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External rays for a regular polynomial endomorphism
of ¢? associated with Chebyshev mappings

Shizuo Nakane*

In this note, the dynamics of a regular polynomial map of C’is investigated. Especially, landing
points of the external rays are completely characterized.

1 Introduction
In this note, we consider the external rays of the map F : C* — C? of the form :
F(z,y) = (" = 2,9 — 22).

External rays were first defined for polynomial maps on C to investigate the combina-
torial properties of the dynamics on the Julia sets. Let P be a monic centered polynomial
with degree d of one variable. Let ¢ = p be its Bottcher coordinate, that is, a conformal
map ¢ in a neighborhood of the point at oo satisfying

PPE) = o), Tim £

z—00 2

=1

By this functional equation, it can be continued analytically until it meets a critical
point. Especially, if K(P) is connected, it extends to a conformal map ¢ : C — K(P) —
C — D. The external ray Rp(0) of external angle 0 is defined by the preimage of the ray
{re?®:r > 1} by ¢. We say it lands at a point z € J(P) if it is continued to r > 1
and converges to z as  — 1. Recently, Bedford and Jonsson [BJ] defined external rays
for regular polynomial endomorphisms of C* and established a landing property with
some additional assumptions. Although the map F does not satisfy the assumptions in
[BJ], we can investigate the landing property from the explicit expression of its Bottcher
coordinate.

The map F' has dynamically distinguished properties. For example, it is critically
finite, that is, the union of the forward orbit of the critical set forms an analytic subset of
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C?. This is because it is closely related to the Chebyshev maps of two variables. A typical
example of Chebyshev maps of one variable is the quadratic polynomial p(z) = 2% — 2,
which is critically finite, too. A natural extention of this Chebyshev map to the two
variables case is f(z) = 2% — 2z. By virtue of the distinguished properties of Chebyshev
maps, Uchimura [U1] has obtained many interesting results.

Here we show why Chebyshev maps are easily analyzed. Put z = ¢(¢) = t+1/t. Then

PO(D) = (E+1/1)2 =2 = £2 4+ 1/22 = (82),

Hence a branch of its inverse ¢ = ¢! satisfies ¢(p(z)) = ¢(2)? and it gives the Bottcher
coordinate of p. Then the external ray R,(6) is explicitly written by

y = w(T627r10> _ 7“627”9 + _6727r167 r> 17
r

and it lands at the point
20 = €20 4 720 — 9 cos 276,

Consequently, J(p) = {z = 2cos276;0 € T}. In the sequel, we will apply this idea to the
maps f and F.

2 External rays for the map f
Consider the map f studied in [U1] of the form :
f(z) =22 -2z

The map f : C — C is not holomorphic but is associated with the Chebyshev maps of
two variables and its dynamics is completely determined. See [U1]. Since the jacobian of

fis:
Jac(f) = [0f /0= — |0f /0z]* = A(|=]* - 1),

its critical set C(f) is the unit circle |z| = 1. The filled-in Julia set K(f), i.e., the set of
points with bounded orbits, is parametrized (with some identification) as follows.

K(f) = {z = 2(¢,0) = ™ + 2™ 4 274D (¢, 0) € T?}. (2.1)
And its boundary is the hypocycloid (see Figure 1) :

2 =2e0 4 o740 g e T,
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Figure 1: The dark region : K(f), the circle : C(f)

Moreover, the dynamics of f on K(f) is expressed by f(z(¢,0)) = z(2¢,260), which
enables us to describe their dynamics by symbolic dynamics. Although this parametriza-
tion of K(f) seems a bit tricky, we will give a dynamical meaning of the parameters ¢, ¢
above in the next section.

First we study the Bottcher coordinate of f. Put

1 t
z =1(t) + ; + "
Then its jacobian Jac(v) satisfies
Jac(y) = |z — |z
t o, 1 1,
- | - t_2| - ‘? - 3|
1 t
- 1 I o

Thus ¢ gives a diffeomorphism from C — D onto C — K (f) and it is easy to see

limwzl.

t—oo

F(t) = v(t?),

That is, the map ¢ = =1 should be the Béttcher coordinate of f and we can define the
external ray as follows :

R¢(0) = v({re*™r > 13).

Then we have the following.
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Theorem 2.1. The external ray R¢(0) is parametrized by

. 1 . .
5= 7’627”9 + _627r19 + 6747”9 (7“ > 1)
T

and it lands at the point ‘ ‘
2 = 270 70 QK (f).

