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ABSTRACT 

 

 

 The DNA damage response (DDR) orchestrates a network of cellular processes 

such as cell cycle progression, DNA repair, and apoptosis when complex DNA lesions 

arise to maintain genomic integrity.  ATM, ATR, and DNA-PKcs (encoded by PRKDC) 

are related phosphatidylinositol-3-kinase like serine/threonine kinases (PIKK) that 

collectively regulate the DDR network.  Studies have demonstrated these kinases can 

phosphorylate many of the same substrates, suggesting a significant potential for 

functional redundancy.  However, deficiencies in these kinases have been linked to 

distinct neural degenerative and developmental disorders, underscoring their unique 

functions for maintain genomic integrity during nervous system development.  

 

 Here we utilized mouse genetic analyses to identify the functional interplay 

between these kinases during neurogenesis.  DNA-PKcs function is directly involved in 

and most associated with the non-homologous end-joining (NHEJ) pathway.  The 

function of DNA-PKcs during neurogenesis remains unclear despite evidence linking 

mutations in related NHEJ factor genes to neurological diseases.  For example, deficiency 

in Ku70, Ku80, XRCC4, or DNA ligase IV (Lig4), but not DNA-PKcs results in 

defective embryonic neurogenesis in mice.  This discrepancy may arise from the fact that 

ATM and ATR can compensate for the loss of DNA-PKcs.  For instance, if ATM and 

DNA-PKcs were capable of functioning redundantly in neural tissue, then DNA-PKcs-

null mice would not necessarily have a noticeable phenotype.  Determining functional 

redundancy is difficult since Atr germ line and [Atm;Prkdc] double-null mice are 

embryonic lethal.  To overcome these challenges, we used mice with germ line Prkdc 

inactivated in combination with conditional alleles for Atm and Atr to assess if these 

kinases function cooperatively in the DDR during neural development, consequently 

defining the role(s) of DNA-PKcs during neurogenesis.  

 

 We found DNA-PKcs loss sensitized DNA damage induced p53-dependent 

apoptosis, and exacerbated checkpoint activation after ionizing radiation (IR) in a 

developmental stage and neural cell type-specific manner, independent of ATM and 

ATR.  Our data suggests, during neurogenesis DNA-PKcs functions as a component of 

the DNA-PK holoenzyme to maintain genomic integrity in proliferating and non-

proliferating neurons. We propose DNA-PK specifically enhances NHEJ DNA double-

strand break repair kinetics during murine neurogenesis by acting as a scaffold protein, 

which is critical to maintain normal nervous development when high levels of genotoxic 

stress occur.  In contrast, we found that ATM and ATR coordinated the DDR during 

neurogenesis to direct DNA damage induced apoptosis in proliferating and non-

proliferating cortical neural progenitors.  Furthermore, we found ATR controlled the IR-

induced G2/M checkpoint, independent of ATM and DNA-PKcs. 

 

 In summary, this work established a basic understanding of DNA-PKcs function 

during nervous system development with respect to ATM and ATR.  Importantly, our 

data implicates DNA damage induced p53-dependent apoptosis can be activated in the 

absence of all three PIKK DNA damage-signaling kinases during murine neurogenesis.  
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The human neurodegenerative disease ataxia telangiectasia (A-T) is thought to arise from 

mutations in ATM preventing the elimination of DNA damaged neurons during 

neurogenesis, which then fail to function appropriately, resulting in neural degeneration.  

It is thought murine models fail to recapitulate the neurodegenerative disease observed in 

humans because mice are more resistant to DNA damage.  The observation of a PIKK-

independent DNA damage induced apoptotic process occurring during murine 

neurogenesis suggests murine embryonic neurons possess a pathway to eliminate DNA 

damaged cells even in the absence of ATM, ATR, and DNA-PKcs.  Therefore, murine 

models may fail to recapitulate A-T, not because mice are more resistant to DNA 

damage, but because they have an alternative mechanism to eliminate DNA damaged 

neurons during neural development.  The emphasis on mouse genetics to dissect the 

important processes of these kinases during neurogenesis was an important step to ensure 

the data collected illustrated the DDR within a biological context.  Overall, our work 

illustrates the divergent functions of these kinases, despite substrate overlap, to show how 

they play unique and essential cooperative roles during the DDR, underscoring the 

distinct neuropathology that develops when each is defective. 
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PREFACE 

 

 

 The McKinnon lab at St. Jude Children’s Research Hospital is interested in 

understanding the links between DNA damage deficiency and neurological diseases.  It is 

within this context that we studied the DNA damage-signaling kinases ATM, ATR, and 

DNA-PKcs during nervous system development.  Overall, this work sought to emphasize 

mouse genetics to determine the role of DNA-PKcs within the murine brain.  The 

emphasis on in vivo analyses was an important step to ensure that data collected on the 

DNA damage response was in a biological context.  
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CHAPTER 1.    INTRODUCTION 

 

 

1.1 Corticogenesis as a Model System to Study DNA DSB Repair 

 

 The rapid and enormous expansion of neural stem/progenitors during 

neurogenesis requires a large network of DNA repair pathways to maintain genomic 

homeostasis (McKinnon 2013).  DNA double-strand breaks (DSBs) are the most 

deleterious DNA lesions because their persistence can result in the loss or gain of 

genomic information, leading to transformation (Shibata and Jeggo 2014).  Endogenous 

DSBs arise primarily from DNA replication stress (McKinnon 2013).  Importantly, 

neurogenesis occurs in a series of timely, organized expansions (Paridaen and Huttner 

2014).  Inefficiency in responding to DNA damage can impair the developmental 

timeline and have pathogenic consequences.  The number and variety of human diseases 

associated with defective DNA damage signaling underscores the essential requirement 

for genomic stability during neural development (McKinnon 2009, Klement and 

Goodarzi 2014). 

 

 The developing neocortex is an excellent model to study the DNA damage 

response.  Corticogenesis begins in the first layer called the ventricular zone (VZ), which 

is comprised of neural stem and progenitor cells (Molyneaux, Arlotta et al. 2007).  

Proliferation of neural stem and progenitors occurs in a spatiotemporal manner such that 

cells in mitosis accumulate at the apical regions of the VZ, whereas cells in S phase 

gather at the basal region, and cells in G1/G2 are found in between (Chan, Lorke et al. 

2002).  The neural progenitors expand both symmetrically and asymmetrically to 

maintain the VZ and construct the remaining cortical layers (Leclerc, Neant et al. 2012).  

A small population of neural progenitors and neurons migrate away from the VZ along 

radial glial cells where neurons begin differentiating, forming the subventricular zone 

(SVZ).  Neurons continue migrating and maturing to form the intermediate zone (IZ), and 

finally the cortical plate (CP).  Thus, the effects of deficiencies in DSB repair and 

signaling on neural cell-type, cell cycle progression, maturation, and development of 

specific layers during corticogenesis can be distinguished using specific markers and 

visualized by immunohistochemistry (Orii, Lee et al. 2006, Hevner 2007). 

 

 One of the first events to occur after DNA damage is chromatin modification 

(Goodarzi, Jeggo et al. 2010).  The phosphorylation of histone H2A variant X at Serine 

139 creates γH2AX foci, which recruit and retain additional DNA damage repair and 

signaling machinery specifically to DSB sites in chromatin (Rogakou, Nieves-Neira et al. 

2000, Scully and Xie 2013).  The visualization of these foci by immunohistochemistry is 

the standard for identifying the formation and resolution of DSBs (Lobrich, Shibata et al. 

2010).  H2AX loss in mice is not lethal, however genomic instability ensues, along with 

radiosensitivity, growth retardation, and immunodeficiency (Celeste, Petersen et al. 

2002).  The phosphorylation of transcriptional co-repressor KRAB-domain associated 

protein (KAP-1) at Serine 824 is a heterochromatin DSB marker important for promoting 

repair and chromatin relaxation (Ziv, Bielopolski et al. 2006, Noon, Shibata et al. 2010). 

ATM and DNA-PK have been shown to function redundantly in the phosphorylation of 
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H2AX (phospho Ser139) after IR induced DNA damage, whereas KAP-1 (phospho 

S824) is generally a targeted by ATM alone (Stiff, O'Driscoll et al. 2004, White, 

Rafalska-Metcalf et al. 2012).  

 

 Proliferating neural stem and progenitors have two, biochemically distinct DNA 

DSB repair pathways: homologous recombination (HR) and the non-homologous end-

joining (NHEJ) pathway.  The HR pathway is known as the error free pathway as it 

employs a sister chromatid to use as a template for repair (Kass and Jasin 2010, Mazon, 

Mimitou et al. 2010, Moynahan and Jasin 2010).  Access to sister chromatids restricts the 

availability of the HR pathway to cells in late S, early G2 phase.  The HR pathway 

involves sensing and processing of DSBs by the Mre11/Rad50/Nbs1 (MRN) complex.  

MRN-mediated 5’-3’ resection of DNA DSBs generates 3’ single-strand DNA (ssDNA) 

tails, coated with replicating protein A (RPA).  The Rad51 recombinase complex then 

loads onto the ssDNA, replacing RPA, and invades the sister chromatid in search of 

homology (Mazon, Mimitou et al. 2010).  Once the homology sequence is identified, 

DNA polymerase extends along the 3’ end forming a Holliday Junction (HJ).  HJs are 

resolved in a Rad54-mediated process following repair. 

 

 Unlike the HR pathway, NHEJ does not use a template for repair.  Consequently, 

the NHEJ repair pathway is prone to errors.  In exchange for low fidelity repair, the 

NHEJ pathway is available throughout the cell cycle, as well as in non-cycling cells.  In 

fact, NHEJ is preferred to HR in G2 cells (Shibata, Conrad et al. 2011), and becomes the 

sole DSB repair pathway beginning at differentiation in the SVZ, continuing throughout 

adulthood (Goodarzi and Jeggo 2013, McKinnon 2013).  The NHEJ pathway involves the 

sensing and binding of free DNA ends by the heterodimer Ku70/80 followed by the 

recruitment of the DNA-dependent protein kinase, catalytic subunit (DNA-PKcs) to form 

the active serine/threonine holoenzyme, DNA-PK.  The stable protein-DNA complex 

protects the ends from exonucleases and promotes the juxtaposition of DNA ends 

(Mahaney, Meek et al. 2009).  DNA-PK then recruits the 5’-3’ exonuclease Aretmis to 

process the free DNA ends, which are then filled and ligated by factors such as Pol μ, 

DNA Ligase IV (Lig4), and XRCC4-XLF (Williams, Hammel et al. 2014).  

 

 

1.2 Regulation of DSB Repair by DNA Damage Signaling Kinases 

 

 The repair of DNA lesions is regulated by the DNA damage response (DDR).  

The DDR orchestrates a network of cellular processes such as cell cycle, DNA repair, and 

apoptosis to maintain genomic integrity.  The rapid expansion of neural stem/progenitors 

during neurogenesis requires efficient DNA sensing, signaling, and repair to maintain 

development (Paridaen and Huttner 2014).  These tasks are carried out by the related 

phosphatidylinositol-3-kinase like serine/threonine kinases (PIKK) ATM (ataxia 

telangiectasia mutated), ATR (ATM and Rad3-related), and DNA-PKcs (DNA-dependent 

protein kinase catalytic subunit) (Sirbu and Cortez 2013).  Deficiencies in these kinases 

are linked to distinct neural degenerative and developmental disorders.  In fact, much of 

our understanding of their functions is based upon studies of patient derived cell lines and 

DNA repair deficient mouse models attempting to recapitulate their respective 
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neuropathologies (Friedberg and Meira 2006, Rosenthal and Brown 2007, Lavin 2013).  

Understanding fundamental brain development requires understanding how these kinases 

maintain genomic homeostasis during neurogenesis.  

 

 

1.2.1 Ataxia-telangiectasia mutated (ATM) 

 

 ATM is a large protein (~350 kDa) encoded by the ATM gene located at 11q22-

23, spanning 160 kb of DNA (Gatti, Berkel et al. 1988).  Autosomal recessive mutations 

in the ATM gene result in a rare disorder called ataxia telangiectasia (A-T) (Shiloh 1995, 

Barlow, Hirotsune et al. 1996, Becker-Catania, Chen et al. 2000, Chaudhary and Al-

Baradie 2014).  A-T is a multi-system disorder marked by ataxia (uncoordinated 

movements) caused by a progressive degeneration of the cerebellum (Tavani, 

Zimmerman et al. 2003, Shiloh 2014).  A-T is also characterized by telangiectasia 

(dilated blood vessels) in the eyes and face, extreme radiosensitivity, immunodeficiency, 

predisposition to hematopoietic cancers, and sterility (Chaudhary and Al-Baradie 2014).  

