Internal rays for polynomial skew products Shizuo Nakane *

We consider Axiom A polynomial skew products on \mathbb{C}^2 of degree $d \geq 2$. We define internal rays in the stable disks of $W^s(\Lambda_{A_p})$ and show that they land on J_2 under some assumptions.

1 Introduction

In this note, we consider regular polynomial skew products on \mathbb{C}^2 of degree $d\geq 2$ of the form :

$$f(z, w) = (p(z), q(z, w)).$$

If we set $q_z(w) = q(z, w)$, the *n*-th iterate of f is written by

$$f^{n}(z,w) = (p^{n}(z), Q^{n}_{z}(w)) := (p^{n}(z), q_{p^{n-1}(z)} \circ \cdots \circ q_{z}(w)).$$

Hence the dynamics on the z-plane is that of p. We call the z-plane the base space. The vertical planes $\{z\} \times \mathbb{C}$ are called *fibers*. Then f preserves the family of fibers and this enables us to investigate the dynamics more precisely.

Let K_p and J_p be the filled Julia set and Julia set respectively of the polynomial p and A_p be the set of attracting periodic points of p. Let K be the set of points with bounded orbits of f and put $K_z := \{w \in \mathbb{C}; (z, w) \in K\}$. The fiber Julia set J_z is the boundary of K_z . The second Julia set J_2 , which is a right analogue of the Julia set of a one-dimensional map, is characterized by $J_2 = \bigcup_{z \in J_p} \{z\} \times J_z$. If f is Axiom A, then the map $z \mapsto J_z$ is continuous in J_p , hence $J_2 = \bigcup_{z \in J_p} \{z\} \times J_z$. See Jonsson [J].

The stable and unstable sets of a saddle set Λ are respectively defined by

$$W^{s}(\Lambda) = \{ y \in \mathbb{C}^{2}; f^{n}(y) \to \Lambda \}, W^{u}(\Lambda) = \{ y \in \mathbb{C}^{2}; \exists \text{ prehistory } \hat{y} = (y_{-n}) \to \Lambda \}.$$

Let Λ_{A_p} and Λ_{J_p} be the saddle sets in $A_p \times \mathbb{C}$ and $J_p \times \mathbb{C}$ respectively. Since the map f preserves the vertical fibers, it is easy to see that $W^u(\Lambda_{A_p}) \subset A_p \times \mathbb{C}$. Hence it follows that $W^u(\Lambda_{A_p}) \cap W^s(\Lambda_{J_p}) = \emptyset$. In Nakane [N], we got the following.

Theorem 1.1. ([N], Theorem 1.1) Suppose that f is Axiom A. Then, the map $z \mapsto J_z$ is continuous on K_p if and only if the property $W^u(\Lambda_{J_p}) \cap W^s(\Lambda_{A_p}) = \emptyset$ holds.

Let C_p and C_z ($z \in \mathbb{C}$) be the set of finite critical points of p and q_z respectively. Jonsson [J] defined that a polynomial skew product f is *connected* if J_p is connected and J_z is connected for all $z \in J_p$, in other words, $C_p \subset K_p$ and $C_z \subset K_z$ for all $z \in J_p$.

Theorem 1.2. ([N], Theorem 1.2) Suppose that f is a connected Axiom A polynomial skew product on \mathbb{C}^2 with $C_p \subset A_p$. Then $W^u(\Lambda_{J_p}) \cap W^s(\Lambda_{A_p}) = \emptyset$.

The local stable manifold $W^s_{loc}(x)$ of $x = (z_0, w_0) \in \Lambda_{A_p}$ is transversal to the fiber. That is, there exist $\epsilon > 0$ and a holomorphic function $\varphi(z, w_0)$ in $\mathbb{D}(z_0, \epsilon) := \{z \in \mathbb{C}; |z - z_0| < \epsilon\}$ such that

$$W_{loc}^s(x) = \{(z, \varphi(z, w_0)); z \in \mathbb{D}(z_0, \epsilon)\}.$$

This function φ gives a holomorphic motion of J_{z_0} over $\mathbb{D}(z_0, \epsilon)$, that is,

- (1) $\varphi(z_0, \cdot) = id_{J_{z_0}},$
- (2) $\varphi(\cdot, w)$ is holomorphic in $\mathbb{D}(z_0, \epsilon)$ for each fixed $w \in J_{z_0}$,
- (3) $\varphi_z = \varphi(z, \cdot)$ is injective for each fixed z.