3 External rays for the map F
Now consider the following map in C?.
F(a,y) = (2% = 2y,9° — 2u),

which is closely related to the map f in the previous section. In fact, the map F’ restricted
to H = {(z,y) € C*,y = T} is equivalent to f. Let C(F) be the set of the critical points
of F. By a direct calculation, it follows C(F') = {xy = 1}.

Let f(z) be a polynomial endomorphism of C* of degree d and let f,,(2) be the degree
d part of f(2). It is regular if f;'(0) = {0}. Note that regular polynomial maps extend
to analytic maps of P*. Let II denote the hyperplane at co, which is isomorphic to P*!.
In case k = 2, II is isomorphic to the Riemann sphere C. For a regular polynomial map
f, we denote the filled-in Julia set also by K (f). It is a compact subset of C*. And J(f)
denotes the smallest Julia set of f, that is, the support of u = (dd°G)*. Here G; is the
Green function of f. And we put fi = flu, Ju = J(fu)-

Let W*(Jy, f) be the stable set of Jy :

We(Jn, f) ={z € IP”“;nli_{go dist(f"(2), Ju) = 0}.

The inverse Bottcher coordinate U is a homeomorphism W2 (Ju, fn) — W (Ju, f) con-
jugating f, to f. It extends to W#(Jy, fn) until it meets a critical point. Each local
stable manifold W (a) (a € Ji) is a complex disk homeomorphic to C — D5 for some
R > 1. External rays are the rays in W#(Jp, f) defined by the gradient lines of the Green
function Gy restricted to Wj_(a). Since the Bottcher coordinate transforms the Green
function into a canonical form, external rays are the images of the actual rays by the
inverse Bottcher coordinate, just as for polynomials of one variable.

Bedford and Jonsson [BJ] established the continuous landing property of external rays

for regular polynomial endomorphisms of C2.

Theorem 3.1. ([BJ], Theorem 10.2)
Let f be a regular polynomial endomorphism of C*. Assume
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(1) fu is uniformly expanding on Jy.

(2) f is uniformly expanding on J(f).

(3) The non-wandering set of f in OK(f) consists of J(f) and a hyperbolic set Sy of
unstable index 1.

(4) W2(81) = Uzeg, W2 (2).

(5) W*(Ju) NC(f) = 0.

Then all external rays land onto J(f) and landing points vary continuously.

As a trivial example, we consider the map Fj,(z,y) = (22,%?). Then

C(Fp) = {z=0U{y=0}, K(F)={lz[<1 [yl <1},
J(F) = A{lzl =yl =1}, Fun(Q)=¢, Jn={{|=1},
Wi (¢) = {y=¢x, |z| > 1}, W*(Jn, Fi) = {lz] = [y[ > 1}.
And all the assumptions of the above theorem are satisfied. Then external rays for F}, are

labelled by two angles (¢,6) € T?. Here ¢ = y/x = > € Jy and 0 is the argument of
the ray in the disk W*((). Hence the external ray Rp, (¢,0) is just the ray :

=7 y=(r =0 (> 1),

which lands at (€2 e2(¢+9)) ¢ J(F},).

Our map F is regular but is not expanding on J(F') since J(F') contains critical points,
as we will see later. Next lemma says that it satisfies the last condition (5). Its proof also
implies that F' is critically finite.

Lemma 3.1. W*(Jy, F)NC(F) = 0.

proof. Note that the critical set C(F') is parametrized as x = t,y = 1/t. We calculate
the critical orbits and by induction, we show

Friat =" +26727 72 +282") (n>2).

In fact, it is true for n = 2. Suppose it is true for n = k. Then the first entry of
FF(t 1Y) s
22— 2y = 2T e P — P g
= 2 o
The same holds for the second entry. Hence the case n = k + 1 is also true.

Note that the map F' has two super-attracting fixed points [1 : 0 : 0] and [0 : 1 : 0]
in IT and W*(Ju, F) is contained in the common boundary of their basins. The above
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calculation implies that the parts |[t| > 1 and |t| < 1 are contained in the basins of the
points [1 : 0 : 0] and [0 : 1 : 0] respectively and the part |[¢| = 1 is contained in K(F).
Thus C never intersects W*(Jy, F). This completes the proof. ]

Now we consider the external rays for F. Fortunately, we have an explicit expression
of an inverse Bottcher coordinate of F' and we can define them directly. Put

1 v 1 wu
:\P p— —_— —_— —_— — ).
(0.9) = Wlw,0) = (w+ 5+ L4 =+ 2

Then it satisfies the functional equation
FoV(u,v) =¥ v?) = Vo Fj(u,v).

