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ABSTRACT 

 

 Bone tissue engineering represents a strategy for the repair or regeneration of 

damaged bone in the body.  The science underlying this clinical therapy bridges the 

traditional fields of cell biology, materials science and mechanical engineering with the 

aim to identify how cells behave on physiologically relevant materials with natural 

mechanical stimuli.  The objectives of this research were to develop and characterize 

calcium phosphate ceramic scaffolds matched to the local architecture of natural 

trabecular bone and to apply tissue engineering strategies for the study of cell behavior in 

both in vitro and in vivo models. 

 The specific role of environment on cell stress pathways was evaluated on three 

dimensional (3-D) calcium phosphate scaffolds resembling vertebral trabecular bone.  A 

scaffold foam dipping technique was employed in the fabrication of fully sintered 

hydroxyapatite and tricalcium phosphate scaffolds.  Study of the early cell behavior on 

two dimension (2-D) controls and scaffolds was performed using human embryonic 

palatal mesenchyme cells (HEPM), an osteoblast precursor cell line.  Cell stress signaling 

was identified in response to the 3-D architecture using; members of the mitogen 

activated protein kinase cascade, cell survival signals and adhesion dependant proteins.  

The application of low intensity pulsed ultrasound (LIPUS) or fluid perfusion further 

stimulated cell-scaffold hybrids for short and long term in vitro study.  Additionally, an 

animal model was characterized using the scaffolds for the repair of a segmental defect in 

the canine mandible. 

Study of the cell stress signaling mechanisms identified high activation of stress 
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pathways on 3-D materials compared to controls with a corresponding increase in anti-

apoptosis signaling.  Similar trends were found with LIPUS stimulation demonstrating 

that changes in adhesion proteins during attachment may account for the alteration in 

stress pathways activated by bone precursors.  The absence of cell death and the 

activation of an anti-apoptosis signal suggest that cells are able to manage these stress 

levels which may be required for proper function.  Supporting this theory, long term in 

vitro perfusion studies demonstrated that the process of cell transition into a mature bone 

phenotype was improved with the fluid shear forces of perfusion.  Finally, the scaffolds 

were applied for repair of a segmental defect in the canine mandible and demonstrated 

extensive bone in-growth and partially-organized, lamellar collagen fiber assembly 

characteristic of organized bone.  The open architecture of the scaffold design also 

allowed for substantial blood vessel infiltration. 

This research demonstrated the importance of architecture on bone cell response 

for in vitro cell study and for clinical application.  The scaffold design provides a bridge 

between laboratory based signaling mechanisms and the development of clinical 

therapies in regenerative orthopedics.   
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Chapter 1.  Introduction 

 

Regeneration of bone tissue is often supported by artificial scaffolds providing a 

platform for cell adhesion and matrix production.  Scaffolds are essential to shorten the 

healing time of large defects or span critical size defects where natural bone fails to 

bridge an injury.  Tissue damage and loss can be the result of disease states or physical 

injury resulting in diminished quality of life and considerable socioeconomic cost 

[Chapekar 00].  Despite the improvements in joint replacement techniques and traditional 

segmental defect repair by marketed products, material and design failure continue to 

influence biomaterials and often necessitate replacement surgery over time [Spector 92].   

In addition to implants, the current therapeutic techniques for treatment of orthopedic 

damage include auto and allografting of cancellous bone and the use of partially 

vascularized grafts from the iliac crest [Perry 99].  However, harvesting from donor 

locations can be associated with site morbidity, provide limited quantities of bone and 

remains an expensive procedure.  Allografting adds the complication of disease and 

infection that may cause further harm to the patient [Burg 00].  These factors and the 

clinical demand for therapies that promote bone regeneration throughout a patient’s 

lifetime provided the initial interest in scaffold use for improved integration with native 

bone tissue [Rose 02].   

 

1.1 Bone background 

Bone is a unique living tissue that dynamically reacts to changes in its 

physiological environment.  The complexity of bone is defined from its multifunctional 
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role as the mechanical and structural framework of the body, its ion buffering system for 

metabolic function and its generation of blood cells by hematopoiesis.  As the main 

mechanical structure of the body, bone withstands the high forces associated with natural 

motion and protects internal organs and soft tissues from injury [Martin 98].  Bone also 

has a significant role as the body’s ion buffer system for mineral metabolism, acid-base 

balance and detoxification predominantly regulated by the hormonal system.   

 

1.2 Bone cells 

 Regulation of bone formation and maintenance is governed at the cellular level by 

a combination of cell types.  Four common cells regulate this environment: osteoblasts, 

osteoclasts, osteocytes and bone lining cells [Marks 02].   Bone sustains a nearly 

continuous rate of remodeling with osteoblasts depositing and mineralizing new matrix, 

osteocytes maintaining this structure and osteoclasts resorbing damaged matrix.  Lining 

cells often cover exposed bone surfaces and are considered to be a source of osteoblast 

precursor cells [Marks 02].   Osteoblastic activity deposits new collagen and mineralizes 

the matrix.  These cells become embedded into circular tube-like structures called 

osteons.  At the completion of this process the cells are called osteocytes and are 

surrounded inside capsules called lacunae.  Embedded osteocytes can receive chemical 

signals via dendrite processes and represent the communication system of the bone 

environment [Bulkwalter 96, Martin 98].  These two cell types act in concert to change 

the shape and repair damage of bone through the activity of basic multicellular units 

(BMUs) [Martin 98].  These multi-cell structures continuously remodel bone over an 

individual’s lifetime and control the shape and structure of bones.   
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1.3 Bone composition and classification 

 Researchers model bone as a composite structure containing both organic and 

inorganic components [Ascenzi 72, Carter 77, Wang 02].  Collagen fibers in a saline fluid 

are considered the organics while the mineral hydroxyapatite [Ca10(PO4)6(OH)2] is the 

inorganic [Ascenzi 72, Martin 98, Reilly 75].  The arrangement of these components in 

the overall structure determines the mechanical characteristics of bone. 

Categorized by porosity, bone is termed as cortical and trabecular as shown in 

Figure 1.1.  Compact or cortical (from the cortex) bone ranges in porosity from 5 to 20 

percent while trabecular bone ranges from 75 to 90 percent [Ascenzi 72, Martin 98].  

Trabecular bone is composted of small struts known as trabeculae and is typically located 

at the ends of long bones.  Cortical bone is the primary support of long bones and 

represents nearly 80 percent of the adult skeleton [Buckwalter 96].   

At the microstructural level, bone can be defined as lamellar or woven.  Lamellar 

bone is an exceptionally organized arrangement of collagen and mineral sheets stacked 

with altering collagen fiber orientation.  Lamellar sheets are produced in 0° and 90° 

rotations or as a continuous rotation through 180°.  By using this arrangement, a 

plywood-like structure with exceptional mechanical strength is created [Martin 98].  

Woven bone is a rapidly formed tissue that does not display the high degree of 

organization characteristic of other bone types, but can be formed with great speed in 

response to injury or during extreme growth.  With its near random distribution of 

collagen fibers and subsequent mineralization, woven bone is a mechanically weak 

structure especially in elasticity although it does allow higher levels of mineralization, 

thus increasing material stiffness.    
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   (a)                           (b) 
 

Figure 1.1  Histology cross section of (a) trabecular and (b) cortical bone, 200X.  
Mineralized tissue stained in red using Alizarin red. 
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At the macroscopic level, dense cortical bone contains haversian canals that run 

longitudinal to the axis of long bones containing blood vessels and nerves as shown in 

Figure 1.2 following previously reported classifications [Martin 98].  Around these 

porous spaces, circumferential lamellae are woven to build a functional osteon.  

Volkmann's canals are located within cortical bone and create a bridge between haversian 

canals and the periosteum through connecting channels.  Through osteoclast activity, 

hollow spaces are created during remodeling and repair activities [Buckwalter 96].  

The osteon arrangement initially forms in response to the blood vessel 

organization.  Cortical bone is further characterization as either primary or secondary 

bone.  Primary bone contains osteons embedded within a less organized matrix and can 

be deposited on surfaces such as the periosteum.  The result is a quickly formed and 

dense bone often created during fast growth.  Secondary bone results from the 

remodeling activity of osteoclasts and the development of an optimized haversian system.   

 

1.4 Scaffold design 

In the last 40 years a remarkable quantity of biomaterials have been proposed as 

scaffolds for bone regeneration, however, very few have proven clinical success.  Since 

natural bone is composted of a substituted hydroxyapatite [Ca10(PO4)6(OH)2] (HA) within 

an organic matrix (~95% type I collagen) [Ascenzi 72, Marks 02], many scaffolds 

attempt to duplicate these material components.  In addition to natural materials, 

biodegradable composites based on poly (lactic acid) (PLA), poly (glycolic acid) (PGA) 

and ratio blends of the two have been used [Freed 94, Peter 98].  These materials have 

been successfully applied clinically with prior FDA approval and can have their surface  
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Figure 1.2  Illustration of anatomical osteon and trabecular arrangement in a long bone 
based on Martin (1998).   
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and bulk properties modified for improved characteristics.  However, polymer scaffolds 

of the above or other compositions usually lack mechanical strength and can release 

acidic byproducts to cells ultimately hindering implant integration and inducing 

inflammatory reactions [Agrawal 97, 01, Schugens 96].   

Among the many biomaterials used for manufacturing scaffolds, hydroxyapatite 

has a proven performance for bone reconstruction [Arinzeh 05, Dong 01, Flautre 99, 

Gauthier 05, Kon 99, Koshino 01, Lu 98, Mastrogiacoma 06].   Because of its 

resemblance to the natural apatite of bone, HA demonstrates a strong bio-mechanical 

interlock with host tissue [Posner 73, Richard 98].  This material also has limited 

immunoreactivity while also providing a source of calcium and phosphorous for 

surrounding cells.   

 

1.5 Scaffold porosity 

In addition to material composition, pore morphology and overall architecture has 

been of interest in the development of scaffolds to improve clinical behavior [Arts 06, De 

Oliveira 03, Lu 99, Mankani 01, Sepulveda 00].  A variety of techniques including 

porogen leaching, textile, solid free-form fabrication and template coating have been 

employed to create ceramic scaffolds.  Each of these methods has its own unique 

characteristics with current research especially aimed at the identification of a minimum 

pore size necessary for tissue infiltration [Chang 00, Gauthier 98].  The arrangement and 

shape of pore structures are particularly relevant to cell activities such as proliferation 

and differentiation of bone precursor cells into the osteoblast lineage [Habibovic 05]. 

Open, highly porous configurations take advantage of natural bone in-growth to
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enhance the osteoconduction and integration between scaffold implants and bone 

[Karageorgiou 05].  A number of criteria have been established for scaffold properties 

including; material composition, surface features, pore morphology and architecture that 

influence the success of implants.  Careful control of these factors can permit scaffolds to 

be biocompatible, osteo and angioconductive while encouraging a natural bone 

arrangement during the infiltration of new bone [Chang 00, Groeneveld 99].  Long term 

clinical success of these designs has been linked with the creation and maintenance of a 

functional blood supply [Boyde 99].  The result of limited scaffold interconnectivity can 

lead to an obstruction in vascular infiltration ultimately limiting new tissue formation.  

Blood vessels also have a role in the coordination of biochemical activity which guides 

cell response especially during bone remodeling [Barou 03].  The clinical success of 

scaffolds requires that each of these factors be considered and balanced to support new 

tissue formation and maintenance. 

 

1.6 Scaffolds as platforms for cell study 

In addition to their clinical application for regenerative medicine, scaffolds also 

offer a unique platform for the study of biological pathways.  Their bone-like geometry 

and curvatures permit detailed investigations closely matched to a natural environment.  

Current research has already established the importance of scaffold surface area and 

shape of ceramic substrates for preosteoblast cell differentiation into mature osteoblasts 

[Habibovic 00].   Scaffolds provide a reproducible environment to identify and isolate the 

specific biological signals that occur during this process and during adhesion and 

proliferation.  Similar to their clinical application, scaffold structures give a stable 
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support network for cell adhesion, migration and proliferation as osteoconductive 

platforms [Chang 00].  Through the careful control of geometry, trabecular structures can 

be formed to match the architecture of natural tissue.   

 

1.7 Bone stress signaling 

Cells respond to their three dimensional environment by coupling external 

stimulations through signaling mechanisms resulting in phenotype changes.  One of the 

most common pathways engaged by bone-like cells in response to the environment are 

the mitogen-activated protein kinase (MAPK) pathways.  These signaling systems 

mediate many cell reactions to external stimuli such as cytokines, G-protein coupled 

receptors, growth factors and integrin-based cell adhesion [Morino 95, Robinson 97].  

This signaling system has also been identified in committing human mesenchymal stem 

cells to osteogenic or adipocyte lineages [Jaiswal 00].  Within this family are three sub-

pathways; the extracellular signal-regulated kinases (ERK1/2), c-Jun N-terminal kinases, 

(JNK), and p38 kinases, the latter two are collectively termed the stress-activated protein 

kinases (SAPKs).  Coupling cell environment changes with survival also activates a 

diverse regulator of proliferation, growth and anti-apoptosis called AKT / protein kinase 

B.  Coordination of these signals regulates a variety of transcriptional events including 

survival, glycogen synthesis, glucose transport [Hajduch 01], cell cycle regulation [Diehl 

98] and growth by several mechanisms [Inoki 02, Manning 02, Nave 99].  AKT’s control 

over cell survival is of particular interest as physiological stress could be reflected by an 

increase in AKT activation.  Downstream, AKT acts to inhibit apoptosis by inactivation 

of regulators such as forkhead transcription factors [Brunet 99], c-Raf [Zimmerman 99], 
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and caspase-9 [Cardone 98].   AKT exerts substantial influence over cell function and its 

activity may lead to management of high stress responses from the MAPK cascade 

observed during cell adhesion to implant materials. 

  

1.8 Mechanical stimuli  

 Scaffolds represent a significant environmental change for cells traditionally 

cultured on surfaces, however, to accurately represent the native bone environment 

further mechanical stimuli are necessary.  A variety of mechanical factors influence 

natural bone development including direct compression and associated strains, torsion, 

bending, fluid pressure and fluid shear.  While each of these components acts on natural 

tissue, the selection of mechanical stimulations for in vitro work is often hindered 

because force and displacement stimuli are inherently destructive.  For this reason, the 

latter two techniques of applying fluid based pressure waves by acoustic energy or fluid 

shear by perfusion are often used for tissue engineering.   

Bone cells respond to mechanical forces through a process called 

mechanotransduction.  Environmental stimuli are linked with biological signals causing a 

change in genetic regulation and cellular adaptation [Moalli 00].  At the cell membrane, 

integrins are responsible for mediating these events through tyrosine phosphorylation of 

signaling proteins [Ingber 03] forming focal adhesions.  Within the cell membrane, focal 

points engage a variety of structural proteins to connect integrins with signaling pathways 

such as the mitogen-activated protein kinase (MAPK) cascades [Morino 95, Schlaepfer 

98].   
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1.9 Ultrasound 

 Therapeutic ultrasound has proven a valuable tool for the treatment of 

pathological and trauma fractures particularly with the development of low intensity 

pulsed ultrasound (LIPUS) [Duarte 83].  Ultrasound has been described as a pressure or 

sound wave capable of transferring mechanical energy into biological tissues [Williams 

83].  This acoustic energy has demonstrated the capability to increase fracture healing 

both in vitro [Azuma 01, Gebauer 02] and in vivo [Heckman 94].  For laboratory-based 

cell behavior studies, ultrasound represents a near ideal mechanical stimulation of the cell 

membrane since the technique is non-destructive and will not adversely affect the 

scaffold structure.   

