KAI1/CD82 overexpression in 

Du145 cells results in the attenuation of actin polymerization, which is likely 

caused by the disregulated activities and/or localization of Rac, Rho, and their 

effectors. 

      The development of the cortical actin network generates protrusive force, 

morphologically evidenced by lamellipodia formation (Ridley et al., 2003). In 

addition, actin reorganization drives the extension of lamellipodia at the leading 

edge and creates the traction force (Ridley et al., 2003). Cell movement needs 

both protrusion and traction forces (Ridley et al., 2003). Therefore, the formation 

of the actin cortical meshwork and simultaneous extension of leading 

lamellipodia are the major subcellular morphological features of many migrating 

cells. In KAI1/CD82-overexpressing Du145 cells, the losses of these 

morphological characteristics are apparently caused by the aberrant actin 

polymerization, particularly the polymerization of the branched actin network. 

      In parallel, the retraction process is also essential for the movement of many 

cells (Ridley et al., 2003). The defects in retraction upon KAI1/CD82 expression 

are displayed either as elongated trailing tails when Du145-KAI1/CD82 cells were 

treated with HGF, or as long cellular extensions in cells with bipolar-or dumbbell-

shape, or simply as persistent vertices in cells with polygonal shape. 

Mechanistically, the deficiency in retraction could result from either functional 

and/or structural abnormality of actin-myosin retraction machinery. For example, 



 139  

loss of ROCK activity will cause functional incompetence of this machinery while 

disrupted actin fibers due to the suppressed actin polymerization will make the 

retraction process lose the structural base in Du145-KAI1/CD82 cells.    

 

3.5.3   Aberrant actin polymerization in KAI1/CD82-expressing cells results 

from the deregulations of Rac, Rho, and their effectors - the molecular 

mechanism 

      Rho small GTPases are the master regulators of actin reorganization. Rac 

activation stimulates membrane ruffling through polymerization of cortical actin 

around the cell periphery, while Rho activation stimulates cell contractility through 

assembly of mainly radial-oriented actin stress fibers (Hall, 1998; Raftopoulou 

and Hall, 2004). In many cell types, Rac activation negatively regulates Rho 

activity through generating reactive oxygen species and subsequently activating 

p190RhoGAP (Nimnual et al., 2003). The delicate balance between the 

antagonistic activities of Rac and Rho is crucial for proper cell movement and 

also specifies cell morphology (Sander et al., 1999; Nimnual et al., 2003). The 

aberrant cytoskeleton reorganization upon KAI1/CD82 expression very likely 

results from the imbalance of Rho GTPase activities, namely, increased RhoA 

and decreased Rac1 activities. Iextrapolate that this imbalance ultimately leads 

to the defect in actin polymerization, aberrant cellular morphology, and 

diminished cell motility.  

      Consistent with the current understanding of the roles of Rac in cell 

morphology and movement, the suppressed lamellipodia and cell movement 
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caused by KAI1/CD82 expression correlate well with the diminished Rac1 activity 

in Du145 cells. However, Rac1 activity is, unexpectedly, not required for the 

lamellipodia formation in Du145 cells and the dominant-active mutant of Rac1 did 

not enhance the movement of Du145 cells either. Hence, departing from the 

doctrine, our finding in Du145 cells underlines a Rac1-independent mechanism 

for lamellipodia formation. In fact, Rac-independent lamellipodia formation has 

been sporadically reported elsewhere (Spaargaren and Bos, 1999; West et al., 

2000), though the underlying mechanism remains obscure.  In Rac1-/- mouse 

embryonic fibroblasts, lamellipodia formation is abolished (Guo et al., 2006; 

Vidali et al., 2006), but the cells are still able to migrate in a lamellipodia-

independent manner (Vidali et al., 2006). Du145 cells were isolated from the 

brain metastatic lesion of a prostate cancer patient and may not behave like 

fibroblasts. The mechanism responsible for lamellipodia formation in Du145 cells 

could vary from the one for fibroblasts. Notably, cell migration appears to be 

driven by, at least partially, lamellipodia in both PC3 and Du145 cells though 

lamellipodia are not essential for cell migration in fibroblasts (Vidali et al., 2006).   

