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Abstract

In this article we research sheaves of groupoids representation of category of algebraic normal varieties, in
special a category of spectra of fields. When the ground field is algebraically closed, a spectrum of a function
field with the locally algebraic automorphism group dominated by a spectrum of a trivial function field is also a
spectrum of a trivial function field. Next, we propose another approach for obtaining minimal models of complex
projective varieties.

1 Introduction

The general theory of Grothendieck Homotopy theory and étale fundamental theory give us another description of
algebraic commutative and non-commutative schemes. We shall prove that if a fibre space with the generic general
fibre whose automorphic groups are locally algebraic and surjectively dominated by a product fibre space, then the
fibre space is also a product. This especially includes a fibre space consisted of spectra of fields. In this paper the
last statement is proved on the basis that it is sufficient to recover the fields from the absolute Galois groups acting
on their algebraically separable closures, i.e., groupoids instead of regarding the groups just as abstract groups. In
the next section we propose a program for obtaining minimal models for complex algebraic varieties.

2 Preliminary

2.1 The theory of the homotopy type of Grothendieck[Malt],[Cisinski], [S2], [S1]

We briefly prepare an explanation of Grothendieck homotopy theory after manuscript ”Pursuing stacks” 1983
([Malt],[Cisinski], [S2]) to apply it to small category of spectra of fields and algebraic varieties. The homotopical
category Hot is originally the category of the CW-complexes. The homotopical category is the category whose
objects are topological spaces, and whose morphisms are homotopy equivalence classes of continuous maps. Two
topological spaces X and Y are isomorphic in this category if and only if they are homotopy-equivalent. This Hot is
equivalent to the category localizing the category of all the topological spaces and continuous maps by topological
weak equivalences W∞ such that

• W∞ is a part of the continuous

• π0(f) : π0(X)→ π0(Y ) are bijections.
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• πn(f, x) : πn(X,x)→ πn(Y, f(x)) are isomorphisms of groups for n ≥ 1.

That is
Hot ∼= W−1

∞ Top.

The category of simplexes is the category the objects of which

∆m = {0, 1, · · · ,m}

and the morphisms of which are increasing maps. The category ∆̂ of the presheaves over ∆ is called the category of
the simplicial sets. We have a unique couple of adjoint functors,i.e., topological realization and singular simplicial
set functor

| · | : ∆̂→ Top, S : Top→ ∆̂

A simplicial weak equivalence is a morphism of simplicial sets the topological realization of which is a homotopy
equivalence. This simplicial equivalence is described W∞. Then the topological realization functor and the singular
simplicial set functor are compatible with weak equivalences and induce categorical equivalences

W−1
∞ ∆̂→W−1

∞ Top, W−1
∞ Top→W−1

∞ ∆̂

which are quasi-inverses.
The homotopical category Hot can be obtained as a localization of the 2-category Cat the objects of which are

the small categories and the morphisms of which are the functors. There are a couple of adjoint functors, i.e., the
categorical realization functor and the nerf functor,

c : ∆̂→ Cat, N : Cat→ ∆̂

where the restriction of c to ∆ is the inclusion ∆ ⊂ Cat and the simplicial set

(N(C))m = HomCat(∆m, C), m ≥ 0

the ordered set ∆m being as a category. A categorical weak equivalence is defined to be a functor the nerf of which
is a simplicial weak equivalence. Let W∞ be the part of Fl(Cat) which are the categorical equivalences. The nerf
functor is compatible with categorical weak equivalence and induces a categorical equivalence:

W−1
∞ Cat→W−1

∞ ∆̂

However, the categorical realization functor is not compatible with the categorical weak equivalences. A quasi-
inverse functor to N

Simpl : ∆̂→ Cat

, where it associates a simplicial set K to a category of simplexes Simpl(K). The Simpl functor induces a categorical
equivalence

W−1
∞ ∆̂→W−1

∞ Cat

which is a quasi-inverse to the nerf functor N . A categorical weak equivalence is characterized by Artin-Mazur
equivalence. Let u : A → B be a functor of small categories and F a locally constant over B̂. A morphism of
toposes (u∗, u∗) : Â→ B̂ is Artin-Mazur equivalence if and only if

