Capture components for cubic polynomials with parabolic fixed points

Shizuo Nakane*

The parameter space for a family of cubic polynomials with parabolic fixed points of multiplier one is investigated. Especially, the dynamics on the boundaries of the capture components is revealed.

1 Introduction

In this note, we will investigate the dynamics of the family

$$
\operatorname{Per}_{1}(1): P_{a}(z)=z^{3}+a z^{2}+z, \quad a \in \mathbb{C} .
$$

of cubic polynomials with parabolic fixed point 0 of multiplier one. Especially we will study the paramater space of our family. One of the two critical points of the map P_{a} belongs to the immediate basin $\mathcal{B}_{a}^{*}(0)$ of the parabolic fixed point 0 . The dynamics of P_{a} is completely determined by the behaviour of the orbit of another critical point. We are much interested in the parameters for which both critical points belong to the basin $\mathcal{B}_{a}(0)$. We call here the set of such parameters the parabolic set and its connected component a parabolic component.

Our family $\operatorname{Per}_{1}(1)$ in cubic polynomials has been investigated by many authors. Douady-Hubbard [DH] studied the discontinuity of the straightening map of cubic-like maps on $\operatorname{Per}_{1}(1)$. Milnor [M1] considered the family of real cubic polynomials and conjectured the non-local connectivity of the cubic connectedness locus. Lavaurs [L] settled this conjecture through the study of $\operatorname{Per}_{1}(1)$. See also Epstein-Yampolsky [EY]. Thus $P e r_{1}(1)$ reflects the features of the cubic dynamics much different from the quadratic one.

Willumsen [W] gave necessary conditions for stretching rays to accumulate on a map in the main parabolic component of $\operatorname{Per}_{1}(1)$. Inspired by her work, the author showed, in the joint work $[\mathrm{KN}]$ with Y. Komori that, in a certain region of the space of real cubic polynomials, most stretching rays have non-trivial accumulation sets on the real slice of the main parabolic component of $\operatorname{Per}_{1}(1)$. In fact, they oscillate wildly as they approach

[^0]$\operatorname{Per}_{1}(1)$. In order to study stretching rays in non-real regions, we have to reveal the structure of those parabolic components. This note is a first step toward this aim. And we will investigate the dynamics on the boundaries of the capture components.

2 Connectedness locus

Note that critical points of the map P_{a} :

$$
c_{ \pm}(a)=\frac{-a \pm \sqrt{a^{2}-3}}{3}=\frac{a}{3}\left(-1 \pm \sqrt{1-3 / a^{2}}\right) .
$$

are two branches of a two-valued holomorphic function on $\overline{\mathbb{C}}$. It branches at $a= \pm \sqrt{3}$. Or they are holomorphic functions on the double covering space of $\overline{\mathbb{C}}-\{ \pm \sqrt{3}\}$. In order to consider them on $\overline{\mathbb{C}}$, we must fix their branches. Since $c_{ \pm}(a)$ are holomorphic for large $|a|$, we fix such branches. Then they are single-valued holomorphic in $\overline{\mathbb{C}}-[-\sqrt{3}, \sqrt{3}]$. Note that they are replaced by each other when we go through the slit $[-\sqrt{3}, \sqrt{3}]$. On this slit, both critical points belong to $\mathcal{B}_{a}^{*}(0)$. Thus the slit is included in the connectedness locus. Since they have the following asymptotic behaviours near $a=\infty$:

$$
c_{+}(a)=-\frac{1}{2 a}+O\left(\frac{1}{a^{3}}\right), \quad c_{-}(a)=-\frac{2 a}{3}+O\left(\frac{1}{a}\right)
$$

the critical values satisfy

$$
P_{a}\left(c_{+}(a)\right)=O\left(\frac{1}{a}\right), \quad P_{a}\left(c_{-}(a)\right) \approx \frac{4 a^{3}}{27} .
$$

