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ABSTRACT

Background: The functional significance of sensorimotor integration in acoustic speech 
processing is unclear despite more than three decades of neuroimaging research. 
Constructivist theories have long speculated that listeners make predictions about 
articulatory goals functioning to weight sensory analysis toward expected acoustic 
features (e.g. analysis-by-synthesis; internal models). Direct-realist accounts posit that 
sensorimotor integration is achieved via a direct match between incoming acoustic cues 
and articulatory gestures. A method capable of favoring one account over the other 
requires an ongoing, high-temporal resolution measure of sensorimotor cortical activity 
prior to and following acoustic input. Although scalp-recorded electroencephalography 
(EEG) provides a measure of cortical activity on a millisecond time scale, it has low-
spatial resolution due to the blurring or mixing of cortical signals on the scalp surface. 
Recently proposed solutions to the low-spatial resolution of EEG known as blind source 
separation algorithms (BSS) have made the identification of distinct cortical signals 
possible. 

The μ rhythm of the EEG is known to briefly suppress (i.e., decrease in spectral power) 
over the sensorimotor cortex during the performance, imagination, and observation of 
biological movements, suggesting that it may provide a sensitive index of sensorimotor 
integration during speech processing. Neuroimaging studies have traditionally 
investigated speech perception in two-forced choice designs in which participants 
discriminate between pairs of speech and non-speech control stimuli.  As such, this 
classical design was employed in the current dissertation work to address the following 
specific aims to: 1) isolate independent components with traditional EEG signatures 
within the dorsal sensorimotor stream network; 2) identify components with features of 
the sensorimotor μ rhythm and; 3) investigate changes in time-frequency activation of the 
μ rhythm relative to stimulus type, onset, and discriminability (i.e., perceptual 
performance). In light of constructivist predictions, it was hypothesized that the μ rhythm 
would show significant suppression for syllable stimuli prior to and following stimulus 
onset, with significant differences between correct discrimination trials and those 
discriminated at chance levels.

Methods: The current study employed millisecond temporal resolution EEG to measure 
ongoing decreases and increases in spectral power (event-related spectral perturbations; 
ERSPs) prior to, during, and after the onset of acoustic speech and tone-sweep stimuli 
embedded in white-noise. Sixteen participants were asked to passively listen to or 
actively identify speech and tone signals in a two-force choice same/different 
discrimination task. To investigate the role of ERSPs in perceptual identification 
performance, high signal-to-noise ratios (SNRs) in which speech and tone identification 
was significantly better than chance (+4dB) and low SNRs in which performance was 
below chance (-6dB and -18dB) were compared to a baseline of passive noise. 
Independent component analysis (ICA) of the EEG was used to reduce artifact and source 
mixing due to volume conduction. Independent components were clustered using 
measure product methods and cortical source modeling, including spectra, scalp 
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distribution, equivalent current dipole estimation (ECD), and standardized low-resolution 
tomography (sLORETA).  

Results: Data analysis revealed six component clusters consistent with a bilateral dorsal-
stream sensorimotor network, including component clusters localized to the precentral 
and postcentral gyrus, cingulate cortex, supplemental motor area, and posterior temporal 
regions. Time-frequency analysis of the left and right lateralized μ component clusters 
revealed significant (pFDR<.05) suppression in the traditional beta frequency range (13-
30Hz) prior to, during, and following stimulus onset. No significant differences from 
baseline were found for passive listening conditions. Tone discrimination was different 
from passive noise in the time period following stimulus onset only. No significant 
differences were found for correct relative to chance tone stimuli. For both left and right 
lateralized clusters, early suppression (i.e., prior to stimulus onset) compared to the 
passive noise baseline was found for the syllable discrimination task only. Significant 
differences between correct trials and trials identified at chance level were found for the 
time period following stimulus offset for the syllable discrimination task in left 
lateralized cluster.

Conclusions: As this is the first study to employ BSS methods to isolate components of 
the EEG during acoustic speech and non-speech discrimination, findings have important 
implications for the functional role of sensorimotor integration in speech processing. 
Consistent with expectations, the current study revealed component clusters associated 
with source models within the sensorimotor dorsal stream network. Beta suppression of 
the component clusters in both the left and right hemispheres is consistent with activity 
in the precentral gyrus prior to and following acoustic input. As early suppression of the 
was found prior the syllable discrimination task, the present findings favor internal model 
concepts of speech processing over mechanisms proposed by direct-realists. Significant 
differences between correct and chance syllable discrimination trials are also consistent 
with internal model concepts suggesting that sensorimotor integration is related to 
perceptual performance at the point in time when initial articulatory hypotheses are 
compared with acoustic input. The relatively inexpensive, non-invasive EEG 
methodology used in this study may have translational value in the future as a brain 
computer interface (BCI) approach.  As deficits in sensorimotor integration are thought to 
underlie cognitive-communication impairments in a number of communication disorders, 
the development of neuromodulatory feedback approaches may provide a novel avenue 
for augmenting current therapeutic protocols. 



vii

TABLE OF CONTENTS
 

THEORETICAL BACKGROUND AND SIGNIFICANCE.................1 CHAPTER 1.
Statement of the Problem.................................................................................................1 
Neurophysiological Models of Sensorimotor Integration ...............................................4 

The Mirror Neuron System..........................................................................................4 
Dual-stream Theories...................................................................................................6 
Dorsal Stream Internal Models ....................................................................................6 

Theories of EEG Generation............................................................................................9 
The Arceu or Rhythm .............................................................................................11 
Blind Source Separation Algorithms .........................................................................15 

LITERATURE REVIEW.......................................................................18 CHAPTER 2.
The Spatial and Functional Neural Correlates of Speech and Non-speech 
Processing ......................................................................................................................18 

Early Neuroimaging Studies ......................................................................................18 
Recent Neuroimaging Studies....................................................................................19 

Synopsis and Predictions ...............................................................................................24 
Aims, Questions, and Hypotheses .................................................................................26 

Aim 1: To Identify Spatially Fixed and Temporally Independent Components 
Associated with Speech and Non-speech Processing ................................................26 

Question ................................................................................................................ 26 
Hypothesis............................................................................................................. 26 

Aim 2: To Identify Independent Components Associated with Known Features 
of the Sensorimotor μ Rhythm...................................................................................27 

Question ................................................................................................................ 27 
Hypothesis............................................................................................................. 27 

Aim 3: To Investigate Differential μ Rhythm Suppression Relative to Stimulus 
Onset, Stimulus Type, and Discriminability..............................................................27 

Questions............................................................................................................... 27 
Hypotheses............................................................................................................ 27 

METHODOLOGY..................................................................................29 CHAPTER 3.
Experimental Design......................................................................................................29 
Methods .........................................................................................................................30 

Participants.................................................................................................................30 
Stimuli........................................................................................................................30 
Procedure ...................................................................................................................32 
Data Acquisition ........................................................................................................32 

Data Analysis .................................................................................................................33 
ICA Preprocessing .....................................................................................................33 
sLORETA Source Estimations ..................................................................................34 
Independent Component Clustering ..........................................................................35 
Event-related Spectral Perturbations..........................................................................35 



viii

RESULTS.................................................................................................37 CHAPTER 4.
Behavioral Performance ................................................................................................37 

Percentage Correct .....................................................................................................37 
Response Time...........................................................................................................37 

Electrophysiological Measures ......................................................................................39 
Independent Component Clustering ..........................................................................39 
Event-related Spectral Perturbations: Left μ..............................................................44 
Event-related Spectral Perturbations: Right μ ...........................................................46 

DISCUSSION ..........................................................................................49 CHAPTER 5.
Aim 1: To Identify Spatially Fixed and Temporally Independent Components 
Associated with Speech and Non-speech Processing ....................................................49 
Aim 2: To Identify Independent Components Associated with Known Features of 
the Sensorimotor μ Rhythm...........................................................................................51 
Aim 3: To Investigate Differential μ Rhythm Suppression Relative to Stimulus 
Onset, Stimulus Type, and Discriminability..................................................................52 
Theoretical, Methodological, and Clinical Significance ...............................................57 

Future Directions .......................................................................................................60 
Possible Clinical Implications....................................................................................61 
Limitations .................................................................................................................62 

LIST OF REFERENCES................................................................................................64 

APPENDIX. SUPPLEMENTAL FIGURES .................................................................79 

VITA..................................................................................................................................92 



ix

LIST OF TABLES

Table 1-1. MEG studies showing time-course of activation between sensory and 
motor regions during speech processing. .....................................................13 

Table 1-2. Studies showing auditory alpha and beta ERD.............................................14 

Table 2-1. Neural correlates of speech processing with decreased spectral detail as 
a function of condition, region, and task......................................................21 

Table 4-1. Percentage residual variance for each ECD model, ECD x,y,z 
coordinates, current source density x,y,z coordinates, and component 
rank for the left hemisphere μ cluster. .........................................................42 

Table 4-2. Percentage residual variance for each ECD model, ECD x,y,z 
coordinates, current source density x,y,z coordinates, and component 
rank for the right hemisphere μ cluster. .......................................................43 



x

LIST OF FIGURES

Figure 3-1. Sample time-line of one trial and normalized stimulus amplitude over 
time...............................................................................................................31 

Figure 4-1. Means and standard errors for percentage correct trials and response 
time...............................................................................................................38 

Figure 4-2. Cluster results for the left-hemisphere μ component....................................40 

Figure 4-3. Cluster results for the right-hemisphere μ component..................................41 

Figure 4-4. Mean left and right hemisphere μ time-frequency ERSPs (event-related 
spectral perturbations). .................................................................................45 

Figure 4-5. Measures for the left-hemisphere μ cluster...................................................47 

Figure 4-6. Measures for the right-hemisphere μ cluster. ...............................................48 

Figure A-1. Left μ pFDR in the speech and tone conditions for which an active 
discrimination was required.. .......................................................................79 

Figure A-2. Right μ pFDR values in the speech and tone conditions for which active 
discrimination was required.. .......................................................................80 

Figure A-3. Active ERSPS for the left hemisphere μ cluster... .......................................81

Figure A-4. Proposed model of sensorimotor interactions in a two-forced choice 
discrimination task... ....................................................................................82 

Figure A-5. Cluster results for the left-hemisphere component... ...............................83 

Figure A-6. Cluster results for the right-hemisphere component... .............................84 

Figure A-7. Cluster results for the frontal midline component... ................................85 

Figure A-8. Cluster results for the central midline component...................................86 

Figure A-9. Independent component clusters labeled according to spectral 
signatures and depicted on a van Essen average template... .......................87 

Figure A-10. Left and right μ for correct trials in the Actsp+4dB condition averaged 
across 15-20Hz and 15-25Hz bands respectively........................................88 

Figure A-11. Example eye-blink components with a spatial distribution near 
periocular channels......................................................................................89 



xi

Figure A-12. Example noise components with a spatial distribution near temporal 
channels and spectral features consistent with temporal muscle 
movements...................................................................................................90 

Figure A-13. Example vertical eye-movement components with a spatial distribution 
near periocular channel. ..............................................................................91 



xii

LIST OF ABBREVIATIONS

μ Mu
Alpha

Theta
BA Brodmann’s Area
BSS Blind Source Separation
CSD Current Source Density
dB Decibel

DFT Dynamic Field Theory 

DLPFC Dorsolateral Prefrontal Cortex

DRT Direct Realist Theory
DTS Dynamic Theory of Speech Processing

EC Embodied Cognition

ECD Equivalent Current Dipole

EEG Electroencephalography

ERD Event-related Desynchronization

ERP Event-related Potential

ERS Event-related Synchronization

ERSPS Event-related Spectral Perturbations

FFT Fast Fourier Transform

fMRI Functional Magnetic Resonance Imaging

Hz Hertz

ICA Independent Component Analysis

IFG Inferior Frontal Gyrus

MEG Magnetoencephlography

MNS Mirror Neuron System

MS Motor System

M1 Primary Motor Cortex

PCA Principal Component Analysis

PET Positron Emission Tomography



xiii

PMC Premotor Cortex

RT Response Time

sLORETA Standardized Low-resolution Electromagnetic 
Tomographic Analysis 

STG Superior Temporal Gyrus

STS Superior Temporal Sulcus

vPMC Ventral Premotor Cortex



1

THEORETICAL BACKGROUND AND SIGNIFICANCECHAPTER 1.   

Statement of the Problem

It is well known that the acoustic speech signal does not directly map onto 
perceived speech sound categories. In other words, many acoustic cues may be associated 
with the same phoneme, suggesting that acoustic cues alone cannot specify what humans 
perceive as distinct phonemic units. For example, although listeners identify the 
consonant /d/ as the same phonemic category for the syllables /di/ and /du/, the formant 
transitions characterizing the consonants are different for the two syllables. Despite this 
variability in the acoustic signal, humans successfully process speech signals in the 
presence of high levels of ambient noise and considerable variability in speech 
production and its acoustic consequences across speakers. These feats are accomplished 
despite the lack of a one-to-one relationship between acoustic features of the speech 
signal and how it is perceived by listeners. As such, it is as yet unclear how humans and 
other species are capable of recovering invariant (i.e., constant) information from these 
highly variable acoustic cues. This problem is not unique to speech perception and is 
referred to as the lack of invariance or perceptual constancy problem (Handel, 1989).

The primary goal of speech perception theory and more than four decades of 
research has been to account for the problem of perceptual invariance (Kent, 1997; 
Liberman, 1957; Liberman & Mattingly, 1985; Liberman & Whalen, 2000). Over the past 
three decades, debate about how invariant information is extracted from the acoustic 
speech signal has shifted from an emphasis on psychoacoustic experimental phenomena 
to the neural and computational basis of speech processing. As acoustic cues do not map 
directly to speech sound categories, neurophysiological frameworks have proposed that 
integrated multisensory and articulatory systems play a critical role in aiding acoustic 
analysis of speech. These models have been heavily influenced by the contrasting 
philosophical approaches of constructivism and direct-realism (Callan, Callan, Gamez, 
Sato, & Kawato, 2010; D’Ausilio, Bufalari, Salmas, Busan, & Fadiga, 2011; Helmholtz, 
1867; Kent, 1997).

Constructivist approaches to perception suggest that the analysis of real-time 
sensory input is constrained by a process of internal simulation. According to this 
theoretical approach, previous experiential knowledge derived from speech production 
(i.e., the motor system) and other multisensory information (e.g., visual mouth 
movements) may disambiguate cues derived from the acoustic speech signal (Callan et 
al., 2010; Dick, Goldin-Meadow, Hasson, Skipper, & Small, 2009; Hasson, Skipper, 
Nusbaum, & Small, 2007; Helmholtz, 1867; Skipper, Goldin-Meadow, Nusbaum, & 
Small, 2007; Skipper, Nusbaum, & Small, 2005; Skipper, Nusbaum, & Small, 2006;
Skipper, van Wassenhove, Nusbaum, & Small, 2007). These accounts of speech 
processing are similar to models of visual perception in which active hypotheses are 
tested against the inherently ambiguous information available to the retina (Hatfield, 
2002). As such, these theories do not propose a direct match between the acoustic signal 
and perception. Rather, it is suggested that accurate perception is achieved via a process 
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in which hypothesized interpretations of the incoming speech signal weight sensory 
perception toward expected acoustic features. 

By contrast, the direct realist approach to perception suggests that properties in 
sensory stimulation that have parity with self-generated actions (i.e., actions within the 
individual’s repertoire) may be used to afford perceptual recognition (Gibson, 1986). Put 
another way, although the information structure from hearing, seeing, and touching is 
analyzed via sensory systems, what is perceived through those senses is not the structure 
of the information itself, but the environmental event that caused the structure. As such, 
the goal of all perceptual analyses is to perceive the distal, causal event. In regards to 
speech perception specifically, because the causal structures (i.e., phonetic gestures) are 
complexly encoded in the acoustic signal (i.e., acoustic correlates), the goal of perception 
is to directly relate the acoustic structure to the phonetic events that gave rise to them.
Therefore, the direct realist approach implies that, although invariant cues are not present 
in the acoustic signal, sensory properties directly specify invariant articulatory gestures
(Fowler, n.d.; Fowler, 1996; Fowler, Brown, Sabadini, & Weihing, 2003). As acoustic 
information is directly related to the motor commands that make up phonetic units, no 
inferential or predictive coding is required.

Due to the predictions about the computational process by which invariance is 
achieved, constructivist and direct-realist perspectives make clear, divergent predictions 
about when sensorimotor integration should occur relative to the onset of acoustic 
stimuli. Constructivists predict that motor and corresponding sensory activity should 
occur prior to and following the arrival of acoustic speech signals (i.e., hypothesis and 
test). Direct realists predict sensory and motor activation during acoustic stimulation only 
(i.e., direct matching). Although both approaches make divergent predictions, to date 
there has been little evidence clearly favoring constructivist over direct-realist accounts 
of sensorimotor integration (Callan et al., 2010). A resolution to this fundamental 
question may favor one computational mechanism over another for solving a vexing, 
decades old problem. Moreover, such a resolution may be critical to developing 
computational models that can accurately account for the invariance problem in dynamic, 
real-world contexts. Further, if sensorimotor integration does function as constructivists 
predict, early-cortical signals may be used to develop neurofeedback protocols designed 
to enhance subsequent perceptual performance in populations with communication 
disorders  (Callan et al., 2010; Callan et al., 2003). Deficits in sensorimotor integration 
are thought to underlie cognitive-communication impairments in autism (Oberman, 
Pineda, & Ramachandran, 2007), stuttering (Kalinowski & Saltuklaroglu, 2003), hearing 
impairment (Le Bel, Pineda, & Sharma, 2009), and various underlying processes in 
aphasia (Fridriksson et al., 2009; Hickok, Houde, & Rong, 2011).

Several factors in relating theory to methodology may account for the lack of 
evidence favoring constructivist or direct-realist approaches. First, the past two decades 
of research on the neural underpinnings of receptive speech processing have focused on 
methods with high spatial but somewhat limited temporal resolution such as functional 
magnetic resonance imaging (fMRI) and positron emission tomography (PET). Although 
fMRI and PET approaches have provided a wealth of information about the sensory and
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motor cortical regions involved in speech processing, they have provided only 
speculation about function. Second, electrophysiological approaches such as scalp-
recorded electroencephalography (EEG) capable of higher temporal-resolution have 
focused on event-related potentials, a measure that is time and phase-locked to the onset 
of a given stimulus. As this traditional measure generally provides only information 
about brain activity following a given stimulus event, divergent theoretical predictions 
about function given by constructivist and direct-realist models have not been addressed. 
A third factor placing limits on current electrophysiological methodology is low spatial 
resolution. Due to the blurring or mixing of distinct physiological sources measured via 
scalp-recorded EEG, activity related to cortical regions known to be involved in speech 
processing cannot easily be distinguished. Fourth, as few studies have demonstrated that 
measures of sensorimotor activity are related to perceptual accuracy, it is unclear whether 
sensorimotor integration performs a functional role in the perception of speech.

Recently proposed solutions to the difficulties with EEG interpretation, including 
blind source separation algorithms (BSS) and millisecond resolution time-frequency 
analysis, have made it possible to measure regional cortical activation surrounding a 
stimulus event (Onton & Makeig, 2006).  Neuroimaging studies have traditionally 
investigated speech perception in two-forced choice designs in which participants 
discriminate between pairs of speech and non-speech control stimuli. As such, this 
classical design was employed  in the current dissertation work using BSS  and time-
frequency analysis of scalp-recorded EEG to address the following specific aims to: 1)
isolate independent components with traditional EEG signatures related to speech and 
non-speech acoustic processing; 2) identify components with features of the sensorimotor 
μ rhythm, a known EEG correlate of sensorimotor integration; and 3) investigate changes 
in time-frequency activation of the μ rhythm relative to stimulus type, onset, and 
discriminability (i.e., perceptual performance). 

