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ABSTRACT 
 
 
 Polymers have revolutionized the field of tissue engineering due to the countless 
possibilities of scaffolds that can be constructed from such a material. Through 
conjugation of other functional groups onto a polymer backbone, the mechanical 
properties of polymers can be controlled and has the ability to span a wide range of 
strengths, allowing for application in multiple tissue environments. One such polymer, 
hyaluronic acid (HA), is a natural polysaccharide found most abundantly in the 
extracellular matrix (ECM) of connective tissues with structural, lubricating, and wound 
healing functions in the human body; for this reason, HA has great potential for 
utilization in tissue engineering application. To strengthen the mechanical properties of 
HA, we conjugated 2-aminoethyl methacrylate (AEMA) to the carboxyl group of HA 
polymer in various degrees of substitution. In addition, different molecular weights of 
HA were used during synthesis to analyze molecular weight as a factor for tunable 
mechanical properties. The final product HA-AEMA, with use of photoinitiator Irgacure 
2959, forms a hydrogel via UV polymerization following dissolution of macromer into 
photoinitiator solution. Both the rheological and mechanical properties of various 
macromer/photoinitiator solutions and hydrogels were measured, respectively, in regards 
to viscosity, solubility, shear modulus, and compression strength. To test HA-AEMA 
potential for use of tissue engineering applications involving stem cells, human dental 
pulp stem cells (DPSCs) were exposed to both HA-AEMA macromer and hydrogels for 
cytotoxicity and encapsulation studies by MTT using mitochondrial based assays and 
fluorescent viable cell staining respectively. Results of our experiments indicate 
successful synthesis of HA-AEMA macromer of various molecular weights of HA as 
well as degree of substitution of AEMA. As the molecular weight of HA and/or the 
degree of substitution of AEMA increased, the viscosity, swelling ratio, shear storage 
modulus, and compressive strength increased; specifically for storage modulus, more 
significant increases were observed as MW of HA was increased from 16 kDa to 66 kDa 
compared to increases from 66 kDa to 270 kDa. As the hydrogels swelled over time in 
phosphate buffer solution (PBS), the compressive strength of hydrogels diminished by a 
factor of 3 after 24 hours of swelling time and a factor of 2 from 1 day to 3 days swelling 
time, most likely due to hydrolysis of the ester bond along the HA chain. Results of the 
cytotoxicity studies indicate DPSCs survive exposure to HA-AEMA macromer as well as 
encapsulation inside hydrogels formed following the standard UV polymerization 
protocol. Based on these results, we have concluded that HA-based hydrogels have the 
potential to be used in various tissue engineering applications due to its tunable properties 
and biocompatibility to DPSCs. 
 
 
  



 

vi 

TABLE OF CONTENTS 
 

CHAPTER 1. INTRODUCTION .....................................................................................1 

Purpose .............................................................................................................................1 
Specific Aims ...................................................................................................................2 

CHAPTER 2. LITERATURE REVIEW .........................................................................4 

Current Definition and Treatment of Tissue Injury .........................................................4 
At-Home and Surgical Treatment of Tissue Injury .....................................................4 
Biomaterials Used in the Treatment of Tissue Injury ..................................................4 

Hyaluronic Acid ...............................................................................................................6 
Role and Structure in the Body ....................................................................................6 
Commercial Uses of Hyaluronic Acid as a Scaffold ...................................................7 
Hyaluronic Acid Structure Modification for Scaffold Use ..........................................7 

HA-Based Hydrogels for Tissue Engineering Purposes ..................................................8 

CHAPTER 3. MATERIALS AND METHODS ............................................................10 

Synthesize and Characterize HA-AEMA Macromer .....................................................10 
Synthesis Process of HA-AEMA Macromer .............................................................10 
Characterization of HA-AEMA Macromer ...............................................................11 

Synthesize and Characterize HA-AEMA Hydrogels .....................................................12 
Formation of HA-Based Hydrogels ...........................................................................12 
Investigation of Mechanical and Rheological Properties of HA-Based Hydrogels...12 

Study Cytotoxicity and Encapsulation Capabilities of HA-AEMA Macromers and 
Hydrogels .......................................................................................................................14 

Cytotoxicity of HA-AEMA Macromer to DPSCs .....................................................14 
DPSC Survival in HA-Based Hydrogels ...................................................................14 

Statistical Analysis .........................................................................................................14 

CHAPTER 4. RESULTS .................................................................................................15 

Synthesis and Characterization of HA-AEMA Macromer ............................................15 
Macromer Synthesis ...................................................................................................15 
HA-AEMA Macromer Characterization ....................................................................17 
Viscosity ....................................................................................................................21 

Synthesis and Characterization of HA-AEMA Hydrogels ............................................21 
Hydrogel Formation via UV Polymerization .............................................................21 
Swelling of Hydrogels in PBS ...................................................................................24 
Storage Modulus Measurement .................................................................................24 
Compression Strength Measurement .........................................................................27 

Cell Survival and Encapsulation Studies .......................................................................27 
Cytotoxicity of HA-AEMA Macromer to DPSCs .....................................................27 
DPSC Encapsulation in Hydrogel ..............................................................................30 

CHAPTER 5. DISCUSSION ..........................................................................................33 



 

vii 

CHAPTER 6. CONCLUSION ........................................................................................35 

LIST OF REFERENCES ................................................................................................36 

VITA..................................................................................................................................40 

 
 
  



 

viii 

LIST OF TABLES 
 

Table 4-1. Solubility test of HA-AEMA macromers in PBS. ........................................20 

Table 4-2. Hydrogel formation of HA-AEMA macromers via UV polymerization. .....23 

 
 
  



 

ix 

LIST OF FIGURES 
 

Figure 4-1. 1NMR of HA-TBA following ion exchange process of synthesis. ...............16 

Figure 4-2. Vacuum drying precipitate affects end product of synthesis. .......................18 

Figure 4-3. NMR graph of HA-AEMA-18k-25 for structure characterization. ..............19 

Figure 4-4. Viscosity of HA-AEMA-16k-25, HA-AEMA-66k-25, and HA-AEMA-
270k-25 macromer solutions. .......................................................................22 

Figure 4-5. Difference in swollen hydrogels based on AEMA degree of substitution....25 

Figure 4-6. Storage modulus comparisons based on MW of HA, AEMA degree of 
substitution. ..................................................................................................26 

Figure 4-7. Profile of stress/strain curve for HA-AEMA hydrogel compression............28 

Figure 4-8. Compressive moduli of HA-AEMA-18k-25 hydrogels over time. ..............29 

Figure 4-9. Cytotoxicity of HA-AEMA macromer to dental pulp stem cells. ................31 

Figure 4-10. LIVE cell staining of encapsulated dental pulp stem cells in HA-AEMA 
hydrogels. .....................................................................................................32 

 
 
  



 

x 

LIST OF ABBREVIATIONS 
 
 
AEMA 2-Aminoethyl Methacrylate 
 
DPSC Dental Pulp Stem Cell 
 
ECM Extracellular Matrix 
 
HA Hyaluronic Acid 
 
NMR Nuclear Magnetic Resonance 
 
TBA Tetrabutylammonium 
 



 

1 

CHAPTER 1.    INTRODUCTION 
 
 

Purpose 
 

In the past few decades, tissue engineering has grown from a subset of 
biomaterials into a self-standing field. Tissue engineering focuses on the repair of 
damaged tissue and maintenance of the wound healing process to minimize scar tissue 
formation through the development of biocompatible technologies and materials in vitro 
(Chen, Liang et al. 2013). The rapid expansion of the tissue engineering field has 
occurred for a number of reasons, one of the most important being the innovation of 
polymers for use in medical applications (Keane and Badylak 2014). Prior to polymers, 
biomaterials were limited to ceramics and metals; these biomaterials generally have 
mechanical properties that differ greatly from native soft tissues, and this limited their 
major use to orthopedic implants (Chen, Liang et al. 2013). Because of this, treatment of 
severe injuries to soft tissue was only possible through invasive surgery and focused 
primarily on reducing the pain and side effects of the patient over returning the damaged 
tissue to full function. Surgical treatment of tissue damaged beyond repair often includes 
use of autografts, tissue that comes from a separate site on the patient. When damaged 
tissue was beyond repair, autografts are often used. However, use of autografts requires 
additional surgeries for care of the donor site. Allografts may be employed to avoid 
sacrificing skin from a patient donor site, but use of allografts comes with the risk of 
tissue rejection as well as disease transmission. To avoid these risks and while aiding in 
the healing process to return tissue to full function, biomaterials need to be utilized, and 
polymers are currently being investigated to fill this need. Polymers have great potential 
in giving more treatment options to physicians, reducing invasive surgery treatment by 
autografts and allografts, and healing damaged tissue more effectively. 
 