Hm(B̂, F )→ Hm(Â, u∗F )

ACADEMIC REPORTS Fac. Eng. Tokyo Polytech. Univ. Vol. 35 No.1 (2012) 20



are isomorphisms for m ≥ 0 and any locally constant sheaf F .( as sets for m = 0, as groups for m = 1, as abelian
groups for m ≥ 2.) Let A be a small category and iA : Â→ Cat (F → A/F ) Then

WÂ = i∗AW∞

A couple of adjoint functors
iA : W−1

A Â→W−1
∞ Cat

and

i∗A : Hot = W−1
∞ Cat→W−1

Â
Â

, where
iA
∗ : Cat→ ÂC 7→ (a 7→ HomCat(A/a,C))

are categorical equivalences, quasi-inverses each other if and only if A is said to be a weak test category. A morphism
u : A→ B of Cat is aspheric if u/b : A/b→ B/b is a weak equivalence for any object b of B. Grothendieck says A
is a weak test category if and only if for any category with a final object i∗A is aspheric, i.e., i∗A in W∞.

A category A is a local test category if and only if for any object a A/a is a weak test category.
A category A is a test category if and only if A is a weak test category and a local test category at once.
A test category is as good as the category of simplicial sets ∆.

Theorem 1 (Theorem A of Quillen’s) If u : A → B is a morphism of Cat such that u/b : A/b → B/b is in W∞

for any object b of B, then u is in W∞.

Definition 1 (Weak Basic Localizer) The weak basic localizer W is characterized by the following conditions.

• (La weak saturation) the identity is in W . If two morphisms of a commutative triangle in W , then the third
of them is in W . If i : A ⊂ B , r : B → A and r ◦ i = idA, then ir ∈W implies i ∈W .

• (Lb final object) If A is a small category with a final object, then the unique functor A→ {pt} is in W .

• (Lc Theorem A of Quillen’s) If u : A→ B is a morphism of Cat such that u/b : A/b→ B/b for all objects b
of B, then u is in W .

Definition 2 (Basic Localizer) The basic localizer W is characterized by the following conditions.

• (La weak saturation) the identity is in W . If two morphisms of a commutative triangle in W , then the third
of them is in W . If i : A ⊂ B , r : B → A and r ◦ i = idA, then ir ∈W implies i ∈W .

• (Lb final object) If A is a small category with a final object, then the unique functor A→ {pt} is in W .

• (LC relative Theorem A of Quillen’s) Given a commutative triangle in Cat

A
u //

v
��@

@@
@@

@@
B

w
��~~
~~
~~
~

C

and if u : A→ B is a morphism of Cat such that u/c : A/c→ B/c for all objects c of C, then u is in W .
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Given a weak basic localizer W , we can do an analogue to an original categorical weak equivalence W∞. We
have analogous notions, HotW=W−1Cat, W -weak test categories, W -local test categories, W -test categories.

Kan extensions are universal constructs in category theory.

Definition 3 Let A,B,C be three categories and F : A→ B, G : A→ C.

A
F //

G

��

B

R

M

ww

R

��~~
~~
~~
~

C

The right Kan extension of G along F consists of a functor R : B → C and a natural transformation η : RF → G

which is co-universal so that for any functor M : B → C and a natural transformation µ : MF → G, there exists
uniquely a natural transformation δ : M → R in the following commutative diagram.

RF
η

}}{{
{{
{{
{{

G MF
µoo

δF

bbFFFFFFFF

The left Kan extension of G along F is dual to the right Kan extension.

A
F //

G

��

B

Mww

L

��~~
~~
~~
~

C

LF
δF

""F
FF

FF
FF

F

G µ
//

η

==||||||||
MF

A theory of Kan homotopical extensions is the concept of Grothendieck theory of derivaters. A localizer is a
couple of (M,W ) such that M is a category and such that W is a part of morphisms Hot(M,W )(I) is a localization
of the category Func(I,M) of functors from I to M by induced W argument-wise on natural transformations. For
any functor u : I → J between small categories we have an inverse image functor u∗ : Hot(M,W )(J)→ Hot(M,W )(I)

