
External rays for a regular polynomial endomorphism
of C2 associated with Chebyshev mappings

Shizuo Nakane∗

In this note, the dynamics of a regular polynomial map of C2 is investigated. Especially, landing
points of the external rays are completely characterized.

1 Introduction

In this note, we consider the external rays of the map F : C2 → C2 of the form :

F (x, y) = (x2 − 2y, y2 − 2x).

External rays were first defined for polynomial maps on C to investigate the combina-
torial properties of the dynamics on the Julia sets. Let P be a monic centered polynomial
with degree d of one variable. Let ϕ = ϕP be its Böttcher coordinate, that is, a conformal
map ϕ in a neighborhood of the point at ∞ satisfying

ϕ(P (z)) = ϕ(z)d, lim
z→∞

ϕ(z)

z
= 1.

By this functional equation, it can be continued analytically until it meets a critical
point. Especially, if K(P ) is connected, it extends to a conformal map ϕ : C−K(P ) →
C − D. The external ray RP (θ) of external angle θ is defined by the preimage of the ray
{re2πiθ; r > 1} by ϕ. We say it lands at a point z ∈ J(P ) if it is continued to r > 1
and converges to z as r → 1. Recently, Bedford and Jonsson [BJ] defined external rays
for regular polynomial endomorphisms of Ck and established a landing property with
some additional assumptions. Although the map F does not satisfy the assumptions in
[BJ], we can investigate the landing property from the explicit expression of its Böttcher
coordinate.

The map F has dynamically distinguished properties. For example, it is critically
finite, that is, the union of the forward orbit of the critical set forms an analytic subset of
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C2. This is because it is closely related to the Chebyshev maps of two variables. A typical
example of Chebyshev maps of one variable is the quadratic polynomial p(z) = z2 − 2,
which is critically finite, too. A natural extention of this Chebyshev map to the two
variables case is f(z) = z2 − 2z. By virtue of the distinguished properties of Chebyshev
maps, Uchimura [U1] has obtained many interesting results.

Here we show why Chebyshev maps are easily analyzed. Put z = ψ(t) = t+1/t. Then

p(ψ(t)) = (t + 1/t)2 − 2 = t2 + 1/t2 = ψ(t2).

Hence a branch of its inverse ϕ = ψ−1 satisfies ϕ(p(z)) = ϕ(z)2 and it gives the Böttcher
coordinate of p. Then the external ray Rp(θ) is explicitly written by

z = ψ(re2πiθ) = re2πiθ +
1

r
e−2πiθ, r > 1,

and it lands at the point

z0 = e2πiθ + e−2πiθ = 2 cos 2πθ.

Consequently, J(p) = {z = 2 cos 2πθ; θ ∈ T}. In the sequel, we will apply this idea to the
maps f and F .

2 External rays for the map f

Consider the map f studied in [U1] of the form :

f(z) = z2 − 2z.

The map f : C → C is not holomorphic but is associated with the Chebyshev maps of
two variables and its dynamics is completely determined. See [U1]. Since the jacobian of
f is :

Jac(f) = |∂f/∂z|2 − |∂f/∂z|2 = 4(|z|2 − 1),

its critical set C(f) is the unit circle |z| = 1. The filled-in Julia set K(f), i.e., the set of
points with bounded orbits, is parametrized (with some identification) as follows.

K(f) = {z = z(φ, θ) = e2πiφ + e2πiθ + e−2πi(φ+θ); (φ, θ) ∈ T2}. (2.1)

And its boundary is the hypocycloid (see Figure 1) :

z = 2e2πiθ + e−4πiθ, θ ∈ T.
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Figure 1: The dark region : K(f), the circle : C(f)

Moreover, the dynamics of f on K(f) is expressed by f(z(φ, θ)) = z(2φ, 2θ), which
enables us to describe their dynamics by symbolic dynamics. Although this parametriza-
tion of K(f) seems a bit tricky, we will give a dynamical meaning of the parameters φ, θ
above in the next section.

First we study the Böttcher coordinate of f . Put

z = ψ(t) = t +
1

t
+

t

t
.