Thus, for large $|a|, c_{-}(a)$ escapes to ∞ and $c_{+}(a)$ is contained in $\mathcal{B}_{a}^{*}(0)$.
Lemma 2.1. The connectedness locus $M_{1}(1)$ of the family $\operatorname{Per}_{1}(1)$ is characterized by

$$
M_{1}(1)=\left\{a \in \mathbb{C} ; c_{-}(a) \in K_{a}=K\left(P_{a}\right)\right\} .
$$

In $\mathbb{C}-M_{1}(1)$, the unique indifferent cycle 0 is persistent. Hence P_{a} is J -stable there. Actually we have

Lemma 2.2. The complement of $\partial M_{1}(1)$ is the set of parameter a such that P_{a} is Jstable.
proof. Note that P_{a} is J-stable if and only if the family $\left\{P_{a}^{k}\left(c_{ \pm}(a) ; k \geq 0\right\}\right.$ forms a normal family in a neighborhood of a. If we put $m_{a}=3 \max (|a|, 1)$, it follows $K_{a} \subset \mathbb{D}_{m_{a}}$. Thus, if $a \in \operatorname{Int} M_{1}(1)$, both critical points are contained in $\mathbb{D}_{m_{a}}$ and P_{a} is J-stable by

Montel's theorem. If $a \in \partial M_{1}(1), P_{a}$ is not J-stable since $\left\{P_{a}^{k}\left(c_{-}(a)\right)\right\}$ is not normal. This completes the proof.

Now let $\tilde{c}_{-}(a)$ be the co-critical point of $c_{-}(a)$. It satisfies $P_{a}\left(\tilde{c}_{-}(a)\right)=P_{a}\left(c_{-}(a)\right)$. If φ_{a} denotes the Böttcher coordinate of $P_{a}, \varphi_{a}\left(\tilde{c}_{-}(a)\right)^{3}=\varphi_{a}\left(P_{a}\left(\tilde{c}_{-}(a)\right)\right) \approx 4 a^{3} / 27$. Thus, if we put $\Phi(a)=3 \varphi_{a}\left(\tilde{c}_{-}(a)\right) / \sqrt[3]{4}$, we have
Proposition 2.1. $\Phi: \overline{\mathbb{C}}-M_{1}(1) \rightarrow \overline{\mathbb{C}}-\overline{\mathbb{D}_{3 / \sqrt[3]{4}}}$ is a conformal isomorphism satisfying $\lim _{a \rightarrow \infty} \Phi(a) / a=1$.

Corollary 2.1. $M_{1}(1)$ is connected.
Now, external rays are defined for $M_{1}(1)$ and we can discuss their landing properties. Note that the correspondence between the parameter space and the dynamical plane is done through the co-critical point.

3 Conformal position maps

In this section, we will show that every parabolic components are simply connected. For a parabolic component W, the critical point $c_{+}(a)$ always belongs to $\mathcal{B}_{a}^{*}(0)$ and there exists $k \geq 0$ such that $P_{a}^{k}\left(c_{-}(a)\right)$ first hits $\mathcal{B}_{a}^{*}(0)$. We call such k the preperiod of $W . W$ is called a capture component if $k>0$. If $k=0$, that is, if both critical points are contained in $\mathcal{B}_{a}^{*}(0), W$ is called an adjacent component. It turns out that there are only two adjacent components, each containing $\sqrt{3}$ or $-\sqrt{3}$.

Let W be a parabolic component of preperiod k. In order to study the global topology of parabolic components, we use the conformal position map m after Zakeri $[\mathrm{Z}]$. Let $\psi_{a}: \mathbb{D} \rightarrow \mathcal{B}_{a}^{*}(0)$ be the Riemann map satisfying $\psi_{a}(0)=c_{+}(a), \psi_{a}(1)=0$. We define $m: W \rightarrow \mathbb{D}$ by $m(a)=\psi_{a}^{-1}\left(P_{a}^{k}\left(c_{-}(a)\right)\right)$.