 

1.10 Flow perfusion 

Similar to acoustic ultrasound, perfusion induces local pressure and shear forces 

at the cell membrane.  Fluid shear stimulation has been well characterized in previous 

studies and has a substantial role in inducing cell differentiation in a bone environment 

[Cartmell 03, Goldstein 01, Holtorf 05].  Additionally, perfusion offers the added 

advantage of enhanced nutrient transport for in vitro tissue engineering.  This added 

transport mechanism is especially required when nutrient supply based on diffusion 

becomes insufficient to meet the metabolic needs of cells.  In large 3-D volumes of 

functional tissue and for long term study of tissue organization, particularly where 

uniform cell growth is necessary to prevent regions of necrosis, perfusion becomes 

critical [Holy 00, Ishaug 97].  These strategies for developing and maintaining large 
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volumes of tissue with improved nutrient conditions have demonstrated enhanced cell 

viability, rates of proliferation and protein production [Dunkelman 94, Glowacki 98].      
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Chapter 2.  Objectives and hypothesis testing 

 

2.1 Overall goals 

 The primary objective of this research was to identify cell behavior changes that 

occur in response to three dimensional features in bone formation and maturation.  A 

significant disparity often occurs between laboratory-based biomaterial testing and in 

vivo clinical results.  The studies included in this work represent an attempt to bridge 

these fields by using biomaterials and in vitro conditions closely matched to their in vivo 

counterparts.  Hydroxyapatite (HA) and tricalcium phosphate (TCP) represent the two 

materials studied in this research and reflect the mineral component of natural bone 

apatite encountered by bone cells.  A scaffold design, with natural trabecular bone as the 

model, represented the platform for cell studies carried out in these experiments.  

Scaffolds matched to the true organization of natural bone allowed for biomaterial testing 

in an environment similar to in vivo architecture.  True bone forms under a combination 

of mechanical forces two of which were investigated herein and included media-based 

perfusion, simulating the blood-based perfusion flow of natural bone and ultrasound or 

acoustic-based pressure waves, representing a non-destructive mechanical force similar to 

the fluid pressure changes resulting from mechanical deformations in natural bone. 

The first section of this research compares HA and TCP materials in two 

dimensions (2-D) and three dimensions (3-D) in terms of cell stress behavior and gives 

especial emphasis to the role of architecture on cell response.  This work is continued in 

the second section focusing exclusively on 3-D scaffolds with the application of 

ultrasound mechanical stimuli.  While the first two sections emphasize the behavior of 
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HA and TCP designs, the last two sections focus on surface modification to HA only.  

The rationale for the selection of HA relates to the stability of the material.  In short term 

studies the resorbtion activity of TCP can be ignored, however, in longer term studies 

they introduce a new variable that would alter the focus of this research.  To replace the 

TCP groups, a nano sol-gel based HA was used to evaluate differences in calcium release 

and surface structure.  In the third section, micro and nano surface HA scaffolds are 

explored in long term cell culture to observe the specific effect of media perfusion on cell 

differentiation.  Finally, in the last section, micro and nano HA scaffolds were evaluated 

in a canine model for mandible defect repair demonstrating the potential of the scaffold 

design for successful bone regeneration with emphasis on the osteo and angioconductive 

capability of the design.   

 

2.2 Specific hypotheses 

 
2.2.1 Osteoblast precursor stress signaling in trabecular HA and TCP scaffolds 

compared to 2-D surfaces 

• Hypothesis 1: Scaffolds create three-dimensional curvatures not represented in 

two-dimensions causing an activity increase in the members of the mitogen 

activated protein kinase cascade. 

• Hypothesis 2: Activation of the MAPK cascade corresponds with an increase in 

the anti-apoptosis signal AKT, rescuing cells from programmed cell death in 3-D 

scaffolds. 
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2.2.2 Adhesion and stress response of osteoblast precursors in trabecular HA and TCP 

scaffolds in response to ultrasound 

• Hypothesis 3: Calcium release from scaffold designs is responsible for the 

increase in cell stress signaling and adhesion protein activation.  

• Hypothesis 4: Ultrasound stimulation significantly increases activity of the 

MAPK cascade and adhesion proteins on 3-D scaffolds. 

 

2.2.3 Osteoblast precursor response to fluid perfusion in trabecular nano and micro 

surface HA scaffolds 

• Hypothesis 5: Nano coating of HA scaffolds increases local surface roughness for 

improved cell attachment and viability. 

• Hypothesis 6: Nano surface HA scaffolds increases calcium release stimulating 

HEPM cell differentiation both in static and media perfused conditions. 

 

2.2.4 Trabecular nano and micro surface HA scaffolds for in vivo bone repair 

• Hypothesis 7: In vivo bone formation in scaffolds will match the differentiation 

time of perfusion studies confirming the use of in vitro perfusion in scaffolds as a 

platform for bone evaluation. 

• Hypothesis 8: Nano surface HA scaffolds increase the total tissue, blood vessel 

and bone formation capacity compared to micro surface scaffolds while 

generating tissue morphology similar to natural cortical bone. 
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Chapter 3.  Effects of trabecular calcium phosphate scaffolds on stress-signaling in 

osteoblast precursor cells*

 

3.1 Abstract 

The objective of this research was to investigate stress-signaling patterns in 

response to two dimensional (2-D) and three dimensional (3-D) calcium phosphate (CP) 

materials using human embryonic palatal mesenchyme cells (HEPM, CRL-1486, ATCC, 

Manassas, VA), an osteoblast precursor cell line.  Control discs and scaffolds were 

fabricated from hydroxyapatite (HA) and β tri-calcium phosphate (TCP) ceramics.  

Phospho-specific antibody cell-based ELISA (PACE) technique was utilized to measure 

the activities of the mitogen-activated protein kinase (MAPK) cascades including; the 

extracellular signal-regulated kinases (ERK1/2), p38, c-Jun N-terminal kinase (JNK), and 

the anti-apoptosis mediator protein kinase B (AKT).  Quantification of these signals was 

evaluated during the early attachment phase of osteoblast precursor cells.  In this study, it 

was observed that cell culture on 3-D CP scaffolds significantly activated the stress 

mediators p38 and JNK but not ERK1/2.  This signal trend was matched with an increase 

in AKT, suggesting the ability of cells to manage high stress signals in response to 3-D 

CP architecture and that 3-D CP scaffolds are necessary for studies simulating a natural 

trabecular bone organization.  The absence of these signals in 2-D CP surfaces indicated 

the importance of local architecture conditions on cell stress responses.  It was concluded  

from this study that osteoblast precursor cells cultured in 3-D CP scaffolds experience  

 
*Reprinted from Biomaterials, 28, Appleford MR, Oh S, Cole JA, Carnes DL, Lee M, 
Bumgardner JD, Haggard WO, Ong JL. Effects of trabecular calcium phosphate scaffolds 
on stress signaling in osteoblast precursor cells, 2747-2753, 2007, Elsevier permissions. 
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greater stress-signaling patterns when compared to 2-D CP surfaces. 

 

3.2 Introduction 

Regeneration of bone tissue assisted by ceramic scaffold grafts has shown 

excellent capability in recent bone regenerative therapeutic techniques [Arinzeh 05, 

Boyde 99, Dong 01, Dong 03, Flautre 99, Gauthier 05, Kon  99, Livingston 02, Lu 98, 

Mastrogiacoma 06, Uemura 03].   Additionally, the development of artificial scaffolds for 

bone reconstruction offers several distinct advantages for cell studies.  In particular, the 

use of calcium phosphate (CP) ceramics for scaffold development exhibits a variety of 

useful properties; strong mechanical characteristics closely matched to bone, negligible 

immunoreactivity and the availability of local calcium and phosphorous for surrounding 

cells.  At the protein and cellular level, CP materials are directly bound to the collagen 

matrix forming a strong mechanical interlock between bone and implant [Richard 98].  In 

addition to material composition, research has also established the importance of specific 

surface area and shape of ceramic substrates for cell differentiation into the osteogenic 

lineage [Habibovic 05].   These scaffolds offer a reproducible platform for the 

identification and isolation of specific biological signals as well as their clinical use in 

regenerative orthopedics [Koshino 01, Mangano 03, Zyman 98].  Their structures provide 

a stable support network for cell adhesion, migration, and proliferation as 

osteoconductive platforms [Chang 00].  Their strong resemblance to trabecular bone also 

permits investigation of cell signaling patterns in an environment analogous to natural 

tissue.  As bone cells identify and react to the environment by means of a mechano- with 

transduction system, it is of interest to distinguish changes in intracellular communication 
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 respect to 3-dimensional (3-D) curvatures. 

Intracellular pathways such as mitogen-activated protein kinase (MAPK) family 

of serine/theonine kinases drive many cell reactions to external stimuli including 

cytokines, G-protein coupled receptors, growth factors, and integrin-based cell adhesion 

[Morino 95, Robinson 97].  This signaling system has also been identified in committing 

human mesenchyme stem cells to osteogenic or adipocyte lineages [Jaiswal 00].  Within 

this family are three sub-pathways; the extracellular signal-regulated kinases (ERK1/2), 

c-Jun N-terminal kinases, (JNK), and p38 kinases [Widmann 99], the latter two are 

collectively termed the stress-activated protein kinases (SAPKs).  Cell survival signaling 

also involves a mediator termed AKT/PKB, protein kinase B, originally named from an 

AKR/J thymoma mouse cell line [Staal 77], with involvement in a diverse set of cell 

functions.  A general outline of the various inputs and outputs from the MAPK and AKT 

members are shown in Figure 3.1.   

 

Stimulus

Mediator

Response

GPCR, Growth Factors, 
Mitogens

ERK1/2

Growth, Differentiation,
Development

Cytokines (Inflammatory), 
GPCR, Growth Factors, Stress

P38        JNK/SAPK

Inflammation, Apoptosis, 
Growth, Differentiaton

Cytokines, Integrins, 
GPCR, BCR, HSP

AKT/PKB

Cell Survival, Growth, 
Proliferation

 
 

Figure 3.1 Representation of parallel MAPK cascade consisting of ERK1/2, P38 and JNK 
members and the cell survival signal AKT/PKB.  Stimulations, mediators and generalized 
responses are illustrated in flow diagram form. 
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The objective of this study was to determine pre-osteoblast responses to scaffold 

architecture during the cell adhesion-phase through the mitogen-activated protein kinase 

(MAPK) cascade and anti-apoptosis mediator AKT signaling.  Testing was performed on 

hydroxyapatite (HA) and tri-calcium phosphate (TCP) scaffolds using human embryonic 

palatal mesenchyme cells (HEPM, CRL-1486, ATCC, Manassas, VA), an osteoblast 

precursor cell line.   Specifically, phospho-activation of extracellular signal-regulated 

kinases (ERK1/2), p38, c-Jun N-terminal kinase (JNK), and AKT on 3-D and 2-

dimensional (2-D) HA and TCP surfaces were measured. 

 

3.3 Materials and methods 

 
3.3.1 Sample preparation 

Disc shaped specimens (controls) were produced from micro particulate HA and 

TCP (TAL Materials, Ann Arbor, MI) using a hydraulic press and stainless steel mold 

with diameter of 6 mm.  The materials were sintered in air at 1230°C for 3 hours.  HA 

and TCP scaffolds were prepared using a foam-dipping technique.  Polyurethane sponges 

(EN Murray, Denver, CO) were coated with HA or TCP slurry.  Binders were used with 

the slurry to improve sintering and to stabilize the scaffold structure and included 3% 

high molecular weight polyvinyl alcohol, 1% v/v carboxymethylcellulose, 1% v/v 

ammonium polyacrylate dispersant, and 3% v/v N,N-dimethylformamide drying agent.  

Coated sponges were vacuum-dried overnight before sintered.  Scaffolds were twice 

coated with CP slurry and re-sintered to 1230°C.  Purity of the composition was validated 

using X-ray diffraction analysis.  Final scaffold dimensions were ø 5 mm and length of 5 

mm, discs were prepared with ø 6 mm and height of 1.5 mm.  All samples were placed 
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into non-binding 96 well plates (Corning, Acton, MA) and ethylene oxide gas sterilized 

before analysis. 

 

3.3.2 Sample characterization 

Calcium phosphate disc-controls and scaffolds were imaged by scanning electron 

microscopy.  Histomorphometric measures of the scaffold were performed on cross-

sectional slides.  Scaffolds were embedded in one-component photo-curing resin (Exakt 

7200 VLC, Oklahoma City, OK), and thin sectioned using a precision microsaw 

(Buehler, Lake Bluff, IL).  Sections were progressively polished on 600, 800, 1000, 1200 

grit paper and adhered to glass slides using a methyl methacrylate resin (Surgipath 

Medical Ind., Richmond, IL).  Sections were imaged at 100X magnification with a digital 

camera (QImaging, Burnaby, Canada) on a Nikon TE300 microscope (Nikon, Melville, 

NY).  An analysis of the scaffold was performed using bone histomorphometry software, 

Osteo v.7 (Bioquant, Nashville, TN).  A total of four cross-sections were prepared from 

each scaffold and parameters were defined using traditional histomorphometry guidelines 

for trabecular bone structures as follows: 

• Percentage of scaffold volume [SV / TV = scaffold volume / total volume x 

100%] 

• Ratio of scaffold surface perimeter to total volume [SS / TV = surface length / 

total volume] 

• Ratio of scaffold surface perimeter to scaffold volume [SS / SV = surface length / 

scaffold volume] 

• Trabecular thickness [Tb.th. = (4 / 1.199) x (SS / SV)] 
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• Trabecular number [Tb.n. = ((4 / π) x (SV / TV))-0.5 / (Tb.th.)] 

• Trabecular separation [Tb.sp. = ((4 / π) x (TV / BV) – 1) x (Tb.th.)] 

The formulae shown above were derived with respect to trabecular bone tissue 

that includes both rod- and plate-like geometry.  Consequently, these formulae may not 

be ideally suited to the isotropic character of these scaffolds.  The incorporation of these 

properties herein permits a comparison with known values with the human lumbar spine, 

a predominantly rod-like trabecular structure [Hildebrand 99].   

 

3.3.3 Cell culture and adhesion 

Human embryonic palatal mesenchyme cells (HEPM, CRL-1486, ATCC, 

Manassas, VA), an osteoblast precursor cell line, were cultured in Dulbecco’s modified 

eagle medium (DMEM, Invitrogen, Carlsbad, CA) supplemented with 7% fetal bovine 

serum (FBS, Invitrogen) and 1% antibiotic/antimycotic (PSA, 100 U/mL penicillin, 100 

µg/mL streptomycin, 0.25 µg/mL amphotericin B, MP Biomedicals, Solon, OH) at 37°C 

with 5% CO2.  Cells were cultured in TC-75 flasks with biweekly media changes and 

passaged at confluence using TrypLE, a trypsin-like enzyme (Invitrogen).  HEPM cells 

were counted using a coulter counter (Beckman Coulter Z2, Fullerton, CA), and 20,000 

cells in total were seeded onto tissue culture treated plates, CP discs or scaffolds. 

Attachment behavior of HEPM cells to CP surfaces was evaluated in a time 

course study with cells plated and attached for 1, 2, 4 or 6 hours.  The cell media was 

collected along with two washes of PBS to count unattached cells at the selected time 

points.  The percent cell attachment was calculated as (%Att = (cells seeded – unattached 

cells) / cells seeded x 100%).  This methodology was confirmed by detaching the 

 21



remaining cells from the material to ensure count equivalence.    Percent attachment 

values were used to determine a suitable time point for remaining studies such that an 

equivalent cell number could be assumed between HA and TCP materials.   

 

3.3.4 Material phospho-specific antibody cell-based ELISA (PACE) 

HEPM cells were attached to CP surfaces for 6 hours followed by washing twice 

with ice-cold PBS.  Cells were fixed with 4% Carson’s Millonig formaldehyde in PBS 

for 30 minutes at room temperature then endogenous peroxidase activity was quenched 

using 0.3% H2O2 in PBS - 0.1% Triton X-100 (PBS-T) for 30 minutes.  Cells were 

washed three times with PBS-T, followed by blocking with 10% fetal calf serum (FCS, 

Invitrogen) in PBS-T for 1 hour.  Primary rabbit antibodies against phospho-p44/42 

(ERK1/2, Thr202/Tyr204), phospho-p38 (Thr180/Tyr182), phospho-SAPK/JNK 

(Thr183/Tyr185), and phospho-AKT (Ser 473, Cell Signaling Technology, Danvers, 

MA) were added in 5% FCS-PBS-T and incubated overnight at 4°C with 20 rpm rocking.  

Dilutions of primary antibodies were set at 1:1000 except for pp38, at 1:500.  Antibody 

dilutions were established from titer-controls with a minimum absorbance signal to noise 

ratio of 8 using non-stimulated cells on tissue culture treated plastic.  Signal inhibitors for 

ERK1/2, p38, JNK, and AKT; PD98059 (50µM), SB203580 (50µM), SP600125 (10µM), 

Wortmannin (2µM), respectively, were added 30 minutes before test completion.  After 

primary antibody incubation, cells were washed three times with PBS-T for 5 minutes 

and incubated with secondary anti-rabbit IgG, HRP-linked antibody (horseradish 

peroxidase) with a 1:1000 dilution in 5% FCS-PBS-T for 1 hour at room temperature 

with rocking.  The cells were then washed three times with PBS-T, and twice with PBS 
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for five minutes.  One-Step Ultra TMB substrate (Pierce Biotechnology, Rockford, IL) 

was added to the wells and color developed for 30 minutes at room temperature in the 

dark.  The oxidation reaction was stopped and color changed and stabilized using an 

equal volume of 2M H2SO4.  The colored products were transferred to new 96 well plates 

and absorbance measured at 450 nm with reference at 620 nm on a Beckman Coulter 

AD34C plate reader (Fullerton, CA). 