Biochemical studies of patient derived cell lines demonstrate null mutations associated 

with homozygous and heterozygous mutations results in a complete lack of functional 

ATM protein (Becker-Catania, Chen et al. 2000, Valentin-Vega and Kastan 2012).  A 

milder form of A-T, known as Variant A-T, is associated with a later onset of clinical 

signs, slower progression, expanded lifespan, and a lower incidence of extraneurological 

features (Saviozzi, Saluto et al. 2002).   

 

ATM is the primary transducer of the DDR to DSBs (Bhatti, Kozlov et al. 2011, 

McKinnon 2012, Shiloh 2014), and A-T highlights the essential role of signaling 

appropriate responses to DNA DSBs to maintain genome stability during human nervous 

system development. Functionally, inactive ATM protein exists as a homodimer in the 

nucleus, and undergoes autophosphorylation to form active monomers when DSBs arise 

(Bakkenist and Kastan 2003).  Active monomers are then recruited to DNA damage sites 

by the DSB sensor, MRN, to signal cell cycle arrest via Chk1 and Chk2 activation, 

facilitate DNA repair, or activate p53-dependent apoptosis in immature neural cells if the 

lesions are irreparable (Kastan, Onyekwere et al. 1991, Kastan, Zhan et al. 1992, Herzog, 

Chong et al. 1998, Hirao, Cheung et al. 2002, Hopfner, Craig et al. 2002, Shiloh 2003, 

Stracker, Theunissen et al. 2004, Moreno-Herrero, de Jager et al. 2005, Shull, Lee et al. 

2009, Smith, Tho et al. 2010).  Recently, topoisomerase-I cleavage complexes have also 

been shown to specifically activate ATM signaling (Katyal, Lee et al. 2014).  However, 

ATM function in the nervous system is not limited to DNA damage signaling alone.  

ATM deficient cells are more sensitive to oxidative stress, and can be activated by this 

stress independent of DNA damage (Guo, Kozlov et al. 2010).   

 

 

1.2.2 Ataxia-telangiectasia and Rad3-related (ATR)  

 

 Hypomorphic mutations in ATR can result in the neurodevelopmental disorder 

ATR-Seckel Syndrome (ATR-SS) (O'Driscoll, Ruiz-Perez et al. 2003, O'Driscoll, 

Gennery et al. 2004, Li, Chen et al. 2012, Li, Hart et al. 2013, Chaudhary and Al-Baradie 
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2014).  ATR-SS is characterized by severe microcephaly occurring from pre and post-

natal retarded growth resulting in mental retardation (O'Driscoll, Jackson et al. 2006).  

ATR is activated by RPA bound ssDNA generated by stalled replication forks, or MRN 

resection of DNA DSBs, where it forms a complex with co-activator ATRIP, to localize 

additional activator TopBP1, leading to the phosphorylation of several DNA damage 

proteins including Chk1 and p53 (Tibbetts, Brumbaugh et al. 1999, Liu, Guntuku et al. 

2000, Cortez, Guntuku et al. 2001, Zhao and Piwnica-Worms 2001, Kumagai, Lee et al. 

2006, Cimprich and Cortez 2008, Mordes, Glick et al. 2008, Nam and Cortez 2011).  

Microcephaly is thought to arise due to defects in ATR signaling disrupting neural 

spindle orientation and mitotic progression of proliferating progenitors (Alderton, Joenje 

et al. 2004, Alderton, Galbiati et al. 2006, Gruber, Zhou et al. 2011).   

 

 

1.2.3 DNA-dependent protein kinase catalytic subunit (DNA-PKcs) 

 

 DNA-PKcs is a ~460 kDa protein encoded by the PRKDC gene.  DNA-PKcs 

function is essential for V(D)J recombination as cases of immunodeficiency syndrome 

have been identified in various mammalian species (Gu, Sekiguchi et al. 2000, Meek, 

Kienker et al. 2001, Ding, Bramble et al. 2002, Meek, Jutkowitz et al. 2009).  

Surprisingly, only two cases of PRKDC mutations have been linked to human disease 

despite cases of immunodeficiency originating from mutations in related NHEJ core 

factor Ligase IV (O'Driscoll, Gennery et al. 2004, van der Burg, van Dongen et al. 2009, 

Woodbine, Neal et al. 2013).  The first patient to be identified with a PRKDC mutation 

showed severe combined immunodeficiency (SCID) associated with a minor missense 

mutation that did not affect protein length or expression levels, led to a minor impairment 

in the phosphorylation of the 5’ to 3’ exonuclease Artemis (van der Burg, Ijspeert et al. 

2009).  The second patient presented with microcephaly, severe neurological impairment, 

and SCID, associated with low, but detectable levels of DNA-PKcs (Woodbine, Neal et 

al. 2013).  In contrast to ATM, DNA-PKcs is directly involved in the repair of DSBs in 

addition to being a transducer of the DDR (Burma and Chen 2004, Douglas, Gupta et al. 

2005, Davis, Chen et al. 2014).  DNA-PKcs is recruited to DSBs by the heterodimer 

complex Ku70/80 to form the holoenzyme DNA-PK, which then assists in the 

recruitment and activation of other components involved in NHEJ, the preferred DSB 

repair pathway in mammalian cells (Dobbs, Tainer et al. 2010, Davis, Chen et al. 2014).  

DNA-PK is regulated via autophosphorylation (Cui, Yu et al. 2005, Goodarzi, Yu et al. 

2006, Uematsu, Weterings et al. 2007, Dobbs, Tainer et al. 2010).  DNA-PKcs has been 

ascribed a variety of apparent non-DNA-damage related roles.  For example, DNA-PK 

kinase was found to phosphorylate the transcription factor USF, whose activation is 

required for the activation of a central enzyme fatty acid synthase (FAS) in response to 

feeding and insulin signaling in mice, linking the kinase to metabolic gene regulation in 

response to insulin (Wong, Chang et al. 2009).  Recent studies of the cytoplasmic 

response to DNA damage found a role for DNA-PK in phosphorylating Golgi dispersal 

protein GOLPH3, which leads to Golgi dispersal after DNA damage, conferring the 

observation of resistance to DNA-damaging agents in cancers over expressing GOLPH3 

(Farber-Katz, Dippold et al. 2014).  
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1.2.4 Mouse models 

 

 Mouse models of DNA repair mutants continue to advance our understanding of 

how genomic integrity is maintained during neurogenesis, however many challenges 

remain.  Atm deficiency in mice recapitulates many extraneurological features of A-T, 

though all of the models, knock-in or knockout, fail to develop cerebellar degeneration 

(Lavin 2013).  Nonetheless, studies have found that during neurogenesis proliferating 

neurons in HR deficient mice undergo ATM-independent apoptosis, in contrast to non-

proliferating regions of NHEJ deficient mice undergo ATM-dependent apoptosis(Gao, 

Ferguson et al. 2000, Lee, Barnes et al. 2000, Shull, Lee et al. 2009).   

 

 Unlike Atm loss, Atr is absolutely essential for murine neurogenesis such that its 

deletion results in embryonic lethality (Brown and Baltimore 2000).  Selective deletion of 

Atr in the developing nervous system using Nestin-cre results in slower overall growth, 

and reduced brain size, however with marked cerebellar developmental defects not 

observed in ATR-Seckel Syndrome (Lee, Shull et al. 2012).  Analysis of the cerebellum 

of AtrNes-cre found progenitors underwent p53-independent cell cycle arrest, while other 

regions underwent apoptosis that was only partly directed by p53 (Lee, Shull et al. 2012). 

Further restrictive deletion of Atr in the dorsal telencephalic progenitors using Emx1-cre 

significantly affected hippocampal formation with moderate affects in cortical 

development (Gorski, Talley et al. 2002, Lee, Shull et al. 2012).   

 

 DNA-PKcs function during murine neurogenesis is dispensable despite 

requirements for ATM and ATR, as well as the core evolutionary conserved NHEJ 

factors Ku70/80, Lig4, and Xrcc4 (Gu, Jin et al. 1997, Gu, Sekiguchi et al. 2000, 

Douglas, Gupta et al. 2005).  Consequently, the functions of DNA-PKcs during 

neurogenesis remain unclear.  Evidence suggests DNA-PKcs loss leads to significantly 

greater levels of DNA damage induced cell death in cortical neurons, with subsequent 

loss of PolBeta, and in response to excitotoxic injury (Chechlacz, Vemuri et al. 2001, 

Vemuri, Schiller et al. 2001, Neema, Navarro-Quiroga et al. 2005, Niimi, Sugo et al. 

2005).   

 

 The pervasive explanation for the poor recapitulation of neurological phenotypes 

between humans and mice is that mice are less sensitive to DNA damage.  One strategy 

to address this challenge entails inducing exogenous DNA damage using ionizing 

radiation (IR).  IR induces DNA damage lesions that are chemically identical to 

endogenous lesions formed as by-products of oxygen metabolism, including DNA DSBs 

(O'Neill P (O'Niell 1993, Errol C. Friedberg 1995, Gulston, Fulford et al. 2002).  

Irradiation studies of Atm deficient mice have shown that ATM is required for inducing 

p53-dependent apoptosis in non-cycling regions of the neocortex (Herzog, Chong et al. 

1998, Chong, Murray et al. 2000, Lee, Chong et al. 2001).  In cycling regions, ATM is 

only partially responsible for inducing p53-dependent apoptosis, suggesting ATM 

cooperates with ATR or DNA-PKcs to eliminate defective cortical neural stem and 

progenitor cells (Herzog, Chong et al. 1998, Gatz, Ju et al. 2011).  Evidence indicates 

DNA-PKcs over ATR in this role as IR-induced Chk2 activation and p53 signaling were 
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normal in AtrNes-cre progenitors (Lee, Shull et al. 2012).  Furthermore, Atm and Prkdc 

mice are born healthy, while co-inactivation is lethal, implying a functional redundant 

relationship between ATM and DNA-PK during early embryogenesis (Gurley and Kemp 

2001).  

 

 Here we explored how ATM, ATR, and DNA-PKcs integrate the DDR during 

neurogenesis using mice with germ line DNA-PKcs (encoded by Prkdc) inactivated in 

combination with conditional disruption of Atm and/or Atr function selectively in the 

murine nervous system.  Collectively, our data are the first to show the dynamic 

interdependence of these three kinases within a physiological context to maintain 

genomic integrity during neurogenesis.  
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CHAPTER 2.    EXPERIMENTAL PROCEDURES 

 

 

2.1 Animals 

 

 The animals used for this work were maintained in accordance with approved St. 

Jude Children’s Research Hospital guidelines.  The animal care program at St. Jude is 

fully accredited by the Association for the Assessment and Accreditation of Laboratory 

Animal Care, International (AAALAC-I). The last triennial accreditation site visit was 

conducted July 27-28, 2009.  St. Jude is registered with the U.S. Department of 

Agriculture (63-R-0007) as a research facility and has an Assurance (Assurance No. 

A3077-01) on file with the Office of Laboratory Animal Welfare of the NIH.  All of the 

animal procedures used were pre-approved by the institutional care and use committee at 

St. Jude Children’s Research Hospital.  The presence of a vaginal plug was considered 

day 0.5 (E0.5) and the day of birth as postnatal day 0 (P0).  Mice were irradiated using a 

Cesium irradiator.  All experimental groups included at least three animals of each 

genotype.  

 

The mice carrying germ line mutations for the inactivation of Prkdc and p53 have 

been described (Gao, Chaudhuri et al. 1998, Herzog, Chong et al. 1998).  The p53 floxed 

mice have been described (Laurie, Donovan et al. 2006).  The Atr floxed mice have been 

described (Ruzankina, Pinzon-Guzman et al. 2007).  Mice with Nestin-cre and Emx1-cre 

were obtained from Jackson Laboratory (B6.Cg-Tg(Nes-cre)1Kln/J; JAX #003771 and 

B6.129S2-Emx1tm1(cre, #397)Krj/J, JAX #005628.  Atm conditional mice have been described 

(Lee, Shull et al. 2012).  Lig4 floxed mice have been described (Shull, Lee et al. 2009).   

 

 

2.1.1 Nestin-cre animals 

 

 The Prkdc-/-, Atrloxp/loxp, Atmloxp/loxp, and Nestin-cre were interbred to obtain 

[(Atr;Atm)loxp/loxp;Prkdc+/-;Nestin-cre] mice, which were further crossed to obtain desired 

triple, double, and single knockouts.  The control group (Ctrl) used was either 

[(Atr;Atm)loxp/loxp;Prkdc+/+], [(Atr;Atm)loxp/loxp;Prkdc+/-], [Atrloxp/+;Atmloxp/loxp;Prkdc+/-], 

[Atrloxp/loxp;Atmloxp/+;Prkdc+/-], [Atrloxp/+;Atmloxp/+;Prkdc+/-;Nestin-cre].   