Then its jacobian Jac(ψ) satisfies

Jac(ψ) = |zt|2 − |zt|2

= |1− t

t2
|2 − | 1

t
− 1

t
2 |2

= (1− 1

|t|2 )|1− t

t2
|2.

Thus ψ gives a diffeomorphism from C−D onto C−K(f) and it is easy to see

f(ψ(t)) = ψ(t2), lim
t→∞

ψ(t)

t
= 1.

That is, the map ϕ = ψ−1 should be the Böttcher coordinate of f and we can define the
external ray as follows :

Rf (θ) = ψ({re2πiθ; r > 1}).
Then we have the following.
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Theorem 2.1. The external ray Rf (θ) is parametrized by

z = re2πiθ +
1

r
e2πiθ + e−4πiθ (r > 1)

and it lands at the point
z0 = 2e2πiθ + e−4πiθ ∈ ∂K(f).

3 External rays for the map F

Now consider the following map in C2.

F (x, y) = (x2 − 2y, y2 − 2x),

which is closely related to the map f in the previous section. In fact, the map F restricted
to H = {(x, y) ∈ C2; y = x} is equivalent to f . Let C(F ) be the set of the critical points
of F . By a direct calculation, it follows C(F ) = {xy = 1}.

Let f(z) be a polynomial endomorphism of Ck of degree d and let fh(z) be the degree
d part of f(z). It is regular if f−1

h (0) = {0}. Note that regular polynomial maps extend
to analytic maps of Pk. Let Π denote the hyperplane at ∞, which is isomorphic to Pk−1.
In case k = 2, Π is isomorphic to the Riemann sphere C. For a regular polynomial map
f , we denote the filled-in Julia set also by K(f). It is a compact subset of Ck. And J(f)
denotes the smallest Julia set of f , that is, the support of µ = (ddcGf )

k. Here Gf is the
Green function of f . And we put fΠ = f |Π, JΠ = J(fΠ).

Let W s(JΠ, f) be the stable set of JΠ :

W s(JΠ, f) = {z ∈ Pk; lim
n→∞

dist(fn(z), JΠ) = 0}.

The inverse Böttcher coordinate Ψ is a homeomorphism W s
loc(JΠ, fh) → W s

loc(JΠ, f) con-
jugating fh to f . It extends to W s(JΠ, fh) until it meets a critical point. Each local
stable manifold W s

loc(a) (a ∈ JΠ) is a complex disk homeomorphic to C − DR for some
R > 1. External rays are the rays in W s(JΠ, f) defined by the gradient lines of the Green
function Gf restricted to W s

loc(a). Since the Böttcher coordinate transforms the Green
function into a canonical form, external rays are the images of the actual rays by the
inverse Böttcher coordinate, just as for polynomials of one variable.

Bedford and Jonsson [BJ] established the continuous landing property of external rays
for regular polynomial endomorphisms of C2.

Theorem 3.1. ([BJ], Theorem 10.2)
Let f be a regular polynomial endomorphism of C2. Assume
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(1) fΠ is uniformly expanding on JΠ.
(2) f is uniformly expanding on J(f).
(3) The non-wandering set of f in ∂K(f) consists of J(f) and a hyperbolic set S1 of
unstable index 1.
(4) W s(S1) = ∪x̂∈Ŝ1

W s(x̂).
(5) W s(JΠ) ∩ C(f) = ∅.
Then all external rays land onto J(f) and landing points vary continuously.

As a trivial example, we consider the map Fh(x, y) = (x2, y2). Then

C(Fh) = {x = 0} ∪ {y = 0}, K(Fh) = {|x| ≤ 1, |y| ≤ 1},
J(Fh) = {|x| = |y| = 1}, Fh,Π(ζ) = ζ2, JΠ = {|ζ| = 1},
W s(ζ) = {y = ζx, |x| > 1}, W s(JΠ, Fh) = {|x| = |y| > 1}.