The primary aim of the following review is to develop a general theoretical 
framework within which to predict and interpret the spatiotemporal activation patterns 
associated with sensorimotor integration in speech processing. As no such framework 
currently exists, the review will attempt to synthesize predictions from speech perception 
theory, neurophysiological models of speech processing, and theories of EEG generation. 
First, relevant neurophysiological models specifying neuronal regions and computational
processes involved in constructivist and direct-realist conceptual frameworks will be 
discussed. Second, spatial and functional neurophysiological models will be discussed 
with respect to current theories intended to predict and explain the neural generation of 
traditional EEG signatures. It will be suggested that these traditional EEG signatures, 
their respective sources, and their activation time-courses may be isolated using a signal 
separation technique known as blind source separation (BSS).  
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Neurophysiological Models of Sensorimotor Integration 

The Mirror Neuron System

The current challenge for neurophysiological models of speech processing is to 
account for how sensory (e.g., visual and auditory) and motor systems are integrated in 
the central nervous system to aid in the perception of complex acoustic signals.  
Neuroimaging findings in humans suggest that the primary motor cortex (M1), premotor 
cortex (PMC), supramarginal gyrus (SMG) and the superior temporal gyrus (STG) are all 
active when participants listen to or watch the actions that they can also perform (see 
Cattaneo & Rizzolatti, 2009a). As such, it has been suggested that a neural stream now 
known as the human mirror neuron system (MNS) might provide a solid 
neurophysiological basis for sensorimotor integration (Galantucci, Fowler, & Turvey, 
2006; Gallese, Gernsbacher, Heyes, Hickok, & Iacoboni, 2011). This conjecture is 
supported by the relatively recent discovery of a class of neurons in the F5 area of the 
macaque brain now known as mirror neurons. Single neuron recordings in macaques 
have shown that mirror neurons are active both when a primate subject observes an action 
and when he performs the same action, suggesting that sensorimotor integration via 
mirror neurons may provide a physiological basis for action understanding (see Gallese et 
al., 2011 for discussion).

The F5 area of the macaque is thought to be the primate homologue of the 
premotor cortex (PMC) near Broca’s area in humans. As the PMC/Broca’s is classically 
involved in speech production, it has been speculated neurons in this area might perform 
an important function in speech processing.  According to these proposals, a multimodal 
system involved in action understanding might account for how speakers and listeners 
receiving multimodal sensory input translate such input into a common communicative 
code (i.e., parity) (Gallese et al., 2011; Rizzolatti & Arbib, 1998). In other terms, acoustic 
ambiguity might be resolved by linking multiple types of sensory information from 
speakers with the motor commands that generated the signals. Whether the MNS 
provides a direct link for sensorimotor integration or functions in a more dynamic manner 
remains controversial (Gallese et al., 2011).

Theoretical approaches favoring either constructivist or direct-realist philosophies 
have suggested that the MNS might provide a physiological basis for solving the problem 
of invariance (Gallantucci et al., 2006). As the MNS is thought to support direct links 
between incoming sensory information and the causal structure of that information (i.e., 
actions), it has been proposed that this system of neuronal regions might support direct 
realist accounts (Callan et al., 2010; Gallantucci et al., 2006). However, it has also been 
suggested that the MNS may have a more dynamic function in perception. One 
prominent, yet controversial notion is that the MNS not only performs associations 
between input modalities but also performs predictions for upcoming information, 
thereby bridging gaps between intended goals and missing information about those goals. 
For instance, primate studies have demonstrated that mirror neurons fire for completed 
actions (e.g., grasping a peanut) and for similar incomplete actions with the same 
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intended goal (e.g., moving the hand toward a peanut), suggesting that the system may 
code for intent or action understanding as opposed to action selection (Aziz-Zadeh & 
Ivry, 2009; Buccino, Binkofski, & Riggio, 2004; Buccino, Solodkin, & Small, 2006; 
Caggiano, Fogassi, Rizzolatti, Thier, & Casile, 2009; Cattaneo & Rizzolatti, 2009b; 
Corballis, 2010; Iacoboni & Dapretto, 2006; Rizzolati & Arbib, 1998; but see Arbib, 
2010 and Gallese et al., 2011 for alternative accounts). This predictive property of mirror 
neurons has led to speculation that the MNS may lie at the intersection of forward and 
inverse internal models (D’Ausilio et al., 2009a; Miall, 2003). According to these 
proposals, during action perception an inverse model specifies the intended 
communicative goal via multisensory hypotheses generated in parietal and temporal 
regions. Forward models are then generated in motor regions specifying the action 
sequence that would be required to achieve the communicative goal. In this way, inverse 
and forward models allow observers and listeners to simulate communicative goals 
within their own motor system, a process known as motor resonance. In accordance with 
constructivist accounts, these proposals suggest that neurons in the premotor cortex 
(PMC) perform important functional computations for relating multisensory information 
derived from a speaker with motoric information specifying communicative goals. Thus, 
the MNS may function not only to map speech sounds to their corresponding movements 
but to offer enriched comprehension by specifying communicative intent (i.e., meaning). 

Recently, Arbib (2010) suggested that the MNS might accomplish this synthesis 
between action and meaning via a dorsal and ventral stream network. According to his 
computational FARS model of MNS function, a dorsal stream network maps sound onto 
articulatory based actions. This mechanism is thought to provide maintenance of ‘parity’ 
between auditory and motor representations of speech sounds. The network includes 
frontal motor areas (PMC/M1) and a region in the posterior sylvian fissure at the 
parietotemporal boundary (Spt). A ventral stream network supported by prefrontal and 
inferior temporal regions maps sound-based representations onto meaning and is 
connected to a distributed network supporting schemes for experiential knowledge. In 
accordance with constructivist theories, the two streams may cooperate to utilize 
experiential knowledge widely distributed throughout the brain to constrain and enrich 
language comprehension. 

Although the participation of the MNS in sensorimotor integration offers an 
attractive framework through which to view computational processes involved in speech 
perception, the precise functional role of the MNS is controversial. Because the model 
predicts the mirror neurons in the PMC are critical for action understanding, it has been 
predicted that this region is critical for specifying phonetic units produced by a speaker 
and ultimately intended meaning (Arbib, 2010; Rizzolatti & Arbib, 1998). However, a 
number of well-known observations run contrary to this prediction, including relatively 
spared phonemic perception in patients with lesions restricted to the PMC/ Broca’s 
(Hickok, Holt, & Lotto, 2009; Lotto, Hickok, & Holt, 2009) and neuroimaging findings 
suggesting that the PMC is not always active during speech processing tasks (Skipper et 
al., 2005). As such, the functional role of the MNS in speech processing is highly 
controversial and widely debated (Gallese et al., 2011; Lotto et al., 2009). 
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Dual-stream Theories

Whereas MNS models of sensorimotor integration in speech processing are highly 
controversial, it is accepted that speech and language are processed in ventral and dorsal 
neural streams (Arbib, 2010; Hickok, 2009; Hickok, Houde, & Rong, 2011; Hickok & 
Poeppel, 2000, 2004, 2007; Rausheker & Scott, 2009). According to dual-stream models, 
the dorsal stream is a bilaterally organized, left-hemisphere dominant system that 
involves regions of the PMC, superior temporal regions (Hechyl’s gyrus and STG), and a 
posterior temporal region for audio-motor translation (Spt). This network of regions is 
known as the ‘how’ auditory network and in receptive speech processing is thought to be 
involved in translating incoming acoustic information into the motor commands that 
might have generated phonetic units. A ventral stream, involving neural tissue in bilateral 
temporal regions, the dorsolateral prefrontal cortex (DLPFC) and possibly more anterior 
portions of Broca’s area (pars triangularis), functions to map features of linguistic 
structure such as distinctive features, segments, phonological word forms, and semantic 
information (Arbib, 2010; Hickok & Poeppel, 2004; 2007; 2009; Raushecker & Scott, 
2009). As such, the ventral stream is known as the ‘what’ network and is thought to be 
critical for extracting meaning from the incoming speech stream. As in Arbib (2010), the 
two streams are thought to interact to enrich language comprehension but the 
computational processes involved and the functional process by which the two both 
interact and compete remains a matter of  speculation (Hickok & Poeppel, 2007; Skipper 
et al., 2006). 

Dorsal Stream Internal Models

Theories positing a role for sensorimotor integration in speech processing suggest 
that the dorsal stream network may utilize a computational process known as an internal 
model. Internal models were initially adapted from the motor control literature and were 
developed as a computational method to account for sensorimotor integration in speech 
production (Hickok et al., 2011). According to internal model concepts of speech 
production, prior to an utterance a forward model or efferent copy of the intended 
articulatory sequence is generated in motor regions (PMC/M1). The function of this 
motor copy is to inform sensory and somatosensory regions (e.g., STG and postcentral 
gyrus) about the likely consequences of the intended movement. An inverse model 
computing the desired articulator state from the forward input may then generate a 
corrective signal when the forward predictive model does not match with the desired 
articulatory state. Put another way, a projection of the desired articulatory sequence and 
its most likely acoustic and somatosensory outcomes are computed within the dorsal 
stream network. The utility of these internal models is to allow the system support speech 
production at natural rates. If speech production relied on slower feedback from 
vocalization or internal somatosensory feedback from effector state changes only (i.e., 
changes in muscle activity), speech could not be produced at the natural rate of between 
5-10 syllables per second (Guenther, 1995, 2001, 2006). Thus, without a fast process of 
internal simulation via forward articulatory hypotheses it would be impossible to achieve 
fluent speech at natural rates (Max, Guenther, Gracco, Ghosh, & Wallace, 2004).
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Internal model approaches to speech perception are consistent with constructivist 
philosophies and suggest that processes developed for speech production might have 
been ‘exapted’ at some point in human evolution for receptive speech processing. 
According to internal model proposals, neurons in the PMC/M1 accomplish the process 
of articulatory and sensory synthesis via inverse forward model pairs (IFMPs). For 
example, a recently proposed neurophysiological ‘motor theory’ of speech processing 
proposed by Skipper et al. (2006) posits that IFMPs are formed early in human 
development. According to that proposal, multisensory speech representations derived 
from sound patterns and observed facial movements are formed via the dorsal stream 
network. These multisensory representations are thought to constitute hypotheses about 
incoming sensory information from a speaker. Over the course of development, as infants 
begin to produce phonemes, associations between these multisensory hypotheses and 
speech production are formed via repeated experience (Imada & Kuhl, 2006). As in 
speech production, when motor commands are activated they can act as hypotheses about 
upcoming acoustic and somatosensory consequences via forward models or efferent 
copies. These motor or articulatory hypotheses may function to weight a particular 
interpretation of sensory signals associated with previous experience.  

According to Skipper et al. (2006), the primary functional role of the motor 
system in this model is to resolve perception when a large discrepancy between 
multisensory hypotheses (i.e., acoustic and visual) and sensory analysis occurs. In other 
words, IFMPs may constrain the possibilities for sensory perception, allowing for 
accurate perception even when acoustic or visual signals are ambiguous or insufficient to 
specify phonemic units.  It is thought that dorsal stream sensorimotor integration may 
play an important functional role in noisy environments, during audio-visual speech 
perception, and may be especially important during conversational interaction in which 
gestural and visual information are known to play a role in shaping perception (Hasson et 
al., 2007). Another important feature of this ‘motor theory’ is that internal models are 
instantiated only when communication partners (CPs) attend to salient multisensory, 
contextual, or auditory features. In other terms, during receptive speech processing in 
real-world communicative interaction, attention or active processing may instantiate 
IFMPs, weighting interpretations of the incoming multisensory speech signal toward 
hypotheses based on directed attention to a salient feature. In this way, it is thought that 
sensorimotor integration may account for invariant percepts in changing environmental 
conditions. A number of similar so called ‘active’ models of speech perception have been 
proposed by others (Rauschecker & Scott, 2009; Sams et al., 1991; van Wassenhove, 
Grant, & Poeppel, 2007).

As in Skipper et al. (2006), a version of Hickok & Poeppel’s ‘dual-stream’ model 
(Hickok & Poeppel, 2004; 2007) suggests that early forward articulatory constraints 
might have a functional role in perception. Recently, Hickok et al. (2011) proposed that a 
computational state feedback control model (SFC) might account for dorsal stream 
sensorimotor interactions in speech perception. This SFC framework suggests that 
forward models generated in motor regions may modulate perception by predicting the 
likely sensory consequences. According to this proposal, passive speech perception 
should elicit activity in the motor system only after stimulus onset, perhaps as covert 
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rehearsal (i.e., internal speech production) of the stimulus. However, a different 
mechanism is proposed to account for the functional effects of the motor system on active 
perception. During active perception, those authors suggest that forward predictions 
initiated in the motor system may generate  a sensory expectation similarly to the way 
attention is thought to apply gain or weight to expected sensory features. In simpler 
terms, articulatory hypotheses may function to reduce the load on the sensory system by 
limiting the number of candidate perceptual targets. This model predicts early activity in 
the motor system and simultaneous activity in the sensory system for the generation of 
articulatory hypotheses or expectations, thereby limiting the number of possibilities for 
sensory analyses. If early forward predictions are compared with online sensory analysis,
activity in the lateral portion precentral gyrus (PMC; M1) would be expected to occur 
prior to acoustic onset. The model also predicts that activity in the precentral gryus 
should peak immediately after stimulus offset, reflecting an initial articulatory hypothesis 
and later synthesis with sensory information (i.e., sensorimotor integration). 

Taken together, researchers proposing neurophysiological frameworks reach an 
accord on several important factors. A similar set of neuronal regions embodied in a 
mirror system or dual-stream sensorimotor network share information either important 
for enriching speech signals or critical to the resolving them. These regions of the brain 
are predicted to emerge from a dorsal stream network including the PMC, M1, STG, and
Spt. If this system functions in a manner consistent with direct-realism, then it embodies 
a direct match between acoustic features of the speech signal and invariant articulatory 
gestures. By contrast, if the system functions as constructivists predict, then it likely 
makes use of internal model mechanisms that initially evolved or developed for 
sensorimotor integration in speech production. According to internal model approaches, 
active attention to salient features of the speech signal is important for instantiating early 
hypotheses that significantly shape subsequent perception. As such, internal models 
should perform a function in resolving speech signals during active processing. One area 
of contention among these theories is whether the motor system (PMC/M1) plays a 
critical role in speech perception depending on context (Skipper et al., 2006) or whether it 
has only a limited, modulatory effect (Hickok et al., 2011a).

It is also worth noting that a third conceptual framework known as embodied 
cognition (EC) is consistent with aspects of both Gibsonian realism and Helmholz’s 
concept of constructivism and has exerted increasing influence on the field of cognitive 
neuroscience. Whereas Gibson’s concept of affordances (see Direct-realism above)
emphasizes interaction between sensorimotor systems and objects within the 
environment, constructivism is associated with abstract schematic representations gained 
via repeated experience. In general terms, EC predicts that action and perceptual 
representation are closely interconnected and inextricable from the environmental context 
in which the two related systems developed, suggesting a more dynamic concept of 
perception than either traditional realism or constructivism provide. From this point of 
view, the concept of mental or perceptual representation requires redefinition. Rather 
than logical combinations of information contributed by cortical regions (e.g., ‘Fuzzy 
logic’ (Massaro, 1998) or a direct relationship between perceiver and environmental 
events, perception may be viewed as a dynamic process that is highly dependent upon 
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both the sensorimotor characteristics of the perceiver and goals relative to action upon the 
environment (Garbarini & Adenzato, 2004). Both the influence of experience emphasized 
by constructivists and the importance of environmental events emphasized by Gibson are 
encompassed by EC. As such, so called perceptual representation may be defined by the 
set of perceptual and motor schemas that, based on previous experience with the 
environment, are the same set required for successful action within the environment. 
Simply put, reality is not directly recreated via mental representation or directly matched 
with constructions based on previous experience. Instead, reality may be both filtered 
through previous sensorimotor learning and highly dependent on changing goals within 
the environment. Although this concept has not been formally applied to speech 
perception, in the domain of general perception EC predicts a changing role for 
sensorimotor integration based on the goals of the perceiver. 

Theories of EEG Generation

As speech is thought to be processed in a MNS or dorsal stream sensorimotor 
network, measureable changes in the resting state EEG would be expected during speech 
processing tasks. Both dual stream and MNS theories suggest that source generators of 
the EEG should be consistent with regional, task specific neural activation patterns within 
the dorsal stream. However, as EEG has traditionally been considered a low-spatial 
resolution measure, it is unclear how current neurophysiological models may be related 
EEG generation.  The EEG literature is often discussed separately from the neuroimaging 
literature and is mired in the complexities of EEG signal processing. As such, the goal of 
the following section is first to discuss current theories of EEG generation. A second aim 
is to discuss theories of EEG generation proposing the emergence of a sensorimotor 
network consistent with an MNS or dorsal sensorimotor stream. The third aim is to 
discuss how current signal separation algorithms may be used to isolate components of 
the sensorimotor network.

Local/global accounts of cortical rhythm generation predict that intrinsic 
oscillations at central frequencies in the thalamus act as a sensory gate (Nunez, 2000). 
When incoming sensory information is processed, input from the thalamus results in 
multiple neuronal generators, each oscillating at near harmonics of  thalamic rhythms 
(Basar, Basar-Eroglu, Karakas, & Schurmann, 2001a; Basar, Schurmann, Basar-Eroglu, 
& Karakas, 1997; Basar-Eroglu, Struber, Schurmann, Stadler, & Basar, 1996; Nunez, 
2000; Pineda, 2005). For example, at rest the thalamus and cortex oscillate at ~10Hz. 
During sensory processing, it is thought that cortical neuronal generators at ~10Hz, 
~20Hz, ~30Hz and ~40Hz emerge. In support of this notion, animal studies suggest that 
7.5-12.5Hz oscillations in the thalamus result in the firing of cortical neurons (Steriade, 
McCormick, & Sejnowski, 1993). Scalp recorded EEG and magnetoencephlography 
(MEG) are thought to be generated by depolarizations during sensory input arriving from 
the thalamus. These depolarizations generate dipolar (i.e., negative and positive electrical 
charges) activity in cortical layers, resulting in far-field potentials that are measurable on
the scalp surface (Pizzagalli, Oakes, & Davidson, 2003).  These potentials are thought to 
be the linear sum of excitatory and inhibitory post-synaptic potentials (EPSPS/IPSPS). As 
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the neurons in cortical layers are oriented parallel to one another and perpendicular to the 
cortical surface, the sum of dipolar electric potentials can be measured on the scalp 
(Nunez, 2000). As such, these coherently oriented cortical columns are thought to be the 
primary generators of scalp-recorded EEG (Fisch, 1999). Higher frequency oscillations in 
the alpha (8-13Hz), beta (13-30Hz), and gamma (36-44Hz and above) bands have been 
associated with cognitive processes in a range of tasks and yet their functional roles are 
largely unknown. Controversies exist about the functional segregation of lower and upper
components of these bands (e.g., 8-10Hz alpha and 11-13Hz alpha) and their possible 
relationships to one another (Osipova, Hermes, Jensen, & Rustichini, 2008).

Although controversies exist, the most recent reviews of activity in upper 
frequency bands integrate a broad range of task specific findings indicating that upper 
frequency oscillations predict task related performance in the domains of perception, 
movement, attention, memory, and complex cognition (Basar et al., 2001a; Crone, 
Boatman, Gordon, & Hao, 2001; Hari, 2006; Klimesch, Doppelmayr, Russegger, 
Pachinger, & Schwaiger, 1998; Krause, 2006; Pfurtscheller, Stancák, & Neuper, 1996).
As such, it has been proposed that, whatever their relationship to one another, higher 
frequency components represent widespread entrainment of neural networks for task 
specific performance and sensorimotor processing (Basar, Basar-Eroglu, Karakas, & 
Schurmann, 2001b). In particular, suppression of spectral power has been shown to 
inversely correlate with fMRI signal change (i.e., blood oxygen level dependent 
measures; BOLD) in a regional manner. During synchrony or brain ‘idling state,’ it is 
thought that widespread synchrony between regions of activity are at rest, resulting in 
high spectral power and low brain metabolism in frontal, temporal, parietal, and occipital 
lobes. However, when regions of the cortex are involved in processing, 
desynchronizations (i.e., decreases in spectral power) are associated with regional 
increases in BOLD signal in the same regions (Formaggio et al., 2008; Goncalves et al., 
2006; Laufs et al., 2003; Yang, Liu, & He, 2010).