 

 

2.1.2 Emx1-cre animals 

 

 The Atrloxp/loxp, p53loxp/loxp, and Emx1-cre were interbred to obtain 

[(Atr;p53)loxp/loxp;Emx1-cre] mice.  These mice were then interbred with 

[(Atr;Atm)loxp/loxp;Prkdc+/-] to generate desired quadruple knockouts 

[(Atr;Atm;p53)loxp/loxp;Prkdc-/-;Emx1-cre] and triple knockouts 

[(Atr;Atm;p53)loxp/loxp;Prkdc+/-;Emx1-cre].  The control group was 

[(Atr;Atm;p53)loxp/+;Prkdc+/-] or [(Atr;Atm;p53)loxp/+;Prkdc+/-;Emx1-cre].   
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2.1.3 Genotyping 

 

 Genomic DNA was isolated using lysis buffer with final concentrations of 200 

mM NaCl, 5 mM EDTA, 0.2% SDS, 100 mM Tris pH 8.5 prepared from combining 20 

mL of 5M NaCl, 5 mL of 0.5M EDTA, 10 mL 10% SDS, 50 mL of 1M Tris pH 8.5, and 

415 mL of dH20.  A piece of mouse tail was combined with 500 mL lysis buffer and 10 

uL Proteinase K (just before use) and allowed to incubate at 56°C overnight.  20 uL of 

tail lysis was then diluted with 80 uL dH20.  The dilution was heated to 100°C for 8 

minutes, followed by centrifugation for ten minutes at 13.2 x 1000 rcf.   

 

 All PCR reactions were completed using Promega GoTaq® Flexi DNA 

Polymerase kit catalog# M8295, 50 ul reactions comprised of: 30 ul dH20, 10 ul 5X 

Green GoTaq® Flexi buffer, 0.5 ul dNTP [25 mM], 3 ul Magnesium Chloride Solution 

[25mM], 1 ul primer solutions; generally [10 mM], 1 ul DNA, 0.3 ul GoTaq® DNA 

Polymerase.   

 

 Genotyping for Atrloxp/loxp (Lee, Shull et al. 2012) and Atmloxp/loxp (Lee, Shull et al. 

2012) was performed by PCR.   

 

Prkdc genotyping by PCR used the following primers: 

Prkdc Wild-type alleles were amplified with: 

Forward primer: 5’-TGACAGCAAGTGCCTGTAAAGTGC-3’  

Reverse primer: 5’-ATAGTCCCTTCAGACAGCCAGC-3’ 

 

 The Prkdc-null allele was amplified in lines not crossed with cre using primers: 

Forward primer: 5’-TGACAGCAAGTGCCTGTAAAGTGC-3’  

Reverse primer: 5’-GAAGCGGGAAGGGACTGGCTGCTA-3’  

 

 The Prkdc-null allele was amplified in lines crossed with cre using primers: 

Forward primer: 5’-TGACAGCAAGTGCCTGTAAAGTGC-3’  

Reverse primer: 5’-CGCAGCGCATCGCCTTCTATCGCC-3’  

 

Nestin-cre genotyping by PCR used the following general cre primers:  

Forward primer: 5’-CTGCCACGACCAAGTGACAGC-3’ 

Reverse primer: 5’- ACCTGCGGTGCTAACCAGCG-3’  

 

Emx1-cre genotyping by PCR used the following primers:  

Forward primer: 5’-CTGGCCACTCCTTAGCCAGGC-3’  

Reverse primer: 5’-CATCACTCGTTGCATCGACCG-3’ 

 

p53loxp/loxp genotyping by PCR used the following primers:  

p53 wild-type and null alleles were amplified using: 

Forward primer: 5’-CACAAAAACAGGCAGAGAC-3’  

Reverse primer: 5’-AGCACATAGGAGGCAGAGAC-3’ 

 

p53Δ  allele was amplified by using the following primers:  
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Forward primer: 5’-CACAAAAACAGGCAGAGAC-3’  

Reverse primer: 5’-ATGGCGGGAAGTAGACTGGC-3’  

 

p53 germ line wild-type alleles genotyped by PCR using the following primers: 

Forward primer: 5’-ACAGCGTGGTGGTACCTTAT-3’  

Reverse primer: 5’-TATACTCGAGCCGGCCT-3 

 

 p53 germ line null alleles were amplified using primers: 

Forward primer: 5’-TCCTCGTGCTTTACGGTATC-3’  

Reverse primer: 5’-TATACTCAGAGCCGGCCT-3’ 

 

 Lig4loxp/loxp mice were genotyped by PCR using the following primers:  

Lig4 wild-type alleles were amplified using primers: 

Forward primer: 5’-ATCGCTCTTGTCCCAGTACACCTGC-3’  

Reverse primer: 5’-GTGCATTAAATGGAGTGCTGTGC-3’ 

 

 Lig4-null alleles were amplified using the following primers:  

Forward primer: 5’-CACCAGTTCCATCCTGTAGC-3’  

Reverse primer: 5’-GTGCATTAAATGGAGTGCTGTGC-3’ 

 

 

2.1.4 Real-time PCR 

 

RT-PCR was performed to determine the levels of gene deletion for Atr and Atm 

in conditional single-knockout, double-knockout, and triple knockout mice as previously 

described (Lee, Shull et al. 2012).  Briefly, genomic DNA was extracted from tissue 

sections using phenol/chloroform and suspended in TE buffer.  DNA concentration was 

determined using an UV/Visible Spectrophotometer at A260.  DNA standards were 

prepared using serial dilutions at 1:5 beginning with a concentration of 100 ηg/μl.  Test 

samples were diluted to a concentration of 100 ηg/μl with an equal amount of DNA in 

each reaction.  DNA was mixed with iQTM SYBR® Green supermix (BioRad) containing 

forward or reverse primers for either the targeted exon 44 of Atr/ 58 of Atm, or the 

control exon 29 of Atr/ 52 of Atm.  The reactions were carried out using a iQTM5 Multi-

color Real-Time Detection System (BioRad).  SYBR Green concentrations were fit to a 

standard curve and used to automatically determine the reaction measurement numbers.  

Targeted exon product was normalized to control exon for each sample.  

 

Atr exon 29 forward primer: 5’ ACTCTGGCTGTAGCGTCCTTTC 

Atr exon 29 reverse primer: 5’ TGCTTCTTTTCTGTAATAAATGACTCAAA 

Atr exon 44 forward primer: 5’ GAAAGGAGCTTCGCCAGTGT 

Atr exon 44 reverse primer: 5’ GGGCAGGAGTAATTCTTGGAATAC 

Atm exon 52 forward primer: 5’ ATGGAATGAAGATTTCATCCTATAAGTTT 

Atm exon 52 reverse primer: 5’ ATCCTAGGCCTCCCGTCATTT 

Atm exon 58 forward primer: 5’ TCAGCGAAGCGGTGTTCTC 

Atm exon 58 reverse primer: 5’ TCATTTGGCCTGTATCTTCTATGTG 
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2.2 Histology 

 

 Transcardial perfusions were performed on mice with 4% paraformaldehyde 

(PFA).  Tissues were allowed to fix in 4% PFA over night at 4°C.   The collected tissues 

were then cryoprotected in 25% PBS-buffered sucrose solution at 4°C for two weeks, and 

then embedded in clear tissue freezing medium (TFM™), catalog# TFM-5.  10 μm 

sagittal brain sections were collected using a Microm HM500M cryostat.   

 

Immunohistochemistry and immunofluorescence were performed using the 

following antibodies were used following citrate based antigen retrieval: anti-KAP1-

phospho-Ser-824 (rabbit, 1:500; Bethyl labs); anti-active caspase-3 (rabbit, 1:500; BD 

Biosciences); anti-phospho-H2AX-Ser-139 (rabbit, 1:200; Cell Signaling); anti-phospho-

H3-Ser-10 (rabbit, 1:500; Cell Signaling); anti-BrdU (rate, 1:500; Upstate); anti-Tuj1 

(mouse; 1:500; Covance); anti-PCNA (mouse, 1:500; Santa Cruz).  The antigen retrieval 

solution used was comprised of 41 mL of [0.1 M] sodium citrate, 9 mL [0.1 M] citric acid 

combined with 450 mL of dH20, and adjusted to pH 6.1 using N NaOH.  Tissue section 

slides were incubated in antigen retrieval solution for ten minutes at room temperature, 

and then heated twice for five minutes at 70% power using a microwave (topped off in 

between heating).  Sections were allowed to cool to room temp for one hour, and washed 

with PBS three times for five minutes.   

 

Immunohistochemical analyses:  Sections were then quenched of endogenous 

peroxidase using 0.6% hydrogen peroxide solution in methanol (2 mL (30%) from Fisher 

Chemical catalog# H325-100 and 100 mL methanol) at room temperature for thirty 

minutes.  Sections were then blocked using 500 uL goat blocking solution per slide for 

one hour at room temperature (Goat blocking: 5 mL goat serum, 1g recrystallized bovine 

serum, per 100 mL PBS-T (0.4% Triton-X)).  Primary antibodies were allowed to 

incubate overnight at room temperature in a humidified chamber. Tissues were treated 

with secondary biotinylated goat IgG (1:500; Jackson ImmunoResarch, catalog# 705-

065-147) for 1.5 hours, followed by 1.5 hour incubation with avidin-biotin complex 

(ABC solution: 5 mL PBS to 1 drop A, 1 drop B; Vector Laboratories, Vectastain ABC 

Kit, Elite PK-6100 Standard).  Immunoreactivity was visualized with VIP substrate kit 

(Vector VIP, SK-4600, Vector) using 500 ul VIP solution/ slide [VIP solution is 

comprised of 4.5 mL PBS, 0.5 mL PBS-T (0.4% Triton-X), three drops Vector 1, 2, 3, 

and hydrogen peroxide] for experimentally determined times.  Sections were 

counterstained with 0.1% methyl green (Vector Laboratories), dehydrated, and mounted 

with DPX (Fluka).   

 

 Immunofluorescent staining:  After two, five minute washes with PBS, sections 

were washed with PBS-T (0.4% Triton-X) for five minutes.  Sections were then blocked 

using 500 uL goat blocking solution per slide for one hour at room temperature (Goat 

blocking: 5 mL goat serum, 1g recrystallized bovine serum, per 100 mL PBS-T (0.4% 

Triton-X)).  Primary antibodies were allowed to incubate overnight at room temperature 

in a humidified chamber.  Signals were visualized using FITC (1:200) or Cy3 (1:400) 
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conjugated secondary antibody (Jackson ImmunoResearch), and counterstained with 4’-

6’-diamidino-2-phenylindole (DAPI) or propidium iodide (Vector Laboratories).    

 

In Vivo proliferation assays were carried out on pregnant females by peritoneal 

injection of BrdU at 50 μg/g of body weight (Sigma-Aldrich).  The embryos were 

removed either 2 or 6 h after injection and fixed in 4% PBS-buffered PFA at 4°C for 48 

hours. Embryos were then cryoprotected in 25% PBS-buffered sucrose solution at 4°C 

for two weeks, and then embedded in clear tissue freezing medium (TFM™), catalog# 

TFM-5.  10 μm sagittal brain sections were collected using a Microm HM500M cryostat.  

 

TUNEL was used to identify apoptotic cells according to manufacturer’s 

instructions using ApopTag Fluorescein In Situ Detection S7110, Chemicon Intl.  The 

TdT enzyme was incubated at 37°C for fifty minutes, and secondary fluorescein was 

incubated at room temperature for fifty minutes in the dark.  

 

 

2.3 In situ Cell Counts 

 

Quantification of immunopositive signals from anti-active caspase-3 and anti-

phospho-H3-Ser-10 were measured from at least three representative sections (images 

equivalent in size and magnification) per embryo brain.  Three brains per genotype were 

analyzed for each time point.  Immunopositive cells for active caspase-3 were measured 

within 10x images of the P5 CA1 region.  P5 cerebellar cells were measured within 68 

μm2 area for active caspase-3.  The developing cerebellum was divided into two areas: 

white matter (WM) and the external granule layer (EGL).  Immunpositive cells for anti-

phospho-H3-Ser10 in the apical region of the ventricular zone (VZ) of the embryonic 

forebrain were measured within 40x images (~168 mm2) of E15.5 embryos.  The bar 

graphs represent mean values of replicates, error bars s.e.m., and P values were all 

calculated using unpaired Student’s t test, Prism (v5.0, Graphpad); P < 0.05 was 

considered significant.   