By the λ -lemma, $\varphi : \mathbb{D}(z_0, \epsilon) \times J_{z_0} \to \mathbb{C}$ is continuous.

In this note, we will define internal rays in the stable disks in $W^s(\Lambda_{A_p})$ and, under the assumptions of Theorem 1.2, we show that all internal rays land at points in J_2 .

2 Internal rays

Under the situations in Theorem 1.2, we define the internal rays and investigate their landing on J_2 .

Let $z_0 \in A_p$ be of period m and U_0 be its immediate basin. Corollary 4.3 in Roeder [R] says that, if f is connected, then the set C_{U_0} of vertical critical points of f over U_0 is contained in the Fatou set of f. Hence lifting by f, the local holomorphic motion of J_{z_0} defined in the introduction extends to U_0 . Thus, for $a \in J_{z_0}$, the connected component W_a of $W^s(z_0, a)$ containing (z_0, a) is the graph of a holomorphic function on U_0 , hence is a topological disk. We call this a *stable disk*. Put $W_a^* = W_a \setminus \{(z_0, a)\}$.

From the assumption $C_p \subset A_p$, z_0 is superattracting and we have a Böttcher coordinate at z_0 . That is, there exists $k \geq 2$ such that $p^m(z) = z_0 + a_k(z - z_0)^k + o(|z - z_0|^k)$, $a_k \neq 0$. The Böttcher coordinate ϕ at z_0 is a local conformal conjugacy between p^m and the map $\zeta \mapsto \zeta^k$. That is, this satisfies $\phi(z_0) = 0$ and the functional equation :

$$\phi \circ p^m(z) = \phi(z)^k.$$

It is unique up to multiplication by a (k-1)-st root of unity. By this functional equation, it is analytically continued until it meets a critical point of p^m . By the assumption $C_p \subset A_p$, it never meets critical points of p^m , hence it can be analytically continued to the whole basin U_0 and gives a conjugacy $\phi : U_0 \to$ $\mathbb{D} := \mathbb{D}(0, 1)$. Let $\psi = \phi^{-1}$ be its inverse. This satisfies $p^m \circ \psi(\zeta) = \psi(\zeta^k)$.

For $a \in J_{z_0}$, the holomorphic motion $\varphi(z, a)$ satisfies

$$f(z,\varphi(z,a)) = (p(z),\varphi(p(z),q_{z_0}(a)))$$

since $f(W^s_{loc}(z_0, a)) \subset W^s_{loc}(f(z_0, a))$. Thus it follows that

$$f^{m}(\psi(\zeta),\varphi(\psi(\zeta),a)) = (p^{m} \circ \psi(\zeta),\varphi(p^{m} \circ \psi(\zeta),Q_{z_{0}}^{m}(a)))$$
$$= (\psi(\zeta^{k}),\varphi(\psi(\zeta^{k}),Q_{z_{0}}^{m}(a)))$$

If we define $\psi_a : \mathbb{D} \to W_a$ by $\psi_a(\zeta) = (\psi(\zeta), \varphi(\psi(\zeta), a))$, it satisfies

$$f^m \circ \psi_a(\zeta) = \psi_{Q_{z_0}^m(a)}(\zeta^k). \tag{1}$$

We now define an internal ray in W_a of angle $t \in \mathbb{R}/\mathbb{Z}$ by

$$R_a(t) = \psi_a(\{re^{2\pi it} : 0 < r < 1\}).$$

By definition, $f^m(R_a(t)) = R_{Q_{z_0}^m(a)}(kt)$. We say that a ray $R_a(t)$ lands at a point x if, as $r \to 1$, $\psi_a(re^{2\pi it})$ converges to x.

Theorem 2.1. Under the assumptions in Theorem 1.2, every ray $R_a(t)$ for $a \in J_{z_0}$ and $t \in \mathbb{R}/\mathbb{Z}$ lands at a point in J_2 . The landing points depend continuously on $a \in J_{z_0}$ and $t \in \mathbb{R}/\mathbb{Z}$.

proof. The proof is an analogue of that of Theorem 10.2 in [BJ]. By the uniform expansion on J_2 , there exist a neighborhood E of J_2 , a metric in E and $\lambda > 1$ such that $f^{-m}(E) \subset E$ and the following holds for all $x \in E$ and all $v \in T_x \mathbb{C}^2$ with this metric :

$$|Df^m(x)v|^* > \lambda |v|^*.$$
(2)

