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Abstract 

 

 

Background: Primary brain tumors are a relatively common cause of cancer-

related deaths.  High-grade gliomas are the most common type of primary brain cancer, 

and the affected patients have a median survival of less than 1 year. Almost all malignant 

gliomas are incurable with the present standards of healthcare.  Currently accepted 

therapeutic adjuvants to surgery, such as radiotherapy and chemotherapy, provide only a 

minor improvement in the disease course and life expectancy for patients diagnosed with 

malignant gliomas. Often, chemotherapy has failed to make any significant impact on the 

prognosis of disease because of significant local and systemic toxicity, problems with 

transport of the drug across the blood brain barrier (BBB), and a high degree of 

chemoresistance demonstrated by tumor cells. Newer targeted delivery systems with 

more specificity for gliomas, improved safety profiles, and an enhanced ability to 

permeate through the BBB are actively under development as the next generation glioma 

therapies.  

Blood brain barrier and vascular endothelial cells in and around glioma brain 

tumors highly express certain receptors such as transferrin for iron transport into brain 

tumors respectively. To explore the potential of this tumor induced expression of 

transferrin receptors for targeting drug carriers, in this study, I have developed and 

characterized liposome carriers containing paclitaxel, for targeted delivery to the glioma 

brain tumors.  
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Methods: A liposome drug delivery system specifically aimed at glioma tumors 

was designed in this study. Liposomes composed of egg phosphotidylchole (EPC), 

hydrogenated soybean phosphatidylcholine (HSPC), cholesterol, distearoyl 

phosphoethanolamine-PEG-2000 conjugate (DSPE-PEG) and DSPE-PEG-maleimide 

were prepared by the lipid film hydration and extrusion process. Transferrin (Tf) with 

affinity for transferrin receptors over-expressed on blood brain barrier and glioma tumor 

vasculature were coupled to the distal end of poly ethylene glycol coated long circulating 

liposomes. The liposome delivery system was characterized in terms of size, lamellarity, 

ligand density, and drug loading properties. The effect of lipid concentration and type in 

the formulation on paclitaxel loading in the liposomes was studied. Functional properties 

of the delivery system were evaluated for, i) in vivo blood circulation time using blood 

sampling method and also using a novel intravital microscopic method, ii) Selective 

tumor localization in both flank and intracranial glioma models, and iii) anti-tumor 

efficacy in mouse flank and intracranial glioma tumors. Further, in order to improve 

physical and chemical stability of the delivery system and hence enhance its shelf life, a 

lyophilized formulation and process were developed.  

Results: Light scattering and electron microscopic observations of the 

formulations revealed presence of small unilamellar liposomes of about 133 nm in 

diameter. High performance gel filtration chromatography determinations of ligand  

coupling to the liposome surface indicated that about 72% of the transferrins were 

conjugated with biotin groups on the liposome surface. Optimized liposome formulation 

with 100 mM lipid concentration, 1:33 drug-to-lipid ratio, 5 mol% cholesterol, 5 mol% 

DSPE-PEG, and 0.01 mol% DSPE-PEG-biotin content yielded 1.3 ± 0.2 mg/mL 
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liposomal paclitaxel with 97.2 ± 3% of the drug being entrapped in the liposomes. These 

liposomes released no significant amount of the encapsulated drug over 72 Tf-LCL at 

37°C. Targeted liposomes showed significantly higher rate and extent of tumor 

accumulation in glioma flank tumors in vivo compared to non-targeted liposomes. 

Targeted liposomes also possessed long circulating properties with a T
1/2 

of about 9 Tf-

LCL in mice. This increased circulation longevity, attributed to steric stabilization effects 

of PEG, enhanced target accumulation. Near infrared fluorescence imaging demonstrated 

that these liposomes accumulated selectively in flank tumors with tumor targeting index 

of 10.59 ± 1.08. Paclitaxel incorporated into the targeted liposomes delayed tumor 

growth by 7.7 days in 5 doses of 2 mg/Kg body weight. However, no significant tumor 

growth retardation was observed when paclitaxel was administered in free form 

(Cremophor EL solubilized form) at similar dose. A process and formulation were 

developed for freeze-drying the targeted liposome delivery system. Liposome 

formulations stabilized with 15% sucrose outside the liposomes were able to maintain 

particle size distribution and drug loading close to initial upon freeze-drying and 

rehydration.  

Conclusion: A stable and effective targeted liposome delivery system was 

developed for paclitaxel to take this drug selectively to glioma brain tumors. This 

targeted delivery system could potentially improve therapeutic benefits of anticancer 

drugs with and increase safety when compared to existing solution dosage forms. 
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Chapter 1: Literature Review 

 

 

1.1 Introduction 

Each year more than 200,000 people in the United States are diagnosed with 

primary or metastatic brain tumors. Brain tumors are the leading cause of solid tumor 

cancer death in children under the age of 20. Adults with newly diagnosed brain tumors 

like astrocytomas have a median survival of less than one year (Curran Jr., Scott et al. 

1993; DeAngelis, Burger et al. 1998; Surawicz, Davis et al. 1998). Despite dramatic 

improvements in neuroimaging and neurological techniques, the prognosis in patients 

with brain tumors has not improved significantly during the past 40 years (DeAngelis, 

Burger et al. 1998). The main stay of treatment in patients with high grade brain tumors is 

resection followed by radiation. Chemotherapy has been used occasionally, but has 

proven to be of limited impact on the survival of these patients (Curran Jr., Scott et al. 

1993; DeAngelis, Burger et al. 1998; Surawicz, Davis et al. 1998; Jemal, Thomas et al. 

2002). Almost all malignant gliomas are incurable with the present standards of 

healthcare. Currently accepted therapeutic adjuvants to surgery, such as radiotherapy and 

chemotherapy, provide only a minor improvement in the disease course and life 

expectancy for patients diagnosed with malignant gliomas. Often, chemotherapy has 

failed to make any significant impact on the prognosis of disease because of significant 

local and systemic toxicity, problems with transport of the drug across the blood brain 

barrier (BBB), and a high degree of chemoresistance demonstrated by tumor cells (Green, 

Byar et al. 1983; Grant, Liang et al. 1995; Fine, Wen et al. 2003). 
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Thus, there is a desperate need for targeted delivery systems that can enhance the 

efficacy by altering the pharmacokinetics of anticancer drugs in such a way that 

therapeutic concentrations of drug reaches the target site. Targeted drug delivery systems 

can also minimize toxic side effects of current anti cancer drugs (Allen 2004). 

 

 

1.2 Challenges in Brain Tumor Therapy 

The treatment of brain tumors is complicated by many factors. The primary factor 

is the protective or shielding function of monolayer of polarized brain endothelial cells in 

the form of blood brain barrier (BBB) (Begley 1996; Pardridge 1999; Begley 2003). 

These endothelial cells are connected by complex tight junctions, where by they show a 

very high trans-endothelial electrical resistance of about 2000 Ωcm2  results in reduced 

para-cellular diffusion (Lo, Singhal et al. 2001). The BBB is dynamically regulated by 

ependymal cells like astrocytes, neurons and pericytes (Edwards 2001; Scherrmann 

2002). Basal lamina separates the endothelial cells from ependymal cells. This structural 

complexity results in a permeability barrier between blood within brain capillaries and 

the extracellular fluid in brain tissue. Only lipophilic solutes that can freely diffuse 

through the capillary endothelial membrane may passively cross the BBB. The passive 

diffusion of drug molecules across the BBB depends on their blood brain concentration 

gradient and lipid solubility. The passive diffusion is inversely related to the degree of 

ionization and molecular weight of the drug molecules. About 98% of small molecule 

drugs and 100% of large molecules drugs do not cross the blood brain barrier due to these 

factors (Pardridge 1999; Pardridge 1999; Pardridge 2003). As a consequence the 
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therapeutic value of many potent anticancer drugs is diminished. Compared with the 

normal brain vasculature of healthy tissues, blood vessels in brain tumors are often highly 

abnormal, with distended capillaries with leaky walls, leading to inconsistent drug 

delivery. Accumulation of interstitial fluid leads to an increase in the intratumoral 

interstitial pressure, thus limiting the penetration of drugs into brain tumors (Jain 1994; 

Brown and Giaccia 1998; Jain 1998; Jain 1999).  Localized hypoxia which can lead to 

tumor resistance as a result of irregular blood flow.  Drug metabolizing enzymes are 

located in the cerebral microvasculature primarily serve a protective role against 

exogenously administered molecules. Efflux transport systems like P-glycoprotein (P-gp) 

and multidrug resistance associated protein (MRP) further restrict drug accumulation in 

the brain (Fricker and Miller 2004).  

The second challenge in the brain tumor therapy is the lack of specificity of 

anticancer agents to the pathological site.  An optimal delivery system should be able to 

direct drugs exclusively to their desired sites of action, with minimal toxic exposure to 

sensitive non- target tissues. Lack of specificity towards brain tumors leads to a third 

challenge, the systemic toxicity associated with the drug.  For achieving therapeutic 

concentrations in the brain, drugs need to be administered at high concentrations which 

are very toxic to normal vital tissues. High peak concentrations of antineoplastic agents 

may cause severe toxic effects. Drugs with short distribution half-lives can lead to sub-

therapeutic levels of chemotherapy and may result in a minimal probability of circulating 

the drug through the tumor vascular bed (Medina, Zhu et al. 2004).  

Myelosuppression and cardiotoxicity are considered dose limiting factor in 

conventional cancer therapy with free doxorubicin (Drummond, Meyer et al. 1999). For 
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an anthracycline anticancer agent, drug-induced congestive heart failure is the most 

significant concern due to its very poor prognosis. In addition to myelosuppression and 

cardiotoxicity, alopecia, mucositis, nausea, and vomiting are common at all doses with 

the anthracycline antineoplastic drugs. Other important factors include the apparent 

resistance of brain tumors to conventional treatments, the susceptibility of adjacent 

normal brain to adverse effects of therapy, and the limited capacity of brain tissue for 

repair (Grossman, Fisher et al. 1998; Huynh, Deen et al. 2006). Together these factors are 

responsible for complexity of drug delivery to brain.  

 

 

1.3 Current Brain Tumor Therapy Approaches 

The common treatment techniques for brain tumors are surgery, radiotherapy, 

chemotherapy, usually as a last resort. The intensity, combination, and sequence of these 

treatments depend on the subtype, size, location, and patient age, health status, and 

medical history (Green, Byar et al. 1983; Grant, Liang et al. 1995; DeAngelis, Burger et 

al. 1998; Fine, Wen et al. 2003). The standard surgical procedure is called a craniotomy, 

in which the surgeons remove a piece of the skull bone, and then remove the tumor from 

the brain tissue. However, in certain cases including when the patients does not want 

surgery, a gamma knife may be used where beams of gamma irradiation are focused on a 

single, specific target in the brain. This can be very effective if the circumstances are 

right. These factors include tumor size, stage, location, and type of tumor. Radiation 

treatment has an essential role in the treatment of brain tumors. If a tumor is removed 

surgically, radiation is generally given to kill any remaining tumor cells that may be in 
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the surrounding brain tissue. In some cases, the entire tumor can not be removed 

surgically; however a portion of it might be, in this situation, radiation is given to reduce, 

or halt the tumor progression. In cases where surgery is not an option, radiation is given 

in an attempt to control the tumor as much as possible. On occasion, patients with high-

grade tumors are given radiotherapy in conjunction with chemotherapy in an attempt to 

control the tumor (Grossman, Fisher et al. 1998).  

Chemotherapy is a common treatment method for some tumor types; however it is 

not for brain tumors. Chemotherapy involves using cytotoxic drugs to kill cancer cells, 

and in the brain there is the blood-brain barrier which the standard chemotherapy drugs 

cannot penetrate. However, certain genetic characteristics in some types of brain tumors 

that makes them more susceptible to the effects of chemotherapy. Currently, 

chemotherapy is generally only administered as a salvage therapy, for recurrent or slow-

progressing tumors. There are a variety of investigative treatments available for brain 

tumors; however they are generally used when the common treatments have failed. Some 

examples of investigative treatments include immunotherapy, angiogenesis inhibitors, 

and transplant procedures and high-dose chemotherapy (Grossman, Fisher et al. 1998).  

In immunotherapy, the goal is to boost the patients own immune system so it can 

destroy the tumor cells within the body.  Angiogenesis inhibitors try to interfere with the 

growth of blood vessels to the tumor in an attempt to starve the tumor of nutrients and 

oxygen. Transplant procedures and high dose chemotherapy takes advantage of the fact 

that chemotherapy destroys all cells, not just cancer cells. By performing a bone marrow 

transplant after a high-dose of chemotherapy, the bone marrow will produce new healthy 
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cells while the cancer cells should not regenerate (Batchelor and Byrne 2006; Koo, 

Reddy et al. 2006; Richards, Khuntia et al. 2007). 

 

1.3.1 Convection enhaced drug delivery (CED) 

Convection enhanced drug delivery is a novel approach designed to circumvent 

the blood brain barrier issue by the direct administration of drugs into the solid tumor 

tissue.  This method enhances the delivery of drugs directly into brain tumors. CED uses 

a pressure gradient established at the tip of an infusion catheter to create bulk flow that 

forces the drug through the interstitial space. CED can distribute large therapeutic 

molecules over considerable distances. Several studies have documented the use of CED 

in conjunction with small molecule drugs, proteins and viral vectors (Hall and Sherr 

2006; Lopez, Waziri et al. 2006; Raghavan, Brady et al. 2006). 

 

1.3.2 Implantable wafers 

Implanted polymers are currently in use for the treatment of brain tumors. This 

delivery system provides sustained release of drug to the tumor using a matrix that also 

protects unreleased drug from degradation. Gliadel® carmustine -impregnated 

biodegradable polymeric wafer system, is the first new therapeutic to be approved by the 

FDA in 23 years for patients with gliomas. Multiple clinical trials have demonstrated 

safety and efficacy of Gliadel® wafers. There are several research groups are now 

working on the intracranial delivery of polymers impregnated with various drugs such as 

taxol , adriamycin, 5-fluorouracil, mitomycin, nimustine hydrochloride, mitoxantrone, 

and camptothecin in experimental animals.  Potential disadvantages of the technique are 
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risk of local neurotoxicity and drug release cannot be controlled once the device has been 

implanted without physically removing it (Dimeco, Li et al. 2002; Tae, Hui et al. 2002; 

Ewend, Elbabaa et al. 2005).  

 

1.3.3 Osmotic blood brain barrier disruption (OBBBD) 

According to this method, the blood brain barrier will be transiently disrupted 

using a concentrated sugar solution. The high osmotic pressure created by the sugar 

solution results in shrinkage of the endothelial cells, thus opening the tight junctions 

between them for a period of a few hours. Permeability of small molecules across the 

blood brain barrier can be enhanced using this method. Hypertonic solutions of mannitol 

are most commonly used for blood brain barrier disruption in therapeutic trials in patients 

with brain tumors. OBBBD will be followed by administration of intra-arterial 

chemotherapy. Animal studies suggest that this method is able to increase concentrations 

of chemotherapeutic agents in the brain parenchyma up to 90 fold. OBBBD has been 

used to treat hundreds of patients and is currently employed in several phase I/II clinical 

trials. Toxicity is a major concern with BBBD. The normal brain is vulnerable to 

cytotoxic agents, thus this factor was outweigh the benefits of barrier opening (Kroll and 

Neuwelt 1998; Fortin 2003).  

 

1.3.4 Biochemical blood brain barrier disruption (BBBBD) 

Several chemical and biological agents are under investigation for selectively 

increasing the permeability of the capillaries of the tumor. This method is more reliable 

technique to disrupt the BBB, and gives a more precise time-window for brain drug 
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delivery when compared to osmotic blood brain barrier disruption. Potassium channel 

agonists like minoxidil was used to activate potassium channels to selectively increase 

the permeability of the capillaries of the tumor to give drugs a greater access to the tumor 

cells (Ningaraj, Rao et al. 2002; Ningaraj, Rao et al. 2003). This strategy is based on the 

finding that tumor capillaries express higher levels of potassium channels compared to 

those in normal brain. Leukotrienes, histamine and vasoactive peptides, have been 

reported to cause blood brain barrier disruption and temporarily increase the permeability 

of blood vessels (Black, King et al. 1990; Chio, Baba et al. 1992). Bradykinin, and its 

synthetic analog RMP- 7 can also increase the tight junction permeability by activating 

B2 receptors of the endothelial cells (Bartus, Elliott et al. 1996). However, these 

strategies are also shown unacceptable toxicity during clinical trials, thus limiting the 

scope of this treatment strategy (Packer, Krailo et al. 2005).  

 

1.3.5 Carrier mediated drug delivery 

The carrier mediated drug delivery approach makes use of endogenous transport 

systems that are present in brain endothelial cells. A number of carrier transport systems 

at the BBB are responsible for brain uptake of nutrients from the systemic circulation. 

Thus, transport systems exist for glucose, amino acids, choline, vitamins, low density 

lipoprotein (LDL), and nucleosides. Among these transporter systems large neutral amino 

acid transport system (LAT) has the maximum transport rate and is less specific for its 

substrates. The LAT is capable of transporting numerous endogenous as well as 

exogenous amino acids. L-dopa, alpha-methyldopa and baclofen have been shown to be 

taken into brain by LAT mediated transport.(Terasaki and Tsuji 1994). The glucose 
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transporter was explored to facilitate the penetration of glucose prodrugs of chlorambucil 

into the brain (Terasaki and Tsuji 1994; Tsuji and Tamai 1999). 

 

1.3.6 Receptor mediated drug delivery 

The brain capillary endothelium expresses specific transcytosis systems for 

circulating nutrients and signaling molecules which cannot diffuse through the blood 

brain barrier. These include systems for the transport of insulin, insulin-like growth 

factors, transferrin, and leptin. The brain uptake of drugs can be improved by conjugation 

of endogenous compounds, which uses receptor mediated transcytosis. Endogenous 

peptides such as insulin, transferrin, and receptor specific monoclonal antibodies (MAb) 

that undergo transcytosis through the BBB via the endogenous receptor system have been 

used as drug transport vectors in literature (Terasaki and Tsuji 1994; Huwyler, Wu et al. 