Polymers have a vast range of mechanical properties that allows them to be used 
in a wide variety of tissue engineering applications. This is advantageous since human 
tissue ranges greatly; for example, stresses present in the body can range from 0.1 to 80 
kPa, seen in brain and bone environments, respectively (Li, Katsanevakis et al. 2012, 
Guvendiren and Burdick 2013). Although some metal and ceramic biomaterials are made 
to be bioactive, such polymers can be used for treatment in a greater number of tissues 
while maintaining biocompatibility based on their wider range of possible mechanical 
properties. Lastly, polymers can have controlled degradation: some polymer biomaterials 
can be made to degrade by the body’s natural processes, such as breakdown by 
hydrolysis and enzymes, eliminating the need for invasive surgery for removal (Zhao, 
Tan et al. 2013). In order to optimize these advantages, certain traits of these polymers 
are controlled, for example the molecular weight, cross-linking density, monomer unit 
selection, and method of polymerization (Guvendiren and Burdick 2013). By using a 
combination of different polymers and stem cells, tissue engineering application can 
extend to many different tissue types, including bone, cartilage, neural, cardiac, ocular, 
and other tissue types (Zhao, Tan et al. 2013)  By controlling polymer traits, countless 
polymers have potential to be used in medical applications, and new polymers are being 
discovered and studied to widen the foundation of tissue engineering. 
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One particular polymer of interest in current research is hyaluronic acid (HA), a 

naturally occurring polysaccharide commonly found in the extracellular matrix of 
connective tissues. HA has been studied extensively for tissue engineering applications 
because of its wound healing capabilities and structural support roles in the body. In 
order to maximize the utilization of HA beyond the scope of that found naturally in the 
body, conjugation of a moiety to an HA backbone while controlling the molecular weight 
of HA allows for the biopolymer to span a wide range of mechanical properties for 
potential use in multiple tissue engineering applications (Price, Berry et al. 2007). 
 

One modification to HA that is used to strengthen the mechanical properties of 
the polymer is conjugation of a methacrylate group; this conjugation allows the 
possibility of cross-linking and formation of a polymer network that is stronger than HA 
alone. The resulting polymer, in the presence of a photoinitiator, can be cross-linked via 
UV polymerization, and this forms a hydrophilic scaffold called a hydrogel (Bae, 2011; 
Schante, 2011; Nguyen, 2014). For our work, we conjugated HA with 2-aminoethyl 
methacrylate (AEMA), forming HA-AEMA macromer. With massive swelling 
capabilities, the ability to encapsulate cells and other factors, biodegradability, and a 
backbone known for having wound healing and structural roles in the body, HA-AEMA 
hydrogels have potential to be effective tissue engineering scaffolds. To investigate the 
extent of scaffold possibilities, we synthesized HA-AEMA macromers of various HA 
molecular weights and cross-linking densities of AEMA and analyzed their rheological 
and mechanical properties. Furthermore, we exposed dental pulp stem cells (DPSCs), to 
both HA-AEMA macromer and hydrogel to test for cytotoxicity. The purpose of this 
work is to evaluate the range of mechanical properties possible for HA-based hydrogels 
as well as their cytotoxicity to DPSCs to determine the extent of their potential utility in 
various tissue engineering applications.  
 
 

Specific Aims 
 

The long term goal of this project is to develop the HA-AEMA hydrogel whose 
mechanical properties are optimized for successful growth, encapsulation, and 
differentiation of stem cells for tissue engineering applications. This hydrogel would have 
tunable mechanical properties in order to match those of native tissue, and it would 
degrade over time so the encapsulated cells would have space and time to grow, 
differentiate,  and aid in the healing and restructuring of damaged tissue. A desired result 
of this optimized scaffold system would be higher occurrence rates of recovery of 
functionality. 
 

In order to achieve this goal, we must first identify factors that control the 
mechanical properties, and make sure the hydrogel system is biocompatible with cells. 
The objective of this thesis was to synthesize HA-AEMA based hydrogels of 18 kDa and 
270 kDa HA molecular weights and characterize them along with other previously 
synthesized HA-AEMA hydrogels. Another objective was to show that these hydrogels 
are able to successfully encapsulate dental pulp stem cells. The main hypothesis of this 
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thesis is HA-based hydrogels can be developed with tunable mechanical properties and 
can successfully encapsulate DPSC cells as representative stem cell type in order to 
validate potential use for tissue engineering applications. This hypothesis was tested 
according to the following three specific aims: 
 

1) Synthesize and characterize HA macromer. 
Through ion exchange, AEMA conjugation, and dialysis, HA was converted 
from a sodium salt configuration to a methacrylated form, specifically 
conjugated with 2-aminoethyl methacrylate. Two macromers that vary in the 
molecular weight of the HA component will be synthesized. Verification of 
successful synthesis will be done by 1H NMR. In order to characterize the 
HA-AEMA macromers, we will check which macromers are soluble in 
solution as well as measure their viscosity in solution.   

 
2) Synthesize and characterize the mechanical properties of HA-based hydrogels.  

Synthesis of HA-based hydrogels was done via UV polymerization, and both 
newly-synthesized and previously-synthesized macromers were tested to see 
which resulted in successful formation of a hydrogel. Those hydrogels that 
were successfully synthesized were characterized by measuring their 
viscoelastic and mechanical properties, including storage and loss moduli, 
swelling ratio, and compressive strength. In addition, the shape of hydrogels 
was characterized over various swelling times. 

 
3) Study cytotoxicity and encapsulation capabilities of HA macromer and hydrogels.  

DPSCs were cultured in flasks until confluent. Cytotoxicity of DPSCs to HA 
macromer was tested at various concentrations of macromer in cell growth 
medium by MTT assay. Encapsulation capabilities were studied by mixing 
suspended stem cells to the macromer/photoinitiator solution and exposing the 
mixture to UV during the polymerization process. After 24 hours, hydrogels 
were stained for live cells to visualize successful encapsulation and survival of 
stem cells during the hydrogel formation process. Effects of UV exposure to 
encapsulated cells were not evaluated during this study. 
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CHAPTER 2.    LITERATURE REVIEW 
 
 

Current Definition and Treatment of Tissue Injury 
 

Injury to tissue occurs in a variety of ways, such as injury from sports and 
exercise, falls, car accidents, or other high impact traumatic events. Whatever the cause 
of the injury, the effect is a mechanical force that extends beyond the strength of the 
tissue itself. Examples of such injuries include sprains and strains of ligaments and 
tendons, muscle fatigue, tissue tearing, crush injury of nerve tissue, lacerations, and more. 
Tissue injury can be a painful event that is accompanied with swelling, inflammation, and 
sometimes a loss of tissue function. 
 
 
At-Home and Surgical Treatment of Tissue Injury 
 

Treatment of these injuries starts with the PRICE (Protection, Rest, Ice, 
Compression, Elevation) method immediately following the injury: this involves 
remaining immobile and reducing pain and inflammation by applying ice and 
compression to the local area of the injury while elevating the injury above the heart 
(Hoffman, 2008). Once extent of injury is determined, mild injuries often go untreated to 
allow healing by natural processes where full recovery is likely to occur. Such mild 
injuries may include neuropraxia of nerve tissue caused by ischemia or intense 
compression, sprains and strains in connective tissues where tears are absent, mild burns 
of the outer skin, etc. Mild injuries can be treated with a continuation of the PRICE 
method until inflammation and pain cease. 
 
 If tissue injury is more severe and cannot be treated at home independently, 
surgery may be required to fix the injured tissue, and this often involves autografts or 
allografts from a donor site. For example, anterior cruciate ligament (ACL) injuries affect 
more than 200,000 people annually, and ACL reconstructive surgery is often the choice 
of treatment to return function as quickly as possible and improve quality of life (Kim 
and Smith, 2009). For ACL injuries that may require autografts, the surgeon will take 
tissue from other tendons, most often knee cap tendons or hamstring tendons, and secure 
the donor tissue in replacement of the damaged tissue (Ma, 2013). This, unfortunately, 
simply moves the wound site to an area that experiences less mechanical forces. Though 
allografts avoid the problem of an additional wound site in the same body, immuno-
suppression therapy is implemented in conjunction with allografts to minimize the 
chances of rejection of the donor tissue. 
 
 
Biomaterials Used in the Treatment of Tissue Injury 
 
 With a research focus on tissue engineering, several different types of 
biomaterials have been synthesized and studied as an alternative to surgery to minimize 
invasive procedures while providing healing capabilities to a variety of injured tissues. 
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For such purposes, biomaterials are constructed, ideally, to host cells and allow 
interaction with the living tissue environment, and this construct is called a scaffold; 
biomaterials that interact with living tissue are considered more ideal than inert materials 
because scaffolds have the potential to aid in more wound healing processes by hosting 
cells, drugs, and other healing factors (Keane and Badylak 2014). Scaffolds may include 
metals and ceramics, especially for orthopedic application, but the most popular type of 
biomaterial used in tissue engineering is the biodegradable polymer (Chen, Liang et al. 
2013). These specific biomaterials are widely utilized due to their nature of degrading by 
the body’s natural process and removing the need to perform invasive procedures to 
remove the material once its tissue engineering function is complete. 
 

There are several examples of biodegradable polymers being studied for potential 
use in tissue engineering. In regards to neural tissue engineering, polymers such as 
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) utilized as a microsphere (Chen 
and Tong 2012) and chitosan substrates (Du, Tan et al. 2014) have shown effectiveness in 
neural progenitor cell (NPC) differentiation into neurons; to increase the efficiency of 
drug delivery, chitosan nanoparticles have been utilized for potential improved treatment 
of glaucoma (Katiyar, Pandit et al. 2014); hydrogels consisting of polyethylene glycol 
have shown promise as cell carriers for neural transplantation (Mahoney and Anseth 
2006). In cardiac tissue, polysaccharide-based scaffolds have shown potential for 
improving cardiac function and repairing damaged tissue, especially following 
myocardial infarction in mice (Silva, Juenet et al. 2014). Even in bone tissue engineering, 
a focus still dominated by metals and ceramics, progress has been seen in bone repair and 
osteoblast differentiation using poly(fumaroyl bioxirane) maleate (PFM), a polymer that 
has mechanical strength range close to natural bone (You, Bi et al. 2012). 
 