Lemma 3.1. For any capture component W, ψ_{a} depends holomorphically on $a \in W$.
proof. Consider the map $R_{a}=\psi_{a}^{-1} \circ P_{a} \circ \psi_{a}: \mathbb{D} \rightarrow \mathbb{D}$. Since it is a proper holomorphic map between \mathbb{D}, it is a Blaschke product of degree two with critical points 0 (and ∞). Since J_{a} is locally connected, ψ_{a} can be continued to a continuous map $\overline{\mathbb{D}} \rightarrow \overline{\mathcal{B}_{a}^{*}(0)}$. Because of the maximum principle, it must be injective on $\partial \mathbb{D}$. Thus $\partial \mathcal{B}_{a}^{*}(0)$ is a Jordan curve and $\psi_{a}: \overline{\mathbb{D}} \rightarrow \overline{\mathcal{B}_{a}^{*}(0)}$ is an onto homeomorphism. Then ψ_{a} conjugates P_{a} to R_{a} also on $\partial \mathbb{D}$. Hence $J\left(R_{a}\right)=\partial \mathbb{D}$ and 1 is a fixed point. Since points on $\partial \mathbb{D}$ are not attracted by 1,1 is not attracting but parabolic with multiplier one. Since Blaschke product is commutable with the map $z \mapsto 1 / \bar{z}, \overline{\mathbb{C}}-\overline{\mathbb{D}}$ is also the basin of 1 and 1 has multiplicity three. That is, $R_{a}^{\prime \prime}(1)=0$. Now it is easy to see that $R_{a}(z) \equiv R(z)=\frac{z^{2}+1 / 3}{1+z^{2} / 3}$, which is independent of
a. ψ_{a} maps each point on the inverse orbit by R of 1 to the point on the inverse orbit by P_{a} of 0 , which moves holomorphically on a. Thus $\psi_{a} \circ \psi_{a_{0}}^{-1}$ gives a holomorphic motion of the inverse orbit of 0 . By the λ-lemma, it continues to to a holomorphic motion of $\partial \mathcal{B}_{a}^{*}(0)$. Hence, $\psi_{a} \circ \psi_{a_{0}}^{-1}$ on $\partial \mathcal{B}_{a}^{*}(0)$, and consequently ψ_{a} on $\partial \mathbb{D}$ depends holomorphically on a. Now, by the Poisson formula, ψ_{a} on \mathbb{D} depends holomorphicall on a.

Thus the map $m: W \rightarrow \mathbb{D}$ is holomorphic for any capture component.
Lemma 3.2. For any capture component W of preperiod $k, m: W \rightarrow \mathbb{D}$ is proper.
proof. Suppose $a_{n} \in W$ tends to $a_{0} \in \partial W$ and $m\left(a_{n}\right) \rightarrow m_{0} \in \mathbb{D}$. By Montel's theorem, we may assume $\psi_{a_{n}}$ converges to a conformal map ψ_{0} locally uniformly on \mathbb{D}.

Then $\psi_{0}\left(\overline{\mathbb{D}_{r}}\right) \subset \mathcal{B}_{a_{0}}^{*}(0)$ for any $r<1$. In fact, if there exist an $r<1$ and a point $w_{1} \in \psi_{0}\left(\overline{\mathbb{D}_{r}}\right) \cap J_{a_{0}}$, then, for any $r^{\prime}>r, \psi_{0}\left(\mathbb{D}_{r^{\prime}}\right)$ is an open neighborhood of w_{1} and contains a repelling periodic point w_{0} of $P_{a_{0}}$. This point is locally holomorphically continued to a repelling periodic point $w(a)$ of P_{a}. Thus $w(a) \in J_{a} \cap \psi_{0}\left(\mathbb{D}_{r^{\prime}}\right)$ for any a close to a_{0}. On the other hand, since $\psi_{a_{n}}\left(\overline{\mathbb{D}_{r^{\prime \prime}}}\right) \rightarrow \psi_{0}\left(\overline{\mathbb{D}_{r^{\prime \prime}}}\right)$ for any $r^{\prime \prime}>r^{\prime}, \psi_{0}\left(\overline{\mathbb{D}_{r^{\prime}}}\right) \subset \psi_{a_{n}}\left(\overline{\mathbb{D}_{r^{\prime \prime}}}\right)$ holds for large n. Thus $J_{a_{n}}$ does not intersect $\psi_{0}\left(\overline{\mathbb{D}_{r^{\prime}}}\right)$ for large n. This is a contradiction. Thus $\psi_{0}(\mathbb{D}) \subset \mathcal{B}_{a}^{*}(0)$.