A growing body of experimental evidence supports associations between spectral 
suppression and activated cortical networks involved in selective attention and motor 
preparation (see Pineda, 2005 for review). As the role of sensorimotor integration in 
speech and non-speech auditory processing is of interest in the current study, the primary 
aim of the following review is to discuss the possible function of the sensorimotor μ
rhythm, known to suppress during the imagination, observation, and performance of goal-
directed actions (Hari, 2006; Pineda, 2005). The sensorimotor rhythm is associated with 
phase-locked somatosensory (~10Hz) and motor (~20Hz) components. It will be 
suggested first that alpha (~10Hz) and beta rhythms (~20Hz) are involved in wide-spread 
cognitive networks that may become entrained during active sensorimotor and cognitive 
processes. Although these wide-spread entrained oscillations emerge in the service of 
cognition, they may contribute temporally distinct information associated with short-
range neuronal connections (Jung et al., 2000; Makeig, Bell, Jung, Ghahremani, & 
Sejnowski, 1997; Makeig, Debener, Onton, & Delorme, 2004; Makeig et al., 2002b;
Makeig et al., 1999; Onton & Makeig, 2006). As will be discussed later in the chapter, 
this temporally distinct information may be obtained via a relatively recent data driven
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statistical signal separation technique called independent component analysis (ICA)
(Onton & Makeig, 2006).

The Arceu or Rhythm

The arceu rhythm receives its name from an arch like shape and is composed of at 
least two dominant frequency components, one occurring at ~10Hz and another occurring 
at ~20Hz (Hari, 2006; Hari & Samelien, 1997; Pineda, 2005). Changes in oscillations in 
the arceu rhythm can be measured over the sensorimotor cortex and are brief, occurring 
in a time range from .2 to 2s The μ rhythm can be measured over the sensorimotor cortex 
in the absence of processing, suggesting that it might be a measure of ‘cortical idling 
state’ (Baar-Eroglu, Baar, Demiralp, & Schürmann, 1992; Pfurtscheller & Klimesch, 
1990; Pfurtscheller et al., 1996). In other words, peak power centered near the two 
dominant frequencies has been observed when no processing is required. However, 
simple explanations of the μ rhythm as ‘idling’ state have given way to more complex 
accounts of its function. For example, during processing, power in the μ rhythm has been 
shown to decrease in some tasks and enhance in other tasks (Karrasch, Krause, Laine, 
Lang, & Lehto, 1998; Klimesch et al., 1998; Krause et al., 2000).

A large body of evidence has shown that strong sensorimotor event-related 
descynchronization (ERD) (i.e., power decrease or suppression) occurs during the 
observation of movement, imagination of movement, and the execution of movement 
(Pfurtscheller, 1999), strongly suggesting the μ is a functional correlate of neural activity 
within the precentral gryus. The size of ERD (often reported as % change from a 
baseline) is also associated with task complexity, further suggesting that μ rhythms are 
important for task specific processing (Nunez & Silberstein, 2000; Nunez & Srinivasan, 
2006; Silberstein, Danieli, & Nunez, 2003; Srinivasan, Bibi, & Nunez, 2006; Wingeier, 
Nunez, & Silberstein, 2000). Further support for this notion comes from studies of arm, 
mouth, and finger movements. These studies show that movement is associated with 
stronger μ ERD over the sensorimotor cortex contralateral to the effector. For example, 
moving the left finger is associated with greater suppression over the right-hemisphere 
(Graiman & Pfurtscheller, 2006; Makeig et al., 2002b). Studies have also shown 
correspondence between the movement involved (e.g., arm vs. face movements) and 
distinct responses from the μ rhythm. The ~10Hz component tends to be localized of the 
somatosensory cortex near the hand area and the ~20Hz component is known to emerge 
in a somatotopic manner from the precentral gyrus (Hari, 2006). In other words, whereas 
the ~10Hz rhythm has been localized to the somatosensory cortex, the ~20Hz activity of 
the μ rhythm has been localized to the precentral gyrus corresponding with the primary 
motor cortex for the effector involved (i.e., mouth vs. finger). More lateral dipole clusters 
have been found for mouth movements and more medial clusters have been found for 
hand and finger movements (Hari, 2006; Nishitani & Hari, 2000; Salenius, Kajola, 
Thompson, Kosslyn, & Hari, 1995; Salenius, Salmelin, Neuper, Pfurtscheller, & Hari, 
1996).
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Along with suppression of the μ rhythm, it has also been demonstrated that other 
source generators suppress at near harmonics of the ~10Hz rhythm. Laplacian derivations 
(i.e., spatially filtered EEG) allowing for examination of weighted scalp topography 
suggest independent alpha generators in frontal and occipital region (Elul, 1972). Whole 
head MEG further confirms the notion that alpha rhythms are generated by distinct neural 
networks associated with short-range neuronal connections (i.e., small patches of cortex)
(Manshanden, De Munck, Simon, & Lopes da Silva, 2002). Table 1-1 provides a 
description of the spatiotemporal MEG correlates of receptive speech processing. It is 
also worth noting that an alpha-like generator in the superior temporal lobe has been 
recorded using MEG and intracranial recordings that is often not measured using scalp 
electrodes (Hari, 2006; Pineda, 2005). In accordance with a temporal generator, alpha 
(~10Hz) and beta (~20Hz) oscillations have been shown to be suppressed in a number of 
auditory processing and auditory memory tasks. Table 1-2 provides a description of 
experimental studies in which auditory stimuli have elicited ERD and ERS in the alpha
~10Hz and beta ~20Hz ranges.

Within the last two decades perspectives on the functional role of the rolandic μ
rhythm and diffuse alpha suppression have proposed that a common function for μ and 
alpha ERD may be to transform incoming sensory information into action plans (Basar-
Eroglu et al., 1996; Graimann & Pfurtscheller, 2006; Pfurtscheller et al., 1996). This 
framework prompted by the discovery of the previously mentioned sensorimotor neurons 
in the F5 area of the macaque. More specifically, this notion suggests that a MNS
involved in transforming sensory input into action plans is responsible for μ suppression 
during both movement observation and performance. According to this MNS hypothesis, 
μ suppression localized in the primary motor cortex occurs downstream from the PMC, 
the proposed homologue of area F5 (Hari, 2006; Pineda, 2005). A number of experiments 
in which μ rhythms were measured to perceived biological movements, have 
demonstrated that the μ rhythm is reliably blocked in normal subjects during the 
observation of a wide range of movements, including hand, arm, mouth and even implied 
movement (e.g., point-light biological motion) (Crawcour, Bowers, Harkrider, & 
Saltuklaroglu, 2009; Muthukumaraswamy & Johnson, 2004; Muthukumaraswamy, 
Johnson, Gaetz, & Cheyne, 2006; Muthukumaraswamy, Johnson, & McNair, 2004; Ulloa 
& Pineda, 2007). Suppression of the μ has also been shown occur less reliably in 
individuals thought to have dysfunction of deficit in the MNS, suggesting a functional 
role in movement processing (Oberman, et al., 2005; Oberman et al., 2007; Oberman, 
Ramachandran, & Pineda, 2008).

An elaboration of this MNS hypothesis based on information theory was also 
recently proposed (Pineda, 2005). According to this proposal, alpha-like rhythms serve a 
gating function such that broadband information is routed through narrow band filters 
resulting in widespread alpha entrainment when such regions are required to operate 
together. The thalamus is thought to serve as a broadband gate with intrinsic rhythms 
functioning to regulate incoming signals. This entrainment hypothesis provides an 
account of multiple alpha-like oscillators operating coherently and pulled toward central 
frequencies. However, at the same time, sources operate in an independent manner, until 
these regions are recruited in service of sensory analysis. During sensory processing,
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Table 1-1. MEG studies showing time-course of activation between sensory and 
motor regions during speech processing.

Study Conditions Active/ 
Passive   

Spatiotemporal Pattern

Nishitani & 
Hari (2002)

ERPs during observation 
and imagination of 
mouth movements

Active Occipital, temporal, IFG, M1 
in 70ms steps

Pulvermulller 
et al., (2003)

ERPs to auditory word 
stimuli while watching a 
distracting video

Passive Nearly concurrent  (separated 
by 20ms) IFG and STS ERP 
peaks 

Pulvermuller 
et al., (2009)

ERPs during CVC and 
pseudo word listening 
relative to white noise 

Active Delay ~20ms for speech 
relative to noise between STS 
and IFG; greater amplitude in 
IFG for verbs

Salvi & Hari 
(2004)

ERPs during visual and 
auditory syllable 
discrimination

Active Only visual speech activated 
primary motor cortex after 
stimulus onset
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Table 1-2. Studies showing auditory alpha and beta ERD.

Study Conditions/Findings Active/Passive  Spatial Pattern

Krause et 
al., (1994)

10-12Hz alpha ERD during 
speech relative to non-
speech

Passive ERD across electrode 
locations  during 
vowel processing 
relative to tone

Krause et 
al., (1997)

10-12Hz alpha ERD during 
memorization of speech 
played forward; ERS to 
speech played backward

Active ERD across electrodes 
during speech forward 
relative to speech 
backward

Karrasch et 
al., (1998)

10-12 Hz alpha ERD 
during lexical matching 
task; ERS during auditory 
presentation

Active ERD across electrodes 
as a function of task 
complexity ERS 
during acoustic 
encoding; ERD during 
matching

Krause et 
al., (1999)

10-12 Hz ERD during 
semantic category 
matching

Active ERD across electrodes 
as a function of task 
complexity; ERS 
during acoustic 
encoding; ERD during 
category matching

Crone et al. 
(2001) 

8-13 Hz alpha and gamma 
oscillations in syllable and 
tone discrimination 

Active Alpha ERD and 
gamma ERS during 
auditory processing 
over temporal
electrodes

Cacace & 
McFarland 
(2003)

Alpha and beta oscillations 
in ‘oddball’ tone-sweep 
discrimination relative to 
passive pure tone

Active & 
Passive 

Active tasks 
associated with left-
hemisphere ERD at 
~10Hz and ~20Hz at 
temporal and central 
electrodes relative to 
passive tasks

Kaiser et 
al., (2001)

Alpha oscillations in an 
‘oddball’ syllable 
discrimination  task

Active Left hemisphere ERD 
during speech 
processing

Crawcour et 
al. (2009)

8-13Hz alpha range during 
continuous syllable 
counting in auditory and 
visual modalities

Active Alpha 
desynchronization 
over the sensorimotor 
cortex during visual 
speech processing but 
not during auditory 
processing
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independent alpha generators become entrained. The hypothesis predicts multiple alpha-
like generators come into existence when sensory input requires coherent analysis of 
sensory information from multiple neuronal regions. As such, frontal, temporal, parietal, 
and occipital alpha-like generators would be predicted when all of these regions are 
required for sensory analysis. Perhaps most importantly, the hypothesis predicts that top-
down anticipatory or active processes could bring the system into synchrony, resulting in 
simultaneous changes in multiple neuronal generators. Therefore, according to Pineda 
(2005) and others (e.g., Hari, 2006) the μ rhythm and indeed a diffuse EEG system may 
represent a mechanism for translating ‘seeing’ and ‘hearing’ into ‘doing.’

Blind Source Separation Algorithms

Interpretations of studies attempting to measure independent μ and alpha ERD 
generators have been severely limited by the physical phenomenon of volume 
conduction. For the purposes of electrophysiology, volume conduction can be described 
as the transmission of electrical or magnetic fields from one current source through 
neural tissue to multiple sensors located on the scalp. This is a significant problem for the 
interpretation of EEG because fields recorded at one sensor or electrode may be 
influenced by more than one current source, creating the illusion of entrainment when 
volume conduction might also account for changes in oscillation. Therefore in order to 
test the theoretical predictions outlined in the MNS and local/global accounts of EEG 
generation, careful consideration must be given to the physical and electrodynamic 
properties of a conducting volume. The volume conduction problem has inspired 
skepticism about the measurement of spatiotemporal dynamics of EEG from its inception 
(Nunez, 2000). The next section describes relatively recent advances in EEG signal 
analysis and shifts in thought that make the investigation of temporally independent and 
spatially fixed source generators feasible. 

A relatively recently proposed method for separating temporally independent 
neural oscillations is blind source separation implemented via  independent component 
analysis (ICA) (Delorme & Makeig, 2004; Jung et al., 2000; Makeig, 1993; Makeig et al., 
1997; Makeig et al., 2002a; Makeig et al., 1999; Onton & Makeig, 2006). Linear 
decompositions such as ICA and principal component analysis (PCA) separate multi-
channel EEG data into maximally spatially and temporally independent components with 
projected 2-D scalp maps. Unlike PCA approaches, ICA does not require component 
projections to be orthogonal. The orthogonality requirement tends to result in so-called 
‘checkerboard’ spatial maps that do not accurately represent physiological processes 
(Onton & Makeig, 2006). In other words, because PCA components may not spatially 
overlap, this process decomposes the signal into spatial maps that are not consistent with 
the dynamic and transient nature of neural oscillation. ICA as implemented via the 
automated runica algorithm (a version of the Infomax algorithm) in EEGLAB may be 
thought of as a post-processing rotation of spatial PCA components that often results in 
temporally independent dipolar-like scalp maps (Delorme & Makeig, 2004). A more 
technical description of ICA places it as a data analysis technique for reducing 
multivariate input into statistically independent components. ICA may be given by:
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where is the EEG with time in columns and electrodes in rows and is the output of 
independent component (IC) 

onto the EEG channels, accounting for projection weights onto the original EEG data 
(Graimann & Pfurtscheller, 2006). ICA is entirely data driven and decomposes EEG into 
scalp-maps that are consistent with traditionally recognized EEG activity without taking 
into account head geometry or electrode location (Makeig et al., 2002a). That ICA 
accomplishes signal separation with no assumptions a priori strongly suggests that ICs 
represent distinct physiological activity related to information processing in the brain 
(Makeig et al., 2004; Onton & Makeig, 2006). In other terms, it is thought that because 
ICA identifies sources by finding maximally temporally distinct and independent sources 
of information in the EEG signal, these sources likely represent anatomically decoupled 
mechanisms. 

In sum, decomposing multi-channel EEG data using independent component 
analysis addresses a number of the proposed difficulties with EEG interpretation. First, as 
noise sources from blink and other types of artifact are not temporally related to cortical 
activity, ICA is a robust method for removing artifact from EEG signals. Second, because 
IC’s are considered maximally independent from one another, volume conduction from 
multiple sources cannot account for changes in time and frequency. Third, because with 
sufficient training data, ICA decomposes signals into spatially fixed and maximally 
temporally independent scalp maps, inferences about underlying processes between brain 
and behavior can be made with more confidence. Finally, although ICA does not solve 
the source localization problem directly, low variance has been observed between dipolar 
source reconstructions and ICA projections for both low and high-density electrode 
arrays, suggesting that it may act as an efficient spatial filter for spatial localization 
(Congedo, Gouy-Pailler, & Jutten, 2008; Makeig et al., 2004).

The aim of the preceding review was to merge speech perception theory, 
neurophysiological models of receptive speech processing, and theories of EEG 
generation to provide a general framework for predicting and interpreting spatiotemporal 
EEG patterns during speech processing. Internal model concepts of speech processing 
clearly predict early forward and inverse models play an important functional role in 
speech processing. As these models are thought to be embodied in a dorsal stream 
network including the PMC, M1, STG, and area Spt, source activation of all of these 
regions is predicted during auditory speech processing. As such, ICA decomposition of 
event-related EEG during a speech processing task would be expected to separate sources 
with topographic scalp maps and source reconstructions consistent with the dorsal stream 
network. Regarding the time-course of source activation patterns, if constructivists 
accounts provide accurate predictions, during active speech processing tasks rhythms 
known to be associated with sources in motor regions, such as the μ rhythm, should 
desynchronize (i.e., suppress) prior to the onset of an acoustic stimulus and peak during 
the period in which early forward models are compared with sensory analysis (i.e., during 
sensorimotor integration). By contrast, if the direct-realist account of perception provides 
accurate predictions, early desynchronization of the μ would not be expected. In contrast 
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with constructivist theory, peak suppression would be expected when incoming acoustic 
stimuli are directly related to invariant speech gestures (i.e., during stimulus 
presentation). 

Although theoretical models provide a general framework within which to 
interpret EEG data, two decades of neuroimaging research have approached questions 
about the neurophysiological mechanisms underlying receptive speech processing. As 
such, the primary aim of chapter two is to discuss neuroimaging designs and approaches 
to the study of speech perception. As much of the research has addressed the 
controversial question of how sensory and motor subsystems function in resolving speech 
in the auditory modality, the main focus of the literature review concerns sensorimotor 
activation during auditory speech processing. 
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LITERATURE REVIEWCHAPTER 2.   

The Spatial and Functional Neural Correlates of Speech and Non-speech Processing

In recent years, there has been an enormous increase in the number of 
publications using positron emission tomography (PET) and functional magnetic 
resonance imaging (fMRI) to study human cognition, emotion, perception and action. 
PET measures regional cerebral blood flow (cRBF), glucose metabolism, or oxygen 
consumption in neural tissue by detecting positrons emitted from a radioactive tracer. 
fMRI indirectly measures changes in the oxygenation of hemoglobin by detecting 
perturbations in a magnetic field and is thus referred to as a blood oxygen level 
dependent measure (BOLD). Both PET and fMRI provide 3-D pictures of regional brain 
activity during online thinking, perceiving, and acting. Whereas these two techniques 
offer millimeter spatial resolution both have limited temporal resolution. PET requires as 
much as 30 seconds of recording and BOLD signals can measure second-by-second 
regional changes in neuronal activity (Wager, Hernandez, Jonides, & Lindquist, 2007).  
Electrophysiological methods such as EEG and MEG have higher temporal resolution but 
limited spatial resolution and thus less precision in identifying the sources of neuronal 
activity. To address both the temporal limitations of neuroimaging methods and the 
spatial limitations of EEG/MEG, recent attempts have been made to combine the two 
approaches (Callan et al., 2010).

One disadvantage of any neuroimaging method is that only the regional and 
temporal correlates of neural activation during task performance can be determined. As 
such, in recent years another method referred to as transcranial magnetic stimulation 
(TMS) has been developed to establish causal links between brain and behavior. TMS 
involves the use of brief magnetic pulses delivered via a magnetic wand at the scalp 
surface to stimulate focal areas of cortical tissue. This stimulation disrupts neural activity 
resulting in a temporary lesion. Using TMS methodology, psychophysiological 
paradigms can provide information about causal relationships between disruptions in 
processing and behavioral performance (e.g., reaction time or accuracy measures). In 
recent years, the goal of a growing number of studies using neuroimaging, TMS, and 
other psychophysiologcial methods has been to combine data from human performance, 
neuropsychology, and psychophysiology to offer rich information about the functional 
capacities of the human brain. In the last three decades, neuroimaging methods have been 
brought to bear on the debate about sensorimotor involvement in speech and non-speech  
perception. 