 

 

2.4 Western Blots 

 

 Western blot analyses were performed with cerebellar tissues of P5 and P0 

cortices using control mice Prkdc+/+, [Atrloxp/loxp;Atmloxp/loxp;Prkdc+/+], or 

[Atrloxp/loxp;Atmloxp/loxp;Prkdc+/-], or [Atrloxp/+;Atmloxp/loxp;Prkdc+/-], or 

[Atrloxp/loxp;Atmloxp/+;Prkdc+/-], or [Atrloxp/+;Atmloxp/+;Prkdc+/-;Nes-cre], and knockout mice 

Prkdc-/-, p53-/-, AtmNes-Cre, AtmNes-Cre;Prkdc-/-, [Atrloxp/loxp;Atmloxp/loxp;Prkdc-/-;Nes-cre].   

 

Protein extraction: Extracts were prepared from lysis buffer (50 mM Tris-HCl, 

200 nM NaCl, 1% Tween-20, 0.2% NP-40, 2 mM PMSF, 50 mM β-glycerol phosphate, 

half tablet of protease inhibitor cocktail (Roche Complete mini, Catalog # 11 836 153 

001) per 1-5 mL volume of lysis buffer, and half a tablet of phosphatase inhibitor cocktail 

(Roche Catalog # 04 906 845 001) per 1-5 mL volume of lysis buffer.  Proteins (at least 

40 μg per lane and up to 180 μg per lane) were separated through 4-12% Bis-Tris SDS 
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polyacrylamide gel (Invitrogen, NuPage 4-12% Bis-Tris Gels, 1.5mm x 10 well; Catalog 

# NP0335BOX).  Tissue samples were suspended in lysis buffer, and allowed to lyse on 

shaker in a cold room for 2-3 hours.  Once lysed, samples were spun at 4°C for ten 

minutes at maximum RPM.   

 

 Protein concentration:  Protein concentrations were determined using the Bio-Rad 

Protein Assay (Catalog # 500-0006) Bradford Reagent (1:5 dilution of Bradford reagent 

to water).  2 μL of sample lysate was placed into 1 ml of diluted Bradford reagent.  A 

BSA standard plot was created using Excel XY plotting of BSA standards concentrations 

(1:10 dilution with a final concentration of 1 μg/ μl) and their respective absorbance 

reading at 595.  The trend line of the BSA standard plot produced from the XY scatter 

plot in Excel was used to calculate sample protein concentrations.  

 

Blots were transferred using pre-cooled NuPage transfer buffer (50 mL 20x 

Transfer Buffer, 750 mL dH2O, 20 mL methanol) in a Bio-Rad apparatus overnight with 

a stirrer in a cold room.  The starting current ranged from 0.04-0.05 A.  Voltage was 

adjusted to 40-50 V for this.  Blots were transferred for 15-17 hours on 0.2 μm 

nitrocellulose.  Blots were blocked using 5% milk prepared in TBS-T  (10% Tween-20) 

for one hour at room temperature on shaker.  Blots were sequentially immunostained. 

Blots were washed in between staining with TBS-T for two hours at room temperature on 

shaker.   

 

 The following antibodies and conditions were used for immunostaining:  

 

● DNA-PKcs: anti-DNA-PKcs Ab-4 Cocktail (mouse, 1/100; Fisher). Blot was 

stained with 50 μL of antibody diluted into 4 mL TBS-T, plus 1 mL 5% milk 

(TBS-T) for two hours at room temp on shaker.  The blot was then washed (three, 

five minute washes) with TBS-T before incubating with HRP-conjugated 

secondary antibodies (1:2000) in 5% milk TBS-T for hour at room temperature.  

HRP antibodies were detected using SuperSignal chemiluminscence reagent 

(ThermoScientific).  

 

● ATM:  anti-ATM (D2E2) (rabbit, 1:1000; Cell Signaling), ATR:  anti-ATR (goat, 

1:500; Santa Cruz), Chk2 shift:  anti-Chk2 (mouse, 1:1000; Millipore), pATM:  

anti-pATM(S1981) (mouse, 1:1000; Abcam), anti-p53(Ser18) (rabbit, 1:1000; 

Cell Signaling), anti-pKAP1(S824) (rabbit, 1:1000; Bethyl Labs), anti-KAP1 

(rabbit, 1:2000; Abcam), anti-Actin (goat, 1:500; Santa Cruz) were all diluted 

using 5% milk (TBS-T), and allowed to immunostain overnight on a shaker at 

room temperature.  Blots were washed (three, five minutes washes) in TBS-T 

before incubating with HRP-conjugated secondary antibodies (1:2000) in 5% 

milk TBS-T for hour at room temperature. HRP antibodies were detected using 

ECL Plus (GE Healthcare) or Super Signal (ThermoSci). 

 

● Loading controls: Protein loading controls of the transferred membrane consisted 

of ponceau staining and anti-actin immunoblotting as described above. 
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CHAPTER 3.    RESULTS 

 

 

3.1 Introduction 

 

 Maintaining genomic integrity during neurogenesis is essential to prevent 

neurologic disease (Abbaszadeh, Clingen et al. 2009, McKinnon 2013, Suberbielle, 

Sanchez et al. 2013, Chaudhary and Al-Baradie 2014).  Genomic integrity can be 

compromised by DNA damage arising primarily from endogenous sources such as by-

products of oxygen metabolism or stalled replication forks, but also from exogenous 

sources such as gamma irradiation (Gulston, Fulford et al. 2002, Vignard, Mirey et al. 

2013, Mazouzi, Velimezi et al. 2014).  During neurogenesis, neural progenitors undergo 

rapid expansion requiring efficient DNA damage sensing, signaling, and repair to 

maintain development (McKinnon 2012, Greig, Woodworth et al. 2013, McKinnon 2013, 

Paridaen and Huttner 2014).  Thus, how DNA damage signaling coordinates the 

appropriate responses to neurogenesis is fundamental for understanding brain 

development.  

 

 ATM, ATR, and DNA-PKcs (encoded by PRKDC) are related 

phosphatidylinositol-3-like serine/threonine kinases (PIKK) that coordinate the DNA 

damage response (DDR) to initiate DNA repair, activate cell cycle arrest to allow time 

for repair, or induce apoptosis if the lesions are irreparable (Serrano, Li et al. 2013, Sirbu 

and Cortez 2013, Yan, Sorrell et al. 2014).  The activation of individual kinases is 

dependent upon by the type of DNA lesion generated.  The inactive ATM homodimer 

undergoes intermolecular autophosphorylation to the active monomer upon the 

generation of DSBs (Bakkenist and Kastan 2003, Serrano, Li et al. 2013, Sirbu and 

Cortez 2013, Yan, Sorrell et al. 2014).  ATM is then recruited to DSB sites by the MRN 

(Mre11/Rad50/Nbs1) complex to signal cell cycle arrest, facilitate DNA repair, or 

activate apoptosis in immature neural cells (Barlow, Brown et al. 1997, Uziel, Lerenthal 

et al. 2003, Buis, Wu et al. 2008, Shiloh and Ziv 2013).  Topoisomerase-1 cleavage 

complexes have also been shown to specifically activate ATM signaling (Katyal, Lee et 

al. 2014).  ATR is activated by the generation of RPA (replication protein A) bound 

single-stranded DNA generated by MRN resection of DSBs or replication stress 

(Cimprich and Cortez 2008, Nam and Cortez 2011).  DNA-PKcs is recruited to DSBs by 

the heterodimer complex Ku70/80 to form the holoenzyme DNA-PK, which then recruits 

and activates other components involved in the non-homologous end-joining (NHEJ) 

pathway, the preferred DSB pathway in mammalian cells as it is accessible in both 

proliferating and non-proliferating cells (Dobbs, Tainer et al. 2010, Davis, Chen et al. 

2014).  Therefore, DNA-PKcs is directly involved in the repair of DSBs in addition to 

being a transducer of the DDR (Burma and Chen 2004, Douglas, Gupta et al. 2005, 

Davis, Chen et al. 2014).   

 

 In humans, the loss of ATM and hypomorphic ATR mutations can result in the 

neurodegenerative syndrome ataxia telangiectasia (A-T), or the neurodevelopmental 

disorder ATR-Seckel Syndrome (Taylor, Harnden et al. 1975, Gatti, Berkel et al. 1988, 

Becker-Catania, Chen et al. 2000, Brown and Baltimore 2000, de Klein, Muijtjens et al. 
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2000, O'Driscoll, Ruiz-Perez et al. 2003, O'Driscoll, Dobyns et al. 2007, Chaudhary and 

Al-Baradie 2014).  In humans, only two cases of PRKDC mutations have been linked to 

disease, despite cases of immunodeficiency syndromes documented in other various 

mammalian species (Gu, Sekiguchi et al. 2000, Meek, Kienker et al. 2001, Ding, Bramble 

et al. 2002, Meek, Jutkowitz et al. 2009, van der Burg, Ijspeert et al. 2009, van der Burg, 

van Dongen et al. 2009, Woodbine, Neal et al. 2013).  The first patient to be identified 

with a PRKDC mutation showed severed combined immunodeficiency (SCID) associated 

with a minor impairment in kinase autophosphorylation (van der Burg, Ijspeert et al. 

2009).  The second patient presented with microcephaly, severe neurological impairment, 

and SCID, associated with low, but detectable, levels of DNA-PKcs (van der Burg, 

Ijspeert et al. 2009, Woodbine, Neal et al. 2013).  Thus, like ATR, DNA-PKcs function is 

likely require for human life.  In contrast to humans, DNA-PKcs function in mice is 

dispensable for NHEJ (Gu, Sekiguchi et al. 2000, Douglas, Gupta et al. 2005).  

Consequently, DNA-PKcs function during neurogenesis is controversial with evidence 

suggesting DNA-PKcs loss leads to significantly higher levels of DNA damage induced 

p53-dependent cell death alone, with subsequent loss of PolBeta, and in response to 

excitotoxic injury (Chechlacz, Vemuri et al. 2001, Vemuri, Schiller et al. 2001, Neema, 

Navarro-Quiroga et al. 2005, Niimi, Sugo et al. 2005).  Additionally, DNA-PKcs has 

been ascribed to a variety of apparent non-DNA-damage related roles (Wong and Sul 

2009, Rajagopalan, Moyle et al. 2010, Kong, Shen et al. 2011). 

 

 How these three kinases collectively coordinate the appropriate responses to DNA 

damage within a physiological context remains unclear.  Given each kinase is critical in 

the human nervous system, we focused on this tissue as a paradigm for understanding 

functional cooperativity between these key DDR transducers.  One challenge to 

addressing these questions within a physiological context is embryonic lethality of mice 

after inactivation of Atr or Atm;Prkdc (Brown and Baltimore 2000, Gurley and Kemp 

2001, Wong and Sul 2009, Rajagopalan, Moyle et al. 2010, Kong, Shen et al. 2011).  

Interestingly, single Atm and Prkdc knockouts are born healthy, suggesting ATM and 

DNA-PKcs are functionally redundant during early embryogenesis.  Here, we explored 

how these kinases manage the DDR during neurogenesis using mice with germ line Dna-

pkcs (encoded by Prkdc) inactivated in combination with conditional deletion of Atm 

and/or Atr function selectively in the murine nervous system.  

 

 Here we show that during murine neurogenesis DNA-PKcs most likely functions 

classically as a component of the DNA-PK holoenzyme to enhance NHEJ repair of 

DSBs.  The combined loss of DNA-PKcs with ATM and/or ATR increased cell death in a 

p53 dependent manner.  Our data provides direct evidence that p53 dependent IR-induced 

apoptosis can occur independent of ATM and ATR (Herzog, Chong et al. 1998, Gatz, Ju 

et al. 2011), which may be useful for understanding why subsequent deletion of p53 but 

not Atm rescues Lig4 mutants from IR-induced apoptosis (Gurley, Moser et al. 2009, 

Shull, Lee et al. 2009).  Furthermore, we demonstrate ATR controls the IR-induced G2 to 

M checkpoint independent of ATM or DNA-PKcs status, challenging in vitro studies 

(Bartek and Lukas 2001, Jazayeri, Falck et al. 2006, Stiff, Walker et al. 2006, Gurley, 

Moser et al. 2009, Shull, Lee et al. 2009, Tomimatsu, Mukherjee et al. 2009).  Our data is 

the first to show the dynamic interdependence on these three kinases within a 
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physiological context to protect genomic integrity during neurogenesis, which affords 

proper brain development.  