Now $P_{a_{0}}^{k}\left(c_{-}\left(a_{0}\right)\right)=\lim _{n \rightarrow \infty} \psi_{a_{n}}\left(m\left(a_{n}\right)\right)=\psi_{0}\left(m_{0}\right) \in \mathcal{B}_{a_{0}}^{*}(0)$, which implies a_{0} is parabolic. This contradicts the fact $a_{0} \in \partial W$. This completes the proof.

Lemma 3.3. Let W be a capture component of preperiod k and $a, b \in W$. Suppose a qc-map $\varphi: \mathbb{C} \rightarrow \mathbb{C}$ conjugates P_{a} on $\mathbb{C}-\mathcal{B}_{a}(0)$ to P_{b} on $\mathbb{C}-\mathcal{B}_{b}(0)$. If $m(a)=m(b)$, then there exists a qc-conjugacy ψ on \mathbb{C} between P_{a} and P_{b} such that ψ is conformal on $\mathcal{B}_{a}(0)$ and coincides with φ on $\mathbb{C}-\mathcal{B}_{a}(0)$.
proof. Since $R_{a} \equiv R$, the map $\psi=\psi_{b} \circ \psi_{a}^{-1}$ gives a conformal equivalence betwee P_{a} on $\mathcal{B}_{a}^{*}(0)$ and P_{b} on $\mathcal{B}_{b}^{*}(0)$. From the assumption $m(a)=m(b)$, we have $\psi\left(P_{a}^{k}\left(c_{-}(a)\right)\right)=$ $P_{b}^{k}\left(c_{-}(b)\right)$. Hence ψ can be holomorphically continued to $\mathcal{B}_{a}(0)$ by $\psi=P_{b}^{-n} \circ \psi \circ P_{a}^{n}$. Recall that the maps ψ_{a} and ψ_{b} can be extended to the homeomorphisms from $\overline{\mathbb{D}}$ onto $\overline{\mathcal{B}_{a}^{*}(0)}$ and $\overline{\mathcal{B}_{b}^{*}(0)}$ respectively. Since $\psi=\varphi$ on the inverse orbit of $0, \psi=\varphi$ holds also on $\partial \mathcal{B}_{a}^{*}(0)$. Pulling back by P_{a}, the same holds on $J_{a}=\partial \mathcal{B}_{a}(0)$. If we extend ψ to the complemen of K_{a} by $\psi=\varphi, \psi: \mathbb{C} \rightarrow \mathbb{C}$ is a homeomorphism. Then ψ is a qc-map by Rickman's theorem.

Proposition 3.1. For every capture component of preperiod $k, m: W \rightarrow \mathbb{D}$ is a conformal isomorphism.
proof. We have only to show the injectivity of m. Suppose $m(a)=m(b)$. Using Böttcher coordinates, the conformal equivalence $\varphi_{a, c}=\varphi_{c}^{-1} \circ \varphi_{a}$ gives a holomorphic motion of $\mathbb{C}-K_{a}$. By the optimal λ-lemma of Slodkowski $[\mathrm{Sl}]$, this can be extended to
the holomorphic motion $\overline{\varphi_{a, c}}$ of \mathbb{C}. We apply the previous lemma to $\varphi=\overline{\varphi_{a, b}}$. Then there exists a qc-conjugacy ψ between P_{a} and P_{b} on \mathbb{C}, conformal on $\mathcal{B}_{a}(0)$ and coincides with φ on $\mathbb{C}-\mathcal{B}_{a}(0)$. Since ψ is a qc-map on \mathbb{C} and conformal except on the measure zero set J_{a}, it is conformal on \mathbb{C}. Thus P_{a} is conformally conjugate to P_{b} on \mathbb{C}. Then $a=b$. This completes the proof.

