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Holomorphic motion of fiber Julia sets

Shizuo Nakane *

We consider Axiom A polynomial skew products on C? of degree d > 2. The stable
manifold of a hyperbolic fiber Julia set gives a holomorphic motion of the fiber Julia set. In
this note, we will show that this holomorphic motion is described by the fiberwise Bottcher

coordinates.

1 Introduction

In this note, we consider regular polynomial skew products on C? of degree
d > 2 of the form :

f(z,w) = (p(2), 4(z,w)).
If we set ¢.(w) = q(z,w), the k-th iterate of f is written by

i (zw) = (0"(2), Q2 (w)) = (p(2), gpr-12y © -+ - 0 ga ()

Hence the dynamics on the z-plane is that of p. We call the z-plane base space.
The planes {z} x C are called fibers. Then f preserves the family of fibers and
this enables us to investigate the dynamics.

Let K, and J, be the filled Julia set and Julia set respectively of the poly-
nomial p and A, be the set of attracting periodic points of p. Let K be the
set of points with bounded orbits and put K, := {w € C;(z,w) € K}. The
fiber Julia set J, is the boundary of K,. The second Julia set .Jy, which is a
right analogue of the Julia set of a one-dimensional map, is characterized by
Jo = Uses {2} x J.. If fis Axiom A, then the map z — J, is continuous in
Jp, hence Jo = U.c; {2} x J.. See Jonsson [J].
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Holomorphic motion of fiber Julia sets

The stable and unstable sets of a saddle set A are respectively defined by

We(A) = {yeC%f(y) — A},
W*(A) = {y & C?% 3 prehistory § = (y_x) — A}.

Let Ay, = U.ea, {2} x J. be the saddle set in A, x C. Since the map f
preserves the vertical fibers, it is easy to see that W*(A,,) C A, x C. Then the
local stable manifold W} () of x = (29, wo) € Ay, is transversal to the fiber.
That is, there exist € > 0 and a holomorphic function ¢(z, wy) in D(zy, €) such
that

Wie(x) = {(z, (2, wo)); 2 € D(20,€)}.
This function ¢ gives a holomorphic motion of .J,, over D(zy, ¢), that is,
(1) ¢(20,-) = idy.,
(2) ¢(-,w) is holomorphic in D(zy, €) for each fixed w € J,,,
(3) ¢. = ¢(z,-) is injective for each fixed z.

By the A-lemma, ¢ : D(zp,€) x J,, — C is continuous.

In this note, we will show that this holomorphic motion is expressed by the
fiberwise Bottcher coodrinates ®,. They are conformal maps in a neighborhood
of the point at oo satisfying

D) 0 ¢z (w) = . (w)?,

Note_ that, if J, is connected, then ®, extends to a conformal map ¢, : C\ K, —
C\ D. Let ¢, be the inverse of the map ®,.

2 Continuation of the holomorphic motion
The following is the main theorem of this note.

Theorem 2.1. Let f be an Axiom A polynomial skew product and zy € A,.
Suppose that J,, is connected and that the holomorphic motion ¢, : J,, — J.
exists for z € U for a domain U in the immediate basin Uy of zo. Then
¢, =00, ondD for z € U.
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Define a fiberwise external ray R,(f) with angle 6 by
R.(0) = ¢.({re*™;r > 1}).

Then Theorem 2.1 says that, if the rays R, (6;), 1 < j < k, land at a same
point, so do the rays R.(6;), 1 < j <k, for any z € V. Recently Comerford
and Woodard obtained a same result in [CW] for analytic families of bounded
polynomial sequences.

If f is vertically expanding over K,, we can say more : these landing
properties are preserved throughout Uy. As will be seen in Example 2.1, a new
landing relation may appear as z approches the bounday 0Uj.

To prove Theorem 2.1, we need a notion in Pommerenke [P]. A family
{A,;z € V} of compact sets in C is uniformly locally connected if, for any
€ > 0, there exists 6 > 0 such that for any z € V and for any a,b € A,
with |a — b] < §, there exists a connected subset B C A, with a,b € B and
diam B < e.

Proposition 2.1. For any compact set V in U, the family {J,;z € V} is
uniformly locally connected.

Put ¢, =@ ' 1 J, — J,, for z € U.

