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We consider Axiom A polynomial skew products on C2 of degree d ≥ 2. The stable
manifold of a hyperbolic fiber Julia set gives a holomorphic motion of the fiber Julia set. In
this note, we will show that this holomorphic motion is described by the fiberwise Böttcher
coordinates.

1 Introduction

In this note, we consider regular polynomial skew products on C2 of degree
d ≥ 2 of the form :

f(z, w) = (p(z), q(z, w)).

If we set qz(w) = q(z, w), the k-th iterate of f is written by

fk(z, w) = (pk(z), Qk
z(w)) := (pk(z), qpk−1(z) ◦ · · · ◦ qz(w)).

Hence the dynamics on the z-plane is that of p. We call the z-plane base space.
The planes {z}×C are called fibers. Then f preserves the family of fibers and
this enables us to investigate the dynamics.

Let Kp and Jp be the filled Julia set and Julia set respectively of the poly-
nomial p and Ap be the set of attracting periodic points of p. Let K be the
set of points with bounded orbits and put Kz := {w ∈ C; (z, w) ∈ K}. The
fiber Julia set Jz is the boundary of Kz. The second Julia set J2, which is a
right analogue of the Julia set of a one-dimensional map, is characterized by
J2 = ∪z∈Jp{z} × Jz. If f is Axiom A, then the map z �→ Jz is continuous in
Jp, hence J2 = ∪z∈Jp{z} × Jz. See Jonsson [J].
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The stable and unstable sets of a saddle set Λ are respectively defined by

W s(Λ) = {y ∈ C2; fn(y) → Λ},
W u(Λ) = {y ∈ C2;∃ prehistory ŷ = (y−k) → Λ}.

Let ΛAp = ∪z∈Ap{z} × Jz be the saddle set in Ap × C. Since the map f
preserves the vertical fibers, it is easy to see that W u(ΛAp) ⊂ Ap×C. Then the
local stable manifold W s

loc(x) of x = (z0, w0) ∈ ΛAp is transversal to the fiber.
That is, there exist � > 0 and a holomorphic function ϕ(z, w0) in D(z0, �) such
that

W s
loc(x) = {(z, ϕ(z, w0)); z ∈ D(z0, �)}.

This function ϕ gives a holomorphic motion of Jz0 over D(z0, �), that is,

(1) ϕ(z0, ·) = idJz0
,

(2) ϕ(·, w) is holomorphic in D(z0, �) for each fixed w ∈ Jz0 ,
(3) ϕz = ϕ(z, ·) is injective for each fixed z.

By the λ-lemma, ϕ : D(z0, �) × Jz0 → C is continuous.
In this note, we will show that this holomorphic motion is expressed by the

fiberwise Böttcher coodrinates Φz. They are conformal maps in a neighborhood
of the point at ∞ satisfying

Φp(z) ◦ qz(w) = Φz(w)d.

Note that, if Jz is connected, then Φz extends to a conformal map Φz : C\Kz →
C \ D. Let φz be the inverse of the map Φz.

2 Continuation of the holomorphic motion

The following is the main theorem of this note.

Theorem 2.1. Let f be an Axiom A polynomial skew product and z0 ∈ Ap.
Suppose that Jz0 is connected and that the holomorphic motion ϕz : Jz0 → Jz

exists for z ∈ U for a domain U in the immediate basin U0 of z0. Then
φz = ϕz ◦ φz0 on ∂D for z ∈ U .
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Define a fiberwise external ray Rz(θ) with angle θ by

Rz(θ) = φz({re2πiθ; r > 1}).

Then Theorem 2.1 says that, if the rays Rz0(θj), 1 ≤ j ≤ k, land at a same
point, so do the rays Rz(θj), 1 ≤ j ≤ k, for any z ∈ V . Recently Comerford
and Woodard obtained a same result in [CW] for analytic families of bounded
polynomial sequences.

If f is vertically expanding over Kp, we can say more : these landing
properties are preserved throughout U0. As will be seen in Example 2.1, a new
landing relation may appear as z approches the bounday ∂U0.