1996; Huwyler, Yang et al. 1997; Wu 1997; Pardridge 1999; Partridge 1999; Allen 2002; 

Pardridge 2002; Qian 2002; Pardridge 2003; Schnyder and Huwyler 2005; Soni, Kohli et 

al. 2005; Jain, Chourasia et al. 2006; Koziara, Lockman et al. 2006; Newton 2006; Wu, 

Barth et al. 2006; Soni, Kohli et al. 2007). Several coupling methods were reported for 

conjugation of a drug to this transport vector, these include chemical linkers, avidin-

biotin technology, and polyethylene glycol linkers (Temsamani, Rees et al. 2001).  

Brain delivery of non-transportable peptides and small molecules by this approach 

has been extensively explored by Pardridge et al (Pardridge 1998; Pardridge 1999; 

Pardridge 1999; Partridge 1999; Pardridge 2002; Pardridge 2002; Pardridge 2003). 

Receptor mediated transport process involves binding of the receptor and peptide at one 

side of the BBB (i.e. the luminal membrane), translocation of the receptor–peptide 
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complex through the cytoplasm, and dissociation of the peptide from the receptor on the 

external surface of abluminal membrane. One of the most extensively explored vectors 

for receptor mediated transcytosis has been the anti-rat transferrin-receptor antibody 

OX26, which recognizes an external epitope of the transferrin receptor (Huwyler, Wu et 

al. 1996; Huwyler, Yang et al. 1997; Pardridge 1999; Pardridge 1999; Partridge 1999; 

Pardridge 2002). Transferrin as brain drug delivery vector was evaluated and is found to 

be as effective in transporting biotinylated therapeutics as OX26, without antigenicity 

(Liao, Li et al. 2001; Li and Qian 2002).  

 

 

1.4 Liposomal Approaches for Brain Tumor Targeting 

Liposomes have been investigated over decades as systemic drug delivery 

vehicles for the delivery and targeting of drugs to targeting sites in the body (Torchilin 

2005). Liposomes have gained increased attention, because of their structural versatility 

in terms of size, composition, surface charge, ability to incorporate most of the drugs 

regardless of solubility. The key features of liposomes include controlled retention of 

entrapped drugs in the presence of biological fluids, prolonged vesicle residence in 

circulation and enhanced vesicle uptake by target cells. However, the in vivo use of 

classical liposomes is hampered by the very rapid clearance of liposomes from the 

circulation by the reticuloendothelial system. Liposomes coated with biocompatible 

polymers PEG or ganglioside are widely used in the market and are known as “stealth” 

liposomes. These biocompatible polymer coatings are believed to prevent recognition of 

liposomes by macrophages due to reduced binding of plasma proteins (Silvander 2002; 
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Cattel, Ceruti et al. 2003; Moghimi and Szebeni 2003). These modifications can enhance 

the circulation time half-life of liposomes considerably. 

Conventional liposomes larger than 100 nm are not delivered to brain in vivo 

(Schackert, Fan et al. 1989; Gennuso, Spigelman et al. 1993), because these agents are 

not transported through the brain capillary endothelial wall (BBB) in vivo. However, 

rapid advances have been made in the fields of receptor biochemistry, and monoclonal 

antibodies. The application of these technologies for ligand-mediated BBB targeting is a 

logical outgrowth of these advances. 

Targeted liposome that permeate through blood brain barrier and act to 

concentrate the drug molecules at their target site would provide a variety of advantages 

over agents lacking this specificity. Targeting potential of liposomal delivery systems has 

been enhanced by attaching site-specific ligands to these systems (Allen 1997; Noble, 

Kirpotin et al. 2004; Soni, Jain et al. 2005). These types of delivery systems are critical 

for in vivo transport and delivery of macromolecules as well as small molecules for brain 

tumors. For example, since a greater portion of the administered dose of a drug is 

sequestered at a particular locus in the brain, the delivery system should be highly 

efficacious and the drug dose could be reduced. In addition, nontarget site toxicities are 

attenuated since lower concentrations of the drug are present. A significant improvement 

in the therapeutic index can be achieved by lowering of the effective dose.  

In recent years, several studies have demonstrated that the use of the transferrin uptake 

pathway is highly effective for treating cancer in animal models and in humans. As an 

example, the conjugation of transferrin with anticancer drugs such as doxorubicin has 
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shown the potential to circumvent the cardiotoxicity and development of drug resistance 

(Lai, Fu et al. 2005; Soni, Jain et al. 2005; Soni, Kohli et al. 2007). 

One of the most extensively explored vectors for receptor-mediated transcytosis 

has been the anti-rat transferrin-receptor antibody OX26, which recognizes an external 

epitope of the transferrin receptor. Transferrin, as brain drug delivery vector, was 

evaluated and was found to be as effective in transporting biotinylated therapeutics as 

OX26, without any significant antigenicity (Liao, Li et al. 2001; Soni, Kohli et al. 2005; 

Soni, Kohli et al. 2007).  

Huwyler et al. (Huwyler, Wu et al. 1996; Wu 1997) have demonstrated that 85 

nm liposomes can be sterically stabilized with DSPE-PEG2000 which contains a lipid at 

one end and maleimide at the distal end to the liposome. Monoclonal antibodies can be 

coupled with a sulfide linkage to the maleimide moiety of these stealth liposomes to form 

immunoliposomes. The OX26 monoclonal antibody is linked to stealth liposomes 

because this antibody binds to BBB transferrin receptor, and it has been successfully used 

as a vector in delivery of small and large molecules to the brain (Shi and Pardridge 2000; 

Pardridge 2002; Pardridge 2002; Qian 2002). As an example, the brain volume of 

distribution of daunomycin in OX26 MAb conjugated PEGylated immunoliposomes was 

increased with time following intravenous administration (Huwyler, Yang et al. 1997; 

Schnyder, Krahenbuhl et al. 2005).  

Human gliomas and a variety of solid tumors highly express epidermal growth 

factor receptor (EGFR), and clinical trials indicate that this antigen has important roles in 

cancer etiology and progression. Epidermal growth factor receptor (EGFR)–targeted 

immunoliposomes showed significant antitumor activity against flank U87 tumor 
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xenografts in nude mice (Mamot, Drummond et al. 2003; Mamot, Drummond et al. 2004; 

Mamot, Drummond et al. 2005; Mamot, Ritschard et al. 2006). 

Cancer cells that over express the IL-13 receptor α2 protein have been targeted 

using human interleukin-13 as a targeting ligand. Anti-tumor efficacy of doxorubicin 

sterically stable human interleukin-13 (IL-13)-conjugated liposomes were found to be 

superior to non targeted liposomes in a subcutaneous glioma tumor mouse model 

(Madhankumar, Slagle-Webb et al. 2006). Lactyl stearate coupled liposomes for targeting 

monocarboxylic acid transport system of the brain were reported by Jain et al. (Jain, 

Chourasia et al. 2006).  Brain concentrations of rifampin delivered in lactyl stearate-

coupled liposomes were 6 – 8 times higher when compared to non targeted liposomes.  

Monoclonal antibody (mAb) 2C5 conjugated immunoliposomes were studied against 

brain tumors. 2C5-immunoliposomes had shown significantly better accumulation in the 

subcutaneously grown brain tumor than non-specific control IgG-immunoliposomes 

(Gupta, Levchenko et al. 2005). 

 

 

1.5 Targeted Liposomal Delivery System Design Considerations  

 Development of an effective targeted drug delivery system requires 

considerations of many design and scientific aspects. Several recent reviews address 

these considerations. (Allen 2002; Scherrmann 2002; Allen 2004; Schnyder and Huwyler 

2005; Torchilin 2005). In general, critical design characteristics include: 1) choice of 

target organ for selection of passive or active targeting method; 2) selection of a targeting 

antigen or receptor that has homogeneous over expression and has a vital role in tumor 
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progression with minimal expression in normal tissue; 3) selection of a stable, specific, 

and non-immunogenic targeting ligand that can undergo endocytosis efficiently; 4) a 

stable liposome formulation with small (< 100 nm) size, and zeta potential ~ 20 mV, 5) 

minimal leakage of drug, 6) long in vivo circulating properties, 7) minimal interaction 

with blood components, 8) selective extravasation into tumors along with high tumor 

localization capability; 9) a stable and rapid conjugation method with high conjugation 

efficiency; and 10) a highly potent anticancer drug with a possibility for high liposome 

encapsulation. Each of the design considerations as well as their interactions has a critical 

role in determining the success of a targeted liposome delivery system.  

 

1.5.1 Target organ 

Based on the target organ, the liposomal targeting method can be selected. By 

regulating the liposome properties like size, charge and composition, liposomes can be 

designed to deliver their contents to specific sites such as liver, spleen, and permeable 

vasculature of some solid tumors by passive targeting. However, active targeting may be 

a logical option to target pathological sites like brain tumors which have limited 

accessibility.  

 

1.5.2 Target receptor or antigen 

For efficient targeting, the targeted receptor or antigen should have homogeneous, 

high expression on the surface of the target cells. The antigen or receptor should not be 

down regulated. Circulating shed antigen will compete with the target cells for binding of 

the targeted therapeutics, and any complexes that form would be rapidly cleared from the 
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circulation. The receptors or antigens which undergo endocytosis of antibodies increases 

efficacy of drug delivery, presumably by inducing tumor cells to endocytose 

immunoliposomes (Allen 2002). 

 

1.5.3 Target ligand or antibody 

Several factors determine the selection of a target ligand. Non-antibody ligands 

are relatively stable, inexpensive to manufacture and are readily available. However they 

can bind to some non-target tissues. Endogenous ligands like folic acid and transferrin 

found in significant levels in body fluids and the free ligands will compete for binding 

with the targeted therapy (Allen 2002). For a high degree of selectivity towards target 

tissues, monoclonal antibodies or antibody fragments can be selected. Cost, stability and 

potential immunogenicity are major disadvantages with antibodies. Along with the choice 

of a ligand, the ligand density can have a potential impact on targeting efficiency of a 

targeted liposome. High ligand densities are preferable for enhancing the binding to 

target cells. However, high ligand density can lead to rapid clearance from the 

circulation. Additionally, achieving high ligand density is expensive and difficult to 

produce (Pardridge 1999).  

 

1.5.4 Liposome formulation 

 

1.5.4.1 Composition 

An ideal liposome formulation for targeted drug delivery should be stable with 

small (< 100 nm) size, zeta potential ~ 20 mV, minimal leakage of drug, long in vivo 
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circulating properties, minimal interaction with blood components, selective 

extravasation into tumors along with high tumor localization capability (Torchilin 2005). 

Liposomes made up of saturated phospholipids like HSPC, DSPC or SPC along with 

optimum levels of cholesterol can produce stable liposomes with minimal leakage (Allen 

2002). The fluidity of liposome bilayers can be altered by using phospholipids with 

different T
m

, which in turn can vary depending upon the length and nature (saturated or 

unsaturated) of the fatty acid chains. Liposomes containing high phase transition 

temperature lipids (T
m

>37 °C) are rigid at the physiological temperature and are less 

leaky. In contrast, liposomes composed of low T
m 

lipids (T
m

< 37 °C) are more 

susceptible to leakage of drugs encapsulated in aqueous phase at physiological 

temperatures. The fluidity of bilayers also influences interaction of liposomes with 

plasma components and cell membranes. Liposomes composed of high T
m 

lipids were 

reported to have lower extent of uptake by RES, compared to those containing low T
m 

lipids (Drummond, Meyer et al. 1999). Incorporation of cholesterol into the lipid bilayer 

increases membrane rigidity thereby affecting their stability both in vitro and in vivo 

(Kirby, Clarke et al. 1980). For hydrophobic drugs, unsaturated lipids like egg 

phosphatidylcholine or egg sphingomyelin can enhance drug loading into liposomes 

(Straubinger, Sharma et al. 1993; Sharma and Straubinger 1994). Anti-oxidants like α-

tocopherol in the formulation were shown to reduce auto-oxidation of lipid components 

and prolong the shelf lives of liposomes (Hunt and Tsang 1981).  
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1.5.4.2 Liposome size 

The in vivo circulation half life and tumor accumulation of liposome is mainly 

depends on its size. Small unilamellar liposomes (≤ 100 nm) are opsonized less rapidly 

and to a lower extent than large liposomes (> 300 nm) and therefore the rate liposome 

uptake by the reticular endothelial system (RES) increases with size of the vesicle 

(Harashima, Sakata et al. 1994; Papisov 1998). Inclusion of PEG-lipids in the liposome 

composition was shown to result in clearance rates that are relatively insensitive to size in 

the range of 80 to 250 nm (Lasic, Martin et al. 1991; Woodle and Lasic 1992; Lasic 

1994; Ceh, Winterhalter et al. 1997; Lasic 1997).  

Optimal liposome size depends on the tumor target. The macromolecular size of 

liposomes prevents them from passing through the 2 nm pores found in the endothelium 

of blood vessels in most healthy tissues or even the 6 nm pores found in post capillary 

venules (Seymour 1992). In tumor tissue, the vasculature is discontinuous, and pore sizes 

vary from 100 to 780 nm enables accumulation of liposomes in these areas (Yuan, 

Dellian et al. 1995).  Negatively charged liposomes were believed to be more rapidly 

removed from circulation than neutral or positively charged liposomes (Gabizon and 

Papahadjopoulos 1992).  

 

1.5.4.3 Liposome surface charge 

Surface charge properties of liposomal colloidal systems are critical in 

determining their drug carrier potential, since they will control their interactions with 

plasma proteins. Lipid composition can influence the liposomal surface charge. Lack of 

surface charge can reduce physical stability of small unilamellar liposomes by increasing 
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their aggregation (Kaye 1981; Sharma and Sharma 1997). However, negatively charged 

liposomes were believed to be more rapidly removed from circulation than neutral or 

positively charged liposomes (Gabizon and Papahadjopoulos 1992). It is reported that the 

negatively charged liposomes are predominantly taken up by cells through coated-pit 

endocytosis, while cationic liposomes deliver contents to cells either by fusion with cell 

membranes or through coated pit endocytosis (Sharma and Sharma 1997).  

 

1.5.4.4 Steric stabilization 

Colloidal stability of liposomes can be enhanced by addition of hydrophilic 

polymers or glycolipids like PEG conjugated lipids, ganglioside-GM1 or 

phosphatidylinositol into liposomes. Sterically stabilized liposomes showed prolonged 

lifetimes in the circulation as compared with nonstabilized liposomes. Sterically 

stabilized liposomes are less reactive toward serum proteins and less susceptible to RES 

uptake than nonstabilized liposomes (Allen and Chonn 1987). The mechanism by which 

PEG induces dehydration of the head group region of lipids is related to the fact that 

PEG, chemically attached to the lipid head group, undergoes steric exclusion from the 

liposome surface in a similar way to free PEG (Tirosh, Barenholz et al. 1998). This 

results in greater density of the grafted PEG further from the surface. Thus, the local 

concentration gradient of PEG chains from the liposome surface leads to an osmotic 

imbalance, changes in thermodynamic properties and hydration of the lipids. At higher 

concentrations (> 10 mol%) PEG chains will be in highly overlapped brush 

configuration. Due to repulsion of PEG chains, at these high concentrations of PEG 

lipids, weakening of the bilayer packing was observed. Although sterically stabilized 
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liposomes prolong circulation time and decrease liposomal uptake by the RES, they do 

not actively target the liposome to the tumor (Tirosh, Barenholz et al. 1998). 

 

1.5.4.5 Conjugation method 

There are several approaches available for conjugation of ligands on liposomes 

for achieving targeted delivery.  These conjugation methods are selected based on 

delivery system requirements like time required for conjugation, stability of conjugate, 

conjugation efficiency. An ideal conjugation method should occur rapidly with stable 

bond formation. The conjugation efficiency should be more than 70%. This linker should 

not affect the reactivity of the ligand or stability of the liposomal drug.  

A variety of functionalized lipids are available for attaching ligands with covalent 

or non covalent bonds (Pardridge 1999; Allen 2004). The chemical-based linkers employ 

activating reagents such as maleimidobenzoyl N-hydroxysuccinimide ester (MBS) or 2-

iminothiolane (Traut’s reagent), which activate primary amino groups on surface lysine 

(Lys) residues of the ligand.  This results in the formation of a stable thioether linkage 

which is comprised of only a single sulfur atom and will not be subjected to cleavability. 

The resulting thio-ether bond is stable under physiological conditions. Cleavable bonds 

like ester and disulfide bond between ligand and liposome have been shown to be 

suboptimal for targeted drug delivery to tumors (Martin, Hubbell et al. 1981). The major 

disadvantage with chemical coupling methods is a low yield in the coupling efficiency. 

Non covalent coupling methods like avidin-biotin conjugation are more rapid (Loughrey, 

Bally et al. 1987), stable and higher coupling efficiency can be achieved (Hansen, Kao et 

al. 1995; Sakahara and Saga 1999). The type and length of the polymer spacer was also 
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found to influence target recognition and binding in liposomes that already contained 

PEG-derivatized lipids (Gabizon et al. 1999).  

A novel and relatively simple post insertion technique was reported by several 

groups for preparation of targeted liposomes (Ishida, Iden et al. 1999; Allen, Sapra et al. 

2002). According to this method, micellar conjugates of the ligand needs to be co-

incubated with preformed liposomes which can form targeted liposomes. However, this 

post-insertion technique is usually performed at elevated temperatures (55 to 60 °C) to 

accommodate lipid bilayers with higher melting temperatures. Therefore, the 

denaturation of protein ligands under these conditions is a concern. 