 

 

3.2 Results 

 

 

3.2.1 DNA-PKcs loss sensitizes selective neurons to apoptosis in the postnatal brain 

 

 While ATM and ATR are directly linked to neural maintenance, the role(s) for 

DNA-PKcs in this tissue remain less clear.  DNA-PKcs has been linked to the excitotoxic 

stress response, and recently, as a critical factor for human brain development (Neema, 

Navarro-Quiroga et al. 2005, Woodbine, Neal et al. 2013).  To address this, we examined 

the requirement for DNA-PKcs during neurogenesis and challenged these mice to doses 

of 4 or 10 Gy at postnatal day 5 (P5) and allowing six hours of recovery.  In the DNA-

PKcs-null cerebellum, enhance cell death based on levels of active Casp-3 was found in 

areas of active neurogenesis including the EGL and WM compared to the control (Figure 

3-1B).  Notably, Prkdc loss sensitizes the postmitotic population of the CA1 (Cornu 

Amonis) region of the hippocampus as active Casp-3 was found (Figure 3-1A, B) 

distributed throughout this region in the DNA-PKcs-null mouse.  Interestingly, we 

observed similar amounts of Casp-3 immunopositive cells, but with increased intensity of 

staining in the dentate gyrus (DG) of Prkdc-/- compared to control.  In regards to 

comparing Prkdc loss in mature vs. immature cerebellar neurons, granule cell progenitors 

that comprise the EGL (external granule layer) are more sensitive to Prkdc loss upon 

DNA damage than post-mitotic neurons in the white matter (WM) because mature, non-

proliferating neurons are generally resistant to IR-induced apoptosis (Puck and Marcus 

1956, Romero, Gross et al. 2003).  Thus, our observation of active Casp-3 staining in the 

mature neurons in the CA1 region of Prkdc-/- compared to control was unexpected.  This 

is the case because even at 10 Gy, control tissue failed to show active Casp-3 staining, 

suggesting that direct DNA damage per se was not causative for this response, moreover 

mature tissue in the brain are known to be resistant to apoptosis after radiation.  To verify 

the effect of Prkdc loss was specific to mature CA1 neurons, immature, non-cycling 

hippocampal neurons were distinguished from mature, non-cycling neurons using 

proliferation marker Ki67 (Figure 3-1C)  

 

 p53-null immature neurons are resistant to IR-induced apoptosis (Herzog, Chong 

et al. 1998).  To verify if p53 is also required for the activation of active Casp-3 observed 

in IR-treated Prkdc deficient CA1 mature neurons we treated P14 Prkdc-/- and Prkdc-/-

;p53-/- with a dose of 10 Gy, and allowed them to recover for six hours.  We did not 

observe any active Casp-3 in the CA1 region of the treated control or Prkdc-/- at P14.  

However, we did observe active Casp-3 in treated Prkdc-/- and NHEJ deficient mutant 

Lig4Nes-cre that is absent in Prkdc-/-;p53-/- with respect to the proliferating DG (Figure 

3-1D).  Data suggests p53 is required to activate Casp-3 in Prkdc deficient proliferating 

neurons in response to DNA damage.  The function of DNA-PKcs and p53 signaling in 

P5 CA1 neurons remains unclear.  
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Figure 3-1. DNA-PKcs loss increases sensitivity to apoptosis in select neurons in 

the postnatal brain. 

(A) Anti-active caspase-3 (Casp-3) immunostaining demonstrates DNA-PKcs loss 

sensitizes the cornu ammonis 1 (CA1) in the hippocampus.  Immunostaining of the 

dentate gyrus (DG) shows similar amounts of immunopositive Casp-3 cells, but with 

stronger staining in the Prkdc-/- compared to control.  (B) At postnatal day 5 (P5), 

quantitative analysis shows radiation induced apoptosis is significantly greater in the 

CA1 region of Prkdc-/- compared to control at both 4 and 10 Gy.  (C) Immunostaining of 

P5 untreated control with proliferation marker Ki67 demonstrates CA1 neurons are non-

cycling compared to cycling immunopositive cells in the DG.  (D) Active caspase-3 

staining of P14 DG shows radiation-induced apoptosis in Prkdc requires p53.  The bar 

graphs represent mean values of replicates (n=3 animals per group, 9 images per group), 

error bars s.e.m.; **P = 0.0080, **** P < 0.001.  P values were all calculated using 

unpaired Student’s t test, Prism (v5.0, Graphpad); P < 0.05 was considered significant.  
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 To determine the basis for enhanced sensitivity to genotoxic stress we considered 

that his could be due to either increased DNA damage because of compromised NHEJ, or 

a defect in kinase activity after DNA-PKcs loss that affected DNA damage signaling.  

While DNA-PKcs is involved in NHEJ, it’s not critical for organismal development, in 

contrast to other evolutionary conserved NHEJ components such as DNA Ligase IV 

(Lig4) (Gu, Sekiguchi et al. 2000, Douglas, Gupta et al. 2005, Tomimatsu, Tahimic et al. 

2007, Gatz, Ju et al. 2011).  However DNA-PKcs phosphorylates histone H2AX 

(phospho S139) to generate γH2AX foci after DNA DSBs to facilitate the DNA damage 

response, and it has been implicated in other diverse processes (Stiff, O'Driscoll et al. 

2004, Dickey, Redon et al. 2009, An, Huang et al. 2010, Rajagopalan, Moyle et al. 2010, 

Kong, Shen et al. 2011, Goodwin and Knudsen 2014).  Thus, the effect of DNA-PKcs 

loss toward the hypersensitivity of neural cells to DNA damage could result from 

multiple factors.  

 

 DNA-PKcs suppression of ATM IR-induced apoptotic signaling was a possible 

factor of interest as ATM is a key effector of p53-dependent IR-induced apoptosis in non-

proliferating neurons (Herzog, Chong et al. 1998).  Thus, we explored a requiremet for 

ATM signaling IR-induced active Casp-3 observed in IR treated Prkdc-/-.  ATM 

phosphorylation of KAP-1 (phospho S824) is important for accessing IR-induced DSBs 

occurring in heterochromatin for repair (Ziv, Bielopolski et al. 2006, Noon, Shibata et al. 

2010, Goodarzi, Kurka et al. 2011).  Histological analyses employing KAP-1 (phospho 

S824) showed that not only was staining substantially greater in treated Prkdc compared 

to control (Figure 3-2A), but also distributed throughout the CA and DG in contrast to 

active Casp-3 staining.  Similarly, greater staining of anti-γH2AX (Ser139) foci, a marker 

of DSBs in chromatin, was observed in the CA1 region in treated Prkdc-/- compared to 

control (Figure 3-2B).   

 

 Together, the data suggests Prkdc loss sensitizes neurons to DNA damage, which 

amplifies ATM signaling.  Thus, DNA-PKcs may reduce excessive exogenous DNA 

damage in the postnatal murine brain, likely via NHEJ, enhancing DSB repair kinetics, 

and this is critical for replicating cells, but also in select postmitotic regions.  

Alternatively, DNA-PKcs might function in the developing nervous system to suppress 

IR-induced ATM-dependent signaling to minimize neuronal loss during development.  In 

the alternative case, DNA-PKcs function is likely beneficial in the short term by 

maintaining critical development schedules during early development.  However, 

rescuing DNA damaged neurons from IR-induced apoptosis during this critical time 

could predispose the nervous system to disease in the long term; particularly organisms 

that have larger neural expansions, and live for longer periods of time unlike mice. 

 

 

3.2.2 DNA-PKcs enhances NHEJ 

 

 To further understand how DNA-PKcs modulates DNA damage related effects, 

we utilized the developing neocortex as a model system to carefully delineate the 

spatiotemporal effects of the cellular response to genotoxic stress.  In the murine  
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Figure 3-2. DNA-PKcs loss increases DSB signaling after IR.  
(A) KAP-1 (phospho S824) immunostaining of the hippocampus and (B) γH2AX foci 

staining in the CA1 are both increased in irradiated postnatal day 5 (P5) Prkdc-/- 

compared to controls.  Red and white arrows indicate immunopositive cells.  
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neocortex the ventricular zone (VZ) is where neural stem/progenitors proliferate, and the 

subventricular zone (SVZ) is where the majority of neural cells exit the cell cycle and 

differentiate.  Differentiating cells occupy the intermediate zone (IZ), and the cortical 

plate (CP) is where mature neurons and glial cells reside (Molyneaux, Arlotta et al. 

2007).  Thus, the cortex provides an in vivo setting to elucidate how the DDR functions 

physiologically.  DNA-PKcs and the NHEJ DSB repair pathway function in both 

proliferating and non-proliferating cells, although, NHEJ is the only DSB repair pathway 

available in non-proliferating cells at HR is limited to S/G2 phases of the cell cycle as it 

requires access to sister chromatids to use as templates for repair (McKinnon 2009).  

Therefore, we hypothesized that if DNA-PKcs functions primarily as a DNA repair 

factor, its loss would likely have the greatest effect on cells in the IZ and CP. 

 

 We analyzed the developing cortex of E15.5 Prkdc-/- embryos and assessed IR-

induced ATM-dependent phosphorylation of KAP-1 (phospho S824).  We determined 

ATM-dependence by crossing conditional AtmNes-cre mice onto a Prkdc-/- background to 

produce [AtmNes-cre;Prkdc-/-] animals and exposed these E15.5 compound mutants to 4 Gy 

of IR with recovery times of 1 or 6 hr.  Immunostaining of dKO cortices confirmed 

DNA-PKcs loss significantly increases the number of KAP-1 (phospho S824) positive 

cells in an ATM-dependent manner as staining is absent in both AtmNes-cre and [AtmNes-

cre;Prkdc-/-] (Figure 3-3A).  At 1 hr, KAP-1 (phospho S824) showed ATM activity 

increases with increasing neural differentiation in treated Prkdc-/- compared to control 

(Figure 3-3A).  By 6 hr, only the CP neurons are KAP-1 (phospho S824) positive in 

Prkdc-/- compared to control, consistent with slower repair in non-cycling differentiated 

cells containing higher concentrations of heterochromatin, requiring longer recovery 

time.  We also confirmed increased IR-induced ATM-dependent signaling using Western 

blot analyses of treated P5 Prkdc-/- cerebellum, which showed p53 (phospho S15) and 

KAP-1 (phospho S824) activation were elevated compared to treated control, but 

attenuated in treated [AtmNes-cre;Prkdc-/-] and AtmNes-cre tissues (Figure 3-3B).   

 

 After assessing IR-induced ATM activity in the absence of DNA-PKcss we used 

the developing cortices to identify when Prkdc deficiency effects DDR signaling.  For 

these experiments, we used a lower IR dose of 2 Gy, to induce fewer DSBs, reducing the 

overall recovery time, to capture a more complete picture of DDR signaling at E15.5.  

We found the majority of IR-induced DNA damage is resolved by 6 hr post-IR via 

immunostaining with DSB heterochromatin marker KAP-1 (phospho S824), and 

identified the greatest difference in KAP-1 (phospho S824) levels between Prkdc and 

control occurred at 3 hr post-IR (Figure 3-4A).  Higher levels of DNA damage in treated 

Prkdc-/- three hours post-IR were also associated with greater death compared to treated 

controls, as determined by active Casp-3 and TUNEL immunostaining (Figure 3-4B, C).  

KAP-1 (phospho S824) staining and apoptotic levels in controls were similar to Prkdc-/- 

by 6 hours post-IR.  In contrast to TUNEL, active Casp-3 stain localized in the VZ and 

CP layers in both Prkdc-/- and control at 3 hr post-IR (Figure 3-4B, C).  Unexpectedly, 

active Casp-3 stain shows apoptotic induction begins in the CP and VZ layers (outer 

regions), and spreads inwards towards the IZ, which eventually appears equally 

distributed throughout all layers under normal conditions.   
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Figure 3-3. DNA-PKcs loss increases ATM signaling after IR. 

(A) The phosphorylation of KAP-1 (phospho S824) (red) at 1 hr post-IR is increased in 

Prkdc -/-compared to controls, and persists in Prkdc-/- 6 hr after ionizing radiation 

compared to controls.  Immunostaining of [AtmNes-cre;Prkdc-/-] demonstrates IR-induced 

phosphorylation of KAP-1(phospho S824) in embryonic neurons occurs in an ATM-

dependent manner.  PCNA (green) immunostaining identified proliferating cortical 

neurons in E15.5 neocortices.  CP: cortical plate, IZ: intermediate zone, SVZ: 

subventricular zone, VZ: ventricular zone.  Sections were counterstained with DAPI 

(blue).  (B) After IR, ATM (phospho S1981), p53 (phospho S15), and KAP-1 (phospho 

824) phosphorylation was increased in Prkdc-/- cerebellar tissues, whereas Chk2 levels 

were equivalent (Chk2 band shift).  The absence of p53 (phospho S15) and KAP-1 

(phospho S824) signal in [AtmNes-cre;Prkdc-/-] demonstrates ATM-dependent activation of 

these substrates.  Ponceau staining shows equal protein loading and transfer.  
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Figure 3-4. DNA-PKcs loss impairs NHEJ. 