Biodegradable polymers that are naturally occurring are of particular interest in 
tissue engineering applications due to their inherent biocompatibility. Collagen is the 
most abundant protein found in the body, and its role of structural support in the ECM 
has made it a prime candidate for tissue engineering purposes. However, collagen is 
mechanically weak on its own, it varies in structure across species, and most major 
sources of collagen come from non-human animals. For these reasons, utilization of 
collagen may cause immunogenic responses to occur in patients (Chen, Liang et al. 
2013). Some studies of naturally occurring long-chain polysaccharides have also had 
great success in tissue engineering applications. Chitosan, which is obtained from 
crustacean shells as one of the most abundant polymers on Earth, has had great success in 
several different tissue engineering applications, including differentiating neural stem 
cells as a hydrogel scaffold (Leipzig, Wylie et al. 2011) and improving cardiac function 
in conjunction with stem cells (Silva, Juenet et al. 2014). However, chitosan is not a 
native polymer of the human body. Hyaluronic acid is an abundant native polysaccharide 
of the human body, an advantage over non-native biopolymer choices, that is a highly 
conserved structure across species, which is a great advantage over collagen relating to 
immunogenic response (Price, Berry et al. 2007). For this reason, hyaluronic acid is one 
of the most studied biopolymers in recent years for application in tissue engineering. 
 
 



 

6 

Hyaluronic Acid 
 
 
Role and Structure in the Body 
 

Hyaluronic acid (HA), also called hyaluronan, is a natural, carbohydrate polymer 
that has become an increasingly more important tool in the medical and bioengineering 
fields. Hyaluronic acid is a major component of the extracellular matrix (ECM), second 
only to collagen in terms of abundance. HA plays several roles in the body. Similar to 
collagen, it plays a role in structural integrity, connecting to proteoglycans of cells’ 
plasma membranes and causing behavioral changes to occur. HA also plays an important 
role in lubrication of joints: hyaluronic acid is found in heavy concentrations in 
connective tissues and synovial fluid and aides in keeping the coefficient of friction low 
between contacting surfaces while ensuring the area is hydrated (Fraser, 1997). HA has 
even been proposed to have an important role in the development of the spinal cord, 
specifically cell migration and axonal growth (Meszar, Felszeghy et al. 2008). One of the 
most vital roles of HA is its involvement in the wound healing process. At low molecular 
weights, around 1500 Da, HA has been shown to aid in the delay of scar tissue formation 
resulting in complete healing of damaged areas: this is especially seen in infants, where 
concentration of low molecular weight HA is higher than those found in adults (Price, 
Berry et al. 2007) . At higher molecular weights, HA stimulates fibroblast proliferation 
which causes an increase in the production of collagen for constructing of ECM support 
in wounds (Price, Berry et al. 2007). When HA polymer chains reach lengths of 25 
monomer units or below, HA is pro-angiogenic; therefore, it aides in the formation of 
new blood vessels to wound areas (Price, Berry et al. 2007). With its roles in structuring, 
lubrication, hydration, and wound healing, HA is a good candidate for utilization in 
biomedical applications. 
 

HA, as a monomer unit, is composed of two carbohydrate molecules: D-
glucuronic acid and N-acetylglucosamine, which interchange along the length of HA 
polymer chains. The molecular weight of HA chains varies widely in the body, from 
hundreds to multiple millions of Daltons. Production of HA occurs in the plasma 
membrane of fibroblasts, and the deposition and reuptake of HA from and into fibroblasts 
is controlled by the CD44 receptor on the surface of the cell (Price, 2007; Fraser, 1997). 
For the average 70 kilogram person, there is roughly 15 grams of HA in their body at any 
given time. However, HA is highly recycled, and it has a turnover rate of 3 days (Stern, 
2004). HA is a glycosaminoglycan, and it is often seen as a sodium salt in physiological 
conditions due to its negative charge (Vasi, 2014). HA is highly hydrophilic, forming a 
gel-like consistency when interacting with water, which aides in its roles of hydration and 
lubrication in connective tissues. Though HA is not as prevalent as collagen in the ECM, 
HA has a very distinct property that gives it an advantage when it comes to prevalence: 
the structure of HA is highly conserved across different species and even phyla, thus 
extracted HA from sources other than humans have identical structure (Price, 2007). 
 

Because HA is a natural polymer produced in the body with a highly conserved 
structure, it is biocompatible. Through enzymatic action and CD 44 receptor interaction 
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of fibroblasts, HA is also biodegradable and bioresorbable. With its functional groups, 
such as carboxylic acid and hydroxyl groups, HA is able to be conjugated with other 
molecules in order to obtain various mechanical, rheological, and physical properties. 
Because of these characteristics, including the various roles and most importantly wound 
healing, HA is a reasonable choice for utilization in scaffolding for the purpose of tissue 
engineering. 
 
 
Commercial Uses of Hyaluronic Acid as a Scaffold 
 

HA is largely obtained from rooster combs due to the high concentration of HA 
found there, up to 7.5 mg/mL, but it also can be obtained from bacteria-streptococci 
(Collins, 2013). Products such as Hyalogran© are used for pain relief from under-
lubricated joints and contain high molecular weights of HA to prolong the treatment. HA 
has also been used in wound dressing applications, often manufactured as a sheet to be 
used simultaneously with bandages (Price, Berry et al. 2007). The wound dressing 
product Hyalofill © utilizes HA’s gelation ability in this way, which maintains a wet 
environment in wounds under bandaging to ensure proper healing. In addition, hyaluronic 
acid has shown potential as an effective dermal filler and a potential treatment for 
osteoarthritis (Fakhari and Berkland 2013). 
 
 
Hyaluronic Acid Structure Modification for Scaffold Use 
 

The use of HA as a scaffold is done mostly in conjunction with another functional 
molecule because HA is mechanically weak on its own (Fakhari and Berkland 2013). HA 
is highly hydrophilic, and thus dissolves easily in water. In addition, natural enzymes, 
such as hyaluronidase, and the re-uptake of HA by fibroblasts increases the degradation 
rate of HA in the body (Price, Berry et al. 2007). Though this works well with 
viscosupplementation treatment, other applications that require scaffolds to degrade over 
periods of days, weeks, and months must have HA that is modified. One modification 
that has been utilized in several studies is the methacrylation of HA, allowing for the 
cross-linking of HA polymer chains and the lowering of degradation rates of HA 
(Bencherif, 2008; Schante, 2011; Bae, 2011; Vasi, 2014; Nguyen, 2014). This is achieved 
primarily through conversion of HA in tetrabutylammonium (TBA) form and conjugation 
of a methacrylate group to HA in an organic solvent (Oh, Park et al. 2010). Once HA has 
been modified with a methacrylate group, it is able to be cross-linked either chemically or 
through use of UV, called photopolymerization. For photopolymerization, cross-linking 
is done by using a photoinitiator, usually Irgacure 2959 (Bae, 2011; Schante, 2011; 
Nguyen, 2014) and the result is a network of polymer chains called a hydrogel. Hydrogel 
scaffolds are hydrophilic and can swell up to 1000 times their dry weight in an aqueous 
environment, yet the hydrophobic crosslinks protect the structure from hydrolysis and 
enzymatic degradation (Seliktar 2012). This type of scaffold is useful in the delivery and 
carrying of cells because it allows the aqueous environment to enter while providing 
structural integrity, thus mimicking the 3D environment of the ECM (Tibbitt and Anseth 
2009). In addition, encapsulation of cells within hydrogels is possible because the method 
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of synthesizing the scaffold, whether it is covalent or physical methods, can be done 
under mild conditions to ensure maximizing cell survival (Guvendiren and Burdick 
2013). Cross-linking HA makes for a stronger hydrogel that can last longer, and 
modifications of the cross-linker can help control these properties. 
 
 

HA-Based Hydrogels for Tissue Engineering Purposes 
 

In regards to tissue engineering, HA-based hydrogels have shown potential in 
various tissue engineering applications, especially in conjunction with various omni- and 
pluripotent stem cells. Studies done in 2013 study by Liming Bian and Iris Kim showed 
that HA conjugated with methacrylic anhydride formed a hydrogel that had improved 
compressive strength as crosslinking density increased and successfully induced 
chondrogenesis of mesenchymal stem cells (Bian, 2013; Kim, 2013). For applications 
involving cardiac tissue, HA hydrogels crosslinked with N-hydroxysuccinimide (NHS) 
mixed with blood have shown success in proliferation of cardiosphere derived cells 
(CDCs) and improving cardiac function after injection in rats (Chang, 2012). 
Conjugations of HA with tyramine have even shown roles in organization of bone matrix, 
controlling cellular condensation during chondrogenesis, and differentiation of MSCs 
(Toh, Lim et al. 2012).  HA hydrogels have shown potential to successfully encapsulate 
and maintain non-differentiation of embryonic stem cells (Gerecht, Burdick et al. 2007). 
Furthermore, methacrylated HA hydrogels have also been successful in the proliferation 
of neural progenitor cells (NPCs) and their differentiation into neuron- and astrocyte-like 
cells (Seidlits, 2010). For HA-AEMA hydrogels, studies have found success of these 
scaffolds to aid in osteogenesis (Bae, 2011; Bae, 2014). Though studies have a variety of 
methacrylate groups conjugated to the HA backbone to form the hydrogel for different 
tissues applications, being able to tune the mechanical properties of one specific 
macromer to span a broad range of strengths may also be influenced by molecular weight 
of the backbone (in this case, HA). 
 