 

1.5.4.6 Choice of drug 

For optimal targeted liposomal delivery, the drug must be compatible with the 

liposome structure and should show efficient loading into the liposomes. The drug 

leakage rate from liposomes might limit the choice of drugs that are available for 

liposomal targeted delivery. Highly lipophilic drugs tend to associate mainly with the 

bilayer compartment of the liposome. This can result in lower entrapment stability due to 

faster redistribution of the drug to plasma components (Sharma and Sharma 1997). Even 

though amphipathic drugs are reported to be suitable for liposomal carriers, targeted 

liposomal system should be optimized for each drug (Drummond, Meyer et al. 1999). 
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1.6 Transferrin Receptor Mediated Brain Tumor Targeting 

Transferrin receptor mediated endocytosis is one of the best-characterized and 

well documented processes in tumor targeted drug delivery (Shi and Pardridge 2000; 

Pardridge 2002; Qian 2002; Soni, Jain et al. 2005; Soni, Kohli et al. 2005). Transferrin 

receptors are reportedly present on the surface of diverse classes of cell types and mediate 

the internalization of iron-saturated transferrin through receptor-mediated endocytosis 

(Qian 2002). Transferrin holds promise as a drug targeting ligand because of the high 

expression of transferrin receptors on the surface of tumor cells. The density of 

transferrin receptor is correlated with the extent of cell growth and division. Tumor cells 

ordinarily divide faster than normal cells and consequently express more transferrin 

receptors (Prior, Reifenberger et al. 1990; Ishida, Maruyama et al. 2001; Widera, 

Norouziyan et al. 2003).  

Many exciting studies have been carried out recently using transferrin or the 

transferrin receptor (TfR) as a targeting ligand to deliver a wide range of therapeutic 

agents into malignant sites that overexpress transferrin receptors (Pardridge 1999; Qian 

2002; Lai, Fu et al. 2005; Soni, Kohli et al. 2005; Soni, Kohli et al. 2007).  

 

1.6.1 Transferrin and transferrin receptor mediated endocytosis 

The transferrins are a family of iron-binding proteins that transport iron among its 

sites of absorption, storage and utilization. A major pathway for cellular iron uptake is by 

internalization of the complex of iron-bound transferrin and the transferrin receptor 

(TfR). Diferric-transferrin binds to the TfR on the cell surface and the transferrin–

transferrin receptor complexes are routed into the endosomal compartment after 
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endocytosis via clathrin-coated pits. Upon maturation and loss of the clathrin coat, the 

endosome is acidified, and iron is released from transferrin and then transported to the 

cytosol by a divalent metal transporter (Qian 2002). The apo-transferrin–transferrin 

receptor complex is then recycled through exocytic vesicles back to the cell surface and 

apo-transferrin is released into the circulation and re-used (Qian 2002).   

 

1.6.2 Transferrin receptor in brain drug delivery 

Brain capillary endothelial cells do possess specific receptor-mediated transport 

mechanisms that potentially can be exploited as a means to deliver therapeutics to the 

brain (Wu 1997; Pardridge 1998; Pardridge 1999; Pardridge 1999; Partridge 1999; 

Pardridge 2002; Pardridge 2002; Qian 2002; Pardridge 2003; Widera, Norouziyan et al. 

2003; Soni, Jain et al. 2005). 

The extent of transferrin receptor expression in glioma brain tumors has been 

shown to be significantly greater than in normal brain tissue, with expression linked to 

the severity of the tumor (Kurpad, Zhao et al. 1995). In the literature, several targeted 

liposomal approaches have been explored as a promising tool for the brain delivery of 

therapeutic and diagnostic agents (Pardridge 1999; Pardridge 1999; Pardridge 2002; 

Pardridge 2003; Schnyder, Krahenbuhl et al. 2005; Soni, Jain et al. 2005; Soni, Kohli et 

al. 2005; Soni, Kohli et al. 2007). Brain delivery of non-transportable peptides and small 

molecules by vector mediated approach has been extensively explored by Pardridge et al. 

According to Pardridge et. al., receptor-mediated transport of ligand mediated 

immunoliposomes at the BBB involved binding of the receptor and peptide at one side of 

the BBB (i.e. the luminal membrane), translocation of the receptor–peptide complex 
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through the cytoplasm, and dissociation of the peptide from receptor on the external 

surface of abluminal membrane. One of the most extensively explored vectors for 

receptor mediated transcytosis has been the anti-rat transferrin-receptor antibody OX26, 

which recognizes an external epitope of the transferrin receptor (Pardridge 1999; 

Pardridge 1999).  

In a recent study, OX26 immunoliposomes directed against the rat transferrin 

receptor revealed brain accumulation of daunomycin in OX26-immunoliposomes to 

higher levels as compared to brain uptake of free daunomycin, or daunomycin 

incorporated within pegylated liposomes or within unspecific IgG2a isotype control 

immunoliposomes (Schnyder, Krahenbuhl et al. 2005). In another study, daunomycin 

encapsulated, 80 nm long circulating targeted liposomes with 30 OX26 antibodies per 

liposome resulted in optimal brain delivery (Huwyler, Wu et al. 1996). Targeted 

liposome delivery system has the ability to enhance the brain drug delivery as a single 

liposome may carry up to 10,000 drug molecules. The OX26 monoclonal antibody has 

been successfully used as a vector in delivery of small and large molecules to the brain 

(Huwyler, Wu et al. 1996; Huwyler, Yang et al. 1997; Pardridge 1998; Pardridge 1999; 

Pardridge 2002; Pardridge 2003; Soni, Jain et al. 2005). These reports on novel vector 

based liposomes revealed a potential for both brain drug delivery and brain gene delivery.  

Transferrin as a brain drug delivery vector was evaluated and was found to be as 

effective in transporting biotinylated therapeutics as OX26, without antigenicity (Liao, Li 

et al. 2001). In another study transferrin coupled liposomes showed 10 fold higher brain 

uptake of doxorubicin when compared a solution formulation (Soni, Kohli et al. 2007).  

Transferrin receptor mediated drug targeting is found to be a promising tool for 
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enhancing the brain delivery of the drugs to treat brain tumors (Li and Qian 2002; Soni, 

Jain et al. 2005). 

 

 

1.7 Avidin Biotin Conjugation Method for Attaching Transferrin on Liposomes 

The major drawback of covalent chemical coupling strategies is the difficulty in 

obtaining reproducible and high coupling efficiencies (Schnyder, Krahenbuhl et al. 

2004). In contrast to chemical conjugation methods, avidin/biotin conjugation method is 

a non covalent coupling method. But the avidin-biotin conjugation is extremely strong 

with a dissociation constant (Kd) in the order of 10-15 M and dissociation half-life of 

about 89 days (Sakahara and Saga 1999). Stability of the avidin/ biotin bond is very high 

in blood circulation; however it is labile in tissues (Pardridge 1999). Avidin, an egg white 

protein, is a 64-kDa homotetramer`that has four biotin binding sites per molecule(Green 

1964; Green and Joynson 1970; Green 1990). The use of avidin/biotin technology applied 

to brain drug delivery involves the incorporation of biotinylated lipids in the liposome, 

and the construction of a conjugate of the OX26 and an avidin, streptavidin (SA) or 

neutral light avidin (Kang and Pardridge 1994). Owing to its cationic nature, avidin is 

rapidly removed from the plasma compartment following administration in vivo (Green 

1990; Qian 2002). This rapid plasma clearance results in a reduced plasma area under the 

concentration curve (AUC) and sub-optimal bioavailability and pharmacokinetics of the 

drug–vector complex. However, neutral forms of avidin such as streptavidin or neutral 

light avidin are not rapidly removed in vivo (Qian 2002), and do not degrade the 

pharmacokinetic properties of the conjugate.  
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A relatively new coupling procedure for the preparation of pegylated 

immunoliposomes was reported by Snyder et. al., (Schnyder, Krahenbuhl et al. 2004). In 

this new technique, OX26 mAb was attached to sterically stabilized liposomes using a 

non-covalent biotin–streptavidin method.  Streptavidin-conjugated OX26 mAb was used, 

since streptavidin has a much lower isoelectric point (pI 5–6) as compared with the 

highly basic pI of 10 for avidin. In addition, streptavidin is not a glycoprotein, which 

reduces its potential for binding to carbohydrate receptors (Schnyder, Krahenbuhl et al. 

2004). Both factors reduced the amount of non-specific binding, and thereby the systemic 

clearance in vivo (Green 1990). The biotin at the end of the PEG terminus allows optimal 

target recognition of the bound mAb. Coupling of a streptavidin-conjugated antibody was 

reported to be simple, rapid and highly reproducible (Schnyder, Krahenbuhl et al. 2004). 

The multivalency of avidin binding of biotin causes the formation of high-molecular-

mass aggregates when the drug or liposome is multibiotinylated and these high-molecular 

mass aggregates are rapidly cleared by the reticulo-endothelial system in vivo (Loughrey, 

Bally et al. 1987; Qian 2002). This conjugation method has been used in the conjugation 

of OX26 with the brain-derived neurotrophic factor (BDNF) and a neuropeptide, vocative 

intestinal peptide analog (VIPa) (Pardridge 1999).  

 

 

1.8 Problems Associated with Targeted Liposome Delivery Systems 

Delivery of drugs to brain tumors using targeted liposomes involves numerous 

complications. Major problems associated with targeted delivery systems are rapid 

clearance from the circulation and minimal interaction of targeted delivery system with 
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target cells after reaching the target site (Allen 2002; Allen 2004). Tumor targeted 

liposomes must at the very least exhibit accumulation properties comparable to 

nontargeted liposomes. Several physical factors play key roles in inhibiting liposome 

targeting following extravasation. Factors such liposome composition, size, charge and 

nature of the vascular barrier, tumor structure and binding site can affect the efficacy of 

targeted liposome (Harding, Engbers et al. 1997; Barenholz 2001).  

Beyond the targeting strategy, several formulation issues need to be addressed for 

development of stable targeted liposomal delivery systems. The production of liposomes, 

with attached targeting ligands, requires an extensive number of modification steps. The 

feasibility of manufacturing a one-step antibody-targeted liposome formulation under 

Good-Manufacturing-Practices (GMP) regulations of sterility and quality control is, 

difficult. Manufacturing and quality factors like batch-to-batch reproducibility, 

entrapment efficiency, particle size control and scale up are the major problems limiting 

the manufacturing and development of commercially viable targeted liposomal dosage 

forms (Sharma and Sharma 1997).  

 

 

1.9 Lyophilization of Targeted Liposomes 

The therapeutic applications of targeted liposomes are dependent on the physical 

integrity and stability of the lipid bilayer structure. In the liquid state, liposome 

formulations are subject to both physical and chemical instability (Sharma and Sharma 

1997). These stability parameters are critical to the in vivo behavior of liposomal drug 

delivery systems. Liposomal size distribution is a critical parameter with respect to the 
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pharmacokinetic and pharmacodynamic behavior of drugs that are site-specifically 

targeted in vivo (Van Bommel and Crommelin 1984; Van Winden, Zhang et al. 1997). 

One of the practical difficulties with liposomes for delivery of drugs to target cells is that 

liposomes are relatively unstable during storage. 

Lyophilization is the method of choice for enhancement of long-term stability of  

liposomes (Ausborn and Nuhn 1990; Ausborn, Nuhn et al. 1992). In the process, most of 

the water molecules are excluded from the specimen and the aqueous suspension 

becomes a powder that can be stored at selected, even at ambient, temperatures. Prior to 

use, reconstitution of the particulate system is achieved by rehydration of the dry powder 

(Liu 2006). Additionally, removal of water by lyophilization prevents hydrolysis of 

phospholipids. Other chemical and physical degradation processes are also retarded by 

low molecular mobility in the solid phase. Further, freeze-drying of liposome 

formulations, if performed successfully, results in a pharmaceutically elegant dry cake 

which can be reconstituted within seconds to obtain the original dispersion (Jonkman-de 

Vries, Talsma et al. 1994; Wang 2000; Tang and Pikal 2004).  

Lyophilization of targeted liposomes is more complex when compared to large 

multilamellar conventional liposomes (Van Winden, Zhang et al. 1997; Zhang, Van 

Winden et al. 1997). Liposome bilayer membranes may be damaged during the 

lyophilization cycle mainly by mechanical stress caused by high pressures vesicle 

membranes are exposed to during ice crystal formation and chemically from increased 

concentrations of solute during freezing and dehydration. This can lead to massive 

aggregation and fusion of the vesicles as well as leakage of the entrapped compounds 

upon reconstitution of the lyophilized cake. In the absence of cryoprotectants, small 
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targeted liposomes will be converted in to large multilamellar liposomes, upon 

lyophilization and reconstitution (Peer, Florentin et al. 2003).  This change in size of the 

liposomes is detrimental for targeted drug delivery. Cryoprotectants have been shown to 

decrease vesicle fusion and leakage caused by both freeze-thaw and the freeze-drying 

process (Sun, Leopold et al. 1996; Crowe, Oliver et al. 1997; Crowe, Carpenter et al. 

1998; Van Winden and Crommelin 1999). Sugars like trehalose, sucrose, mannose or 

glucose were used as cryoprotectants at high concentrations (~ 30%) in the original 

liposome preparations. Among these sugars, trehalose is particularly effective in 

preserving the liposomes. Crowe et al. have carried out extensive investigations on 

possible mechanisms by which sugars protect biological membranes during freeze-drying 

(Crowe, Oliver et al. 1997; Crowe, Carpenter et al. 1998). Cryoprotectants are 

noneutectic in nature forming an amorphous frozen matrix upon cooling. The freeze 

process generally occurs very quickly in the presence of cryoprotectants upon cooling to 

the freezing point depression. The role attributed to these cryoprotectants is replacement 

of structure- stabilizing water-based hydrogen bonds at the liposomal surface, which are 

lost in the process of drying (Van Winden and Crommelin 1999).  

Several factors can affect the stability of the liposomes in the dry state (Crowe 

and Crowe 1988). These factors include size and charge of liposomes, type and 

concentration of stabilizing sugar, and the dry mass ratio between the stabilizing sugar 

and lipid. Small (< 60 nm) and large (> 1000 nm) lyophilized liposomes are found to be 

unstable even in extremely high concentrations of sugars (Crowe and Crowe 1988). The 

stability of lyophilized liposomes can be significantly increased by the addition of small 

amount of negatively charged lipid in the bilayer.  The efficacy of sugar depends on the 



 29

size of liposomes and dry mass ratio between the stabilizing sugar and lipid (Crowe and 

Crowe 1988). Cryoprotection of liposomes is greatest when formulating with these sugars 

at high concentrations (5% to 20%)(Jovanovic, Bouchard et al. 2006).  Vesicle fusion can 

be decreased at lower concentrations than are needed to minimize leakage. Prevention of 

leakage requires the sugar be present both inside and outside the liposome (Crowe and 

Crowe 1988). Advantages of formulating liposomes with trehalose include being less 

reactive than reducing sugars, higher Tg’ than sucrose, a high melting temperature 

(100°C at 2% moisture), low hygroscopicity, and FDA approval as an injectable 

ingredient (Crowe, Crowe et al. 1987; Crowe 2007). 

Peer et al. have reported lyophilization of targeted unilamellar liposomes without 

added sugars. Hyaluronan, the surface bound ligand in the targeted bioadhesive 

liposomes also protected liposomes during freeze-drying process. They proposed that 

hyaluronan, like sugars, protects liposomes by providing substitute structure-stabilizing 

hydrogen bonds (Peer, Florentin et al. 2003). Ugwu et al. have reported lyophilization of 

liposome formulations of mitoxantrone using sucrose as a cryoprotectant (Ugwu, Zhang 

et al. 2005). Sucrose was found to be more effective in minimizing drug leakage from the 

lyophilized liposomes. Long-term stability studies showed that lyophilized formulation 

was stable for up to 13 months when stored at refrigerated condition. 5-fluorouracil 

lyophilized liposomes with saccharose as a cryoprotectant were reported by Glavas 

Dodov et. al. Saccharose cryoprotection yielded a stable and less permeable 5-

fluorouracil lyophilized liposome formulation (Glavas-Dodov, Fredro-Kumbaradzi et al. 

2005). 
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Cui et al., have reported a novel lyophilized liposome system with tertiary butyl 

alcohol /water co-solvent system. This process gave a stable free flowing lyophilized 

powder with sucrose as a cryoprotectant (Cui, Li et al. 2006).  

 

 

1.10 Non Invasive Optical Fluorescence Imaging in Drug Development 

Non invasive imaging techniques are particularly attractive for early proof of 

principle trials in animals and humans. These non-invasive imaging techniques makes 

possible the tracking of biological activity non-invasively in real-time, at the molecular 

level. These methods can be used to assess anti-cancer therapies over the course of 

treatment in vivo. Current animal models of human disease require a large number of 

target cells, and these models use the therapeutic endpoints of gross tumor growth or 

death of the animal.  Non-invasive, imaging of tumor growth and metastasis allows 

longitudinal evaluation of tumor development before, during and after treatment, offers 

an excellent preclinical strategy to assess tumor response and recurrence. These methods 

are rapid, easy to perform and amenable to high throughput (Abbott, Chugani et al. 1999; 

Edinger, Sweeney et al. 1999). Non invasive imaging methods can reduce the statistical 

variability, as the same animal is imaged at multiple time points. Each experimental 

animal will acts as its own statistical control which can further improve the statistical 

quality of the data (Jacobs, Dittmar et al. 2002; Shah and Weissleder 2005).  

Several non-invasive imaging technologies have been explored to monitor the therapy 

using PET, SPECT, MRI, and optical imaging (Contag 2002).  Reporter genes with 

optical signatures (eg, fluorescence and bioluminescence) are low-cost alternatives for 
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real-time analysis of gene expression in small animal models. Optical imaging is a safe 

and reliable imaging method as visible light has no safety issues for using in biological 

systems also visible light can penetrate relatively deeply into certain tissues.  

Optical imaging can be divided into two forms: those modalities in which external 

light is required, and bioluminescent imaging in which internal light from luciferase 

enzymes is used for functional measurements. The useful wavelengths of optical imaging 

technologies range from 580 nm 800 nm. Blue-green light (400–590 nm) is strongly 

attenuated by tissue, whereas red to near infrared (NIR) light (590–800 nm) is less 

affected (Contag 2002).  

Non invasive monitoring of tumor growth and response to therapeutic 

interventions at early stages of tumor growth in animal models is critical for the 

development of effective strategies for the tumor therapy (Edinger, Sweeney et al. 1999). 

Fluorescence imaging is the most sensitive approach, and it has gained great interest with 

the development of genetically encoded highly efficient fluorescent probes based on 

green fluorescence protein (GFP).  

