1

偏波保持光ファイバを用いた長距離干渉計測

中楯末三*1 村山右近*2 渋谷眞人*1

Long Distant Interferometeric Measurement Using a Polarization Maintaining Fiber

Suezou Nakadate^{*1} Ukon Murayama^{*2} Masato Shibuya^{*1}

An interferometric method for long distance position sensing is presented, which utilizes a polarization maintaining fiber and a Faraday rotator. The measurement system, principles of phase cancellation and phase calculation of orthogonal polarizations are described. Some experimental results are also given..

1. はじめに

現在、多くの位置センサは様々な所で利用されて いる。多くは自動車産業、航空機産業、精密機器産 業などである。そのため高感度でシステムの小型化 や悪条件下でのセンサが要求される。

回転角度センサにロータリーエンコーダーや 位置検出用にはリニアエンコーダがある。¹¹レーザ ー光を用いたロータリーエンコーダーは、「小型化」 と「高精度化」が両立されている。これの基本原理 は、回折光の干渉現象を利用している。しかしなが ら、多くの位置センサは光検出部と信号処理部が一 体となっており、光発生、光検出および信号処理・ 伝送に電力供給が必要である。そのために外界から の電磁ノイズに弱い面やセンサ部が過重になり、多 重化し難い点がある。そこで、この問題を解決する ためにセンサ部と信号処理部を分離し、センサ部に 光のみを用いて位置を測定するシステムを検討し た。

位置検出法には干渉計測法を使うので、光の伝 送には偏波保存光ファイバを利用する。位置検出用 の回折格子にレーザー光を照射し、2回回折してき た光を再び光ファイバで伝送し、光の直交偏光間の 位相を高精度に測定することで格子の位置情報を 得る。しかしただ単純に偏光を光ファイバ中に通す と光伝送中に外乱の影響によって、ノイズを生じて しまう。そこでファラデー素子を用いて、光伝送時 中に生じるノイズを除去し、位置を測定できるシス テムの構築を試みた。

2. 測定原理

A. 測定システムの概略

偏波保持ファイバと回折格子を用いた位置検出 装置の概略図を図1に示した。半導体レーザーから 射出された直線偏光はハーフミラーを通過し、対物 レンズ1で集光させられる。偏波保持光ファイバの 固有軸に対して直線偏光を 45 度の角度で入射させ る。偏波保持ファイバを通過した光を対物レンズ2 により平行ビームにする。次にこの光をファラデー 素子に通過させ偏光面を 45 度回転させて、回折格 子に垂直入射する。位置検出用の回折格子により回 折された±1次回折光を偏光板に通してミラーで 反射させ、再び回折格子で回折させてファラデー素 子を透過させる。この偏光板は入射光のそれぞれの 直交偏光を取り出すために使用する。ファラデー素 子を往復することで光の直交偏光面が 90 度回転し ている。つまり、光ファイバから射出した直後の偏 光面と、回折格子で2回回折した光の偏光面とは入 れ替わっている。偏波保持光ファイバを再び透過し た光はハーフミラーで反射し、対物レンズ3で空間 フィルタリングした後発散光とする。この光を複素

^{*1} 東京工芸大学工学部メディア画像学科教授 *2工学部光情報メディア工学科 現在 日本電産ネミコン(株) 2006 年 10 月 4 日 受理

図1 位置検出のための長距離干渉計の概略図

ウェッジ板と偏光板を透過させることにより、直交 偏光同士が干渉し、等間隔の干渉縞がイメージセン サ上に現れる。このイメージセンサ上の干渉縞を A /D 変換機を用いて PC 内に取り込む。イメージセン サで取り込んだデータをあらかじめ求めておいた 干渉縞の空間周波数 f₀ (単位長さ当たりの縞の本 数)を用いて、フーリエ積分値C、Sを求め、この