      As expected, a lower Rac1 activity is accompanied with a higher RhoA 

activity in Du145 cells expressing KAI1/CD82 because Rac and Rho are mutually 

antagonistic in a variety of cells (Sander et al., 1999; Caron, 2003; Nimnual et al., 

2003). Based on the Bar-Sagi pathway (Nimnual et al., 2003), Ipredict that the 

decreased Rac1 activity results in the enhanced RhoA activity through a less 

p190RhoGAP activity at the plasma membrane. If so, KAI1/CD82-expressing 

Du145 cells may not experience the defect in retraction because an enhanced 
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RhoA activity typically promotes cellular retraction (Nobes and Hall, 1995; Alblas 

et al., 2001; Raftopoulou and Hall, 2004).  

      Meanwhile, an enhanced RhoA activity will promote stress fiber formation, 

which is apparently attenuated upon KAI1/CD82 expression. Alternatively, the 

enhanced RhoA activity in KAI1/CD82-expressing Du145 cells plays a 

compensatory role in reacting to the suppressions of downstream events such as 

ROCK or cofilin. If so, cells are unable to retract even with the enhanced RhoA 

activity. More likely, both possibilities coexist in KAI1/CD82-expressing Du145 

cells and the elevated RhoA per se is probably a combinatory effect.  

      The third possibility is that KAI1/CD82 activates RhoA at the leading edge of 

migrating cells.  Since an increased RhoA activity at the leading edge of 

migrating cells inhibits membrane protrusion, RhoA is suppressed in lamellipodia 

probably through the local enrichment of Rac1(Raftopoulou and Hall, 2004).  

Because KAI1/CD82 inhibits membrane protrusive events such as lamellipodia, 

the upregulation of RhoA by KAI1/CD82 in the leading edge leads to an 

increased local activity of RhoA that inhibits lamellipodia formaiton. Surprisingly, 

our observation is not unique. When cells lose stress fibers and focal adhesions, 

such as cell rounding up by entering mitosis or experimental manipulation, Rho 

activity are higher instead of lower (Ren et al., 1999; Maddox and Burridge, 

2003). According to Rho’s role in promoting focal adhesion and stress fiber 

formation, the logical consequence of round up cell should be a decreasing in 

Rho activity. Why? The answer may be that the presence of high Rho activity 

would disassemble stress fibers (Burridge and Wennerberg, 2004) 
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      KAI1/CD82 expression did not alter Cdc42 activity in Du145 cells, in contrast 

to an earlier report that Cdc42 activity was upregulated during the transient 

overexpression of KAI1/CD82 (Schoenfeld et al., 2003). The enhanced Cdc42 

activity was reported to serve as a mechanism for a mass scale of apoptosis 

induced by KAI1/CD82 (Schoenfeld et al., 2003). In KAI1/CD82 stable 

transfectants, apoptosis is apparently not a major phenotype though KAI1/CD82-

expressing Du145 or PC3 cells are more prone to apoptosis (our unpublished 

data). As mentioned above, Ido realize that KAI1/CD82-expressing Du145 cells 

exhibit more symmetric morphology and are less polarized on laminin 5. Since 

Cdc42 regulates polarity, one may expect KAI1/CD82 to down-regulate Cdc42 

activity. However, Cdc42 is not the sole controller for cell polarity because Cdc42 

null fibroblasts still retain polarity. Thus, the connection between Cdc42 and 

KAI1/CD82-induced morphological effects may not be immediate.    

      As a key effector of both Rac and Rho, cofilin plays an important role in 

membrane ruffling (Aizawa et al., 1996) or lamellipodia formation (Chan et al., 

2000; Zebda et al., 2000; DesMarais et al., 2004; Ghosh et al., 2004; 

Raftopoulou and Hall, 2004; Cai et al., 2007) and in cell migration and invasion 

(Bamburg et al., 1999; Raftopoulou and Hall, 2004; Wang et al., 2006; Cai et al., 

2007; Iwasa and Mullins, 2007).  

      Driven by the activated Rac, LIM kinase (LIMK) phosphorylates or inactivates 

cofilin. The net effect of PAK-LIM kinase activation is to stabilize actin filaments 

and filament bundles. This is somewhat paradoxical, as the stabilization of F-

actin may slow down the turnover rate of actin filaments, which will at some 
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extent retard the formation of lamellipodia or ruffles. During cell migration, 

lamellipodia formation demand active cofilin and rapid actin recycling between 

polymer and monomer to sustain the actin treadmilling (Blanchoin et al., 2000a; 

Zebda et al., 2000). How to explain such a discrepancy? One possible 

explanation would be that cofilin activation and inactivation are under elegant 

spatial or temporal control. During the active cell migration stage, active cofilin 

was found more distally in a lamellipodium / ruffle to promote polymerization in 

cooperation with the Arp2/3 complex at the leading edge of a protrusion.  