(A) Using a lower dose of IR to induce fewer DSBs identified the greatest difference 

between KAP-1 (phospho S824) levels between treated Prkdc-/- and control occurred at 3 

hr post-IR, whereas levels were similar by 6 hr post ionizing radiation.  Similarly, higher 

levels of DNA damage induced cell death occurred at 3 hr post-IR in treated Prkdc-/- 

compared to controls as determined by active caspase-3 (B) and TUNEL (C 

immunostaining, which were similar by 6 hr post-IR.   
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Our data implies Prkdc deficiency increases levels of DNA damage and 

accelerates apoptotic induction to IR, resulting in early increases of cell death in Prkdc-/- 

compared to control.  Collectively, the transient attenuated DDR observed in treated 

Prkdc tissues suggests DNA-PKcs loss delays the repair of DSBs, which the DDR 

integrates as a greater induction of DNA damage.  Thus, during murine neurogenesis 

DNA-PKcs likely functions classically as a component of the DNA-PK holoenzyme to 

enhance NEHJ repair of DSBs. 

 

 

3.2.3 Integration of apoptotic signaling of DNA damage is dynamic 

 

 To further our analysis of DNA-PKcs and its role in responding to DNA damage 

during neural development we determined if the additional combinatorial loss of ATM 

and/or ATR with DNA-PKcs would alter IR-induced apoptotic signaling dynamics in the 

E15.5 developing cortex.  For these experiments we generated mice with germ line Dna-

pkcs inactivated in combination with conditional disruption of Atm and/or Atr function 

selectively in the nervous system using Nestin-cre.  E15.5 embryos of various genotypes 

were exposed to an IR dose of 4 Gy, and allowed to recover for six hours.  Histological 

analyses of these cortices using active Casp-3 showed that while ATM loss lacked Casp-

3 activation, the combined loss of Prkdc with Atm [AtmNes-cre;Prkdc-/-], or Prkdc with Atr 

[AtrNes-cre;Prkdc-/-], resulted in further sensitization of neurons to IR-induced apoptosis 

compared to their respective single knockout AtmNes-cre or AtrNes-cre, especially in CP 

neurons (Figure 3-5).  This data indicates the DDR likely integrates the effects of DNA-

PKcs loss with effects attributed to ATM or ATR loss, amplifying apoptotic signaling, 

resulting in more death.  The combined loss of Atm and Atr [(Atm;Atr)Nes-cre] completely 

eliminated IR-induced apoptotic signaling throughout the cortex as demonstrated by a 

lack of active Casp-3 staining.  Following these same pattern, the additional deletion of 

Prkdc with Atm and Atr [(Atm;Atr)Nes-cre;Prkdc-/-; hereafter TKO], sensitized 

predominantly non-proliferating neurons to IR-induced death, and active Casp-3 staining 

increased with neuronal differentiation.  

 

 

3.2.4 Ionizing radiation-induced p53-dependent apoptosis occurs independent of 

ATM and ATR 

 

 During neurogenesis, p53 is required for IR-induced apoptosis in the embryonic 

murine brain (Herzog, Chong et al. 1998, Gatz, Ju et al. 2011).  Interestingly, Atm loss 

also rescues p53 proficient neurons from IR-induced apoptosis suggesting ATM is also 

essential for IR-induced apoptosis (Herzog, Chong et al. 1998).  Our studies suggest IR-

induced p53-dependent cell death can occur when all three DNA-damage signaling 

kinases are absent, similar to Ligase IV IR response (Lee, Barnes et al. 2000, Shull, Lee 

et al. 2009, Gatz, Ju et al. 2011).  Since ATM and ATR were conditionally deleted we 

wanted to verify protein expression of ATM and ATR was sufficiently suppressed in the 

TKO.  Western blot analyses of untreated and IR treated TKO cortices confirmed 

efficient protein deletion of all three kinases, eliminating residual protein as a source for 

the IR-induced apoptosis observed in treated TKO (Figure 3-6A).  To further exclude the   
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Figure 3-5. Integration of apoptotic signaling of DNA damage by ATM, ATR, and 

DNA-PKcs. 

IR-induced apoptotic signaling assessed by active caspase-3 immunostaining of E15.5 

cortices.  (A) Control levels of apoptosis shown with the relative cortical layers: cortical 

plate (CP; highlighted by black boxes), sub-plate (SP), subventricular zone (SVZ), 

ventricular zone (VZ) are listed.  (B) Prkdc loss sensitizes neurons to ionizing radiation, 

particularly neurons in the CP.  (C) AtmNes-cre deletion substantially reduced apoptotic 

signaling after IR.  (D) Coincident loss of AtmNes-Cre with Prkdc-/- increased levels of 

apoptosis compared to AtmNes-cre alone.  (E) Apoptosis in AtrNes-cre is similar to control.  

(F) Coincident loss of AtrNes-cre with Prkdc further sensitizes cortical neurons to IR 

compared to AtrNes-cre alone.  (G) The combined loss of AtmNes-cre and AtrNes-cre eliminates 

IR-induced apoptotic signaling.  (H) Prkdc loss continues to sensitize cortical neurons to 

IR-induced apoptosis even in the absence of AtmNes-cre and AtrNes-cre.   
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Figure 3-6. Apoptosis in TKO occurs independent of ATM and ATR and is IR-

induced. 

(A) Western blot analyses confirm significant protein deletion of ATM, ATR and DNA-

PKcs of postnatal day 0 (P0) TKO cortices.  (B) TUNEL analysis of treated and untreated 

TKO E15.5 cortices shows that cell death is induced rather than endogenous.  The layers 

are labeled: cortical plate (CP), subventricular zone (SVZ), and ventricular zone (VZ).  
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possibility of an endogenous induction of apoptosis occurring in the absence of all three 

kinases we analyzed untreated and treated TKOs and controls using the TUNEL assay.  

TUNEL staining verified the cell death observed in the treated TKOs using active Casp-3 

was IR-induced an not an endogenous effect, as TUNEL signal was completely absent in 

untreated TKO compared to IR treated TKO and controls (Figure 3-6B).  Lastly, RT-

PCR was employed to confirm efficient conditional deletion of Atm and Atr by Nestin-cre 

in brain tissue sections (Figure 3-7A).  PCR of respective brain tissue sections was 

employed to confirm the TKO genotypes (Figure 3-7B).   

 

 To determine whether or not the IR-induced apoptosis observed in the absence of 

these three kinases required p53 we generated mice with germ line Dna-pkcs inactivated 

(encoded by Prkdc) in combination with p53-null, as well as in combination with 

conditional disruption of Atm, Atr, and p53 function selectively in the murine cortex 

using Emx1-cre (Gorski, Talley et al. 2002).  We began with verifying a requirement for 

p53 signaling of IR-induced apoptosis in E15.5 treated Prkdc-/- using an IR dose of 2 Gy, 

and a 3 hr recovery since these were the conditions where we previously observed the 

greatest difference in embryonic IR-induced cell death between Prkdc-/- and control.  

Again, we observed active Casp-3 staining in treated Prkdc-/-, but not in [Prkdc-/-;p53-/-], 

confirming the requirement for p53 in signaling DNA damage induced apoptosis in the 

absence of Prkdc alone in embryonic cortices (not shown).   

 

Next, we analyzed the Emx1-cre compound mutants.  The use of Emx1-cre 

overcame postnatal lethality observed in TKO pups shortly after birth.  Therefore, we 

anticipated p53 deletion would rescue [(Atm;Atr)Emx1-cre] cortical neurons from IR-

induced cell death.  Indeed, histological analyses using active Casp-3 did not indicate any 

IR-induced cell death in irradiated cortices of [(Atm;Atr;p53)Emx1-cre] embryos compared 

to control (Figure 3-8A, B).  We hypothesized that if a p53-independent apoptotic 

pathway was involved in IR-induced cell death observed in [(Atm;Atr)Nes-cre;Prkdc-/-; 

TKO], then germ line deletion of Prkdc along with Emx1-cre conditional deletion of Atm, 

Atr, and p53 would be positive for active Casp-3.  However, irradiated 

[(Atm;Atr;p53)Emx1-cre;Prkdc-/-; hereafter quadruple knockout, QKO] cortices were also 

negative for active Casp-3 (Figure 3-8C).  These data indicated that all the IR-induced 

cell death requires p53, and further implies p53 activation is not limited to PIKK DNA-

damage signaling kinases during neurogenesis.   

 

 Proliferating cell nuclear antigen (PCNA) is an important factor for DNA 

replication and repair in proliferating neurons.  Under normal conditions PCNA stain is 

nuclear in proliferating cortical neural stem/progenitor cells, but become peri-nuclear 

after IR (Figure 3-9).  Per-nuclear PCNA immunostaining was observed in IR treated 

control, Prkdc-/-, and AtrNes-cre (Figure 3-9A).  In contrast, PCNA staining of treated 

AtmNes-cre cortices looked identical to untreated control.  To determine if the PCNA per-

nuclear stain was associated with apoptotic nuclei we co-immunostained PCNA with 

γH2AX (phospho Ser139) in AtrNes-cre since ATM and DNA-PK phosphorylate γH2AX 

(phospho Ser139) in a redundant manner in response to IR (Stiff, O'Driscoll et al. 2004), 

and pan-nuclear γH2AX staining is associated with apoptotic nuclei.  We observed peri-

nuclear PCNA immunostaining with and without co-localization with pan-nuclear  



 

27 

 
 

Figure 3-7. Nestin-cre mediated excision of Atm and Atr in TKO and DKO brain 

tissue is efficient, and confirmation of genotypes is consistent with TKO mice. 

(A) Atm and Atr conditional deletion by Nestin-cre is sufficient as determined by RT-

PCR of [(Atm;Atr)Nes-cre;Prkdc-/-; TKO] and [(Atm;Atr)Nes-cre; dKO] E15.5 brain tissue 

sections.  (B) PCR of E15.5 brain sections confirmed the TKO and control genotypes of 

the tissue sections analyzed by immunohistochemistry in the studies above. 
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Figure 3-8. Ionizing radiation-induced apoptosis requires p53 but not ATM and 

ATR. 

Active caspase-3 staining of (A) control, (B) [(Atm;Atr;p53)Emx1-cre], and (C) 

[(Atm;Atr;p53)Emx1-cre;Prkdc-/-; QKO] demonstrates the apoptosis observed in 

[(Atm;Atr)Nes-cre;Prkdc-/-] requires p53, but not ATM or ATR.  
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Figure 3-9. PCNA peri-nuclear stain is associated with apoptotic nuclei. 

(A) PCNA staining of proliferating neural stem/progenitors in the ventricular zone (VZ) 

of E15.5 neocortices shows peri-nuclear staining after IR treatment of Prkdc-/-, AtrNes-cre, 

and control, but not AtmNes-cre.  (B) PCNA staining was observed with and without pan-

nuclear γH2AX staining in IR-treated E15.5 AtrNes-cre.  (C) The observation of both pan 

and per-nuclear PCNA staining of treated [(Atm;Atr)Nes-cre;Prkdc-/-; TKO] indicates 

PCNA localization is independent of ATM, and that PCNA location reflects apoptosis.  

Sections were counterstained with DAPI (blue).  DAPI stain of treated TKO nuclei 

revealed peri-nuclear PCNA staining is associated with condensed, circular nuclei, 

compared to nuclear PCNA positive nuclei that have the same morphology as untreated 

cells.  Red arrows indicated pan-nuclear PCNA immunopositive cells.  White arrows 

indicate peri-nuclear PCNA immunopositive cells.  Solid circles indicate dense DAPI 

immunopositive nuclei indicative of apoptotic cells, compared to dashed lines indicating 

normal DAPI immunopositive nuclei.  
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γH2AX (phospho Ser139) (Figure 3-9B).  We then analyzed treated [AtmNes-cre;Prkdc-/-], 

[(Atm;Atr)Nes-cre], and [AtrNes-Cre;Prkdc-/-] cortices to determine if peri-nuclear PCNA 

staining was linked to ATM-dependent apoptotic function (Figure 3-9C).  We observed 

nuclear PCNA staining in both treated [AtmNes-cre;Prkdc-/-] and [(Atm;Atr)Nes-cre] cortices.  

In contrast, [AtrNes-cre;Prkdc-/-] showed peri-nuclear staining.  Unexpectedly, we observed 

a mix of both peri-nuclear and nuclear PCNA staining in the irradiated TKO.  Closer 

inspection of the nuclear morphologies in the treated TKO using DAPI found that peri-

nuclear PCNA is associated with condensed, circular nuclei, whereas nuclear PCNA 

positive nuclei have the same morphology as untreated cells.  We do not suggest ATM is 

required for peri-nuclear PCNA localization.  The lack of the peri-nuclear PCNA 

associated with the absence of Atm is indicative of the lack of apoptosis occurring under 

those conditions in which Atm is absent, as ATM is required to signal IR-induced p53-

dependent apoptosis (Herzog, Chong et al. 1998).  Simply, peri-nuclear PCNA 

localization is indicative of apoptosis, independent of ATM status.  