By the proof of Theorem 1.2 in [N], $W_a^* \subset W^u(J_2)$ for any $a \in J_{z_0}$. Since the union $A_R = \bigcup_{a \in J_{z_0}} \psi_a(\{R^k \leq |\zeta| \leq R\})$ is compact in $W^u(J_2)$ for any R < 1, there exists n such that $f^{-mn}(A_R) \subset E$. Then there exists R < 1 such that $\psi_a(\{R \leq |\zeta| < 1\}) \subset E$ for any $a \in J_{z_0}$. Differentiating (1) and using (2), for $R \leq |\zeta| < 1$,

$$|D\psi_a(\zeta)|^* \le \lambda^{-1} |D\psi_{Q_{z_0}^m(a)}(\zeta^k)|^* k |\zeta|^{k-1}.$$
(3)

Put $m(r) = \sup_{a \in J_{z_0}} \sup_{|\zeta|=r} |D\psi_a(\zeta)|^*$. Take $0 < \alpha < 1$ so that it satisfies $k^{\alpha} < \lambda$ and take C > 0 such that

$$m(r) \le C(1-r)^{\alpha-1},$$
 (4)

holds for $R \leq r \leq R^{1/k}$. By (3), it follows that, for $r \geq R$,

$$m(r) \le \lambda^{-1} k r^{k-1} m(r^k).$$
(5)

We show, by induction on j, that (4) holds in $R^{1/k^j} \leq r < R^{1/k^{j+1}}$ for all $j \geq 0$. The case j = 0 is trivial. Suppose that the case j = n - 1 is true. If

 $R^{1/k^n} \leq r < R^{1/k^{n+1}}$, then $R^{1/k^{n-1}} \leq r^k < R^{1/k^n}$ and we have by (5),

$$\begin{split} m(r) &\leq \lambda^{-1} k r^{k-1} C (1-r^k)^{\alpha-1} \\ &= C \lambda^{-1} k r^{k-1} (1+r+\dots+r^{k-1})^{\alpha-1} (1-r)^{\alpha-1} \\ &\leq C \lambda^{-1} k r^{k-1} (k r^{k-1})^{\alpha-1} (1-r)^{\alpha-1} \\ &\leq C \lambda^{-1} k^{\alpha} (1-r)^{\alpha-1} \\ &\leq C (1-r)^{\alpha-1}. \end{split}$$

Here we use the assumption $k^{\alpha} < \lambda$. Thus the case j = n is also true. Hence we get that (4) holds for $R \leq r < 1$.

Then, for $\zeta_j = r_j e^{2\pi i t}$, $j = 1, 2, r_1 < r_2$, it follows that

$$d(\psi_{a}(r_{1}e^{2\pi it}),\psi_{a}(r_{2}e^{2\pi it})) \leq \int_{\zeta_{1}}^{\zeta_{2}} |D\psi_{a}(\zeta)|^{*}|d\zeta|$$

$$\leq \int_{r_{1}}^{r_{2}} m(r)dr$$

$$\leq C\alpha^{-1}((1-r_{1})^{\alpha} - (1-r_{2})^{\alpha})$$

$$\leq C\alpha^{-1}(r_{2} - r_{1})^{\alpha}.$$

In the last inequality, we use that $0 < \alpha < 1$. Thus, as $r \to 1$, $\psi_a(re^{2\pi i t})$ converges uniformly for $a \in J_{z_0}$ and $t \in \mathbb{R}/\mathbb{Z}$. This implies that every ray $R_a(t)$ lands at a point in J_2 and that the landing point depends continuously on $a \in J_{z_0}$ and $t \in \mathbb{R}/\mathbb{Z}$. This completes the proof.

Corollary 2.1. The map ψ_a extends to a continuous surjective map : $\overline{\mathbb{D}} \to \overline{W_a}$. Hence, any point in ∂W_a is the landing point of a ray. Moreover, the map $(\zeta, a) \mapsto \psi_a(\zeta)$ is continuous on $\overline{\mathbb{D}} \times J_{z_0}$, the holomorphic motion $\varphi(z, a)$ extends to a continuous function on $\overline{U_0} \times J_{z_0}$ and $\varphi_z : J_{z_0} \to J_z$ is surjective for $z \in \overline{U_0}$.