      In contrast to the active cofilin, inactive cofilin phosphorylated by PAK-LIM 

kinase phosphorylation may be concentrated further back from the leading edge 

of lamellipodia. This subtle difference may allow cofilin to promote 

polymerization, synergizing with the Arp2/3 complex at the leading edge of 

lamellipodia, while simultaneously the inactive confilin distributes further back in 

the body of the lamellipodium or ruffle to stabilize the newly formed actin 

filaments within the dendritic actin mesh network (Burridge and Wennerberg, 

2004). Consequently, activated cofilin is translocated to the plasma membrane 

(Suzuki et al., 1995; Nagaishi et al., 1999; Nagata-Ohashi et al., 2004; Verdijk et 

al., 2004) where it interacts with the actin cytoskeleton and promotes actin 

cortical meshwork formation, actin recycling, and lamellipodia formation 

(Raftopoulou and Hall, 2004).  

      Translocation of cofilin to the plasma membrane is considered as an indicator 

of the cofilin activation (Suzuki et al., 1995; Nagaishi et al., 1999; Nagata-Ohashi 

et al., 2004; Verdijk et al., 2004). For example, in T leukemia cells and NIH3T3 
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cells, phosphorylated cofilin undergoes the translocation to lamellipodia upon 

activation or dephosphorylation (Verdijk et al., 2004). In resting cells, cofilin is 

distributed evenly throughout cytosol. Once the cells are activated, cofilin 

becomes accumulated at the plasma membranes (Suzuki et al., 1995; Nagaishi 

et al., 1999; Nagata-Ohashi et al., 2004; Verdijk et al., 2004).  

      Interestingly, the subcellular localizations of total and inactivated cofilin in 

Du145-Mock and -KAI1/CD82 cells display similar distribution patterns as the 

ones in migrating and non-migrating fibroblasts cell (Dawe et al., 2003), 

respectively. The novel observation made from this study is that, upon 

KAI1/CD82 expression, cofilin is no longer enriched at the cell periphery though it 

can be translocated to the peripheral cytoplasm. This observation strongly 

suggests that KAI1/CD82 expression block the translocation and therefore 

activation of cofilin, underlining a putative mechanism by which KAI1/CD82 

impairs lamellipodia formation. If so, one would expect more phosphorylated or 

inactive cofilin in Du145-KAI1/CD82 cells. In fact, the level of phosphorylated 

cofilin proteins remains unchanged upon KAI1/CD82 expression. This could be 

explained by the fact that, in Du145-KAI1/CD82 cells, more cofilin 

dephosphorylation due to the enhanced RhoA activity offsets less cofilin 

dephosphorylation due to the decreased Rac activity. Alternatively, cofilin 

underwent dephosphorylation during the translocation to the peripheral 

cytoplasm in Du145-KAI1/CD82 cells, as it did during the translocation to the cell 

periphery in Mock cells.            
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      Interestingly, cofilin is still able to translocate to lamellipodia in the Du145 

cells expressing dominant-negative Rac1, implying a Rac1-independent 

translocation mechanism. Surprisingly, the overexpression of GFP-cofilin (Figure 

3.8), N-WASP (Figure 3.11) or or treatment of actin polymerization inducer 

jasplakinolide (Figure 3.12) in Du145-CD82 cells can’t rescue KAI1/CD82-caused 

defects in actin cytoskeleton rearrangements such as cortical ring, stress fiber, 

and/or lamellipodia.  

      Another key player in cortical actin polymerization is the Arp2/3 complex, 

which is localized at the leading edge of the lamellipodia in Xenopus laevis 

keratocytes and fibroblasts (Svitkina and Borisy, 1999). However, Ididn’t observe 

the expected localization of P34, a component of Arp2/3 complex, in lamellipodia 

in Du145 prostate cancer cells (Figure 3.10B), probably due to the partial 

overlapping in subcellular distribution between P34 and Arp2/3, a seven-protein-

complex. 