Early Neuroimaging Studies

The notion that motor involvement in speech processing is highly context 
dependent was first suggested to explain early imaging findings. In early studies, passive 
speech perception tasks were correlated with bilateral temporal lobe activation consistent 
with sensory analysis in speech perception (Binder et al., 1994). However studies 
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employing classical speech perception paradigms requiring an active decision about two 
percepts (e.g., /ba/ vs /da/) found bilateral temporal activation along with prominent 
activity in frontal regions (e.g., Broca’s area/PMC). One of the earliest studies to find 
activity in Broca’s region measured rCBF during active discrimination of noise bursts 
and speech syllables. Whereas the noise bursts appeared to result in increased activity in 
the primary auditory cortex, acoustically matched speech syllables resulted in bilateral 
activation in the secondary auditory corticies. Further, discrimination of phonetic 
structure (i.e., active decision) was associated with activation in the opercular portion of 
Broca’s area (BA44) and the premotor cortex, suggesting a role for articulatory recoding 
during speech perception (Zatorre, Evans, Meyer, & Gjedde, 1992).  Another early study 
designed to delineate the functional role of frontal-motor activity (i.e., cRBF), found that 
activation of the PMC occurred during auditory word recognition but was greater when 
words were presented at a slower rate, and greater still for word repetition. Those authors 
concluded that, because the activity in the PMC is subtle and sensitive to differences in 
the task, the study design employed and imaging methods themselves are important 
considerations (Zatorre & Belin, 2001).

Recent Neuroimaging Studies

Driven in part by theories of speech perception predicting motor involvement and 
bolstered by the discovery of the human MNS, more recent fMRI studies have continued 
to provide evidence of motor involvement in speech perception. At the sublexical level 
(i.e., syllable level), Wilson, Saygin, Sereno and Iacoboni (2004) found that passively 
listening to meaningless syllables and producing the same syllables was associated with 
overlapping regional activation (i.e., increase in BOLD signal) in primary motor and 
premotor regions. However, as other studies have not found significant activation in 
motor regions during passive processing (Zatorre, Meyer, Gjedde, & Evans, 1996), it has 
been suggested that tasks in which predictive coding is required may be better associated 
with sensorimotor integration in speech perception (Callan et al., 2010). Consistent with 
this notion, the active learning of new sensory and motor speech patterns has also been 
associated with regional cerebral increases in both sensory and motor regions (Golestani 
& Zatorre, 2004).

It has been demonstrated that second language learning of an /r/ vs /l/ contrast is 
associated with a relative increase in sensory temporal areas (STS/STG), posterior 
temporal areas (Spt), and in premotor regions (i.e., Broca’s, primary and premotor cortex, 
and anterior insula) (Callan et al., 2003). Further, this network of neural motor, sensory, 
and orosensory regions was also correlated with better /r/ vs. /l/ identification 
performance in second language listeners, suggesting that this network of regions plays a 
functional role in learning new phonological contrasts. Callan et al. (2003) suggested that 
the function of the motor system may be to produce an early forward model that encodes 
the likely sensory consequences. This forward model is then compared with incoming 
sensory information in the temporal lobes. As in speech production models (Callan et al, 
2000), the Spt region functions as a sensorimotor interface, generating error signals for 
predicted relative to actual sensory input.
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Along with auditory learning and active discrimination it has also been 
demonstrated that activity in the premotor cortex/Broca’s increases with the level of 
spectral detail in the acoustic signal. Binder, Liebenthal, Possing, Medler and Ward 
(2004) employed a design in which sublexical meaningless synthetic speech syllables 
(i.e., /ba/ and /da/) were embedded in various levels of Gaussian white-noise. Participants 
indicated whether the syllables sounded that same or sounded different using a two-
choice button press response pad. Perceptual accuracy, response time, and BOLD signals 
were measured during task performance. As expected, very low signal-to-noise ratios 
(SNR’s) were associated with decreases in perceptual accuracy (i.e., no better than 
chance) and increases in reaction time, whereas higher SNR’s were associated with 
increases in accuracy and decreases in reaction time. BOLD signals in the anterior insula 
were found to positively correlate with response time, whereas bilateral activity in 
temporal regions was found to correlate with accuracy. Activity in the ventral PMC was 
negatively correlated with accuracy, suggesting that activity in the PMC might provide 
articulatory information aiding or constraining sensory analysis when spectral detail is 
decreased. In other words, because PMC activity decreased as accuracy increased, 
activity in that region may be interpreted as providing critical information for auditory 
analysis when spectral detail is decreased, strongly supporting a constructivist view of 
speech processing. Further, because activity in the PMC was not correlated with reaction 
time (thought to be a correlate of sensory decision processing), the study suggested that 
the PMC plays a functional role in sensory processing apart from sensory-decision 
mechanisms. A large number of studies have been dedicated to speech processing as a 
function of spectral detail in the speech signal. Most have concluded that the PMC may 
play a compensatory role when spectral detail is low, perhaps as articulatory recoding for 
later comparison (Hickok & Poeppel, 2007). As in previous studies, active tasks are more 
likely to elicit activity than passive tasks. Table 2-1 provides a review of recent studies 
investigating the neural correlates of speech-in-noise as a function of condition, region of 
activation, and active or passive task performance. 

One possibility suggested early in the neuroimaging literature is that motor 
regions involved in sublexical discrimination tasks are related the selection and 
maintenance of stimuli in working memory. In one of the most cited papers in the 
literature, Hickok and Poeppel (2004) expanded on this notion by suggesting that activity 
in motor regions during sublexical phonological discrimination occurs because stored 
auditory percepts must be translated into articulatory code for comparison in working 
memory. This suggestion motivated work in which the cognitive demands of various 
active sublexical tasks were manipulated with the goal of showing that phonological 
working memory demands would increase activity in motor regions. Burton et al. (2000) 
demonstrated that cognitive load during speech discrimination could be increased by 
employing a task in which participants could not rely on a single phonetic cue to make a 
decision (e.g., /ket/ vs. /lim/). This task was compared to another phonological 
discrimination task in which only one phonetic cue was needed for comparison (/pet/ vs. 
/bet/). Tasks in which more than one cue must be used are considered segmentation tasks, 
whereas tasks requiring the comparison of only one cue are considered identification 
tasks. Consistent with the notion that the left IFG/PMC was involved in articulatory 
recoding, the PMC (BA44) was more active for the former task (i.e., more than one cue)
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Table 2-1. Neural correlates of speech processing with decreased spectral detail 
as a function of condition, region, and task.

Study Conditions/Stimuli Task      PMC STG/STS Spt
Salvi et al ., 
(2002)

Quiet and monoaurally 
presented speech in broadband 
noise

Active X X

Scott et al., 
(2004)

Spoken sentences in broadband 
and multitalker babble

Passive X

Wong, et al., 
(2008)

Word listening and active 
matching to pictures in +20 and 
-5db SNR 

Active X X X

Wong et al., 
(2009)

Word listening and active 
matching to pictures in young 
and older groups in +20 and -
5db noise

Active X X X

Scott et al., 
(2006)

Noise vocoded speech  (speech 
in which noise is inserted) 
passive sentence listening

Passive X

Oblesser et 
al., (2010)

Word listening in broad band 
noise 

Active X X X

Ones et al., 
(2010)

Spectral detail manipulated 
from broadband noise to 
noiseless speech

Passive X X
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when compared to the later task (i.e., one cue). However, if activity in BA44 is due 
primarily to demands required for articulatory recoding, then a similar tone perception 
task requiring similar demands on working memory should not elicit activity in BA44. To 
that end, Burton and Small (2006) developed a tone perception task in which a sequence 
of three tones was generated. These tone sequences were made up of pairs differing for 
all three different tones and the task was to indicate whether the initial tone in the 
sequence was the same or different. The tone segmentation task was compared to the 
speech segmentation task used in Burton et al. (2000). Compared to a resting baseline, 
both the tone and speech segmentation tasks resulted in activation bilaterally in the 
temporal lobes and in the left middle frontal gyrus (MFG) boarding on the IFG, 
suggesting that articulatory recoding might not be the only function of the motor system. 
Consistent with previous neuroimaging studies (Zatorre & Binder, 2000), tone 
discrimination was associated with increases in right-hemisphere frontal regions as well.  
Left hemisphere IFG/PMC activation has also been shown in active rapid pitch 
discrimination tasks, suggesting that it might have a function in the processing or rapidly 
changing auditory signals generally (Johnisse & Gati, 2003). In addition, LoCasto et al. 
(2004) found that words, pseudowords, and tone sequences resulted in greater activity in 
the IFG (BA45/46). Neither discrimination performance nor activation patterns were 
different for words relative to pseudowords, suggesting that lexical access did not tax 
processing for working memory. Thus, in addition to non-native phoneme learning, non-
native contrast discrimination, and active listening in degraded speech processing tasks, 
motor regions appear to have functions for phonological working memory or general 
working memory for rapidly changing acoustic signals.

Combined time-frequency (i.e., MEG/EEG) and fMRI approaches have shown 
strong correlations between localized frequency modulations and spatial patterns in
speech processing (Giraud et al., 2007). In a passive speech processing, Giraud (2007) 
showed correlations between BOLD signals and EEG. In the left auditory cortex (i.e., 
Heschyls’), high frequency endogenous rhythms (28-40Hz) were highly correlated with 
BOLD signals, whereas low frequency rhythms were correlated with right hemisphere 
activity in the same region (3-6Hz). In addition, higher rhythms (28-40Hz) were 
associated with activity in the PMC whereas lower rhythms (3-6Hz) were associated with 
activity corresponding with the tongue region, suggesting that the auditory and motor 
systems are coupled. In another combined fMRI/MEG study, Callan et al. (2010) 
employed a classical single syllable speech perception task embedded in a two-forced 
choice anticipation paradigm using fMRI and subsequent constrained MEG methods. 
Both active and passive syllable identification tasks were compared to listening in white 
noise. As the speech syllables were also embedded in white noise (+4dB SNR), levels of 
correct syllable identification (i.e., same or different) were reduced by 20-30%. This 
manipulation allowed for trials in the active task to be separated into correct and incorrect 
trials. The first fMRI study revealed that only the premotor cortex (BA44/45) was 
associated with correct trials relative to baseline, passive listening, and incorrect active 
listening. The second MEG study revealed that early (i.e., prior to perception) and late 
(~200ms after perception) premotor time-frequency oscillations in the upper alpha, lower 
beta, and gamma range were associated with correct relative to incorrect performance and 
passive perception, strongly indicating that the premotor cortex plays an essential, 
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functional role in active speech discrimination tasks. The Callan et al. (2010) study is the 
first to provide strong evidence for a top-down functional role for the premotor cortex in
speech perception. 

In addition to functional imaging, TMS studies have approached the hypothesis 
that motor systems are critical for speech perception by systematically deactivating the 
premotor and sensory areas. To that end, these studies used repetitive TMS (rTMS) to 
cause virtual or temporary lesions in motor and sensory regions (Meister, Wilson, 
Deblieck, Wu, & Iacoboni, 2007; Sato, Rondinoni, Sturzbecher, de Araujo, & Amaro, 
2010). Meister et al. (2007) applied rTMS to the primary motor, PMC, and to the left 
STG before participants actively discriminated speech syllables embedded in white noise. 
The study found that disrupting the PMC but not the STG resulted in a decrease in 
perceptual performance, suggesting that the premotor cortex was essential for 
performance. However, because that study used speech-in-noise stimuli only, it was 
suggested that the premotor cortex played an essential role only when the spectral detail 
was reduced and percepts were ambiguous. Sato et al. (2009) demonstrated that 
deactivation of the same premotor region resulted in decrease in reaction time on a 
speech segmentation task relative to a speech identification task. Those findings were 
consistent with those of Locasto et al. (2006), in which increases in the demand for 
phonological working memory were associated with increased activation of the PMC. In 
the most recent study to date, (D’Ausilio et al., 2009b) found that repeated stimulation of 
the primary motor cortex in a somatotopic manner increased the perception of speech 
sounds requiring lip and tongue movement respectively, strongly suggesting that the 
motor cortex modifies speech perception. Taken together, TMS studies strongly indicate 
a functional role for the premotor and motor cortices in sublexcial speech processing. 

Although a number of studies have found activity in the PMC/M1 during the 
perception of speech, the precise functional role of sensorimotor integration is still a 
matter of heated debate (Gallese et al., 2011). First, imaging studies have shown 
considerable variability in the precise region of the motor system involved in auditory 
perception, suggesting that such activation may be dynamic and highly dependent on 
context (Price, 2010). A recent activation-likelihood meta-analysis found that a region 
superior and anterior to PMC was active in sublexical speech perception tasks 
(Turkeltaub & Coslett, 2010). Second, debate about the role of the PMC relative to 
sensory systems in receptive processing and whether it is part of a MNS for speech 
perception is ongoing. Concepts designed to account for sensorimotor integration propose 
either greater weight for the sensory-orosensory system or co-equal participation in the 
perception of speech (Gallese et al., 2011). At a minimum, sensorimotor integration plays 
a modulatory role in sensory processing in few, selective situations (Hickok et al., 2011) 
and more likely plays an essential role, perhaps depending on the environmental context
in which processing occurs (D’Aussillo et al., 2009; Pulvermüller & Fadiga, 2010).
Rauscheker and Scott (2009) and Skipper et al. (2006) emphasize that an internal 
simulation system likely preforms crucial functions during face-to-face interaction as
listeners track a number of communicative gestures generated by the speaker, allowing 
parity between sender and receiver of information.
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As in Callan et al. (2003) and others (e.g., Davis & Johnstrude, 2007; Hikock et 
al., 2011; Price, 2010; Skipper et al., 2006) it appears that one candidate function for the 
motor system in active auditory perception is to place early constraints on incoming 
sensory signals. These signals are then compared in a region thought to be involved in 
sensorimotor integration (i.e., area Spt). A similar hypothesis, suggesting a relationship 
between selective attention and the motor system has recently been proposed by Hickok 
et al. (2011), in which motor-selective attention facilitates processing in active tasks. 
However, testing these hypotheses would require establishing a time-course for 
sensorimotor activation pattern related to perceptual performance. For instance, it 
remains possible that, rather than early articulatory models, the motor system may 
function to recode sensory information into articulatory information to enhance working 
memory (i.e., covert rehearsal hypothesis; Hickok & Poeppel, 2004; 2007). Clearly, more 
time-sensitive methods with spatial resolving power at the hemispheric and regional 
levels are required to test hypotheses about internal models.

Synopsis and Predictions

Despite more than two decades of study, the spatiotemporal signatures of 
sublexical speech and non-speech processing are unclear. The measurement of EEG 
signatures of speech processing in time using BSS may yield important contributions to 
the extant literature. The primary goal of the first and second chapters has been to 
synthesize predictions from speech perception theory, neuroimaging findings, and 
theories of EEG generation to provide a general framework for predicting and 
interpreting the spatiotemporal course of EEG signatures during speech and non-speech 
processing. Taken together, models of speech and complex acoustic processing suggest 
that identifying the time-course of sensorimotor integration in relation to the onset of 
acoustic stimuli may shed light on how those systems function. 

Although it remains unclear how the upper frequency components of the EEG are 
related, it is clear that such oscillations are important for the processing and generation of 
sensory and motor information. Perspectives predicting global and local entrainment of 
EEG rhythms suggest that the rolandic μ rhythm and other alpha-like rhythms should 
emerge during sensory and motor processing when the task requires active processing or 
top-down control. Further, as alpha and beta rhythms have been localized to sensory, 
premotor, and motor regions during the performance of various tasks, it can be predicted 
that speech and non-speech will elicit regional changes in both upper frequency signal 
components. Further, as both rhythms are thought to be important for the processing of 
sensory stimuli differences as a function of task complexity and performance level would
be expected.  

Regarding the spatiotemporal activation the dorsal stream during an anticipatory 
sublexical forced choice task, several predictions can be made from current views of EEG 
generation (Pineda, 2005). During a passive sublexical discrimination task in which top-
down modulation is not required, μ ERD (~10Hz and ~20Hz) in motor regions may occur 
only after sensory analysis or not at all. During active tasks, in which top-down 
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processing in frontal-motor regions may be important for task performance, suppression 
of the sensorimotor rhythm and other alpha-like rhythms should occur prior to and 
immediately after sensory analysis. As it is thought that EEG time-frequency components 
become entrained for active sensory analysis, it can be predicted that changes in μ ERD 
and other alpha frequency components will be found in sensorimotor, temporal, and 
possibly posterior temporoparietal regions. Therefore, during active tasks, ICA is 
expected to reveal alpha, beta, and perhaps low gamma spectral changes (i.e., 
suppression) in left and right hemisphere frontal, temporal, and perhaps temporoparietal 
regions. 

Constructivist and direct realist theories offer clear predictions about the time-
course of activity in brain areas thought to be involved in sensorimotor integration. First, 
in passive auditory speech discrimination tasks (e.g., discrimination of /ba/ and /da/), 
although motor activation may occur along with activation in sensory areas, it may not be 
necessary for perceptual performance. In support of this perspective, neuroimaging 
studies suggest inconsistent activation of the motor regions during passive speech 
perception tasks and lesion evidence suggests that motor systems are not necessary for 
speech perception in good listening conditions. If as Hickok and Poeppel (2007) suggests, 
the motor activity in passive tasks is merely epiphenomenal covert rehearsal, then motor 
activity as indexed by the sensorimotor μ rhythm should only occur after sensory analysis 
or perhaps not at all. 

During active tasks, constructivist approaches predict that forward constraints on 
auditory analysis generated in motor regions may function either by enhancing neural 
gain for expected features or by suppressing neural gain for irrelevant features (Callan et 
al., 2010; Hickok et al., 2011). Perhaps this top-down modulation functions to enhance 
the baseline excitability or gain of neural populations relevant to the upcoming analysis.  
As such, active processing may be enhanced by internal simulations occurring prior to 
perception. Therefore, perceptual processing should be preceded by activity in motor 
regions. Finally, because it is thought that forward predictions are then checked against 
incoming acoustic input, suppression of the μ rhythm would be expected during acoustic 
analysis with peak suppression occurring immediately following acoustic analysis. In 
other words, since early forward models are thought to be related to active task 
performance, peak activity would be expected when early hypotheses are compared with 
acoustic analysis (i.e., sensorimotor integration).

In regards to the processing of non-speech sounds, if motor and sensory 
phonological regions are both active, only activity after or during analysis would be 
expected. Because constructivist approaches invoke forward internal models that are 
based on previous experience, meaningless rapid-tone changes should not produce early 
motor or sensory constraints in active tasks. In other words, because a lifetime of 
previous experience for analyzing meaningless rapid-tone sequences does not exist, early 
motor models that function to constrain auditory analysis are not likely. The motor 
activity to rapid-auditory processing found in some previous studies may reflect a 
functionally distinct process (Burton et al., 2005; Joanisse & Gati, 2003; LoCasto et al., 
2004a).
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The predictions of constructivist approaches are in contrast with those of direct-
realism. Direct-realism predicts that incoming acoustic signals directly specify the 
gestures that caused them. Although direct-realism does not directly specify neural 
system involvement it clearly predicts a relationship between acoustic analysis and 
gesture. Therefore, motor system involvement should occur concurrently with sensory 
analysis and no inferential or predictive coding would be required. Perhaps direct-realism 
is in the best position to explain previous findings of IFG and MFG (i.e., cognitive motor) 
activity during non-speech pitch perception (e.g., LoCasto, Krebs-Noble, Gullapalli, &
Burton, 2004b). Because direct-realism suggests that even non-speech auditory signals
that have been paired previously with actions might excite the motor cortex, it seems 
possible that concurrent sensory and motor activity after stimulus onset might occur. 
Further direct-realism predicts a direct relationship between non-speech sensory and
motor analysis, in the case of pitch perception or rapid temporal processing, it remains 
possible that incoming acoustic signals can be transduced into motor commands that 
might generate the desired sensory consequences. For example, a rising pitch change 
might be simulated or approximated internally using a vocal tract model (Burton, 2009).
In this example, motor processing should occur only during or after the onset of an 
acoustic event.

Aims, Questions, and Hypotheses

Aim 1: To Identify Spatially Fixed and Temporally Independent Components 
Associated with Speech and Non-speech Processing

Question

If the application of ICA results in left hemisphere independent dipolar scalp 
maps in frontal, motor, and temporal regions in the left-hemisphere, will 
equivalent current dipole models and current source density estimates (i.e., 
sLORETA solutions) show activity in regions consistent with known cortical 
regions involved in speech and non-speech processing?