To prove Theorem 2.1, we need a notion in Pommerenke [P]. A family
{Az; z ∈ V } of compact sets in C is uniformly locally connected if, for any
� > 0, there exists δ > 0 such that for any z ∈ V and for any a, b ∈ Az

with |a − b| < δ, there exists a connected subset B ⊂ Az with a, b ∈ B and
diamB < �.

Proposition 2.1. For any compact set V in U , the family {Jz; z ∈ V } is
uniformly locally connected.

Put ψz = ϕ−1
z : Jz → Jz0 for z ∈ U .

Lemma 2.1. For any δ1 > 0, there exists δ > 0 such that, for any z ∈ V and
a, b ∈ Jz with |a − b| < δ, we have |ψz(a) − ψz(b)| < δ1.

proof. We prove the lemma by contradiction. Suppose that there exists
δ1 > 0 such that, for any n ≥ 1, there exist zn ∈ V and an, bn ∈ Jzn satisfying

|an − bn| < 1/n, |ψzn(an) − ψzn(bn)| ≥ δ1.

Put ãn = ψzn(an), b̃n = ψzn(bn) ∈ Jz0 . We may assume that

zn → z∞, an → a∞, bn → b∞, ãn → ã∞, b̃n → b̃∞.

Then a∞ = b∞ ∈ Jz∞ , therefore

ϕz∞(ã∞) = lim
n→∞

ϕzn(ãn) = lim
n→∞

an = lim
n→∞

bn = lim
n→∞

ϕzn(b̃n) = ϕz∞(b̃∞).
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This contradicts the injectivity of ϕz∞ because |ã∞− b̃∞| ≥ δ1. This completes
the proof of Lemma 2.1.

proof of Proposition 2.1. By the equicontinuity of the family {ϕz; z ∈ V },
for any � > 0, there exists �1 > 0 such that diamϕz(B) < � if diamB < �1.
By the local connectivity of Jz0 , for this �1, there exists δ1 > 0 such that, for
any ã, b̃ ∈ Jz0 with |ã − b̃| < δ1, there exists a connected subset B ⊂ Jz0 with
diamB < �1 containing ã, b̃. By Lemma 2.1, for this δ1, there exists δ > 0 such
that, for any z ∈ V and a, b ∈ Jz with |a−b| < δ, we have |ψz(a)−ψz(b)| < δ1.

For any given � > 0, choose �1, δ1 and δ as above. Then, for any z ∈ V
and for any a, b ∈ Jz with |a − b| < δ, there exists a connected set B ⊂ Jz0

with diamB < �1 containing ψz(a), ψz(b). The set ϕz(B) ⊂ Jz is connected,
contains a, b and satisfies diamϕz(B) < �. Thus the family {Jz; z ∈ V } is
uniformly locally connected. This completes the proof of Proposition 2.1.

proof of Theorem 2.1. Note that, for any w ∈ C \ D, the map z �→ φz(w)
is continuous in U0. From the assumption, Jz0 is locally connected, hence so is
Jz for z ∈ U . By Proposition 2.1, the family {Jz; z ∈ V } is uniformly locally
connected. By Theorem 9.11 in [P], φz → φz0 uniformly on C \ D as z → z0.

Now, take a = φz0(e
2πiθ) ∈ Jz0 . Then, since

Qn
z ◦ φz(e

2πiθ) = φzn(e2πidnθ), zn = pn(z),

for any n, it follows that

d(Qn
z ◦ φz(e

2πiθ), Qn
z0

(a)) = d(φzn(e2πidnθ), φpn(z0)(e
2πidnθ)) → 0.

Thus (z, φz(e
2πiθ)) ∈ Wa ∩ ({z}×C), hence φz(e

2πiθ) = ϕz(a) = ϕz ◦φz0(e
2πiθ).

This completes the proof of Theorem 2.1.

If f is vertically expanding over Kp, we can show a stronger result.

Corollary 2.1. If f is vertically expanding over Kp, both functions φz and ϕz

extend continuously to z ∈ U0, hence φz = ϕz ◦ φz0 holds for z ∈ U0.

Example 2.1. f(z, w) = (z2, w2 + cz).