 

3.5.4   KAI1/CD82 intercepts multiple signaling pathways: cell-cell adhesion 

stands out     

      KAI1/CD82 can initiate outside-in signaling. For example, KAI1/CD82 

engagement by the immobilized KAI1/CD82 mAb in T cells leads to the tyrosine 

phosphorylations of adaptor protein SLP76 and Rac guanosine exchange factor 

Vav1(Delaguillaumie et al., 2002) and actin reorganization (Lagaudriere et al., 

1998; Delaguillaumie et al., 2002; Delaguillaumie et al., 2004). This signaling 

may intercept the pro-migration signaling derived from integrin and growth factor 
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receptor. In parallel, since KAI1/CD82 physically interacts with β1 integrin and 

EGFR and down-regulates their function, KAI1/CD82 can directly inhibit the pro-

migration signaling at the very upstream. If the complexity of TEM constituents is 

taken into the consideration, there are multiple signaling pathways susceptible for 

KAI1/CD82 inhibition. Indeed, Ifound in this study that KAI1/CD82-induced 

morphological and cytoskeletal changes cannot simply be overridden by one or 

two signaling mechanisms. For example, the signaling originated from β1 integrin 

(Ridley et al., 2003) ,EGFR (Yarden and Sliwkowski, 2001), C-Met (Matsumoto et 

al., 1994; Dugina et al., 1995; Guasch et al., 1998; Sridhar and Miranti, 2006; 

Todeschini et al., 2007), and CXCR4 (Lapidot, 2001; Kayali et al., 2003; 

Bartolome et al., 2004; Marchesi et al., 2004; Tan et al., 2006) promote cell 

migration and actin reorganization through Rho small GTPases.  Activation of 

these signaling pathways, however, cannot override KAI1/CD82-exerted 

signaling and reverse the morphological and cytoskeletal effects. Iunderline this 

finding as a major advent of the molecular mechanism of KAI1/CD82.  

      Interestingly and also surprisingly, cell-cell adhesion significantly alleviates 

the morphological and cytoskeletal effects of KAI1/CD82. Although KAI1/CD82 

has been reported to upregulate cell-cell adhesion or aggregation (Lagaudriere-

Gesbert et al., 1997b; Shibagaki et al., 1998; Shibagaki et al., 1999; Jee et al., 

2003), associate with E-cadherin in colon cancer cell (Lee et al., 2003b), and 

bind to the counter-receptor DARC, the interplay between KAI1/CD82 and cell-

cell adhesion remains to be understood. Likely, cell-cell adhesion corrects, to 

some degree, the imbalanced Rac and Rho activities in Du145-KAI1/CD82 cells 
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as cell-cell contacts typically promote Rac but suppress Rho activities.  In 

contrast to the notion that KAI1/CD82 inhibits cell migration by engaging DARC 

through cell-cell adhesion, it appears that KAI1/CD82 only exerts the cell 

movement-related morphological and cytoskeletal impacts on cells when cell-cell 

adhesion falls apart.    

      In conclusion, Idemonstrated in this study that KAI1/CD82 likely intercepts 

multiple signaling events and/or common steps of various signaling pathways, 

resulting in the imbalance of Rac and Rho activities. Consequently, actin 

organization and reorganization become aberrant. The cytoskeletal changes in 

KAI1/CD82-expressing cancer cells cause the inhibitions of both cellular 

protrusion and retraction processes, which ultimately leads to the suppression of 

cell movement.  

      It has been reported that CD82 can induce apoptosis through reducing 

Redox species, and thus raising the ROS (Ono et al., 2000; Schoenfeld et al., 

2003). Here, Ifound that CD82 can also inhibit migration through impairing actin 

cytoskeleton reorganization. Interestingly, disruption of cytoskeleton can trigger 

and accompany apoptosis (Rao et al., 1999). So far, whether CD82 inhibit cancer 

cell metastasis and trigger apoptosis through common pathway or different 

pathway remain unclear. In our study, Idiscovered that CD82 can downregulated 

Rac1, which also contribute to the reduction of the Redox.  Finally, this study on 

actin cytoskeleton rearrangement will definitely shed lights on how CD82 

suppress cancer metastasis.   
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4.1 Summary: how KAI1/CD82 regulates cytoskeleton rearrangement and 

cell migration at molecular and cellular level 

 