Conventional methods for measuring tumors in mice rely on physical caliper 

measurements that are not externally detectable early in the time course of the tumor 

progression. By contrast, optical fluorescence imaging offers quantitative data from time 

zero in the disease course. Mice with immunodeficiency like severe combined 

immunodeficient mice (SCID) or nude mice have been useful for studying tumor 

xenografts (Edinger, Sweeney et al. 1999; Sweeney, Mailander et al. 1999; Contag 2002). 

Recently, Sweeney et. al., reported a novel noninvasive, direct, and sensitive 

quantification method of tumor burden in vivo. This method is based on bioluminescence 
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imaging. Several groups reported the method of non invasive imaging of tumor growth 

and effect of therapy on tumor regression using bioluminescence (Sweeney, Mailander et 

al. 1999). Bioluminescence imaging of tumor growth can be accomplished by introducing 

a constitutively expressed bioluminescent reporter gene encoding the photoprotein firefly 

luciferase into the chromosomes of a tumor-cell line. Implantation of these genetically 

modified tumor cells in to immunodeficient mice results bioluminescent tumors. 

Distribution and growth of these cells can be monitored real time by using the light 

produced by the transformed cells and transmitted through the anesthetized animal 

tissues. The use bioluminescence imaging for the study of infection and gene expression 

in living animals has been demonstrated effectively in several studies (Schmidt-Wolf, 

Negrin et al. 1991; Contag, Contag et al. 1995; Contag, Spilman et al. 1997). Bouvet et. 

al, reported a whole-body optical imaging method of genetically fluorescent pancreatic 

tumors growing and metastasizing to multiple sites in live mice The GFP-expressing 

pancreatic tumor cell lines were used in this study for generating pancreatic tumors. 

Whole-body imaging was carried out with a fluorescence light box, with a 

thermoelectrically cooled color CCD camera. In this study, strong GFP fluorescence 

allowed detailed simultaneous quantitative imaging of tumor growth and multiple 

metastasis formation of pancreatic cancer (Bouvet, Wang et al. 2002).  

Whenever tissue absorbs light, there is a chance that fluorescent light will be 

emitted. In addition to absorption, tissue ‘autofluorescence’ can severely limit signal to 

background ration (SBR). Use of a NIR filter set essentially eliminates autofluorescence. 

There are several dyes that are fluorescent in the NIR range that can be conjugated to 

biomolecules and developed as imaging reagents (Frangioni 2003; Ballou, Ernst et al. 
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2005; El-Deiry, Sigman et al. 2006). Because there is little NIR fluorescence contrast 

generated by most tissues, most in vivo studies administer exogenous contrast agents. 

Heptamethine cyanines are fluorophores commonly used as contrast agents in 

fluorescence imaging. Among these the indocyanines are the most widely used as they do 

not have the aggregation problems associated with the other subclasses. Peak excitation 

of this class is at 760–800 nm, and peak emission at 790–830 nm (Bremer, Ntziachristos 

et al. 2001; Frangioni 2003; Rao, Dragulescu-Andrasi et al. 2007). Indocyanine green 

(ICG) is the first FDA approved and least toxic contrast agent which can be used in 

humans (Desmettre, Devoisselle et al. 2000).  Recently, a noninvasive imaging of 

integrin expression in brain tumor xenografts was reported by Chen et. al. Arginine-

glycine-aspartic acid (RGD)-Cy5.5 conjugate was used for NIR imaging in subcutaneous 

U87MG glioblastoma xenografts. The RGD-Cy5.5 conjugate elevated cell-associated 

fluorescence on integrin-expressing tumors (Chen, Conti et al. 2004).  

A new NIR dye, 1, 1’-dioctadecyl- 3, 3, 3’, 3’-tetramethylindotricarbocyanine 

iodide (DIR) was recently reported by Kalchenko et. al. DiR has absorption and 

fluorescence maxima at 750 and 782 nm, respectively. This lipophilic dye was used to 

directly label the membranes of human leukemic cell lines, primary murine lymphocytes 

and erythrocytes. Noninvasive whole-body imaging of DiR-labeled cell homing in intact 

animals was reported using a CCD camera (Kalchenko, Shivtiel et al. 2006).  
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1.11 Paclitaxel 

Paclitaxel is a diterpenoid pseudoalkaloid isolated from Taxus brevifolia, 

discovered at Research Triangle Institute (RTI) in 1967. Paclitaxel is approved by the 

FDA for the treatment of ovarian and breast cancers. Paclitaxel was the first of a new 

class of microtubule stabilizing agents and is considered as one of the most significant 

advances in chemotherapy of the past 15–20 years.  Paclitaxel promotes the 

polymerization of tubulin. Specifically, paclitaxel binds to the β subunit of tubulin. 

Tubulin is the "building block" of microtubules, and the binding of paclitaxel locks these 

building blocks in place.The tubulin/paclitaxel complex is extraordinarily stable and does 

not disassemble. This causes the cell death by disrupting the normal tubule dynamics 

required for cell division (Sharma and Straubinger 1994; Hennenfent and Govindan 

2006; Slavin, Chhabra et al. 2007). Paclitaxel is also known to induce programmed cell 

death (apoptosis) in cancer cells by binding to an apoptosis stopping protein called Bcl-2 

(B-cell leukemia 2) and thus arresting its function (Henley, Isbill et al. 2007). Normal 

cells are also affected adversely, but cancer cells are far more susceptible to paclitaxel 

treatment. 

Paclitaxel has anti-neoplastic activity particularly against primary epithelial 

ovarian carcinoma, breast cancer, colon, head, non-small cell lung cancer, and AIDS 

related Kaposi’s sarcoma (Rowinsky and Donehower 1993; Rowinsky, Wright et al. 

1993; Markman, Francis et al. 1994; Rowinsky, Wright et al. 1994). Paclitaxel is also 

used for the prevention of restenosis of coronary stents (Sun and Eikelboom 2007). Tseg 

et. al., reported the potential use of paclitaxel efficacy against malignant brain tumors 

(Tseng, Bobola et al. 1999).  
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The paclitaxel molecular weight is 853 Da. Paclitaxel is white to off-white 

crystalline powder. It is highly lipophilic, insoluble in water with a melting point of 216–

217 °C. Paclitaxel has a biphasic plasma clearance. The generally accepted dose is 200–

250 mg m−2 and is given as 3 and 24 Tf-LCL infusion. Terminal half-life was found to be 

in the range of 1.3–8.6 Tf-LCL (mean 5 Tf-LCL) (Rowinsky and Donehower 1993; 

Rowinsky, Wright et al. 1994). The drug undergoes an extensive P-450 mediated hepatic 

metabolism and less than 10% drug in the unchanged form is excreted in the urine. Most 

of the drug is eliminated in feces. More than 90% of the drug binds rapidly and 

extensively to plasma proteins (Rowinsky, Wright et al. 1993). 

Paclitaxel is poorly soluble in an aqueous medium, but can be dissolved in 

organic solvents. Numbers of reports have been published on the solubility of paclitaxel 

and acceptable value of aqueous solubility is 0.6 mM (Tarr and Yalkowsky, 1987; 

Swindell and Krauss, 1991). Solubility of paclitaxel can’t be affected by change in pH 

due to lack of functional groups that are ionisable in a pharmaceutically acceptable pH 

range (Tarr and Yalkowsky 1987). 

 Paclitaxel is currently formulated in a vehicle composed of 1:1 blend of 

cremophor EL  and ethanol which is  diluted with 5–20-fold in normal saline or dextrose 

solution (5%) for administration. This formulation is stable in unopened vials for 5 years 

at 4 °C. However, several hypersensitivity reactions were reported with cremophor 

formulation (Sparreboom, van Zuylen et al. 1999). Several approaches have been 

explored towards the development of aqueous based formulations for paclitaxel, 

including co-solvency, micellar solubilization, emulsification, cyclodextrins, nanoparticle 

and liposome formations, that do not require solubilisation by Cremophor. Among all 
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these drug carrier systems, liposomes represent a mature technology with a considerable 

potential for encapsulation of lipophilic molecules like paclitaxel and have been used to 

formulate a variety of hydrophobic, poorly soluble drugs (Straubinger, Sharma et al. 

1993; Sharma and Straubinger 1994; Torchilin 2005). Sharma et. al., developed a 

liposome-based formulation composed of phosphatidylcholine and phosphatidylglycerol 

for paclitaxel. The in vitro growth-inhibitory activity of liposomal paclitaxel against a 

variety of tumor cell lines was found to be similar to that of the free drug (Sharma and 

Straubinger 1994). 

Polilactofate microsphere (Paclimer) formulation of paclitaxel was evaluated for 

release of drug in vivo for malignant brain tumors therapy (Dang, Dordunoo et al. 1999; 

Pradilla, Wang et al. 2006).  Koziara et al., reported paclitaxel nanoparticles for potential 

treatment of brain tumors. Paclitaxel nanoparticles showed a significant increase in the 

drug brain uptake and its toxicity toward p-glycoprotein expressing tumor cells (Koziara, 

Lockman et al. 2004). 

Paclitaxel encapsulated in cationic liposomes (LipPac) was evaluated for vascular 

targeting. Remarkable retardation of tumor growth was observed with paclitaxel 

encapsulated cationic liposomes when compared to control formulations, in a 

subcutaneous tumor model (Schmitt-Sody, Strieth et al. 2003). A novel lyophilized 

liposome-based paclitaxel (LEP-ETU) formulation was reported by Zhang et. al. This 

formulation is reported to be physically and chemically stable for at least 12 months at 2–

8 and 25 8 ºC (Zhang, Anyarambhatla et al. 2005). Paclitaxel loaded tumor-specific 2C5 

immunomicelles were evaluated by Torchillin et al. These targeted immunomicelles 

resulted in an increased accumulation of paclitaxel in the Lewis lung carcinoma tumor 
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compared with free paclitaxel or paclitaxel in nontargeted micelles and showed enhanced 

tumor growth inhibition (Torchilin, Lukyanov et al. 2003; Torchilin 2004). A folate 

receptor targeted liposomal formulation of paclitaxel was reported by Wu et. al. The 

folate targeted liposomes were made to selective targeting of the folate receptors, which 

are frequently over expressed on epithelial cancer cells. A 3.8-fold greater cytotoxicity 

was observed with folate receptor targeted liposomes containing paclitaxel, compared to 

non-targeted control liposomes in KB cells (Wu, Liu et al. 2006).  
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Chapter 2: Statement of Problem 

 

 

2.1 Limitations of Conventional Brain Tumor Chemotherapy 

Each year more than 200,000 people in the United States are diagnosed with 

primary or metastatic brain tumors. Brain tumors are the leading cause of solid tumor 

cancer death in children under the age of 20. Adults with newly diagnosed brain tumors 

like astrocytomas have a median survival of less than one year (Curran Jr., Scott et al. 

1993). Despite dramatic improvements in neuroimaging and neurological techniques, the 

prognosis in patients with brain tumors has not improved significantly during the past 40 

years (Grossman, Fisher et al. 1998; Jemal, Thomas et al. 2002; Ewend, Elbabaa et al. 

2005; Newton 2006). The main stay of treatment in patients with high grade brain tumors 

is resection followed by radiation. Chemotherapy has been used occasionally, but has 

proven to be of limited impact on the survival of these patients (Richards, Khuntia et al. 

2007).  

Almost all malignant gliomas are incurable with the present standards of 

healthcare. Currently accepted therapeutic adjuvants to surgery, such as radiotherapy and 

chemotherapy, provide only a minor improvement in the disease course and life 

expectancy for patients diagnosed with malignant gliomas. Often, chemotherapy has 

failed to make any significant impact on the prognosis of disease because of significant 

local and systemic toxicity, problems with transport of the drug across the blood brain 

barrier (BBB), and a high degree of chemoresistance demonstrated by tumor cells (Green, 

Byar et al. 1983; Grant, Liang et al. 1995; DeAngelis, Burger et al. 1998; Surawicz, 
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Davis et al. 1998; Fine, Wen et al. 2003). Effectiveness of chemotherapy in brain tumors 

depends on adequate delivery of the drugs to cancer cells. Now a variety of very potent 

anticancer drugs are available. However, there are many issues in delivering them 

effectively to kill these tumors. Before a blood borne chemotherapeutic agent can begin 

to attack malignant cells of a brain tumor, it must accomplish three critical tasks. First, it 

must stay in the systemic circulation, find and reach the target tumor site. Then, it must 

extravasate into the tumor interstitium. And finally, it should migrate through the tumor 

matrix to distribute throughout the tumor and kill all of the malignant cells. 

Unfortunately, brain tumors develop in such a way to hinder most of these steps 

(Jain 1990; Jain 1994; Jain 1998). As a result, brain tumors remain incurable despite the 

development of several potent anticancer drugs. This is mainly due to inaccessibility of 

brain tumor cells and to the poor penetration of drugs through blood brain barrier. An 

elevated interstitial pressure further limits drug diffusion into tumor cells. These barriers 

virtually restrict our ability to kill the brain tumor cells per se with the available 

anticancer drugs and with conventional delivery methods; therefore, there is a desperate 

need for targeted delivery systems.  

 

 

2.2 Basis for the Transferrin Receptor Mediated Tumor Targeting 

Transferrin receptor (TfR) currently shows promise as a site for receptor-mediated 

targeting of glioma. The density of TfR is correlated with the extent of cell growth and 

division. Neoplastic cells ordinarily divide faster than normal cells and consequently 

express more TfR than their surroundings. This discrepancy is even more appreciable in 
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the stable environment of the brain. The extent and diffuseness of TfR expression in 

glioma has been shown to be significantly greater than in normal brain tissue, with 

expression linked to the severity of tumor. The relative over expression of these 

transferrin receptors offers the potential for favorable targeting of brain tumors over its 

surrounding normal tissue. Transferrin has also be widely applied as a targeting ligand in 

the active targeting of anticancer agents, proteins, and genes to primary proliferating 

malignant cells that overexpress transferrin receptors. 

 

 

2.3 Primary Objective 

The primary objective of the study was to develop and evaluate liposomal 

targeted delivery systems of conventional or novel anti-cancer agents for malignant 

glioma therapy.  

In this project, a liposomal targeted delivery system for the paclitaxel was 

developed to selectively transport this drug to the brain tumor vasculature for malignant 

glioma therapy.  

The overall hypothesis of this project was that by attaching brain targeting and/or 

tumor specific ligands on the surface of liposomes, therapeutic concentrations of anti-

cancer agents can be delivered to gliomas with minimal peripheral side effects via over 

expressed receptors.  
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2.4 Specific Aims  

The specific aims of this study were to:  

1. Design a brain tumor targeted liposomal delivery system for paclitaxel.  

2. Develop a process for the preparation of the targeted liposomal delivery system.  

3. Characterize the prepared delivery system. 

4. Evaluate functional properties of the targeted delivery system in vivo.  

5. Use whole body optical imaging for characterization of tumor growth and 

liposomal tumor localization.  

6. Evaluate antitumor efficacy of paclitaxel liposomal delivery systems in flank and 

intracranial glioma tumors.  

7. Develop a lyophilized formulation for the targeted liposome delivery system to 

enhance its storage stability.  
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Chapter 3: Preparation and In Vivo Evaluation of Fluorescent Labeled Targeted 

Liposome Delivery Systems 

 

 

3.1 Introduction 

Liposomes are versatile carriers for targeted drug delivery by the intravenous 

route. Various types of liposomal formulations have been extensively used as carriers for 

increasing the therapeutic index of cytotoxic drugs (Lasic, Martin et al. 1991; Lasic 1994; 

Allen 1997; Lasic 1997; Torchilin 2004; Torchilin 2005; Torchilin 2005). The major 

concern associated with the use of liposomes for targeting tumor cells in extravascular 

sites is the rapid clearance from the systemic circulation. These liposomal carriers are 

subjected to rapid clearance by circulating phagocytes and by macrophages of liver and 

spleen (Harasym, Bally et al. 1998; Torchilin 2005). Short circulation life time decreases 

passive accumulation of targeted liposomes in the tumor tissue. Long circulation lifetimes 

are required in order to maintain target site accumulation of liposomal drugs, an essential 

requirement for target cell access and increased circulation half-life can result in 

increased accumulation within a target site. 

One of the strategies to circumvent this problem is to design long circulating 

liposomes with steric stabilization (Lasic 1994; Lasic 1997). Surface modification of 

liposomes with hydrophilic polymers such as polyethylene glycol (PEG) resulted in 

decreased recognition and subsequent phagocytosis by cells of the mononuclear 

phagocytic system (MPS). The concentration of PEG lipid in the liposomes and size of 

liposomes are two critical parameters which can be optimized for increasing the 
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circulation times of liposomes for achieving anticipated increase in localization within 

the target tumor site (Lasic, Martin et al. 1991; Papahadjopoulos, Allen et al. 1991; Lasic 

1994; Lasic 1997; Moghimi and Szebeni 2003; Torchilin 2005). An understanding of the 

liposome targeting to tumor, its blood circulation, and distribution to various organs can 

be achieved by labeling with fluorescent dyes (Torchilin 2005; Kalchenko, Shivtiel et al. 

2006).  

In this study, we report the preparation and characterization of fluorescent labeled 

conventional, sterically stabilized and targeted liposomes. The blood circulation half-life 

in rats for fluorescent labeled formulations was determined. The sterically stabilized 

liposomes prepared using 5% PEG and about 100 nm in size showed a pronounced 

increase in the blood residence time (17 Tf-LCL) with a significant decrease in uptake by 

RES when compared with conventional liposomes. We also report the localization of the 

fluorescent liposomes in a flank C6 glioma xenograft bearing nude mice using non- 

invasive near infrared fluorescence imaging. We also provide evidence of selective tumor 

localization of targeted liposomal formulations in comparison to non targeted liposomes 

and solution formulation as controls. 

 

 

3.2 Materials and Methods 

 

3.2.1 Materials 

Hydrogenated soybean phosphatidylcholine (HSPC), 1,2-distearoyl -glycero-3-

phosphoethanolamine-N-[PEG(2000)] conjugate (DSPE-PEG), and DSPE-PEG-
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maleimide were from Northern Lipids Inc., Vancouver, Canada. Cholesterol, and 

biotinylated Transferrin were obtained from Sigma, St. Louis, MO. DIR and DII were 

purchased from Invitrogen, Carlsbad, CA. These chemicals were used as received. All 

other chemicals and solvents were of analytical grade.  