If we set gc(w) = w2 + c, then fn(z, w) = (z2n

, z2n−1

gn
c (

w√
z
)). We have

Cp = {0} = Ap. It easily follows that f is Axiom A (resp. connected) if and

Holomorphic motion of fiber Julia sets
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only if gc is hyperbolic (resp. Jgc is connected). Thus, f is vertically expanding
over Kp if c lies in a hyperbolic component of the Mandelbrot set.

Let φc : C \D → C \Kgc be the inverse Böttcher coordinate of gc. Then it
follows that

ϕz(w) = φz(w) =
√

zφc(
w√
z
), z ∈ D,

which depends holomorphically on z because φc is an odd function. The in-
ternal ray Ra(t) for a ∈ J0 = ∂D is written as

Ra(t) = {(re2πit,
√

reπitφc(
a√
reπit

)); r < 1}.

It lands at the point (e2πit, eπitφc(ae−πit)) ∈ J2. The fiber Julia set Jz = φz(∂D)
is a Jordan curve if z ∈ D, while it is a rotation of the Julia set Jc if z ∈ ∂D.
Thus, pinching occurs as z approaches ∂D. See the following figures.

Figure 1: Fiber Julia sets (c = −1, from left : z = 0.98, 0.999, 0.99999, 1)

Figure 2: Fiber Julia sets (from left : z = 0.98, 0.999, 0.99999, 1)
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Deformation for Positive Characteristic Varieties by Galois theory
Kazuhisa Maehara

October 29, 2014

Abstract

In this article we shall construct a theory for defomation of non necessarily projective fibre spaces of positive
characterristic and apply it to an analogy of Iitaka-Viehweg conjecture of positive characteristic([Iita],[Vieh]).

1 Introduction
We construct a deformation theory by making use of axiomatic Galois theory in Seminaire Geometrie Algebrique
1([SGA]) developed by Grothendieck. We obtain the following:

Theorem 1 Let k be an algebraically closed field of characteristic p > 0 and X a projective variety over k.Then
the set of projective varieies Y of general type whose m-th pluri-canonical invertible sheaves ω⊗m

Y give birational
embedding into projective spaces such that there exist dominant separable rational maps from X to Y is finite.

Theorem 2 Let k be an algebraically closed field of characteristic p > 0. Let f : X → S be a connected and
geometrically irreducible and generically separable morphism between connected and irreducible and generically
separable projective schemes over k which we call these varieties. Assume that X is a normal variety and that S is
regular. Let ω

[m]
X/S denote the double dual of the m-th tensor power of ωX/S and F̂ the double dual of a torsion free

sheaf F . If κ(Xη̄) ≥ 0 where η̄ is the generic geometric point of S,then

max
m>1

(κ(d̂etf∗ω
[m]
X/S)) ≥ var(X/S)

Theorem 3 Let S be a geometrically irreducible and connected separable scheme over SpecZ and X , Y schemes
which are geometrically irreducible and connected separable over S and f : X → Y a geometrically surjective
separable morphism over S. Assume that X is isomorphic to a product X0 ×SpecZ S, where X0 is a geometrically
irreducible and connected separable scheme over SpecZ and that for any geometric point s̄ over each point s of S,
Aut(Ys̄) is a locally algebraic group over s̄. Then there exists a connected separable scheme Y0 over SpecZ such that
YS′ is isomorphic to a product Y0 ×SpecZ S′ where S′ is a scheme surjective onto S.

2 Preliminary
To apply it to our problems, recall a Grothendieck-Galois theory in expose V le Groupe Fondamental SGA1([SGA])
as preliminary which is axiomatic and has a potentially wide application, though it seems to be not yet enough
to apply it even in the area of algebraic geometry. Let C be a category and F a covariant functor from C to the
category Sets of sets.

G1 C has a terminal object and the fibre product of two objects over a third object in C, In other words, there
exists a finite limit in C.

G2 The finite sum in C exists. Hence there exist the initial object ∅C and the quotient of an object of C by a
finite group of automorphisms. In other words there exist the finite inductive limits in C.
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