Corollary 3.1. Every capture component is simply connected.

4 Boundaries of capture components

In this section, we give some properties of the boundaries of capture components.
Lemma 4.1. Suppose $a_{0} \neq 0$. If the external ray $R_{a_{0}}(t)$ of $P_{a_{0}}$ with angle $t=p / 3^{k}$ or $t=p /\left(2 \cdot 3^{k}\right)$ lands at $z_{0} \in J_{a_{0}}$ and $P_{a_{0}}^{n}\left(z_{0}\right)$ is not a critical point for any $n \geq 0$, then there exists an open neighborhood U of a_{0} such that, for any $a \in U, R_{a}(t)$ lands at a repelling or parabolic preperiodic point z_{a}. The landing point z_{a} depends holomorphically on a in U.

Lemma 4.2. The external rays $R_{M}(t)$ of $M_{1}(1)$ with angles $t= \pm 1 / 6, \pm 1 / 3$ land at the origin.
proof. The external rays $R_{a}(0)$ and $R_{a}(1 / 2)$ land at fixed points of P_{a} if they do not meet the critical point $c_{-}(a)$. If $R_{a}(0)\left(\right.$ resp. $\left.R_{a}(1 / 2)\right)$ meets $c_{-}(a)$, then one of $R_{a}(\pm 1 / 3)$ (resp. one of $\left.R_{a}(\pm 1 / 6)\right)$ meets the co-critical point $\tilde{c}_{-}(a)$, i.e. a lies on one of $R_{M}(\pm 1 / 3)$ (resp. one of $R_{M}(\pm 1 / 6)$). In other words, $R_{a}(0)$ (resp. $\left.R_{a}(1 / 2)\right)$ lands at a fixed point 0 or $-a$ unless a belongs to $R_{M}(\pm 1 / 3)$ (resp. $\left.R_{M}(\pm 1 / 6)\right)$. Thus, at the accumulation point a_{0} of $R_{M}(\pm 1 / 3)$ (resp. $R_{M}(\pm 1 / 6)$), the landing of $R_{a}(0)$ (resp. $R_{a}(1 / 2)$) is unstable. On the other hand, Lemma 4.1 implies those stabilities at $a_{0} \neq 0$. Thus those rays must land at the origin.

The four rays $R_{M}(\pm 1 / 3)$ and $R_{M}(\pm 1 / 6)$ and their landing point 0 separate the parameter space into four parts. In the region \mathcal{R}_{1} bounded by $R_{M}(-1 / 6)$ and $R_{M}(1 / 6)$, $R_{M}(0)$ (resp. $R_{M}(1 / 2)$) lands at 0 (resp. $-a$). In the region \mathcal{R}_{3} bounded by $R_{M}(1 / 3)$ and $R_{M}(-1 / 3), R_{M}(1 / 2)$ (resp. $\left.R_{M}(0)\right)$ lands at 0 (resp. $-a$). In the remaining two regions \mathcal{R}_{2} and $\mathcal{R}_{4}, R_{M}(0)$ and $R_{M}(1 / 2)$ land at 0 .

Lemma 4.3. For a point a on the boundary of a parabolic component W, P_{a} has neither Siegel disks nor Cremer cycles.
proof. If $P_{a_{0}}$ has a Siegel or Cremer periodic point z_{0}, then evidently $a_{0} \neq 0$. By Lemma 3.3 of Kiwi $[\mathrm{K}], z_{0}$ and $\mathcal{B}_{a_{0}}^{*}(0)$ are separated by a union \mathcal{R} of a finite collection of closed preperiodic external rays and \mathcal{R} separates the orbits of critical points. Note that
preperiodic external rays must land at repelling or parabolic preperiodic points. Since $P_{a_{0}}$ has no other non-repelling cycles, the landing points of the rays in \mathcal{R} are repelling except at 0 . By the previous lemma, landing of those rays is stable around a_{0}. Hence, the same holds for $a \in W$ close to a_{0}. But, in W, the orbit of $c_{-}(a)$ hits $\mathcal{B}_{a}^{*}(0)$ after finite iteration. This is a contradiction.