 

3.2.2 Liposome preparation 

Liposomes were produced by lipid hydration method followed by extrusion 

method using hydrogenated soy phosphatidylcholine (HSPC), cholesterol (95: 5 molar 

ratios). The DII or DIR dyes were encapsulated in the lipid bilayers due to its lipophilic 

nature. For preparation of long circulating liposomes (LCL), poly ethylene glycol-2000 

grafted distearoyl phosphatidyl ethanolamine (DSPE–PEG2000) was incorporated. For 

preparation of transferrin conjugated liposomes (Tf-LCL), a portion of DSPE-PEG2000 

(0.01 mol%) was replaced with DSPE-PEG2000-biotin. Transferrin (Tf) was non-

covalently conjugated at the distal end of DSPE-PEG2000-biotin via a streptavidin-biotin 

bond. The dye loading was quantified via spectrofluorometry. A centrifugal ultrafiltration 

device (Centricon 100, MWCO 100 KD, Millipore, Bedford, MA) was used to separate 

the free dye from the dye encapsulated in the liposomes. Free and total dye concentration 

in the liposomes was determined using a FLx800 fluorometric plate reader (BioTek 

Instruments, Inc, Winooski, VT) after 70% isopropanol extraction. The percent dye 

encapsulated in the liposomes was calculated from the free and total dye in the 

liposomes.  
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3.2.3 Liposome size, morphology and zeta potential 

The size analysis of liposomes was performed by the dynamic light scattering 

technique using a Malvern zeta-sizer nano particle size analyzer (Malvern Instruments, 

Malvern, UK). A 25 µL of this sample was diluted to 1 mL with water for injection for 

particle size determination. The diluted aqueous sample (1 mL) was added to a 2 mL 

cuvette and the particle size analysis was performed in triplicate. The average particle 

size was calculated form the results.  The transmission electron microscopic (TEM) 

studies were carried out using 3 mm Forman coated copper grid (400 mesh) at 60 KV 

using negative staining by 2% uranyl acetate at 200,000 X magnifications on a JEOL 

1200EX TEM. 

 

3.2.4 Quantification of transferrin conjugation 

A sensitive gel filtration chromatographic method was developed and validated to 

quantitate transferrin. The gel filtration chromatographic system consisted of a Waters 

600 controller, Waters 717 plus auto sampler and a Waters 2996 photodiode array 

detector. Data were acquired and processed with Waters Millennium 32 software (version 

4.0). Gel filtration chromatographic separation was achieved on a TSK Gel G3000 

SWXL (30 cm X 7.8 mm, 5 micron) column from Tosoh bioscience (South San 

Francisco, CA). The isocratic mobile phase consisting of 0.5 N phosphate buffered saline 

(pH 7.2) was pumped at a flow rate of 0.5 mL/min with an injection volume of 30 µL. 

Transferrin (retention time, 4.8 min) was monitored at 220 nm with a photodiode array 

detector. All analyses were performed in triplicate, and the mean peak area was used to 

determine the concentration of transferrin in the samples. Free Tf was separated from the 
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liposome encapsulated part using a Centricon centrifugal filter device (Centricon 100, 

MWCO 100 KD, Millipore, Bedford, MA). An aliquot of the liposome dispersion (100 

µL) was diluted to 1 mL with hydration buffer (phosphate buffered saline pH 7.2), and 

this sample was transferred to the centrifugal filter device. The sample was centrifuged at 

5000 rpm for 30 minutes in a fixed-angle centrifuge. Free transferrin in the filtrate was 

then determined using high performance gel filtration chromatography (HPGFC). 

Subtraction of free transferrin from the total amount added gave the amount of liposome-

conjugated Tf. Tf estimations were done in triplicate, and the values were reported as 

mean ± SD. 

 

3.2.5 Determination of blood circulation time of formulations 

Fluorescent liposome formulations or fluorochrome in solution formulations were 

administered systemically to Sprague Dawley rats via tail vein. At predetermined time 

points, blood samples were withdrawn. The serum was separated and treated with ice 

cold 70% isopropyl alcohol followed by centrifugation at 12,000 x g for 5 min for 

extraction of dye.  Fluorescence intensity in the clear supernatant was determined using a 

FLX800 fluorometric plate reader (BioTek Instruments, Inc, Winooski, VT) (Excitation 

555 / Emmission: 575 nm).  

 

3.2.6 Cranial window preparation for intravital fluorescence imaging (IVM) of 

blood circulation time of liposomes in rats 

Cranial window preparation was made according to published method (Gaber, 

Yuan et al. 2004). Briefly, a glass cranial window (0.8 × 0.8 mm), extending from the 
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bregma to lambda sutures and centered on the sagittal suture, was placed and fixed over 

the surgically exposed cerebral cortex.  Before surgery, the animals were anesthetized 

with an i.m. injection (1 mL/Kg) of ketamine/xylazine solution (87 mg ketamine/mL + 13 

mg Xylazine/mL).  Animals were placed in a stereotaxic frame (Kopf Instruments, 

Tujunga, CA), and their body temperature was maintained at approximately 37°C using a 

heating pad. One dose of the chloromycetin (50 mg/kg body weight) was given before 

surgery. The scalp and underlying soft tissue over the parietal cortex were removed.  A 

rectangular cranial window was made using a low-speed dental drill (0-8000 rpm, 

Densply Midwest) along with artificial cerebral-spinal fluid irrigation. The dura mater 

was cleared using iris microscissors.  A glass plate was fixed to the bone using 

cyanoacrylate glue. After one week of recovery from the surgery, animals were ready for 

data collection. Fluorescent liposome formulation containing 40 µg of DII was 

administered systemically to rats via tail vein and subjected to fluorescence excitation. 

The emitted light through the cranial window was detected by a CoolSNAP® 

monochrome camera attached to a fluorescence intravital microscope at 0, 1, 4, 24 and 48 

Tf-LCL time points. Images acquired were processed with Metamorph® software 

(version 6.2). The fluorescence produced from the liposomes was observed through this 

glass window using an intravital microscope (model MM-11, Nikon, Melville, NY, USA) 

with a DII filter (Excitation 555 / Emmission: 575 nm).  
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3.2.7 C6 GFP flank glioma tumor model and NIRF imaging of liposomal tumor 

localization  

C6-GFP cells in exponential growth were harvested with 0.25% trypsin with 

EDTA for 5 min at 37°C.  The cells were centrifuged for 5 min at 1,000 RPM.  The 

pellets were resuspended in sterile phosphate buffered saline (PBS), at a concentration of 

100,000,000/mL and placed on ice.  Adult female CD1 nu/nu mice (25-30g) were used 

for all studies and handled in accordance with protocols approved by the Animal Care 

and Use Committee at the University of Tennessee Health Science Center.  Mice were 

anesthetized with intraperitoneal injection of ketamine/xylazine at a dosage of 8.7/1.3 

mg/100 g body weight. To create flank glioma tumors, 4,000,000 C6-GFP glioma cells in 

200 µL of phosphate buffered saline were injected subcutaneously into the flank using a 

27 ½ G needle. Tumor growth was measured on every 3rd day with a vernier caliper, and 

tumor volume was measured using the formula W2 X L / 0.52. W refers to width and L is 

the length of the tumor. Near infrared whole body optical images of mice were taken with 

a CCD camera (Princeton Instruments Inc., Trenton, NJ) using GFP filter (excitation: 475 

nm and emission: 510 nm). Acquired images were processed for measuring the pixel 

intensity of the GFP fluorescence from the tumors using the Metamorph® software 

(version 6.2) for determining the C6 GFP tumor area.  

After 18 days of tumor cell inoculation, animals were injected retroorbitally with 

DIR labeled (5 µg of DIR in 50 uL) formulations. (n = 3 per group). The area and pixel 

intensity of the dye in the tumor was compared with the background intensity in the 

surrounding normal tissue using non-invasive optical imaging with a CCD camera 

(Princeton Instruments Inc. Trenton, NJ) with a DIR filter (excitation: 750 nm and 
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emission: 782 nm) (Omega optical, Brattleboro, VT) at 0, 1, 4, 6, 8, 24 and 48 Tf-LCL 

after injection. Acquired images were processed for measuring the pixel intensity of the 

DIR fluorescence from the tumors using the Metamorph® software (version 6.2) for 

determining the C6 GFP tumor area. Tumor to muscle accumulation ratio of DIR dye 

labeled formulations was determined to calculate the tumor targeting index. After 48 Tf-

LCL of injection, animals were anesthetized and subjected to transcardiac perfusion, first 

with 20 ml of normal saline, and then with the same amount of 4% paraformaldehyde to 

fix the tissues. Optical images of isolated organs (tumor, brain, liver, and spleen) were 

taken with a CCD camera using white light, GFP (excitation: 475 nm and emission: 510 

nm) and DIR (excitation: 750 nm and emission: 782 nm) filters for visualization of tumor 

area and DIR dye localization in tissue. Acquired images were then processed for 

measuring the pixel intensity of the GFP and DIR fluorescence from the tumors using the 

Metamorph® software (version 6.2) for determining the C6 GFP tumor area and DIR 

localization respectively.  

 

 

3.3 Results and Discussion 

 

3.3.1 Preparation and characterization of fluorescent labeled liposomes 

Fluorescent labeled liposomal formulations were prepared by Bangham method 

followed by polycarbonate membrane extrusion.  To attach the transferrin ligand to the 

liposomes, the streptavidin-biotin conjugation method was used (Loughrey, Bally et al. 

1987). Dye incorporation efficiency was determined by subtracting the free dye fraction 
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from the total dye and was found to be 95.0 ± 3%. The non conjugated liposome 

formulation showed average vesicle sizes of 81 ± 7 nm with a unimodal distribution. The 

covalent coupling of Tf to the liposome surface led to a slight increase in diameter to 

about 115 ± 11 nm.  This slight increase in size was most probably due to the attachment 

of Tf to the liposome surface, which somewhat increased the hydrodynamic diameter of 

liposomes. The TEM images (Figures 3-1, 3-2) revealed that the long circulating 

liposomes are round and spherical in shape. The zeta potential of Tf conjugated and non 

conjugated long circulating liposomes was -18.0 ± 1.2 mV. The Tf conjugation of LCL 

resulted in slight increase in the zeta potential of liposomes to -25.5 ± 1.5 mV. The 

transferrin conjugation was studied using TEM. The surface of non conjugated liposomes 

was relatively smooth (Figure 3-2). However, the surface of Tf conjugated liposomes was 

more granular (Figure 3-1). The total amount of the liposome attached transferrin in the 

formulations was determined by using the high performance gel filtration 

chromatography (HPGFC). Based on free Tf concentration from a typical formulation, 

about 72% of Tf was coupled to the liposomes. It was found by this method that about 4 

µg of the Tf was bound to 1µM of the total lipid; this corresponds to approximately 5 Tf 

molecules per 100 nm liposome. 

 

3.3.2 Determination of blood circulation time  

The blood circulation time of fluorescent labeled formulations was determined 

using blood sampling method. In this experiment, fluorescent labeled formulations were 

injected into Sprague Dawley rats via tail vein injection. The fluorescence in clear serum  
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Figure 3-1. Transmission electron micrograph of the transferrin conjugated long 
circulating liposomes. (Magnification ×250,000). 
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Figure 3-2. Transmission electron micrograph of the non conjugated long circulating 
liposomes. (Magnification ×250,000).  
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samples were measured with a spectrofluorimetric plate reader. As shown in the Figure 3-

3, blood circulation half life of long circulating liposomes (with 1% DSPE-PEG2000) in 

the brain microvasculature was about 12 Tf-LCL, whereas the DII solution formulation 

(DII in water containg 3% cremophor EL) was cleared within 1 Tf-LCL after 

administration. An increase in DSPE-PEG2000 concentration in the liposomes prolonged 

the in vivo circulation, and maximum in vivo circulation half-life of about 17 Tf-LCL was 

achieved with a formulation containing 5% of DSPE-PEG2000 in total lipids (Figure 3-

4). Liposomes larger than 300 nm showed a significant reduction in blood circulation 

time when compared to 100 nm liposomes (Figure 3-5). The conjugation of Tf on the 

distal end of PEG chains led to a reduction in blood circulation half-life (~ 9 Tf-LCL) as 

compared to LCL (~17 Tf-LCL) (Figure 3-6). Blood circulation time of transferrin 

conjugated liposomes was also determined by real-time monitoring of circulating 

fluorescent labeled liposomes in rat brain pial vessels using intravital microscopy. Blood 

circulation half-life of transferrin conjugated liposomes with novel intravital microscopic 

technique was comparable with blood sampling method. Intravital microscopic imaging 

of transferrin conjugated liposomes also revealed their probable interaction with the brain 

microvasculature after 24 Tf-LCL time point (Figure 3-7). However, these liposomes 

appeared to clear from the vasculature into the surrounding brain tissue by the 48 Tf-LCL 

time point.  

 

3.3.3 NIRF imaging of liposomal tumor localization  

We adopted an optical whole-body imaging technique for monitoring tumor localization 

of liposomes in mice. DIR has absorption and fluorescence maxima at 750 and 
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Figure 3-3. Blood clearance of solution and 1% PEG liposomes. The Sprague Dawley 
rats received fluorescent labeled formulations via intravenous injection and the serum 
fluorescence concentrations were measured at different time intervals. Each value is the 
mean of 3 independent experiments. 
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Figure 3-4. Blood clearance of liposomes made with different concentrations of PEG 
lipid. The Sprague Dawley rats received fluorescent labeled formulations via intravenous 
injection. Serum fluorescence concentrations were measured at different time intervals. 
Each value is the mean of 3 independent experiments.  
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Figure 3-5. Blood clearance of different size liposomes in Sprague Dawley rats. The rats 
were administered intravenously fluorescent labeled formulations and the serum 
fluorescence concentrations were measured at different time intervals. Each value is the 
mean of 3 independent experiments.  
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Figure 3-6. Blood clearance of non targeted and targeted liposomes. The Sprague Dawley 
rats received fluorescent labeled formulations via intravenous injection. Serum 
fluorescence concentrations were measured at different time intervals. Each value is the 
mean of 3 independent experiments.  
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Figure 3-7. Intravital fluorescence images of brain microvasculature. Images represent A. 
background image with white light (1.3 X), B. background image with white light (10X), 
C. background image with DiI filter (555 nm Excitation – 575 nm Emission), D. 0 Tf-
LCL after Tf-LCL injection, E. 1 Tf-LCL after Tf-LCL injection, F. 4 Tf-LCL after Tf-
LCL injection, G. 6 Tf-LCL after Tf-LCL injection, H. 24 Tf-LCL after Tf-LCL 
injection, I. 48 Tf-LCL after Tf-LCL injection.  
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782 nm, respectively, which can prevent issues related to autofluorescence in living  

tissues. This facilitates to get a significant signal with very low background noise level. A 

charge-coupled device (CCD) based camera is used for noninvasive whole-body imaging 

of DIR-labeled liposome localization in live animals with tumors. This technique can 

potentially visualize many types of delivery systems or cells labeled with a near infrared 

(NIR) fluorescent tag. Tumor accumulation and the tumor-to-muscle accumulation ratio 

of liposomal formulation were evaluated using a non-invasive NIRF optical imaging 

method. The data showing that the LCL and Tf-LCL accumulate in C6 glioma flank 

tumors at higher concentrations when compared to solution formulation is presented in 

Figure 3-8. Tf-LCL accumulates in C6 glioma tumors more efficiently when compared to 

muscle tissue (Figure 3-9). The results obtained showed that the long circulating 

liposomal formulations stay in the tumor for a longer time (~ 48 Tf-LCL post injection). 

The tumor targeting index (Figure 3-10) was found to be 10.59 ± 1.08. Effect of liposome 

size on tumor targeting potential was determined in a similar C6 glioma tumor model. 

The results show that about 100 nm liposomes can localize in the tumors with high 

selectivity. On the other hand, liposomes larger than 300 nm showed very limited to no 

localization of liposomes in the tumor as shown in the Figure 3-11. However, higher 

accumulation was observed in the liver and spleen (Figure 3-11). This might be due to 

rapid clearance of larger liposomes by these organs. C6 GFP flank tumor sections from 

the tumor targeting study revealed the presence of DIR fluorescence with 100 nm long  

circulating liposomes and transferrin conjugated long circulating liposomes (Figure 3-

12). The sterically stabilized liposomes prepared using 5% PEG (about 100 nm size) 

showed a pronounced increase in the blood residence time (17 Tf-LCL) 
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Figure 3-8. Whole body near infrared imaging of mice showing tumor localization of 
solution, long circulating liposomes and transferrin receptor targeted liposomes. Column 
1, white light image showing location of tumor, column 2, images with GFP filter 
showing the C6 GFP tumor area, column 3, background images with DIR filter before 
injection, column 4 to 8, images were taken after injection of DIR labeled formulations at 
different time points. 
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Figure 3-9. Localization of DIR labeled formulations in glioma tumors. The pixel 
intensity of DIR fluorescence signal of formulations in glioma tumor tissue was 
quantified. Transferrin conjugated liposomes showed faster and higher targeting ability to 
tumor tissue when compared to long circulating liposomes and solution formulations 
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Figure 3-10. The selective accumulation of Tf-LCL in C6 GFP glioma tumors in mice. 
High fluorescence signals in tumor tissue were observed up to 48 Tf-LCL. The 
fluorescence ration between tumor and normal muscle tissue yielded up to 10 fold 
selectivity for the tumor in comparison with surrounding normal tissue; n = 3; Mean ± 
SD. (Tumor targeting index: 10.59 ± 1.08) 
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Figure 3-11. Whole body near infrared imaging of mice. Tumor localization of different 
size long circulating liposomes was shown. Column 1, white light image showing 
location of tumor, column 2, images with GFP filter showing the C6 GFP tumor area, 
column 3, background images with DIR filter before injection, column 4 to 8, images 
were taken after injection of DIR labeled formulations at different time points.  
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Figure 3-12. C6 GFP flank tumor sections from tumor targeting study. Tumors are 
showing the presence of DIR fluorescence with 100 nm long circulating liposomes and 
transferrin conjugated long circulating liposomes. 
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with a significant decrease in uptake by the RES when compared with conventional 

liposomes. Selective tumor localization of transferrin targeted liposomal formulations 

was also achieved when compared to non targeted liposomes and solution formulation as 

controls. 