Mechanical properties of HA-based hydrogels have also been studied under 
various conditions. A 2008 study by Siri Bencherif showed that HA hydrogels 
crosslinked with glycidyl methacrylate had increasing compression moduli as the 
crosslinking density was increased (Bencherif, 2008). Many studies involving HA-based 
hydrogels utilize only one molecular weight of HA when analyzing the mechanical 
properties of hydrogels, and the only mechanical property characterized for these studies 
is the compressive modulus. To gain a better understanding of the mechanical properties 
of these 3D hydrogels, it is important to evaluate their response to other mechanical 
forces that may be present, such as shear forces.  In the 3D in vivo environment, 
hydrogels may experience stresses ranging from the very soft brain environment (~0.1 
kPa) to stiff bone (~80kPa) (Guvendiren and Burdick 2013). Native tissue have elastic 
moduli ranging from 0.5 kPa and 1010 Pa, respectively (Li, Katsanevakis et al. 2012), and 
these tissue environments experience both shear and normal forces.  Therefore, this work 
characterizes HA-AEMA hydrogel mechanical properties both in compression and shear, 
and hydrogels differ both in molecular weight and crosslinking density to analyze the 
effects of multiple tunable factors on the strength of the hydrogel system. Furthermore, 
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this work also checks the viability of these HA-AEMA hydrogels for tissue engineering 
application by exposing and encapsulating DPSCs in these systems. Studies have shown 
that DPSCs, which can be obtained easier than other NPCs due to their location outside 
the CNS in adults (Gronthos, S. et. al. 2000; Huang, G.T. et al. 2009) and have the 
potential to differentiate in to several different types of cells, including osteoblasts, 
odontoblasts, neuronal cells, epithelial cells and others given the right conditions 
(Kawashima 2012; Arthur A. et. al, 2008), thus successfully encapsulating DPSCs with 
HA-AEMA hydrogels would show great potential in utilizing this particular system to 
many different applications of tissue engineering across the human body. 
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CHAPTER 3.    MATERIALS AND METHODS 
 
 

Synthesize and Characterize HA-AEMA Macromer 
 
 
Synthesis Process of HA-AEMA Macromer 
 

Ion Exchange. Sodium salt configuration of hyaluronic acid (HA), specifically 
molecular weights of 18 kDa and 270 kDa, underwent ion exchange and was converted to 
its tetrabutylammonium (TBA) form. Specifically, 30 grams of Dowex-8X-50 ion 
exchange resin was washed three times with 500 mL of deionized (DI) water and dried 
by vacuum filtration. After washing, the resin was mixed with 50 milliliters of 1.5 M 
TBA and 25 milliliters of DI water to convert the ion exchange resin into TBA form and 
was left to stir overnight. After overnight mixing, a solution of sodium salt-type 
hyaluronic acid in DI water, with a concentration of 10 mg/mL, was added to the 
converted resin and mixed for 24 hours. This allows for the exchange of sodium salt on 
HA with TBA to form HA-TBA. After mixing, the mixture was vacuum-filtrated, and the 
ion exchange resin was washed three times with DI water to ensure maximum collection 
of remaining supernatant. After vacuum filtration, the ion exchange resin was mixed with 
fresh TBA and DI water for another cycle of conversion, and the collected supernatant 
was lyophilized for 72 hours to obtain HA-TBA in solid form. The ion exchange process 
is necessary in order for HA to dissolve in dimethyl sulfoxide (DMSO), which is not 
possible in the sodium salt state. 1H NMR was utilized to confirm synthesis of HA-TBA. 
 

AEMA Conjugation. HA-TBA macromer was collected following the 
lyophilization step of the ion exchange process and dissolved in DMSO. The amount of 
DMSO used to completely dissolve the HA-TBA macromer was kept to a minimum for 
the ease of later steps in the synthesis process, and this amount varies dependant on the 
molecular weight of HA. The dissolution process was done in the presence of nitrogen to 
maintain air flow and minimize water intrusion from the ambient air. After complete 
dissolution of HA-TBA, three components were added to the solution: AEMA, 
benzotriazol-1-yl-oxytripyrrolidinophosphonium hexafluorophosphate (PyBOP), and 
diisopropylethylamine (DIPEA). Prior to the addition of these components, AEMA and 
PyBOP were brought to room temperature, dissolved completely in DMSO at a 
concentration of 100 mg/mL, and added to the solution. DIPEA was added last. To 
achieve a degree of substitution of 25%, the ratio of HA to component, per molar 
concentration, was 1:4 for all three components added. After adding the components to 
the DMSO solution, the air flow of nitrogen gas was removed and the mixture was 
sealed. The mixture is shielded from light and allowed to stir for 7 days to allow for 
maximum conjugation. 
 

Precipitation. One day prior to the end of the stirring cycle of the conjugation 
step, a volume of acetone, equal to 10 times the volume of the DMSO solution, was 
chilled in a freezer. After chilling overnight, the acetone was set in an ice water bath, and 
the DMSO solution was added drop-wise into the acetone. Once all of the solution had 
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been added, the precipitate was allowed to settle to the bottom of the precipitation beaker 
for 15 minutes. Excess acetone was removed from the beaker after settling, the 
precipitate was resuspended, and then the precipitate mixture was divided equally among 
a number of centrifuge tubes. The divided mixture was centrifuged for 5 minutes, and the 
acetone liquid phase of the mixture was carefully discarded. Fresh acetone was added to 
each of the centrifuge tubes, and the precipitate mixture was resuspended and centrifuged 
again. This cycle was done three times to remove any excess DMSO still present. After 
the acetone washings, acetone was removed from all of the tubes, and the precipitate was 
combined. 
 

During one attempt at synthesis, an additional step was added after the above 
precipitation steps as an experiment: the precipitate was vacuum dried for 24 hours prior 
to beginning dialysis. Visual comparisons were made between the final product of this 
synthesis procedure and other products of syntheses without including this step. 
 

Dialysis and Final Product. The precipitate was completely dissolved in DI 
water. The solution was then transferred to a dialysis tub with a molecular weight cut-off 
of 6000-8000 Da. Once the dialysis membrane was sealed, it was suspended in a 3 L 
container of 1.5 M NaCl in DI water, and the suspension solution was stirred for 2 hours 
while hidden from light. After 2 hours, the salt solution was replaced, the membrane was 
resuspended, and the suspension solution was stirred for an additional 2 hours. This 
process was repeated once more, and at the six hour mark of dialysis, the salt solution 
was replaced with only DI water. The suspension solution was replaced as often as 
possible with at least 2 hours time passing between each replacement. After dialysis was 
performed for 24 hours, the contents of the membrane were transferred to a freeze-drying 
container and lyophilized for 72 hours. The solid product of the final lyophilization was 
HA-AEMA macromer. 
 
 
Characterization of HA-AEMA Macromer 
 

Characterization of Macromer Structure. After synthesis was completed, HA-
AEMA macromer structure was characterized by 1H NMR using a Bruker 400 MHz 
NMR spectrometer. Macromer was dissolved in deuterium oxide (D2O) at a 
concentration of 10 mg/mL. After dissolution, analysis was performed via proton 
experiment with the number of iterations set to 128. In addition to identifying 
characteristic peaks, actual degree of substitution was calculated by peak integration 
comparison. 
 

Macromer Solubility. HA-AEMA macromer was dissolved in DI water to test 
solubility at concentrations of 0.1wt%, 0.5wt%, 1wt%, 2wt% 3wt%, and 5wt%. Several 
macromer types were tested, differing in HA molecular weights (6.4 kDa, 16kDa, 18kDa, 
37kDa, 66kDa, 270kDa) and degree of AEMA substitution (12.5%, 25%, and 37.5%). 
The macromers were allowed to stir for, at most, 4 hours, and any macromer that did not 
fully dissolve within this time frame were considered ‘insoluble’. 
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Viscosity of Macromer in Solution. Synthesized HA-AEMA macromer was 
dissolved in a solution of DI water and Irgacure 2959 (0.05%). Once dissolved, the 
viscosity of the resulting macromer solution was tested on an AR-G2 rheometer from TA 
instruments by performing a oscillating shear rate ramp at a constant temperature of 37°C 
on 70 μL of the macromer solution.  The software associated with the rheometer was set 
up to take measurements of the viscosity periodically as the shear rate increased, and a 
resulting graph was created upon termination of the shear ramp. The viscosity of the 
macromer solution was selected as an average of the viscosity values on the resulting 
graph which were independent of the shear rate applied to the solution. The experiment 
was repeated 3 times for every batch of macromer solution created. Macromer 
concentration was 3wt%, and the viscosities of macromer solutions HA-AEMA-16k-25, 
HA-AEMA-66k-25, and HA-AEMA-270k-25 were compared. 
 
 

Synthesize and Characterize HA-AEMA Hydrogels 
 
 
Formation of HA-Based Hydrogels 
 

Hydrogel Formation via UV Polymerization. HA-AEMA macromers that were 
successful in completely dissolving in DI water at various concentrations in less than 4 
hours were dissolved again in H2O and were exposed to UV light at an intensity of 360-
390 mW/cm2 for 10 minutes at each of the concentrations previously tested. Irgacure 
2959, a biocompatible photoinitiator, was added to the H2O solution at a concentration of 
0.05wt% prior to dissolving the macromers to initiate cross-linking. 50uL of macromer 
solution was placed into a Teflon well and exposed to UV, and, if a hydrogel was 
successfully formed, it was carefully removed from the well and air-dried on a non-stick 
surface for 24 hours. Macromer solutions that did not form a hydrogel after the first 
exposure were exposed at most twice more for the same duration before considering it a 
‘failure’.  
 