I
u //

��@
@@

@@
@@

@ J

~~~~
~~
~~
~~

M

If there exists a structure of a Quillen,s closed model category on M whose weak equivalences are W and if M
admits small inductive limits (resp. projective limits), then there exist the left Kan extensions (resp. the right Kan
extensions). For example the localizer (Cat,W∞) is the one. For every functor F : I → Cat, we obtain a cofibred
category by Grothendieck construction which is called an integration of F along I;∫

I

F → I
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From the following diagram ∫
I
F

��

u! //
∫
J
F

��
I

u // J

we obtain
u! : Hot(Cat,W )(I)→ Hot(Cat,W )(J)

induced by localization. This is a left adjoint functor to

u∗ : Hot(Cat,W )(J)→ Hot(Cat,W )(I)

The dual notion of integration is co-integration, denoted by 5IF = (
∫
Io
F o)o for a contra-variant functor F : Io →

Cat.
Given a basic localizer W , Grothendieck says a functor between small categories u : A→ B (resp. B′ → B ) is

W -proper (resp. W -smooth) if for any cartesian square

A′
w //

u′

��

A

u

��
B′ v

// B

the base change morphism

u′!w
∗ → v∗u!

is an isomorphism, where u! : Hot(Cat,W )(A) → Hot(Cat,W )(B) and u′! : Hot(Cat,W )(A′) → Hot(Cat,W )(B′) are
homotopical left Kan extensions. They are dual each other.

Let A be a small category and a functor
jA : Â→ Cat/A

defined by jAX = (A/X,A/X → A). Since j−1
A (W/A) = WÂ, the functor jA induces

jA : HW Â→ HotWCat//A = (W/A)−1Cat/A

which is called the category of W -types of locally homotopical constants over A and HW = W−1.

Proposition 1 Let W a basic localizer and A a W -local test category. Then

jA : HW Â→ HotWCat//A

is a categorical equivalence.

Â
jA //

dis

**UUU
UUU

UUU
UUU

UUU
UUU

UU

p∗

��

Cat/A

ˆA×∆ Hom(Ao, Cat)
N

oo

Ξ′
OO

Ξ′ : Hom(Ao, Cat)→ Cat/A F 7→ 5AF

Ξ : Cat/A→ Hom(Ao, Cat) a 7→ a\C
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Representations of a presheaf of small categories over a category. Let A be a small category and A a presheaf of
small categories over a category A. The category Rep(A) of representations of A as follows. An object of Rep(A)
is a couple (X, ξ) such that Xa is a presheaf over Aa for each object a of A and for every morphism α : a → a′ a
morphism of presheaves ξα : Xa′ → A∗aXa for each object a of A and ξ1a = 1Xa . We have a following picture;

Xa Xa′ → A∗αXa

Aa Aa′Aα
oo

a
α // a′

For any composed morphisms of A
a

α // a′
α′ // a′′

we have the following commutative diagram

Xa′′
ξα //

ξ′αα

11A∗α′Xa′
A∗
α′ξα// A∗α′A∗αXa

To each morphism φ : (X, ξ) → (Y, η) associates a morphism φa : Xa → Ya for any object a of A such that for
any α : a→ a′ the following square is commutative.

Xa′

φα′

��

ξα // A∗αXα

A∗αφα
��

Ya′ ηα
// A∗αYα

Let A be a small category, G a presheaf of small groupoids over A and BG = 5G the classifying category
associated to G.

Lemma 1 Let A be a small category and A a presheaf of small categories over A. Then we obtain the canonical
categorical equivalence.

5̂A ∼= Rep(A)

Theorem 2 (Grothendieck) Let W be a basic localizer and u : A → B a W -smooth functor. Then if B is a
W -local test category, A is also a W -local test category.

We here assume an axiom of great cardinality which is said to be the principle of Vopenka. Hence every localizer
over a small category is accessible.

Corollary 1 Let W be an accessible basic localizer and A a W -local test category and A a presheaf of small
categories over A. Then the category of A-representations admits a structure of closed model category with gen-
erated cofibrant the cofibrations of which are the monomorphisms and the weak equivalences of which are the W -
equivalences. If moreover W is proper, then this structure is proper. There exists a categorical equivalence between