 

3.3.5 Statistical analysis 

Statistical calculations were performed with SigmaStat software (Systat, Point 

Richmond, CA).  Validity of signal inhibition with each material was compared by paired 

t-test.  Significance between groups was analyzed by one-way ANOVA with Tukey 

pairwise multiple comparisons.  Significance levels were set at p<0.05. 

 

3.4 Results 

 

3.4.1 Material characterization 

Calcium phosphate control surfaces imaged by SEM are shown in Figure 3.2(a-b) 

revealing the micro surface structure.  While surface roughness was normalized by bulk 

fabrication, differences in the chemical composition are reflected in the surface character 

of HA and TCP materials.  Sintered HA surfaces consisted of smaller crystals with tight 

junctions while TCP surfaces exhibited larger crystal size with loosely bound junctions 

and infrequent micro-scale pores.  These characteristics were also preserved in 3-D where 

strut-surfaces reflect the morphology differences of HA and TCP materials. 

 23



 

 
 
 
 
 
 
 

 
 

(a)      (b) 
 
 
 
 
 
 
 
 
 

 
(c)     (d)  

Figure 3.2 SEM photographs of (a) HA and (b) TCP surface micro structure with crystal 
size closely matched while scale bars differ demonstrating the smaller tightly bound 
crystals of HA and larger crystals of TCP with small micro-pores.  Bulk scaffold 
architecture of (c) HA and (d) TCP materials show little differences in structure. 
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Bulk scaffold architecture, defined by the original polyurethane template, is 

nearly identical for the two CP materials studied (Figure 3.2c-d).  Small variations were 

seen in the percent shrinkage between HA and TCP after heat treatments, however, the 

differences were not significant as measured by histomorphometry.  Average scaffold 

values were obtained for the previously mentioned parameters with comparisons to 

vertebral bone structure as shown in Table 3.1.  The architecture of the scaffold consisted 

of a rod-like arrangement with morphological similarity to human vertebral, trabecular 

bone [Hildebrand 99].    

 

3.4.2 Cell adhesion 

Cells attached to HA and TCP at a rapid rate with approximately 80% binding 

within the first hour.  As variations in attachment could affect the ELISA measurements, 

a time point was selected where differences were no longer significant between the two 

materials, but before changes in cell number by proliferation could influence the data.  

The cell attachment rate on HA and TCP surfaces indicated no significant differences 

between the two surfaces at each time point as shown in Figure 3.3.  By 4 to 6 hours of 

cell culture a stable plateau is reached where time differences are no longer significant 

(93% binding).  The 6 hour time point was subsequently used for all ELISA testing.  

Scaffold attachment rates equaled or exceeded that of surfaces and also normalized to 

95% by 6 hours with 2-D data representative of 3-D attachment behavior. 
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Table 3.1  Scaffold histomorphometry parameters compared to human vertebral bone of 
the second lumbar.  
 

Parameter Abbreviation Scaffold  Vertebra* Units 

Scaffold Volume/Total Volume SV/TV 32.51 ± 6.65 8.3 ± 2.4 % 

Scaffold Surface/Total Volume SS/TV 3.19 ± 0.27 1.87 ± 0.49 mm-1 

Scaffold Surface/Scaffold 

Volume 

SS/SV 10.26 ± 2.32 23.73 ± 3.41 mm-1 

Trabecular Number Tb.N 1.93 ± 0.25 0.93 ± 0.25 mm-1 

Trabecular Separation Tb.Sp 1.00 ± 0.11 1.07 ± 0.33 mm 

Trabecular Thickness Tb.Th 0.34 ± 0.08 0.09 ± 0.01 mm 

 

*Source: Hildebrand T, Laib A, Muller R, Dequekker J, Ruegsegger P.  Direct three-
dimensional morphometric analysis of human cancellous bone: microstructural data from 
spine, femur, iliac crest, and calcaneus.  J Bone Miner Res  1999;14:1167-1174. 
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Figure 3.3  HEPM cell attachment behavior on (white bars) HA and (black bars) TCP 
surfaces over 6 hours.  More than 80% of cells attached to CP surfaces within 1 hour, and 
attachment stabilized to approximately 93% by 6 hours.  Letters denote significant 
between group differences by Tukey pairwise multiple comparisons p<0.05, n=4 / time 
point, error bars + S.D. 
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3.4.3 Activation of ERK1/2 on CP’s 

The effects of surface material and architecture on the phosphorylation of ERK1/2 

was investigated during the early attachment phase of HEPM cells to HA and TCP 

substrates as shown in Figure 3.4.  A high basal level of ERK activity was observed with 

cells cultured on tissue culture plastic and was significantly reduced with cells cultured 

on 2-D TCP and 3-D HA materials.  A significant increase in signal was also seen in 3-D 

TCP scaffolds over 2-D TCP and 3-D HA.  Signal was inhibited using PD98059 (a binder 

of MEK1 inactive forms), limiting activation by upstream signalers.  Inhibition of MEK1 

significantly reduced pERK1/2 activity in all groups (p<0.005).   

 

3.4.4 Activation of p38 on CP’s 

The activation of the stress signal mediator p38 was evaluated in response to 

material surface and architecture as shown in Figure 3.5.  A moderate difference was 

identified between tissue culture plastic and 2-D HA and TCP surfaces with both 3-D 

groups significantly greater than all other materials.  The highest activation of p38 

occurred in 3-D HA and was significantly greater than 3-D TCP.  Selective inhibition 

was performed with SB203580, and significantly reduced all material responses (p<0.05) 

except for tissue culture plastic indicating that p38 was not activated in response to this 

surface. 

 

3.4.5 Activation of JNK on CP’s 

Phospho-activation of the JNK environmental stress mediator on CP materials is 

shown in Figure 3.6.  On 2-D surfaces, a difference was recognized between HA and  
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Figure 3.4  Phospho-immunoreactivity of ERK1/2 using HEPM cells on tissue culture 
plastic, calcium phosphate surfaces and scaffolds.  White bars represent signal inhibition 
for 30 minutes with PD98059, black bars represent actual signal.  Selective inhibition 
was significantly different from signal in each material by paired t-test, p<0.005.  Letters 
denote significant differences by Tukey pairwise multiple comparisons p<0.05, n=6, data 
representative from 2 independent experiments.  ERK, extracellular-signal-regulated 
kinase. 
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Figure 3.5  Phospho-immunoreactivity of p38 using HEPM cells on tissue culture plastic, 
calcium phosphate surfaces and scaffolds.  White bars represent signal inhibition for 30 
minutes with SB203580, black bars represent actual signal.  Selective inhibition was 
significantly different from signal in each material, except tissue culture plastic by paired 
t-test, p<0.05.  Letters denote significant differences by Tukey pairwise multiple 
comparisons p<0.05, n=6 from 2 independent experiments.  p38 from cytokine 
suppressive anti-inflammatory drug binding protein (CSBP). 
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Figure 3.6  Phospho-immunoreactivity of JNK using HEPM cells on tissue culture 
plastic, calcium phosphate surfaces and scaffolds.  White bars represent signal inhibition 
for 30 minutes with SP600125, black bars represent actual signal.  Selective inhibition 
was significantly different from signal in each material by paired t-test, p<0.05.  Letters 
denote significant differences by Tukey pairwise multiple comparisons p<0.05, n=6 from 
2 independent experiments.  SAPK/JNK, stress-activated protein kinase/c-Jun-amino-
terminal kinase. 
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elevated values on tissue culture plastic, however, this difference may not be a true signal 

change due to the high background of the inhibited signal on tissue culture plastic. 

Similar to the trend seen with p38, 3-D JNK signals were elevated with significant 

differences over all other materials but with highest signal strength in TCP rather than 

HA scaffolds.  Selective signal inhibition was performed using SP600125, resulting in 

significant reductions (p<0.05) in all materials.   

 

3.4.6 Activation of AKT on CP’s 

The cell survival signal AKT/PKB was evaluated in response to CP materials with 

results illustrated in Figure 3.7.  Signal strength was elevated in 2-D HA over tissue 

culture plastic and no difference was identified between 2-D and 3-D HA although the 

trend suggests higher activation in 3-D.  TCP scaffolds elicited the greatest signal 

response significantly greater than all other groups.  The pAKT pathway was wortmannin 

sensitive and selective inhibition of phosphatidylinositol 3-kinase significantly reduced 

(p<0.05) the values in all materials.  Similarities were observed between the activation of 

AKT and JNK with regard to material dependant 3-D response and between AKT and 

p38 in 2-D response. 

 

3.5 Discussion 

Cells translate environmental signals into physiological responses through 

intracellular pathways linking genetic regulation with changes in phenotype.  The MAPK 

cascade plays a substantial role in environmental signaling.  Herein, the importance of 

material substrate and 3-D architecture on the regulation of stress and apoptosis 
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Figure 3.7  Phospho-immunoreactivity of AKT using HEPM cells on tissue culture 
plastic, calcium phosphate surfaces and scaffolds.  White bars represent signal inhibition 
for 30 minutes with Wortmannin, black bars represent actual signal.  Selective inhibition 
was significantly different from signal in each material by paired t-test, p<0.05.  Letters 
denote significant differences by Tukey pairwise multiple comparisons p<0.05, n=6 from 
2 independent experiments.  AKT/PKB, AKR/J thymoma mouse cell line derived/protein 
kinase B. 
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mediators were examined by PACE in vitro testing of a mesenchyme cell line. 

 

 3.5.1  Scaffold architecture 

Hydroxyapatite scaffolds mimicking the natural inorganic composition of bone 

were fabricated with careful attention to the local organization of trabecular bone.  An 

interconnected rod-like structure was prepared closely matching the histological 

arrangement of the lumbar spine.  It was postulated that cells respond differently to 

structures found in vivo compared to traditional methods of maintaining cells on tissue 

culture treated plastic.  The rationale for developing this structure as a model platform 

relates to its use for tissue-engineering.  It is known that CP materials provide a local 

supply of calcium and phosphorous minerals [Gross 97] in addition to a large surface to 

volume area for cell adhesion.  During scaffold manufacture, emphasis was placed on 

matching the local architecture of trabecular bone particularly the characteristics of the 

struts; trabecular number, separation and thickness [Feldkamp 89].  The unique 

curvatures of these surfaces provide substantial micro and nano-based surface 

characteristics that are not represented by 2-D surfaces.  It is known that during bone 

formation, osteoblasts deposit new matrix in circular curvatures, namely the lamellar 

organization of haversian osteons and trabeculae.  The presence of these curvatures may 

influence adhesion-based integrin distribution in turn altering sub-cellular signaling 

organization and biological response [Chen 97].    
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3.5.2  PACE testing for cell-biomaterial constructs 

For statistical significance in biomaterial testing, a large number of samples are 

required which eliminates many techniques for signal-transduction analysis.  Phospho-

specific antibody cell-based ELISA (PACE) has previously been derived for 

investigations where large sample numbers prohibit comparative western blotting or time 

intensive kinase assays [Versteeg 00].  Additionally, traditional western blotting is 

hindered by fast signal saturation and non-linearity causing difficulty with samples where 

divergent response is anticipated.  The enzymatic reaction in PACE testing was of a 

linear character permitting quantifiable comparisons when diverse signal ranges were 

tested.  Application of this technique to biomaterials provided reproducible signals with 

low background noise.  Selective inhibition at or upstream of the signal of interest 

allowed for significant signal reductions on every material tested with the exception of 

basal levels seen on tissue culture plastic with p38 demonstrating the specificity of the 

response.  The use of PACE was well-suited for high throughput biomaterial applications.  

  

3.5.3 Intracellular stress pathways in a physiological simulated environment 

Phospho-activation of p38, JNK but not ERK1/2 were increased when cultured on 

3-D CP’s compared to 2-D surfaces, particularly tissue culture treated plastic.  This leads 

us to postulate that traditional cell culture may be drastically underestimating the stress 

signal responses found in large tissue constructs.  While the cross-talk between up-stream 

members in the MAPK cascade prohibit identification in this study of which or if a single 

pathway mediates the 3-D stress response, it appears that both p38 and JNK are principal 

players while ERK1/2’s role remains unclear.  With the elevated levels of ERK1/2 
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observed on all materials and its known involvement with integrin-mediated cell 

attachment and migration [Klemke 97], the data obtained from this study reinforces the 

idea that ERK1/2 is upregulated during the attachment phase [Chen 94, Schlaepfer 94, 

Zhu 95] and may not demonstrate material or architecture dependence except in relation 

to adhesion sites.   Additional evidence has suggested that with respect to osteogenic cell 

types, ERK1/2 may have a more significant role during differentiation and mineralization 

[Simmons 03]. 

 

3.5.4 Anti-apoptosis signaling 

Both ERK1/2 and AKT have been implicated in activation of cell survival 

pathways.  As observed in this study, few differences were found between tested 

materials with respect to ERK1/2 activation.  CP materials have not been shown to 

induce apoptosis [Sepulveda 00], and it was not anticipated to see substantial changes in 

ERK1/2 or AKT.  Thus, it was of interest to note the similarities in activation between the 

stress-activated protein kinases and AKT.  Previous cell signaling studies involving the 

upstream MEKKs in the MAPK family demonstrated that apoptosis regulation could not 

be predicted exclusively by the activation of ERK or JNK pathways [Bonvin 02].  The 

high signal and correlation of AKT with p38 and JNK in this case suggest its 

involvement as an early anti-apoptosis regulator when cells are confronted with high 

stress signaling in response to curvatures not normally experienced in vitro. As both HA 

and TCP materials do not induce cell death, the AKT signal could be considered a 

management pathway of elevated SAPK levels observed in 3-D cell culture.  Future 

scaffolds designed to match the exact curvature of trabecular bone and additional time-
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based signaling analysis will help to isolate the mechanisms of bone-material interaction 

for regenerative orthopedics. 

 

3.6 Conclusion  

In summary, significant activation of stress mediators p38 and JNK was observed 

on 3-D CP scaffolds, whereas these signals were absent on 2-D CP surfaces.  

Additionally, a significant up-regulation of AKT, an anti-apoptosis signal was also 

observed on 3-D CP surfaces.  It was concluded from this study that osteoblast precursor 

cells cultured in 3-D CP scaffolds experience greater stress-signaling patterns when 

compared to 2-D CP surfaces. 
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Chapter 4.  Ultrasound effect on osteoblast precursor cells in trabecular calcium 

phosphate scaffolds

 

4.1 Abstract 

This study investigated the in vitro effect of low intensity pulsed ultrasound 

(LIPUS) on human embryonic palatal mesenchyme cells (HEPM, CRL-1486, ATCC, 

Manassas, VA), an osteoblast precursor cell line, during early adhesion to calcium 

phosphate scaffolds.  Hydroxyapatite (HA) and β-tricalcium phosphate (TCP) ceramic 

scaffolds were produced by a template coating method.  Phospho-specific antibody cell-

based ELISA (PACE) technique was utilized on stress activation proteins including; the 

extracellular signal-regulated kinase (ERK1/2), P38, c-Jun N-terminal kinase (JNK) and 

the anti-apoptosis mediator protein kinase B (PKB/AKT).  Cell-based ELISAs were also 

performed on the membrane anchoring protein vinculin and α6β4 integrin.  LIPUS 

stimulated activation of ERK 1/2, JNK, P38 and vinculin in traditional 2 dimension (2-D) 

culture.  Calcium release from the scaffolds was partially involved in the activation of 

ERK 1/2 when cell response was compared between culture on 2-D surfaces and 3 

dimension (3-D) HA and TCP scaffolds.  Effects of calcium from scaffolds cultured in 

media could not account for the full activation of JNK, P38, AKT, vinculin and α6β4 

integrin.  LIPUS stimulation further increased ERK activity on TCP scaffolds 

corresponding with an increase in both vinculin and α6β4 integrin levels.  It was 

concluded from this study that LIPUS treatment can significantly affect stress signaling 

mediators and adhesion proteins in osteoblast precursor cells during the early cell-

attachment phase to trabecular patterned scaffolds. 
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4.2 Introduction 

 Therapeutic ultrasound has proven a valuable tool for the treatment of 

pathological and trauma fractures particularly with the development of low intensity 

pulsed ultrasound (LIPUS) [Duarte 83].  Ultrasound has been defined as a pressure or 

sound wave with the ability to transfer mechanical energy into biological tissues 

[Williams 83].  This acoustic energy has demonstrated improved fracture healing with in 

vivo studies [Azuma 01, Gebauer 02] and in controlled clinical trials [Heckman 94].  