We will show that, if W is capture, P_{a} has no parabolic cycles except 0 . Suppose W is capture and $a \in W$. Since K_{a} is pathwise connected, there is a path γ connecting $c_{-}(a)$ to $c_{+}(a)$. We denote z_{a} the point where γ first hits $\partial \mathcal{B}_{a}^{*}(0)$. Since K_{a} is full, z_{a} is uniquely determined independent of the choice of γ. Since K_{a} is locally connected, at least two external rays land at z_{a}. Among them, we take two rays $R_{a}\left(t_{1}\right)$ and $R_{a}\left(t_{2}\right)$ separating $c_{-}(a)$ from $\mathcal{B}_{a}^{*}(0)$ and consider the sector S_{0} bounded by these two rays and z_{a}, containing $c_{-}(a)$. In the following, we use the theory of orbit portraits developed in Milnor [M2]. We denote by $A_{a}(z)$ the set of angles of external rays of P_{a} landing at z.

Lemma 4.4. Let W be a capture component of preperiod k and $a \in W$. Then z_{a} is a periodic point of period $m \leq k$.
proof. Suppose z_{a} is not periodic. Put $z_{j}=P_{a}^{j}\left(z_{a}\right)$ and let S_{j} be the succesive image sectors of S_{0} at z_{j} bounded by $R_{a}\left(3^{j} t_{1}\right)$ and $R_{a}\left(3^{j} t_{2}\right)$. (Note that $P_{a}\left(S_{0}\right)$ covers \mathbb{C} and doubly covers S_{1}.) Then, since S_{j} contains no critical points, it does not intersect $\mathcal{B}_{a}^{*}(0)$ for any $j \geq 1$. But its angular length $3^{j}\left(t_{2}-t_{1}\right)$ eventually becomes greater than one, a contradiction.

Apparently z_{a} is repelling unless it is 0 . If $W \subset \mathcal{R}_{1}$ or $W \subset \mathcal{R}_{3}, z_{a} \neq 0$ for any $a \in \bar{W}$.
Lemma 4.5. The point z_{a} is repelling also on ∂W unless it is 0 .
proof. Suppose $z_{a_{0}}$ is not repelling for some $a_{0} \in \partial W$. It must be parabolic by Lemma 4.3. Then, as $a \in W$ tends to a_{0}, z_{a} meets other repelling periodic points, say $z_{a, j}, 1 \leq j \leq k$. Then $A_{a_{0}}\left(z_{a_{0}}\right)$ is the union of $A_{a}\left(z_{a}\right)$ and $A_{a}\left(z_{a, j}\right)$. By the theory of orbit portraits, this happens only if $k=1$ and the combinatorial rotation number at $z_{a_{0}}$ is 0 , i.e. $z_{a_{0}}$ has just two angles. This contradicts the fact that z_{a} has at least two angles.

The above proof implies that, if $z_{a} \neq 0$ for $a \in W$, the same holds also for $a \in \partial W$.
Lemma 4.6. Suppose $z_{a} \neq 0$ for $a \in W$. Then $A_{a_{0}}\left(z_{a_{0}}\right)=A_{a}\left(z_{a}\right)$ holds for $a_{0} \in \partial W$ and $a \in W$.
proof. It follows $z_{a_{0}} \neq 0$. Since $z_{a_{0}}$ is repelling by Lemma 4.5, so is z_{a} for any $a \in W$ close to a_{0}. By stability, it follows $A_{a_{0}}\left(z_{a_{0}}\right) \subset A_{a}\left(z_{a}\right)$. If $A_{a_{0}}\left(z_{a_{0}}\right) \neq A_{a}\left(z_{a}\right)$, there exists $t \in A_{a}\left(z_{a}\right)$ such that $R_{a_{0}}(t)$ lands at some point $w_{a_{0}} \neq z_{a_{0}}$. By stability, $w_{a_{0}}$ must be parabolic. Evidently $w_{a_{0}} \neq 0$. Then, for $a \in W$, the corresponding point $w_{a} \neq z_{a}$ is repelling and has angle t, a contradiction.