 4.1.1   Molecular level: KAI1/CD82 inhibits cell migration by inhibiting actin 

polymerization and lamellipodia formation  

      KAI1/CD82 impairs the actin cytoskeleton rearrangement through four 

possible mechanisms (Figure 4.1):  

      In the absence of KAI1/CD82, such as cancer cells that lose their KAI1/CD82 

expression due to epigenetic events, stimulation of motogenic signaling 

pathways such as integrin, cMet, and EGFR will activate small RhoGTPases 

through DOCK/Crk-p130CAS or PI-3K-Akt axis (Hasegawa et al., 1996; Klemke 

et al., 1998; Buday et al., 2002; Hood and Cheresh, 2002) (Figure 1.5). In turn, 

as one of the downstream effector of RhoGTPases, cofilin is phosphorylated and 

stabilizes newly synthesized actin filaments.  In addition, activation of those cell 

surface receptors by stimuli might also couple (Nishita et al., 2005a) or uncouple 

(Song et al., 2006a)  with the the dephosphorylation activation of cofilin. Cofilin 

then undergoes translocation to the plasma membrane at the leading edge of 

migrating cells to sever actin filaments (Suzuki et al., 1995; Nagaishi et al., 1999; 

Nagata-Ohashi et al., 2004; Verdijk et al., 2004).  The consequence of cofilin 

activation is to generate more barbed ends fo actin filaments (Bamburg et al., 

1999; Condeelis et al., 2001; Ono, 2003; Pollard and Borisy, 2003; Wang et al., 

2007). On the other hand, small GTPase activation will also activate Arp2/3 

(Raftopoulou and Hall, 2004). The synergic effects of Arp2/3 and cofilin  
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Figure 4.1   Summarization of how KAI1/CD82 inhibits cell migration at 
molecular level  
 
Detail of how KAI1/CD82 impairs actin cytoskeleton rearrangement by inhibiting 
actin polymerization and lamellipodia formation. A. In the abesenceabsence of 
KAI1/CD82, as in cancer cells which lose their KAI1/CD82 expression due to 
epigenetic events, multiple pro-migration signalingssignals including integrin, 
cMet, and EGFR will activate small RhoGTPases. In addition, those stimuli might 
also promote the dephosphorylation and thus activation of the cofilin. Cofilin then 
undergoes translocation beneath the plasma membrane to sever actin filaments 
to generate more barbed ends. Small GTPases then activate Arp2/3. 
Subsequentially Arp2/3 and active cofilin work synergistically to promote actin 
polymerization and in turn form those pro-migration morphology such as dendritic 
actin mesh network and lamellipiodia.  B. The presence of KAI1/CD82 will inhibit 
multiple signaling pathways: (1).Accelerate the internalization of cell surface pro-
adhesiveness and pro-migration proteins, such as integrin and EGFR; (2). Inhibit 
Rac1 activity and disrupt the balance among individual small RhoGTPases, (3) 
inhibit the activation of Arp2/3 and thus actin polymerization and generates less F 
actin fiber, less dendritic actin mesh network and less or no lamellipodia; (4). 
Inhibit cofilin translocation to membrane protrusion and lamellipodia. 
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activations are to induce actin polymerization, increase F-actin level, and 

consequently promote pro-migration events such as the formation of dendritic 

actin mesh network and lamellipoidia (Bamburg et al., 1999; Condeelis et al., 

2001; Ono, 2003; Pollard and Borisy, 2003; Wang et al., 2007) (Figure 4.1A).   

      In the presence of KAI1/CD82, multiple signaling pathways crucial for actin 

cytoskeletal rearrangement and cell migration are interrupted (Figure 4.2) (Liu 

and Zhang, 2006): First, KAI1/CD82 can accelerate the internalization of cell 

surface pro-adhesion and pro-migration proteins, such as integrin and EGFR (Liu 

and Zhang, 2006), and subsequently attenuate their responses to external and 

internal stimuli. The outcomes of this attenuation are that cytoskeleton 

rearrangement is slowed down and cells become less motile; KAI1/CD82 might 

also directly or indirectly inhibit Rac1 activation and disrupt the delicate balance 

between individual small RhoGTPases, such as the Rac1 / RhoA ratio (Figure 

3.4). Rac1 and RhoA are important for proper initiation and maintenance of cell 

migration (Etienne and Hall, 2002; Hood and Cheresh, 2002; Ridley et al., 2003; 