C、Sの逆正接から、回折格子の移動量に比例する 位相 φ を求める。

この方法では、偏波保持ファイバでの位相雑音 がキャンセルされるので、光ファイバは光の伝送路 のみとして働くことになる。

B. ファラデー素子による位相ノイズの除去²⁾

ファラデー素子による位相ノイズのキャンセル のようすを図2に示した。任意の偏光状態は楕円偏 光で表されるが簡単のために下記の説明では直線 偏光として説明する。直線偏光のレーザー光を偏波 保持光ファイバの固有軸に対し45度の傾きで入射 すると考える。この直線偏光をx軸、y軸方向の直 交偏光成分を分け、各偏光成分の位相をそれぞれの、 φ_y とする。一般的にレーザー光がファイバ内を伝搬 する際に、ファイバの曲げや温度変化などの外乱に より、各偏光成分に位相ノイズ n_x , n_y が付加され る。ファイバから射出したレーザー光をミラーでそ のまま反射したとすると、再度ファイバを透過した 後の位相は $\varphi_x + 2n_x$, $\varphi_y + 2n_y$ となり、ファイバを 往 復 し た 直 交 偏 光 間 の 位 相 差 は $\varphi_x - \varphi_y + 2n_x - 2n_y$ と な っ て ノ イ ズ 成 分 $2n_x - 2n_y$ が残る。

次に図2に示したようにファラデー素子を挿入 すると偏光面を45度回転することができる。した がってこの図のようにファラデー素子を2度透過

図2 ファラデー素子を用いた位相ノイズ除去法

させると偏光面が 90 度回転するので直交偏光が入 れ替わり、光ファイバを2回透過した後は各偏光成 分に位相ノイズ $n_x + n_y$ が付加される。したがって

このときの直交偏光の位相差 Δ は、

$$\Delta = \left(\varphi_x + n_x + n_y\right) - \left(\varphi_y + n_x + n_y\right)$$

$$= \varphi_x - \varphi_y$$
(1)

となり、光ファイバによる位相ノイズ成分が除去さ れることになる。

C. 位相差測定³⁾

光ファイバから帰っていた光の直交偏光間の

位相差を測定することにより、回折格子の移動量が 測定できる。ここでは、直交偏光間の位相差測定の 方法について述べる。

図3 複屈折ウェッジによる等間隔干渉縞の形成

偏波保持光ファイバから帰って来た光は、対物レンズにより発散光となり、図3に示すように、複屈折ウェッジ板に入射する。複屈折素子に入射したレーザー光は、素子の出口面でスネルの法則により常光 Oと異常光Eに分けられる。ここで、常光線と異常 光線のウェッジ中での屈折率をそれぞれ n_o, n_eと

し、その偏向角 θ_{a}, θ_{a} は以下のように表される。

$$\theta_i = \sin^{-1}(n_i \sin \alpha) - \alpha, \quad (i = e, o)$$
 (2)

ウェッジ板から射出後にこの常光線と異常光線が 偏光板によって干渉し、イメージセンサ上に等間隔 直線状の干渉縞ができる。この干渉縞の形状は以下 のように書ける。

$$I(x) = 1 + \cos\left[\frac{4\pi}{\lambda}\sin\left(\frac{\theta_o - \theta_e}{2}\right)x + (\varphi_y - \varphi_x)\right] \quad (3)$$

この干渉縞の光強度を下記のようにフーリエ解析 を使って処理することで、直交偏光間の位相変化を 求めることができる。 等間隔直線状の干渉縞の空間周波数 f_0 を求めた後、 干渉縞強度I(x)のフーリエ余弦値Cと正弦値Sは、

$$C = \int_{-\infty}^{\infty} I(x) \cos(2\pi f_0) dx$$

$$S = \int_{-\infty}^{\infty} I(x) \sin(2\pi f_0) dx$$
(4)

となるので、位相差 arphi はC,Sを用いて以下のように求めることができる。

$$\Delta = \varphi_y - \varphi_x = \tan^{-1} \left(\frac{S}{C} \right) \tag{5}$$

Δは干渉縞の移動距離に比例し、さらに回折格子の 移動距離に比例する。

D. 回折格子と位相の関係

回折格子で2回回折する光の干渉信号を表す式 を求める。回折格子を図4に示すように正弦波状の 透過強度を持っているとすると、この回折格子の透 過強度*t*(*x*)を次式のように書くことにする。

$$t(x) = 1 + \cos\left(2\pi f x + \varphi\right) \tag{6}$$

ここで、位相 φ が格子の移動量を表し、格子が1ピ ッチ移動すると位相が 2π [rad] 変化する。レーザ ーを照射したときの回折光は上式をフーリエ変換 したものと考えることができるので、回折光 $\tau(\xi)$ は下記のように書ける。

$$\tau(\xi) = \delta(\xi) + \frac{1}{2} \left[\delta(\xi - f) e^{i\varphi} + \delta(\xi + f) e^{-i\varphi} \right]$$
(7)