Lemma 2.1. For any 6, > 0, there exists 6 > 0 such that, for any z € V' and
a,b e J, with |a —b| < 6, we have |¢,(a) — 1.(b)| < ;.

proof.  We prove the lemma by contradiction. Suppose that there exists
01 > 0 such that, for any n > 1, there exist z, € V and a,,b, € J,, satisfying

|a’n - bn| < 1/”? |¢zn(an) - wzn(bn” Z 51-

Put a, = 1., (an), by = ., (by) € J.,. We may assume that

Zn 77 ooy Gp T oo, bn - b<>07 dn - dooa bn - boo

Then ay, = by € J,_, therefore

oo ?

... () = lim ¢, (a,) = lim a, = lim b, = lim gpzn(l;n) =@, (bs).

n—~oo n—oo n—oo
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This contradicts the injectivity of ¢, _ because |ay — 500] > 07. This completes
the proof of Lemma 2.1. m

proof of Proposition 2.1. By the equicontinuity of the family {p,;z € V},
for any € > 0, there exists €; > 0 such that diam ¢.(B) < € if diam B < €.
By the local connectivity of .J,,, for this €, there exists 6; > 0 such that, for
any a,b € J,, with |@ — b| < &;, there exists a connected subset B C .J,, with
diam B < ¢ containing @, b. By Lemma 2.1, for this d;, there exists § > 0 such
that, for any z € V and a,b € J, with |a—b| < 0, we have |, (a) —1),(b)] < 0;.

For any given € > 0, choose €1,0; and ¢ as above. Then, for any z € V
and for any a,b € J, with |a — b| < J, there exists a connected set B C J,,
with diam B < € containing 1.(a),.(b). The set ¢.(B) C J, is connected,
contains a,b and satisfies diam p,(B) < e. Thus the family {J,;z € V} is
uniformly locally connected. This completes the proof of Proposition 2.1. [

proof of Theorem 2.1. Note that, for any w € C \ D, the map z — ¢, (w)
is continuous in Up. From the assumption, .J,, is locally connected, hence so is
J, for z € U. By Proposition 2.1, the family {J,;z € V'} is uniformly locally
connected. By Theorem 9.11 in [P], ¢, — ¢., uniformly on C\ D as z — z.

Now, take a = ¢, (™) € J,,. Then, since

QTZz o ¢Z(e2m'9) — ¢zn (€2m‘d“9)’ 2, = pn(z),

for any n, it follows that

A(Q2 0 6-(¢™), Q2 (@) = (620 (E0"), Byray (24°%)) = 0.

Thus (2, ¢.(e2™)) € W,N ({2} x C), hence ¢. (™) = ¢.(a) = ¢. o ¢, (e*?).
This completes the proof of Theorem 2.1. O]

If f is vertically expanding over K),, we can show a stronger result.

Corollary 2.1. If f is vertically expanding over K,, both functions ¢, and ¢,
extend continuously to z € Uy, hence ¢, = ¢, o ¢, holds for z € Uy.

Example 2.1. f(z,w) = (2%, w? + cz2).

If we set g.(w) = w? + ¢, then f*(z,w) = (zzn,zw_lg"(%)). We have
z

[

C, = {0} = A,. It easily follows that f is Axiom A (resp. connected) if and
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only if g. is hyperbolic (resp. J,, is connected). Thus, f is vertically expanding
over K, if c lies s In a hyperbolic component of the Mandelbrot set.
Let ¢.: C\ D — C\ K|, be the inverse Bottcher coordinate of g.. Then it

follows that w
QOZ(U}) = ¢z(w) = \/z¢c($)a

which depends holomorphically on z because ¢. is an odd function. The in-
ternal ray R,(t) for a € Jy = 0D is written as

zeD,

Ro(t) = {(re”™, V/re™do(—=—3))ir < 1}.

\/_ it

It lands at the point (2™, ™ ¢, (ae™™")) € Jo. The fiber Juliaset J, = ¢,(0D)
is a Jordan curve if z € D, while it is a rotation of the Julia set J. if z € JD.
Thus, pinching occurs as z approaches JD. See the following figures.

Figure 1: Fiber Julia sets (¢ = —1, from left : z = 0.98,0.999,0.99999, 1)

Figure 2: Fiber Julia sets (from left : z = 0.98,0.999,0.99999, 1)
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