Hypothesis

If ICA is driven by small patches of synchronized cortex related to stimulus 
processing, the application of ICA to raw EEG multichannel data will result in 
topographic maps
solutions consistent with processing in regions known to be active in sublexical 
speech processing tasks.
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Aim 2: To Identify Independent Components Associated with Known Features of 
the Sensorimotor μ Rhythm

Question

Will independent component clustering reveal components consistent with known 
features of the sensorimotor μ rhythm including spectral peaks at ~10Hz and 
~20Hz, dipole locations and sLORETA solutions in the precentral and postcentral
gyrus, and suppression in the ~10Hz and ~20Hz range?

Hypothesis

Independent component clustering will reveal components consistent with known 
features of the sensorimotor μ rhythm including spectral peaks at ~10Hz and 
~20Hz, dipole locations and sLORETA solutions in the precentral and postcentral 
gyrus, and suppression in the ~20Hz range.

Aim 3: To Investigate Differential μ Rhythm Suppression Relative to Stimulus 
Onset, Stimulus Type, and Discriminability

Questions 

1) Is the time-course of power suppression for  μ component clusters 
significantly different for passive speech and tone processing condition when 
compared to passive noise baseline (pFDR<.05)?

2) Is the time-course of peak power suppression for μ component clusters 
different for active speech and tone processing (pFDR<.05)? 

3) Is the time-course of peak suppression for μ component clusters different for 
correct trials compared to trials in which percepts are identified at chance 
levels (pFDR<.05)?

4) Is the time-course of peak suppression for μ component clusters significantly 
different for correct speech and tone perception trials (pFDR<.05).

Hypotheses

1) If passive speech perception is associated with sensorimotor activity, μ
suppression prior to and following stimulus onset will be significantly 
different from a passive noise baseline.

2) If constructivist, internal model perspectives provide an accurate account, 
early μ suppression prior to stimulus onset and following stimulus onset 
should be significantly different from the passive noise baseline for the active 
syllable discrimination task.
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3) If μ suppression is related to perceptual performance, then active syllable 
discrimination trials in which discrimination was performed accurately should 
be different from trials in which discrimination was at chance levels.

4) If the function of motor activity is to perform top-down constraints on speech 
processing as opposed to a general function related to auditory processing 
(i.e., general attention/working memory), the time-course of μ suppression is 
expected to be different for correct speech relative to correct tone perception 
trials.
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METHODOLOGYCHAPTER 3.   

Experimental Design

The current proposal employs a classical forced-choice speech and non-speech 
(i.e., rapid pitch change) perception design in which EEG time-frequency changes (i.e., 
ERS/ERD) can be measured before, during, and after stimulus onset (Binder et al., 2004; 
Callan et al., 2010; Johanisse & Gatti, 2003; Zatorre et al., 1992). As activity in the 
premotor and primary motor regions has been observed when spectral detail of the speech 
signal is reduced, speech and non-speech percepts will be embedded in Gaussian white-
noise. The presence of white-noise has also been shown to decrease perceptual 
performance for the proposed task (Binder et al., 2004; Callan et al., 2010), allowing for 
an examination of correct trials and those not identified above chance levels. Such an 
examination is crucial to establish whether the EEG signatures of sensory and motor 
processing are functionally related to stimulus processing. As any auditory stimuli may 
result in broad changes in the EEG spectrum (e.g., Krause, 2006), speech and tone 
processing tasks will be compared to a baseline condition in which participants passively 
listen to white-noise.

Other considerations in the design are motivated by predictions about the role of 
motor and sensory systems as a function of task performance and concerns that have 
traditionally limited previous neuroimaging studies. First, as motor processing in passive 
tasks is thought to reflect covert rehearsal (i.e., after stimulus onset) and motor processing 
in active tasks is thought to play a functional role (prior to and after stimulus onset), both 
passive and active tasks will be employed. Second, in two forced-choice paradigms in 
which a phonetic decision is required, it has been suggested that activity recorded within 
classical speech production areas might arise from premotor planning for a button press 
response or working memory for sensory-decision. To address this possibility, two active 
tasks (i.e., requiring a sensory-decision via button press) were compared for both speech 
and tone stimuli, one in which good perceptual performance was expected and another in 
which performance was not expected to be above chance levels. If suppression of the 
sensorimotor rhythm were related to a button press response as opposed to stimulus 
processing, no differences between correct trials and those discriminated at chance levels 
would be expected. Further, no differences would be expected for speech and tone stimuli 
since for both an active decision was required. 

Third, in previous neuroimaging studies, due to the limited temporal resolution of 
PET and fMRI, it has been impossible to determine whether neuronal activity in motor 
and premotor regions was related to stimulus processing or to internal speech production 
(i.e., covert rehearsal) following stimulus processing.  In the present study, this 
possibility was addressed via the temporal resolution of the EEG. If covert rehearsal or 
working memory for the response was responsible for activity in motor regions, such 
activity would not be expected prior to an acoustic stimulus. Further, based on models of 
speech production, a minimum of 200ms would be required for participants to process an 
auditory stimulus and to initiate covert rehearsal (Callan et al., 2010). As such, if 
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differences between correct and chance trials are found immediately following stimulus 
offset, it is unlikely that such differences would be due to covert rehearsal. 

Methods

Participants

Sixteen right-handed English-speaking adults (15 female and 1 male) with a mean 
age of 25 (range 20-42) participated in this study. Participants reported no diagnosed 
history of communicative, cognitive or attentional disorders. Degree of handedness was 
assessed using the Edinburg Handedness inventory (Oldfield, 1971). Prior to the
experiment, informed consent approved by The University of Tennessee Health Science
Center Institutional Review Board was obtained for all participants. 

Stimuli

Speech stimuli consisted of /ba/ and /da/ syllable generated using AT&T naturally 
speaking text-to-speech software. The software generates syllables using speech 
synthesized from a human male speaker. Half of the stimuli had different initial sounds 
(e.g., /ba/ and /da/) and the other half were the same (e.g., /ba/ and /ba/). The stimuli were 
normalized to have the same root-mean-square (RMS) amplitude and low-pass filtered 
with a cutoff at 5kHz. Each stimulus syllable was 200ms in duration with an 
interstimulus interval of equal length (i.e., 200ms). Thus, the total time required to 
present a stimulus pair was 600ms. For the tone discrimination task, sine-wave tone 
sweeps were generated using a procedure adapted from a previous neuroimaging study 
(Johanisse & Gati, 2003). Tone-sweep stimuli were composed with an 80ms modulated 
tone onset and a 120ms steady state 1000Hz sine-wave. As for the speech stimuli, tone-
sweeps were generated, low-pass filtered with a cut-off at 5kHz, and normalized to have 
the same RMS amplitude as the speech stimuli. Tone pairs differed only in whether the 
pitch onset was lower at 750Hz than the steady state tone or higher at 1250Hz. For both 
speech and tones the time between trials (i.e., interstimulus interval) was 3000ms. White 
noise for the tone and speech stimuli was generated and processed using the same 
procedure as for the speech sounds, with a low-pass filter cut-off at 5kHz. All auditory 
stimuli were processed using Soundtrack Pro academic software on an iMac (2 GHz intel 
core duo) computer and were sampled at 44kHz. Conditions were placed in random order 
prior to presentation. All stimuli were presented at an absolute intensity of 70dB. An 
example time line of one stimulus trial is displayed in Figure 3-1A along with examples 
of normalized speech and tone-sweep stimuli at a +4dB signal-to-noise ratio (SNR) as 
function of amplitude over time in Figure 3-1B.

Previous investigations have shown better than chance performance on a forced 
choice syllable discrimination task using a +4dB SNR and chance performance using a -
6dB SNR (Binder et al., 2004; Callan et al., 2010). However, pure tones may be detected 
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Figure 3-1. Sample time-line of one trial and normalized stimulus amplitude over 
time.
Notes. A) time-periods of interest indicated prior to stimulus onset, during stimulus 
presentation, and following stimulus presentation and B) amplitude over time pre-
stimulus, during stimulus, and following stimulus for both speech (top) and tone-sweep 
stimuli (bottom) for Actsp+4dB and Actn+4dB.
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with noise intensities as high as 18dB above pure tone intensity (i.e., -18dB SNR) (Ernst, 
Verhey, & Uppenkamp, 2008). To account for differences between perceived loudness 
between tone and speech stimuli, preliminary behavioral data was collected on 10 female 
participants using Stim2 presentation software presented through Etyomotic ER1-14A 
tube phone inserts in a sound treated booth. Syllable and tone stimuli were embedded in 
white noise and presented in 20 trials using the time scheme as in Figure 3-1A at the 
following SNRs -18dB, -12dB, -6dB, +4dB. Syllable stimuli were identified above 
chance in the +4db condition only. Accuracy for tone- sweep conditions were not above 
chance in -18dB SNR, with 60% in -12dB SNR, 78% in the -6dB condition, and 75% in 
+4dB condition. Paired-t tests revealed no significant difference (p>.05) between the 
+4dB and -6dB conditions. As such, the SNRs for speech were set at -6dB and +4dB and 
for tones at +4dB and -18dB.

Procedure

Stimuli were presented using Stim 2 4.3.3 stimulus presentation software on a PC 
computer. The experiment was conducted in an electronically and magnetically shielded, 
double-walled, sound-treated booth. Participants were seated in a comfortable reclining 
armchair with their heads and necks well supported. Participants were told that they 
would be listening to white noise, syllables, and tones. They were instructed that the 
onset of one trial would commence when white noise was audible, followed by either 
syllable or tone stimuli. Participants were asked to indicate whether the syllables or tones 
sounded the same or different by pressing a button using the left thumb only. As 
premotor planning for finger and hand movements is generally brief (~200ms) (Callan et 
al., 2010; Graiman & Pfurtscheller, 2006), to further control for the possibility that 
preparation for the response might confound premotor activity related to stimulus 
processing, participants were signaled to respond via a 100ms, 1000Hz sine wave tone 
1400ms after stimulus onset (see Figure 3-1A). To control for stimulus-response bias in 
the button press task, the order of the button press was counterbalanced.

All conditions were randomized prior to presentation and presented in two 
randomized blocks consisting of 40 trials each. Performance was evaluated as a 
percentage of correct trials (%CT). Participants were asked to listen under the following 
conditions: 1) Passively listening to noise (Pasn); 2) Passively listening to speech 
syllables in +4dB noise (Passp+4dB); 3) Passively listening to tone-sweeps in +4dB noise 
(Pastn+4dB); 4) Active syllable discrimination-in +4dB noise (Actsp+4dB) 5); Active 
tone-sweep discrimination-in +4dB noise (Actn+4dB); 6) Active syllable discrimination 
in -6dB noise (Actsp-6dB); 7) Active tone-sweep discrimination in -18dB noise (Actn-
18dB). 

Data Acquisition

Thirty-two electrode channels were used to acquire EEG data based on the 
extended international 10-20 method of electrode placement (Jasper, 1958) using an 
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unlinked, sintered NeuroScan Quik Cap. Recording electrodes included Cz, C3, C4, CP4, 
CP3, Pz, P3, P4, P8, Fz, F3, F4, F7, F8, FC4, O1, O2, FP1, FP2, FT7, FT8, T3, T4, T5, 
T6, TP8, TP7 with two electrodes on the left (M1) and right mastoids (M2). The 
reference electrode was placed on the nasion and the ground electrode was at Fpz.  The 
electro-oculogram (EOG) was recorded by electrodes placed on the left superior orbit and 
the left inferior orbit (VEOG) and on the lateral and medial canthi of the left eye (HEOG) 
to monitor vertical and horizontal eye movements, respectively. The impedances of all 
electrodes were measured at 30 Hz before, during, and after testing and were never 
greater than 5 K .

EEG data were collected using Compumedics NeuroScan Scan 4.3.3 software and 
the Synamps 2 system. A mean of 50 trials (~480s) of artifact free data were obtained for 
each condition. The raw EEG data was filtered (0.15 – 100 Hz), and digitized via a 24-bit 
analog-to-digital converter at a sampling rate of 500 Hz. Data was time-locked to the 
onset of individual speech perception trials. After data collection, the recorded EEG 
signal and electro-oculogram (EOG) data was segmented into single trials lasting 
approximately 5000ms each, spanning from -3000ms to +2000ms with reference to 
stimulus onset (i.e., zero time). That is, time prior to syllable and tone-sweep stimuli was 
considered negative and time following syllable and tone-sweep stimuli was considered 
positive. To examine pre and post-stimulus activity, the EEG data was segmented 
(epoched) into the 3000 milliseconds pre-stimulus period, and 2000ms post stimulus 
onset.  EEG data were visually inspected and trials contaminated by gross artifacts 
greater than 200 μV were removed. A minimum contribution of 40 epochs for each 
participant in each condition was required for inclusion in the experiment. Due to a 
contribution of only 20 trials in several conditions, one participant was omitted from 
analysis.

Data Analysis

ICA Preprocessing

Prior to ICA training, EEG data were concatenated (i.e., added without mixing) 
for each participant across conditions. Subsequent ICA training was implemented using 
the extended runica algorithm implemented in EEGLAB. The initial learning rate was set 
to .001 with a stopping weight of 10-7. Linear decomposition using the extended Infomax 
algorithm (Lee, Girolami, & Sejnowski, 1999) was conducted for each participant across 
experimental conditions. The algorithm spheres or decorrelates the data matrix prior to 
ICA rotation and computes the variance of IC projection weights on to the original EEG 
channel data (Onton et al., 2005; Pfurtscheller et al., 2006). The resulting square weight 

thus applied to each subject, yielding a single set of weights for each experimental 
condition expressing independence in the data. This process allows for a comparison of 
condition differences for the same set of component weights. Thus, for each subject all 
conditions bear the same set of component weights, allowing for a fair comparison 



34

between conditions. The inverse weight matrix can then be back projected onto the 
original EEG channel configuration, providing spatial scalp topography for the 
components.

Independent components (IC’s) were evaluated for each participant across 
experimental conditions using three criteria. First, an automated algorithm (ADJUST) 
shown in a previous study to have good inter-rater reliability with researchers 
experienced in IC noise removal, was used to tag non-brain artifact components in the 
EEGLAB software (Mognon, Jovicich, Bruzzone, & Buiatti, 2010). Scalp-maps and log 
spectra were also visually inspected for indicators of non-brain artifact including high 
power in low frequencies, abnormal spectral slope, and scalp-topographic distributions 
known to be associated with eye-movement and temporal muscle contraction (see Figures 
A-10 through A-12). ICs with characteristic signs of non-brain artifact were then pre-
tagged for each subject. Second, IC’s with 20 trials having outlier values (μV SD set to 
10) over the electrode with maximum power were eliminated (Callan et al., 2010). 
Finally, equivalent current dipole (ECD) models for each component were computed 
using a four-shell spherical head model (BESA) in the DIPFIT toolbox (Oostenveld & 
Oostendorp, 2002, freely available at sccn.ucsd.edu/eeglab/dipfit.html). Standard 
electrode coordinates were warped to the BESA head model followed by coarse and fine-
fitting to the spherical wire matrix, yielding dipole models for each of 480 ICs. 

sLORETA Source Estimations

sLORETA is a functional imaging technique that provides standardized linear 
solutions for modeling 3-D distributions of the likely cortical generators of EEG activity 
(Pascual-Marqui, 2002).  The software uses a 3-D spherical head model separated into 
compartments including, the scalp, skull, and brain. sLORETA analysis operates under 
the assumption that scalp-recorded signals originate primarily in the cortical gray 
matter/hippocampi and that neighboring neurons are synchronously activated, giving rise 
to a signal that is distinct from surrounding noise. The head model is standardized with 
respect to the Talairach cortical probability brain atlas, digitized at the Montreal 
Neurological Institute (MNI) and uses EEG electrode coordinates derived from cross-
registrations between spherical and realistic head geometry (Towle et al., 1993). The 
brain compartment includes 6239 voxels (5mm resolution). Electrode coordinates were 
converted to ASCII text format and exported to sLORETA from the EEGLAB module. 
For each IC, inverse ICA weight projections onto the original EEG channels were 
exported to the sLORETA data processing module for each participant. Cross-spectra 
were computed and mapped to the standard Taliarach brain atlas cross-registered with the 
Montreal Neurological Institute (MNI) coordinates, yielding sLORETA estimates of 
current source density for each of 480 ICs.
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Independent Component Clustering

To identify similar independent components across participants, 480 (30x16) 
components were then clustered using measure product methods in the K-means 
statistical toolbox implemented in EEGLAB. The toolbox uses principle component 
clustering methods to reduce data dimensions and yields similar component clusters 
across participants. Product clustering considers precomputed measures with the aim of 
dividing points by dimensions into a specified number of clusters so that the 
within cluster sum of the squares is minimized. Here, 28 possible component clusters 
were considered. The data dimensions were reduced to 10 with the standard deviation set 
to 3. As such, ICs more than 3 standard deviations from any cluster mean were excluded 
as an outlying cluster. As the sensorimotor μ rhythm is known to have characteristic 
peaks at ~10 and ~20Hz and source locations within the sensorimotor cortex, scalp-maps, 
log spectra, and equivalent current dipole modes were precomupted and considered in the 
clustering analysis. Component power spectra for each subject were calculated by 
averaging fast Fourier transform (FFT) spectra for each epoch using a window length of 
256 points. Scalp topographies were computed as 30 channel (x,y) map gradients and 
ECD models were precomputed in the manner described in a previous section.

After clustering, only components with a single dipole model within the head 
volume accounting for 80% or greater of the variance in the independent component 
scalp distribution were included in μ component clusters. Pre-identified noise 
components tagged prior to the analysis were used to identify clusters accounting for 
non-brain sources. In two cases, cluster membership was adjusted considering both 
dipole location and sLORETA current source maximum and distribution. Particularly for 
ICs in which a single dipole model accounted for less of the variance percentage (i.e., 
>15% residual variance), the sLORETA distribution was used to investigate whether the 
distribution was within the sensorimotor cortex. Only dipole locations and sLORETA 
source maximum voxels within the precentral and postcentral gyri with spectral peaks 
near 10 and 20Hz were included in μ component clusters.

Event-related Spectral Perturbations

To examine stimulus induced changes in the EEG spectrum ERSP transforms 
were precomputed in the EEGLAB module using the STUDY command structure. 
ERSPs are changes scaled in normalized decibel units from a chosen spectral baseline 
over a broad spectral range (here 0-40Hz) (Delorme & Makeig, 2004). For independent 
components, ERSPs are scaled in RMS decibel units on the same scale as the component. 
Thus, IC scalp map topographies and ERSPs share the same RMS scale in decibel units. 
In this study, ERSPs were computed using a Morlet sinusoidal wavelet set at 3 cycles at 
3Hz rising linearly to 20 cycles at 40Hz. Here, a 1000ms pre-stimulus baseline was 
selected from the silent interstimulus interval. This baseline served as a time period 
during which a surrogate distribution was generated. The surrogate data distribution is 
constructed by selecting spectral estimates for each trial from randomly selected latency 
windows in the specified epoch baseline. In this study, the baseline data was sampled 200 
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times, producing a baseline distribution whose percentiles may then be taken as 
significance thresholds (Delorme & Makeig, 2004). Significant changes in spectral power 
(i.e., increases or decreases from baseline) were then tested using a bootstrap resampling 
method. Significant differences from baseline (p<.05 uncorrected) were considered in the 
subsequent within subjects analysis of ERSPs for identified μ component clusters. 