However, identification of the cellular signals stimulated by ultrasound still remains to be 

fully understood especially with respect to 3 dimensional (3-D) environments.   

Bone cells react to mechanical forces by mechanotransduction of biological 

signals linking environmental forces with genetic regulation and cellular adaptation 

[Moalli 00].  At the cell surface, integrins mediate these events through tyrosine 

phosphorylation of signaling proteins [Ingber 03] forming focal adhesions.  Inside the 

cell, these focal points recruit a variety of structural proteins such as vinculin connecting 

integrins with signaling pathways such as the mitogen-activated protein kinase (MAPK) 

cascade [Morino 95, Schlaepfer 98].  The MAPK pathway also has a role during the 

transition of mesenchyme stem cells into the osteogenic lineage [Jaiswal 00].  Within this 

family are three sub-pathways; the extracellular signal-regulated kinases (ERK1/2), c-Jun 

N-terminal kinases, (JNK), and P38 kinases [Widmann 99], the latter two termed the 

stress-activated protein kinases (SAPKs).  Cell stress and survival signaling also involves 

a mediator termed AKT/PKB, protein kinase B.  AKT regulates an assorted set of cell 

functions including survival, glycogen synthesis, glucose transport [Hajduch 01] and can 

inhibit apoptosis [Cardone 98, Zimmerman 99].   
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Ultimately, investigations of cell signaling behavior have clinical application, and 

in the case of bone repair, regeneration is often assisted by scaffold grafts.  Identification 

of signaling mechanisms can be profoundly affected by 3-D culture with surface area and 

shape influencing cell stress responses and differentiation [Appleford 07, Habibovic 05].  

Ceramic scaffolds have provided an excellent platform for bone regeneration in recent 

studies [Arinzeh 05, Boyde 99, Dong 01, Gauthier 05, Kon 99, Mastrogiacoma 06, 

Uemura 03].   Scaffolds prepared from calcium phosphate (CP) ceramics permit a stable 

platform for cell adhesion, migration, and proliferation [Chang 00] with surface 

properties very similar to natural bone apatite.  In addition to exhibiting negligible 

immunoreactivity, these materials induce direct binding to the cell-collagen matrix 

creating a strong mechanical interlock between bone and implant [Richard 98].  Scaffolds 

offer a reproducible stage for the identification of specific biological pathways as well as 

their use in regenerative medicine [Mangano 03, Zyman 98].  Careful attention to 

material and architectural properties permits investigation of cell signaling patterns in an 

environment analogous to natural tissue.   

In the present study, the effect of LIPUS treatment on osteoblast precursor cell 

signaling and adhesion behavior was explored in 3-D culture on HA and TCP scaffolds.  

The identification of both environment and ultrasound induced changes in MAPK and 

AKT activation as well as the membrane associated proteins vinculin and α6β4 integrin 

was performed using in vitro culture of human embryonic palatal mesenchyme cells 

(HEPM, CRL-1486, ATCC, Manassas, VA) on HA and TCP trabecular patterned 

scaffolds. 
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4.3 Materials and methods 

 

4.3.1 Sample preparation 

Scaffolds were prepared from micro particle HA and TCP (TAL Materials, Ann 

Arbor, MI) as previously reported using a template coating technique [Appleford 07].  

Briefly, polyurethane sponges (EN Murray, Denver, CO) were coated with HA or TCP 

distilled water-based slurry containing 1% v/v ammonium polyacrylate dispersant and 

3% v/v N,N-dimethylformamide drying agent during initial mixing and overnight 

vacuum drying.  3% high molecular weight polyvinyl alcohol and 1% v/v 

carboxymethylcellulose binders were added to provide specific temperature burn out 

stages during sintering.  Scaffolds were twice coated with CP slurry and heat-sintered to 

1230°C for 3 hours.  Purity of the composition was validated using X-ray diffraction 

analysis.  Scaffold dimensions for all in vitro studies were diameter and length of 5 mm.  

Samples were placed into non-binding 96 well plates (Corning, Acton, MA) and ethylene 

oxide gas sterilized before testing. 

 

4.3.2 Sample characterization 

Calcium phosphate scaffolds were observed by scanning electron microscopy.  

Calcium release profiles were generated by time immersion into 250µL phosphate 

buffered saline (PBS) at 37 °C, 5% CO2 by calcium reduction to a colored product.  A 

10µl volume of saline was removed and added to 240uL of calcium reagent based on the 

2-cresolphthalein complexone method (Raichem Hemagen, Columbia, MD).  

Determinations were obtained from a standard curve generated using a calcium standard 
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with absorption measurements made at 550nm on a Beckman Coulter AD34C plate 

reader (Fullerton, CA).  An initial release rate was identified by measuring calcium every 

3 minutes up to 15 minutes with direct media replacement.  

 

4.3.3 HEPM cell culture  

Human embryonic palatal mesenchyme cells (HEPM, CRL-1486, ATCC, 

Manassas, VA), an osteoblast precursor cell line, were cultured in Dulbecco’s modified 

eagle medium (DMEM, Invitrogen, Carlsbad, CA) supplemented with 7% fetal bovine 

serum (FBS, Invitrogen) and 1% antibiotic/antimycotic (PSA, 100 U/mL penicillin, 100 

µg/mL streptomycin, 0.25 µg/mL amphotericin B, MP Biomedicals, Solon, OH) at 37°C 

with 5% CO2.  Cells were maintained in culture flasks with media changes every two 

days and passaged at confluence using trypsin (Invitrogen).  Cell passages 10-12 were 

used in the course of this experiment.  HEPM cells were counted using a coulter counter 

(Beckman Coulter Z2, Fullerton, CA), and 20,000 cells were seeded onto tissue culture 

treated plates or CP scaffolds.  Calcium containing media extracts were prepared by 

incubating scaffolds in culture media for 6 hours with an identical volume to that used for 

cell studies.  Media were removed from scaffolds (n=6) and used to resuspend cells at the 

same start time used for direct cell-scaffold studies.  Early attachment time was identified 

from a previously reported study with a time point of 6 hours identified where cells 

equally attached to HA and TCP materials with greater than 90% cell binding [Appleford 

07].   
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4.3.4 Stimulation with ultrasound  

To stimulate cells on tissue culture plastic and scaffolds the Exogen low intensity 

pulsed ultrasound (LIPUS) system was utilized (Smith & Nephew, Memphis, TN).  This 

system is configured with six independent ultrasound transducers that each produce a 1.5-

Mhz ultrasound wave, 200-µs pulse modulated at 1 kHz using an output intensity of 

30mW/cm2.  Ultrasound transducers were fitted on a plastic frame to stimulate specific 

regions of a 96 well plate where samples were located.  Coupling gel was placed between 

the transducer and culture plates. Untreated controls were maintained in identical 

conditions to ultrasound stimulated plates.  Following a 6 hour cell attachment time, 

ultrasound groups were stimulated for 20 minutes and given a 30 minute recovery time 

before test completion.   

 

4.3.5 Phospho-specific antibody cell-based ELISA (PACE) 

Cells were attached to all surfaces and scaffolds for 6 hours and 50 minutes 

followed by washing twice with ice-cold PBS.  Fixation was performed with 4% 

Carson’s Millonig formaldehyde in PBS for 30 minutes at room temperature and 

endogenous peroxidase activity was quenched using 0.3% H2O2 in PBS - 0.1% Triton X-

100 (PBS-T) for 30 minutes.  PACE testing was performed as previously reported 

[Versteeg 00].  Briefly, cells and scaffolds were washed three times with PBS-T, 

followed by blocking with 10% fetal calf serum (FCS, Invitrogen) in PBS-T for 1 hour.  

Primary rabbit antibodies against phospho-p44/42 (ERK1/2, Thr202/Tyr204), phospho-

P38 (Thr180/Tyr182), phospho-SAPK/JNK (Thr183/Tyr185), and phospho-AKT (Ser 

473, Cell Signaling Technology, Danvers, MA) were added in 5% FCS-PBS-T and 
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incubated overnight at 4°C with 20 rpm rocking.  Dilutions of primary antibodies were 

set at 1:1000 except for P38, at 1:500.  As reported previously signal inhibitors for 

ERK1/2, P38, JNK, and AKT included PD98059 (50µM), SB203580 (50µM), SP600125 

(10µM), Wortmannin (2µM), respectively, were used to check validity of signal 

generation and were added 30 minutes before test completion.  Following primary 

antibody incubation, cells were washed three times with PBS-T for 5 minutes and 

incubated with secondary anti-rabbit IgG, HRP-linked antibody (horseradish peroxidase) 

with a 1:1000 dilution in 5% FCS-PBS-T for 1 hour at room temperature with rocking.  

The cells and scaffolds were then washed three times with PBS-T and twice with PBS for 

five minutes.  One-Step Ultra TMB substrate (Pierce Biotechnology, Rockford, IL) was 

added to the wells and color developed for 30 minutes at room temperature in the dark.  

The oxidation reaction was stopped and color changed and stabilized using an equal 

volume of 2M H2SO4.  Volumes of 100µl of the colored product were transferred to new 

96 well plates and absorbance measured at 450 nm with reference at 620 nm on a plate 

reader. 

 

4.3.6 Adhesion protein immuno-detection 

Similar to PACE testing, cells and scaffolds were prepared for immuno-detection 

of membrane proteins using mouse primary antibodies against vinculin (Sigma, St Louis, 

MO) and α6β4 integrin (Chemicon Int, Inc., Temecula, CA).  Primary antibodies were 

added in 5% FCS-PBS-T and incubated over night at 4°C with 20 rpm rocking. Dilutions 

of primary antibodies were set at 1:1000 for vinculin and α6β4 integrin and were 

established from antibody titer-controls with signal to noise ratio of 10 using cells 
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cultured on tissue culture treated plastic.  Secondary anti-mouse IgG HRP linked 

antibody was used with the One-Step Ultra TMB substrate to generate color for detection.   

 

4.3.7 Statistical analysis 

Statistical calculations were performed with SigmaStat software (Systat, Point 

Richmond, CA).  Validity of signal inhibition with each material, and ultrasound 

stimulations on culture plastic were compared by paired t-test.  Significance between 

media and scaffold groups were analyzed by two-way ANOVA using material and 

condition as factors with Tukey multiple comparison procedure.  Significance levels were 

set at p<0.05. 

 

4.4 Results 

 

4.4.1 Material characterization 

Calcium phosphate surfaces and scaffolds imaged by SEM are shown in Figure 

4.1(a-d) demonstrating the micro structure of HA (Figure 4.1a) and TCP (Figure 4.1b) 

surfaces and the overall architecture and rounded triangular strut configuration of the 

scaffolds as shown in Figure 4.1(c, d).   

No significant morphological difference was identified between HA and TCP 

materials in terms of bulk design, however, micro and nano scale differences do exist 

between these materials as previously reported [Appleford 07], with HA crystals 

significantly smaller than TCP creating a greater number of grain boundaries available 

for calcium release.  Additionally, TCP surfaces also contained small micro-pores.   
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Figure 4.1  SEM photographs of (a) HA and (b) TCP scaffold surfaces showing the 
smaller crystal size of HA with more grain boundaries and (c) macro calcium phosphate 
scaffolds representative of both HA and TCP bulk structure and (d) rounded triangular 
strut design of the scaffold.  
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Overall scaffold arrangement was designed with complete channel interconnections 

throughout the scaffold design. 

Calcium release behavior from HA and TCP scaffolds was characterized over 2 

days with attention to the initial release rate from the scaffolds.  As shown in Figure 4.2, 

HA scaffolds initially released a greater amount of calcium into PBS at physiological 

conditions.  The initial release rates were 1.22 and 0.64 µg calcium per mg scaffold per 

mL PBS per hour, respectively.    After two days the dissolved calcium reached 

maximum values in both HA and TCP materials corresponding to 1.94 and 0.66 mM, 

respectively. 

 

4.4.2 Ultrasound stimulations of cellular protein markers in 2-D 

Cells cultured on tissue culture treated plastic after 6 hours were exposed to 

ultrasound for 20 minutes and given a 30 minute recovery time.  Control time-

experiments identified 30 minutes as a minimum time necessary for activation of 

intracellular proteins studied in this experiment.  As shown in Figure 4.3, significant 

increases were identified in ERK 1/2, JNK, P38, and vinculin proteins (p<0.05), 

however, the activations of the stress activated protein kinases; JNK and P38 were 

extremely low.  No differences were found for pAKT and α6β4 integrin.   

 

4.4.3 Activation of cell protein markers with scaffold extract media, cell-scaffolds and 

LIPUS 

The activation of the stress signal mediators ERK 1/2, P38, JNK, and AKT were 

evaluated in response to cells exposed to scaffold media extracts, HA and TCP scaffolds  
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Figure 4.2  Calcium release behavior from HA and TCP scaffolds.  Calcium release 
reported at selected times after immersion in PBS at 37°C, 5% CO2, reported as µg 
calcium / (mg scaffold dry weight, mL PBS).  Data represents average values + S.D., 
n=4. 
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Figure 4.3  Ultrasound induced selective increase for cellular protein markers.  
Immunoreactivity of six proteins measured with HEPM cells cultured on tissue culture 
plastic after 6 hours 50 minutes (control, white bars) or stimulated with ultrasound for 20 
minutes with 30 minute recovery prior to test completion (black bars).  The data shown 
represent average values (n=6) + S.D., * p<0.05 by paired t-test. 
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directly and with applied LIPUS as shown in Figure 4.4.  Media extracts were prepared 

from culturing control scaffolds in media for the same time period as remaining groups.  

This provided a control condition where the variability and effect of soluble calcium 

release from scaffolds could be identified.  

Phospho-activation of ERK 1/2 demonstrated equal activation between HA 

scaffold extracts and cell-scaffold groups.  Application of LIPUS significantly increased 

ERK 1/2 activation only on the TCP scaffold.  No differences were identified within the 

HA group (Figure 4.4a) and both TCP scaffolds experienced significantly greater ERK 

activity compared to HA (p<0.05).  Phospho-activation of the JNK stress mediator is 

shown in Figure 4.4b.  In contrast to the ERK activity, JNK was minimal from media 

supplementation demonstrating differences in both scaffold groups.  One between group 

difference was identified between HA and TCP scaffolds not exposed to ultrasound, with 

TCP greater than HA (p<0.05).  The same trends were observed with phospho-activation 

of the P38 mediator with the exception that TCP was significantly less than the 

corresponding HA scaffold value (p<0.05) as shown in Figure 4.4c.  The final phospho-

protein selected for study, AKT, also a multifunctional anti-apoptosis signal, 

demonstrated significant increases in response to ultrasound in HA but not TCP.  Similar 

to ERK and JNK activation, AKT was higher on TCP compared to HA scaffolds 

(p<0.05) as shown in Figure 4.4d. 

 

4.4.4 Stimulation of adhesion proteins 

The stimulation of the cytoskeleton attachment and adhesion proteins vinculin and 

α6β4 integrin were evaluated with cells exposed to scaffold media extracts, HA and TCP  
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Figure 4.4  Scaffold and ultrasound stimulations of intra-cellular stress signal markers.  
Phospho-immunoreactivity of ERK1/2, JNK, P38 and AKT for HEPM cells cultured on 
2D tissue culture surfaces exposed to calcium containing media from incubated control 
scaffolds (control white bars), cells cultured directly on scaffolds (grey bars) and cells 
cultured on scaffolds stimulated with ultrasound for 20 minutes with 30 minute recovery 
prior to test completion (black bars).  The data shown represent average values, (n=6) + 
S.D., * denotes differences from control within material groups (HA or TCP), i denotes 
differences between material groups per condition, p<0.05 by two factor ANOVA with 
Tukey pairwise multiple comparisons. 
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scaffolds directly and with applied LIPUS as shown in Figure 4.5.  Increases in vinculin 

were identified for cells cultured on scaffolds compared to 2-D surfaces in both HA and 

TCP.  Ultrasound significantly increased vinculin levels in TCP but not HA scaffolds 

(p<0.05) as shown in Figure 4.5a.  An identical trend was observed with α6β4 integrin 

levels with high levels in scaffolds with and without ultrasound only significantly 

affecting the TCP group shown in Figure 4.5b.   