Analyze Swelling Ratio of HA-based Hydrogels. Hydrogels formed from the 
successful macromers were weighed and submerged in PBS following the air-drying 
process and kept hidden from light. Visual checks were performed on the hydrogels to 
see if they were still present in the PBS from the time of initial submersion. Swelling 
ratios for hydrogels were calculated according to Equation 3-1: 
 

Swelling Ratio = (Wwet-Wdry)/Wdry*100%   (Eq. 3-1) 
 
 
Investigation of Mechanical and Rheological Properties of HA-Based Hydrogels 
 

Storage and Loss Moduli Measurement. Hydrogels were formed following the 
steps described above. Following immersion in PBS, the both the storage modulus and 
loss modulus of hydrogels were tested using an AR-G2 TA Instruments Rheometer. 
Specifically, hydrogels were subjected to an oscillating strain ramp, from 0.1 to 10 
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percent strain on a logarithmic scale, while maintaining normal force to 0.01 - 0.03N, the 
temperature at 37°C, and a constant 1 Hz frequency of oscillation. The software for the 
rheometer was set up to take 20 sample points per decade of strain, and a resulting graph 
of the storage modulus over the range of strain was created at the termination of the 
procedure. Storage modulus was measured as the average value of data points along the 
linear viscoelastic region (LVR), or the section of the graph in which storage modulus 
was independent of the strain. Comparisons of storage moduli were made between 
hydrogels that differed in several different categories, described below. 
 

HA Molecular Weight. The storage moduli of hydrogels that differed in the 
molecular weight of the HA component of the macromer were compared using Student 
T-test to check for significant differences. Molecular weights that were included were 16 
kDa, 18kDa, 66 kDa, and 270 kDa. 
 

AEMA Degree of Substitution. The storage moduli of hydrogels that differed in 
the degree of substitution of the AEMA component of the macromer were compared 
using Student T-test to check for significant differences. Degree of substitutions that were 
included were 12.5% and 25%. 
 

Macromer Concentration in Photoinitiator Solution. The storage moduli of 
hydrogels that differed in the macromer concentration of the photoinitiator solution were 
compared using Student T-test to check for significant differences. Concentrations that 
were included were 3wt% and 5wt% 
 

Following measurement of the storage modulus using the strain ramp procedure, 
measurement of both the storage and loss moduli was done during a frequency sweep 
using the rheometer. While maintaining a temperature of 37°C and a sampling rate of 20 
points per decade, the frequency of oscillation varied from 0.1 Hz to 100 Hz with a 
constant strain of 1%. Once storage modulus measurements indicated a drastic drop in 
elasticity of the hydrogel, the sweep was stopped, and the frequency at which the storage 
modulus began to drop off was considered the critical frequency. 
 

Compressive Strength Measurement. Following hydrogel swelling, the 
compression profile of HA-AEMA-18k-25 hydrogels were evaluated following swelling 
in PBS at time 0 (immediately following UV polymerization), 1 day, 3 days, 7 days, 15 
days, 21 days, and 28 days using a TA Instruments Dynamic Mechanical Analyzer 
(DMA) Q800. The DMA was calibrated before each set of experiments, and the 
dimensions of the hydrogels were measured and recorded in the accompanying DMA 
software prior to testing. Starting at a normal force of 0.001N, the hydrogel was heated to 
37°C and put under a force ramp of 0.25 N per minute until the machine reached 3N or 
the experiment automatically stopped due to rupture of the hydrogel. After the force ramp 
was complete, a graph of the resulting stress/strain curve was produced. To determine the 
Young’s modulus of the compressed hydrogel, the slope of the stress/strain curve was 
analyzed at a point where the profile was linear and most consistent. Graphs were 
produced comparing the profiles and moduli of each swelling time point. In addition, 
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HA-AEMA-270k-25 hydrogels were compressed under the same conditions immediately 
following UV polymerization to compare results with HA-AEMA-18k-25 hydrogels. 
 
 

Study Cytotoxicity and Encapsulation Capabilities of HA-AEMA Macromers and 
Hydrogels 

 
 
Cytotoxicity of HA-AEMA Macromer to DPSCs 
 

Cytotoxicity of HA-AEMA-18k-25 and HA-AEMA-270k-25 macromers to 
human DPSCs was tested using MTT mitochondrial based assays purchased from ATCC. 
Human DPSCs (obtained from Dr. George Huang’s lab, UTHSC) at 3rd passage were 
seeded at 15000 cells per cm2 in 96 well plates and incubated for 24 hours. Macromer 
solution was added to each of the test wells in concentrations of 0.5%, 1%, and 3%. 
Growth medium, which consisted of α-MEM, 10% FBS, 100 U/mL streptomycin, 100 
U/mL penicillin, and 25 ng/mL amphotericin B, was added to the control wells. Exposure 
of DPSCs to macromer was limited to 30 minutes to simulate short-term exposure found 
in the encapsulation study protocol, and MTT reagent was added to all wells following 
this duration. The plate was then incubated for a further 4 hours, at which point detergent 
reagent (10% SDS in 0.01% HCl/water solution) was added to all wells. After incubating 
at room temperature in the dark for another 2 to 4 hours, absorbance of each well was 
measured on a microplate reader at a wavelength of 550 nm. Because absorbance 
readings of MTT assay was strongly correlated with cell viability (linear positive 
relationship), ratios of absorbance of testing wells to absorbance of control wells can give 
percentages of cell viability. 
 
 
DPSC Survival in HA-Based Hydrogels 
 

DPSCs were grown until confluent in a 25cm2 culture flask and trypsinized for 
cell counting. Cell concentration was diluted and loaded into HA-AEMA macromer, both 
18k-25 and 270k-25 hydrogel solutions, at 2.5 x 104 cells per hydrogel volume (50 uL). 
Immediately following UV polymerization for 10 minutes, hydrogels were suspended in 
growth medium and incubated for 24 hours. After incubation, growth medium was 
removed and replaced with calcein AM for 30 additional minutes for staining live cells. 
After incubation, hydrogels were imaged at 4X magnification. 
 
 

Statistical Analysis 
 

Data were reported as mean ± standard deviation (S.D.) from at least three 
separate experiments for the viscosity, storage/loss modulus, compressive strength, and 
cytotoxicity studies. Two-tailed Student’s t-test was used to analyze the differences 
between treatment groups. A statistically significant difference was reported if p=0.05 or 
less.  
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CHAPTER 4.    RESULTS 
 
 

Synthesis and Characterization of HA-AEMA Macromer 
 
 
Macromer Synthesis 
 

Ion Exchange. A visual inspection of the sodium salt-type HA, prior to the 
beginning of synthesis, revealed that the lower molecular weight 18 kDa was courser, 
while the 270 kDa HA was a finer white powder. Dissolution of HA in 100 mL of DI 
water took significantly longer for the 270 kDa molecular weight over 18 kDa, 
specifically 15 minutes and 3 minutes, respectively. Since the same mass of HA powder 
was measured for both the 18 kDa and 270 kDa molecular weight, the molar 
concentration of HA in water is higher for the 18 kDa; however, ion exchange resin is 
utilized in excess to ensure maximum ion exchange for both molecular weights. 
Following the 24 hour mixing period for ion exchange to take place, the supernatant for 
the 270 kDa appeared more viscous than the 18 kDa supernatant. Both supernatants were 
collected following vaccum filtration and lyophilized. Samples from each batch were 
taken following lyophilization, dissolved in DMSO, and analyzed by 1NMR. 
Confirmation of successful ion exchange, resulting in the formation of HA-TBA, can be 
seen in Figure 4-1. Specifically, the methyl and methylene groups associated with TBA 
are seen at 0.9 ppm and 1.3 ppm, respectively, and the ester bond located on the 
glucosamine unit of HA is shown at 1.5-1.6 ppm. 
 

AEMA Conjugation. A visual inspection of the HA-TBA macromer following 
lyophilization revealed that the lower molecular weight 18 kDa HA-TBA appeared to be 
thinner in substance and stringier. For the higher molecular weight 270 kDa, it looked 
much thicker and significantly less porous. 
 

Dissolution of both macromers in DMSO were successful, but it takes about 40 
mL of DMSO to completely dissolve the 270 kDa macromer in comparison with just 15 
mL to completely dissolve the 18 kDa macromer. In addition, the lower molecular weight 
HA-TBA also took a significantly shorter time period to completely dissolve in DMSO 
over the higher molecular weight HA-TBA. However, the added components, AEMA, 
PyBOP, and DIPEA, are dependent only on the initial mass of HA used in synthesis, the 
molecular weight of the HA monomer, and the desired degree of substitution of the 
AEMA component. Because we used 1 gram for each molecular weight and our desired 
degree of substitution for each was 25%, the same amount of each component was added 
during the conjugation step. 
 

Precipitation. For both molecular weights of macromer added dropwise to the 
chilled acetone, the precipitate that formed upon addition looked similar to each other: a 
translucent gel suspension. However, once the excess acetone was removed and the 
precipitate was centrifuged, the precipitate was a white gelatinous solid at both molecular 
weights.
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Figure 4-1. 1NMR of HA-TBA following ion exchange process of synthesis. 
The characteristic peaks for TBA are located around 0.9 ppm (methyl group, label ‘a’) and 1.3 ppm (methylene group, label ‘b’) with the 
characteristic ester bond for HA shown around 1.5-1.6 ppm (ester bond, labeled ‘c’). The other groups of peaks are characteristic for HA, 
both of which match for each molecular weight. 
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In one synthesis attempt, the precipitate was dried in a vacuum for 24 hours 
following centrifuging in an attempt to completely remove the acetone prior to DI water 
dissolution and dialysis. However, this resulted in almost complete loss of the precipitate 
for that 270 kDa molecular weight batch, and no end product could be obtained. There 
was some loss of the 18 kDa molecular weight batch that was vacuum dried after 
centrifuging, but a final product at the end of synthesis was created. The vacuum dried 
batch of 18kDa, seen on the left in Figure 4-2, did not form a hydrogel when the 
prepared macromer solution was exposed to UV light. However, the batch of 18 kDa that 
was not vacuum dried, seen on the right, did form a hydrogel. 
 