 

 Lastly, we determined if p53 was required to observe IR-induced peri-nuclear 

PCNA staining.  For these studies, we used a relatively low dose of IR with a 3 hr 

recovery time, which is the earliest time point we identified for IR-induced apoptotic 

signaling (Figure 3-4B, C).  Indeed, IR treated E15.5 p53-/- cortices were negative for 

peri-nuclear PCNA staining compared to treated controls (Figure 3-10).  Thus, further 

supporting our claim that peri-nuclear PCNA staining is indicative of an apoptotic 

process.  

 

 From our data we propose peri-nuclear PCNA staining of irradiated cortices 

identifies S cells that have entered an apoptotic pathway, independent of ATM status.  

Thus, the peri-nuclear PCNA positive cells in the treated TKO support our TUNEL and 

Casp-3 data that suggests p53-dependent IR-induced apoptosis can occur independent of 

PI3K kinase signaling.  

 

 

3.2.5 ATR controls the IR-induced G2 checkpoint 

 

 It has been proposed that ATR minimally phosphorylates a small subset of ATM 

substrates involved in signaling cell cycle arrest (Tomimatsu, Mukherjee et al. 2009).  

We were interested in determining if ATR functions similarly during neurogenesis within 

a physiological context.  For these studies we focused on the G2/M cell cycle checkpoint.  

To achieve this, we analyzed IR-induced G2/M cell cycle dynamics in cortical neural 

stem/progenitors cell after DNA damage.  Proliferating neural cells reside in the VZ, with 

a small population found in the SVZ.  Neural cells in M phase can easily be identified 

using mitotic marker histone phospho-H3 Ser10 (Figure 3-11A).  We found only cortices 

deficient in AtrNes-cre were defective in signaling G2/M checkpoint activation reflective in 

the high number of phospho-H3 positive cells observed in this genotype compared to 

control (Figure 3-11B).  Immunostaining of combinatorial genetic crosses of Atr Nes-cre 

with AtmNes-cre and/or Prkdc-/- using phospho-H3 demonstrated ATR alone controls the IR 

in [AtrNes-cre;Prkdc-/-], with a smaller effect observed in [(Atm;Atr)Nes-cre]  cortices (Figure  
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Figure 3-10. p53 is required for peri-nuclear PCNA localization after IR. 

Immunostaining neural stem/progenitors in the ventricular zone (VZ) of E15.5 cortices 

with anti-PCNA (green) shows per-nuclear localization after IR requires p53. Sections 

were counterstained in DAPI (blue).  
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Figure 3-11. ATR controls the DNA damage-induced G2 checkpoint. 

(A) E15.5 cortical neural progenitors in mitosis are shown relative to the cortical layers in 

an untreated control at 10x (I) and 40x (II) using mitotic marker histone H3 (phospho 

S10) (p-H3; red) to identify cells in G2/M, and neuronal differentiation marker Tuj1 

(green).  Cortical plate (CP), sub-plate (SP), subventricular zone (SVZ), ventricular zone 

(VZ) are listed.  (B) Only E15.5 treated AtrNes-cre neocortices show untreated levels of p-

H3 after DNA damage indicating ATR alone controls the G2/M checkpoint.  (C) 

Coincident loss of AtrNes-cre with AtmNes-cre and/or Prkdc-/- results in the accumulation of 

p-H3 after DNA damage.  (D) Quantitative representation of p-H3 positive cells in the 

various genotypes and control show ATR regulates the murine G2/M checkpoint.  The 

bar graphs represent mean values of replicates (n=3 animals per group, 9 images per 

group), error bars s.e.m.; **** P < 0.0001.  P < 0.05 was considered significant.  (E) At 

E15.5, greater staining of p-H3 positive cells in treated AtrNes-cre is associated with a 

reduction in the number of BrdU positive proliferating cells compared to control after 

ionizing radiation.  (F) Higher exposure times of p-H3 marker show foci, identifying 

neural stem/progenitors cells in G2 phase of the cell cycle.  Fewer foci were observed in 

[AtmNes-cre;Prkdc-/-] compared to single knockouts and control after DNA damage.  

Sections were counterstained in DAPI (blue). 
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3-11D).  Previously, we did not observed a proliferation defect in untreated E15.5 AtrNes-

cre cortical neural stem/progenitors when compared to control (Lee, Shull et al. 2012).  

However, we did observe significantly fewer BrdU positive cells in IR treated AtrNes-cre 

compared to control (Figure 3-11E).  A reduction in proliferating cells in IR treated 

AtrNes-cre may arise because cells fail to undergo cell cycle arrest and continue through to 

mitosis.   

 

 The immunostaining pattern of phospho-H3 can also be used to identify cells in 

G2 phase (Factor, Seo et al. 2010).  The phospho-H3 foci indicative of G2 cells are most 

distinguishable at longer time exposures compared to those optimal for observing mitotic 

phospho-H3 positive cells.  Thus, phospho-H3 foci were evaluated in mutants with Atr 

intact (Figure 3-11F).  We observed substantially fewer phospho-H3 foci in [AtmNes-

cre;Prkdc-/-] cortices when compared to the respective single mutants or controls.  The 

considerable reduction in phospho-H3 foci observed in [AtmNes-cre;Prkdc-/-] suggests the 

combined loss of these two kinases further delays DSB repair, which DDR integrates as a 

greater number of DSBs, resulting in a more robust response by ATR to prevent damaged 

S cells from advancing to G2/M.  Overall the data supports ATR is required for efficient 

IR-induced G2/M checkpoint activation.  

 

 

3.2.6 Signaling IR-induced DSBs 

 

 Finally, we compared the DDR in mature neurons to the neurogenesis studies 

above.  In stark contrast to neurogenesis, adult neurons are resistant to IR-induced 

apoptosis (Puck and Marcus 1956, Romero, Gross et al. 2003).  Nonetheless, DNA 

damage occurs as an ongoing process, and DSB repair involving NHEJ is essential to 

prevent damage accumulation (Shull, Lee et al. 2009).  Histological analyses of IR 

treated adult brains using DSB heterochromatin marker KAP-1 (phospho S824) 

uncovered similar patterns as those observed in embryonic and postnatal brains.  Again, 

KAP-1 (phospho S824) staining was substantially greater in treated adult (5 months or 

older) Prkdc-/- compared to control brains, occurring in an ATM-dependent manner 

(Figure 3-12).  We found both immature neurons in the dentate gyrus (DG) and mature 

cortical neurons (CTX) are sensitized to IR by Prkdc loss by co-immunostaining with 

KAP-1 (phospho S824) and Tuj1.  Not surprisingly, we observed significantly greater 

endogenous levels of KAP-1 (phospho S824) in untreated Lig4Nes-cre (12 months old) 

compared to exogenous levels in treated control adult cortices after a 6 hr recovery, since 

Lig4 is required for DSB repair via NHEJ (Figure 3-12A, panels e, h) (Barnes, Stamp et 

al. 1998, Gatz, Ju et al. 2011).  Thus, we were surprised to observe equivalent or less 

endogenous KAP-1 (phospho S824) staining in untreated DG of Lig4Nes-cre compared to 

levels in treated control (Figure 3-12A, panels a, d).  Most surprisingly, we observed the 

intensity of KAP-1 (phospho S824) staining in treated Prkdc-/- cortices is similar to 

untreated Lig4 Nes-cre (12 months) suggesting a primary role for DNA-PKcs is to facilitate 

DNA repair via NHEJ suggesting a primary role for DNA-PKcs to facilitate DNA repair 

via NHEJ (Figure 3-12A, panels e, h).   
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Figure 3-12. ATM mediates heterochromatin DNA double-strand breaks in adult 

neurons after ionizing radiation. 

Co-immunostaining with heterochromatin DSB marker KAP-1 (phospho S824) and 

neuronal differentiation marker Tuj1 showed immature neurons in the dentate gyrus (DG) 

and mature cortical neurons in the cortex (CTX) in adult brains (5 months or older) are 

both sensitized to IR by the loss of Prkdc.  The intensity of KAP-1 (phospho 824) 

staining of irradiated Prkdc-/- is similar to untreated Lig4Nes-cre cortices.  The lack of 

immunopositive cells in irradiated AtmNes-cre tissues demonstrates signaling of IR-induced 

DSBs in heterochromatin is ATM-dependent 
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 Next we analyzed adult cortices using the standard DSB chromatin marker 

γH2AX (phospho Ser139) (Figure 3-13).  Analysis of untreated adult Prkdc-/- cortices 

found endogenous γH2AX foci accumulate with age more than untreated control, but 

significantly less than untreated Lig4Nes-cre, further supporting a role for DNA-PK in 

NHEJ DSB repair (Figure 3-13A).  For our radiation-induced DNA damage studies, 

endogenous γH2AX foci levels were measured in one year old Lig4Nes-cre cortices used to 

establish the standard time exposure because Lig4Nes-cre are deficient in DSB repair, and 

also fail to undergo IR-induced apoptosis (Barnes, Stamp et al. 1998, Gurley, Moser et al. 

2009, Shull, Lee et al. 2009, Gatz, Ju et al. 2011).  We found γH2AX foci were only 

augmented when both Atm and Prkdc [AtmNes-cre;Prkdc-/-] were deleted (Figure 3-13B).  

These results are in agreement with in vitro studies using patient derived cell lines of 

non-neurological origin (Tomimatsu, Mukherjee et al. 2009). 

 

 In contrast to adult cortices, we did not observe a substantial difference in γH2AX 

foci between treated Prkdc and control embryonic cortices at recovery times ranges from 

1-4 hr (not shown).  γH2AX foci form abundantly shortly after IR, wit neural 

stem/progenitors active in mitosis being the most sensitive during embryogenesis (Figure 

3-14).  By six hours after IR, the foci have been resolved, and the majority of γH2AX 

staining is pan-nuclear.  γH2AX pan-nuclear positive cells are indicative of the apoptotic 

process (de Feraudy, Revet et al. 2010).  DAPI staining of IR treated control nuclei after 

six hours further supports these findings as γH2AX pan-nuclear positive nuclei have 

morphed from an oval to a round, condensed form.  

 

 Our analysis demonstrates ATM and DNA-PKcs signal DSBs (in a redundant 

manner) in adult cortices.  The attenuation of DSBs in adult neurons compared to 

embryonic neurons suggests DSB repair slows with age, and emphasizes the requirement 

for rapid responses to DNA damage during embryonic neurogenesis.  
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Figure 3-13. ATM and DNA-PKcs function redundantly to phosphorylate H2AX 

Ser139 in adult cortices after ionizing radiation. 

Immunostaining with chromatin DSB marker H2AX (phospho Ser139) (γH2AX foci) of 

(A) untreated control, Prkdc-/-, and Lig4Nes-cre identified endogenous DSBs occur in 

Prkdc-/- compared to control.  (B) γH2AX foci in irradiated control, Prkdc-/-, AtmNes-cre, 

and [AtmNes-cre;Prkdc-/-] showed ATM and DNA-PKcs function redundantly to 

phosphorylate H2AX Ser139 after IR.  

 

 

 

 

 

 

 

 

 

  



 

38 

 
 

Figure 3-14. Signaling dynamics of IR-induced γ-H2AX in embryonic cortices. 

γH2AX foci levels were measured in the ventricular zone (VZ) of E15.5 embryonic 

cortices 15 minutes and 6 hr after IR to demonstrate the differences in morphology.  Oval 

shaped DAPI nuclei are associated with γH2AX foci that rapidly form shortly after IR.  