The jacobian Jac(¥) is written by

1 U v
Jac(WV =1-—)1—-—=)(1——).
ae(W)(u,0) = (1= =) (1 = )1~ )
Hence it is invertible on W#(Jy, F},). The inverse ® = U~! is a Bottcher coordinate of F'.
Then each stable manifold W3 (¢) of ¢ € Ji for F'is the image of W, (¢) = {(¢, (1); [t] >
1} =2 C — D by U. This coordinate gives the Bottcher coordinate of the restriction of F
on Wi (¢). Hence the external ray Rp(¢, ) is the image of Rp, (¢, 60) by W.

Theorem 3.2. The external ray Rp(¢,0) is expressed by

r = ,r,€27r7,9_|_ _6—27m(¢+0) +627m¢
T
y = ,',,627rz(¢+0) + _6727710 _i_emedJ (T’ > 1)
T

Its landing point depends continuously on (¢, 0) € T :

o = €2ﬂi0+e—27ri(¢+0) +627ri¢

e?ﬂi(qﬁ-‘rﬁ) + 6—27”'0 + 6—27Ti¢ — =

Yo 0-

Thus (zo,yo) € H. Recall that this parametrization of x, coincides with that of K (f)
described in (2.1) in the previous section.

Lemma 3.2. K(F)={(z,7) € Hyx € K(f)}.

1 v 1 u
proof. Note that the numbers u, —, — (resp. v, —, —) in the definition of ¥ are the
vu u v

roots of the cubic equation t3 — xt? + yt — 1 = 0, (resp. t3 — yt?> + xt — 1 = 0.) Thus the
map ¥ : (C — {0})? — C? is surjective. Hence, for any (z,5) € C?, there exists a point
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(u,v) € (C—{0})? such that (z,y) = ¥(u,v). Then we have F"(z,y) = Vo F*(u,v) and it
easily follows that F"(x,y) — oo if and only if F}'(u,v) — oco. Since ¥(—, —) = V(u,v),
v u

it is easy to see that (z,y) € K(F) if and only if |u| = |v| = 1. This completes the
proof. O]

Lemma 3.3. J(F) = K(F).

proof. Note that J(F) C K(F). Since the critical value set of U intersects K (F')
only at the boundary of K(f), ¥ is locally invertible in the interior of K(F) in H. Let
®;, 0 < j <5 be the branches of U~! there. Then, we have

5
1

(dd°G)? = =Y % (dd°Gy)
3; )

Hence, J(F) = supp(dd°G)? contains the image of J(F},) = {|u| = |v| = 1} by ¥. Thus
K(F) C J(F). This completes the proof. O

Now the parameters ¢ and 6 turn out to be the external angles for . Note that
C(F)NH ={(z,7);|z| = 1} coincides with C(f) and is contained in J(F). See Figure 1.
Thus F' is not expanding on J(F').

Now Lemma 3.1 says W*(J) NC(F) = 0. Then it follows from Theorem 7.4 in [BJ]
that ¥ extends to a homeomorphism from W#(Jy, F},) onto W#(Jy, F) conjugating F}, to
F. In our case, this is trivial and we have a global parametrization of W#(Jy, F') as the
union of the stable manifolds Wg(¢) with ¢ = 2™,

-1

0

Figure 2: Equivalence on T? and the fundamental region A
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Note that (¢,6) and the parameters

pi(9,0) = (14+6,0—1)

p2(9,0) = (6,—¢—0)

p3(¢,0) = (—¢—10,0)
give a same landing point (xg, o). That is, several rays land at a same point. We will
investigate this in details. We remark that p;, po and p3 are the reflections with respect
to the lines ¢ = 64+ 1, ¢ = —20 and 6 = —2¢ respectively. These reflections give an

equivalence relation in T?. The fundamental region is the closed triangular region A
surrounded by the three lines :

p=0+1 o¢=-20, 0=-2¢.

Figure 2 shows the torus T?, where the dark region indicates the fundamental region A.
Each triangle is equivalent to one of the two halves of A. Now the next lemma is easy to
see.

Lemma 3.4. The equivalence class of a point in the interior of A consists of 6 points,
while that of a point on one of the three edges of OA consists of 3 points and that of a
vertex of 0J(F') consists of a single point itself.

Since A and OA correspond respectively to J(F') and 0.J(F'), we have the following.

Theorem 3.3. Each point z = (x,y) in J(F) is the landing point of exactly one, 3
or 6 external rays if z is a cusp point on OJ(F), z is a non-cusp point on OJ(F) or
z € int J(F), respectively.
Finally note that the restriction of ¥ to H is
1 t —

O B (L R R ORE0)]

where ¢ is the Bottcher coordinate of f. Thus the external rays for the map f studied in
the previous section are just the restriction of the rays for the map F' to H.
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