 

 

3.4 Conclusion 

These findings indicate that preferential targeting to glioma tumors can be 

achieved with about 100 nm long circulating liposomes with transferrin conjugation. 

Transferrin conjugated liposomal delivery system can be a potential drug carrier for 

glioma tumors targeting. 
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Chapter 4: Efficacy of Paclitaxel Liposomal Targeted Formulations against Glioma 

Tumor Xenografts 

 

 

4.1 Introduction 

Paclitaxel is a diterpenoid pseudoalkaloid isolated from Taxus brevifolia, 

discovered at Research Triangle Institute (RTI) in 1967. Paclitaxel is approved by the 

FDA for the treatment of ovarian and breast cancers. Paclitaxel is the first of a new class 

of microtubule stabilizing agents and is considered as the most significant advance in 

chemotherapy for the past 15–20 years. The drug causes cell death by disrupting the 

normal tubule dynamics required for cell division (Sharma and Straubinger 1994; 

Hennenfent and Govindan 2006; Slavin, Chhabra et al. 2007). Paclitaxel is also known to 

induce programmed cell death (apoptosis) in cancer cells by binding to an apoptosis 

stopping protein called Bcl-2 (B-cell leukemia 2) and arresting its function (Henley, Isbill 

et al. 2007). Normal cells are also affected adversely, but cancer cells are far more 

susceptible to paclitaxel treatment. 

Paclitaxel has anti-neoplastic activity, particularly against primary epithelial 

ovarian carcinoma, breast cancer, colon, head, non-small cell lung cancer, and AIDS 

related Kaposi’s sarcoma (Rowinsky and Donehower 1993; Rowinsky, Wright et al. 

1993; Markman, Francis et al. 1994; Rowinsky, Wright et al. 1994). Paclitaxel is also 

used for the prevention of restenosis of coronary stents (Sun and Eikelboom 2007). Tseg 

et. al., reported the potential use of paclitaxel efficacy against malignant brain tumors 

(Tseng, Bobola et al. 1999).  
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Paclitaxel is poorly soluble in an aqueous medium, but can be dissolved in 

organic solvents. Several approaches have been explored towards the development of 

aqueous based formulations for paclitaxel, including co-solvency, micellar solubilization, 

emulsification, cyclodextrins, nanoparticle and liposome formations, that do not require 

solubilization by Cremophor. Among these drug carrier systems, liposomes represent a 

mature technology with considerable potential for encapsulation of lipophilic molecules 

like paclitaxel. Liposomes have been used to formulate a variety of hydrophobic, poorly 

soluble drugs (Straubinger, Sharma et al. 1993; Sharma and Straubinger 1994; Torchilin 

2005). Paclitaxel delivery to various tumor cells have has been the subject of many 

studies (Ho, Barbarese et al. 1997; Crosasso, Ceruti et al. 2000; Schmitt-Sody, Strieth et 

al. 2003; Torchilin, Lukyanov et al. 2003; Koziara, Lockman et al. 2004; Strieth, 

Eichhorn et al. 2004; Zhang, Anyarambhatla et al. 2005). 

Tumor targeted drug delivery is a promising approach for enhancing the efficacy 

and therapeutic index of anticancer agents (Qian 2002; Pardridge 2003). Transferrin is a 

glycoprotein that transports ferric ions in the body and the Tf receptor is internalized into 

the cells by endocytosis through the binding of Tf. Transferrin receptor (TfR) currently 

shows promise as a site for receptor-mediated targeting of glioma. The density of TfR is 

correlated with the extent of cell growth and division (Prior, Reifenberger et al. 1990; 

Qian 2002; Pardridge 2003). Cancer cells ordinarily divide faster than normal cells and 

consequently show over expression of TfR than their surrounding tissues. The extent of 

TfR expression in gliomas has been shown to be linked to the severity of the tumor. The 

relative over expression of these transferrin receptors offers the potential for favorable 

targeting of glioma brain tumors (Prior, Reifenberger et al. 1990; Kurpad, Zhao et al. 
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1995). Transferrin has also been applied as a targeting ligand in the active targeting of 

anticancer agents, proteins, and genes to primary proliferating malignant cells that 

overexpress transferrin receptors (Pardridge 1998; Pardridge 1999; Pardridge 1999; Liao, 

Li et al. 2001; Li and Qian 2002; Pardridge 2002; Pardridge 2002; Qian 2002; Pardridge 

2003; Soni, Jain et al. 2005; Soni, Kohli et al. 2005; Soni, Kohli et al. 2007). 

Therefore, the aim of this study was to determine the efficacy of transferrin 

receptor targeted paclitaxel liposomal formulation (Tf-LCL) against glioma brain tumor 

xenografts in a flank model. In comparison with Tf-LCL, antitumoral efficacy of 

paclitaxel encapsulated in long circulating liposomes and paclitaxel in cremophor 

solubilized formulation was quantified in vivo. The use of non invasive NIRF imaging for 

visualization and quatification of tumor growth in nude mice was also demonstrated.  

 

 

4.2 Materials and Methods 

 

4.2.1 Materials 

Egg phosphotidylcholine (EPC), Hydrogenated soybean phosphatidylcholine 

(HSPC), 1,2-distearoyl –sn-glycero-3-phosphoethanolamine-N-[PEG(2000)] conjugate 

(DSPE-PEG), and DSPE-PEG-maleimide were from Northern Lipids Inc., Vancouver, 

Canada. Cholesterol, and biotinylated Transferrin were obtained from Sigma, St. Louis, 

MO. These chemicals were used as received. Paclitaxel was purchased from 21CEC 

Pharma, East Sussex, UK. All other chemicals and solvents used were of analytical 

grade.  
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4.2.2 Preparation and characterization of liposomes  

Liposomes were produced by the lipid hydration method followed by extrusion. 

The liposomes contained egg phosphotidylcholine (EPC), hydrogenated soy 

phosphatidylcholine (HSPC), cholesterol (75: 15: 5 molar ratios). Paclitaxel was 

encapsulated into the lipid bilayers due to its lipophilic nature. For preparation of long 

circulating liposomes (LCL), poly ethylene glycol-2000-grafted distearoyl phosphatidyl 

ethanolamine (DSPE–PEG2000) was incorporated. For preparation of Tf-LCL a part of 

DSPE-PEG2000 (0.01 mol%) was replaced with DSPE-PEG2000-biotin and then 

transferrin (Tf) was non-covalently conjugated at the distal end of DSPE-PEG2000-biotin 

via streptavidin-biotin bond.  

 

4.2.3 Quantification of paclitaxel 

A sensitive reverse phase HPLC method was developed and validated to 

quantitate paclitaxel in liposome formulations. Chromatographic system consisted of a 

Waters 600 controller, Waters 717 plus auto sampler and a Waters 2996 photodiode array 

detector. Data were acquired and processed with Waters Millennium 32 software (version 

4.0). Chromatographic separation was achieved on a NovaPak® C18 reverse phase 

column (3.9 X 150 mm) from Waters (Milford, MA).  The isocratic mobile phase 

consisting of acetonitrile and water (55:45, v/v) was pumped at a flow rate of 0.7 mL/min 

with an injection volume of 20 µL. Paclitaxel (retention time, 3.8 min) was monitored at 

230 nm with a photodiode array detector. Prior to HPLC analysis, the formulation 

samples were treated with methanol for paclitaxel extraction.  All analyses were 

performed in triplicate, and the mean peak area was used to determine the concentration 
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of paclitaxel in the samples. Drug loading was quantified with high-performance liquid 

chromatography (HPLC). A centrifugal ultrafiltration device (Centricon 100, MWCO 

100 KD, Millipore, Bedford, MA) was used to separate free paclitaxel from the paclitaxel 

encapsulated in the liposomes in the finished product. Total paclitaxel concentration in 

the liposomes was determined using HPLC after methanol extraction. The percent 

paclitaxel encapsulated in the liposomes was calculated from the free and total paclitaxel 

in the liposomes.  

 

4.2.4 Liposome size, morphology and zeta-potential 

The size analysis of liposomes was performed by the dynamic light scattering 

technique using a Malvern zeta sizer nano particle size analyzer (Malvern Instruments, 

Malvern, UK). A 25 µL of this sample was diluted to 1 mL with water for injection for 

particle size determination. The diluted aqueous sample (1 mL) was added to a 2 mL 

cuvette and the analysis was performed in triplicate and the average particle size was 

calculated from the result. The transmission electron microscopic (TEM) studies were 

carried out using 3 mm Forman coated copper grid (400 mesh) at 60 KV using negative 

staining by 2% uranyl acetate at 200,000 X magnifications on a JEOL 1200EX TEM.  

 

4.2.5 Quantification of transferrin conjugation 

A sensitive gel filtration chromatographic method was developed and validated to 

quantitate transferrin. The gel filtration chromatographic system consisted of a Waters 

600 controller, Waters 717 plus auto sampler and a Waters 2996 photodiode array 

detector. Data were acquired and processed with Waters Millennium 32 software (version 
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4.0). Gel filtration chromatographic separation was achieved on a TSK Gel G3000 

SWXL (30 cm X 7.8 mm, 5 micron) column from Tosoh bioscience (South San 

Francisco, CA).  The isocratic mobile phase consisting of 0.5 N phosphate buffered saline 

(pH 7.2) was pumped at a flow rate of 0.5 mL/min with an injection volume of 30 µL. 

Transferrin (retention time, 4.8 min) was monitored at 220 nm with a photo diode array 

detector. All analyses were performed in triplicate, and the mean peak area was used to 

determine the concentration of transferrin in the samples.  

Free Tf was separated from the liposome encapsulated part using a Centricon 

centrifugal filter device (Centricon 100, MWCO 100 KD, Millipore, Bedford, MA). An 

aliquot of the liposome dispersion (100 µL) was diluted to 1 mL with hydration buffer 

(phosphate buffered saline pH 7.2). This sample was transferred to the centrifugal filter 

device. The sample was centrifuged at 5000 rpm for 30 minutes in a fixed-angle 

centrifuge. Free transferrin in the filtrate was then determined using high performance gel 

filtration chromatography (HPGFC). Subtraction of free Tf from the amount added gave 

the amount of liposome-conjugated Tf. Tf estimations were done in triplicate, and the 

values were reported as mean ± SD. 

 

4.2.6 C6 GFP flank glioma tumor xenograft model and non-invasive imaging of 

tumor growth using NIRF 

C6-GFP glioma cells in their exponential growth phase were harvested with 

EDTA/Trypsin for 5 min at 37°C.  The cells were centrifuged for 5 min at 1,000 RPM.  

The pellets were resuspended in sterile phosphate buffered saline (PBS), at a 

concentration of 100,000,000/mL and placed on ice.  Adult CD1 nu/nu mice (25-30g) 
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were used for all studies and handled in accordance with protocols approved by the 

Animal Care and Use Committee at the University of Tennessee Health Science Center.  

Mice were anesthetized with an intraperitoneal injection of ketamine/xylazine at a dosage 

of 8.7/1.3 mg/100 g body weight. To create the flank glioma tumor model, 4,000,000 C6-

GFP glioma cells in 200 µL of phosphate buffered saline were injected into the flank 

using a 27 ½ G needle. Tumor growth was measured on every 3rd day with a vernier 

caliper, and tumor volume was measured using the formula W2X L / 0.52. W refers to 

width and L is the length of the tumor. Near infrared whole body optical images of mice 

were taken with a CCD camera (Princeton Instruments Inc. Trenton, NJ) using GFP filter 

(excitation: 475 nm and emission: 510 nm). Acquired images were processed for 

measuring the pixel intensity of the GFP fluorescence from the tumors using the 

Metamorph® software (version 6.2) for determining the C6 GFP tumor area.  

 

4.2.7 Antitumor efficacy of paclitaxel in liposomes: NIRF imaging analysis  

Five days after tumor cell inoculation, animals were assigned randomly in to 4 

groups (n = 4 - 5 per group). The groups included no treatment control, paclitaxel in 

transferrin conjugated long circulating liposomes (Tf-LCL), paclitaxel in long circulating 

liposomes (LCL) and paclitaxel in water containing 8.3% of cremophor EL and 8.2% 

ethanol. After 5 days of unrestricted tumor growth, animals were treated with 2 mg/Kg of 

paclitaxel on every third day (about 13 days) till the end of experiment. Injections were 

made using the retro orbital route of administration. For monitoring changes in tumor 

volume, tumor growth was measured every 3rd day with a vernier caliper, and tumor 

volume was measured as described in previous section. Near infrared whole body optical 
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imaging was also explored for monitoring the biodistribution and therapeutic effect. 

Optical images of mice were taken with a CCD camera (Princeton Instruments Inc. 

Trenton, NJ) using GFP filter to visualize the tumors. Acquired images were processed 

using the Metamorph® software (version 6.2) for determining the C6 GFP tumor area. On 

the day 18th of tumor implantation, animals were anesthetized and subjected to 

transcardiac perfusion first with 20 ml of normal saline and then with same amount of 4% 

paraformaldehyde to fix the tissue. Acquired images were processed for measuring the 

pixel intensity of the GFP fluorescence from the tumors using the Metamorph® software 

(version 6.2) for determining the C6 GFP tumor area.  

Four different mouse treatment groups were observed: one group (n = 10) did not 

receive any treatment and served as control, another group (n = 4) was injected with 

Cremophor EL micellar solubilized paclitaxel at a concentration of 2 mg/Kg body 

weight, another group (n = 4) received 2 mg/Kg of paclitaxel in long circulating 

liposomes (LCL) and the last group (n = 4) received 2 mg/Kg of paclitaxel in Tf 

conjugated long circulating liposomes. The tumor growth delay was defined as the time 

required for a treated tumor to reach a specific volume (130 mm3) minus the time for the 

untreated tumor to reach that same volume.  

 

4.2.8 Statistics 

The in vivo tumor localization and antitumor efficacy data were compared using 

one way analysis of variance to determine significant differences among experimental 

groups. All values of P ≤ 0.05 were considered statistically significant. 
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4.3 Results and Discussion 

 

4.3.1 Preparation and characterization of transferrin conjugated liposomal 

paclitaxel 

Paclitaxel incorporation efficiency was determined by subtracting the free drug 

fraction from the total was found to be 98.0 ± 2%.  The nontargeted liposome formulation 

showed average vesicle sizes of 133 ± 15 nm with unimodal distribution. The covalent 

coupling of Tf to the liposome surface led to a slight increase in diameter to about 141 ± 

20 nm (Figures 4-1, 4-2).  This slight increase in size was most probably due to the 

attachment of Tf to the liposome surface, which somewhat increases the hydrodynamic 

diameter of liposomes. The TEM images revealed that the long circulating liposomes 

were round and of spherical in shape.  The zeta potential of Tf conjugated and non 

conjugated long circulating liposomes was found to be about -18 ± 3 mV.  The Tf 

conjugation of LCL did not result in any significant change in the zeta potential of the 

liposomes and was about - 17 ± 4 mV. 

The stability of paclitaxel liposomal formulations was monitored by changes in 

particle size and drug retention over a 7 day period during storage at 2 - 8ºC. The 

colloidal stability of liposomal formulations (size and zeta potential) was excellent with 

minimal or no change from the initial value. The paclitaxel retention in the liposomes 

was more than 97% of the label, during 7 day storage period. There were no visible 

changes to the physical appearance of the formulation or signs of drug precipitation from 

the lipid bilayers during this 7 day period. Based on free Tf concentration from a typical  
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Figure 4-1. Size and size distribution of the paclitaxel long circulating liposomes. 
Dynamic light scattering method was used. Average diameter, 132.8 nm and PDI, 0.167. 
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Figure 4-2. Size and size distribution of the transferrin conjugated long circulating 
liposomes using dynamic light scattering method. Average diameter, 141.3 nm and PDI, 
0.170. 
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formulation, about 72% of Tf was coupled to the liposomes. It was found by this method 

that about 4 µg of the Tf was bound to 1µM of the total lipid; this corresponds to 

approximately 5 Tf molecules per 100 nm liposome.  

 

4.3.2 NIRF imaging of tumors growth in nude mice 

Flank growth of C6 GFP tumor cells was sequentially monitored in a group of 

8 mice, using the total light emission over the flank tumor area as an indication of tumor 

burden. The C6 GFP fluorescence could be detected in mice from day 1 after inoculation 

of 4,000,000 cells. The tumor distribution was estimated by caliper measurements and 

correlated with the regions of GFP fluorescence. (Figures 4-3, 4-4 and 4-5). Relative 

pixel intensity of the tumor increased with time after inoculation (Figure 4-5), and the 

time taken for flank tumor volume to increase from 30 to 500 mm3 (Figure 4-3) ranged 

from 5 to about 18 days. Overall, there was good correlation between caliper 

measurements of the tumors and near infrared fluorescence imaging. However, imaging 

is helpful in estimating the tumor area more precisely at earlier time points, as caliper 

measurements cannot precisely identify small tumors until approximately day 7 after 

tumor implantation. In contrast, caliper measurements were found to be more accurate in 

determining actual tumor volume, when tumors were more than 400 mm3.   

 

4.3.3 Anti-tumor efficacy of paclitaxel in liposomes 

C6 GFP glioma tumors were induced in CD1 nu/nu nude mice by inoculation 

of GFP-expressing C6 glioma (C6-GFP) cells. The in vivo efficacy of paclitaxel in  
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Figure 4-3. C6 GFP tumor growth curve. Tumor volume was determined after repeated 
caliper measurements from 2 to 18 days after tumor cell inoculation. Group mean values 
(± S.D.) for these mice are shown. 
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Figure 4-4. Images of nude mice showing the presence of tumor in flank region. Top row 
shows increase in tumor area with time using a GFP filter. Bottom row shows the 
respective white light images at corresponding time points.  
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Figure 4-5. C6 GFP tumor growth curve. Tumor area was determined after repeated 
tumor imaging from 2 to 18 days after tumor cell inoculation. Group mean values (± 
S.D.) for these mice are shown. 
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glioma tumors was evaluated. Tumor areas were measured with Metamorph® software 

after taking optical images with a CCD camera with a GFP filter. As shown in Figure 4-

6., paclitaxel in Tf -LCL formulation resulted in significant tumor growth delay of 7.7 

days when compared to 3.3 days with LCL and 0 days with solution formulation. Clinical 

monitoring and daily weights were similar between groups, thus indicating that no gross 

deleterious effects of paclitaxel when administered systemically at the tested dose. In this 

study transferrin receptor targeted liposomes retained their targeting ability to glioma 

tumors. Treatment with these liposomal formulations significantly increased the 

antitumoral efficacy of the drug. Therefore, chemotherapeutic drug delivery targeted to 

the glioma by means of transferrin receptor targeted liposomes appears to be a promising 

new strategy for cancer chemotherapy. 