From the three lemmas above, it follows that, if $z_{a} \neq 0$ in W, the rays landing at z_{a} separate $c_{-}(a)$ and $\mathcal{B}_{a}^{*}(0)$ for any a in a neighborhood W^{\prime} of \bar{W}. Since $c_{-}(a) \neq z_{a}$, we conclude that $c_{-}(a)$ does not belong to an open neighborhood U_{a} of $\overline{\mathcal{B}_{a}^{*}(0)}$ for any $a \in W^{\prime}$. Put $U_{a}^{\prime}=U_{a}-\cup_{j=0}^{m-1} \overline{S_{j}}$ and $U_{a}^{\prime \prime}=U_{a} \cap P_{a}^{-1}\left(U_{a}\right)-\cup_{j=0}^{m-1} P_{a}^{-1}\left(\overline{S_{j}}\right)$. Then $P_{a}: U_{a}^{\prime \prime} \rightarrow U_{a}^{\prime}$ is proper holomorphic. By thickening, we get a quadratic-like map $P_{a}: V_{a} \rightarrow V_{a}^{\prime}$. By straightening, this map is hybrid equivalent to a quadratic polynomial p. Since P_{a} has a parabolic fixed point 0 of multiplier one, $p(z)=z^{2}+1 / 4$.

Capture component W where $z_{a}=0$ sits in the region \mathcal{R}_{2} or \mathcal{R}_{4}. In this case, two rays $R_{a}(0)$ and $R_{a}(1 / 2)$ stably lands at $z_{a}=0$. Another fixed point $z_{0}=-a$ is separated by these two rays from $c_{+}(a)$. We take a path γ in K_{a} connecting z_{0} to 0 .

Lemma 4.7. There exists a sequence of points on the inverse orbit of z_{0} converging to 0 .
proof. First note that γ is not included in a Fatou component. Otherwise, that component is invariant since 0 has combinatorial rotation number 0 .

Suppose γ does not intersect any Fatou components. Then, since it does not contain $c_{-}(a), P_{a}$ is injective on γ. Then $P_{a}(\gamma)=\gamma$ since P_{a} fixes its endpoints. Because P_{a} is repelling near both endpoints, P_{a} must have another fixed point in the interior of γ, a contradiction.

Thus γ intersects both the Fatou set and the Julia set. The rotation number of z_{0} is not 0 since $0,1 / 2 \notin A_{a}\left(z_{0}\right)$. Hence, the local image of γ around z_{0} is another branch. Thus there exists a preimage $z_{1} \in \gamma$ of z_{0}. Let γ_{1} be the subpath of γ connecting 0 to z_{1}. Suppose $P_{a}\left(\gamma_{1}\right)$ does not contain z_{1}. Since the regions bounded by γ and $P_{a}\left(\gamma_{1}\right)$ is included in K_{a}, z_{1} is on the boundary of a Fatou component. Then z_{0} is also on the boundary of a Fatou component U. Since U is periodic, U is a periodic Fatou component, a contradiction. Thus there exists a preimage $z_{2} \in \gamma_{1}$ of z_{1}. Repeating this argument, we get a sequence $z_{j} \in \gamma$ on the inverse orbit of z_{0}. Since its accumulation point is a fixed point, it must be 0 . This completes the proof.

By the same proof of Lemma 4.5, it follows that z_{0} is repelling for $a \in \partial W$. Moreover, at least two rays land at z_{0}. Hence the same is true for z_{j}. Using these rays, we get a quadratic-like map $P_{a}: V_{a} \rightarrow V_{a}^{\prime}$, hybrid conjugate to p. We do not need thickening in this case. Especially, since $\partial \mathcal{B}_{a}^{*}(0)$ is homeomorphic to $J(p)$, we get the following.

Proposition 4.1. Let W be a capture component. Then $\partial \mathcal{B}_{a}^{*}(0)$ is locally connected in a neighborhood W^{\prime} of \bar{W}.