Analysis of condition effects for the left and right μ ERSPs were carried out using 
the STUDY command structure in EEGLAB. The single trial current for all seven 
experimental conditions for frequencies from 0-40Hz and times from approximately -
600ms to 2000ms post-stimulus onset were entered into a time-frequency analysis. For 
the two conditions in which performance was better than chance (Actsp+4dB and 
Actn+4dB) only trials discriminated correctly were considered in the ERSP analysis. A 
mean of 64 trials across conditions were entered into the ERSP analysis. Wavelet 
estimates across trials for each time and frequency were then converted to a time-
frequency matrix (69x105) with the 3.4Hz to 39.9Hz to -589 to 1441ms. To test the 
significance of condition effects, non-parametric random permutation statistics in a 1x7 
repeated measures ANOVA design were computed. The advantage of using non-
parametric statistics for hypothesis testing of ERSPs is that this approach does not 
assume that the data are normally distributed. As discussed in previous papers, the event-
related spectral increases (ERS) and decreases (ERD) that characterize ERSPs are 
frequently non-normal (Graiman & Pfurtscheller, 2006).

Random permutation methods generate a surrogate distribution constructed from 
time-frequency values randomly shuffled from each condition across all possible 
permutations. This random distribution represents the null hypothesis that no condition 
differences exist. In this study, 2000 random permutations were computed and compared 
to F-values for the mean condition differences. To control for the inflation of Type I error 
rates associated with multiple comparisons, a correction for false-discovery rate (pFDR) 
was applied, allowing for a conservative test of condition effects  (Benjamini & 
Hochberg, 2000). The FDR adjusts the significance threshold using a false discovery rate 
computed from the random permutation tests. 
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RESULTSCHAPTER 4.   

Behavioral Performance

Percentage Correct

The means and standard errors for % correct trials (CT) in the four active speech 
and tone perception conditions are displayed in Figure 4-1A . Prior to the analysis trials 
with response times (RT) greater than three standard deviations from the mean response 
time (i.e., trials greater than 1996 milliseconds) were removed and were not considered in 
any subsequent analysis. Performance on the perceptual identification tasks (i.e., /ba/ vs 
/da/ and /1250Hz/ vs /750Hz/) was assessed as a percentage of correct trials. Performance 
in the Actsp+4dB condition was at near ceiling levels with a mean of 96% (SE= .01) 
correct. The Actsp+4dB condition was associated with better performance than the 
Actn+4dB condition, with a mean of 83% (SE =.02) correct. The mean for the Actsp-6dB 
and Actn-18dB were 53% (SE=.01) and 51% (.01) correct respectively. For the active 
conditions, a repeated measures analysis of variance (ANOVA) for the factor condition 
(1x4) revealed a significant main effect [(F=(3)131.65, p<.01]. A series of planned 
orthogonal single degrees of freedom comparisons were employed to determine condition 
differences. A significant difference was found for a comparison between % CT in the 
Actsp+4dB condition and the Actn+4dB condition [(F=39, p =1]. No 
significant difference was found for a comparison of the Actsp-6dB and Actn-18dB 
conditions [(F=1.79, p=.20]. The Actsp-6dB and Actn-18dB were also not significantly 
different from chance level performance [t=.98, p=.20].

Response Time

The means and standard errors for button press response time are depicted in 
Figure 4-1B. Response times (RT) were evaluated as the time in milliseconds from the 
cue to respond (i.e., 1000Hz tone) to the button press response. RTs for each subject in 
the four active conditions were entered into a repeated measures ANOVA with the factor 
condition (1x4). The analysis revealed a significant main effect for condition [(F=3.71, 
p =.77]. A series of planned, single degrees of freedom a priori contrasts 
revealed significant differences between correct trials in the Actsp+4dB and Actn+4dB 
compared to chance level performance trials in the Actsp-6dB and Actn-18dB conditions 
respectively [(F=7.23, p =.71]. No significant difference was found 
between the Actsp+4dB and Actn+4dB conditions [(F=.00 p =.96] or between the Actsp-
6dB and Actn-18dB [F=.24 p =.62]. The mean RT for the two conditions in which 
performance (Actsp+4dB and Actn+4dB) was above chance were 642ms (SE=58) and 
641ms (SE=47) respectively. The mean RT for the two conditions in which performance 
was at chance levels was 767 (SE=68) and 743ms (SE=55). Taken together, the analysis 
revealed an inverse relationship between perceptual performance in the active conditions 
and button press response time. 
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Figure 4-1. Means and standard errors for percentage correct trials and response 
time.
Notes. A) active speech and tone perception conditions and B) active speech and tone 
perception conditions. Significant condition differences at p<.05 are indicated by *.
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Electrophysiological Measures

Independent Component Clustering

Independent component clustering revealed six distinct component clusters with 
likely neural as opposed to non-brain (i.e., artifact) sources. Average log spectra, ERSPs, 
,scalp topographies, and source estimates are presented in the Appendix (Figures A-1
through A-13). Six component clusters accounted for eye-blinks and vertical eye-
movements, horizontal eye-movements, temporal muscle noise, and nonspecific 
(electromagnetic line-noise). Sample wave forms, log spectra, and scalp topographies of 
blinks, eye-movements, and temporal muscle noise are presented in the Appendix 
(Figures A-11 through A-13). Component clusters with similar scalp-topographies, 
spectra, ECD, and sLORETA CSD locations were found for a bilateral frontal midline 
cluster (Figure A-7), central midline cluster (Figure A-8), left and right posterior 
temporal clusters (Figures A-5 and A-6). The frontal and central midline components 
showed relatively high spectral power in the delta and theta range (0-5Hz). The temporal 
components were consistent with previous evidence finding temporal components with 
peak spectra at ~10Hz in a speech perception task (Callan, Callan, Kroos, & Vatikiotis-
Bateson, 2001). However, because the focus of the current investigation is on the 
sensorimotor μ rhythm, only left and right sensorimotor components are discussed 
further. 

Fourteen participants submitted ICs with the hallmark characteristics of the left 
sensorimotor μ rhythm and 13 participants submitted ICs with hallmarks of the right μ
rhythm. The left cluster revealed mean scalp-topographies centered over the left
sensorimotor cortex (Figure 4-2A) whereas the right cluster showed a similar topography 
over the right hemisphere (Figure 4-3A). For both clusters, log spectra revealed distinct 
spectral peaks at ~10Hz and ~20Hz (Figures 4-2B and 4-3B) and ECD locations within 
the left and right pre or postcentral gyri (Tables 4-1 and 4-2 ) with an average dipole 
location at Taliarach coordinates [(x,y,z) -42,-13, 47] in the left hemisphere and [(x,y,z) 
41,-12,42] in the right hemisphere. 

To evaluate the statistical significance of dipole locations across participants, 
statistical comparisons relative to zero (i.e., no activation) were computed for all μ scalp 
topographies in the sLORETA statistical module (Grin-Yatsenko, Baas, Ponomarev, & 
Kropotov, 2010). A single paired t-test was carried out for each frequency between 0-
40Hz (159 frames) with the smoothing parameter set to 1 (single common variance for all 
variables), and 5000 random permutations yielding corrected t-value thresholds for all 
6,235 voxels in the sLORETA solution space. The paired test revealed significant voxels 
at p<.001 (i.e., dipole locations) in the precentral and postcentral gyri with maximum 
current source density estimates at Taliarach [(x,y,z) -45,-25, 45] in the left hemisphere 
and Taliarach [(x,y,z) 40,-20,55] in the right. To determine the extent to which 
sLORETA and ECD estimates were related, a bivariate correlation analysis was 
conducted on the maximum CSD coordinates and the ECD coordinates for each
sensorimotor IC. The analysis revealed correlation coefficient of r=.93 that was
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Figure 4-2. Cluster results for the left-hemisphere μ component.
Notes. A) m ) scaled to RMS microvolts, B) mean 
spectra of the component as a function of condition in relative decibels, C) average 
equivalent current dipole location, and D) maximum current source density voxels 
(p<.001 corrected for multiple comparisons).
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Figure 4-3. Cluster results for the right-hemisphere μ component.
Notes. A) m scaled to RMS microvolts, B) mean 
spectra of the component as a function of condition in relative decibels, C) average 
equivalent current dipole location, and D) maximum current source density voxels 
(p<.001 corrected).
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Table 4-1. Percentage residual variance for each ECD model, ECD x,y,z
coordinates, current source density x,y,z coordinates, and component rank for the 
left hemisphere μ cluster.

Participant % RV ECD  Lμ (x,y,z) CSD Lμ (x,y,z) Rank
1 11.16 -51 -22 42 -55 -30 45 22
2 1.78 -31 -3  32 -35   0  20 15
3 .79 -33   1  49 -35 -3  42 19
4 2.21 -25 -26 61 -25 -26 61 16
5 3.89 -52 -19 31 -54 -23 33 17
6 2.06 -37 -4  78 -40 -12 60 22
7 2.62 -43 -22 37 -45 -22 43 22
8 2.74 -32 -7  44 -30 -3  46 12
9 1.74 -32 -19 40 -35 -22 38 16
10 15.44 -31  18 62 -30  12 45 14
11 .71 -41 -16 52 -45 -17 47 18
12 11.92 -37 -8  30 -54 -18 29 15
13 3.15 -42 -11 47 -40 -12 47 13
14 1.41 -56 -20 19 -54 -18 19 13
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Table 4-2. Percentage residual variance for each ECD model, ECD x,y,z
coordinates, current source density x,y,z coordinates, and component rank for the
right hemisphere μ cluster.

Participant    % RV ECD Rμ (x,y,z) CSD Rμ (x,y,z) Rank
1 10.09 45 -20 53 46 -28 52 17
2 6.50 40 -18 46 45 -22 47 16
3 5.74 37 -15 46 37 -11 65 6
4 1.78 31 -1  43 30 -3  46 12
5 14.22 40 -25 54 59 -27 47 21
6 2.58 31 -8  58 30 -11 65 13
7 2.73 44 –43 30 59 -55 29 13
8 1.78 35 -11 60 35 -11 65 16
9 7.64 57 -22 63 50 -26 57 23
10 3.64 45 -20 58 45 -16 61 11
11 .80 55 -14 35 50 -18 38 16
12 11.99 58 -21 56 54 -17 52 20
13 2.73 44 -43 30 59 -52 35 13



44

significant at p<.01, suggesting a close relationship between CSD and ECD estimates of 
IC source locations.

Event-related Spectral Perturbations: Left μ

A repeated measures ANOVA with the factor condition (1x7) revealed no 
significant differences for the number of trials submitted between conditions (F=.92, 
p=.48).In the STUDY command structure, mean ERSP values across subjects and 
conditions are shown in a time-frequency scalogram with corrected significance values 
for condition depicted in a separate figure. Non-significant values are depicted in green 
and significant values are depicted in color from orange for weaker values to red for 
stronger values (pFDR<.10 to pFDR<. 001). The initial permutation analysis (1x7) 
revealed significant ERSPs at pFDR<.05 in the 15-20Hz range (beta) and the 0-4Hz 
range (delta) for the left μ component (see Figure 4-4). Significant time-frequency values 
were found in the time-periods prior to, during, and after stimulus onset with a peak 
event-related decreases in spectral power (i.e., ERD) in the time period after stimulus 
offset.  To determine the sources of condition effects, two separate ANOVA designs were 
computed using the STUDY command structure. Because the time periods before, 
during, and after stimulus onset were of interest, all subsequent analysis were restricted to 
the equal 600ms time intervals prior to, during, and following stimulus onset (i.e., -600-
1200ms).

First, to determine whether any significant differences existed between the Pasn 
baseline and the other passive conditions, a 1x3 ANOVA was conducted for the Pasn, 
Passp+4dB, and Pastn+4dB conditions. No significant differences corrected across the 
entire time-frequency matrix (69x92) were found (pFDR>.05) in either the 15-20Hz 
range or the 0-4Hz range, indicating no differences between the Pasn baseline condition 
and the other two passive conditions. To assess which conditions were significantly 
different from the Pasn baseline, a series of paired t-tests were performed. Significant 
differences (pFDR<.05; 69x92) for the time periods before, during, and after stimulus 
onset were found for the Actsp+4dB and Actsp-6dB only (Figure A-1). Analysis of the 
active conditions in which discrimination was required (1x4; Actsp+4dB, Actsp-6dB, 
Actn+4dB, and Actn-18dB), revealed a significant main effect (pFDR<.05; 8x92) in the 
15-19Hz range for the time period between 600-1200ms following stimulus offset 
(Figure A-3). A comparison between the Act+4dB and Actsp-6dB conditions across the 
15-19Hz range between 600-1200ms period following stimulus offset (pFDR<.05;6x15) 
revealed a significantly larger peak ERD in the Actsp+4dB condition. As such, the left 
component cluster showed significant effects for only the syllable discrimination task and 
further showed significant differences in the time period following stimulus offset for 
correct discrimination trials in the Actsp+4dB condition relative to the chance trials in the 
Actsp-6dB condition. 
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Figure 4-4. Mean left and right hemisphere μ time-frequency ERSPs (event-
related spectral perturbations).
Notes. ERSPs are scaled in the same root-mean-square decibel units as a function of 
condition (1x7) and random effects analysis indicating significant values in the traditional 
beta, alpha, and delta ranges. Non-significant values are colored green, with significant 
values shown in orange and red. Event-related decreases in spectral power are indicated 
in blue (-4.5) and increases are indicated in red (4.5).
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Event-related Spectral Perturbations: Right μ

The initial permutation analysis revealed significant ERSPs at pFDR<.05 in the 
15-25Hz range (beta) for the right μ (Figure 4-4) component. Significant time-frequency 
values corrected across the entire time-frequency matrix (pFDR<.05; 69x105) were found 
in the time-periods prior to, during, and after stimulus onset with a peak event-related 
decrease in spectral power in the time period after stimulus onset. To determine the 
sources of condition effects, a 1x3 design for the passive conditions (Pasn, Passp+4dB, 
and Pastn+4dB conditions) was conducted. The ANOVA revealed no significant 
differences (69x92; pFDR>.05). To assess which conditions were significantly different 
from the Pasn condition (i.e., the baseline), a series of paired contrasts were performed. 
Significant differences (pFDR<.05) for the time periods before, during, and after  
stimulus onset were found for correct trials in the Act+4dB and chance trials in the 
Actsp-6dB conditions (Figure A-2). Significant spectral suppression from baseline 
(pFDR<.05) in the active tone discrimination conditions (Actn-4dB and Actn-18dB) were 
found for the time period following stimulus onset only. Although ERDs were found in 
the time-period prior to tone discrimination trials, they did not fall below the significance 
threshold of pFDR<.05 (see Figure A-3). Analysis of the active conditions in which a 
sensory-decision was required (i.e., Actsp+4dB, Actsp-6dB, Actn+4dB, and Actn-18dB), 
revealed no significant differences in 15-25Hz range (pFDR<.05; 69x92). Thus, although 
active tone discrimination conditions differed from the passive noise baseline, no 
significant differences were noted between the active conditions. 

Previous studies have suggested that reaction time may provide a measure of 
sensory decision processes related to a response. To investigate the possibility that 
ERSPs following stimulus onset might be related to the button press response, significant 
ERSPs values (i.e. 15-20Hz for the left and 15-25Hz  for the right ) were extracted 
from correct trials in the +4dB condition and averaged over three time-periods of interest 
prior to, during, and following stimulus onset (-600-0, 0-600, and 600-1200).  A bivariate 
correlation analysis was performed on each participant’s mean ERSP values in the time 
period following stimulus offset (600-1200) and RT for each participant. The results 
indicated no significant correlation between RT and ERSPs (r=.02 p=.94). 

In summary, left and right rhythm clusters were associated with suppression 
relative to Pasn during the active syllable discrimination task prior to, during, and 
following the onset of syllable stimuli. Relative to chance trials, correct level trials were 
associated with significantly greater suppression in the time period immediately 
following acoustic syllable stimuli only (see Figures 4-5 and 4-6). By contrast, tone 
discrimination trials were not associated with suppression prior to stimulus onset relative 
to Pasn. Tone trials were significantly different from Pasn in the time period after 
stimulus presentation only. Finally, no significant differences were found between correct 
tone discrimination trials and trials discriminated at chance levels.
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Figure 4-5. Measures for the left-hemisphere μ cluster.
Notes. A) mean scalp- B) mean dipole location, C) mean spectral 
power across conditions, D) sLORETA solutions, and E) mean time-frequency ERSPs 
(event-related spectral perturbations) as a function of stimulus type (speech and tone) and 
performance level (correct and chance) for the time-periods prior to stimulus onset, 
during stimulus presentation, and after stimulus-offset. 
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Figure 4-6. Measures for the right-hemisphere μ cluster.
Notes. A) mean scalp-topography C) mean spectral 
power across conditions, D) sLORETA solutions (p<.001 corrected), and E) mean time-
frequency ERSPs (event-related spectral perturbations) as a function of stimulus type 
(speech and tone) and performance level (correct and chance) for the time-periods prior 
to stimulus onset, during stimulus presentation, and after stimulus-onset.
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DISCUSSIONCHAPTER 5.   

To investigate the time-course of sensorimotor integration in speech and non-
speech processing, the current study employed independent component analysis of event-
related EEG to measure activity of sensorimotor μ rhythm. To my knowledge, this is the 
first study to employ BSS methods to investigate suppression of the μ rhythm in speech 
and non-speech discrimination task. As such, the present findings have important 
implications for the measurement of EEG during auditory tasks. Further, because 
performance levels on both tasks were manipulated, the present findings also have 
important implications for the relationship between sensorimotor integration and 
perceptual accuracy. Finally, as this is the only study to date to use non-invasive, low-
cost EEG to measure the time-course of sensorimotor activity, findings may have 
implications for potential use as a brain computer interface (BCI) approach. Due to the 
complexity of the results, each of the specific aims, questions, and hypotheses will be 
addressed separately and subsequently framed within an overall discussion of the 
theoretical, methodological, and clinical significance. 

Aim 1: To Identify Spatially Fixed and Temporally Independent Components 
Associated with Speech and Non-speech Processing

The first aim of the current study was to apply independent component analysis to 
raw, linearly mixed EEG scalp-channel data to reveal maximally independent and 
spatially fixed EEG components associated with speech and non-speech processing. In 
the current study, cued speech and tone discrimination tasks in which participants 
anticipated upcoming percepts were employed. The application of the runica algorithm to 
the single-trial, concatenated epochs revealed three classes of independent components 
with bilateral distributions and shared features. The first class consisted of ICs with 
frontal and midline topographic distributions characterized by high theta band power and 
associated dipole models in the cingulate cortex spreading into the SMA. A second class 
of ICs with topographic distributions over the posterior temporal lobe were characterized 
by dipole models near primary auditory cortex and superior temporal gyrus with peak 
spectral power at ~10Hz.  A third class of clusters was identified as the central 
sensorimotor or μ rhythm. ICs in the sensorimotor cluster were associated with dipole 
models and sLORETA solutions in the sensorimotor cortex and showed two 
characteristic, distinct peaks at ~10Hz and ~20Hz. For all clusters, mean dipole models 
accounted for greater than 90% of the variance in the mean scalp-topographies, 
suggesting that those models provided a good fit for the associated ICs. The distributed 
sLORETA maximum CSD for the scalp-topographies was correlated with dipole-models 
for the same ICs, suggesting a high level of agreement between the two source solutions. 

ICA findings in the present study lend further support to the notion that neural 
generators of the EEG give rise to signals with independent or nearly independent time 
courses associated with stimulus specific processing. Scalp-recorded EEG signals are 
thought to be generated by field potentials associated with a three centimeter squared 
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(~3Cm²) areas of cortex (Makeig et al., 2004; Onton & Makeig 2006). Because neuronal 
activity is weighted toward local connections (as opposed to the sparse interconnection 
between sources) and thus local synchronicity, the output of these small patches of cortex 
may be recorded as signals whose time-courses are independent or nearly independent of 
one another. The activity of the traditional EEG, including posterior alpha activity, 
sensorimotor rhythms, frontal, and central theta rhythms are thought to be generated by 
these locally weighted neuronal populations.