ここでとは格子より十分遠いフーリエ面での座標

軸と考える。上式の第1項が0次回折光で、第2, 第3項目がそれぞれ+1次、-1次回折光と考えられ る。ここでは各項についている位相項に注目する必 要がある。図4で右上に回折した+1次回折光はミ ラーで反射され再び+1次の方向に回折される。一 方、斜め右下に回折した-1次回折光もミラーで反 射され、再び回折格子で-1次方向に回折して上記 +1次の回折光と干渉する。したがって上式の回折 光の位相を参考にすると、2回回折した光の干渉強 度は、

$$I = \left| e^{i2\varphi} + e^{-i2\varphi} \right|^2$$

= 2 + 2 cos(4\varphi) (8)

となるので、検出される位相信号が 2π [rad]変化 したとすると、格子は1/4 ピッチ移動したことにな る。

以上では回折格子は透過型としたが、格子を反射 型とした場合でも同じように考えて、検出感度は同 じである。

図4 回折格子と位相の関係

5. 実験結果

測定システムの概略図はすでに図 1 に示した。

図5 実際の測定光学系

実際に使用した光学系を図 5 に示した。右側が光 源・検出部であり、左側にセンサー部としてピエゾ ステージ上に 1200 本/mm の回折格子が固定されて いる。半導体レーザーの波長は 653nm で出力は約 15mW である。偏波保持ファイバ長は 10m である。

ファラデー素子の影響を見るためにファラデー 素子を挿入する前と挿入後の計測時間による位相 分布を測定した。まず、得られた等間隔直線状の干 渉縞から求めたの干渉縞の周波数 f₀は 9.07 であっ

た。ファラデー素子挿入前の 100 秒間の位相揺らぎ を図 6 に示した。100 秒間に約 60 度位相が変化して いるのがわかる。

図6ファラデー素子未挿入100秒間の位相揺らぎ

次にファラデー素子を挿入し同様に 100 秒間の 位相揺らぎを測定した。その結果を図7に示したが、 約0.4度の位相揺らぎとなっており、ファラデー素 子を使わない場合と比べて150倍以上位相安定度が 改善されているのがわかる。

図7ファラデー素子挿入後100秒間の位相揺らぎ

次に、ピエゾステージに電圧を印加してその移動 量を測定した結果を以下に示す。ピエゾステージに 1サンプル点 0.02V ずつ 50 点まで増加・減少する電 圧を印加し、0.1 秒間隔で干渉縞を取得した。その

図8 ピエゾステージの移動による位相変化

結果を図8に示した。位相は±180度の範囲で変化 するのでこの位相の飛びを補正し、2π[rad]で回折 格子のピッチ/4(=208.33 [nm])に相当することを 用いてピエゾステージの移動量を求めたものを図 10に示した。

図 10 ピエゾステージの入力電圧と移動距離

この図から電圧の上昇・下降によるピエゾステージ のわずかな非線形性があることがわかる。

6. まとめ

偏波保持ファイバとファラデー素子を用いた長 距離干渉測定について検討してきた。実験結果によ ると、光ファイバによる位相雑音はかなり良く除去 できるが、長時間測定では測定位相のドリフトが起 こる。提案した測定系は、他の干渉測定と同様に短 時間の相対測定に向いているといえる。

今後は、光源の波長安定性や利用光量の向上など の改良を行って応用分野を開拓することが課題と なる。

参考文献

- 富谷雅樹、大崎基弘: "ホログラムスケールを用 いた超高精度光電式リニアエンコーダ," 光技 術コンタクト 16(2000)368-376.
- N. C. Pistoni and M. Martinelli: "Polarization noise suppression in retracing optical fiber circuits," Opt. Lett. 16(1991)711-713.
- S. Nakadate: "Phase detection of equidistant fringes for highly sensitive optical sensings. II. Experiments," J. Opt. Soc. Am. A5(1988)1265-1269.
- M. Martinelli: "A Universal compensator for polarization changes induced by birefringence on a retracing beam," Opt. Commun.. 72 (1989) 341-344.
- A. D. Kersey, M. J. Marrone and M. A. Davis: " Polarisation-insensitive fiber optic Michelson interferometer," Electronic. Lett.. 27 (1991) 519-520.