Burridge and Wennerberg, 2004; Raftopoulou and Hall, 2004;). Rac1 promotes 

actin polymerization and lamellipodia formation, whereas RhoA  isRhoA is 

responsible for stress fiber formation to provide the cell a transient firm 

attachment on the substratum during membrane protrusion and rear 

contratilecontractility to finish the final step of cell migration.  Rac1 and RhoA 

activities are under tightly temperaltemporal and spatial control so that Rac1 and 

RhoA cooperate with each other during cell migration (Etienne and Hall, 2002; 

Hood and Cheresh, 2002; Ridley et al., 2003; Burridge and Wennerberg; 2004;  
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Figure 4.2   Summarization of how KAI1/CD82 inhibits cell migration at 
cellular level  
 
Cell migration contains three distinct steps. They are polarization, protrusion 
formation and rear retraction. In this dissertation, Ilearned that KAI1/CD82 may 
intercept all of those three processes, and thus suppress cell migration. During 
polarization, KAI1/CD82 might disturb the MTOC organization.  Although Cdc42 
activity remain equal in the present or absent of KAI1/CD82 in Du145 cells, other 
regulatory mechanisms importantsimportant for cell polarization may be affected 
by KAI1/CD82 (Also see Figure 1.4). . During protrusion formation, KAI1/CD82 
profoundly inhibits the membrane protrusion and lamellipodia formation, probably 
through disturbing actin cytoskeletal rearrangement as discussed in Figure 5.1. 
Iconclude that unbalancing Rho GTPases, especially Rac1 / RhoA and blockage 
of cofilin translocation to leading edge induced by KAI1/CD82, account for those 
defects. During rear retraction, KAI1/CD82 induces an exceptionally prolonged 
cell morphology that can be exaggerated by pro-migratory stimuli such as HGF.  
These defects strongly imply dysfunction of rear retraction during cell migration. 
RhoA upregulation and Rac1/RhoA unbalancing may be important for this defect.  
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Raftopoulou and Hall, 2004). In our study,  I found that this balance is disrupted 

as Rac1 is downregulated and RhoA is upregulated upon overexpression of 

KAI1/CD82 (Figure 3.4). This imbalance may account for the declined actin 

polymerization, dendritic actin cortical mesh network formation, lamellipoidia 

formation and cell motility (Figure 4.1B).  

      As downstream effectors of small Rho GTPases, Arp2/3 and cofilin might 

also be affected in function when KAI1/CD82 overexpression causes the 

imbalance of Rac1 and RhoA. As described above, the downregulated Arp2/3 

and coflilin activities will lead to decreased actin polymerization, less F actin fiber, 

less dendritic actin mesh network formation and less or no lamellipodia (Figures 

2.3, 2.4, 3.2- 3.12);  Although MTOC became obscure upon KAI1/CD82 

overexpression, RhoGTPase member Cdc42, which is responsible for cell 

polarization (Ridley et al., 2003),  was unchanged. Cofilin translocation to the 

leading edge of membrane protrusion is important for membrane protrusion or 

lamellipodia formation (Bamburg et al., 1999; Condeelis et al., 2001; Ono, 2003; 

Pollard and Borisy, 2003; Wang et al., 2007). In this study, Iobserved an 

interesting phenominanphenomenon: KAI1/CD82 can block cofilin translocation 

to the cell periphery (Figure 3.7). Overexpression of cofilin, dominant negative 

Rac1, or constitutively active Rac1 cannot rescue this inhibitory effect (Figures 

3.7, 3.8).  

      The inhibition of actin cytoskeletal rearrangement by KAI1/CD82 is strong. 

Overexpression of an Arp2/3 activator, N-WASp, or stimulation with an actin 
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polymerization inducer, Jasplakinolide, cannot overturn the inhibition by 

KAI1/CD82 (Figures 3.11, 3.12).  

      In short, these evidences strongly indicate that KAI1/CD82 inhibits multiple 

pro-migratory signaling pathways rather than just one or two specific pathways 

(Liu and Zhang, 2006). 