Previous studies using low and high-density electrode arrays have consistently 
identified ICs with the spectral signatures and topographic distributions consistent with 
known features of the traditional EEG and yield between 5 and 15 neurally generated 
components (Onton & Makeig, 2006). Decomposition of 32 channel electrode arrays has 
resulted in the identification of posterior and temporal alpha, frontal-midline theta band 
sources, and bilateral sensorimotor sources involved in a number cognitive tasks 
(Delorme et al., 2006; Makeig et al., 2004; Makieg et al., 2002a; Onton & Makeig, 2006) 
that may be modeled as physiologically simple sources (e.g., single dipole source) or 
small areas of cortex (e.g., distributed source solutions). Whereas these source generators 
are temporally independent, it is thought that cortical synchronization between generators 
may function to facilitate top-down and bottom-up communication both within and 
between brain regions. This large-scale interregional and interhemispheric 
communication is thought to be particularly important for anticipated perceptual signals 
as in the current paradigm.

As predicted in dual-stream theories, dipole models and sLORETA CSD 
solutions for IC clusters in the present study are consistent with a dorsal stream network 
known to be involved in active sublexical speech discrimination tasks (Hickok &
Poeppel, 2004; 2007; Price et al., 2010; Turkeltaub & Coslett, 2010), including the SMA, 
M1, vPMC, posterior STG/Spt. Component clusters were also broadly consistent with 
two other studies employing ICA during auditory processing. Marco-Pallarés, Grau and
Ruffini, (2005) found ICs in an auditory mismatch negativity (MMN) paradigm in 
frontal, cingulate, and superior temporal regions. A single subject EEG study of visual 
and auditory speech perception found similar independent component activations, with 
sLORETA distributions suggesting activation in the SMA, premotor and primary motor 
cortices, and in posterior temporal regions (Callan et al., 2001). Collectively, these 
regions are thought to be a part of the dorsal stream network involved in audio-motor 
transformation specifying’ how’ phonemes were produced. The dorsal stream has also 
been implicated in a number of sublexical speech perception studies (Price et al., 2010;
Turkeltaub et al., 2010) and is consistent with bottom-up and top-down anatomical 
connections between sensory and motor areas thought to make important contributions to 
the perception of speech (Davis & Johnsrude, 2007). As such, the most parsimonious 
explanation for the current results appears to be that cortical regions known to be active 
in auditory processing gave rise to maximally separated neuronal signals associated with 
small cortical areas within in the dorsal stream network. 
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Aim 2: To Identify Independent Components Associated with Known Features of 
the Sensorimotor μ Rhythm

The second aim of the investigation was to identify ICs with hallmark features of 
the sensorimotor μ rhythm. Several findings for left and right hemisphere components are 
consistent with features of the μ rhythm. First, cluster analysis revealed left and right 
hemisphere IC clusters with topographic distributions over the sensorimotor cortex with 
spectral peaks at ~10Hz and ~20Hz and source locations in the lateral portion of the 
precentral gyrus. Second, a distributed localization approach indicated significant 
activations in the precentral and post central gyri, consistent with distributed source 
locations over the sensorimotor cortex within a small cortical area. Third, relative to the 
passive noise baseline, the left and right sensorimotor μ rhythms in the active 
discrimination conditions were associated with differential suppression in the traditional 
beta range (here 15-25Hz), consistent with the activity of neuronal populations in the 
precentral gyrus (Hari, 2006). These findings strongly suggest that component clusters 
with the hallmark characteristics of the sensorimotor μ rhythm were differentially 
involved in the processing of speech and non-speech auditory signals.

Although the ~10Hz and ~20Hz components of the μ are thought to be phase 
locked and thus interdependent, there is reason to suspect functional differences between 
them. High-density MEG studies have shown power changes at 10Hz associated with 
dipole locations near the somatosensory cortex bilaterally clustering near the hand 
cortical region (Hari, Levänen, & Raij, 2000; Hari Salmelin, Mäkelä, Salenius, & Helle, 
1997). The ~10Hz rhythm is also associated with tactile stimulation and binocular rivalry 
(Vanni, Rockstroh, & Hari, 1996), suggesting that it is more generally associated with 
somatosensory activity. Band pass filtering of the 10-12Hz upper alpha rhythm has been 
associated with suppression in a wide range of tasks, including auditory memory tasks 
(e.g., Sterngberg test; Krause, 2006), and attention tasks in both the auditory and visual 
modalities (Klimesch et al., 1998), suggesting that the ~10Hz rhythm may not be specific 
to the processing of movement. Thus, the most likely role for the 10Hz rhythm during 
movement and movement processing is in coding the somatosensory consequences of the 
perceived or performed movement (Hari, 2006). 

Several lines of evidence suggest that beta suppression (i.e., ~20Hz) over the 
sensorimotor region is generated primarily in the precentral gyrus. First, high-density 
MEG studies  have shown that beta suppression during  the  overt production, 
imagination, and observation of movement is associated with dipole locations near the 
primary motor cortex bilaterally (BA4) following the moving body part (e.g., more lateral
locations for mouth movements) ( Hari, 2006; Hari et al., 1997; Simões, Salenius, & 
Curio, 2004). Second, in agreement with a source in the primary motor cortex, ~20Hz 
suppression has also been obtained from intracranial recordings within the central sulcus 
(Jasper & Penfield, 1949). Third, ~20Hz suppression is coherent with motor unit firing 
(Conway et al., 1995) and is enhanced by the administration of benzodiazapines, well 
known to result in clumsy, poorly controlled movements (Jensen et al., 2005). Finally, 
beta suppression has been shown to be inversely correlated with BOLD increases in M1 
and the PMC during the observation and performance of movement (Yuan et al., 2010), 
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suggesting convergence between hemodynamic approaches with higher spatial resolution 
and electrophysiological approaches relying on local neuronal synchronization. 

The functional distinction between the ~10Hz somatosensory and ~20Hz motor 
component in the current study is consistent with previous neuroimaging studies finding 
activity in the precentral gyrus (Skipper et al., 2005b; Wilson et al., 2004). Neuroimaging 
approaches have implicated overlapping regions within the precentral gyrus for both 
speech production and speech perception (Callan et al., 2010; Hickok et al., 2004; 2007; 
2011; Wilson et al., 2004). In a high-density MEG study, Pullvermuller et al. (2007) 
found that ERPs occurred in 20ms steps during speech perception, moving from initial 
activity in the STG, to the IFG and M1 (i.e., primary motor cortex). Wilson et al. (2004) 
found overlapping peaks of BOLD activity in regions extending from the precentral gyrus 
(MNI x,y,z= -51, -11, 46) to the posterior bank of the central sulcus (MNI x,y,z=-45, 13, 
34). As in the current study, for most subjects speech perception tasks were associated 
with increased activity in the precentral gyrus bilaterally. In accord with those findings, 
approaches employing both functional localization and TMS have found peak BOLD 
voxels in a similar region of the left superior PMC during speech production. With rTMS 
applied to the PMC and M1 region, modulations in speech discrimination, segmentation, 
and identification performance have been demonstrated (D’Ausilio et al., 2010; Meister 
et al., 2007; Sato et al., 2009). 

More recently, Callan et al. (2010) found that a region within the precentral gyrus 
(vPMC) was more active (i.e., higher BOLD signal) for correct speech perception relative 
to incorrect speech perception, strongly implying that the motor system was involved in 
perceptual performance. In addition, using a speech morphing procedure in which speech 
percepts gradually emerged from a background of white-noise, Osnes, Hugdahl, 
Hjelmervik and Specht (2012) found that an area within the precentral gyrus (vPMC) was 
more active when speech percepts were identifiable as speech. Further, a recent activation 
likelihood meta-analysis of sublexical speech perception, showed a region of overlap 
between studies with maximal activation in a region near the vPMC, slightly more 
anterior than activations found in single studies (Turkeltaub & Coslett, 2010). In sum, a 
growing body of neurophysiological evidence has implicated the premotor and primary 
motor cortex within the precentral gyrus in the processing of speech in the auditory 
modality. Although the postcentral gyrus is known to be active during the observation of 
visual mouth movements, it is generally not found to be differentially active during 
speech processing in the auditory modality (Skipper et al., 2005b). As such, the current 
finding of differential beta suppression localized to the sensorimotor cortex is consistent 
with both known features of the μ rhythm and activation of the precentral gyrus.

Aim 3: To Investigate Differential μ Rhythm Suppression Relative to Stimulus 
Onset, Stimulus Type, and Discriminability

A third aim of the present study was to investigate whether suppression of the μ
rhythm differed as a function of stimulus onset, stimulus type, and task performance. This 
aim is significant not only for supporting theoretical models of speech processing but also 
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for addressing limiting factors associated with traditional neuroimaging methodology. A 
number of findings in this study are consistent with differential sensorimotor involvement 
specific to the accurate performance of a syllable discrimination task. First, in accordance 
with expectations behavioral measures indicated that active task performance differed as 
a function of SNR. A higher %CT and shorter RT in high SNR speech and tone 
conditions (Actsp+4dB and Actn+4dB) was found relative to low SNR speech and tone 
conditions (Actsp-6dB and Actn-18dB). As expected, due to the drastically decreased 
quality of auditory information in the low SNR conditions, perceptual performance was 
not above chance levels. Consistent with a previous investigations of speech-in-noise 
(Binder et al., 2004; Callan et al., 2010), increases in RT were associated with decreases 
in accuracy. This finding is consistent with the notion that continuous sensory decision 
processes require greater time when a given decision is ambiguous relative to when it is 
more easily identified (Binder et al., 2004). As such, it seems likely that sensory decision 
processes here may have required more time in the low SNR conditions, suggesting 
greater time to integrate time varying information involved in auditory processing with 
ongoing sensory decision processes.

However, most studies of speech-in-noise have assumed that decision 
mechanisms continue to operate until the point in time at which the results of sensory 
analysis meet the criteria required for a perceptual decision (Binder et al., 2004). In the 
present study, RT was operationally defined as the time required from the cue to respond 
until the point in time at which the participant made a decision. That is, participants were 
asked not to respond until they were cued via a tone to register a response. As such, it is 
likely that responses in this study required additional attentional and working memory 
resources not required in some previous studies. Considering internal models of speech 
processing, one possible alternative explanation for the well-known inverse relationship 
between accuracy and decision processes may be that participants test a greater number 
of alternative phonetic hypotheses about the acoustic signal as the ambiguity of acoustic 
cues increases (Skipper et al., 2006). This greater number of alternative hypotheses 
creates a delay in RT as early hypotheses are integrated with incoming sensory 
information. 

Second, although performance levels were similar for both the speech and tone 
discrimination tasks, suppression of the μ rhythm differed as a function of performance 
level for the syllable discrimination task only. Early activity (i.e., prior to stimulus onset) 
was present bilaterally for speech stimuli regardless of subsequent perceptual 
performance, suggesting precentral activation prior to stimulus onset consistent with 
internal model concepts. Third, brief peak activity (i.e., suppression) was significantly 
larger for the syllable discrimination task only when compared to extremely degraded 
stimuli (i.e., chance trials),  suggesting that although the precentral gyrus is active for 
both types of stimuli it is greater when auditory features are sufficient to specify 
phonemic  units. Fourth, significant suppression of the sensorimotor rhythm in the right 
hemisphere occurred for control tone stimuli in the time period following stimulus onset 
only. Thus, although speech stimuli elicit early activity peaking after stimulus 
discrimination, non-speech auditory stimuli are associated with activity following 
stimulus offset only and in the right hemisphere only. As such, early suppression for the 
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syllable discrimination task cannot be explained as a general attentional mechanism.  
Further, as no differences were found between correct and chance tone stimuli, it is 
unlikely that right precentral activation was important for task performance. Thus, it 
would appear that internal models were recruited for perceptual analysis in the syllable 
discrimination tasks only. 

In addition to addressing theoretical predictions regarding the time-course of 
sensorimotor activity relative to acoustic stimuli, the experimental paradigm and findings 
address several methodological concerns that have traditionally limited findings of 
sensorimotor activity in classical neuroimaging studies. These limitations include 
contamination related to the response and covert rehearsal (Callan et al., 2010; Hickok & 
Poeppel, 2004; 2007). First, significant differences for stimulus type and performance 
level for tasks in which an active decision was required were found.  As the button press 
and sensory decision requirements were the same for correct speech and tone trials, no
significant difference in suppression or RT would be expected for the two types of stimuli 
if button press or sensory decision mechanisms accounted for differences. For example, 
in the left hemisphere, beta suppression was significantly different from the passive noise 
baseline for correct trials in the Actsp+4dB condition yet no significant suppression was 
observed for the Actn+4dB condition. However, as no difference in RT was observed 
between the two conditions, it is unlikely that sensory decision processes can account for 
suppression in the Actsp+4dB condition.

Second, previous studies have suggested that RT is a correlate of sensory decision 
processes. In the present study, no correlation between activity following stimulus onset 
and RT was observed suggesting that sensory decision mechanisms or working memory 
for a button press response cannot account for differential findings of μ suppression. 
Third, previous studies have shown that manual movements are associated with greater 
power suppression in the hemisphere contralateral to the movement (Graimann &
Pfurtscheller, 2006; Makeig et al., 2004). Here, the button press response was performed 
with the left thumb and suppression in the time period following stimulus offset was not 
significantly greater in the right hemisphere, strongly suggesting that the manual response 
cannot account for differential findings of beta suppression between correct and chance 
trials. Additionally, both the left and right rhythms peaked and then enhanced prior to the 
button press response, further indicating that the button press response cannot account for 
task related suppression (see Figure A-10).

Another way in which button press and sensory-decision processes were 
addressed was via the temporal resolution of the EEG. In the current experimental 
paradigm, the button press was delayed so that it occurred 1400ms after stimulus onset. 
Because peak suppression occurred 700-1100ms after stimulus onset (400ms prior to the 
response), it is unlikely to have been related to the button press or sensory-decision 
mechanisms as opposed to stimulus processing. In addition, significant beta suppression 
was found prior to and during stimulus processing for speech stimuli relative to baseline. 
Since suppression prior to a response or decision was found, it is highly unlikely that beta 
suppression in those time periods was related to either process.
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In addition to memory and decision processes for response selection, it has been 
suggested that activity in motor regions may be due to internal speech production or 
covert rehearsal mechanisms functioning to enhance working memory (Hickok & 
Poeppel, 2007). Several findings in the current study are inconsistent with covert 
rehearsal. First, significant beta suppression of the μ rhythm was found prior to stimulus 
onset for both speech conditions (i.e., correct and chance trials). As activity occurred 
prior to stimulus onset it cannot be related to covert rehearsal. Second, although it is 
possible that peak activity occurring after stimulus onset was related to internal 
production, because significant differences between correct and chance trials began less 
than 200ms (at ~100ms) following stimulus offset and lasted only 400ms, it is unlikely 
that this early activity was due to covert production. Third, since activity occurred 
continuously from -600ms prior to stimulus onset and peaked just after stimulus offset, it 
is unlikely that continuous beta suppression was due to two functionally distinct 
processes. Peak suppression for both speech and tone stimuli was brief, occurring within 
a 400ms span of time and diminishing thereafter (see Figure A-10), further suggesting 
that only one functional process was at work. If covert speech production for holding 
percepts in working memory were the primary processes accounting for suppression, 
peak suppression would be expected to be sustained until the sensory decision was made.
Thus, although mechanisms involved in working memory and covert rehearsal cannot be 
completely ruled, out a number of findings are inconsistent with those explanations. 

The present findings may be readily explained within the context of the proposed 
theoretical framework integrating speech perception theory, neurosphysiological models, 
and theories of EEG generation (see Figure A-4). Direct-realists postulate that the motor 
system directly specifies the speech gestures that gave rise to the acoustic signal and 
constructivist theories propose that predictions about articulatory goals may function to 
constrain auditory perception (Callan et al., 2010). Within the context of these theories, 
results from this study clearly favor a constructivist account of sensorimotor integration 
and are consistent with dorsal stream, internal models of speech processing. More 
specifically, early beta suppression localized to the precentral gyrus prior to syllable 
discrimination, is consistent with an early forward model or neuronal population 
disinhibition that instantiates a general prediction about likely incoming sensory signals. 
As the subsequent percept is unknown, such an anticipatory model may be explained as 
neural tuning to expected acoustic features of the upcoming stimulus, similarly to the 
manner in which selective attention operates in visual perception (Hickok et al., 2011a).  

Because early activity constitutes a prediction, continuous activity in the motor 
system to update the model would be expected until the initial set of articulatory 
hypotheses can be compared with online acoustic analysis. Peak activity just following 
acoustic analysis of the signal would be expected in the time period following acoustic 
input during which relevant features of the acoustic signal are matched with the initial 
forward constraints. Peak suppression would be expected only when the acoustic signal 
was sufficiently robust to be compared to the initial hypotheses. The finding that 
significant differences in μ suppression between correct and chance trials occurred only 
immediately after stimulus offset may be explained by such a process. In other words, it 
appears that early motor models may be instantiated when discrimination is required but 
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fail to specify phonemes when auditory information is insufficient for comparison with 
the initial motor model. 

However, given that internal articulatory models are thought to be developed via 
past experiences with producing speech (Callan et al., 2010; Hickok et al., 2011a;
Skipper et al., 2006), early activity would not be expected for non-speech auditory signals 
as those signals have not been associated with vocal production.  As such, suppression of 
the sensorimotor rhythm following tone processing may be, as suggested by others, an 
attempt to internally simulate pitch changes using cortical representations of the 
particulate vocal tract (Burton, 2009).  It is worth noting that this notion would predict 
forward and inverse model pairs for not only speech sounds but for any sound repeatedly 
associated with goal-directed actions for producing the same sounds  (Kohler et al., 
2002). Consistent with this notion, a number of studies have demonstrated premotor and 
primary motor activation for sounds associated with motor sequences required to produce 
those sounds   (Buchsbaum et al., 2011; Callan et al., 2006; D’Ausilio, Altenmüller, 
Olivetti Belardinelli, & Lotze, 2006; Dick, Lee, Nusbaum, & Price, 2011; Sammler, 
Harding, D’Ausilio, Fadiga, & Koelsch, 2010). As such, to further investigate the role of 
the motor system and perhaps internal models in general auditory perception, future 
investigations may employ learning tasks in which pitch change stimuli are paired with 
actions required to produce them. 

As suggested in the first chapter, the present results favoring internal model 
concepts also fit well with those designed to explain event-related decreases in spectral 
power prior to a range of cognitive tasks. These early spectral changes have been 
associated with subsequent performance in memory, attention, and visual tracking. It has 
been suggested that alpha-like generators may reflect inhibitory filter mechanisms 
mediating top-down attentional control (Fellinger, Gruber, Zauner, Freunberger, &
Klimesch, 2012; Fellinger, Klimesch, Gruber, Freunberger, & Doppelmayr, 2011;
Hanslmayr, Gross, Klimesch, & Shapiro, 2011; Hari, 2006; Klimesch, 2011; Klimesch, 
Fellinger, & Freunberger, 2011). It is thought that power decreases (i.e., event-related
decreases in power) signify a cortical release from inhibition that serves to ready the 
system for the coding of incoming information. This notion of release from inhibition has 
been extended to the function of the human MNS in sensorimotor integration (Pineda, 
2005). According to theories of EEG generation (i.e., local/global theories), transient 
global coherence between multiple cortical generators may instantiate top-down 
anticipatory processes that facilitate subsequent sensory processing. These predictions 
may be further tested by exploring time-frequency changes in the other component 
clusters identified in the current study (see Appendix). Preliminary analysis indeed 
suggests wide spread entrainment across components emerging at near harmonics of 
thalamic rhythms (e.g., ~10Hz) with phase locked components across the traditional delta 
frequencies (0-5Hz). Analysis of other components of the EEG in this task may be 
critical to explaining how distributed neuronal systems share information for signal 
processing.

The present findings are also in accordance with the only studies that have 
investigated sensorimotor integration related to sublexical discrimination performance. A 
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previous combined fMRI and MEG study found that activity in precentral gyrus (vPMC) 
prior to and following stimulus onset was different for correct relative to incorrect 
syllable discrimination trials (Callan et al., 2010). Findings are also consistent with TMS 
studies showing that the PMC/M1 region modulates perceptual performance in auditory 
speech perception tasks, including acoustic segmentation and discrimination 
performance. Taken together, theory and experimental evidence strongly support the 
notion that sensorimotor integration via internal models plays an important role in the 
perception of speech. 