 

4.5 Discussion 

The clinical application of ultrasound to damaged bone has found application to 

accelerate healing time and prevent loss of bone during the healing period [Kristiansen 

97].  As these systems are increasingly used clinically, knowledge of the biological 

effects of ultrasound is required to identify safe guidelines for use and to help develop 

these systems for effective mechanisms of action.  In this study, the importance of 

material and 3-D design in conjunction with LIPUS was explored on the regulation of 

stress, apoptosis and adhesion mediators with an osteoblast precursor cell line. 

 

4.5.1 Scaffold design and calcium release 

The structural composition of natural bone consists of an apatite mineral with 

strut or rod-like organization in trabecular bone.  Calcium phosphate scaffolds fabricated 

with similar material and structural characteristics make cell behavior studies more 

reflective of an in vivo environment.  The scaffold architecture employed in this study 

was carefully matched to the histological parameters of the human lumbar spine.  This 

arrangement of surface curvature provides characteristics not represented in 2-D that may  
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Figure 4.5  Scaffold and ultrasound stimulations of cell attachment and adhesion signal 
markers.   Immunoreactivity of vinculin and α6β4 integrin proteins for HEPM cells 
cultured on 2D tissue culture surfaces exposed to calcium containing media from 
incubated control scaffolds (control, white bars), cells cultured directly on scaffolds (grey 
bars) and cells cultured on scaffolds stimulated with ultrasound for 20 minutes with 30 
minute recovery prior to test completion (black bars).  The data shown represent average 
values, (n=6) + S.D., * denotes differences from control within material groups (HA or 
TCP), ** denotes differences between treatment groups by two factor ANOVA with 
Tukey pairwise multiple comparisons. 
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alter signaling patterns reported using traditional cell culture.  Specifically, 3-D structure 

may influence integrin adhesion and subcellular protein distribution thus changing 

biological response [Chen 97].  Calcium release profiles demonstrated greater levels in 

HA compared to TCP scaffolds, a result contrary to the known high dissolution behavior 

of TCP, however, equal sintering temperatures were used in this study resulting in small 

tightly bound HA crystals as shown in Figure 4.1a.  Crystal size of TCP was 

approximately 10X larger as shown in Figure 4.1b, resulting in fewer grain boundaries 

and lower calcium release over the short time period of this study.  Calcium release has 

been implicated in the activation of many biological pathways including the MAPK 

cascade [Katz 06] and in the course of this study did not exceed 2mM, well below the 

cytotoxic safe limit [Maeno 05].  The preparation of media extracts from control 

scaffolds also allowed for the identification of calcium effects on cell signaling and 

adhesion behavior.  An additional characteristic not normalized in this study was the 

effect of micropores in TCP materials creating a different surface profile compared to 

HA. 

 

4.5.2 Ultrasound stimulation of HEPM cells in 2-D 

Low intensity pulsed ultrasound (LIPUS) using a commercially available product 

already applied in a clinical setting supplied the acoustic stimulations of 30mW/cm2 in 

this study.  Application of ultrasound to HEPM cells in 2-D traditional culture stimulated 

the activation of ERK 1/2, JNK, P38 and production of the cell membrane cytoskeleton 

protein vinculin over control non-stimulated HEPM cells.  These findings, with respect to 

ERK activity, match recently reported observations of a Gαi protein-ERK-Runx2-
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osteocalcin pathway involved in osteogenic transition behavior [Chen 03].  While the 

SAPK’s; JNK and P38 demonstrated low activity in 2-D, ultrasound was able to 

significantly increase these values demonstrating that other MAPK members may be 

involved in this signal transduction.  While no significant change was identified with 

α6β4 integrin activity in response to ultrasound, the membrane cytoskeleton protein 

vinculin was increased.  A previous reported study identified mechanosensitive 

molecules including integrin activation occurring with physical stimulation of the 

membrane [Lee 00].  Activation of these proteins demonstrates that multiple 

mechanosensitve pathways can be engaged during membrane stimulation.   

 

4.5.3 Scaffold and ultrasound stimulation of HEPM cells  

HEPM cells were cultured in 2-D with calcium media extracts prepared from 

scaffolds to serve as a calcium control for the variable release behavior of HA and TCP 

scaffolds.  Signaling from cells exposed to extracts demonstrated a substantial level of 

ERK activity independent of HA scaffold configuration or ultrasound.  This effect was 

only identified for ERK and was completely absent on the other MAPK members; JNK, 

P38 and the cell survival signal AKT.  In TCP scaffolds, ultrasound significantly 

increased the activation of ERK over media control.  In all other measured signals, 

calcium media extracts with cells in 2-D showed minimal activation with both scaffold 

groups in HA and TCP significantly greater than controls.  In addition to the ERK 

activation on TCP scaffolds, ultrasound stimulated an increase in pAKT on HA scaffolds 

and both vinculin and α6β4 integrin expression on TCP scaffolds.   
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It was of particular interest to note that of the MAPK proteins evaluated in this 

study only ERK 1/2 was significantly increased in response to ultrasound and only on 

TCP scaffolds.  This result matched the increases in vinculin and α6β4 integrin, once 

again only on TCP scaffolds.  This result appears in conflict with the lower calcium 

release from the TCP materials at this early time period, however as previously reported, 

TCP surfaces at the micro and nano scale have small micro-pores that may supply locally 

high calcium concentrations especially during ultrasound that are not detectable by bulk 

media testing in addition to their surface roughness and morphological differences.  As 

LIPUS treatment has been shown to redistribute actin stress fibers and focal adhesions 

[Zhou 04], the described results could be masked by the specific characteristics of TCP 

scaffolds and the selection of adhesion-phase timing chosen in this study.  Direct 

visualization of calcium activity through the cell membrane in addition to matching the 

crystalline features of these materials may provide greater insight to identify the 

contribution of local calcium influx during LIPUS treatments.   

 

4.6 Conclusion  

Low intensity pulsed ultrasound stimulated phospho-activation of the MAPK 

proteins ERK 1/2, JNK and P38 in addition to the membrane anchoring protein vinculin.  

Calcium release from the scaffolds was partially involved in the activation of ERK 1/2 

when cell response was compared between culture on 2-D surfaces and 3-D HA and TCP 

scaffolds.  Effects of calcium extracted media from scaffolds alone were not responsible 

for activation of the stress activated protein kinases; JNK and P38.  LIPUS stimulation 

further increased ERK activity on TCP scaffolds corresponding with an increase in both 
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vinculin and α6β4 integrin levels.  It was concluded from this study that LIPUS treatment 

can significantly affect stress signaling mediators and adhesion proteins in osteoblast 

precursor cells during the early cell-attachment phase to trabecular patterned scaffolds. 
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Chapter 5.  Flow perfusion of osteoblast precursor cells in trabecular nano-coated 

hydroxyapatite scaffolds

 

5.1 Abstract 

Fluid perfusion represents a mechanical stimulation capable of inducing the 

differentiation of bone precursor cells.  This study investigated the in vitro effect of fluid 

perfusion on human embryonic palatal mesenchyme cells (HEPM, CRL-1486, ATCC, 

Manassas, VA), an osteoblast precursor cell line, in trabecular hydroxyapatite (HA) 

scaffolds over 21 days.  Micro hydroxyapatite (M-HA) and sol-gel deposited nano HA 

(N-HA) scaffolds were fabricated using a template coating method.  Calcium release and 

HEPM cell response including attachment, viability and bone differentiation markers 

were examined on scaffolds exposed to static or perfused conditions at 1.0 ml/min.  N-

HA scaffolds released greater quantities of calcium during the first 24 hours and 

stabilized with no difference from M-HA scaffolds over 30 days.  Early cell attachment 

favored N-HA scaffolds up to 4 hours and equalized at 95% binding with M-HA by 6 

hours.  Perfusion cell culture significantly increased the bone differentiation markers 

osteocalcin and osteopontin demonstrating the inductive potential of fluid perfusion.  In 

contrast to attachment rates, M-HA osteocalcin levels peaked earlier than N-HA with no 

difference in osteopontin values.  It was concluded from this study that perfusion serves a 

critical role in the differentiation of mesenchyme cells to an osteoblast phenotype in 

scaffold-based tissue engineering and while nano deposited coatings can be advantageous 

for early cell attachment they may delay the onset of differentiation. 
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5.2 Introduction 

Nutrient transport for in vitro tissue engineering has traditionally relied upon the 

limited transfer mechanism of diffusion.  With studies performed in two dimension (2-D) 

cell culture or limited three dimension (3-D) structures, this mechanism is sufficient to 

supply the metabolic needs of cells.  However, when large 3-D volumes of functional 

tissue are engineered in the laboratory, diffusion becomes a limiting factor requiring the 

use of dynamic culture systems.  This is particularly relevant when uniform cell growth 

and performance are required to prevent regions of necrosis [Holy 00, Ishaug 97].  

Perfusion based tissue engineering represents a strategy for developing and maintaining 

large volumes of tissue with improved nutrient conditions for enhanced cell viability, 

rates of proliferation and protein production [Dunkelman 94, Glowacki 98].  In addition 

to the improvements in nutrient transport, fluid perfusion stimulates cells mechanically 

by the application of fluid shear stress and strains applied to the cytoskeleton often 

assisting bone cell response including differentiation mechanisms [Cartmell 03, Goldstein 

01, Holtorf 05].   

Identification of cell behavior including the local signaling behavior responsible 

for long-term cell changes can significantly change in response to the environmental 

conditions in 3-D culture differentiation [Appleford 07, Habibovic 05].  The importance, 

not only of fluid perfusion, but of material choice and local architecture has driven the 

improvement of scaffolds that mimic natural bone.  Ceramic scaffold designs continually 

prove their excellent capacity for bone regeneration in recent studies [Arinzeh 05, Boyde 

99, Dong 01, Gauthier 05, Kon 99, Mastrogiacoma 06, Uemura 03].  Hydroxyapatite 

materials formed into scaffolds provide a secure platform for cell adhesion, migration, 
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and proliferation [Chang 00] as this material shows close similarity with the natural bone 

mineral apatite.  Bone cells are able to strongly bind calcium phosphate surfaces forming 

a strong cell-material interlock [Richard 98].  Scaffolds also offer a reproducible stage for 

the identification of specific biological pathways as well as their use in regenerative 

medicine [Mangano 03, Zyman 98].  Additionally, recent research on HA has shown that 

nano-based surfaces can offer improved characteristics for bone formation [Arts 06].   

In the following study, interconnected HA scaffolds were evaluated in response to 

media perfusion with two surface characteristics; micro and nano crystal surface features.  

Using human embryonic palatal mesenchyme cells (HEPM, CRL-1486, ATCC, 

Manassas, VA) an osteoblast precursor cell line, interconnected trabecular scaffolds were 

investigated as platforms for cell attachment, viability and long term differentiation 

response with media perfusion over 21 days. 

 

5.3 Materials and methods 

 

5.3.1 Sample preparation 

Scaffolds were prepared from micro particle HA (TAL Materials, Ann Arbor, MI) 

as previously reported using a template coating technique [Appleford 07].  Briefly, 

polyurethane sponges (EN Murray, Denver, CO) were coated with HA or TCP distilled 

water-based slurry containing 1% v/v ammonium polyacrylate dispersant and 3% v/v 

N,N-dimethylformamide drying agent during mixing and were vacuum dried overnight.  

Polymer binders; 3% high molecular weight polyvinyl alcohol and 1% v/v 

carboxymethylcellulose, were included to provide precise temperature burn out stages 
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during sintering.  Scaffolds were twice coated with CP slurry with heat-sintering to 

1230°C for 3 hours.  A sol-gel deposited coating of nano-size HA was prepared from 

calcium nitrate in methanol using a previously reported process [You 01].  A 

stoichiometric Ca/P ratio of 1.67 was obtained and solution aged for 7 days before 

immersion coating onto scaffolds and sintered to 600°C for 1 hour.  Composition purity 

was validated using X-ray diffraction analysis (D8 Advance, Bruker Axs Inc., Madison, 

WI).  Scaffold dimensions for all in vitro studies were diameter and length of 8 mm.  

Samples were placed into non-binding 24 well plates (Corning, Acton, MA) and ethylene 

oxide gas sterilized before testing. 

 

5.3.2 Sample characterization 

HA scaffolds were observed by scanning electron microscopy.  Calcium release 

behavior was evaluated by immersing scaffolds into 1 mL phosphate buffered saline 

(PBS) at 37 °C, 5% CO2.  At early time points within 24 h, 20 µL of media was extracted 

and combined with 180 µL of calcium reagent based on the 2-cresolphthalein 

complexone method (Raichem Hemagen, Columbia, MD).  Calcium levels were 

quantified from a standard curve generated using a calcium standard with absorption 

measurements made at 550 nm on a Beckman Coulter AD34C plate reader (Fullerton, 

CA).  After 24 hours, complete media was replaced every two days corresponding with 

the next time measurement up to 30 days.  Cumulative release curves were reported as µg 

calcium released per mg original scaffold dry weight per mL PBS.  
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5.3.3 HEPM cell culture  

Human embryonic palatal mesenchyme cells (HEPM, CRL-1486, ATCC, 

Manassas, VA), an osteoblast precursor cell line, were cultured in Dulbecco’s modified 

eagle medium (DMEM, Invitrogen, Carlsbad, CA) supplemented with 7% fetal bovine 

serum (FBS, Invitrogen) and 1% antibiotic/antimycotic (PSA, 100 U/mL penicillin, 100 

µg/mL streptomycin, 0.25 µg/mL amphotericin B, MP Biomedicals, Solon, OH) at 37°C 

with 5% CO2.  Cells were maintained in culture flasks with media changes every two 

days and passaged at confluence using trypsin (Invitrogen).  HEPM cells were pre-

differentiated for 6 days to an early osteoblast phenotype using 10 mM β- 

glycerophosphate, 50 ug/mL L-ascorbic Acid, and 10 nM dexamethasone (Sigma, St 

Louis, MO).  HEPM cells were counted using a coulter counter (Beckman Coulter Z2, 

Fullerton, CA), and were seeded onto 4 samples per time-point per group with 100,000 

cells applied onto each scaffold.   

 

5.3.4 Cell adhesion and MTT viability 

Cell attachment performance to M-HA and N-HA scaffolds was quantified in a 

short time study of 1, 2, 4, and 6 h.  Media suspensions along with two PBS washes were 

collected from scaffolds at select time points and counted for cells remaining in 

suspension.  A percent cell attachment was reported as (cells seeded – unattached cells) / 

cells seeded * 100%.  Attachment values were also used to identify a time point where 

cell number was not significantly different between M-HA and N-HA scaffolds during 

the initial perfusion setup.   

Early cell viability in the scaffolds was determined by MTT analysis.  After 2 d of 
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cell culture, media was removed and replaced with DMEM without phenol red.  The 

tetrazolium compound MTT (3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium 

bromide) was added to the wells and manufactures instructions were followed with 

appropriate scaling for sample dimensions in 24 well plates (Tacs, Trevigen, 

Gaithersburg, MD). MTT was reduced by metabolically active cells to insoluble purple 

formazan dye crystals that were solubilized in a detergent and transferred to a new plate 

for absorbance measurements at 550 nm with reference at 655 nm.  A positive and 

negative control was performed using HEPM cells plated to tissue culture treated plastic 

(+ control) or cells supplemented with 0.05% Triton X-100 (- control). 

 

5.3.5 Perfusion system 

A flow perfusion culture system was manufactured from acrylic blocks consisting 

of 6 flow chambers per block.  Scaffolds were press fit into a Teflon cylinder and inserted 

into the flow chamber with an o-ring compression seal as shown in Figure 5.1.   

Acrylic chambers were monitored visually for any leaks creating a media pathway 

not through the scaffold.  Each chamber was connected in a continuous circuit with 

silicon tubing to a media reservoir consisting of a 6 well ultra-low binding plates and a 24 

channel, 8 roller peristaltic pump (Ismatec, Glattbrugg, Switzerland).  After 2 days of 

static culture each chamber was connected to the individual channels of the peristaltic 

pump and ramped to 0.1 and 0.5 ml / min for 12 hours each up to a final perfusion rate of 

1.0 ml / min.  Connection to six well plates allowed media changes twice weekly with 

final perfusion rate performed for 1, 7, 14, and 21 days.    
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Figure 5.1  Acrylic perfusion blocks with HA scaffolds.  Six HA scaffolds can be inserted 
into individual Teflon tubes and press fit into each chamber with compression Teflon o-
ring and connected with tubing to a peristaltic pump.  Perfusion blocks are maintained in 
an incubator at 37 °C, 5% CO2. 