 

 

4.4 Conclusion 

These findings indicate that preferential targeting of paclitaxel in transferrin 

conjugated liposomes to glioma tumors results in significant tumor growth delay. 
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Figure 4-6. Tumor growth of subcutaneously inoculated C6 GFP tumor cells. The length 
and width of each tumor were measured using calipers, and mean tumor volumes were 
calculated for each group. Tumor growth was significantly delayed after treatment with 
paclitaxel encapsulated liposomes compared to solution and no treatment controls. ∆: 
paclitaxel in Tf-LCL, : Paclitaxel in LCL, ◊: paclitaxel in solution, ∗: no treatment 
control. P < 0.05, Tf-LCL vs. all other groups; n = 4 – 5 per group; mean ± SD.  
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Chapter 5: Selective Intracranial Glioma Localization and Improved Efficacy of 
Paclitaxel in Transferrin Conjugated Liposomes 

 

 

5.1 Introduction 

Most malignant gliomas are incurable with the present methods of healthcare. 

Currently accepted therapeutic adjuvants to surgery, such as radiotherapy and 

chemotherapy, provide only a minor improvement in the disease course and life 

expectancy for patients diagnosed with malignant gliomas (Curran Jr., Scott et al. 1993; 

DeAngelis, Burger et al. 1998; Surawicz, Davis et al. 1998). Often, chemotherapy has 

failed to make any significant impact on the prognosis of disease because of significant 

local and systemic toxicity, problems with transport of the drug across the blood brain 

barrier (BBB), and a high degree of chemoresistance demonstrated by tumor cells 

(Grossman, Fisher et al. 1998). Newer targeted delivery systems with greater specificity 

for gliomas, improved safety profiles, and an enhanced ability to permeate through the 

BBB are actively under development as the next generation glioma therapies.  

Liposomes have been investigated over decades as systemic drug delivery 

vehicles for the delivery and targeting of drugs to sites in the body (Torchilin 2005). 

Liposomes have gained increased attention, because of their structural versatility in terms 

of size, composition, surface charge, and their ability to incorporate most of the drugs 

regardless of solubility. Tumor targeting therapy has been advocated to increase the 

therapeutic index and decrease side effects, (Allen 2002; Scherrmann 2002; Schnyder and 

Huwyler 2005). The success of such a targeted liposomal drug delivery strategy for the 

treatment of brain tumors depends on the ability of the delivery systems to localize at 
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higher concentrations in the target site while avoiding the normal tissue. Brain tumor 

targeting using transferrin as a ligand for receptor-mediated endocytosis has attracted 

attention. In recent years, several studies have demonstrated that the use of the transferrin 

uptake pathway is highly effective for treating cancer in animal models and in humans 

(Pardridge 1999; Liao, Li et al. 2001; Pardridge 2002; Soni, Kohli et al. 2005; Soni, 

Kohli et al. 2007). Conjugation of transferrin with anticancer drugs such as doxorubicin 

has shown the potential to circumvent the cardiotoxicity and development of drug 

resistance (Lai, Fu et al. 2005; Soni, Jain et al. 2005; Soni, Kohli et al. 2007). Tseg et. al., 

reported the potential use of paclitaxel efficacy against malignant brain tumors (Tseng, 

Bobola et al. 1999).  

In this study, we hypothesize that transferrin receptor
 
up-regulation in glioma 

tumors can be utilized to selectively deliver paclitaxel to intracranial C6 glioma brain 

tumors. Paclitaxel delivery to various tumor cells have has been the subject of many 

studies (Ho, Barbarese et al. 1997; Crosasso, Ceruti et al. 2000; Schmitt-Sody, Strieth et 

al. 2003; Torchilin, Lukyanov et al. 2003; Koziara, Lockman et al. 2004; Strieth, 

Eichhorn et al. 2004; Zhang, Anyarambhatla et al. 2005), but the targeted liposomal 

delivery of paclitaxel via up-regulated transferrin receptors has not been reported.  

Intracranial tumor localization of transferrin receptor targeted liposomes was 

demonstrated using near infrared (NIR) fluorescence imaging. We demonstrate that in 

xenograft intracranial glioma tumors sufficient tumor volume control can be achieved 

when paclitaxel is preferentially targeted to intracranial glioma tumors. This glioma 

tumor targeting is accomplished by incorporating the drug or fluorescent dye in a 

transferrin conjugated long circulating liposome delivery system.  
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5.2 Materials and Methods 

 

5.2.1 Materials 

Egg phosphotidylcholine (EPC), hydrogenated soybean phosphatidylcholine 

(HSPC), 1,2-distearoyl –sn-glycero-3-phosphoethanolamine-N-[PEG(2000)] conjugate 

(DSPE-PEG), and DSPE-PEG-maleimide were from Northern Lipids Inc., Vancouver, 

Canada. Cholesterol, and biotinylated transferrin were obtained from Sigma, St. Louis, 

MO and the DIR fluorescent dye was purchased from Invitrogen, Carlsbad, CA. These 

chemicals were used as received. Paclitaxel was purchased from 21CEC Pharma, East 

Sussex, UK. All other chemicals and solvents used were analytical grade.  

 

5.2.2 Liposome preparation 

Liposomes were produced by the lipid hydration method followed by extrusion. 

The liposomes contained egg phosphotidylcholine (EPC), hydrogenated soy 

phosphatidylcholine (HSPC), cholesterol (75: 15: 5 molar ratios). Paclitaxel was 

encapsulated in the lipid bilayers due to its lipophilic nature. For preparation of long 

circulating liposomes (LCL), poly (ethylene glycol-2000)-grafted distearoyl phosphatidyl 

ethanolamine (DSPE–PEG2000) was incorporated. For preparation of transferrin 

conjugated liposomes (Tf-LCL) a portion of DSPE-PEG2000 (0.01 mol%) was replaced 

with DSPE-PEG2000-biotin and then transferrin (Tf) was non-covalently conjugated at 

the distal end of DSPE-PEG2000-biotin via streptavidin-biotin bond. DIR (lipophilic 

fluorescent marker) was encapsulated in the liposomal bilayers.  
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5.2.3 Quantification of paclitaxel 

A sensitive reverse phase HPLC method was developed and validated to 

quantitate paclitaxel in liposome formulations. Chromatographic system consisted of a 

Waters 600 controller, Waters 717 plus auto sampler and a Waters 2996 photodiode array 

detector. Data were acquired and processed with Waters Millennium 32 software (version 

4.0).  Chromatographic separation was achieved on a NovaPak® C18 reverse phase 

column (3.9 X 150 mm) from Waters (Milford, MA).  The isocratic mobile phase 

consisting of acetonitrile and water (55:45, v/v) was pumped at a flow rate of 0.7 mL/min 

with an injection volume of 20 µL. Paclitaxel (retention time, 3.8 min) was monitored at 

230 nm with a photo diode array detector. Prior to HPLC analysis, the formulation 

samples were treated with methanol for paclitaxel extraction.  All analyses were 

performed in triplicate, and the mean peak area was used to determine the concentration 

of paclitaxel in the samples. Drug loading was quantified with high-performance liquid 

chromatography (HPLC). A centrifugal ultrafiltration device (Centricon 100, MWCO 

100 KD, Millipore, Bedford, MA) was used to separate free paclitaxel from the paclitaxel 

encapsulated in the liposomes in the finished product. Total paclitaxel concentration in 

the liposomes was determined using HPLC after methanol extraction. The percent 

paclitaxel encapsulated into the liposomes was calculated from the free and total 

paclitaxel in the liposomes.  

 

5.2.4 Liposome size, morphology and zeta-potential 

The size analysis of liposomes was performed by dynamic light scattering 

technique using Malvern zeta sizer–nano particle size analyzer (Malvern Instruments, 
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Malvern, UK). A 25 µL of this sample was diluted to 1 mL with water for injection for 

particle size determination. The diluted aqueous sample (1 mL) was added to a 2 mL 

cuvette and the analysis was performed in triplicate. Average particle size was calculated 

from the result. The transmission electron microscopic studies were carried out using 3 

mm Forman coated copper grid (400 mesh) at 60 KV using negative staining by 2% 

uranyl acetate at 200,000 X magnifications on a JEOL 1200EX transmission electron 

microscope (TEM).  

 

5.2.5 Quantification of transferrin conjugation 

A sensitive gel filtration chromatographic method was developed and validated to 

quantitate transferrin. The gel filtration chromatographic system consisted of a Waters 

600 controller, Waters 717 plus auto sampler and a Waters 2996 photodiode array 

detector. Data were acquired and processed with Waters Millennium 32 software (version 

4.0).  Gel filtration chromatographic separation was achieved on a TSK Gel G3000 

SWXL (30 cm X 7.8 mm, 5 micron) column from Tosoh bioscience (South San 

Francisco, CA).  The isocratic mobile phase consisting of 0.5 N phosphate buffered saline 

(pH 7.2) was pumped at a flow rate of 0.5 mL/min with an injection volume of 30 µL. 

Transferrin (retention time, 4.8 min) was monitored at 220 nm with a photo diode array 

detector. All analyses were performed in triplicate, and the mean peak area was used to 

determine the concentration of transferrin in the samples.  

Free Tf was separated from the liposome encapsulated part using a Centricon 

centrifugal filter device (Centricon 100, MWCO 100 KD, Millipore, Bedford, MA). An 

aliquot of the liposome dispersion (100 µL) was diluted to 1 mL with hydration buffer 
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(phosphate buffered saline pH 7.2). This sample was transferred to the centrifugal filter 

device. The sample was centrifuged at 5000 rpm for 30 minutes in a fixed-angle 

centrifuge. Free transferrin in the filtrate was then determined using high performance gel 

filtration chromatography (HPGFC). Subtraction of free Tf from the amount added gave 

the amount of liposome-conjugated Tf. Tf estimations were done in triplicate, and the 

values were reported as mean ± standard deviation. 

 

5.2.6 Induction of C6 GFP intracranial glioma tumor xenografts 

C6-GFP glioma cells in their exponential growth phase were harvested with 

0.25% Trypsin with EDTA for 5 min at 37°C. The cells were centrifuged for 5 min at 

1,000 RPM.  The pellets were resuspended in sterile phosphate buffered saline (PBS), at 

a concentration of 100, 000, 000/mL and placed on ice.  Adult CD1 nu/nu mice (25-30g) 

(Charles river, Wimington, MA) were used for all studies and handled in accordance with 

protocols approved by the Animal Care and Use Committee at the University of 

Tennessee Health Science Center.  Mice were anesthetized with an intraperitoneal 

injection of ketamine/xylazine at a dosage of 8.7/1.3 mg/100 g body weight. To create the 

intracranial glioma tumor model, 500,000 C6-GFP glioma cells in 5 µL of phosphate 

buffered saline were injected into the brain at a depth of 3.0 mm from the surface of skull 

and 3.0 mm lateral from midline along the bregma suture in the right hemisphere, using a 

Hamilton syringe and stereotaxic frame.  The scalp defect is then closed with 

cyanoacrylate glue.  
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5.2.7 NIRF imaging of tumors and tumor localization of DIR labeled liposomes in 

mice  

Fourteen days after tumor cell inoculation, animals were injected retroorbitally 

with different formulations labeled with a lipophilic dye (DIR). The area and pixel 

intensity of the dye in the tumor was compared with the background intensity in the 

surrounding normal tissue using non-invasive optical imaging with a CCD camera with 

DIR filter at 0, 1, 8, 24 and 48 Tf-LCL after injection.  48 Tf-LCL after injection, animals 

were anesthetized and subjected to transcardiac perfusion first with 20 mL of normal 

saline and then with same amount of 4% paraformaldehyde to fix the tissue. The brains 

were incubated in 4% paraformaldehyde.  Images of isolated brains were taken with a 

CCD camera (Princeton Instruments Inc., Trenton, NJ) using GFP, (excitation: 475 nm 

and emission: 510 nm) DIR (excitation: 750 nm and emission: 782 nm) (Omega optical, 

Brattleboro, VT) for visualization of tumor area and DIR dye localization in the brain 

tissue. Acquired images were processed for measuring the pixel intensity of the DIR 

fluorescence from the tumors using the Metamorph® software (version 6.2) for 

determining the C6 GFP tumor area. Tumor to muscle accumulation ratio of DIR dye 

labeled formulations was determined to calculate Tumor targeting index.  

 

5.2.8 Antitumor efficacy of paclitaxel in liposomes 

Five days after tumor cell inoculation, animals were assigned randomly into 3 

groups (n = 3 - 4 per group). The groups included no treatment control, paclitaxel in 

transferrin conjugated long circulating liposomes (Tf-LCL) and paclitaxel in long 

circulating liposomes (LCL). After 5 days of unrestricted tumor growth, animals were 
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treated with 2 mg/Kg of paclitaxel once a day (for about 9 days) till the end of 

experiment. The animals were monitored visually on a daily basis and weights were 

measured on every 3rd day until they lost 10% of their body weight. On the 14th day of 

tumor implantation, animals were anesthetized and subjected to transcardiac perfusion 

first with 20 mL of normal saline and then with same amount of 4% paraformaldehyde to 

fix the tissue. The brains were incubated in 4% paraformaldehyde.  Optical images of 

isolated brains were taken with a CCD camera (Princeton Instruments Inc., Trenton, NJ) 

using GFP filter. Acquired images were processed using the Metamorph® software 

(version 6.2) for determining the C6 GFP tumor area.  

 

5.2.9 Statistics 

The in vivo tumor localization and antitumor efficacy data were compared using 

one way analysis of variance to determine significant differences among experimental 

groups. All values of p ≤ 0.05 were considered statistically significant. 

 

 

5.3 Results and Discussion 

 

5.3.1 Preparation and characterization of transferrin conjugated liposomal 

paclitaxel 

Paclitaxel incorporation efficiency was determined by subtracting free drug 

fraction was found to be 98.0 ± 2%. The non conjugated liposome formulation showed 

average vesicle sizes of 133 ± 15 nm with a unimodal distribution. The covalent coupling 
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of Tf to the liposome surface led to a slight increase in diameter to about 141 ± 20 nm 

This slight increase in size most probably due to the attachment of Tf to the liposome 

surface, which somewhat increases the hydrodynamic diameter of liposomes. The TEM 

images revealed that the long circulating liposomes were round and of spherical in shape. 

The zeta potential of Tf conjugated and non conjugated long circulating liposomes was 

found to be about -18 ± 3 mV.  The Tf conjugation of LCL did not result in any 

significant change in the zeta potential of the liposomes.  

The stability of paclitaxel liposomal formulations was monitored by changes in 

particle size and drug retention over a 7 day period during storage at 4 ºC. The colloidal 

stability of the liposomal formulations (size and zeta potential) was found to be excellent 

with minimal or no change in from the initial value. The paclitaxel retention in the 

liposomes was more than 97% of the label, during a 7 day storage period at 2- 8 ºC. 

There were no visible changes to the physical appearance or signs of drug precipitation 

from the lipid bilayers during this 7 day period.  

The total amount of the liposome attached transferrin for the typical Tf-LCL 

formulation was determined by using the high performance gel filtration 

chromatography. Tf dissolved in the mobile phase eluted at ~4.8-minute retention. Based 

on free Tf concentration from a typical formulation, about 72% of Tf was coupled to the 

liposomes. It was found that about 4 µg of the Tf was bound to 1 µM of the total lipid; 

this corresponds to approx. 5 Tf molecules per 100 nm liposome.  
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5.3.2 NIRF imaging of tumors and tumor localization of DIR labeled liposomes in 

mice  

An enhanced permeation and retention (EPR) effect has been demonstrated for 

nano carriers in tumor targeting (Papisov 1998; Shan, Flowers et al. 2006). We 

investigated the tumor accumulation and the tumor-to-muscle accumulation ratio of 

liposomal formulation using a non-invasive NIR fluorescence imaging method. The data 

showed that the LCL and Tf-LCL selectively accumulated in C6 intracranial glioma 

tumors (Figure 5-1). The Tf-LCL formulation accumulated in the C6 glioma tumors more 

efficiently as compared to muscle tissue (Figure 5-2). The tumor targeting index for Tf-

LCL was found to be 6.15 ± 1.47.  