Dialysis and Final Product. Dialysis of the precipitate was performed for only 
24 hours. Earlier attempts at synthesis had dialysis being performed for 3 to 5 days, yet 
the end result would fail to make hydrogels. Samples were taken after lyophilization of 
the dialysis solution and 1H NMR shows successful synthesis of HA-AEMA macromer 
for both molecular weights, seen in Figure 4-3. The final product is white with a cotton-
like consistency for both batches, seen on the right side of Figure 4-2. The total mass of 
the final product for the 18 kDa batch and the 270 kDa batch were 237 mg and 250 mg, 
respectively. The biggest contributor to the loss of mass throughout synthesis is the 
precipitation step, where the amount of precipitate obtained following the dropwise 
addition into acetone is much less than the amount of HA-TBA obtained following ion 
exchange. 
 
 
HA-AEMA Macromer Characterization 
 

Characterization of Macromer Structure. Graph of the NMR data for HA-
AEMA-18k-25 can be seen in Figure 4-3. In order to determine the degree of 
substitution of AEMA to the HA polymer, the area under the curve (AUC) for the 
characteristic peaks of the methyl groups for HA (located on the N-acetyl glucosamine 
unit) and AEMA were compared, resulting in a ratio of 6:1, respectively, and a degree of 
substitution between 16 – 18%. Furthermore, the split characteristic peaks of the carbon-
carbon double bond on AEMA were present at chemical shifts of both 5.7 and 6.1 ppm, 
further indicating successful conjugation. In regards to HA-AEMA-270k-25, degree of 
substitution calculations of AEMA also resulted in 16-18% substitution.  
 

Macromer Solubility. In addition to performing solubility tests on the two 
synthesized macromers, The results of the solubility experiment on several different HA-
AEMA macromers can be seen in Table 4-1. Of the seven macromers tested for 
solubility in PBS, only HA-AEMA-37k-37.5 was insoluble in all concentrations, even 
after 24 hours of mixing. Since there were macromers of HA molecular weights 
exceeding that of the insoluble macromer that were soluble themselves, the limiting 
factor of solubility was the increased degree of substitution of the AEMA component. All 
other macromer concentrations were completely dissolved well under the 4 hours cutoff 
mark. The longest duration before complete dissolution was recorded for HA-AEMA-
270k-25, which took around 15 minutes at 5% concentration. HA-AEMA-66k-25 was the 
next longest with 10 minutes at the 5% concentration, but all other macromers completely  
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Figure 4-2. Vacuum drying precipitate affects end product of synthesis. 
Left: Vacuum dried during precipitation. Right: Normal procedure. The end product 
becomes flaky and fails to produce a hydrogel for the vacuum dried procedure, whereas 
the normal procedure is very fluffy and produces a hydrogel. 
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Figure 4-3. NMR graph of HA-AEMA-18k-25 for structure characterization. 
NMR data confirms successful conjugation of AEMA to the HA polymer backbone. To calculate the degree of substitution of AEMA, 
the peak intensity of the methyl groups for AEMA and HA (labeled b and c, respectively) were compared and were found to be 1:6, 
resulting in an actual degree of substitution around 16-18%. Peaks clustered around 3 – 4 ppm are characteristic for HA 
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Table 4-1. Solubility test of HA-AEMA macromers in PBS. 
 

Macromer 
Concentration of Macromer in PBS (wt%) 

0.1 0.5 1 2 3 5 
HA-AEMA-6.4k-

25 Soluble Soluble Soluble Soluble Soluble Soluble 

HA-AEMA-16k-
25 Soluble Soluble Soluble Soluble Soluble Soluble 

HA-AEMA-18k-
25 Soluble Soluble Soluble Soluble Soluble Soluble 

HA-AEMA-37k-
37.5 Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble 

HA-AEMA-66k-
12.5 Soluble Soluble Soluble Soluble Soluble Soluble 

HA-AEMA-66k-
25 Soluble Soluble Soluble Soluble Soluble Soluble 

HA-AEMA-270k-
25 Soluble Soluble Soluble Soluble Soluble Soluble 
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dissolved in under 1 minute across all concentrations. Based on these results, the degree 
of substitution of the AEMA component of the macromer is a much more important 
factor in determining the macromer’s solubility. 
 
 
Viscosity 
 

For all three macromers used in the viscosity studies, there is a settling of the 
viscosity around a strain rate of 10 Hz and beyond, exhibiting characteristics of shear 
thinning as the oscillating strain rate increases. For HA-AEMA-16k-25, HA-AEMA-66k-
25, and HA-AEMA-270k-25 the viscosity was measured as 0.0131 Pa-s, 0.0383 Pa-s, and 
0.0560 Pa-s respectively, seen in Figure 4-4. For each increasing molecular weight, there 
is a significant increase in the viscosity: the p-values calculated from comparisons of 
16k-25:66k-25 and 66k-25:270k-25 were p<0.01 and p<0.05, respectively. Therefore, 
there is a direct relationship between the molecular weight of the HA component of the 
macromer and the viscosity of the macromer solution. Higher molecular weight of HA in 
macromer results in higher viscosity, which may be helpful in cases where a macromer 
solution needs to hold a temporary shape during the UV polymerization process to form a 
hydrogel. If the viscosity of the macromer solution is high enough, UV polymerization of 
the macromer may be able to be performed directly on damaged nerve tissue rather than 
have implantation of a previously formed hydrogel on the site. 
 
 

Synthesis and Characterization of HA-AEMA Hydrogels 
 
 
Hydrogel Formation via UV Polymerization 
 

The results of the hydrogel formation tests can be seen in Table 4-2. Of all the 
macromers that were able to completely dissolve in PBS, only HA-AEMA-6.4k-25 did 
not form hydrogel at any concentration, even after 30 minutes of UV exposure.  Because 
hydrogels were able to form from macromers that contained a lower degree of 
substitution (HA-AEMA-66k-12.5), the limiting factor for HA-AEMA-6.4k-25 was the 
molecular weight of HA, therefore there is a lower limit at which hydrogels cannot be 
created. Perhaps HA-AEMA-6.4k-25 may be able to form hydrogels at higher degrees of 
substitution for the AEMA component, but solubility would have to be tested. In addition 
to HA-AEMA-6.4k-25 not forming hydrogels, all concentrations below 2% also did not 
form a hydrogel for any of the macromers. From this information, it can be concluded 
that the critical concentration for which a hydrogel can be formed lies between 1% and 
2%. At 2% and greater concentrations, hydrogels formed for all macromers. 
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Figure 4-4. Viscosity of HA-AEMA-16k-25, HA-AEMA-66k-25, and HA-AEMA-
270k-25 macromer solutions. 
Increased molecular weight of the HA component in the macromer directly affects the 
viscosity of the macromer solution. There were significant differences between 16k-25 
(0.0131 ± 0.0001 Pa-s) and 66k-25 (0.0383 ± 0.005 Pa-s) as well as between 66k-25 and 
270k-25 (0.0560 ± 0.005 Pa-s). P-values calculated from comparisons of 16k-25:66k-25 
and 66k-25:270k-25 were p<0.01 and p<0.05, respectively. All viscosities were measured 
at 3% concentration, and the error bars represent standard deviation. N=3. 
  

0 

0.01 

0.02 

0.03 

0.04 

0.05 

0.06 

0.07 

16k-25 66k-25 270k-25 

Vi
sc

os
ity

 (P
a*

s)
 

HA-AEMA Macromer (HA MW --- AEMA Deg. Of Sub.) 



 

23 

Table 4-2. Hydrogel formation of HA-AEMA macromers via UV polymerization. 
 

Macromer 
Concentration of Macromer in Photo Initiator Solution (wt%) 

0.1 0.5 1 2 3 5 
HA-AEMA-

6.4k-25 Failure Failure Failure Failure Failure Failure 

HA-AEMA-
16k-25 Failure Failure Failure Hydrogel Hydrogel Hydrogel 

HA-AEMA-
18k-25 Failure Failure Failure Hydrogel Hydrogel Hydrogel 

HA-AEMA-
66k-12.5 Failure Failure Failure Hydrogel Hydrogel Hydrogel 

HA-AEMA-
66k-25 Failure Failure Failure Hydrogel Hydrogel Hydrogel 

HA-AEMA-
270k-25 Failure Failure Failure Hydrogel Hydrogel Hydrogel 
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Swelling of Hydrogels in PBS 
 

For HA-AEMA-66k-12.5 hydrogels, swelling results in a very flat, translucent 
hydrogel that is much more fluid than solid, and they became too fragile to handle at the 
4 hour mark. However, all other hydrogel formations, which had a degree of substitution 
of 25%, swelled to a cylindrical shape (the same shape as the Teflon container in which 
they were photopolymerized) and were translucent yet still visible. The difference in 
shape of HA-AEMA-66k-12.5 versus the other hydrogels can be seen in Figure 4-5. 