 

4.1.2   How KAI1/CD82 inhibits cell migration at cellular level  

      Cell migration can be divided into three distinct steps: polarization, protrusion 

formation and rear retraction. In this dissertation study, Ilearned that KAI1/CD82 

might have impacts on all three steps to suppress cell migration (Figure 4.2). 1). 

Polarization. In Figure 3.2A, MTOC in Du145-CD82 became vague as compared 

to a strong present in the Du145-Mock cells.  Although Cdc42 activity is not 

altered by KAI1/CD82 in Du145 cells, other regulatory mechanisms 

importantsimportant for cell polarization may be affected by KAI1/CD82 (Figure 

1.4). 2). Protrusion formation. KAI1/CD82 can profoundly inhibit the membrane 

protrusion and lamellipodia formation (Figures 3.1, 3.2, 3.3, 3.5, 3.7, 3.8, 3.11, 

and 3.12). Ipropose that deregulation of Rho GTPases, especially Rac1and 

RhoA and blockage of cofilin translocation to leading edge account for those 

defects. 3) Rear retraction. As shown in Figure 3.1 and Figure 3.3A, cells 

overexpressing KAI1/CD82 exhibit an elongated cell morphology that can be 

substaintiated by pro-migratory stimuli such as HGF.  This defect strongly 

suggests a malfunction of rear retraction during cell migration. RhoA upregulation 

may be important for this defect since loss of focal adhesion and stress fiber 
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usually accompany by the upregulated RhoA activity (Ren et al., 1999; Maddox 

and Burridge, 2003). In addition, transiently decreased Rho activity may facilitate 

the transition of actin network from a rigid cortex to a more dynamic actin cortex 

that allows cell spreading and cell migration (Ren et al., 1999).  

 

4.2 Summary: a historic perspective of KAI1/CD82 

      Based on the current understanding, a summary of the mechanisms by which 

KAI1/CD82 inhibits cell migration and cancer invasion is illustrated in Figure 1.2. 

In the effort to delineate these mechanisms, there are a list of intriguing 

questions remain to address, and some of them have been long-standing since 

the first paper about KAI1/CD82 was published 14 year ago. For example, 

KAI1/CD82 appears to be functionally versatile as shown in Figure 1. If so, is 

there really a master or major mechanism for KAI1/CD82 to inhibit cell migration 

and caner invasiveness? Or does KAI1/CD82 inhibit migration and invasion by 

regulating a specific signaling pathway? If such mechanism(s) indeed exist, can 

the migration- and invasion-inhibitory mechanism of KAI1/CD82 be applied to its 

suppression of metastasis? Some early studies found that KAI1/CD82 

expression in leukemia and lymphoma cells was actually upregulated (Lebel-

Binay et al., 1995; Shibagaki et al., 1998; Shibagaki et al., 1999; Delaguillaumie 

et al., 2002; Delaguillaumie et al., 2004), which is distinctive from what Ilearned 

from solid tumors. Does KAI1/CD82 behave differently in solid tumor and 

hematopoetic malignancy? With the emergence of other metastasis suppressors, 

are there any mechanistic links between KAI1/CD82 and other cancer metastasis 
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suppressors such as BRMS1, KISS1, CD44, and NM-23 (Welch et al., 2000)? In 

contrast to KAI1/CD82, some tetraspanins like CO-029 and CD151 promote cell 

migration and cancer metastasis. What are the structural bases responsible for 

the functional differences between KAI1/CD82 and these motility-promoting 

tetraspanins? Since most of KAI1/CD82-associated proteins are residents in the 

Tetraspanin-enriched microdomain, what is the role of Tetraspanin-enriched 

microdomain in KAI1/CD82-mediated suppression of cell migration, cancer 

invasion and metastasis? Although Ihave focused on the cell-extracellular matrix 

adhesion mediated by KAI1/CD82-associated integrins, several studies indicated 

that KAI1/CD82 regulates calcium-independent cell-cell adhesion. How does 

KAI1/CD82 regulate cell-cell adhesion? Is the altered cell-cell adhesion a part of 

mechanism for KAI1/CD82’s metastasis-suppressive activity? As Idiscussed 

earlier, KAI1/CD82 likely takes part in development and immune response. Do 

the physiological functions of KAI1/CD82 share the same mechanism with its 

suppression of cancer metastasis? Ibelieve the answers to these questions will 

elaborate the understanding of the nature of KAI1/CD82 as well as the general 

mechanism of cancer progression.  
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