 

5.3.3 Anti-tumor efficacy of paclitaxel in liposomes 

To study the effect of paclitaxel on C6 GFP glioma in vivo, tumors were induced 

in CD1 nu/nu nude mice by intracranial inoculation of GFP-expressing C6 glioma (C6-

GFP). After 5 days of tumor cell inoculation, animals were assigned randomly to 3 

groups (n = 3 - 4 per group). These groups were paclitaxel Tf-LCL, LCL, and no 

treatment control. Drug was administered once a day via retro orbital injection for 9 

subsequent days with 2 mg/Kg in Tf-LCL or LCL formulation. The animals were then 

sacrificed on the 9th day of treatment and the brains were isolated. Tumor areas were 

measured Metamorph® software after taking optical images with a CCD camera with 

GFP filter. As shown in Figure 5-3., paclitaxel in Tf -LCL formulation resulted in 

significant tumor reduction when compared to no treatment tumor control (p = 0.038). No  
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Figure 5-1. Near infrared fluorescence images of brains isolated from mice. Selective 
localization of Tf-LCL in intracranial GFP expressing C6 glioma brain tumors was 
observed. Top row images were taken with white light, second row with GFP filter and 
third row images were taken DIR filter.  
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Figure 5-2. The selective accumulation of Tf-LCL in intracranial glioma tumors. High 
fluorescence signals in mouse intracranial tumor tissue were observed up to 24 Tf-LCL. 
The fluorescence ration between tumor and normal muscle tissue yielded up to 6 fold 
selectivity for the tumor in comparison with surrounding normal tissue; n = 3; Mean ± 
SD. (Tumor targeting index: 6.15 ± 3.3) 
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Figure 5-3. In vivo efficacy of paclitaxel against C6 intracranial glioma tumors. C6 GFP 
glioma cells were inoculated into the frontal lobe of the brains of nude mice (n= 3 - 5 per 
group). After 5 days of tumor cell incubation, groups were treated by retroorbital 
injection every 24 Tf-LCL for 9 subsequent days with 2 mg/kg of paclitaxel in Tf-LCL or 
LCL. Paclitaxel in Tf-LCL was efficacious at reducing the tumor burden (p = 0.038). 
However, no significant tumor reduction was observed with paclitaxel in LCL (p = 
0.188) 
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statistical significant tumor reduction was observed with long circulating liposomes (p = 

0.188). Figure 5-4 show representative photomicrographs of the average tumor area in 

animals treated with paclitaxel in Tf-LCL formulation compared with paclitaxel in LCL 

and no treatment control group. Clinical monitoring and daily weights were similar 

between groups indicating no gross deleterious effects of paclitaxel when administered 

systemically at the tested dose. Paclitaxel encapsulation in Tf-LCL formulation group 

was more active than the non-treated, and paclitaxel in long circulating liposome groups 

for the treatment of the intracranial glioma tumor at the 2 mg/Kg dose. Whole body NIRF 

imaging of mice implanted with C6-GFP intracranial glioma revealed marked selective 

intracranial glioma localization with Tf-LCL formulation.  

 

 

5.4 Conclusion 

These studies provide evidence that paclitaxel delivered in Tf-LCL accumulate 

effectively with relative selectivity in tumor areas, improving the overall anti-tumor 

efficacy in intracranial gliomas over a non targeted liposomal system.  
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Figure 5-4. Representative images of C6 GFP intracranial glioma tumors. Animals 
treated with paclitaxel in Tf-LCL (panel B) as compared to the no treatment control 
(panel A) and paclitaxel in LCL (panel C) were shown. Top row shows reference dots for 
GFP filter were created with FITC solution.  
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Chapter 6: Development of a Lyophilized Targeted Liposome Delivery System for 
Paclitaxel 

 

 

6.1 Introduction  

The therapeutic applications of targeted liposomes are dependent on the physical 

integrity and stability of the lipid bilayer structure. In the liquid state, liposome 

formulations are subject to both) physical and chemical instability (Sharma and Sharma 

1997). These physical and chemical stability parameters are critical to the in vivo 

behavior of liposomal drug delivery systems. Liposomal size distribution is a critical 

parameter with respect to the pharmacokinetic and pharmacodynamic behavior of drugs 

that are site-specifically targeted in vivo (Van Bommel and Crommelin 1984; Van 

Winden, Zhang et al. 1997). One of the practical difficulties is that liposomes are 

relatively unstable during storage. 

Lyophilization is the method of choice for enhancement of long-term stability of  

liposomes (Ausborn and Nuhn 1990; Ausborn, Nuhn et al. 1992). In the process, most of 

the water molecules are excluded from the specimen and the aqueous suspension 

becomes a powder that could be stored even at ambient temperatures. Prior to use, 

reconstitution of the particulate system is achieved by rehydration of the dry powder (Liu 

2006). Removal of water by lyophilization prevents hydrolysis of phospholipids. Other 

chemical and physical degradation processes are also retarded by low molecular mobility 

in the solid phase. Further, freeze-drying of liposome formulations, if performed 

successfully, results in a pharmaceutically elegant dry cake which can be reconstituted 
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within seconds to obtain the original dispersion (Jonkman-de Vries, Talsma et al. 1994; 

Wang 2000; Tang and Pikal 2004).  

Lyophilization of targeted liposomes is more complex when compared to large 

multilamellar conventional liposomes (Van Winden, Zhang et al. 1997; Zhang, Van 

Winden et al. 1997). Liposome bilayer membranes may be damaged during the 

lyophilization cycle mainly by mechanical stress caused when high pressures vesicle 

membranes are exposed during ice crystal formation and chemically from increased 

concentrations of solute during freezing and dehydration. This can lead to massive 

aggregation and fusion of the vesicles as well as leakage of the entrapped compounds 

upon reconstitution of the lyophilized cake. In the absence of cryoprotectants, small 

targeted liposomes will be converted into large multi lamellar liposomes, upon 

lyophilization and reconstitution (Peer, Florentin et al. 2003).  This change in size of the 

liposomes is detrimental for targeted drug delivery. Cryoprotectants have been shown to 

decrease vesicle fusion and leakage caused by both freeze-thaw and the freeze-drying 

process (Sun, Leopold et al. 1996; Crowe, Oliver et al. 1997; Crowe, Carpenter et al. 

1998; Van Winden and Crommelin 1999). Sugars such as trehalose, sucrose, mannose or 

glucose were used as cryoprotectants at high concentrations (~ 30%) in the original 

liposome preparations. Among these sugars, trehalose is particularly effective in 

preserving the liposomes. Crowe et al. have carried out extensive investigations on 

possible mechanisms by which sugars protect biological membranes during freeze-drying 

(Crowe, Oliver et al. 1997; Crowe, Carpenter et al. 1998). Lyophilization of targeted 

liposome delivery systems is even more complex.  Very few studies have been reported 

on lyophilization of targeted liposomes. The influence of functional lipids and targeting 
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ligands on the preservation of the targeted liposomes during freeze-drying is also not well 

understood (Van Winden and Crommelin 1999).  

In this study we report on the development of a lyophilized targeted liposome 

delivery system for paclitaxel. We also provide evidence of cryoprotective ability of 

sucrose and trehelose during lyophilization of liposomes. The effects of these 

cryoprotectants on particle size and zeta potential of liposomes upon reconstitution with 

water for injection were investigated.  

 

 

6.2 Materials and Methods  

 

6.2.1 Materials 

Egg phosphotidylcholine (EPC), hydrogenated soybean phosphatidylcholine 

(HSPC), and 1,2-distearoyl –sn-glycero-3-phosphoethanolamine-N-[PEG(2000)] 

conjugate (DSPE-PEG) were from Northern Lipids Inc., Vancouver, Canada., 

cholesterol, biotinylated transferrin, sucrose and trehelose were obtained from Sigma, St. 

Louis, MO. These chemicals were used as received. Paclitaxel was purchased from 

21CEC Pharma, East Sussex, UK. All other chemicals and solvents used were of 

analytical grade. 

 

6.2.2 Liposome preparation 

Liposomes were produced by the lipid hydration method followed by extrusion. 

The liposomes contained egg phosphotidylcholine (EPC), hydrogenated soy 
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phosphatidylcholine (HSPC), cholesterol (75: 15: 5 molar ratios). The paclitaxel (log P is 

3.96) was encapsulated in the lipid bilayers due to its lipophilic nature. For preparation of 

long circulating liposomes (LCL), poly (ethylene glycol-2000)-grafted distearoyl 

phosphatidyl ethanolamine (DSPE–PEG2000) was incorporated. For preparation of Tf-

LCL a part of DSPE-PEG2000 (0.01 mol%) was replaced with DSPE-PEG2000-biotin 

and then transferrin (Tf) was non-covalently conjugated at the distal end of DSPE-

PEG2000-biotin via streptavidin-biotin bond.  

 

6.2.3 Lyophilization of liposomes  

For cryoprotection of liposomes during lyophilization, 15% sucrose or trehelose 

was added to freshly prepared liposome dispersions and distributed into 5 mL freeze-dry 

vials (Wheaton) in 1 mL aliquots. The rubber freeze-dry closures (type V9172-FM 257, 

Helvoet Pharma, Alken, Belgium) were used. Vials, partially stoppered with freeze-dry 

closures, were loaded into the Virtis genesis freeze-dryer and frozen slowly to -45 °C at 1 

°C per min. Freezing was continued for 5 Tf-LCL. At the end of the freezing step, 

chamber pressure was brought to 110-120 m Torr and the shelf temperature was 

maintained at -35 °C for 10 Tf-LCL, followed by drying at shelf temperature of -20 °C 

for 5 Tf-LCL and at 0 °C for 5 Tf-LCL (primary drying). The secondary drying was 

carried out at 50-60 m torr chamber pressure at 10 °C for 14 Tf-LCL and at 20 °C for 10 

Tf-LCL. The condenser temperature ranged between -55 and -60 °C. At the end of the 

freeze-drying process the chamber was backfilled with nitrogen to maintain a non-

reactive gaseous headspace. The vials were closed with rubber closures were unloaded 

from the chamber followed by crimping with aluminum seals.  
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6.2.4 Liposome size, morphology and zeta-potential 

Lyophilized samples were reconstituted (rehydrated) to their original volume (1 

mL) with sterile water for injection. A 25 µL of this sample was diluted to 1 mL with 

water for injection for particle size determination. The average size and polydispersity 

index were determined at 25 ºC by dynamic light scattering method with Malvern 

zetasizer nano, using the dispersion technology software version 4.10 (Malvern Ltd, 

Malvern, UK). Measurements were performed on three independently prepared samples 

for each formulation. The same sample was used for zeta potential analysis of liposomes 

with Malvern Zetasizer Nano, using the dispersion technology software version 4.10 

(Malvern Ltd, Malvern, UK).  

 

6.2.5 Estimation of drug entrapment in liposome formulation  

A sensitive reverse phase HPLC method was developed and validated to 

quantitate paclitaxel in liposome formulations. Chromatographic system consisted of a 

Waters 600 controller, Waters 717 plus auto sampler and a Waters 2996 photodiode array 

detector. Data were acquired and processed with Waters Millennium 32 software (version 

4.0).  Chromatographic separation was achieved on a NovaPak® C18 reverse phase 

column (3.9 X 150 mm) from Waters (Milford, MA).  The isocratic mobile phase 

consisting of acetonitrile and water (55:45, v/v) was pumped at a flow rate of 0.7 mL/min 

with an injection volume of 20 µL. Paclitaxel (retention time, 3.8 min) was monitored at 

230 nm with a photo diode array detector. Prior to HPLC analysis, the formulation 

samples were treated with methanol for paclitaxel extraction.  All analyses were 

performed in triplicate, and the mean peak area was used to determine the concentration 
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of paclitaxel in the samples. The total and free paclitaxel in the liposome formulations 

before and after lyophilization and reconstitution were determined using an HPLC 

method of analysis. The drug loading was quantified via high-performance liquid 

chromatography (HPLC). Briefly, a centrifugal ultrafiltration device (Centricon 100, 

MWCO 100 KD, Millipore, Bedford, MA) was used to separate free paclitaxel from the 

paclitaxel encapsulated in the liposomes. Free and total paclitaxel concentration in the 

liposomes was determined using HPLC after methanol extraction. Percent paclitaxel 

encapsulated in the liposomes was calculated from the free and total paclitaxel in the 

liposomes.  

 

 

6.3 Results and Discussion 

 

A formulation containing 15% (w/v) extra-liposomal sucrose or 15% (w/v) extra-

liposomal trehelose were able to maintain the particle size distribution (PSD) of targeted 

liposomes close to initial after the lyophilization and rehydration (Figure 6-1). These 

formulations were also maintained drug loading after lyophilization and reconstitution. 

Lyoprotective effects of sucrose and trehalose are compared in Figure 6-2. Zeta potential 

of liposomes before lyophilization were about – 17.6 mV. The average zeta potential of 

liposomes with 15% sucrose or trehelose as cryoprotectant after lyophilization and 

reconstitution were about -20 mV (Figure 6-3). As we can see from these images, both of 

these disaccharides were able to maintain the initial monodisperse size distribution and  
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Figure 6-1. Particle size distribution (PSD) of targeted liposomes after lyophilization. (A) 
Original PSD before freeze-drying. Average size 137 nm, polydispersity index (PDI) 
0.176. (B) PSD after freeze-drying the formulation containing 15% (w/v) extra-liposomal 
sucrose. Average size 150 nm, PDI: 0.215.  
 
 

 

A 
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Figure 6-2. Effect of sucrose and trehalose on liposome size after lyophilization. (A) PSD 
after lyophilizing the formulation containing 15% (w/v) extra-liposomal sucrose. Average 
size 150 nm, PDI: 0.215. (B) PSD after lyophilizing the formulation containing 15% 
(w/v) extra-liposomal trehalose. Average size 160 nm, PDI: 0.277 
 
 

A 
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Figure 6-3. Lyoprotective effect of sucrose and trehalose. (A) Original zeta potential 
before freeze-drying. Average zeta potential 17.6 mV, (B) zeta potential after freeze-
drying with 15% (w/v) extra-liposomal trehelose. Average zeta potential -21.3 mV (C) 
Zeta potential after freeze-drying with 15% (w/v) extra-liposomal sucrose. Average zeta 
potential -20.4 mV. 

A 

B 

C 



 107

zeta potential of the targeted liposomes after freeze-drying and reconstitution. But the 

sucrose was slightly better on maintaining the original PSD and zeta potential of 

these targeted liposomes than trehalose. Average size and poly dispersity index (PDI) 

after freeze-drying and reconstitution for trehalose formulation were 161 nm and 0.271, 

respectively (Figure 6-2). Where as those numbers for the sucrose formulation were 154 

nm and 0.25, respectively (Figure 6-2). The size distribution of targeted liposomes before 

freeze-drying (average size of 137 nm and PDI of 0.176, (Figure 6-1) was closely 

preserved after freeze-drying and reconstitution when sucrose was used as lyoprotectant. 

Similar results were reported in the literature for some other liposome systems. Sucrose 

was found to be more effective in maintaining size distribution of mitoxantrone 

liposomes after lyophilization and reconstitution (Ugwu, Zhang et al. 2005).  

There was no significant change in the size and zeta potential of the liposomes 

after lyophilzation indicated the cryoprotection of the liposomes by the sucrose. In the 

absence of cryoprotectants, aggregation and fusion of liposomes is expected when 

lyophilized without cryoprotection. Because liposome bilayer formation itself requires 

presence of water, removal of this water through freeze-drying should be expected to 

cause irreversible damage to these structures (Winterhalter and Lasic 1993). But this is 

not the case with cryoprotectants. Several reports describe this process of liposome 

aggregation on lyophilization (Van Bommel and Crommelin 1984; Van Winden, Zhang 

et al. 1997; Van Winden and Crommelin 1999; Ugwu, Zhang et al. 2005; Zhang, 

Anyarambhatla et al. 2005). The most successful lyoprotectants were the non reducing 

disaccharides sucrose and trehalose (Van Bommel and Crommelin 1984; Van Winden 

and Crommelin 1999). Based on this information we used 15% concentration of sucrose 
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or trehalose in our formulation to protect the targeted liposomes during freeze-drying 

process.  

 

 

6.4 Conclusions  

A lyophilized formulation was developed to increase storage stability of the 

targeted liposome formulation. We report sucrose as a better lyoprotectant for this 

formulation and process when compared to trehelose.  
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Chapter 7: Summary 

 

 

The main objective of this project was to develop a targeted liposome delivery 

system for the paclitaxel, to selectively deliver this drug to glioma brain tumors. Towards 

this goal, first, a targeted liposome delivery system targeting transferrin receptors highly-

expressed on gliomas was designed. Then, a formulation and process for preparation of 

this targeted liposome delivery system was developed. The functional properties of the 

delivery system were evaluated both in vitro and in vivo. The delivery system was 

characterized and the formulation was optimized to achieve maximum in vivo blood 

circulation half life and high tumor localization. Finally, to enhance the storage stability 

of the delivery system, a lyophilized formulation and process were developed.  

The elements of the targeted delivery system were chosen to satisfy a number of 

requirements such as high drug loading, stable encapsulation, good physical and chemical 

stability during shelf life, long circulation half-life in vivo, high tumor targeting potential 

and efficient target recognition and binding. The targeted liposome delivery system is 

composed of five different lipid components (Egg PC, HSPC, cholesterol, DSPE-PEG, 

DSPE-PEG-biotin) and a targeting ligand, transferrin. The targeting ligand transferrin 

was coupled to the distal ends of PEG chains. This specific way of ligand coupling to the 

liposome carrier was used to maximize ligand coupling to the liposome carrier as well as 

their interaction with the intended biological targets (transferrin receptors on glioma 

tumors). 
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The extrusion process developed for the preparation of these liposome carriers is 

robust. There was a great control of liposome size and size distribution in the extrusion 

process used. The process can be scaled up easily. A long blood circulation half-life in 

rats (9 Tf-LCL) for fluorescent labeled targeted formulations was achieved. The sterically 

stabilized liposomes prepared using 5% PEG and about 100 nm in size showed a 

pronounced increase in the blood residence time (17 Tf-LCL) with a significant decrease 

in uptake by RES when compared with conventional liposomes. The rate extent of tumor 

localization of the transferrin receptor targeted fluorescent liposome was found to be 

significantly high compared to non targeted liposomes and solution formulations.  

  
Anti-tumor efficacy evaluation in intracranial and flank tumor models indicated 

that targeting paclitaxel to glioma brain tumors using this liposome delivery system is 

significantly more effective than free paclitaxel administered in a micellar solubilized 

dosage form or non targeted liposomes. This targeted delivery system also reduced the 

dose required for the therapeutic efficacy. Further unwanted toxic effects in other normal 

tissues were not observed. The significant tumor growth delay was observed. Using a 

multiple dosing regimen, such as repeated administration of radiation and targeted 

liposomes containing paclitaxel, could probably further delay the tumor growth.  

Finally, a successful lyophilization formulation and process were developed to 

enhance the storage stability of the targeted liposome delivery system. A formulation 

containing 15% (w/v) extra-liposomal sucrose was able to maintain the particle size 

distribution and drug loading of the targeted liposomes close to initial after freeze-drying 

and rehydration.  
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In conclusion, I have developed a stable and effective targeted liposome delivery 

system for paclitaxel to take this drug selectively to glioma brain tumors. This targeted 

delivery system could potentially increase the anti-cancer activity as well as the 

therapeutic index of the drug compared to existing solution dosage forms.  
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