 

5.3.6 Protein assay 

Cellular protein content was quantified using a BCA Protein Assay (Pierce, 

Rockford, IL) according to the manufactures protocol.  Scaffolds were removed from the 

testing chamber and twice washed with PBS before immersion into a Triton X-100 (0.2% 

in PBS) wash buffer.  Three freeze-thaw cycles were performed in rapid succession to     

-80 °C.  Samples were added to working reagent and incubated at 37 °C in 96 well plates.  

The absorbance for the extracted cell suspension was read at 550 nm, correlated to a 

standard curve, and normalized to nanograms of dsDNA using a PicoGreen dsDNA Kit 

(Molecular Probes, Eugene, OR). 

 

5.3.7 Osteocalcin and osteopontin assays 

At selected time points the secreted proteins osteocalcin and osteopontin were 

measured in culture media using commercially available sandwich immunoassays. 
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Osteocalcin (OC) was measured using a MID-TACT Human Osteocalcin EIA Kit 

(Biomedical Technologies Inc., Stoughton, MA).  The MID-TACT immunoassay 

measures both the intact human osteocalcin and the major fragment by employing two 

monoclonal antibodies; one immobilized to the plate and the second biotinylated.  

Osteopontin (OP) was measured using a TiterZyme Human Osteopontin EIA kit (Assay 

Designs, Ann Arbor, MI) by a similar antibody configuration.  The OC and OP 

concentrations in the samples were correlated to a standard curve, and normalized to 

nanograms of dsDNA.  

 

5.3.8 Statistical analysis 

Statistical calculations were performed with SigmaStat software (Systat, Point 

Richmond, CA).  Results are shown as means + S.D.  Significance between materials was 

analyzed by paired t-test while significance between scaffold groups in static and 

perfused culture was analyzed by one-way ANOVA with Tukey multiple comparison 

procedure.  Significance levels were set at p<0.05. 

 

5.4 Results 

 

5.4.1 Material characterization 

Trabecular HA scaffolds were imaged by SEM and are shown in Figure 5.2(a, b) 

illustrating the geometry and rounded triangular strut design of the scaffolds.  A sol-gel 

HA coating of nano HA, as shown in Figure 5.2b, formed a thin layer of precipitated HA 

crystals over the bulk scaffold.  The precipitation coating modified the surface character  
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(a)      (b) 
 

 

Figure 5.2  SEM pictures of (a) micro surface HA (mHA) and (b) nano coated surface 
HA (nHA) scaffolds.  Nano coating increases the observed surface roughness without 
altering the fully interconnected open channels of the scaffold design with rounded edge 
triangular strut morphology. 

 

by increasing the observed surface roughness of the scaffold with nano-texture.   

The open channel configuration was arranged with isotropic geometry.  Scaffolds 

averaged a porosity of 67.5% with strut internal porosity not included in this 

measurement as reported previously [Appleford 07].  Cumulative calcium release 

behavior from M-HA and N-HA scaffolds was quantified over 30 days with observed 

differences during the initial 24 hour release period as shown in Figure 5.3.  N-HA 

scaffolds released significantly more calcium over the first 24 hours (Figure 5.3a) but 

matched M-HA calcium release rate over the following 30 days shown in Figure 6.3b. 

 

5.4.2 Cell attachment and viability 

HEPM cells attached to both M-HA and N-HA scaffolds at a fast rate with greater 

than 75% attachment within 1 h and 95% binding after 6 h.  Early attachment favored N-

HA scaffolds with significant differences between material types after 1, 2 and 4 h as 
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Figure 5.3  Cumulative calcium release behavior from micro and nano HA scaffolds 
demonstrating (a) short term release behavior over 24 hours and (b) long term release 
over 30 days, reported as µg calcium per scaffold dry weight per mL PBS.  Data 
represents average values + S.D., n=4 * denotes significant difference, p<0.05. 

 

shown in Figure 5.4a.  After 6 h, no significant difference was observed between 

materials with stabilized plateau binding thus representing the subsequent time point for 

initiation of perfusion. 

To confirm the absence of cytotoxic effects of the scaffolds, an MTT viability 

study was performed after two days cell culture corresponding to the initiation of 

perfusion culture.  At this time point, while M-HA trended lower compared to N-HA and 

positive control, there were no significant differences identified between groups (p<0.05) 

as shown in Figure 5.4b. 

 

5.4.3 Cell total protein and differentiation markers 

Effects of media perfusion were evaluated over 21 d of cell culture with respect to 

total protein and osteoblast differentiation marker production normalized to the total cell 

count measured as the quantity of dsDNA.  Total protein quantification is shown in  
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Figure 5.4  Early HEPM cell response to M-HA and N-HA scaffolds.  Cell attachment 
behavior is shown (a) over 6 h, with 75% or greater cell binding within 1 h and 95% 
binding after 6 h.  Cell viability (b) after 2 d culture compared to cells plated on tissue 
culture treated plastic, (+) control, and supplemented with 0.05% Triton X-100 in culture 
media (-) control. 
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Figure 5.5a for M-HA and N-HA scaffolds with perfused media or static conditions.  

Protein production between groups at each time point was not significantly different at 1 

or 7 d after start of perfusion.  Differences were identified only between M-HA static and 

N-HA perfused at 14 and 21 d.   

The secreted proteins osteocalcin and osteopontin were measured in culture media 

extracted at selected time points during perfusion.  Minimal levels of osteocalcin were 

present in both static groups over the course of the experiment, with both groups 

significantly different from the perfused condition at all time points.  Differences 

between M-HA and N-HA perfusion groups were identified at 1, 7 and 21 d after 

perfusion start with M-HA greater than N-HA at 1 and 7 d but not 21 d.  Osteopontin 

production showed significant differences between static and perfused condition only 

after 7 d culture, with only N-HA perfused different from M-HA static at 1 d.  No 

between-material differences were identified throughout the remainder of the experiment. 

 

5.5 Discussion 

The differentiation of mesenchyme precursor cells into an osteoblast phenotype is 

of significant interest for bone regeneration studies as this cell type represents a substance 

source for bone repair.  The increasing use of perfusion culture combined with the 

development of porous scaffolding also offers a platform to study and fabricate newly 

formed bone in the laboratory.  In this study, the importance of material surface features, 

scaffold architecture and perfusion culture on the attachment, viability and differentiation 

of osteoblast precursors was explored. 
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Figure 5.5  Protein expression of HEPM cells in scaffolds over 21 days.  Total protein 
production (a) in (µg) by cells normalized to DNA content in (ng) on M-HA and N-HA 
scaffolds with and without perfusion, (b) osteocalcin secretion from cultured cell-
scaffolds in (ng) per (ng dsDNA) and (c) osteopontin secretion.  Brackets denote p<0.05.  
All osteocalcin perfused values were significantly greater than static values with no 
difference between static groups.  All osteopontin perfused values were significantly 
different from static after day 1.  Error bars represent means + S.D., n=4.  
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5.5.1 Scaffold design and calcium release 

The architectural arrangement and materials of natural trabecular bone 

demonstrate a strut-like organization with a mineral phase consisting of apatite.  

Hydroxyapatite scaffolds are closely matched in composition and can be fabricated to 

approximate the macroscopic arrangement of bone allowing in vitro experiments to better 

simulate an in vivo environment.  The open, fully interconnected scaffolds fabricated 

from a template coating technique in this study were designed to simulate histological 

properties of the human lumbar spine [Appleford 07].  The addition of a nano based 

surface feature was postulated to increase the cellular attachment locations on the 

material and provide a greater early release of calcium.  Calcium release has been 

implicated in the activation of many biological pathways including the MAPK cascade 

[Katz 06], with varying concentrations assisting osteoblast precursor differentiation 

[Maeno 05].  N-HA scaffolds increased the release behavior of calcium within 24 hours 

but did not significantly change the quantities over 30 days.  In this experiment, HA 

materials were designed with full crystallinity, however, changes in sintering temperature 

could provide a less crystalline HA surface coat to increase calcium availability during 

initial bone formation in a clinical setting.   

 

5.5.2 Early cell behavior on HA scaffolds  

Early cell attachment to the scaffolds demonstrated the improved cell binding 

capacity of N-HA surfaces.  Significantly greater cell binding occurred on N-HA 

compared to M-HA scaffolds at 1, 2, and 4 h; however, both designs equally bound 95% 

of cells in suspension after 6 h.  This result is consistent with the observed increase in 
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local surface roughness of the N-HA scaffold.  To confirm that this increased roughness 

did not induce cell apoptosis, a viability study was performed at 2 d also corresponding 

with the start of perfusion studies.  With no significant differences identified between M-

HA and N-HA at this time it can be assumed that equal cell loading had occurred prior to 

perfusion start and that neither material was cytotoxic, as previously reported from the 

literature [Sepulveda 00]. 

 

5.5.3 HEPM differentiation in response to perfusion 

The application of fluid flow has previously shown activation of bone cell gene 

expression in vitro [Ogata 00, Owan 97, Reich  91].  The selection of fluid flow rate and 

rate of occurrence has been explored in relation to cell phenotypic response [Edlich 01, 

Jacobs 98] with postulated mechanisms of action including; mass transport and 

membrane based shear components or streaming potentials [Bakker 01, McAllister 99].  

Confirmation of these signaling trends has also been observed in scaffold based tissue 

engineering strategies [Cartmell 03, Holtorf 05].   

As observed in this study, total protein production was not significantly altered in 

response to perfusion flow on a per cell basis until d 14 and 21 and only between M-HA 

perfused and N-HA static groups.  Interestingly, quantities favored static compared to 

perfused conditions, suggesting that perfusion may decrease net protein production.  

When the osteoblast differentiation markers; osteocalcin and osteopontin were quantified 

at these time points, a substantial increase in perfusion compared to static conditions was 

observed.  Osteopontin represents a differentiation marker produced prior to and during 

matrix mineralization [Sandberg 93], and in contrast to cell adhesion patterns, peaked 
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earlier on M-HA compared to N-HA scaffolds in perfusion.  This indicates that while few 

identifiable differences in total protein within group levels were identified, a significant 

increase in differentiation had occurred in response to media perfusion.  The earlier 

increase in M-HA compared to N-HA osteocalcin levels suggests that while attachment 

rate favored the N-HA scaffold, it may have hindered the differentiation response of 

HEPM cells.  This result seems to contradict the increased calcium release behavior of 

the N-HA scaffold if calcium were the only difference between M-HA and N-HA 

scaffolds.  Recent evidence has shown that the specific cell shape in response to surface 

features can substantially influence cell phenotype by changes in integrin expression 

[Chen 97].  A similar mechanism could be responsible for the observed results in this 

study as N-HA demonstrates significantly different surface features that may be 

recognized by cells. 

The fluid flow rate utilized in this study represents a mid-range level as compared 

with other studies [Cartmell 03, Glowacki 98, Goldstein 01].  It should be noted that 

while perfusion rates are often reported, they make between study comparisons very 

difficult due to the inherent differences in scaffold architecture.  Factors such as porosity, 

interconnectivity and local geometry have substantial influence over the shear stresses 

truly experienced by cells.  These local forces can also vary significantly with time as the 

cells proliferate and modify the geometry of the scaffold.  An approach is currently being 

developed to relate time-based architectural changes in the scaffold with varying 

perfusion rate.  
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5.6 Conclusion 

Trabecular CP scaffolds were manufactured with micro and nano-based surface 

features to study HEPM cell behavior in static and perfused conditions.  From this study 

N-HA scaffolds demonstrated greater calcium release and improved early HEPM cell 

attachment in vitro.  Fluid perfusion stimulated the increase in bone differentiation 

markers osteocalcin and osteopontin.  As the mechanism of action underlying fluid 

perfusion is local shear forces acting on the cell membrane it is reasonable to conclude 

that changes in cytoskeletal structure are changing intracellular pathways and gene 

regulation.  These changes are ultimately reflected by the increased expression of bone 

differentiation markers.  In contrast to the calcium and attachment behavior on N-HA 

scaffolds, a delay in osteocalcin based differentiation was observed in response to this 

scaffold surface.  It was concluded from this study that perfusion fluid flow represents a 

substantial stimulation for the differentiation of bone cell precursors and while nano 

surface features can greatly improve early cell response, careful control over their 

structure is required to maintain the differentiation capability of this design. 
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Chapter 6.  In vivo study on hydroxyapatite scaffolds with trabecular architecture 

for bone repair 

 

6.1 Abstract 

The objective of this research was to investigate the bone formation and angio-

conductive potential of HA scaffolds closely matched to trabecular bone in a canine 

segmental defect after 3 and 12 weeks post implantation.  Histomorphometric 

comparisons were made between naturally forming trabecular bone (control) and defects 

implanted with scaffolds fabricated from micro-size (M-HA) and nano-size HA (N-HA) 

ceramics.  Scaffold architecture was similar to trabecular bone formed in control defects 

at 3 weeks.  No significant differences were identified between the two HA scaffolds, 

however, significant bone in-growth was observed by 12 weeks with 43.9 ± 4.1% and 

50.4 ± 8.8% of the cross-sectional area filled with mineralized bone in each scaffold type, 

respectively.  Partially-organized, lamellar collagen fibrils were identified by 

birefringence under cross-polarized light at both 3 and 12 weeks post implantation.  

Substantial blood vessel infiltration was identified in the scaffolds and compared with the 

distribution and diameter of vessels in the surrounding cortical bone.  Vessels were less 

numerous but significantly larger than native cortical Haversian and Volkmann canals 

reflecting the scaffold architecture where open spaces allowed interconnected channels of 

bone to form. This study demonstrated the potential of trabecular bone modeled, highly-

porous, interconnected, HA scaffolds for regenerative orthopedics.   
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6.2 Introduction 

Bone regeneration supported by artificial scaffolding requires a substantial 

healing period before functional restoration of natural tissue is realized.  Porous scaffold 

designs take advantage of natural bone in-growth to accelerate the osteoconduction and 

integration between implant and bone.  Characteristics such as material composition, 

surface features, pore morphology and overall architecture are a few of the parameters 

that determine implant success.  With careful control of these factors, scaffolds can be 

biocompatible, osteo- and angio-conductive while encouraging a natural bone 

arrangement with haversian-like features during bone regeneration.   

Among the many biomaterials used for manufacturing scaffolds, the use of 

hydroxyapatite (HA) has demonstrated excellent performance for bone reconstruction 

[Arinzeh 05, Dong 01, Flautre 99, Gauthier 05, Kon 99, Koshino 01, Lu 98, 

Mastrogiacoma 06].  HA is a well established material for bone repair and very 

comparable to natural apatite providing a strong bio-mechanical interlock with host tissue 

[Posner 73, Richard 98].  The composition of HA exhibits a variety of useful properties 

such as closely matched composition to bone, negligible immunoreactivity, 

osteoconductivity and the availability of local calcium and phosphorous for surrounding 

cells.  Additionally, recent research on HA has also shown that nano-based surfaces offer 

improved characteristics for bone formation [Arts 06]. 

In addition to material composition, the importance of pore morphology and 

architecture has been the focus of scaffold designs to improve clinical results [De 

Oliveira 03, Lu 99, Mankani 01, Navarro 04, Sepulveda 00].  Scaffolds have been 

manufactured from HA using techniques such as porogen leaching, textile, solid free 
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form fabrication and template coating.  Each of these methods offers advantages and 

disadvantages for scaffold design with ongoing research particularly aimed at the 

identification of a minimum pore size necessary for tissue infiltration [Chang 00, 

Gauthier 98, Karageorgiou 05].  The macroscopic arrangement of pore designs and the 

importance of surface area and shape of ceramic materials have also been implicated in 

cell specific activities such as differentiation into the osteoblast lineage [Habibovic 05]. 