Swelling ratios of were calculated for both HA-AEMA-16k-25 and HA-AEMA-
66k-25 hydrogels and compared after 3 days of swelling time in PBS. After swelling 5 
hydrogels for each hydrogel type, the swelling ratio for 66k-25 (78.4 ± 5.2) was found to 
be significantly higher than 16k-25 (50.6 ± 7.6) (p<0.01). The increase in swelling ratio 
for the 66k-25 hydrogels over the 16k-25 hydrogels indicates that swelling ratio increases 
as the molecular weight of HA increases, which allows a larger ingress of water to enter 
and be trapped in the hydrogel. 
 
 
Storage Modulus Measurement 
 

Comparisons for storage modulus were made between HA-AEMA-16k-25, HA-
AEMA-66k-25, and HA-AEMA-270k-25 hydrogels at a concentration of 3 wt%. Figure 
4-6 shows the results of the storage modulus measurements. The storage modulus of 66k-
25 hydrogels (465.5 ± 16.7 Pa) were significantly higher than 16k-25 hydrogels (154.0 ± 
96.4 Pa) (p <0.05), but the difference between 66k-25 and 270k-25 (539.5 ± 70.8 Pa) was 
not significant (p>0.05). Based on the results of these t-test comparisons, there may be a 
threshold for HA molecular weight that, after going beyond this point, does not increase 
the effective storage modulus of the hydrogel.  These are the same findings as found in 
the viscosity experiments, so a measurement of the viscosity of the macromer solution 
may be an indicator of the storage modulus following UV polymerization. This makes 
sense: since viscosity is a measure of internal friction in the fluid, a hydrogel formed 
from higher viscosity macromer solution will retain that same restriction to internal flow 
as a viscoelastic material. When a force is applied to the hydrogel, the restriction to flow 
of the viscous portion of the material allows more energy to be conserved rather than lost, 
thus increasing the storage modulus of the hydrogel. 
 

Comparisons for storage modulus were made between HA-AEMA-66k-25 and 
HA-AEMA-66k-12.5 hydrogels at a concentration of 3%. Figure 4-6 shows the results. 
T-test statistical analysis resulted in a vastly significant difference between 66k-12.5 
(13.8 ± 4.8 Pa) and 66k-25 (465.5 ± 16.7 Pa) (p<0.001). This indicates that the degree of 
substitution of AEMA is a critical component to the mechanical integrity of the hydrogel. 
A substitution degree of 12.5% may be near the critical point for which a hydrogel would 
not even form (specifically for a molecular weight of 66k for HA), which could explain 
for the drastic drop in the storage modulus. An increase to the substitution degree, just as 
the increase in molecular weight showed, restricts the internal flow of the viscous portion 
of the hydrogel. Therefore, when forces are acted upon the hydrogel, there is less energy 
lost to the viscous portion, thus increasing the storage modulus. It seems that degree of  
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Figure 4-5. Difference in swollen hydrogels based on AEMA degree of 
substitution. 
Top: HA-AEMA-66k-25 hydrogel. Bottom: HA-AEMA-66k-12.5 hydrogel. The lesser 
degree of substitution results in a flattened hydrogel that loses the shape of the container 
it was formed inside. HA-AEMA-66k-25 (width = 8mm) has a more well-defined shape 
and is much less viscous than HA-AEMA-66k-12.5 (width =13mm). 
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Figure 4-6. Storage modulus comparisons based on MW of HA, AEMA degree of 
substitution. 
As both the molecular weight of HA and the AEMA degree of substitution increases, the 
storage modulus tends to increase, especially in comparisons between 66k-25 and 
hydrogels lower in both molecular weight and degree of substitution. The degree of 
substitution seems to have a stronger effect, evidenced by 66k-12.5 being weaker than 
16k-25. 16k-25 (154.0 ± 96.4 Pa) and 18k-25 (201.3 ± 33.5 Pa) showed similar storage 
properties. Though 270k-25 (539.5 ± 70.8 Pa) hydrogels had a higher average storage 
modulus than 66k-25 (465.5 ± 16.7 Pa), this difference was not significant. Error bars 
represent standard deviations and N=3 for all hydrogel configurations.The symbol “*” 
indicates a significant difference (p<0.05). 
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substitution may be a bigger factor in its effect on the storage modulus over the molecular 
weight of the HA, just as it was the limiting factor in the solubility test for the 
macromers. 
 

The storage modulus of HA-AEMA-16k-25 was compared at concentrations of 
3% and 5%. The storage modulus for 5% was significantly higher than the 3% 
concentration, measured at (850 ± 200 Pa) and (370 ± 170 Pa), respectively (p<.05). 
 
 
Compression Strength Measurement 
 

The profile of the stress/strain curve can be seen in Figure 4-7, and the results of 
the compression strength measurements can be seen in Figure 4-8. For each swelling 
time point, the compression profiles are all similar and do not significantly change over 
the period of 28 days. As the hydrogel is initially compressed, the strain on the hydrogels 
increased drastically with very little stress application (slope is very close to zero), and 
this is most likely due to water being expelled from the hydrogel. Once the hydrogels 
were compressed 60% to 80% of their original thickness, the slope of the stress/strain 
curve increased significantly, and the relationship of the curve became linear, forming the 
portion of the profile where the modulus was analyzed. For some of the hydrogel 
compression measurements, this linear region was followed by a pronounced flattening of 
the compression profile, most likely due to rupture of the hydrogel and the DMA pushing 
the fractured pieces outward. Some compression profiles showed no flattening region and 
the DMA automatically stopped measurement at the moment of fracture. Some 
compression profiles that had flattening regions following the modulus measurement 
section had a drastic increase following the flattening out region; with a modulus 
measuring in the gigapascals (GPa), this is most likely due to the machine compressing 
on itself rather than it being a measurement of the hydrogel strength. 
 

In regard to the modulus measurements of the compressed HA-AEMA-18k-25  
hydrogels, the compressive strength decreases as the swelling time increases. The drop-
off in compressive strength is most pronounced between immediate compression 
following UV polymerization and swelling for 24 hours (p<.005). The drop in 
compressive strength is also significant between 1 and 3 days of swelling time (p<.01), 
but there isn’t another significant drop in compressive strength until the swelling time 
reaches 21 days (p<.05). In addition, the compressive strength of HA-AEMA-270k-25 
hydrogels is significantly higher than HA-AEMA-18k-25 hydrogels (p<0.001). 
 
 

Cell Survival and Encapsulation Studies 
 
 
Cytotoxicity of HA-AEMA Macromer to DPSCs 
 

The viability of dental pulp stem cells to macromers HA-AEMA-18k-25 and HA-
AEMA-270k-25 were similar to the control for all 3 concentrations for both cases, seen  
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Figure 4-7. Profile of stress/strain curve for HA-AEMA hydrogel compression. 
Hydrogels are easily compressed as force is initially applied due, most likely, to water 
expulsion from within the hydrogel network. Between 60% and 80% strain, curves for all 
compressed hydrogels rise sharply into a linear region at which the elastic modulus was 
measured. Following the linear region, the curve will plateau, and this is most likely due 
to rupture of the hydrogel (all compressed hydrogels were destroyed as a result of the 
experiments). The curve shown above is a HA-AEMA-18k-25 hydrogel that was 
compressed immediately following polymerization. 
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Figure 4-8. Compressive moduli of HA-AEMA-18k-25 hydrogels over time. 
The elastic moduli of hydrogels decreases as the swelling time increases. The most 
pronounced drop in compressive strength is observed between immediate compression 
following UV polymerization (0 days) and 1 day of swelling time (p<0.005). Significant 
differences are also found between 1 day and 3 days (p<0.01), 3 days and 21 days 
(p<0.005), 7 days and 21 days (p<0.05), and 15 days and 21 days (p<0.05). Immediate 
compression following UV polymerization for HA-AEMA-270k-25 hydrogels show a 
significant difference from HA-AEMA-18k-25 hydrogels (p<0.001, not shown). Errors 
represent standard deviation, and N=3 for each time point. The symbol “*” indicates a 
significant difference (p<0.05). 
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in Figure 4-9. Statistical analysis shows that there are no significant differences between 
any group when compared to the control or to any other group (p>.05 for all). An 
exposure time of 30 minutes, though a short duration, is considerably more time than the 
cells would be exposed to the macromer solution before undergoing UV polymerization. 
The double bond present on AEMA is what is considered toxic to the cells, so an 
exposure to this feature would be best kept at a minimum. Cells would only be exposed, 
at most, for a few minutes before immediately being put under UV for formation of the 
hydrogel. Based on the results, exposing DPSCs to HA-AEMA macromer for 30 minutes 
does not have a significant impact on the viability of the cells when compared to cells 
that are not exposed to HA-AEMA macromer. 
 