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the homotopical category HWRep(A) and the category HotW //5A of the locally constant W -homotopy types over
5A.

HotW //5A ∼= 5A

Given a presheaf of small groupoids G over a small category A, we have a classifying space BG of G with a
universal G-torsors

EG→ BG

From now on suppose a basic localizer is accessible and that A is a W -local test category.
Since EG is a G-torsor over BG and since the morphism from EG to the final object of G is a right proper

W -equivalence. We can construct such a classifying space by choosing locally cofibrant representation EG that the
morphism from EG to the final object of Rep(G) is a trivial fibration in the meaning of the structure of the category
of local closed models with respect to W . We can hence define BG as the quotient of EG under action of G. The
forgetful functor RepG/EG→ RepG is a left Quillen equivalence for the categorical structures of local or injective
closed models with respect to W .

There exists a left Quillen equivalence

Rep(G)/EG→ Â/BG (X,X → EG 7→ (G\,G\ → BG

Since we have a categorical equivalence

HWRep(G)/EG ∼= HW Â/BG

and a canonical categorical equivalence

HWRep(G)/EG ∼= HWRep(G)

we have a descent functor which is a categorical equivalence

Desc : HWRep(G)←→ HW Â/BG

The descent functor admits a monodromy functor as quasi-inverse

Mon : HW Â/BG←→ HWRep(G)

defined by
(X,X → BG Mon // X ×BG EG

The fact that functors descent and monodromy which are quasi-inverses can be considered as a generalization of
the topological Galois theory giving a correspondence between the category of covering of a locally simply connected
space and the category of its fundamental groupoid representations.

3 Groupoids for algebraic normal varieties

Let us consider the 2-category of categories of the sheaves of groupoids representations whose objects are the sheaf
of groupoids representation categories and whose morphisms are functors compatible with sheaf of groupoid action.
Apply it to the category Sch of locally noetherian conncted normal schemes and take a sheaf G of groupoids as
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a sheaf of categories whose objects are universal schemes over opens and whose morphisms are Grothendieck etale
fundamental groups acting on universal schemes.([EGA],[SGA],[GG], [TAM],[RBZL], [Shatz]) Then

Rep(G) = 5̂G

HWRep(G) ∼= HW ˆSch/5G

HWRep(G) ∼= HotW //5G

Let X be a locally noetherian connected normal scheme and replace Sch by Sch/X. We obtain

Rep(G|X) = ˆ5G|X

HWRep(G|X) ∼= HW ˆSch/X/5G|X

HWRep(G|X) ∼= HotW //5G|X

Hence X is uniquely defined by G|X. G|X is determined by the absolute Galois groups of all points on X.

Proposition 2 Let k be a ground field. Let K be a function field over k and Ks a separable closure of K in
an algebraically closed extension of K. Then to each automorphism σ ∈ Autk(K) associates an automorphism of
Gal(Ks/K) such that

σ ∈ Autk(K) // (g 7→ gσ) ∈ Aut(Gal(Ks/K))

which is a mono-morphism. Here extensions are given for each automorphism of Autk(K).

Proof 1 Let Autk(Ks,K) = {g|g ∈ Autk(Ks), g(K) ⊂ K}. We have a natural homomorphism

ϕ : Autk(Ks,K)→ Autk(K).

Then Gal(Ks/K) = ker(ϕ). Note that Gal(Ks/K) is center-free. Thus for any σ 6= id of Autk(K) there exists an
extension σ̄ since Ks/K is algebraic such that g 7→ gσ = σ̄−1gσ̄ is non-trivial automorphism. g 7→ gσ = g for all
g implies σ = id. Hence gα = gβ for all g implies α = β. Thus σ 7→ (g ∈ Gal(Ks/K) 7→ gσ ∈ Gal(Ks/K)) is
injective.([Breen1], [Breen2],[Gir], [Rou],[Se])

Proposition 3 Let G denote AutK(Ks) = Gal(Ks/K).

1. there exists an exact sequence

1→ AutK(Ks)→ Autk(Ks,K)→ Autk(K)→ 1

2. In the following diagram, the vertical homomorphism is surjective and the horizontal homomorphism is defined