And all the assumptions of the above theorem are satisfied. Then external rays for Fh are
labelled by two angles (φ, θ) ∈ T2. Here ζ = y/x = e2πiφ ∈ JΠ and θ is the argument of
the ray in the disk W s(ζ). Hence the external ray RFh

(φ, θ) is just the ray :

x = re2πiθ, y = ζx = re2πi(φ+θ), (r > 1),

which lands at (e2πiθ, e2πi(φ+θ)) ∈ J(Fh).
Our map F is regular but is not expanding on J(F ) since J(F ) contains critical points,

as we will see later. Next lemma says that it satisfies the last condition (5). Its proof also
implies that F is critically finite.

Lemma 3.1. W s(JΠ, F ) ∩ C(F ) = ∅.
proof. Note that the critical set C(F ) is parametrized as x = t, y = 1/t. We calculate

the critical orbits and by induction, we show

F n(t, t−1) = (t2
n

+ 2t−2n−1

, t−2n

+ 2t2
n−1

) (n ≥ 2).

In fact, it is true for n = 2. Suppose it is true for n = k. Then the first entry of
F k+1(t, t−1) is

(t2
k

+ 2t−2k−1

)2 − 2(t−2k

+ 2t2
k−1

) = t2
k+1

+ 4t2
k−1

+ 4t−2k − 2t−2k − 4t2
k−1

= t2
k+1

+ 2t−2k

.

The same holds for the second entry. Hence the case n = k + 1 is also true.
Note that the map F has two super-attracting fixed points [1 : 0 : 0] and [0 : 1 : 0]

in Π and W s(JΠ, F ) is contained in the common boundary of their basins. The above

98 ACADEMIC REPORTS Fac. Eng. Tokyo Polytech. Univ. Vol. 27 No.1 (2004) 



calculation implies that the parts |t| > 1 and |t| < 1 are contained in the basins of the
points [1 : 0 : 0] and [0 : 1 : 0] respectively and the part |t| = 1 is contained in K(F ).
Thus C never intersects W s(JΠ, F ). This completes the proof.

Now we consider the external rays for F . Fortunately, we have an explicit expression
of an inverse Böttcher coordinate of F and we can define them directly. Put

(x, y) = Ψ(u, v) = (u +
1

v
+

v

u
, v +

1

u
+

u

v
).

Then it satisfies the functional equation

F ◦Ψ(u, v) = Ψ(u2, v2) = Ψ ◦ Fh(u, v).

The jacobian Jac(Ψ) is written by

Jac(Ψ)(u, v) = (1− 1

uv
)(1− u

v2
)(1− v

u2
).

Hence it is invertible on W s(JΠ, Fh). The inverse Φ = Ψ−1 is a Böttcher coordinate of F .
Then each stable manifold W s

F (ζ) of ζ ∈ JΠ for F is the image of W s
Fh

(ζ) = {(t, ζt); |t| >
1} ∼= C − D by Ψ. This coordinate gives the Böttcher coordinate of the restriction of F
on W s

F (ζ). Hence the external ray RF (φ, θ) is the image of RFh
(φ, θ) by Ψ.

Theorem 3.2. The external ray RF (φ, θ) is expressed by

x = re2πiθ +
1

r
e−2πi(φ+θ) + e2πiφ

y = re2πi(φ+θ) +
1

r
e−2πiθ + e−2πiφ (r > 1).

Its landing point depends continuously on (φ, θ) ∈ T2 :

x0 = e2πiθ + e−2πi(φ+θ) + e2πiφ

y0 = e2πi(φ+θ) + e−2πiθ + e−2πiφ = x0.

Thus (x0, y0) ∈ H. Recall that this parametrization of x0 coincides with that of K(f)
described in (2.1) in the previous section.

Lemma 3.2. K(F ) = {(x, x) ∈ H; x ∈ K(f)}.

proof. Note that the numbers u,
1

v
,
v

u
(resp. v,

1

u
,
u

v
) in the definition of Ψ are the

roots of the cubic equation t3 − xt2 + yt− 1 = 0, (resp. t3 − yt2 + xt− 1 = 0.) Thus the
map Ψ : (C − {0})2 → C2 is surjective. Hence, for any (x, y) ∈ C2, there exists a point
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(u, v) ∈ (C−{0})2 such that (x, y) = Ψ(u, v). Then we have F n(x, y) = Ψ◦F n
h (u, v) and it

easily follows that F n(x, y) →∞ if and only if F n
h (u, v) →∞. Since Ψ(

1

v
,
1

u
) = Ψ(u, v),

it is easy to see that (x, y) ∈ K(F ) if and only if |u| = |v| = 1. This completes the
proof.