Open, interconnected porosity is essential for tissue infiltration as it guides cell 

migration, proliferation and bone cell differentiation to mechanically connect implant 

with bone.  The long term success for clinically applied scaffolds may be assisted by the 

overall architecture of open channel designs since functional blood supply provides a 

foundation for tissue growth [Boyde 99].  Incomplete pore connections can obstruct 

vascular infiltration and ultimately constrain tissue formation in clinically-applied 

biomaterials.  In addition to tissue survival, blood vessels have a substantial role in 

coordinating the biochemical activity that guide bone cell behavior including remodeling 

[Barou 02].  Successful scaffold designs must balance these factors to support vessel 

formation for functional bone tissue formation. 

In this study, it was hypothesized that scaffolds coated with nano-size HA (N-

HA) would induce a different rate of bone regeneration when compared to scaffolds 

made of micro-size HA (M-HA).  Bone formation and angio-conductive potential of a 

scaffold closely matched to trabecular bone was investigated in a segmental defect model 

of a canine after 3 and 12 weeks post implantation.  Histological sections were compared 

between the naturally forming trabecular bone (control) and defects implanted with 

scaffolds.  Additionally, collagen arrangement was identified and evaluated using cross- 
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polarized microscopy to recognize lamellar fiber orientation. 

 

6.3 Materials and methods 

 

6.3.1 Scaffold preparation 

HA scaffolds were produced using a template-coating technique.   Polyurethane 

sponges (EN Murray, Denver, CO) were coated with HA powder (TAL Materials, Ann 

Arbor, MI), in a distilled water-based slurry.  Binders used with the slurry to improve 

sintering and to stabilize the scaffold structure included 3% high molecular weight 

polyvinyl alcohol, 1% v/v carboxymethylcellulose, 1% v/v ammonium polyacrylate 

dispersant, and 3% v/v N,N-dimethylformamide drying agent.  Coated sponges were 

vacuum-dried overnight before sintering to 1230°C for 3 hours in a high temperature 

furnace (Thermolyne, Dubuque, Iowa).  Scaffolds were twice coated with HA slurry and 

re-sintered.  A sol-gel coating of nano-size HA was prepared from calcium nitrate in 

methanol using a previously reported process [You 01].  A stoichiometric Ca/P ratio of 

1.67 was obtained and solution aged for 7 days before immersion coating onto scaffolds 

and sintered to 600°C for 1 hour.  Composition purity was validated using X-ray 

diffraction analysis (D8 Advance, Bruker Axs Inc., Madison, WI).  Final scaffold 

dimensions were ø 5 mm and length of 5 mm as shown in Figure 6.1.  Samples were 

sterilized by ethylene oxide gas before implantation.   
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Figure 6.1  Cylindrical, interconnected 5 x 5 mm HA scaffolds for defect repair in the 
dog mandible.  Scale bar measures 20 mm. 
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6.3.2 Scaffold characterization 

Scaffolds were imaged by scanning electron microscopy (SEM) to observe macro 

and micro features.  Histomorphometry was performed on cross-sectional slides prepared 

from representative samples.  Embedding was performed in one-component photo-curing 

resin (Exakt 7200 VLC, Oklahoma City, OK) and thin sectioned using a precision 

microsaw (Buehler, Lake Bluff, IL).  Sections were progressively polished to 1200 grit 

paper and adhered to glass slides using a methyl methacrylate resin (Surgipath Medical 

Ind., Richmond, IL).  Sections were imaged at 80 and 200X magnification with a digital 

camera (QImaging, Burnaby, Canada) on a Nikon TE300 microscope (Nikon, Melville, 

NY).  An analysis of the scaffold was performed using bone histomorphometry software 

(Bioquant Osteo, Nashville, TN).  Two longitudinal cross-sections were prepared from 

each scaffold.  Parameters were defined from traditional bone histomorphometry 

guidelines and the following characteristics were recorded:  percentage of scaffold 

volume [SV / TV = scaffold volume / total volume x 100%], ratio of scaffold surface 

perimeter to total volume [SS / TV = surface length / total volume, ratio of scaffold 

surface perimeter to scaffold volume [SS / SV = surface length / scaffold volume], 

trabecular thickness [Tb.th. = (4 / 1.199) x (SS / SV)], trabecular number [Tb.n. = ((4 / π) 

x (SV / TV))-0.5 / (Tb.th.)] and trabecular separation [Tb.sp. = ((4 / π) x (TV / BV) – 1) x 

(Tb.th.)].  The formulae were derived with respect to trabecular bone tissue including 

both rod- and plate-like geometry [Parfitt 87].  The use of these measures allows for 

comparisons between known values of primarily rod-like trabecular structures from other 

anatomical locations [Hildebrand 99].   
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6.3.3 Surgical procedure 

Ten, 2-year-old adult male foxhound dogs, weighing between 20 to 25 kg were 

used for this study.  The 10 dogs were cared for in compliance with DOD programs and 

NIH publication # 86-23, Guide for the Care and Use of Laboratory Animals.  Prior to 

experimentation, the protocol was evaluated and approved by the IACUC of The 

University of Tennessee Health Science Center at Memphis to ensure that the policies, 

standards and guidelines for the proper use, care, handling and treatment of animals were 

observed. 

Two defect locations were created in both the left and right aspects of the 

mandible.  The periosteum was retracted to expose the mandible surgical locations below 

the forward premolar teeth which were removed in conjunction with a separate study.  A 

trephine drill bit was used to create 5 mm defects through the buccal side of the cortical 

bone.  Defects were left unfilled as an empty control, filled with mHA or nHA scaffolds.  

Randomization in the order of implant placement was performed in each animal.  As 

illustrated in Figure 6.2, the defects were introduced into the mandible with image 

analysis performed in a coronal (frontal) plane of view [Boyd 01].   

Animals were sacrificed at 3 and 12 weeks post surgery.  Mandibles were 

collected and placed into 10% neutral buffered formalin.  Micro-CT sections were 

generated to observe macro tissue to implant integration and to assess any abnormalities 

in the surrounding tissue.  Embedding and sectioning were performed following the same 

procedure for control scaffolds.  Two sections of each implant representing the central 

region were used for quantitative histology as shown in Figure 6.3, while remaining 

sections were observed for qualitative features.   
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(a)         (b) 

 

Figure 6.2  Representative image of the dog mandible showing (a) the location of the 
introduced defects below the premolar teeth and (b) coronal or frontal cross section of the 
mandible with defect traversing the lateral aspect of the cortical bone based on Boyd 
(2001).   
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Figure 6.3  Histological preparation scheme showing cross sections through an implanted 
scaffold with assignment of quantitative slides from the center and qualitative 
descriptions from the outer sections. 
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Thin sections were stained for connective tissues with Paragon (toluidine blue and 

basic fuchsin) and calcified bone tissue with Alizarin Red.  Quantitative 

histomorphometry was performed on stained sections in Bioquant Osteo by color 

thresholds and direct measurement of area values.  Tissue and bone formation data 

represent the percentage of those tissues within each total region of interest.  Tissue was 

identified as inclusive biological structures identified by both stains while bone 

represented only mineralized tissue staining for Alizarin Red.  As defined, partially 

mineralized osteoid was not included in the bone classification.  All tissue-scaffold 

measurements were performed inside the perimeter of the scaffold.  All porous spaces 

were excluded from tissue or bone measurements except for osteocyte lacunae and other 

features in the micron range.  Vessels were identified in calcified sections within the 

scaffolds at 12 weeks.  Vessel distribution and diameter were compared with vessels 

counted from the same histological section in cortical bone at a location greater than 

5mm from the defect.  Haversian canals, Volkmann’s canals, and small vessels were 

quantified with visibly interconnected channels counted as one.  Currently forming 

osteons and resorbtion spaces were not included in the measurement. 

 

6.3.4 Statistical analysis 

Statistical calculations were performed with SigmaStat software (Systat, Point 

Richmond, CA).  Significance between groups was analyzed by one-way ANOVA with 

Tukey pairwise multiple comparisons.  Significance levels were set at p<0.05. 
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6.4 Results 

 

6.4.1 Material characterization 

Overall scaffold architecture shown in Figure 6.4(a, b) demonstrates the open 

interconnected features of the rod-like strut design.  Open channels were arranged with 

isotropic geometry and rounded-edge triangular strut morphology.  N-HA and M-HA 

surfaces were observed for scaffolds with and without sol-gel coatings, respectively as 

shown in Figure 6.4(c, d).  Sol-gel coatings formed a thin layer of precipitated HA 

crystals on the bulk scaffold increasing the SEM visualized surface roughness and nano-

texturing.  Scaffolds averaged a density value of 22.6 ± 5.6% leaving an average of 

77.4% porous space for tissue infiltration.   

 

6.4.2  In vivo analysis 

Following surgical resection, mandible-block specimens imaged by micro-CT 

were examined for delayed- or non-union with the surrounding bone tissue.  At the time 

of recovery, there was no evidence of inflammation or rejection around the scaffolds or 

open defects.  An intact periosteum was found covering the surgery location and 

macroscopic bone formation could be identified in the specimens.  Micro-CT, after 3 

weeks, revealed soft and hard tissue within the control defect and both scaffold designs as 

shown in Figure 6.5(a-c).  After 12 weeks, micro-CT observations indicated the 

formation of dense cortical bone within both scaffolds, whereas a thin cortical shell 

bridge was observed forming across the control defects as shown in Figure 6.5(d-f). 

After three weeks, trabecular bone could be observed forming inside the control 
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(c)       (d) 

 

Figure 6.4  SEM photographs of the HA scaffolds; (a) bulk macroporisity, (b) N-HA 
scaffold strut morphology, (c) M-HA surface features and (d) N-HA scaffold 
demonstrating nano-scale surface features.  Scale bar dimensions of 1000, 40, 2, and 10 
µm.    
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Figure 6.5  Coronal orientation, micro-CT images; (a,d) control defect, (b,e) implanted 
M-HA, and (c,f) N-HA scaffolds after 3 and 12 weeks post-surgery in the canine 
mandible.  Radial defect was created from the lateral surface with control bone bridging 
initiated by 12 weeks.  Scaffold groups show early union and bridging with dense cortical 
tissue found at 12 weeks.   
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defect by histology.  This bone was analyzed and compared with scaffold values with 

data represented in Table 6.1.  It was observed that scaffold properties closely matched 

the properties of newly formed trabecular bone at 3 weeks with respect to bone surface to 

bone volume ratio (35.6 ± 5.6, 25.4 ± 7.6 mm-1), trabecular number (5.4 ± 0.2, 5.1 ± 1.2 

mm-1), separation (466 ± 68, 342 ± 64 µm) and thickness (98 ± 15, 138 ± 36 µm), 

respectively. 

Histomorphometry evaluation revealed tissue infiltration into both scaffolds at 3 

weeks.  New bone formation progressed from the original bone edge into the scaffold and 

from the marrow cavity.  Newly formed and mineralized bone was observed infiltrating 

both scaffolds with semi-random collagen fiber orientation observed by cross-polarized 

light.  Control and N-HA scaffolds after 3 weeks are shown in Figure 6.6(a,b) with N-HA 

demonstrating no morphological differences compared to M-HA scaffolds.   

Quantification of this area showed an early majority of fibrous tissue, 61.8 ± 6.0 

and 72.7 ± 2.8%, infiltrating the M-HA and N-HA scaffolds, respectively.  At 3 weeks, 

4.4 ± 2.6% mineralized bone formation in M-HA scaffolds and 7.2 ± 6.6% in N-HA 

scaffolds (Table 6.2) had occurred.  Normalized percent values of mineralized to total 

tissue were recorded with 7.0 ± 3.5% conversion in M-HA scaffolds and 10.1 ± 9.5% 

conversion in N-HA scaffolds (Table 6.3).  Collagen organization was also found in a 

partially lamellar organization coating the surface of the scaffolds as shown in Figure 

6.7(a,b). 

By 12 weeks post surgery, histomorphometry evaluations of the untreated defects 

concurred with the micro-CT observations indicating the formation of a thin cortical 

bridge across the opening.  Tissue infiltration progressed throughout both scaffold  
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Table 6.1  Histomorphometry parameters of HA scaffold compared to newly formed 
trabecular bone in the defect location 3 weeks post surgery. 
 

Parameter Abbreviation HA Scaffold  3 Week Bone Units 

Bone Volume/Total Volume BV/TV 22.6 ± 5.6 36.4 ± 5.4 % 

Bone Surface/Total Volume BS/TV 7.6 ± 0.7 9.1 ± 1.7 mm-1

Bone Surface/Bone Volume BS/BV 34.6 ± 5.6 25.4 ± 7.6 mm-1

Trabecular Number Tb.N 5.4 ± 0.2 5.1 ± 1.2 mm-1

Trabecular Separation Tb.Sp 466 ± 68 342 ± 64 µm 

Trabecular Thickness Tb.Th 98 ± 15 138 ± 36 µm 
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Figure 6.6  Bone tissue cross section of control defect stained with Paragon for 
connective tissue (violet) and Alizarin Red for mineralized bone tissue (red) after (a) 3 
and (b) 12 weeks post surgery and N-HA scaffold shown after (c) 3 and (d) 12 weeks 
with scaffold in black, 80X original magnification. Lateral edge orientated upward. 
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Table 6.2  Total tissue area and mineralized bone area percentages in M-HA and N-HA 
scaffolds at 3 and 12 weeks post surgery.  
 

Area of Total Tissue (%) Area of Mineralized Bone (%) Time 

Post Surgery (Weeks) M-HA N-HA M-HA N-HA 

3 61.8 ± 6.0 72.7 ± 2.8 4.4 ± 2.6 7.2 ± 6.6 

12 74.4 ± 3.1 77.3 ± 4.5 43.9 ± 4.1 50.4 ± 8.8 

 

 

Table 6.3  Relative mineralized tissue formation compared to total tissue in M-HA and 
N-HA scaffolds at 3 and 12 weeks post surgery.  
 

Mineralized / Total Tissue (%) Time 

Post Surgery (Weeks) M-HA N-HA 

3 7.0 ± 3.5 10.1 ± 9.5 

12 59.0 ± 3.5 65.3 ± 11.3 
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Figure 6.7  Bone tissue cross section of N-HA scaffold under phase contrast after (a) 3 
and (c) 12 weeks post surgery with corresponding cross-polarized light micrographs 
shown in (b,d) representing birefringence of collagen strands, 200X (S = scaffold, M = 
mineralized bone, C = collagen birefringence, V = vessel). 
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designs with few pores left unfilled.  Mineralized bone formation represented 43.9 ± 

4.1% of the M-HA scaffolds and 50.4 ± 8.8% of the N-HA scaffolds (Table 6.2) and 

conversion from connective tissue into mineralized bone were correspondingly recorded  

at 59.0 ± 3.5 and 65.3 ± 11.3% (Table 3).  Figure 6.7(c,d) shows the visible and cross-

polarized light distribution of tissue formed inside a N-HA scaffold also representative of 

M-HA scaffold morphology.  Open channels remain unfilled at the center of the scaffold 

pores representing the blood and nutrient supply to the newly formed tissues.  Collagen 

patterning by 12 weeks has visibly organized into interlaced strands wrapping around the 

scaffold struts as shown in Figure 6.7(c,d). 

Blood vessel conduction and diameter within the scaffolds were reported and 

compared with blood vessels found in the adjacent tissue at a distance of 5mm from the 

defect site.  Within the cortical bone tissue these consisted predominantly of Haversian 

and Volkmann’s canals.  The control bone averaged 16.9 ± 3.4 vessels/mm2 with an 

average diameter of 19.0 ± 0.7 µm.  As shown in Figure 6.7c, vessels within HA 

scaffolds were observed.   

Vessels found within the scaffolds had a less frequent distribution of 7.7 ± 1.4 and 

7.6 ± 2.7 vessels/mm2, with a larger average diameter of 23.3 ± 2.7 and 23.0 ± 0.4 µm in 

M-HA and N-HA scaffolds, respectively (Table 6.4), when compared with natural 

cortical bone.  No significant differences were found between vessel distribution or 

diameter between the two HA scaffolds.  However, significant difference in vessel 

distribution and diameter were observed between HA scaffolds and control bone 

(p<0.05). 
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Table 6.4  Blood vessel distribution (per mm) and diameter (µm) within 12 week M-HA, 
N-HA scaffolds and natural cortical bone.  Values represent Haversian, Volkmann’s 
canals and blood vessels only. *Denotes statistical difference from each scaffold group, 
p<0.05. 
 ___ 

Blood Vessel Parameter M-HA N-HA Cortical Bone 

Vessels / mm 7.7 ± 1.4 7.6 ± 2.7 * 16.9 ± 3.4  

Vessel Diameter (µm) 23.3 ± 2.7 23.0 ± 0.4 * 19.0 ± 0.7  

 

6.5 Discussion 

This study investigated the bone forming and angio-conductive capability of a 

scaffold design closely approximating trabecular bone.  A sol-gel coating of nano-

crystalline HA was also investigated for improvements related to its nano-texturing and 

material properties at 3 and 12 weeks post implantation into the canine mandible.  