by gσ for an element σ of Autk(Ks,K) for any element g of AutK(Ks). Here σ̄ is an extension when σ is
an element of Autk(K).

σ 7→ (g 7→ gσ = σ̄−1gσ̄)

Autk(Ks,K) //

��

Aut(AutK(Ks))

Autk(K)
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3.
Autk(Ks) = lim

←→ψ

Autk(Ks, ψ(K))

where ψ runs all Autk(Ks).

4.
AutK(Ks) /Autk(Ks,K)

5.
Autψ(K)(Ks) /Autk(Ks, ψ(K))

6. There exists a surjection
Aut(Gal(Ks/K))→ Autk(Ks)

which is a fibre space with the same fibre Gal(Ks/K).

Proof 2 1. Since Ks/K is separably algebraic, every automorphism of Autk(K) is able to have an extension to
Autk(Ks) which keeps K into itself. Hence we have a surjective homomorphism

Autk(Ks,K)→ Autk(K)

whose kernel is AutK(Ks). In fact K is a fixed field by action Gal(Ks/K) on Ks.

2. From (1) it is obvious.

3. It follows from (1) and (2) replacing K by ψ(K).

4. From (1) it follows immediately.

5. The proof is the same argument as (4).

6. Since Autk(ψ(K)) is isomorphic to Autk(K) and

Autk(Ks) = lim
←→ψ

Autk(Ks, ψ(K))

we get (6) with the aid of (1).

Definition 4 Let k be a ground field and K a function field over k. A groupoid is defined to be a category whose
object is Spec(Ks) and whose morphisms are Gal(Ks/K).

Proposition 4 Let k be an algebraically closed field. Let E be a groupoid extension of a profinite group P by a
groupoid G. Assume

• E has a group section over P . Here it is necessary to assume k is algebraically closed.

• P is the absolute Galois group ΓK = Gal(K̂/K).

• G is a groupoid whose objects is the separably algebraic closure of a field in an algebraically closed field, i.e.,
Spec(Ks) and whose morphisms are the absolute Galois groups acting the object.

• the automorphism group AutΓL(GL) of GL is locally algebraic group for every algebraic extension field L of
K. ([Mat], [MO]
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Then P is trivial extension after base-change by a finite extension K ′ of K.

Proof 3
H1(P,Aut(G)) //

))SSS
SSS

SSS
SSS

SS
H1(P, (G→ Aut(G)) //

��

H2(P,G)

H1(P,Out(G))

A given extension class is in H1(P, (G→ Aut(G)). If E has a group section, P → E, E → Inn(E) and Inn(E)→
Aut(G) gives an element H1(P,Aut(G)) ∼= Hom(P,Aut(G)). By assumption this image is a finite group. After
base-change E attains a trivial extension.

We will next show a special case, which is a prototype of the precedent. Let p be a prime number. Let K be a
subfield of a finitely generated field extension of Qp, which is called a subp-adic field. Let Gal(/K) be the absolute
Galois group Gal(K̂/K), where K̂ is the algebraic closure of K in an algebraically closed field containing K. In the
following commutative diagram

SpecK(X) //

&&NN
NN

NN
NN

NN
N

SpecK(Y )

xxppp
pp
pp
pp
pp

SpecK(S)

��
SpecK

where K(X), K(Y ) and K(S) are function fields which are regular extensions over K, i.e., X, Y , S are varieties
geometically irreducible, reduced over K, if X is trivial, i.e., X = X0 ×K S for some variety X0 over K, when
does Y decompose Y = Y0 ×K′ S for some variety Y0 over a finite extension K ′ of K? The answer is yes when
AutK̂(SpecK̂(Y )) is a group scheme which is locally of finite type, i.e., locally algebraic group.

Remark 1 1. The object of our groupoid is a universal covering of a scheme to act by the absolute Galois
group, where the universal covering must also a universal covering of such a scheme that we should prove in
the conclusion.([Zuo]) For example it is suitable for the aim to take Spec(K) as a scheme since its universal
covering Spec(Ks) is also a universal covering of any type sub-covering.

2. Let K , L be function fields over a ground field k. Assume L is an extension of K. Let Gal(Ks/K), Gal(Ls/L)
be the absolute Galois groups of K, L, respectively. Then we have a homomorphism Gal(Ls/L)→ Gal(Ks/K),