H2AX (phospho Ser139) staining by 6 hr is pan-nuclear, and co-stains with condensed, 

circular DAPI positive nuclei, indicative of apoptosis.  
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CHAPTER 4.    DISCUSSION 

 

 

4.1 Analyses of ATM, ATR, and DNA-PKcs Revealed Novel DNA Damage Response 

Outcomes 

 

 ATM, ATR, and DNA-PKcs are critical for nervous system development 

(Sedgwick RP 1991, Farina, Uggetti et al. 1994, O'Driscoll 2009, van der Burg, van 

Dongen et al. 2009, McKinnon 2012, Woodbine, Neal et al. 2013).  How these kinases 

cooperate to maintain genomic integrity during neurogenesis remains unclear.  Here we 

employed mouse genetics to explore PIKK DDR signaling functions of these kinases 

during neurogenesis within a biological context.  The combinatorial analyses of all three 

kinases was required to reveal novel DDR outcomes, as we show these results were not 

always inferable based upon results of single and double knockouts 

 

 The apoptotic DDR is essential to maintain the genomic integrity of neural 

stem/progenitors residing in the VZ/SVZ as these cells readily undergo apoptosis in 

response to minor levels of radiation (Gatz, Ju et al. 2011).  Previous studies have shown 

ATM is responsible for most, but not all of the IR-induced apoptosis occurring in the 

VZ/SVZ (Shull, Lee et al. 2009, Gatz, Ju et al. 2011).  Our studies substantiate these 

findings, but also show ATM cooperates with ATR to signal radiation induced apoptosis 

in the VZ/SVZ.  In contrast, Prkdc deletion alone and in combination with Atm or Atr 

sensitized neurons to apoptosis, particularly in non-proliferating neurons in the IZ/CP at 

E15.5.  We assumed treated TKOs [(Atm;Atr)Nes-cre;Prkdc-/-] would be deficient in 

signaling IR-induced apoptosis just like [(Atm;Atr)Nes-cre].  Surprisingly, we observed 

active Casp-3 and TUNEL stain in the SVZ/IZ/CP of treated TKOs.  These findings were 

supported by our discoveries linking apoptotic signaling and PCNA localization.  After 

IR, we observed PCNA becomes peri-nuclear and co-stain with condensed DAPI positive 

nuclei.  Again, PCNA localization studies of single and double knockouts alone would 

have concluded the re-localization of PCNA after IR required ATM.  However, we 

observed peri-nuclear PCNA staining after IR in TKOs, but not in p53, 

[(Atm;Atr;p53)Emx1-cre], or in [(Atm;Atr;p53)Emx1-cre;Prkdc-/-; QKO] embryonic cortices.  

Overall, our findings demonstrate Prkdc loss continues to sensitize neurons to apoptotic 

signaling in the absence of both AtmNes-cre and AtrNes-cre in a p53-dependent manner.  

 

 Similar to the apoptotic DDR, cell cycle checkpoint substrates are thought to be 

predominantly under the control of ATM in response to IR, with a small subset 

phosphorylated by ATR (Tomimatsu, Mukherjee et al. 2009).  Our studies clearly 

demonstrate for the first time that ATR alone controls the murine IR induced G2/M 

checkpoint independent of Atm or Prkdc status.  Interestingly, the combination of AtmNes-

cre and Prkdc-/- loss significantly reduced the number of proliferating neurons from 

entering G2/M compared to any other genetic combination.  A vigorous ATM-dependent 

G1/S checkpoint response is likely responsible for this observation.  Similarly, we 

observed fewer cells entering G2 after IR in [AtmNescCre;Prkdc-/-] compared to single 

knockouts and controls that is likely arising from greater ATR-dependent S checkpoint 

activation.  
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 Our studies highlight the dynamic relationships among these three kinases within 

a biological context.  Importantly, our study is a cautionary for inferring outcomes of the 

DDR as our data suggests PIKK signaling remains unpredictable.  

 

 

4.2 Proposed Function(s) of DNA-PKcs During Neurogenesis 

 

 Our findings demonstrate DNA-PKcs (encoded by Prkdc) loss exacerbates both 

apoptosis and cell cycle arrest checkpoint signaling during murine embryonic 

neurogenesis in response to exogenous DNA damage.  We propose two possible 

functions for DNA-PKcs in this context; DNA-PKcs enhances DSB repair kinetics by 

functioning as a scaffold protein that is required during times of rapid neural expansions; 

or DNA-PKcs may regulate ATM apoptotic signaling directly to preserve critical 

neuronal populations to maintain development.  Both of these functions become 

increasingly important in species that require significantly larger numbers of rapid 

neuronal expansions and mature over longer periods of time.  The persistence of γH2AX 

foci is the hallmark of a DSB repair deficiency (Rogakou, Nieves-Neira et al. 2000, 

Abbaszadeh, Clingen et al. 2009, Scully and Xie 2013).  We did not observe any 

differences in γH2AX foci staining between Prkdc-/- and control at any time points used 

in our studies employing an IR dose of 2 Gy despite observing differences in KAP-1 

(phospho S824) and active Casp-3 staining at 3 hr post-IR.  The discrepancy in γH2AX 

foci staining fails to support a role for DNA-PKcs in NHEJ repair.  Instead, the data 

could be interpreted as supporting our second proposal.  Since KAP-1 (phospho S824) 

and γH2AX (phospho S139) are substrates of ATM, and the apoptosis occurring in the 

absence of Prkdc signaling is p53 dependent, which is also a substrate of ATM, and 

ATM activity increases in the absence of Prkdc, all suggests DNA-PKcs may directly 

regulated ATM.   

 

 The paradox of DDR signaling observed in Prkdc deficient neurons likely arises 

from the facts that as neurons mature they become completely dependent upon the NHEJ 

pathway, and at the same time DDR signaling of IR-induced apoptotic signaling is being 

eliminated as an outcome.  For example, at E15.5 we found active Casp-3 and TUNEL 

staining to be in agreement at a specific recovery time post-IR.  However, at P5, only 

active Casp-3 and not TUNEL stain was greater in the CA1 of treated Prkdc-/ compared 

to control.  Similar observations have been made in other studies of DNA-PKcs functions 

in the adult brain.  For instance, the CA1-CA3 regions of adult DNA-PKcs-null mice 

have been reported to undergo p53-dependent cell death four days following acid induced 

brain seizures as demonstrated by a greater number of pyknotic nuclei and a greater loss 

of cellularity by Nissl, but without observing significant differences in TUNEL stain 

(Rogakou, Nieves-Neira et al. 2000, Neema, Navarro-Quiroga et al. 2005, Abbaszadeh, 

Clingen et al. 2009, Scully and Xie 2013).  Collectively, these findings support DNA-

PKcs loss sensitizes neurons in the DG to exogenous stress.  This DNA-PKcs role could 

be distinct from functioning as a component of the NHEJ pathway, as we observed 

reduced sensitization of DG neurons to both exogenous and endogenous DNA damage in 

NHEJ deficient mutant, Lig4Nes-cre.  Indeed, the dynamics of DDR outcomes observed in 

the developing nervous system, particularly in the developing hippocampus, is an 
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excellent paradigm to explore neural specific DNA-PKcs-dependent functions, and novel 

neural specific DDR outcomes.  

 

 Our observation of an extended, early DDR signaling in Prkdc-/- linked to a delay 

in DSB repair is in agreement with Goodarzi et al. who applied a chemical DNA-PKcs 

inhibitor to slow DSB repair thereby prolonging KAP-1 (phospho S824) phosphorylation 

and DSB chromatin relaxation (Goodarzi, Kurka et al. 2011) pg. 832.  Our findings 

showing Prkdc loss sensitizes embryonic cortical neurons in the IZ/CP are in agreement 

with a previous study using a Lig4 mutant created to study the effects of delayed DSB 

repair (Gatz, Ju et al. 2011).  NHEJ is available in both proliferating and non-

proliferating neurons unlike HR that is limited to proliferating neurons.  Thus, neurons 

become completely reliant upon the NHEJ pathway to repair DSBs as they differentiate, 

making DNA-PKcs increasingly advantageous for improving the NHEJ response.  

Therefore, DNA-PKcs likely enhances NHEJ DSB repair to meet critical developmental 

time constraints during neurogenesis.   

 

 In a comparable study of the DDR during embryogenesis, Gatz et al. 

demonstrated the IZ is sensitive to the persistence of DSBs after IR (Gatz, Ju et al. 2011).  

Interestingly, we show at three hours post-IR active Casp-3 and KAP-1 (phospho S824) 

staining occurs in the VZ/SVZ and CP in both control and Prkdc-/-.  By six hours, active 

Casp-3 staining is evenly distributed throughout all cortical zones, and KAP-1 (phospho 

S824) is essentially resolved in all zones in both control and Prkdc-/-.  The delay in the 

DDR we observed in the IZ at three hours in both genotypes appears to substantiate their 

findings.  However, we show IZ sensitivity to DSBs can be observed at much shorter 

recovery times via a delay in active Casp-3 stain.  Moreover, this strategy allowed us to 

demonstrate for the first time that the CP is equally sensitive to IR-induced DSBs as the 

VZ (Hoshino and Kameyama 1988, Hoshino, Kameyama et al. 1991, Gatz, Ju et al. 

2011).  Together, our findings show NHEJ, including DNA-PKcs, functions efficiently in 

all cortical zones in the developing cortex, which is consistent with Gatz et al. (Gatz, Ju 

et al. 2011). 

 

 

4.3 Future Directions 

 

 We propose that understanding the p53-dependent apoptotic processes occurring 

in the triple and quadruple knockouts examined here may aid in resolving numerous 

paradoxes that plague the field such as why p53 loss but not AtmNes-cre rescues Ligase IV 

deficient neurons from IR-induced apoptosis, or similarly why p53 loss but not Atm 

rescues Brca2Nes-cre deficient neurons from apoptosis (Frappart, Lee et al. 2007).  Our 

findings that DNA damage induced p53-dependent apoptosis can occur independent of 

ATM and ATR demand further investigation to identify novel DDR pathways and the 

contexts for which they apply.  Such studies could lead to furthering our understanding of 

the differences of how DDR integrates stress signaling in humans vs. mice.  This finding 

is essential to move the field beyond rationalizing that PIKK deficient mouse models fail 

to recapitulate the human neurological phenotypes because they are “less sensitive” to 

DNA damage.  The field must define what pathways and factors contribute to sensitizing 
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the murine DDR to DNA damage during neurogenesis to better translate our finding into 

effective therapies. 

 

 Another area of future interest is to further investigate the role the DDR in 

managing oxidative stress in the brains of TKOs [(Atm;Atr)Nes-cre;Prkdc-/-] during the 

fetal-to-neonatal transition.  The TKO lifespan ranged from 18-26 hr after birth (Data 

now shown) due to what appeared to be dehydration.  Previously, we have shown AtrNes-

cre show signs of endogenous replication stress induced apoptosis beginning at E16.5 

(Lee, Shull et al. 2012).  While we did not find evidence of endogenous DNA-induced 

apoptosis in E15.5 TKO cortices, the AtrNes-cre phenotype suggests, endogenous DNA 

damage is likely enhanced in the aging TKO embryos.  We hypothesize, the combination 

of endogenous DNA damage in the TKO and the increase in oxygenation during the 

fetal-to-neonatal transition likely induces rapid apoptosis.  Studies prolonging the utero-

like low oxygenation levels in mouse pups after birth were able to diminish oxidative 

stress levels in the lung and brains, improving postnatal morbidity and mortality 

(Escobar, Cubells et al. 2013).  If the increase in oxidative stress is functioning in the 

death of TKOs during the fetal-to-neonatal transition, then prolonging utero-like 

oxygenation levels may significantly increase their lifespan. If this were the case, this 

data were further support the importance of the DDR in managing oxidative stress during 

neural development.  Understanding the functions of PIKKs during this critical transition 

would be extremely useful, as the primary source of DNA damage during neurogenesis is 

oxidative stress.   

 

 Lastly, understanding how deficiencies in signaling and repairing DNA damage 

during neurogenesis and the impact this has on neural network formation may be useful 

for understanding why TKOs die shortly after birth.  One can imagine factors that impede 

synaptic firing, would result in the removal of that neuron.  If a large number of neurons 

fail to communicate effectively during the fetal-to-neonatal transition due to impeding 

build-up of DNA damage and insufficient signaling, then a large number of neurons 

would likely be removed, to the extent of eliminating life.   

 

 Ultimately, identifying the fetal-to-neonatal transition as a point of significant 

therapeutic intervention in infants with DNA repair deficiencies would create 

opportunities to alter the course of disease. 

 

 

4.4 Concluding Remarks 

 

 The work completed here sought to address how ATM, ATR, and DNA-PKcs 

collectively coordinate the appropriate responses to DNA damage within a physiological 

context.  Given that each kinase is critical for nervous system development, we focused 

on this tissue as a paradigm for understanding functional cooperative relationships 

between these key DDR factors.  We provide evidence suggesting that during murine 

neurogenesis DNA-PKcs functions classically as a component of the DNA-PK 

holoenzyme to enhance NHEJ repair of DSBs in proliferating and non-proliferating 

neurons.  We show DNA-PKcs loss sensitized p53-dependent apoptosis and exacerbated 
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checkpoint activation after IR in a developmental stage and neural cell type-specific 

manner, independent of ATM and ATR.  We found ATM and ATR coordinated the DDR 

during neurogenesis to direct apoptosis in cycling and non-cycling cortical neurons.  

Additionally, we found that the IR-induced G2/M checkpoint controlled by ATR, 

independent of ATM and DNA-PKcs status.  Our results provide valuable insights into 

how each kinase plays a unique and essential role during the DDR reflective of the 

specific neuropathology induced when each is defective. 
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