Theoretical, Methodological, and Clinical Significance

Neuroimaging evidence indicates that overlapping sensory and motor regions of 
the brain are involved in the perception and production of new percepts (Callan et al., 
2003), monosyllables (Wilson et al., 2004), and in the receptive processing as well as 
generation of language (Pulvermüller & Fadiga, 2010). Evidence points to a dorsal 
sensorimotor stream specifying the manner in which phonemes are produced and a
ventral stream involved in specifying the syntactic and semantic content of the incoming 
speech signal (Arbib, 2010; Hickok & Poeppel, 2004; 2007; Rausheker & Scott, 2009;
Skipper et al., 2006). During speech perception, the PMC and M1 regions of the dorsal 
stream have been shown to modulate perceptual performance in demanding speech 
processing tasks (D’Ausilio et al., 2009a; Meister, Wilson, Deblieck, Wu, & Iacoboni, 
2007; Sato, Tremblay, & Gracco, 2009). While these studies have provided critical 
information about cortical regions involved in perception, they have provided limited 
information about the time-course of sensorimotor processing relative to the onset of an 
acoustic event. As speech perception theory and current neurophysiological models 
predict differential sensorimotor involvement relative to the onset of an acoustic stimulus, 
higher temporal resolution is critical to determining how sensorimotor integration 
functions in speech processing. 

The current study is the first to employ a BSS method used previously in EEG 
studies of visual perception to address many of the limitations associated with traditional 
studies of acoustic speech processing. Those limitations include insufficient 
spatiotemporal resolution, lack of evidence for a functional role, and lack of specificity to 
speech as opposed to general auditory processing. The present study favors dynamic, 
internal model concepts of speech processing over computational mechanisms proposed 
by direct-realists. In addition, the study provides the first evidence supporting claims that 
these internal models operate similarly to a kind of phonological or articulatory selective 
attention (Callan et al., 2010; Hickok et al., 2011; Skipper et al., 2006). For example, the 
finding that both correct and chance syllable discrimination trials were preceded by early 
μ suppression is what would be expected if forward articulatory models function 
similarly to selective attention (Callan et al., 2010; Hickok et al., 2011a). That is, if early 
articulatory hypotheses function in a manner similar to attention, early motor activity 
would be expected regardless of subsequent correct or chance level performance.
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The study also provides the first evidence that early forward models are related to 
perceptual performance at the point in time when acoustic features are sufficient for 
comparison with initial hypotheses (i.e., immediately following acoustic stimuli).  
Furthermore, this study suggests that internal models are specific to a syllable 
discrimination task relative to a similar, rapid pitch change task. As both tasks required 
attention to a rapid transitional acoustic cue for successful discrimination, general 
attentional mechanisms cannot account for differences in early μ rhythm suppression for 
speech as opposed to tone stimuli. This finding is critical to determining underlying 
mechanisms, as no studies have measured the ongoing time-course of motor activity for 
speech and non-speech control tasks with similar discrimination requirements. As such, 
results favor articulatory mechanisms that are either specific to speech (see Liberman & 
Whalen, 2000 for discussion) or alternatively to any auditory signal previously paired 
with actions (Kholer et al., 2002).

However, because specificity of sensory and motor processing to speech has 
traditionally been another area of heated debate, this issue deserves more explicit 
comment. One particular view of speech processing, called the ‘motor theory’ of speech 
perception postulated the use of articulatory goals to mediate and constrain perception 
long ago (Callan et al., 2010). According to Liberman’s ‘motor theory’ the lack of 
invariance problem is solved via a specialized phonetic module evolved to track intended 
invariant articulatory targets as opposed to acoustic features. The motor theory predicts 
that this articulatory phonetic module is critical for speech perception and thus motor 
activity should be present in all contexts. However, several lines of evidence are 
inconsistent with a specialized process that is both necessary and sufficient for perceptual 
invariance, including categorical perception in non-human species (Kuhl, 1976), lesion 
evidence (Lotto et al., 2009) and neurophysiological evidence suggesting that speech 
processing is not always accompanied by activity in motor regions (Skipper et al., 2005; 
Skipper et al., 2006). The lack of strong motor activity in passive speech perception in 
this study is consistent with some previous neuroimaging studies and is somewhat 
contrary to the predictions of the motor theory. As such, while the present study indicates 
sensorimotor activity specific to a syllable discrimination task, it also favors a more 
dynamic concept of speech perception in which sensorimotor integration via a transiently 
interactive neuronal system may function to aid acoustic analysis depending on context.

This dynamic theory of speech processing (DTS) may be derived from concepts 
of perception in which cognitive mechanisms critical for interspecies communication 
developed in noisy, real-world environments (Gallantucci et al., 2006; Wilson, 2009). As 
such, communication and the cognitive mechanisms that support it maintain strong ties to 
the environmental context in which it developed. The concept of parity (i.e., ‘what counts 
as communication for you also counts for me’) may be seen as an attempt to integrate the 
contexts in which cognition for the purposes of within species communication must be 
understood (Galantucci et al., 2006). First, as parity is intended to constrain speaker and 
listener interactions in ecological contexts, it allows for agreement between the sender 
and receiver of information. Second, because the living systems in which parity evolved 
are more likely to be achieved if perceptual and motor systems co-evolve, it makes sense 
that cognition retains these relationships. These two concepts highlight the connection 
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between the evolution of sensorimotor systems for online action and those that evolved or 
developed for offline sensory analysis. Broadly, the DTS may be discussed under the 
umbrella of a controversial concept known as embodied cognition (EC). Much like the 
concept of parity in communication, EC views the evolution and development of 
cognitive processes as inextricable from the body that implements them.

Because speaking environments are often noisy and involve multiple speakers 
and listeners, it is not surprising that the brain has exapted more than one mechanism for 
the parsing of speech and other communicative signals (Crawcour et al., 2009; D’Ausilio 
et al., 2010; Skipper et al., 2007; Wilson et al., 2009). As such, DTS and other active 
theories of speech processing, predict that during real-world communicative interactions, 
the relative weight of sensory and motor subsystems shift transiently depending on the 
information available and expectations between communication partners (Crawcour et 
al., 2009; Skipper et al., 2006; van Wassenhove et al., 2005). A DTS might provide a 
framework for explaining a number of outstanding questions in the neuroscience of 
speech processing. It might explain why motor and sensory systems are differentially 
active in some speech processing tasks while conspicuously absent in others. Further, 
such a framework might provide an explanation for why motor systems are active when 
sensory processing alone may be sufficient. For example, dual-stream theories (Arbib, 
2010; Hickok & Poeppel, 2007) specify that the ventral stream only should be active 
when participants perform tasks in which syntactic, semantic, and phonological features 
are critical for performance. The dorsal stream should be active only when features of the 
signal critical for task performance are gestural, visual, or acoustic (Hickok & Poeppel, 
2007; Skipper et al., 2006). That is, regional brain activation patterns are associated with 
task specific findings in which active attention to features of the communicative signal 
are critical for task performance. These same patterns active in some contexts are often 
absent when the task requires attention to a different set of features (e.g., acoustic vs. 
linguistic tasks) (Hickok & Poeppel, 2007). This phenomenon is known as a double-
disassociation between linguistic and purely perceptual speech processing tasks (Hickok 
& Poeppel, 2004).

According to DTS, the lack of invariance problem may be solved or effectively 
avoided via active attention to features of the incoming sensory information that are 
critical for successful interpretation. This model of speech processing predicts that during 
face-to-face communicative interactions and particular circumstances in which bottom-up
information is insufficient to resolve the speech signal (e.g., noisy conditions) transient 
attention to critical features instantiates top-down constraints on perception. These 
critical features include a wide range of observable gestures known to influence 
perception in experimental contexts (e.g., head, jaw, lip and facial movements) and 
experience dependent syntactic, semantic, and phonological knowledge (Skipper et al., 
2006). Critical features may also include value based judgments involving regions of the 
limbic system and autonomic nervous system thought to be important for identifying 
prosodic features, speaker characteristics, and pragmatics. Thus, as opposed to direct 
matching via a phonetic module or direct matching between acoustic features and 
articulatory gestures, a distributed neuronal system utilizes experiential knowledge from 
language and speech production to decrease the inherent ambiguity of the communicative 
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signal. Although this concept does not specify an exact computational mechanism for 
solving the ‘lack of invariance problem’, it provides predictions that are testable via 
dynamic computational models and the current EEG methodology. 

Future Directions

In real-world contexts, a DTS predicts that multisensory and motor features of the 
speech signal are likely to be transiently involved in the receptive processing of speech 
and ultimately language comprehension. A complementary unifying theory of neural 
processing called dynamic field theory (DFT) might provide a framework for the 
prediction and interpretation of the behavior of neural populations in DTS. The DFT 
models the neural interaction in dynamic multilayer fields that account for the properties 
of sensory and motor systems in working memory, attention, and long-term memory. The 
DFT predicts that cognition is both embodied in systems evolved for sensing, acting, and 
in environmental context. As such, it predicts a relationship of the kind described both by 
Hickok et al. (2011) and Callan et al. (2010) in which a kind of phonological selective 
attention modulates activity in sensory areas. For example, a similar function for the 
prefrontal cortex has been proposed for visual movement processing and the behavior of 
such a system can be modeled using multilayer DFT (Spencer, Perone, & Johnson, 2010).
Moreover, the DFT might explain findings of motor activity under conditions in which 
segments of the acoustic signal must be held in working memory (Burton et al., 2009; 
Sato et al., 2009) and in which new percepts (e.g., non-native contrasts) must be 
compared with long-term motor-phonological representations (Callan et al., 2003). 
Further, as the DFT predicts relationships between action systems and cognition 
generally, it can incorporate findings of motor activity to acoustic processing related to 
reproducible actions (Rauschecker & Scott, 2009). Finally, as the DFT was formulated to 
predict the activity of neuronal populations and EEG is thought to be a measure of 
local/global population dynamics, the EEG may be an effective way to provide the 
computational model with supporting data.

As transient attention to critical features is predicted to be important for extracting 
communicative intent, high-temporal resolution, ongoing measures are necessary to test 
the predictions of DTS. Future investigations utilizing the current methodology may 
make use of multiple psychophysiological measures in both controlled experimental and 
real-world contexts to investigate the role of active processing. These approaches will 
include combined measures of infrared eye-tracking, measures of autonomic arousal, and 
EEG. Eye-gaze is thought to be a measure of focused attention as the quality of visual 
resolution drops off rapidly outside the center of pupillary focus (Henderson, 2003).
Saccadic eye-movements signaling changes in attention occur on a millisecond time 
scale. As such, changes in attention signaled by gaze focus may be used as event-
structures around which EEG can be epoched, allowing for an examination of neuronal 
activity surrounding the attentional event. As these transient shifts are thought to be 
important for linguistic comprehension in real-word contexts, this experimental paradigm 
may also be used to examine changes in attention thought to influence perception, 
including active processing of head movements, manual gestures, tongue, mandibular, 
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and lip movements. Finally, because value based judgments are also thought to be 
important to speech and language processing, neuronal population dynamics localized to 
limbic regions may be measured simultaneously with autonomic measures of arousal 
known to index changes in emotional state (Bowers, Saltuklaroglu, & Kalinowski, 2011).
The auditory dorsal stream correlates of transient shifts in attention to critical features 
may be also be examined in psychoacoustic phonemena in which the motor system is 
thought to play a critical role in the behavioral outcome such as the McGurk-McDonald 
effect (McGurk & MacDonald, 1976), trading relations (Repp, 1982), duplex perception 
(Repp, 1984), and the identification of sine-wave speech. Sine-wave speech is generated 
by replacing the formants critical for speech recognition with sine-waves (Benson, 
Richardson, Whalen, & Lai, 2006) and is of particular interest in that whether or not 
participants anticipate speech significantly shapes whether or not sine-wave analogs are 
recognizable as speech.  

Possible Clinical Implications

As processes of expectation or attention are thought to be important for perceiving 
speech, it may be important to examine whether violation of expectations for 
communicative interactions more heavily rely on the proposed internal model 
mechanisms. This possibility might be examined using disordered speech such as 
dysarthria, stuttering, or apraxia. The computational mechanisms by which  
communication partners (CP) perceive stuttering are particularly interesting as CP 
reactions to stuttered speech may significantly influence the development of covert 
features of the pathology (Bowers, Crawcour, Saltuklaroglu, & Kalinowski, 2009;
Bowers et al., 2011). People who stutter often avoid certain people, places, and social 
events due the expectation of negative CP reactions. Equally as interesting is the 
possibility that the current methodology might be used shed light on the computational 
mechanisms underlying the fluency enhancing effects of various auditory signals in 
people who stutter (PWS). It has been proposed that disrupted internal models during 
speech production in PWS might be reinstated by auditory signals specifying intended 
articulatory gestures via the auditory dorsal stream (Hickok et al., 2011; but see Brown, 
Ingham, Ingham, Laird, & Fox, 2005; Max et al., 2004; Saltuklaroglu & Kalinowski, 
2006 for similar accounts).

As early changes in spectral power are thought to influence subsequent perceptual 
performance in noisy conditions, it is likely that some populations with difficulty 
resolving percepts in noise might utilize sensorimotor integration in a compensatory 
capacity. Older adult populations without hearing loss have been shown to recruit areas 
of the motor system and regions thought to be involved in attention more heavily than 
younger listeners (Wong et al., 2009). The motor system may function similarly to aid 
perception in children who have deficits in the perception of speech or spectotemporal 
analysis generally but have intact speech production (Benasich, Thomas, Choudhury, &
Leppänen, 2002). It is an open question whether the articulatory system plays an 
important role in perception for populations with hearing impairment. For instance, do 
children with hearing impairment who develop spared speech production utilize internal 
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constrains on perception to a greater extent than those who do not have hearing 
impairment? Further as deficits or differences in sensorimotor integration may play an 
important role in specific language impairment and autism spectrum disorders (LeBel, 
Sharma, & Pineda, 2009), the current methodology may provide information important 
for treatment. Establishing the time-frequency features of the EEG for both normal and 
clinical populations may be critical, as these signals have been shown to change as a 
function of experience and may thus be used as neuromodulatory feedback to enhance 
current therapeutic protocols (Cannon, Lubar & Baldwin, 2008; Congedo et al., 2008; 
Pineda, 2005; Van Der Loo, Congedo, Plazier, Van De Heyning & De Ridder, 2007).

Limitations

Although these findings present compelling evidence that the μ rhythm has an 
important function in the perception of speech, several limitations must be considered. 
First, as this study used only meaningless syllable and tone stimuli in the auditory 
modality only, the current findings are limited in the extent to which they can be 
generalized to other contexts. Second, as only 32 channels were used in this study, it may 
be important to investigate whether improved spatial resolution may be obtained for 
larger electrode arrays (i.e., 64-128 channels). However, informal comparisons between 
smaller and larger arrays have generally shown similar independent components 
associated with the most synchronous activity of the EEG (Onton & Makeig, 2006) and 
strong correlations between dipole models for low density arrays and BOLD activity have 
been demonstrated (Debener, Ullsperger, Siegel, & Engel, 2006). Second, given that this 
study did not employ a digitizer to input the exact location of electrodes (as opposed to 
relying on the average 10-20 method) and employed relatively imprecise head models, it 
may be important to replicate the current findings using more precise limiting parameters 
for source localization. 

Third, although findings from this study implicate the sensorimotor rhythm in 
accurate speech perception, performance was manipulated at the extremes so that 
performance was either accurate or not better than chance. Future studies might 
demonstrate that the sensorimotor rhythm tracks perceptual discrimination performance  
across multiple SNRs. Callan et al., (2010) found that correct trials were preceded and 
followed by significant low and high frequency ERD (i.e., suppression) emerging from 
the vPMC, suggesting that this region plays an important role in processing speech 
percepts when bottom-up, sensory driven processes fail. However, another possible 
explanation offered for that result is that correct trials are simply associated with motor 
activity whereas incorrect trials are not due to the fact that precepts were 
phenomenologically ambiguous. As attention (i.e., active processing) is thought to play a 
critical role in activating the dorsal stream network (see Skipper et al., 2006), it is 
possible that participants were simply not attending during incorrect trials. In other 
words, correct trials are simply accompanied by early and late activation in the precentral 
gyrus as opposed to functional involvement in correct discrimination. 
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Findings in the present study may help to flesh out the underlying role of early 
forward models. The presence of early beta suppression prior to stimulus onset and 
throughout stimulus processing would suggest that the motor system was involved at all 
stages of processing for speech stimuli, both for conditions in which percepts were 
discriminable and for conditions in which they were not. Thus, it appears that forward 
models may participate in perception even when the acoustic signal is so impoverished 
that discrimination between phonemes is not possible. Further, it appears that this process 
is specific to incoming acoustic signals that have been paired previously with articulatory 
movements. In light of the current findings, it seems possible that early forward models 
may function similarly to effort in attention. That is, when stimuli are attended regardless 
of the likelihood of success or failure, early motoric models are instantiated followed by 
an attempt at synthesis. It is likely that synthesis or sensorimotor integration is achieved 
only when early articulatory hypotheses and subsequent acoustic cues are sufficient to 
specify phonemic units.
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APPENDIX. SUPPLEMENTAL FIGURES

Figure A-1. Left μ pFDR in the speech and tone conditions for which an active 
discrimination was required. 

Left μ
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Figure A-2. Right μ pFDR values in the speech and tone conditions for which 
active discrimination was required. 

Right μ
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Figure A-3. Active ERSPS for the left hemisphere μ cluster.
Notes. A) ERSPS in active conditions with significant differences depicted in orange and 
red and B) significant differences at pFDR<.05 depicted in brown for the contrast 
Actsp+4dB>Actsp-6dB. 

Actsp+4dB        Actsp-6dB            Actn+4dB           Actn-18dB
Left 

A.

B.
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Figure A-4. Proposed model of sensorimotor interactions in a two-forced choice 
discrimination task. 
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Figure A-5. Cluster results for the left-hemisphere component.
Notes. A) mean scalp potential distribution scal B) mean 
spectra of the component as a function of condition in relative decibels, C) average 
equivalent current dipole location (Taliarach -43,-39,5), D) maximum current source 
density voxels (p<.001 corrected) (Taliarach-45,-25,45).
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Figure A-6. Cluster results for the right-hemisphere component.
Notes. A) mean scalp potential distribution scal ean 
spectra of the component as a function of condition in relative decibels; C) average 
equivalent current dipole location (Taliarach 43, -39, 1); D) maximum current source 
density voxels (p<.001 corrected) (Taliarach 55,-50,20).
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Figure A-7. Cluster results for the frontal midline component.
Notes. A) mean scalp potential distribution scal ¹); B) mean 
spectra of the component as a function of condition in relative decibels; C) maximum 
current source density voxels (p<.001 corrected) (Taliarach 0,20,20); D) average 
equivalent current dipole location(Talirach 2,23,4).



86

Figure A-8. Cluster results for the central midline component. 
Notes. A) mean scalp potential distribution scal ; B) mean 
spectra of the component as a function of condition in relative decibels; C) average 
equivalent current dipole location (Taliarach 2,23,4); D) maximum current source density 
voxels (p<.001 corrected) (Taliarach 0,20,20).
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Figure A-9. Independent component clusters labeled according to spectral 
signatures and depicted on a van Essen average template.
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Figure A-10. Left and right μ for correct trials in the Actsp+4dB condition 
averaged across 15-20Hz and 15-25Hz bands respectively.
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Figure A-11. Example eye-blink components with a spatial distribution near 
periocular channels.

A.

B.
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Figure A-12. Example noise components with a spatial distribution near temporal 
channels and spectral features consistent with temporal muscle movements.

A.

B.
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Figure A-13. Example vertical eye-movement components with a spatial 
distribution near periocular channel.

A.

B.
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