Corollary 4.1. Let W be a capture component. Then the Riemann map $\psi_{a}: \mathbb{D} \rightarrow \mathcal{B}_{a}^{*}(0)$ depends holomorphically on a in W^{\prime}.
proof. The same proof of Lemma 3.1 works since we only use the local connectivity of $\partial \mathcal{B}_{a}^{*}(0)$.

Lemma 4.8. Let W be a capture component of preperiod k. Then $P_{a}^{k}\left(c_{-}(a)\right) \in \partial \mathcal{B}_{a}^{*}(0)$ if $a \in \partial W$.
proof. Since $a \mapsto \partial \mathcal{B}_{a}^{*}(0)$ is a holomorphic motion on U, it is continuous with respect to the Hausdorff distance. For $a \in W$, we have $P_{a}^{k}\left(c_{-}(a)\right) \in \mathcal{B}_{a}^{*}(0)$. By continuity, $P_{a}^{k}\left(c_{-}(a)\right) \in \overline{\mathcal{B}_{a}^{*}(0)}$ for $a \in \partial W$. Since $P_{a}^{k}\left(c_{-}(a)\right) \notin \mathcal{B}_{a}^{*}(0)$ for $a \in \partial W$, the lemma follows.

Corollary 4.2. Let W be a capture component. Then, for $a \in \partial W, P_{a}$ has no parabolic cycle except 0 .
Corollary 4.3. The map $m: W \rightarrow \mathbb{D}$ extends to a continuous surjective map $m: \bar{W} \rightarrow$ $\overline{\mathbb{D}}$. If, in addition, ∂W is locally connected, then $m: \bar{W} \rightarrow \overline{\mathbb{D}}$ is a homeomorphism.
proof. In order to prove the surjectivity of m, we define the internal ray in W as the inverse image of a ray in \mathbb{D} by the map m. For any point $w_{0}=e^{2 \pi i t} \in \partial \mathbb{D}$, consider the internal ray $R_{W}(t) \equiv m^{-1}\left(\left\{r e^{2 \pi i t} ; 0 \leq r<1\right\}\right)$. We do not know whether this ray lands or not on ∂W. Take any accumulation point $z_{0}=\lim _{n \rightarrow \infty} m^{-1}\left(r_{n} e^{2 \pi i t}\right) \in \partial W$. By the continuity of m, it follows $m\left(z_{0}\right)=e^{2 \pi i t}=w_{0}$.

If ∂W is locally connected, m^{-1} has a continuous extension to $\overline{\mathbb{D}}$. Then m^{-1} is the inverse of m also on $\partial \mathbb{D}$. This completes the proof.

References

[DH] A. Douady and J. Hubbard: On the dynamics of polynomial-like mappings. Ann. Sci. Ec. Norm. Sup. 18 (1985), pp. 287-343.
[EY] A. Epstein and M. Yampolsky: Geography of the cubic connectedness locus. Ann. Sci. Ec. Norm. Sup. 32 (1999), pp. 151-185.
[K] J. Kiwi: Non-accessible critical points of Cremer polynomials. Stony Brook Preprint 1996/2.
[KN] Y. Komori and S. Nakane: Landing property of stretching rays for real cubic polynomials. Conformal Geometry and Dynamics 8 (2004), pp. 87-114.
[L] P. Lavaurs: Systèmes dynamiques holomorphes: explosion de points périodiques paraboliques. these Univ. Paris-Sud, 1989.
[M1] J. Milnor: Remarks on iterated cubic maps. Experimental Math. 1 (1992), pp. 5-24.
[M2] J. Milnor: Periodic orbits, external rays and the Mandelbrot set: An expository account. To appear in Asterisque.
[Sl] Z. Slodkowski: Extensions of holomorphic motions. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 22 (1995), pp. 185-210.
[W] P. Willumsen: Holomorphic dynamics : On accumulation of stretching rays. Ph.D. thesis Tech. Univ. Denmark, 1997.
[Z] S. Zakeri: Dynamics of cubic Siegel polynomials. Comm. Math. Phys. 206 (1999), pp. 185-233.

[^0]: *Professor, General Education and Research Center, Tokyo Polytechnic University,