proof. We put $\psi_a(e^{2\pi it}) := \lim_{r \to 1} \psi_a(re^{2\pi it})$. Since this convergence is uniform for $(t, a) \in (\mathbb{R}/\mathbb{Z}) \times J_{z_0}$, the map $(t, a) \mapsto \psi_a(e^{2\pi it})$ is continuous on $(\mathbb{R}/\mathbb{Z}) \times J_{z_0}$. For any $\epsilon > 0$, there exists $\delta > 0$ such that, if $|a' - a|, |t - s| < \delta$ and $1 - \delta < r < 1$,

$$d(\psi_{a'}(re^{2\pi it}),\psi_a(e^{2\pi is})) \le d(\psi_{a'}(re^{2\pi it}),\psi_{a'}(e^{2\pi it})) + d(\psi_{a'}(e^{2\pi it}),\psi_a(e^{2\pi is})) < 2\epsilon.$$

This implies that the map $(\zeta, a) \mapsto \psi_a(\zeta)$ is continuous also on $\partial \mathbb{D} \times J_{z_0}$. Since $\psi_a(\overline{\mathbb{D}})$ is a compact set containing $\psi_a(\mathbb{D}) = W_a$, it easily follows that $\psi_a(\overline{\mathbb{D}}) = \overline{W_a}$.

As for φ , note that ∂U_0 is a Jordan curve. Then the map ψ extends to a homeomorphism $\overline{\mathbb{D}} \to \overline{U_0}$, hence the map $\varphi(z, a) = \pi_2 \circ \psi_a \circ \psi^{-1}(z)$ extends to a continuous map on $\overline{U_0} \times J_{z_0}$. If we take $z' \in \partial U_0$, there exists a sequence $z_n \in U_0$ tending to z'. By the continuity of the maps $z \mapsto J_z$ and $z \mapsto \varphi_z$ on $\overline{U_0}$, we have

$$J_{z'} = \lim_{n \to \infty} J_{z_n} = \lim_{n \to \infty} \varphi_{z_n}(J_{z_0}) = \varphi_{z'}(J_{z_0}).$$

Thus the equality $\varphi_z(J_{z_0}) = J_z$ holds also for $z \in \overline{U_0}$.

In general, the map $\varphi_z : J_{z_0} \to J_z$ is not injective for $z \in \partial U_0$. In fact, for the following Example 2.1 with c = -1, pinching occurs as $z \to \partial U_0$.

Example 2.1. $f(z, w) = (z^2, w^2 + cz).$

If we set $g_c(w) = w^2 + c$, then $f^n(z, w) = (z^{2^n}, z^{2^{n-1}}g_c^n(\frac{w}{\sqrt{z}}))$. We have $C_p = \{0\} = A_p$. It easily follows that f is Axiom A (resp. connected) if and only if g_c is hyperbolic (resp. J_{g_c} is connected). Thus, f satisfies the assumptions of Theorem 1.2 if c lies in a hyperbolic component of the Mandelbrot set.

Let $\phi_c : \mathbb{C} \setminus \overline{\mathbb{D}} \to \mathbb{C} \setminus K_{g_c}$ be the inverse Böttcher coordinate of g_c . Then it follows that

$$\varphi_z(w) = \phi_z(w) = \sqrt{z}\phi_c(\frac{w}{\sqrt{z}}), \quad z \in \mathbb{D},$$

which depends holomorphically on z because ϕ_c is an odd function. The internal ray $R_a(t)$ for $a \in J_0 = \partial \mathbb{D}$ is written as

$$R_a(t) = \{ (re^{2\pi it}, \sqrt{r}e^{\pi it}\phi_c(\frac{a}{\sqrt{r}e^{\pi it}})); r < 1 \}.$$

It lands at the point $(e^{2\pi it}, e^{\pi it}\phi_c(ae^{-\pi it})) \in J_2$. The fiber Julia set $J_z = \phi_z(\partial \mathbb{D})$ is a Jordan curve if $z \in \mathbb{D}$, while it is a rotation of the Julia set J_c if $z \in \partial \mathbb{D}$. Thus, pinching occurs as z approaches $\partial \mathbb{D}$.

References

- [BJ] E. Bedford & M. Jonsson: Dynamics of regular polynomial endomorphisms of \mathbb{C}^k . Amer. J. Math., 122 (2000), pp. 153–212.
- [J] M. Jonsson: Dynamics of polynomial skew products on \mathbb{C}^2 . Math. Ann. 314 (1999), pp. 403–447.
- [N] S. Nakane: Continuity of fiber Julia sets for Axiom A polynomial skew products on C². Journal of Difference Equations and Applications 21 (2015), pp. 904–917.
- [R] R. Roeder: A dichotomy for Fatou components of polynomial skew products. Conformal Geometry & Dynamics 15 (2011), pp. 7–19.