which canonically factors in the following way:

Gal(Ls/L)→ Gal(Ks/(L ∩Ks))

is a surjection.
Gal(Ks/(L ∩Ks))→ Gal(Ks/K)

is an injection.

3. Non commutative analogue above is available in the case we can define the algebraically closed fields ([Cohn]).
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4 Program for minimal models

Definition 5 ([MP], [Mori], [I], [Kaw], [Mats]) Let X be a normal variety.

1. X is said to be Cohen-Macaulay if each local ring OX,x is Cohen-Macaulay for every point x ∈ X.

2. Let ωX be the canonical sheaf over X. The ωX is defined to be i∗ΩdXreg where i : Xreg ⊂ X is an inclusion
and ΩdXreg is a sheaf of regular d-forms with d = dimX. It is a reflexive sheaf and a dualizing sheaf.

3. A canonical divisor KX is a Weil divisor associated to ωX . Further we denote

ω
[m]
X = i∗(ΩdXreg )⊗m

to which is associated a Weil divisor mKX .

4. If X is Cohen-Macaulay and there exists a number m (resp. m=1) such that mKX is Cartier, X is said to
be Q-Gorenstein (resp. Gorenstein).

Definition 6 1. Let X be a normal Q- variety. X has only terminal (resp. canonical) singularities if µi > 0
(resp. µi ≥ 0) for every i where

KX′ = π∗KX + σiµiEi

for a desingularzation π : X ′ → X and for components Ei of exceptional divisors of π. µi is called discrepancy
at Ei.

2. Let X be a normal variety and D = σidiDi an effective Q-Weil divisor such that KX +D is Q-Cartier. Then
(X,D) is called a log pair. A desingularization π : X ′ → X is said to be a log resolution if the exceptional
locus of π and f−1(Dred) have only normal crossings. We there have

KX′ = π∗(KX +D) + σaiEi

where ai are rational numbers and Ei are irreducible.

3. (X,D) is log-terminal if di < 1 and if ai > −1 for all i.

4. (X,D) is Kawamata log terminal, i.e., klt if di ≤ 1, ai > −1 and if there exists a π-ample divisor whose
support is the exceptional locus.

5. Let X be a normal (Q-factorial) projective variety with at most terminal singularities. X is said to be a
minimal variety if KX is nef.

Conjecture 1 Every function field has a minimal model variety if a projective model is not uni-ruled.

Let k be a complex number field. We shall propose a program in the following. Let X be a projective variety. Let
k(X) be a function field. There exists a function field of transcendental degree dimX − 1. Hence we have a fibre
space between projective normal varieties

f : X → S

such that there exist effective Q-Cartier divisors DX and DS over X and S, respectively such that

f∗(m(KS +DS))→ m(KX +DX)
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where (KS+DS) and (KX +DX) are Q-Cartier and some m > o.([Mum]) To prove it we make use of Iitaka-Vieweg
conjecture([Vieh], [Vieh2], [Vieh3], [Vieh4]) and its log version. In our case infinitesimal Torrelli method is useful
since relative dimension is one for a fibre space X/S. Assume κ(KX + DX) ≥ 0 over X. Then we can take DS

over S such that (KX + DX) − f ∗ (KS + DS) has no components pull-back of effective Q-divisors over S. Then
κ(KS + DS) ≥ 0 since κ(KX + DX) ≥ 0. By induction argument, we may take a model S such that KS + DS is
nef (resp. abundant). It suffices to show

f∗OX(m(KX +DX)− f∗(m(KS +DS))

is nef (resp. abundant). We construct a fibre space f : X → S in the following way. Take a product S ×P 1 and an
integral closure of S ×P 1 in the function field k(X). We rename this integral closure by X. Thus X is normal and
projective. The structure map

τ : X → S × P 1

is finite. There is a trace map
τ∗ωX → ωS×P 1

If they are true, KX +DX is nef (resp. abundant) since the tensor between f∗OX(m(KX +DX)−f∗(m(KS +DS))
and f∗(m(KS +DS)) is nef (resp. abundant) for some m > 0. Then MMC shall be a special case.
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