Although significant evidence exists in the literature defining the morphological 

properties of natural bone [Feldkamp 89, Navarro 04], it is seldom related to bone 

formation in scaffolds.  As the natural process in segmental bone repair progresses 

through a woven and trabecular bone-like phase to a mature cortical structure, this 

research focused on using a scaffold patterned on trabecular bone.  The presence of 

material curvatures is known to be a substantial influence on cell and tissue behavior and 

that careful control of these architectures may lead to enhanced bone formation [Chen 

97].  As observed in this study, surface to volume ratio was designed to provide 

numerous locations for early cell attachment with strut dimensions (thickness, 98 ± 15 

µm) smaller than their in vivo counterparts (138 ± 36 µm).  Rationale for this 

arrangement was to permit cell-layering around the struts with an organized collagen 
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network.  Although the defect size used in this study was not critical in character, as 

evidenced by the bridging in the control after 12 weeks, the use of this defect size was 

ideal for comparing the naturally formed trabecular bone with the replacement scaffold. 

Additionally, comparisons of tissue formation were not possible between control defects 

and scaffold groups because the original defect location could not be accurately located 

to ensure that controls would match the exclusive center-section criteria for quantitative 

histomorphometry.  

At the early time point of 3 weeks post surgery, the interconnected scaffolds of 

77.4 ± 5.6% porosity were immediately filled with connective tissue.  Generation of 

osteoid was already established at this time and 4.4 ± 2.6, and 7.2 ± 6.6% fully 

mineralized tissue was observed in M-HA and N-HA scaffolds, respectively.  Histology 

revealed that the mineralization front was initiated from contact with existing bone, from 

the marrow cavity and directly on the surface of the scaffold struts reflecting the strong 

osteoconductive characteristics of material and architecture.  Osteoblasts were identified 

at 3 weeks making use of the scaffold arrangement by depositing newly formed bone in 

circular lamella from the scaffold surface.  Cross polarized light revealed bundled 

collagen fiber organization by luminous birefringence that was characteristic of woven 

and partially lamellar bone at this early time point. 

After 12 weeks post surgery, nearly complete mineralized bone formation was 

observed in both HA scaffolds.  This represents the majority of the available space for 

bone tissue as the scaffold itself occupies 22.6% of the area.  At 12 weeks, the 

mineralized bone showed full interconnection with the scaffold and small nutrient 

channels were observed tunneling throughout the tissue.  When compared to the 
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surrounding cortical bone tissue, intra-scaffold vessels were found to be less numerous 

but significantly larger than Haversian and Volkmann’s canals.  Since the scaffold design 

ultimately prevents complete osteon formation, mineralized bone must be supplied with 

nutrients by channels twisted around struts.  This vessel arrangement could be related to 

the scaffold architecture where open spaces permit less numerous but larger, 

interconnected, bone-blocks to form.  

Collagen organization within the scaffolds at 12 weeks showed lamellar-like 

organization with bundles woven around and between the struts.  Visualized cross-

sections at the center of scaffold pores demonstrated a circular collagen arrangement with 

a Haversian-like vessel at its center.  While the scaffold architecture cannot permit true 

osteons to form in a straight path, it was observed that osteocytes and their surrounding 

collagen matrix did form in concentric rings to the vessels.  This arrangement allowed a 

semi-lamellar pattern to form although the distribution of collagen was partially random.  

With no evidence of necrosis within the scaffolds, this implant arrangement demonstrated 

the functionality of open-channel designs for both osteo- and angio-conduction.  

  

6.6 Conclusion 

 This study demonstrated the potential of porous, interconnected, HA scaffolds 

with morphological similarity to trabecular morphology for bone regeneration.  Distinct 

strut features and open channels allowed for successful mineralized bone and vascular 

infiltration throughout both scaffold designs.  Partially-organized, lamellar collagen 

fibrils were identified by birefringence under cross-polarized light at both 3 and 12 weeks 

post implantation. 

 96



Chapter 7.  Discussion 

 

7.1 Overall goals 

 The theme of this research was the characterization of cell response to bone-like 

materials with clinical application for the replacement or regeneration of native bone.  It 

was hypothesized that a discontinuity exists in this field between laboratory based 

investigations and their clinical counterparts because of the substantial effect of 

environment on cell behavior.  These investigations emphasized the substantial role of 

three-dimensional architecture on bone cell adhesion, stress signaling and differentiation 

in the development of a trabecular platform for bone regeneration.  

 In the following sections the specific findings of each major study is related to the 

original working hypotheses of Chapter 2.  In section 7.2, the role of 3-D structure 

compared to 2-D surfaces are explored between HA and TCP materials.  Section 7.3 adds 

the effect of a non-destructive mechanical force, ultrasound, on cell response in 3-D 

designs.  These first two sections represented a screening method to reduce the number of 

groups tested in the final phase of this investigation for perfusion analysis and animal 

model studies.  From the first sections, HA was identified as the material for testing in 

long term studies based on the early cell response and its degradation stability.  In section 

7.4, the effect of media perfusion on HEPM cell differentiation is evaluated in a long-

term culture study on micro and nano HA scaffolds.  Finally, in section 7.5, micro and 

nano HA scaffolds were implanted into a dog mandible model to demonstrate the clinical 

application of the scaffold material and configuration. 
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7.2 Cell stress signaling in HA and TCP scaffolds and surfaces 

It was hypothesized that bone cell precursors respond differently to structures 

found in vivo compared traditional tissue culture performed in a laboratory setting.  

Scaffolds and surfaces were prepared from HA and TCP ceramics in these studies to 

provide a substrate well recognized in the natural bone environment.  Calcium phosphate 

materials provide an accessible supply of calcium and phosphorous minerals for bone cell 

metabolism [Gross 97] with scaffolds providing a large surface area for cell attachment.  

The scaffolds designed and manufactured in these studies were similar to natural 

trabecular bone [Feldkamp 89] as measured by histomorphometry.  The unique 

curvatures of these scaffolds were hypothesized to increase stress signaling patterns that 

bone cells engage during adhesion [Chen 97].  Alterations in cell attachment proteins in 

the cell membrane are linked with the intracellular actin skeleton structure and can 

ultimately affect gene expression.  This response was anticipated to assist bone cell 

differentiation through both the changes in membrane organization and through the 

activation of stress pathways.  The ultimate targets of these changes include the master 

gene regulator RUNX2 capable of changing cell phenotype.  Stress signaling through this 

controller could be responsible for differentiation related events. 

A testing technique was employed using antibodies specific to particular members 

of the MAPK cascade following methodology for PACE testing [Versteeg 00].  The 

results of PACE testing on HEPM cells in 2- and 3-D environments demonstrated high 

activation of the stress signaling proteins, P38 and JNK in 3-D.  Elevated levels of the 

MAPK protein ERK1/2 were already present in response to both 2- and 3-D materials, 

potentially related to its early activation during adhesion events independent of 
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architecture [Chen 94, Klemke 97, Schlaepfer 94, Zhu 95].  As calcium phosphate 

materials due not induce cell apoptosis [Sepulveda 00], the observed activation of AKT, a 

strong anti-apoptosis control signal, demonstrated that bone precursor cells can manage 

the high stress response when conforming to 3-D curvatures.  The potential of AKT 

rescue could signal through other proteins including blocking p73 and p53 mediated 

apoptosis, blocking apoptosis through XIAP, and driving cell growth through ERK, p70, 

or mTOR.  These results were consistent with previous studies involving upstream 

members of the MAPK family where apoptosis regulation could not be predicted only by 

the activation of ERK and SAPK pathways [Bonvin 02].   

From these results it could be concluded that bone cell precursors do activate 

stress signaling proteins in response to curvatures characteristic of natural bone 

supporting hypothesis 1.  This result indicates that traditional cell culture may be 

significantly underestimating cell stress response compared to natural bone organization.  

Furthermore, the increase in stress signaling corresponded with a ‘rescue’ from apoptosis 

through the AKT pathway thus supporting hypothesis 2 that cells can manage the 

elevated stress response.   

 

7.3 Cell adhesion and stress response on scaffolds with ultrasound 

In addition to the influence of scaffolds architecture discussed in section 7.2, a 

physical non-destructive force simulating natural bone environment was hypothesized to 

further activate stress and adhesion cell signals.  Low intensity pulsed ultrasound 

represents a clinical tool used to help accelerate healing time and prevent bone loss 

during the healing period [Kristiansen 97].  It was postulated that in addition to 3-D 
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curvature effect on cell response, ultrasound could also upregulate integrin adhesion 

during early cell attachment [Chen 97].  This may explain some of the clinical success 

with ultrasound systems if local application is improving cell adhesion thus increasing the 

pool of local cells to repair bone defects with or without scaffold replacements. 

An inherent limitation of these theories is the influence of calcium release from 

the scaffolds affecting activation of the stress pathways studied, including the MAPK 

cascade [Katz 06].  Additionally, calcium release does have a cytotoxic limit that could 

influence cell viability [Maeno 05].  Preparation of media extracts from the scaffolds 

demonstrated that calcium was partly responsible for ERK activation combined with cell 

adhesion but did not influence the activation of the stress protein kinases or AKT.  This 

result was consistent with the first study performed between 2- and 3-D materials and 

disproved hypothesis 3 that calcium alone could be responsible for the high levels of 

stress and adhesion activators.  

A previous study isolated several mechanosensitive signals including integrin 

activation occurring with physical stimulation of the membrane [Lee 00].  Application of 

ultrasound was able to increase activation of ERK in addition to integrin and vinculin 

proteins but only on TCP scaffolds.  This result appeared in conflict with the lower 

calcium release from TCP, however these surfaces have small micro-pores that may 

supply locally high calcium concentrations during ultrasound that are not detectable by 

bulk media testing.  Since ultrasound treatment has been shown to redistribute actin stress 

fibers and focal adhesions [Zhou 04], the described results could be masked by the 

specific characteristics of TCP scaffolds and the selection of adhesion-phase timing 

chosen in this study.  This result partially supported hypothesis 4 stating that ultrasound 
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could further increase stress and adhesion based pathways as the result was valid for TCP 

but not HA scaffolds.  Further research into matching the exact crystal surface features of 

these materials could clarify this result. 

 

7.4 Long term cell culture in HA scaffolds with fluid perfusion 

With the identification of stress and adhesion mediators identified from the first 

two sections, longer study of viability and differentiation effects were required to 

determine how 3-D stimulation would influence cell organization.  The HEPM cells 

utilized in these investigations could be differentiated into osteoblasts over time.  While 

ultrasound represents a mechanical stimulus capable of assisting this process, it is not 

sufficient to create the distributed cell organization of natural bone.  Bioreactor based 

perfusion was postulated to help maintain the nutrient flow natural to trabecular and 

cortical bone.  From the perfusion based analysis of the scaffolds, HA was selected from 

previously mentioned studies due to its lack of resorbtion and stability.  The addition of a 

nano based surface feature by sol-gel was postulated to increase the cellular attachment 

locations on the material.   Additionally, the nano coating provided greater calcium 

release assisting osteoblast precursor differentiation [Maeno 05].   

 The use of sol-gel based nano coating was able to significantly increase early cell 

attachment supporting the first claim of hypothesis 6, but did not change the early 

viability of these materials disproving the second part of this hypothesis.  The application 

of perfusion fluid flow had previously demonstrated activation of bone cell gene markers 

in vitro [Ogata 00, Owan 97, Reich 91].  The postulated mechanisms of action 

responsible for these effects included; mass transport and membrane based shear 
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components or streaming potentials [Bakker 01, McAllister 99].  Observations of these 

mechanisms have already been performed in scaffold tissue engineering techniques 

[Cartmell 03, Holtorf 05].  The selection of media perfusion rate in these studies reflected 

a mid-level range compared to other research [Cartmell 03, Glowacki 98, Goldstein 01].  

From the results of these studies the statement in hypothesis 7 that nano HA scaffolds 

could induce earlier differentiation in both static and perfusion was specifically 

disproved.  While perfusion significantly improved expression of bone differentiation 

markers, nano coatings did not significantly alter this response.      

 

7.5 HA scaffolds for in vivo bone repair 

The final aim of this research was to provide clinical relevance of the mechanisms 

explored previously and to confirm the regenerative capability of the scaffold design for 

segmental defect repair.  The final study investigated the bone and angio-conductive 

capability of the micro and nano surface scaffolds after 3 and 12 weeks post implantation 

into the canine mandible. This study also served to link the data available in the literature 

regarding natural bone organization [Feldkamp 89, Navarro 04] with bone formation in 

scaffolds. 

HA scaffolds of both surface compositions demonstrated remarkable ability to 

span the defect location and conduct bone formation throughout the design.  

Differentiation of bone cells could be observed visually by the presence of osteoid and 

mineralized tissue as early as 3 weeks post-implantation, matching the observed increase 

in differentiation seen with in vitro flow perfusion, supporting hypothesis 7 and linking 

the in vitro and in vivo studies.  Nano HA scaffolds were able to increase the amount of 
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early tissue formed within the construct but did not significantly affect the formation of 

mineralized tissue disproving part of hypothesis 8 stating that nano HA would outperform 

micro HA.  The second part of hypothesis 8 stated that the newly formed bone tissue 

would be similar to natural organization and was confirmed by the morphometric 

presence of collagen arrangement forming in circular lamellae throughout the scaffold 

interior.  Additionally, small nutrient channels were found tunneling throughout the tissue 

and while they were found to be less numerous than natural tissue they were slightly 

larger than cortical blood vessels permitting good nutrient supply.  This vessel 

arrangement could be related to the scaffold architecture where open spaces permit less 

numerous but larger, interconnected, bone-blocks to form.  

 

7.6 Conclusion 

The development and characterization of calcium phosphate scaffold designs has 

been performed with respect to cell adhesion, stress signaling and differentiation 

mechanisms in laboratory and animal model studies.  In summary, a significant disparity 

has been identified in the literature between testing performed in vitro and clinical results.  

It was postulated that environmental conditions significantly affect the results of 

traditional biomaterial testing.  In these studies, scaffolds were constructed with 

particular emphasis on matching the architectural properties of natural bone with physical 

stress behavior characteristic of the true bone environment.   

From the in vitro experiments it was observed that bone cells activate members of 

stress pathways in 3-D not normally activated in 2-D.  Despite these elevated levels of 

stress, cells are capable of managing these signals without entering apoptosis.  Further 
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application of stress by ultrasound and perfusion flow demonstrate that these signals may 

in fact be necessary for the correct signaling mechanisms to match that observed during 

bone repair and healing  To support the role of scaffold architecture for true bone 

formation an animal model study was performed and demonstrated exceptional bone 

formation and organization within the scaffold design, with osteoid formation matching 

the time period of cell differentiation observed from perfusion studies.  In conclusion, 

highly porous ceramic scaffolds represent an excellent platform for bone cell studies 

corresponding to a natural environment and represent a promising biomaterial for bone 

defect repair and clinical tissue engineering.   
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Chapter 8.  Future directions 

 

Deciphering the complexity of cell communication and signaling behavior 

represents an important subject of cell biology that will undoubtedly occupy scientists for 

many generations.  These pathways are currently being decoded from many perspectives 

and the specific role of environment on cell response is critical for bone study.  This is 

especially relevant for the emerging field of tissue engineering.  A greater link between 

cell communication and tissue engineering strategies would benefit both disciplines.   

From this research, future directions involving cell signaling during long term 

culture would further strengthen the conclusions.  Cell stress response demonstrated high 

activation during the early attachment to the biomaterials studied, however, the 

environmental stress signals such as fluid shear and membrane perturbations continue 

over the lifetime of natural tissue.  It would be beneficial to identify if these pathways are 

continually stimulated in long term cell culture and if they truly mediate the 

differentiation activity of bone cells.   

Scaffold designs continue to undergo optimization from both laboratory and 

industrial perspectives.  The open architecture characterized in this research has 

demonstrated the importance of interconnectivity, especially for in vivo bone repair and 

vascularization.  It appears that the formation of quality bone tissue is coupled with 

angiogenesis.  Selective design focusing towards angiogenesis rather than early bone 

formation may promote better clinical results. 
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