Lemma 3.3. J(F ) = K(F ).

proof. Note that J(F ) ⊂ K(F ). Since the critical value set of Ψ intersects K(F )
only at the boundary of K(f), Ψ is locally invertible in the interior of K(F ) in H. Let
Φj, 0 ≤ j ≤ 5 be the branches of Ψ−1 there. Then, we have

(ddcG)2 =
1

3

5∑
j=0

Φ∗
j(ddcGh)

2.

Hence, J(F ) = supp(ddcG)2 contains the image of J(Fh) = {|u| = |v| = 1} by Ψ. Thus
K(F ) ⊂ J(F ). This completes the proof.

Now the parameters φ and θ turn out to be the external angles for F . Note that
C(F ) ∩H = {(x, x); |x| = 1} coincides with C(f) and is contained in J(F ). See Figure 1.
Thus F is not expanding on J(F ).

Now Lemma 3.1 says W s(JΠ) ∩ C(F ) = ∅. Then it follows from Theorem 7.4 in [BJ]
that Ψ extends to a homeomorphism from W s(JΠ, Fh) onto W s(JΠ, F ) conjugating Fh to
F . In our case, this is trivial and we have a global parametrization of W s(JΠ, F ) as the
union of the stable manifolds W s

F (ζ) with ζ = e2πiφ.

O

θ

φ
1

−1

∆

Figure 2: Equivalence on T2 and the fundamental region ∆
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Note that (φ, θ) and the parameters

ρ1(φ, θ) = (1 + θ, φ− 1)

ρ2(φ, θ) = (φ,−φ− θ)

ρ3(φ, θ) = (−φ− θ, θ)

give a same landing point (x0, y0). That is, several rays land at a same point. We will
investigate this in details. We remark that ρ1, ρ2 and ρ3 are the reflections with respect
to the lines φ = θ + 1, φ = −2θ and θ = −2φ respectively. These reflections give an
equivalence relation in T2. The fundamental region is the closed triangular region ∆
surrounded by the three lines :

φ = θ + 1, φ = −2θ, θ = −2φ.

Figure 2 shows the torus T2, where the dark region indicates the fundamental region ∆.
Each triangle is equivalent to one of the two halves of ∆. Now the next lemma is easy to
see.

Lemma 3.4. The equivalence class of a point in the interior of ∆ consists of 6 points,
while that of a point on one of the three edges of ∂∆ consists of 3 points and that of a
vertex of ∂J(F ) consists of a single point itself.

Since ∆ and ∂∆ correspond respectively to J(F ) and ∂J(F ), we have the following.

Theorem 3.3. Each point z = (x, y) in J(F ) is the landing point of exactly one, 3
or 6 external rays if z is a cusp point on ∂J(F ), z is a non-cusp point on ∂J(F ) or
z ∈ int J(F ), respectively.

Finally note that the restriction of Ψ to H is

Ψ(t, t) = (t +
1

t
+

t

t
, t +

1

t
+

t

t
) = (ψ(t), ψ(t)),

where ψ is the Böttcher coordinate of f . Thus the external rays for the map f studied in
the previous section are just the restriction of the rays for the map F to H.

References

[BJ] E. Bedford and M. Jonsson: Dynamics of regular polynomial endomorphisms of Ck.
Amer. J. Math. 122 (2000), pp. 153–212.

[U1] K. Uchimura: The dynamical systems associated with Chebyshev polynomials in
two variables. Int. J. Bifurcation and Chaos 6 (1996), pp. 2611–2618.

[U2] K. Uchimura: Dynamics of symmetric polynomial self maps of C2. Preprint.

1012External rays for a regular polynomial endomorphism of  associated with Chebyshev mappings C