 
DPSC Encapsulation in Hydrogel 
 

Images of DPSCs encapsulated inside HA-AEMA hydrogel networks, both HA-
AEMA-18k-25 and HA-AEMA-270k-25 for a period of 24 hours and stained for live 
cells can be seen in Figure 4-10. After soaking the hydrogels in the calcein AM solution 
for 30 minutes, the obtained images confirmed successful encapsulation and survival of 
cells within the hydrogel network. Images were obtained both in fluorescence and light 
mode in order to overlap the coinciding images for comparison. Results of overlapping 
the images shows LIVE staining most concentrated within the encapsulated cells, 
indicating successful survival. Cells were successfully stained within the hydrogel both at 
the boundary and in the middle of the hydrogel, therefore the hydrogel is permeable and 
allows cells to interact with the external environment even if cells are encapsulated 
farther from the boundary than other cells. In addition, the images show no apparent 
migration of cells outside the boundary of the hydrogel due to the lack of cell staining 
beyond these boundaries in the overlapped images, meaning that cells are most likely 
fixated during the UV polymerization step of hydrogel formation. Obtaining higher 
magnification images in conjunction with confocal microscopy imaging could be utilized 
for determining cell viability statistical data and cell morphology in the future. 
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Figure 4-9. Cytotoxicity of HA-AEMA macromer to dental pulp stem cells. 
At each concentration, differences between the control and the macromer solution were 
not significant; therefore, cell viability was a success for every macromer tested. 30 
minutes of exposure time is plenty considering the cell / macromer mixture would 
immediately be exposed to UV for hydrogel formation. 
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Figure 4-10. LIVE cell staining of encapsulated dental pulp stem cells in HA-
AEMA hydrogels. 
Hydrogels containing DPSCs were imaged for calcein AM staining (column 1) and in 
light mode (column 2); these images were merged following image capture (column 3). 
DPSCs were successfully encapsulated and survived 24 incubation in growth medium for 
both HA-AEMA-18k-25 (rows 1,2) and HA-AEMA-270k-25 (rows 3,4). Cells did not 
permeate out of the scaffold after incubation as seen at the boundary of the hydrogels 
(rows 1,3). Images were taken at 4X magnification. 
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CHAPTER 5.    DISCUSSION 
 
 

Synthesis of HA-AEMA macromer can vary widely in two different categories: 
the molecular weight of the HA component and the cross-linking density of the AEMA 
component. Though the only degree of substitution that was synthesized for this study 
was 25% and molecular weight of HA was 18 kDa and 270 kDa, macromers differing in 
both of these factors have been synthesized and were tested for the mechanical and 
rheological studies (Bian, Hou et al. 2013, Guvendiren and Burdick 2013). Current 
technology is able to polymerize hyaluronan to a specific number of monomers in the 
chain, thus synthesis of HA-AEMA macromer can vary as widely as seen in nature in 
regards to the molecular weight of the HA component. The degree of substitution of 
AEMA during the conjugation step may also fluctuate, but results of both the solubility 
and UV polymerization tests suggest that this is the limiting factor between all possible 
synthesized macromers and those that are able to form a hydrogel; degrees of substitution 
around 12.5% do form hydrogels, but the hydrogel begins to degrade too quickly to be 
useful for application, yet higher degrees of substitution limit the solubility of the 
macromer.  The molecular weight of HA limits hydrogel formation on the lower end of 
the spectrum, as evidenced by the failure of HA-AEMA-6.4k-25 to form a hydrogel, but 
solubility of 270 kDa indicates the upper limit has not been reached. Hydrolysis is a 
concern during the synthesis process as it can lower the molecular weight of the HA 
chain. In some previous attempts at synthesis, dialysis was performed for periods of 3 to 
5 days, yet each attempt failed to produce a macromer that would form a hydrogel. 
Though NMR results would show successful formation, and the macromer was soluble, 
hydrolysis from excessive dialysis broke down the HA backbone beyond the critical 
length needed to form an interweaving polymer network during UV polymerization. 
Once dialysis was lowered to 1 day, hydrogel formation became successful. 
 

The rheological and mechanical properties of HA-AEMA macromers and 
hydrogels resulted in several direct relationships. Viscosity increases as the molecular 
weight of the HA component increases: this is because the longer HA chains of the 
macromer cause increased resistance to internal flow due to more interweaving and thus 
more sliding of polymer chains against each other. For the mechanical properties, storage 
modulus measurements also showed direct relationships for both cross-linking density 
and HA molecular weight. However, the drastic difference between the storage moduli of 
HA-AEMA-66k 12.5 and HA-AEMA-66k-25 suggests that the degree of substitution of 
AEMA may be more critical than molecular weight of HA in determining the overall 
shear strength of the hydrogel. Based on the HA component alone, increasing the 
molecular weight does increase the storage modulus, but the comparison between HA-
AEMA-66k-25 and HA-AEMA-270k-25 shows  only a slight increase, suggesting that 
the direct relationship may correlate strongly at the lower end of the molecular weight 
spectrum. Testing macromers with HA molecular weights beyond 270 kDa would help 
test this hypothesis. Increased concentration also showed an increase in storage modulus, 
and this also can be explained by the increased resistance to internal flow. By restricting 
the flow of the viscous component of the hydrogel, more energy can be stored in the 
hydrogel and the phase shift between the hydrogel action and the oscillatory force 
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function is smaller, thus increasing the strength of the hydrogel’s elastic portion. 
Measurement of the loss modulus was sporadic in comparison to the storage modulus, yet 
it increased for all hydrogels at the upper limits of the strain ramp during testing, thus all 
hydrogels displayed properties of shear thinning at strain percentages above the LVR. 
 

Results of the compression data show a drastic reduction in strength as swelling 
time increases, and this is caused by hydrolysis of the glycosidic bond between the 
carbohydrate groups of the HA backbone. The breakdown of these bonds reduces the 
effective MW of the HA backbone, thus causing loss of strength, shape, and elasticity. 
The reduction in strength is most prevalent after 24 hours swelling, yet significant 
differences in strength are not seen again until 3 weeks of swelling time. Hydrogels with 
higher MW of HA have a significantly higher compression modulus immediately after 
UV polymerization, and these longer chains also result in a slower deterioration of the 
mechanical properties. As the hydrogel weakens, however, forces can more easily mold 
its shape, therefore making the scaffold more malleable in the body’s environment. 
 

DPSCs were able to survive the exposure to the macromer solution for 30 minutes 
at concentrations of 3% without significant difference. The amount of time the cells are 
exposed to the macromer is crucial, however. Experiments were conducted that exposed 
the macromer for a duration of 24 hours that saw significant differences in survival 
between the control and concentrations as small as 0.5% mg/mL. Since the double bond 
on AEMA is considered toxic, limiting the exposure duration of cells to this feature is 
recommended. Exposure time of the cells to the macromer was kept to a minimum during 
encapsulation by immediately forming the hydrogel under UV following mixing the cells 
with the macromer solution. Immediate formation of the hydrogel minimizes the 
exposure of the cells to the AEMA double bond. 
 

Based on the results of the encapsulation studies performed on the DPSCs into the 
HA-AEMA hydrogels, DPSCs are able to survive exposure to UV as well as incubation 
inside hydrogels swelling in growth medium for 24 hours. Calcein AM staining indicate 
that even after 24 hours of incubation, during which the degradation of the hydrogel by 
hydrolysis occurs, cells cannot migrate out of the scaffold, indicated by lack of 
fluorescence outside the scaffold. In addition, the ability of calcein AM to penetrate to the 
center of the hydrogel within 30 minutes also indicates that the hydrogel is an open 
system with the external environment.  
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CHAPTER 6.    CONCLUSION 
 
 

Results of this study showed that HA-AEMA hydrogels can be formed with 
tunable properties for the purpose of encapsulating DPSC cells for potential tissue 
engineering purposes. By controlling the molecular weight of the HA component, the 
degree of substitution of AEMA, and the concentration of the macromer, the rheological 
and mechanical properties, specifically the viscosity, storage and loss moduli, and the 
compressive strength, can vary over a wide range of values. This is beneficial in terms of 
trying to match the mechanical properties of a biological scaffold to the in vivo 
environment. In addition, survival of the DPSCs during exposure to HA-AEMA 
macromer and encapsulation within the resulting hydrogels make these scaffolds a viable 
option for use as a biological scaffold for tissue engineering. The wound healing 
capabilities of HA further strengthen its choice as a foundation for a scaffold, and 
optimization of such a cell delivery system has the potential to be an effective treatment 
of tissue injury. 
 

Future work would include expanding upon the finding of synthesis, mechanical 
and rheological properties of hydrogels, and cell culture work. More varieties of 
macromer can be synthesized, differing in both molecular weight of HA and the degree 
of substitution of AEMA. In regards to the molecular weight of HA, it can vary from the 
single-digit kiloDalton range all the way to millions of Daltons. The degree of 
substitution of AEMA to HA can also be controlled and varied during the conjugation 
step of synthesis. This will allow for a wider variety of studies to be performed in 
mechanical/rheological analysis and cell culture studies. As more varieties of macromer 
are synthesized, each new synthesis product can be tested for whether or not successful 
hydrogels may be created. As the limits of solubility, hydrogel formation through UV 
polymerization, and swelling are found, so can the limits of the mechanical and 
rheological properties of these hydrogels also be found. The full span of mechanical and 
rheological properties of the HA-AEMA hydrogel can be completely analyzed and 
recorded, specifically in regards to storage modulus and compression strength. In 
addition, hydrogels can be subjected to different oscillation frequencies to mark the 
changes made to their viscoelastic properties. Subjecting future macromer solutions and 
hydrogels to different temperature conditions may also result in changes to both 
mechanical and rheological properties; one study found that HA, when modified with 
collagen in a hydrogel form, increased the thermostability of the hydrogel for 
temperatures up to about 230°C (Pietrucha 2005). For future cell culture work, dental 
pulp stem cells, as well as other types of stem cells, may be grown and exposed to the full 
spectrum of HA-AEMA macromers that are able to form hydrogels to check for signs of 
cytotoxicity or whether the cells can survive the UV polymerization process. Particularly 
for encapsulation studies, changing the UV intensity or the duration of the UV exposure 
can help find the points at which significant differences are found between control and 
tested cells. Beyond cytotoxicity and encapsulation, future experiments need to focus on 
whether or not HA-AEMA hydrogels are able to assist in facilitating differentiation of 
stem cells for utilization in stem cell therapies of tissue engineering. 
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